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ABSTRACT 

 

 

 

STABLE AND UNSTABLE TILING PATTERNS OF ABC MIKTOARM TRIBLOCK 

TERPOLYMERS STUDIED VIA GPU-ACCELERATED SELF-CONSISTENT FIELD 

CALCULATIONS 

 

 

 Block copolymers are macromolecules formed from linking together two or more 

chemically distinct types of polymers. Provided the different monomers that make up each 

polymer are immiscible enough, melts of these molecules will self-assemble into highly ordered, 

periodic structures at length scales typically on the order of nanometers. The exemplary and 

simplest material in this respect is the AB diblock copolymer, a linear macromolecule formed by 

bonding together two immiscible polymers (or ‘blocks’) A and B. This material is capable of 

assembling into lamellar, cylindrical, spherical, and networked morphologies depending on the 

length of the A block and degree of immiscibility between A and B. The ability to control bulk 

properties of block copolymers via tuning these molecular properties, as well as the length scales 

that these ordered structures form at, makes them intriguing candidates for next generation 

technological applications in lithography, photonics, and transport. In order to realize these 

applications it is imperative to have an intimate understanding of the phase behavior of the 

materials such that the morphology that will form at a given combination of parameters can be 

predicted reliably.           

 Self-consistent field theory, or SCFT, has emerged as a useful theory for investigating 

block copolymer phase behavior. This statistical-mechanical theory has been successfully used to 

construct phase diagrams of the self-assembled morphologies of various block copolymer systems. 
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These phase diagrams provide the connection between molecular properties (such as block lengths, 

block incompatibility, and chain architecture) and bulk properties necessary in order to control the 

behavior of the material. The theory must, in general, be solved numerically – an open-source 

software termed ‘PSCFPP’ has recently been made available for this purpose, capable of 

implementing high-performance SCFT calculations for arbitrarily complex acyclic block 

copolymers by taking advantage of the massive parallelization of GPUs.     

 In this work, PSCFPP is used to apply SCFT to a neat melt of complex ABC miktoarm 

triblock terpolymers, which are an interesting class of block copolymer formed by linking three 

distinct polymers A, B, and C at a single junction point. The resulting star-shaped macromolecule 

is referred to as a ‘miktoarm’ and exhibits unique morphologies such as the Archimedean tiling 

patterns that cannot be found in other block copolymer materials. To focus on the effect of 

composition, which has not yet been fully elucidated, we restrict the interaction parameters 

between monomers ABC to the symmetric case where all are equivalent. The central region of the 

phase diagram, where the effect of the miktoarm architecture is most significant, is mapped out in 

detail and a 3D morphology previously thought to be metastable is shown to be a stable phase. 

Further, discrepancies in the literature concerning the stability of multiple 2D tiling patterns are 

resolved such that the phase diagram presented is the most accurate for the system to date. Finally, 

a 2D morphology of some interest owing to the possibility of exhibiting photonic band gaps is 

definitively shown to be stable in this system and its thermodynamic properties analyzed to 

ascertain what drives its formation. These results provide a solid foundation for further refinement 

of our understanding of ABC miktoarm phase behavior and demonstrate the utility of a software 

such as PSCFPP for obtaining high-accuracy SCF results. 
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Chapter 1: Introduction 

 

Block copolymers (BCPs) are a fascinating class of materials formed from covalently 

bonding two or more chemically distinct (immiscible) polymers together. Owing to the 

thermodynamic incompatibility between the different polymers (referred to as ‘blocks’) the 

materials would ideally like to undergo macrophase separation – however, the covalent bonds limit 

the spatial segregation that can be achieved.1 This results in the formation of so-called 

‘microphases’ where the different blocks phase-separate into highly ordered, periodic structures at 

length scales on the order of a BCP’s radius of gyration, i.e., nanometers. Even in the simplest type 

of BCP system, consisting of two distinct homopolymers A and B bonded together and referred to 

as an AB diblock copolymer, there is a rich variety of microphases (or ‘morphologies’) that the 

BCPs can arrange themselves in. While interesting from a fundamental perspective owing to the 

physics that govern this phenomenon and extraordinary patterns that can be formed, these 

materials also show great potential for next generation technological applications including 

nanostructured membranes and reactors, photonic crystals, and high-density information storage 

media.2 In order to realize these applications, it is imperative to have precise control over both the 

morphology formed by a given BCP system and the properties of that morphology, such as bulk 

period and stability.          

