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Abstract 45 
 46 
 Motor impairments of the upper and lower extremities are common symptoms of multiple 47 
sclerosis (MS).  While some peripheral effects like muscle weakness and loss of balance have 48 
been shown to influence these symptoms, central nervous system activity has not been fully 49 
elucidated.  The purpose of this study was to determine if alterations in glucose uptake were 50 
associated with motor impairments in patients with multiple sclerosis.  Eight patients with 51 
multiple sclerosis (4 men) and 8 sex matched healthy controls performed 15 minutes of treadmill 52 
walking at a self-selected pace, during which ≈ 322 MBq of the positron emission tomography 53 
glucose analogue [18F]-Fluorodeoxyglucose was injected.  Immediately after the cessation of 54 
walking, participants underwent positron emission tomography imaging.  Patients with MS had 55 
lower FDG uptake in ≈ 40% of the brain compared to the healthy controls (pFWE-corr < 0.001, 56 
qFDR-corr < 0.001, ke = 93851) and walked at a slower speed (MS, 1.1 (0.2), Controls 1.4 (0.1), 57 
m/sec, P = 0.014).  Within the area of lower FDG uptake 15 regions were identified.  Of these 15 58 
regions, 13 were found to have strong to moderate correlations to walking speed within the 59 
healthy controls (r > -0.75, P < 0.032). Within patients with MS only 3 of the 15 regions showed 60 
significant correlations: insula (r = -0.74, P = 0.036), hippocampus (r = -0.72, P = 0.045), and 61 
calcarine sulcus (r = -0.77, P = 0.026).  This data suggests that walking impairments in patients 62 
with MS may be due to network wide alterations in glucose metabolism.  Understanding how 63 
brain activity and metabolism are altered in patients with MS may allow for better measures of 64 
disability and disease status within this clinical population. 65 
 66 
 67 
 68 

69 



Introduction 70 
 71 
Motor impairments of the upper and lower extremities are some of the most common 72 

symptoms in patients with MS (Fox et al, 2006).  Previous investigations have shown muscle 73 
weakness, spasticity, and loss of coordination/balance as contributors to these motor decrements 74 
(Wagner et al., 2014; Rizzo et al., 2004; Fritz et al., 2014).  One area that has been less studied is 75 
how alterations in motor patterns generated within the central nervous system (CNS) may play a 76 
role.  The most common methods for elucidating information about CNS activity during motor 77 
task performance are functional magnetic resonance imaging (fMRI) and 78 
electroencephalography (EEG).  A major limitation of fMRI is that brain activity can only be 79 
measured while an individual is positioned within the MR camera (Gramann et al., 2014).  While 80 
EEG is able to measure activity during walking, it can be hampered by interference and is unable 81 
to measure subcortical areas (Filippi et al., 2002). 82 

 83 
An alternative to fMRI and EEG is positron emission tomography (PET).  Using the PET 84 

glucose analogue [18F]-Fluorodeoxyglucose (FDG), the brains utilization/uptake of FDG can be 85 
quantified.  Glucose is one of the main substrates the brain uses to generate ATP.  By measuring 86 
FDG uptake into the CNS estimates of brain activity can be made (Ginsberg et al., 1988; 87 
Niccolini et al., 2014).  FDG PET also allows for the quantification of all brain regions during 88 
any type of free living activity, such as walking, running, or driving a car (la Fougere et al., 89 
2010; Tashiro et al., 2001; Jeong et al., 2006). 90 