 Self-consistent field theory, or SCFT, has proven to be a useful theory for studying the 

statistical thermodynamics of condensed polymer systems.3-5 It provides a connection between the 

properties of individual polymers and the bulk properties of a morphology, serving as a guide for 

how the former can be used to control the latter. It additionally provides an expression for the 

Helmholtz free energy that can be evaluated for any specified morphology, thus allowing the 

construction of phase diagrams by comparing the free energies of competing phases. Within SCFT 
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of the ‘standard’ model (i.e., incompressible melts of continuous Gaussian chains with Dirac 𝛿-

function interactions), the phase behavior of a system is described by binary Flory-Huggins 

interaction parameters 𝜒αβ between distinct species α and β as well as the degree of polymerization 𝑁, the block (volume) fraction of species P 𝑓P ≡ 𝑁P/𝑁, and the statistical segment lengths 𝑏P. The 

block fraction of a component is simply the fraction of the total BCP’s length occupied by that 

species (with all monomers occupying the same volume), while only the products of the Flory-

Huggins parameters and 𝑁 are accessible quantities – strictly speaking, 𝑁 is infinite and 𝜒αβ 

infinitesimal within the theory. For example, in a neat melt of conformationally symmetric AB 

diblock copolymers the phase behavior is governed by two parameters: 𝜒AB𝑁 ≡ 𝜒𝑁 and 𝑓A ≡ 𝑓. 

Here, conformationally symmetric means that the statistical segment lengths of both blocks are 

equal. As the number of components increases and polymer topology becomes more complex, 

both parameter space and morphology space inflate drastically – introducing one more component 

to create an ABC triblock terpolymer results in phase behavior that is governed by five parameters, 𝜒AB𝑁, 𝜒BC𝑁, 𝜒AC𝑁, 𝑓A, and 𝑓B, with dozens of ordered phases having been found to exist.6 The 

topology of the polymer has an effect as well, for an ABC triblock can be synthesized to be either 

linear or branched – further, for linear ABC triblocks even the sequencing of the blocks has been 

shown to have an influence on the phase behavior.6       

 The mathematical form of SCFT is that of a classical field theory that reduces the many-

body problem of polymers in a melt interacting with each other to the problem of a single chain 

interacting with an external potential field created by the other chains in the system. The 

fundamentals were elaborated by S. F. Edwards during the 1960s while the theory was first applied 

to microphase separation in diblock melts by Helfand, Leibler, Semenov, and others during the 

1970s-80s.7-9 These early attempts at solving the governing equations were forced to use additional 
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approximations in order to obtain the phase diagrams – the first accurate numerical solution of the 

SCF equations was obtained by Matsen and Schick in their seminal 1994 work where they utilized 

the spectral method to compute the phase diagram for a neat melt of diblock copolymers.3 Since 

then there has been a flurry of activity centered around BCPs, both theoretically and 

experimentally – SCFT in particular has been used by a large number of groups around the world 

to investigate the morphological behavior of a wide range of BCP systems. However, while our 

understanding of the AB diblock copolymer is reaching a state of great maturity the same cannot 

be said for more sophisticated types of polymer materials. This is largely a symptom of the 

complexity that comes packaged with these materials, as discussed for the case of ABC triblocks 

vs AB diblocks. In order to elucidate the large number of morphologies available to these complex 

BCPs and attain a thorough understanding of their phase behavior it is necessary to utilize a 

combined theoretical and experimental approach. In this work, a contribution is made to the 

former: SCFT will be used to study the morphological behavior of a class of BCPs referred to as 

ABC miktoarm, or star, terpolymers. These molecules, a schematic of which is shown in Fig. 1.1b, 

are the branched counterparts to linear ABC triblocks. This unique topology enforces a strong  

 

 

 

 

 

 Figure 1.1 Linear (a) vs miktoarm (b) topologies for 

ABC triblock terpolymers with 𝑓𝐴 > 𝑓𝐵 > 𝑓𝐶. 
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constraint on the morphologies that can be formed, causing the phase behavior to deviate 

significantly from their linear counterparts and resulting in a number of fascinating morphologies 

that have not been observed in other BCP systems.      