 91 
Utilizing FDG PET at rest, Roelcke et al. (1997) and Bakshi et al. (1998) found reduced 92 

glucose metabolism within the brain of patients with MS compared to healthy controls.  Bakshi 93 
et al. (1998) also suggested that cerebral dysfunction and neuronal system disconnection, or 94 
uncoupling, may play an important role in the symptoms of MS.  The purpose of this study was 95 
to determine the associations between brain activity, as measured by FDG uptake, and walking 96 
ability in patients with MS and healthy controls.  We hypothesized that patients with MS would 97 
have lower FDG uptake during walking compared to controls, and that associations with brain 98 
regions responsible for motor task performance/control are altered in patients with MS.  99 
 100 
Materials and methods 101 
  102 
 Basic descriptions of the methods utilized in this investigation are provided here.  A more 103 
detailed explanation can be found in Rudroff et al. (2014).  All testing was performed between 104 
the hours of 0700 and 1100 to reduce the influence of fatigue on patients with MS. 105 
 106 
Participant recruitment 107 
  108 
 Eight patients with MS and 8 controls participated in this study.  Basic inclusion criteria 109 
for patients with MS included: positive MS diagnosis, ability to walk 15 min without assistance, 110 
and no change in disease status/had a relapse within the previous 3 months.  Controls were sex 111 
matched and without known cardiovascular, neurological, or musculoskeletal disease.  All 112 
procedures were approved by the Colorado Multi Institutional Review Board and all experiments 113 
conformed to the Declaration of Helsinki.  Upon arrival to the Colorado Translational Research 114 
Imaging Center all participants signed informed consent.  Measurements for height, weight, and 115 



age were obtained for all participants. Patients with MS were assessed for disability utilizing the 116 
Patient Determined Disease Steps (PDDS) and the Modified Ashworth Scale for grading 117 
Spasticity (MASS).  Figure 1 is a representation of the experimental timeline.  Participant 118 
characteristics are displayed in table 1. 119 
 120 

[Figure 1; Table 1] 121 
 122 
Walking test 123 
 124 
 Participants were asked to walk down a 60m hallway 3-5 times.  The time it took them to 125 
walk the middle 20 meters was timed with a handheld stopwatch.  The 2 closest times were 126 
averaged and this speed was set as the initial speed of the treadmill.  After their comfortable 127 
walking speed was calculated and set on the treadmill, participants began 15 minutes of treadmill 128 
walking.  Any adjustments to this speed were made within the first 2 minutes.  Two minutes after 129 
the start of treadmill walking approximately 321.9 MBq of FDG was injected into an antecubital 130 
vein via a previously inserted catheter.  During treadmill walking participants were asked their 131 
rating of perceived exertion (RPE), measured on the 10 point Borg scale, every minute.  At the 132 
conclusion of treadmill walking participants were escorted to the PET/Computed Tomography 133 
(CT) camera, and within 2 minutes underwent the start of PET/CT imaging. 134 
 135 
PET/CT imaging 136 
 137 
 PET/CT imaging was performed on a Phillips Hybrid Gemini TF 64 camera (Philips 138 
Healthcare, Cleveland, OH, USA).  PET images were acquired in list-mode and in 3-D mode, 139 
utilizing time-of-flight technology in order to improve the image contrast vs. noise.  A standard 140 