 Before the results of this work are described it is appropriate to summarize the current state 

of our theoretical understanding of the morphological behavior of ABC miktoarm terpolymers. To 

make the following discussion more comprehensible, a collection of prominent morphologies 

formed by neat melts of these molecules is shown in Fig. 1.2 at 𝜒𝑁 ≡ 𝜒AB𝑁 = 𝜒BC𝑁 = 𝜒AC𝑁 =30 and various block fractions. The unit cell used in computations is given as the area enclosed by 

the lines emanating straight from each tick on the sides of the plots, with the qualitative magnitude 

of any cell parameter indicated by the distance between its ticks. For all 2D phases, these plots are 

generated from the converged volume fraction fields 𝜙P(𝐫) for species P at a set of block fractions {𝑓P} where that morphology is stable. Regions where 𝜙P(𝐫) > 0.5 are denoted by red, blue, and 

green for species A, B, and C, respectively, and the plots are created by overlaying the volume 

fraction fields for each species. To do this, each species is given a custom colormap that is 

transparent when 𝜙P(𝐫) < 0.5 and transitions from white at 𝜙P(𝐫) = 0.5 to a deep red, blue, or 

green at 𝜙P(𝐫) = 1. In this way, the intensity of the color corresponds to the concentration of the 

respective species – however, note that this visualization method destroys some information about 

the transition from 𝜙P(𝐫) = 0.5 to 𝜙P(𝐫) ≈ 0 as this region is set to be transparent for all species. 

Nevertheless, it provides a more detailed picture of the morphology than most other visualizations 

in the literature where binary colormaps are used that are transparent for 𝜙P(𝐫) < 0.5 and a solid 

red, blue, or green for 𝜙P(𝐫) ≥ 0.5. The 1D plot is straightforward with red, blue, and green 

denoting the volume fraction curves for species A, B, and C, respectively, while the 3D plots (from 

Ref. 12) are colored according to the binary colormaps described above. 
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Figure 1.2 Prominent morphologies formed by ABC miktoarm terpolymers near the center of 

the phase diagram at 𝜒𝑁 = 30. The 3D plots of TPL and HPL are pulled from Ref. 12 while 

all others are generated in-house. Basis vectors of the unit cell considered in computations are 

shown in white for the 3D morphologies. 
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 The names given to each morphology are shown above the corresponding plots – for the 

2D tiling patterns, the naming convention is generally well-accepted and straightforward. Each 

tiling pattern is described by a set of vertices based on the number and type of polygons that meet 

at a given vertex; each polygon is denoted by the number of sides it has (or equivalently the number 

of nearest-neighbor polygons) while unique polygons are separated by periods – for example, in 

the [6.6.6] tiling pattern every vertex can be described as the junction point of three hexagons. In 

the [12.6.4] pattern the majority domains (in red) are surrounded by twelve polygons, the blue 

domains by six polygons, and the green domains by four polygons. If the pattern contains more 

than one unique vertex, then these are separated by semicolons as in the [8.6.4;8.6.6] and 

[10.6.4;10.6.6] morphologies. The (3.3.4.3.4) phase is a notable exception to this rule – if the above 

convention were used then it would be denoted by [10.6.4;10.8.4]. However, Matsushita and co-

workers noticed10 that the (3.3.4.3.4) Archimedean tiling pattern can be overlaid on this 

morphology with the vertices centered on the larger red domains in Fig. 1.2. This convention has 

generally been accepted by the community11-13 and so we adopt it here for consistency – note that 

parentheses are used rather than brackets to denote that the tiling pattern is an overlaid rather than 

direct one.           

 All of the tiling patterns are 2D cylindrical structures with the cross-sections of the 

cylinders taking on various distinct geometries – they are also all stable near the center of the phase 

diagram. Once one progresses radially outward more, the dominant phases transition from the 

tiling patterns to various forms of lamellae, shown as the bottom four phases in Fig. 1.2. The 1D 

morphology denoted by L is a variation of the simple lamellae observed in linear ABC triblocks 

or AB diblocks. The smallest C arm segregates from the A and B arms as much as it can while the 

topological constraint of the miktoarm junction prevents total segregation from being possible. As 
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such, the C arm is constantly in contact with A and B arms leading to a unique three-phase lamellar 

structure. This plot of L is shown for 𝑓A = 0.5, 𝑓B = 0.3 – it needs to be noted, however, that as 

the length of the A block is increased and the B block decreased (while holding C constant) the 

morphology will transition to one where the B and C blocks no longer separate and instead occupy  

disordered lamellar regions between the A domains. Here we make no attempt to differentiate 

between the two as it is found in our calculations that the three-phase structure will spontaneously 

convert to the two-phase structure as 𝑓A is increased. This phenomenon is discussed in more detail 

for the tiling patterns in Chap. 3.3 .         

 The 2D morphology labelled L+C (Lamellae + Cylinders) is a well-known one in ABC 

miktoarms13 and has been referred to with various names in other studies – here we use the simplest 

one that captures the essence of the phase. Finally, the two 3D morphologies considered in this 

study are shown at the bottom of Fig. 1.2 and denoted by TPL (Tetragonally Perforated Lamellae) 

and HPL (Hexagonally Perforated Lamellae) with the plots being reproduced from Ref. 12. The 

two morphologies are identical with the exception of the packing arrangement of the cylindrical 

structures, which is tetragonal in TPL and hexagonal in HPL as their names would suggest. Note 

that the colors of these 3D plots are not consistent with the others, though they are sufficient to 

convey the structure of the morphology: the largest block occupies a lamellar region while the two 

smaller blocks occupy a perforated lamellar region with the smallest block forming the 

perforations and the middle block the matrix around them.     

 To gauge the current state of the art in SCF studies of ABC miktoarms a comprehensive 

survey of the literature was conducted – owing to the relatively recent introduction of the numerical 

methods requisite for solving SCFT3, 8, 14 and the (until very recently15) lack of open-source 

software for implementing said methods there has been a limited amount of progress made in this 
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area. Here we summarize the past studies done on this material using SCFT, focusing on the case 

of symmetrically interacting ABC miktoarms and including studies where a thorough attempt at 

mapping out a phase diagram was made. To better facilitate comparison with the results presented 

in this work, as much information as was made available in the relevant publications is included 

such as numerical methods, numerical parameters, candidate phases, and phases found to be stable. 

However, it has been noted5 that many SCF studies do not provide information at a level that can 

be used to replicate their results. We also find this to be the case and attempt to remedy it by 

including detailed information in the results section – additionally, the use of a freely available 

open-source software in this work will make the process of replicating our results trivial. 

 Note that in all SCFT studies of ABC miktoarms only the conformationally symmetric 

molecules are considered where all statistical segment lengths are equal. A first attempt at mapping 

out the phase diagram of ABC miktoarms with SCFT was made in 200416 where the real-space 

method of Drolet and Fredrickson8 (i.e., the Crank-Nicolson with alternating-direct implicit 

method) was used to solve the SCF equations. Note that this scheme uses a linear mixing of old 

and new solutions as the field update algorithm, while the error 𝜀 was chosen to be gauged by the 

relative change in the dimensionless Helmholtz free energy per chain 𝛽𝑓𝑐 at each iteration with 𝛽 ≡ 1/𝑘𝐵𝑇. Iteration was continued until 𝜀 < 10−4, and 𝛽𝑓𝑐 was minimized with respect to the 

cell parameters with a rectangular calculation cell used for all morphologies. A contour 

discretization of 𝑁𝑠 = 100 was used although it is unclear what the spatial discretization was, 

which has a significant effect on the accuracy of 𝛽𝑓𝑐 as will be discussed in Chap. 3.1. Two 

combinations of segregation strengths were considered, the symmetric case with 𝜒𝑁 ≡ 𝜒AB𝑁 =𝜒BC𝑁 = 𝜒AC𝑁 = 35 and the asymmetric case with 𝜒AB𝑁 = 𝜒BC𝑁 = 72, 𝜒AC𝑁 = 22. Only 

1D/2D phases were considered, and for the symmetric case the stable phases are given as core-
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shell hexagonal cylinders (H), lamellae (L), the knitting pattern (K), lamellae combined with 

cylinders (L+C), lamellae with beads at the interface, and the [6.6.6], [8.8.4], and [10.6.4;10.6.6] 

tiling patterns. Notably, many significant phases are not included in their computations such as 

[12.6.4], [8.6.4;8.6.6], and (3.3.4.3.4). Although the entire region of the phase diagram was 

considered (rather than just the central part), the diagrams presented are quite coarse, giving the 

stable phases at block fraction increments of 0.1 – owing to the limited number of candidate phases 

considered and coarseness of the phase diagrams they are not reproduced here.  