Colorado Translational Research Imaging Center testing protocol was utilized.  PET/CT images 141 
were acquired consecutively with the participants’ body secured to maintain co-registration of 142 
the images. 143 
 144 
Image analysis 145 
 146 
 PET images were cropped using Analyze 11.0 (Mayo Clinic, Rochester, MN, USA) to 147 
allow for analysis of the brain via the Statistical Parametric Mapping 8 (SPM8, 148 
www.fil.ion.ucl.ac.uk/spm/) toolbox for Matlab 2011a (The MathWorks, Inc., Natick, MA, 149 
USA).  FDG PET images were then transformed into SUV parametric images using voxel by 150 
voxel calculation via the formula: SUV = Activity (kBq/cc) / ((Injected Activity (MBq) / Body 151 
Weight (Kg)).  After SUV calculation, images were spatially normalized to a tracer specific 152 
template into Montreal Neurological Institute (MNI) space, as described in Tuulari et al. (2013).   153 
Images were smoothed at 10-mm Full Width at Half Maximum.  Smoothed spatially normalized 154 
SUV images were then analyzed with SPM8. 155 
 156 
 A 2-sample t-test batch process was performed within SPM8 to identify clusters of 157 
differing FDG uptake between the two groups (group 1 MS, group 2 CON), utilizing walking 158 
speed as a covariate, and a relative threshold masking set at 0.8.  T-contrasts of “-1 1” and “1 -1” 159 
were tested with a p-value set to 0.01 and an extent threshold (ke) = to 0 (voxels).  Whole brain 160 
and current cluster values were identified at the cluster-level.  The SUV for regions within the 161 
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significant cluster-level were determined using the AAL (Automatic anatomic labeling) template 162 
extracted with the marsbar (http://marsbar.sourceforge.net) SPM toolbox.  Visual inspection of 163 
the overlap between ROIs and SPM threshold output overlaid on the AAL template was 164 
performed using MRIcron (Rorden and Brett, 2000). 165 
 166 
Statistical Analysis 167 
 168 
 Whole brain statistical analysis was performed within SPM8 toolbox and ROI-based 169 
Pearson’s correlations, brain region to walking speed, were performed with SPSS 22 (IBM Corp, 170 
Armonk, NY).  Participant characteristics were compared utilizing unpaired t-tests.  For analysis 171 
performed in SPSS a significant α was set at < 0.050.   172 
 173 
Results 174 
 175 
Subject characteristics 176 
 177 
 There were no differences between the MS and CON group for age, height, or weight (P 178 
> 0.122).  Patients with MS were classified as having mild disability determined from scores of 179 
the MASS and PDDS.  Patients with MS walked at a slower self-selected speed than controls (P 180 
= 0.014), but without a difference in RPE (P = 0.681). All participant characteristics are provided 181 
in Table 1.  These characteristics have been previously reported (Rudroff et al., 2014). 182 
 183 
 184 
SPM analysis 185 
 186 
 FDG uptake in patients with MS was lower compared to controls, represented by one 187 
large cluster (pFWE-corr < 0.001, qFDR-corr < 0.001, ke = 93851) (Fig 2).  This cluster represented 188 
approximately 40% of total brain volume (227456 voxels).  No cluster or peak level regions were 189 
found to have higher FDG uptake in patients with MS.  Figure 3 is the cluster level SPM output 190 
for the identified cluster, displaying peak-level information. Table 3 displays SPM output with 191 
associated AAL labels defined using MRIcron. 192 
 193 