 Two SCFT studies of ABC miktoarms appeared in 2010 – the first17 used a generic 

reciprocal-space method to solve the SCF equations, distinct from the spectral method of Matsen 

and Schick3 as it does not use symmetry adapted basis functions. A relaxation method was used as 

a field update algorithm while the error was measured by the relative change in 𝑓𝑐 – iteration 

progressed until 𝜀 < 10−6. The free energy was minimized with respect to cell parameters, and in 

all reciprocal-space calculations they used 151 basis functions (corresponding to a spatial 

discretization of ~122) – to justify this choice they compared their results for 𝑓𝑐 to results from 

the spectral method and found them to agree to within 0.2% for 𝜒𝑁 = 30 where all calculations 

were done. Only 1D/2D phases were considered, and for 𝜒𝑁 = 30 the stable phases are given as 

L, L+C, and the [6.6.6], [8.6.4;8.6.6], [10.6.4;10.6.6], [12.6.4], and [8.6.4;8.8.4;12.6.4;12.8.4] 

tiling patterns – this last phase has not been observed in any other theoretical or experimental 

studies. Notably, the (3.3.4.3.4) morphology was not considered. The phase diagram is presented 

in Fig. 1.3a with block fraction increments of 0.001, as well as the stable phases along the 𝑓A = 𝑓B 

isopleth in 1.3b. In the phase diagram, 6 denotes the [8.6.4;8.8.4;12.6.4;12.8.4] tiling pattern found 

to be stable while there is a mistake in the name of [10.6.4;10.6.6] in the article with an extra vertex 

being included. 



10 

 

           

The second SCFT study of ABC miktoarms in 201018 was by the same research group and 

expanded upon the work done previously. The methods differ in that the generic reciprocal-space 

method is used first as a screening technique to locate potential phases that are then fed to a real-

space method based on the second-order pseudospectral algorithm.14 The field update algorithm 

and measure of error were not given, although a contour discretization of 𝑁𝑠 = 1000 was used 

and tested to support that it yielded an accuracy of 10−3 in 𝑓𝑐. Mesh sizes of 1282 and 643 were 

used in 2D and 3D calculations, respectively, and it is stated that these were enough to yield 10−8 

Figure 1.3 Phase diagram (a) and stable phases along 𝑓𝐴 = 𝑓𝐵 isopleth (b) at 𝜒𝑁 = 30, reproduced from Ref. 17. Here 𝑋 = 𝑓𝐶/𝑓𝐴 and the [12.6.4] pattern is 

notably not found to be stable along the isopleth. 
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accuracy in 𝛽𝑓𝑐. Calculations were done at 𝜒𝑁 = 60 and considered 1D/2D phases, including 

(3.3.4.3.4) and a new [8.6.4;8.6.6;12.6.4] tiling pattern, as well as a single 3D phase that had not 

been considered theoretically before known as HHC (Hexagonal Hierarchical Cylinders). HHC 

consists of small cylindrical domains formed by alternating minority blocks stacked vertically and 

surrounded by a matrix of the largest block. Stable phases and the phase diagram are given in Fig. 

1.4a, while 𝛽𝑓𝑐-data and phase boundaries along the 𝑓B = 𝑓C isopleth are shown in Figs. 1.4b and 

1.4c. Note that L3 is equivalent to L while HC corresponds to the standard core-shell hexagonal 

cylinder morphology known from linear triblocks.        

 

Finally, the phase behavior of symmetrically interacting ABC miktoarms was tackled with 

SCFT in a study published in 201312 that notably extended the computations to consider a large 

number of 3D phases. The fourth-order pseudospectral algorithm19 was used with all spatially 

Figure 1.4 Phase diagram (a) and data along the 𝑓𝐵 = 𝑓𝐶 isopleth (b) and (c) at 𝜒𝑁 =60, reproduced from Ref. 18. Here 𝑥 = 𝑓𝐴/𝑓𝐵 and the (3.3.4.3.4) and L+C phases are 

referred to as [10.6.4;10.8.4] and HL, respectively, while HC and HHC denote 

morphologies found near the outer regions of the phase triangle. 
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varying functions being expanded in plane waves with 323 basis functions, corresponding to a 

spatial discretization of 323. The contour discretizations used were varied and not stated explicitly, 

although it was required in all computations that 𝑁𝑠 ≥ 100. A large number of candidate phases 

are presented, many of them 3D in nature – additionally it is stated that all previously discovered 

1D/2D phases were considered. Calculations were done at 𝜒𝑁 = 30 along five lines connecting 

the center of the phase triangle to five points where the typical diblock phases are stable, and the 

stable phases as well as the phase diagram are shown in Fig. 1.5 – notably, only one 3D phase 

(TPL) is found to be stable near the center of the phase diagram. 

 

Figure 1.5 Phase diagram for 𝜒𝑁 = 30 reproduced from Ref. 12. The values 

along the bottom of the triangle denote 𝑓𝐵 while those along lines I-V denote 𝑓𝐶 , 

and the lines go in ascending order from left to right. Note that the [12.6.4] and 

[10.6.4;10.6.6] patterns do not appear anywhere in this diagram despite it being 

the most recent application of SCFT to symmetrically interacting ABC 

miktoarms. 
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 On the experimental side, a significant amount of work on the phase behavior of ABC 

miktoarm terpolymers has been carried out by Matsushita and co-workers.10, 13, 20, 21 Generally, the 

systems studied consisted of two types of blends, the first being polystyrene-polyisoprene-poly(2-

vinylpyridine) (PS-PI-P2VP) miktoarms with PI or PS homopolymers and the second two types 

of PS-PI-P2VP miktoarms with variable block fractions of one component. It has been argued10 

that blending miktoarms with low molecular weight homopolymers of one of the arms causes little 

difference in the resulting morphology from that of neat miktoarms while allowing easy control of 

composition. The addition of homopolymer could, however, shift the locations of phase boundaries 

at a given degree of segregation. Even if experiments were done on neat melts of PS-PI-P2VP 

miktoarms rather than blends, there would still be a number of discrepancies between the model 

system of symmetrically interacting neat melts considered in this (and previous12, 16-18) work and 

the systems studied by experimentalists. Most significantly, the interactions in PS-PI-P2VP are 

known to be asymmetric and obey 𝜒IS ≈ 𝜒SP < 𝜒IP, which drastically affects phase behavior.10, 17, 

22 Additionally, effects ignored in SCFT of the standard model such as fluctuations, polydispersity, 

finite chain length, conformational asymmetry, impurities, and slow kinetics can all impact the 

experimentally observed morphologies. Nevertheless, experimental observations serve as an 

invaluable guide for studying unfamiliar BCP systems with SCFT. We note that the morphologies 

proven to be stable in this work have all been observed experimentally, including a 3D phase 

previously found to be metastable for a symmetrically interacting system.12 For the previous 

reasons, no attempt is made to quantitatively compare SCFT and experimental results – however, 

TEM images of the experimentally observed counterparts to most of the morphologies given in 

Fig. 1.2 are provided in Fig. 1.6 for qualitative comparison.      
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Figure 1.6 TEM images of all morphologies shown in Fig. 1.2 except TPL for various 

block fractions and segregation strengths, reproduced from Refs. 10, 13, 19, and 20. 

Morphologies shown were obtained from a system of PS-PI-P2VP except for L, which 

was obtained from PS-PB-P2VP (PB=poly(1,2-butadiene)). The images for HPL show 

the morphology at tilt angles of 0° (a), 25° (b), and 35° (c) about a horizontal axis. 
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In this thesis, the SCF equations for a neat melt of symmetrically interacting ABC 

miktoarm terpolymers are solved numerically using a modified version of ‘PSCFPP’ (Polymer 

Self Consistent Field Plus Plus). This open-source software, developed by David Morse and 

coworkers, has been recently described in the literature15 and is an evolution of the older ‘PSCF’ 

software from the same group.5 PSCFPP allows SCF calculations to be done for melts of arbitrarily 

complex acyclic BCPs, utilizing GPU-accelerated code to significantly speed up the computations. 

Here it is used to compute, at high accuracy, the central region of the ternary phase diagram at 𝜒𝑁 = 30 by comparing the Helmholtz free energy per chain of various candidate morphologies. 

Ten possible ordered phases are considered, all shown in Fig. 1.2 – as there are an enormous 

number of possible phases with the vast majority being metastable, candidate morphologies were 

selected based on previous theoretical12, 16-18 and experimental10, 20, 21 studies. 