[Figure 2, 3; Table 3] 194 
 195 
ROI and walking speed correlations 196 
 197 
 Strong to moderate Pearson correlations were found in 13 out of 15 regions identified 198 
from SPM analysis to walking speed within the control group (r > -0.75, P < 0.032).  Within the 199 
MS group only 3 regions, the Insula (r = -0.74, P = 0.036), Hippocampus (r = -0.72, P = 0.045), 200 
and Calcarine sulcus (r = -0.77, P = 0.026) were found to have statistically significant 201 
correlations.  In both groups neither the Thalamus nor Caudate had a significant correlation, 202 
although within the control group it was borderline (0.051 ≤ P < 0.063).  In general all other 203 
areas, while not reaching statistical significance, had a lower Pearson r-value compared to the 204 
same region within the control group.  The uncoupling of FDG uptake and walking speed is 205 
visualized for 4 regions in Figure 4. Table 2 lists the all r-values and associated P-values. 206 
 207 



[Table 2; Figure 4] 208 
 209 
 210 
Discussion 211 
 212 
 Results from SPM analysis showed that patients with MS had lower FDG uptake in 213 
approximately 40% of the brain compared to controls as well as weaker associations with 214 
preferred walking speed.  Interestingly the motor cortex, the origin of central motor command, 215 
was not found to be associated to walking speed in patients with MS (r = -0.496, P = 0.241).  216 
This data suggests that alterations in task performance in patients with MS, such as walking, may 217 
be due to network wide uncoupling of CNS activity. 218 
 219 
Lower FDG uptake 220 
 221 
 Roelcke et al. (1997) previously showed a reduced central metabolic rate of glucose in 222 
patients with MS.  Possible explanations are reduced brain volume and enlarged ventricles 223 
(Grassiot 2009), which are common effects of MS, and altered glucose metabolism that has been 224 
shown in MS and other neurological diseases (Mathur et al., 2014).  One hypothesis that 225 
encompasses both of these factors is that mitochondrial dysfunction can lead to 226 
neurodegeneration (Su et al., 2009/2013; Cambron et al., 2012).  Amorini et al. (2014) reported 227 
greatly elevated serum lactate levels in patients with MS.  They suggested this is due to 228 
mitochondrial dysfunction which results in a reduced oxidative capacity, and in turn to a higher 229 
lactate concentration.  Smith et al. (2003) investigated the effect of infused lactate on resting 230 
CNS FDG uptake and found that FDG uptake was reduced with lactate infusion.  During 231 
exercise it has also been shown that brain FDG uptake can be reduced.  This reduction was 232 
correlated with the increase in lactate production (Kemppainen et al., 2005), although the 233 
intensities at which this was found to happen were 30, 50, and 75% V̇O2max.  Even though these 234 
patients with MS were only mildly disabled, a reduced brain volume and increased lactate 235 
utilization could be driving the lower FDG uptake observed in this study. 236 
 237 
Reduced associations between brain FDG uptake and walking speed 238 
 239 
 Much of our knowledge of brain function has been obtained from lesion studies.  In these 240 
studies focal lesions are created or patients with naturally occurring lesions were studied.  A 241 
hallmark of MS is demyelinated lesions, which can be either active or dormant, throughout the 242 
CNS (Kutzelnigg and Lassman, 2014).  Often time’s clinical disability can be linked to the 243 
location and activity of these lesions (Rocca et al., 2002; Gil Moreno et el., 2013).  While no 244 
MRI measurements were performed for this study it is unlikely that any lesions the patients with 245 
MS had were all in the same locations.   246 
 247 
 In the control group we found moderate to strong correlations with walking speed for 248 
most of the brain regions within the identified cluster.  Many of these regions are involved in 249 
visual-spatial processing, sensory/motor integration, and executive function.  It has been reported 250 
that the neural network for motor task performance is highly integrative, and not limited to areas 251 
like the motor cortex and supplemental motor areas, and can change depending on the task being 252 
performed (Neely et al., 2013).  These areas of cortical activity have also been identified during 253 



walking and running in other studies using near infrared spectroscopy (NIRS) (Suzuki et al., 254 
2004; Keonraadt et al., 2014) as well as during imagined walking with fMRI (Bakker et al., 255 
2008).  In patients with MS, however, it appears that these network connections are altered, 256 
suggesting a decoupling effect of brain activity and motor performance.  Only the insular cortex, 257 
calcarine sulcus, and hippocampus had a significant association with walking speed in patients 258 
with MS.  The strength of these correlations was also very similar to those within the healthy 259 
control group. Interestingly the motor cortex in the control group showed a strong correlation to 260 
walking speed (r = -0.791, P = 0.019).  The contributions of the motor cortex to steady state 261 
walking is not completely understood, with conflicting reports of its activity and importance 262 
being stated by multiple sources (Keonraadt et al., 2014; Petersen et al., 2012; Bakker et al., 263 
2008; la Fougere et al., 2010).  During gait challenges it has also been shown that areas like the 264 
supplemental motor areas and prefrontal areas are more active to account for the continuous 265 
alterations necessary to navigate the challenges (Suzuki et al. 2004; Bakker et al., 2008; 266 
Keonraadt et al. 2014).  With the increase in disability and disease progression it is possible that 267 
these areas are used to a greater extend to maintain ambulation in patients with MS and the 268 
inability to fully utilize them during walk may contribute to the slower walking speed observed 269 
in these patients. 270 
 271 