 Notably, the previous theoretical studies using SCFT have a number of discrepancies – 

Refs. 12, 17, and 18 compute the phase diagrams for symmetrically interacting ABC miktoarms 

at 𝜒𝑁 = 30, 30, and 60, respectively. As the same theory is being solved at the same parameter 

values, the results from Refs. 12 and 17 should agree exactly provided that the same candidate 

phases were considered, the free energy accuracy was carefully examined, and the optimal cell 

parameters were found. However, Ref. 17 does not find (3.3.4.3.4) to be stable but does find 

[12.6.4] and [10.6.4;10.6.6] to be stable while Ref. 12 does not have either of these as stable but 

does have (3.3.4.3.4) and TPL. The reason (3.3.4.3.4) and TPL do not show up in Ref. 17 is simply 

because they were not considered as candidate phases – that both studies considered [12.6.4] and 

[10.6.4;10.6.6], however, leads us to question which is correct. The phase diagram presented for 𝜒𝑁 = 60 in Ref. 18 contains significantly shifted phase boundaries from the others, yet also has 

[12.6.4], [10.6.4;10.6.6], and (3.3.4.3.4) all showing regions of stability. This raises the question 
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of whether these phases enter into the diagram at larger degrees of segregation or if they can be 

found at smaller 𝜒𝑁, which has profound consequences for our understanding of ABC miktoarm 

phase behavior.           

 This work will resolve these discrepancies and present a refined phase diagram for 𝜒𝑁 =30, mapping out the central region in detail. An accuracy study will be presented to assure the 

quality of the results, as well as free energy data along the 𝑓B = 𝑓C isopleth to justify the stable 

phases and compare with other work. Further, a case study of the stability of (3.3.4.3.4) will be 

presented with the various energetic and entropic contributions to the Helmholtz free energy per 

chain decomposed into their constituents for all phases and compared. First, the theory will be 

presented in Chap. 2.1 – the self-consistent field theory of neat BCP melts has become well-

developed by this point and the reader interested in further details should consult any of the 

excellent references that exist.3, 4, 7, 9, 23 The methods used to solve the theory and generate trial 

fields will be discussed next in Chap. 2.2, followed by a presentation and analysis of the results in 

Chap. 3. Finally, in Chap. 4 the successes and shortcomings of the present study will be addressed 

and an outlook for future work on ABC miktoarms will be provided. 
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Chapter 2: Theory and Methods 

 

I. Theory 

Here the fundamentals of the polymer self-consistent field (SCF) theory are discussed and 

the SCF equations for the system of interest (i.e., neat melts of ABC miktoarm terpolymers) 

presented, along with some related thermodynamic quantities obtained from decomposing the 

Helmholtz free energy. The SCF theory is described in detail elsewhere4, 17 and is a straightforward 

generalization of the classic theory developed for diblock copolymers.   

 SCF theory is a statistical field theory that is usually based on the ‘standard’ model, where 

a polymer chain is described as a continuous curve in space, much like that shown in Fig. 1.1. The 

local, atomic details of the polymer are abstracted away, and a coarse-grained perspective is taken 

on its structure by allowing the degree of polymerization 𝑁 to approach infinity and the monomer 

size (thus the range of their short-range interactions) to approach zero. This model allows the 

statistical mechanics of the polymer to be reduced to solving a partial differential equation rather 

than evaluating a large number of integrals, as would be the case for a model that treats the polymer 

as having finite 𝑁 (and interaction range). Specifically, the polymers are treated as an 

incompressible melt of continuous Gaussian chains under the influence of external potential fields. 

Interactions between the monomers are taken into account via the Dirac 𝛿-function interactions 

such that the Hamiltonian for the system contains terms related to the conformational entropy of 

the molecules and the interaction energy of the system.       

 The many-chain canonical partition function is first written down for the particle-based 

system of an incompressible melt of continuous Gaussian chains – as the chains are continuous, 

their statistical mechanics is governed by path integrals over all possible conformations. Standard 
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field-theoretic transformations are then used to convert the particle-based system to a field-based 

one, where the distribution of a species in space is described by a continuous scalar function (i.e., 

the chain propagator). The many-chain partition function then takes the form of a set of functional 

integrals over fluctuating fields – as there is no general method for evaluating these integrals, an 

approximation must be made. Long-chain polymer melts are a system well-suited to the mean-

field approximation owing to the massive sizes of the molecules (and thus the many chains that a 

single chain interacts with), which has the effect of damping the fluctuations away from the 

ensemble average that are ignored at the mean-field level. This approximation evaluates the 

functional integrals at the extrema of the integrand, yielding a Helmholtz free energy functional 

and a set of equations governing its extrema (known as the self-consistent field equations). That 

the global minimum (the equilibrium morphology) satisfies these equations is a necessary but not 

sufficient condition for finding it – as many solutions as can be collected must be compared to 

determine the optimal one.          