The calcarine sulcus is located within the primary visual cortex, within the occipital lobe.  272 
Visual feedback is important for most motor tasks (Sarlegna and Mutha, 2014; Zhang et al., 273 
2011).  It allows for the proper interpretation of the body in the environment.  Visual feedback 274 
also plays an important role in the maintenance of balance (Prosperini et al., 2010), which is 275 
often impaired in patients with MS.  The insular cortex is a located medial to the temporal lobe 276 
and is known as a motor/sensory association area.  The integration of sensory and motor cues are 277 
necessary for the continuous updates of motor patterns (Smuncy et al., 2013), ensuring efficient 278 
task performance.  The hippocampus connects to the medial temporal lobe.  This area has been 279 
implicated in motor task performance through fMRI studies of recalled walking (la Fougere et 280 
al., 2010; Wutte et al., 2012).  It is believed that this area stores the motor patterns that are 281 
recalled during walking.  Recall of these motor patterns would most occur through connections 282 
with the hippocampus as well as sensory/motor connections throughout the cortex of the frontal, 283 
parietal, and temporal lobes. 284 
 285 
Potential physiological mechanisms for walking impairments in patients with MS 286 
 287 
 Demyelinating lesions often occur throughout the CNS, with no two individuals having 288 
lesions at the exact same loci.  The decoupling of the CNS and motor task performance may 289 
partially explain why many symptoms, such as difficulties walking, are shared between so many 290 
patients with MS.  To maintain mental and physical function the brain forms new connections 291 
within itself to compensate for damage.  This plasticity may result in the network wide 292 
alterations in glucose uptake which we show is uncoupled with motor task performance.   It is 293 
unclear whether these alterations in glucose uptake are causative of disability, or compensatory 294 
to maintain function.  Further research is necessary to elucidate how alterations in CNS activity 295 
influence motor task performance in patients with MS. 296 
 297 
 298 
 299 



 300 
Methodological considerations 301 
 302 
 One limitation of this investigation is the lack of MRI data.  Combining structural 303 
information like brain volume as well as lesion locations could provide additional insight in to 304 
why certain areas were correlated with walking speed while others were not.  Brain atrophy is 305 
very common in patients with MS.  The normalization of their PET image to a standard template 306 
could introduce error, which increases with greater atrophy.  As the amount of atrophy is 307 
increased an SUV image would be stretched more to fit the standard template.  If varying 308 
amounts of atrophy within the MS existed, it could in part explain the lack of correlation 309 
between brain ROI and walking speed.  The average disease duration of patients with MS in this 310 
study was 8.9 years, with a range of 1-19 years, so varying amounts of atrophy can be expected.  311 
However, the 3 ROIs that were found to be significantly correlated with walking speed in the MS 312 
group, has similar r-values and P-values as that of the control group.  Since atrophy is common 313 
in MS using individualized MR images for normalization may be able to account for the variance 314 
due to atrophy and should be performed in future studies.  Another limitation is the lack of a 315 
baseline FDG PET image so that relative activation/deactivation could be estimated for the 316 
groups.  Future studies utilizing both MRI and PET may provide greater information on the 317 
associations between structure and function within the human brain.  Another aspect to consider 318 
is the importance of spinal cord activated motor commands from central pattern generators.  It is 319 
possible that an increased reliance on these motor neurons could reduce correlations with 320 
walking performance and the brain. 321 
 322 
Conclusion 323 
 324 
 Mildly disabled patients with MS have been shown to decrements in function task 325 
performance.  In this sample these decrements were reflected by a significantly slower self-326 
selected walking speed.  These patients also demonstrated reduced FDG uptake into 327 
approximately 40% of the brain.  Only 3 out of 15 regions identified within the patients with MS, 328 
compared to 13 out of 15 regions in healthy controls, were found to be correlated with their 329 
walking speed.  This may suggest a decoupling of brain glucose utilization and motor task 330 
performance.  Whether this decoupling is a compensatory mechanism to maintain function or 331 
contributes to the decrements in motor task performance requires further studies.  Future research 332 
studies need to be conducted to identify how to preserve the associations between brain glucose 333 
uptake and motor task performance in order to lessen the effects motor decrements have on the 334 
functional abilities of patients with MS. 335 
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Figure legends 483 
Figure 1.  Representative image of the experimental timeline 484 
 485 
Figure 2.  Brain regions where patients with MS have lower FDG uptake after walking 486 
challenge.  Walking speed has been modeled out as a nuisance factor.  Data are thresholded at P 487 
< 0.01, FDR corrected.  488 
 489 
Figure 3.  SPM output of the areas of lower FDG uptake in patients with MS compared to 490 
controls.  Within cluster information is displayed for the large cluster (pFWE-corr < 0.001, qFDR-corr 491 
< 0.001, ke = 93851) identified during analysis.    492 
 493 
Figure 4.  Visual representation of correlations between walking speed and brain region FDG 494 
uptake.  In each case the strength of the correlation is less in patients with MS compared to 495 
controls.  As well as correlations being weaker, patients with MS show no statistical significance 496 
while correlations for the control group all reach statistical significance.  (A) Motor Cortex, (B) 497 
Frontal Cortex, (C) Cerebellum, (D) Anterior Cingulate. 498 

499 



Table 1. Subject characteristics and clinical measures  500 
 501 

 MS CON P-value 

N 8 (4 women) 8 (4 women)  
Age (years) 44.9 (8.6) 37.9 (8.4) 0.122 

Height (cm) 175 (8) 176 (7) 0.949 

Weight (kg) 78.2 (3.3) 78.2 (6.3) 0.982 

Disease Duration (years) 8.9 (6.2)   

PDDS 2 (0-4)   
MASS 1 (0-1.5)   
Walking Speed (m/sec) * 1.1 (0.2) 1.4 (0.1) 0.014 

RPE 1.7 (1.4) 1.5 (1.1) 0.681 
 502 
Age, Height, Weight, Disease Duration, Walking Speed, and RPE are reported as Mean (SD). 503 
PDDS, Patients Determined Disease Steps, and MASS, Modified Ashworth Scale for Grading 504 
Spasticity, are reported as median (range). * P < 0.050 505 
 506 

507 



Table 2. Pearsons’ correlations between walking speed and brain region FDG uptake 508 
 509 

Brain Region MS  CON  

 r-value P-value  r-value P-value  
Frontal Cortex -0.484 0.224  -0.813 0.014 * 

Occipital Cortex -0.664 0.073  -0.786 0.021 * 

Lateral Temporal Cortex -0.664 0.073  -0.818 0.013 * 

Medial Temporal Cortex -0.636 0.090  -0.832 0.010 * 

Motor cortex -0.496 0.241  -0.791 0.019 * 

Cerebellum -0.424 0.295  -0.835 0.010 * 

Insula -0.740 0.036 * -0.817 0.013 * 

Hippocampus -0.718 0.045 * -0.751 0.032 * 

Anterior Cingulum -0.414 0.308  -0.800 0.017 * 

Precuneus -0.603 0.113  -0.799 0.017 * 

Calcarine -0.767 0.026 * -0.750 0.032 * 

Lingual -0.680 0.064  -0.850 0.007 * 

Fusiform -0.626 0.097  -0.851 0.007 * 

Thalamus -0.324 0.433  -0.680 0.063  
Caudate -0.557 0.151  -0.704 0.051  

 510 
* P < 0.050 511 

512 



Table 3. SPM analysis of Cluster-level differences between patients with MS and healthy 513 
controls.  All locations represent areas of lower activity in the MS group vs. the CON group. 514 
 515 

T Z puncorr MNI Coordinates Region 
5.28 3.79   0.000 12 36 -4 Cingulum_Ant_R* 

5.12 3.72 0.000 24 50 -4 Frontal_Sup_Orb_R* 
5.10 3.71 0.000 38 -6 -32 Fusiform_R 
4.84 3.60 0.000 38 22 10 Frontal_Inf_Tri_R 
4.80 3.58 0.000 38 42 40 Frontal_Mid_R 
4.78 3.57 0.000 -28 20 -36 Temporal_Pole_Mid_L 
4.77 3.57 0.000 36 -54 30 Angular_R* 
4.73 3.54 0.000 -24 14 -50 Fusiform_L* 
4.70 3.53 0.000 46 -30 -32 Cerebelum_6_R* 
4.62 3.49 0.000 34 14 4 Insula_R 
4.62 3.49 0.000 6 64 -20 Frontal_Sup_Orb_R 
4.60 3.48 0.000 42 -14 -12 Hippocampus_R* 
4.38 3.37 0.000 16 20 -8 Cuadate_R 
4.36 3.36 0.000 -34 -22 -4 Hippocampus_L* 
4.35 3.36 0.000 68 0 6 Temporal_Sup_R* 
4.34 3.35 0.000 -30 -6 -20 Hippocampus_L 

 516 
* = visually placed in nearest labeled area within the automatic anatomical labeling (AAL) 517 
MRIcron template.  518 
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