 The system under consideration in this work is an incompressible melt of 𝑛 symmetrically 

interacting ABC miktoarm terpolymers in a unit cell of volume 𝑉 subject to periodic boundary 

conditions. All length scales are expressed in units of the root-mean-square end-to-end distance of 

an ideal chain 𝑅 = 𝑏√𝑁 for statistical segment length 𝑏 (assumed to be the same for all blocks P) 

and degree of polymerization 𝑁 = ∑ 𝑁PP . As usual, the block fraction of each species is denoted 

by 𝑓P = 𝑁P/𝑁 such that ∑ 𝑓PP = 1. Given a chemical potential field 𝜔P(𝐫) for each species P ∈{A, B, C} the one-end integrated propagators 𝑞P(𝐫, 𝑠) and 𝑞P†(𝐫, 𝑠) are obtained via the modified 

diffusion equations  

𝜕𝑞P𝜕𝑠 = 16∇2𝑞P − 𝜔P(𝐫)𝑞P, 𝑞P(𝐫, 0) = 1 (1) 
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−𝜕𝑞P†𝜕𝑠 = 16∇2𝑞P† − 𝜔P(𝐫)𝑞P†, 𝑞P†(𝐫, 𝑓P) = ∏ 𝑞P′(𝐫, 𝑓P′).P′≠P (2) 
Here 𝑠 ∈ [0, 𝑓P] corresponds to the scaled contour length along each arm of the polymer with 𝑠 =0 being the free end of any arm and 𝑠 = 𝑓P the junction between the arms; the initial condition for 

Eq. (2) reflects the miktoarm topology of the polymer. The propagators 𝑞P(𝐫, 𝑠) and 𝑞P†(𝐫, 𝑠) are 

referred to as the forwards and backwards propagators, respectively – a successful solution of Eqs. 

(1) and (2) for these functions amounts to solving the statistical mechanics of a miktoarm subjected 

to the external fields {𝜔P(𝐫)}. Once the propagators have been found, the normalized single-chain 

partition function 𝑄 can be computed as 

𝑄 = 1𝑉∫d𝐫 𝑞P(𝐫, 𝑠)𝑞P†(𝐫, 𝑠). (3) 
Note that this equality is independent of the value of 𝑠. Invoking the mean-field approximation to 

evaluate the many-chain partition function leads to the self-consistent field equations (4)-(6) and 

the dimensionless Helmholtz free energy per chain (7): 

𝜙P(𝐫) = 1𝑄∫ d𝑠𝑓P0 𝑞P(𝐫, 𝑠)𝑞P†(𝐫, 𝑠) (4) 
𝜔P(𝐫) = 𝜒𝑁 ∑ 𝜙P′(𝐫)P′≠P + 𝜂(𝐫) (5) 

∑𝜙P(𝐫)P = 1 (6) 
𝛽𝑓𝑐 = − ln𝑄 + 𝜒𝑁2𝑉 ∫d𝐫 {∑ ∑ 𝜙P(𝐫)𝜙P′(𝐫)P′≠PP } − 1𝑉∫d𝐫 {∑𝜔P(𝐫)𝜙P(𝐫)P } . (7) 
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In Eq. (5), 𝜂(𝐫) is a Lagrange multiplier field that enforces the incompressibility condition Eq. (6) 

at every point in space. 𝛽𝑓𝑐 is a functional of the fields {𝜙P(𝐫)} and {𝜔P(𝐫)} – as each unique 

morphology has a unique set of these fields, each morphology has a unique value for 𝛽𝑓𝑐. A phase 

diagram for the system can then be constructed by computing Eq. (7) for a set of candidate 

morphologies at a set of points in parameter space – the equilibrium morphology at any point in 

this space is that which minimizes 𝛽𝑓𝑐. Additionally, the cell parameters of the unit cell affect 𝛽𝑓𝑐 

as they constitute the upper bounds on all spatial integrals – any computation of Eq. (7) must thus 

also minimize it with respect to all cell parameters in order to find the bulk periodicity of an ordered 

phase. For a unit cell described by a set of parameters {𝜃𝑖}, constituting all lengths and angles 

necessary to describe the geometry, the minimization of the free energy can be expressed as a 

requirement that15 

0 = − 1𝑄 𝜕𝑄𝜕𝜃𝑖 (8) 
for all 𝜃𝑖.           

 With an expression for the free energy in hand, the stability of different phases can be 

analyzed by decomposing Eq. (7) into its energetic and entropic contributions. For internal energy 

per chain 𝑢𝑐 and entropy per chain 𝑠𝑐 this yields 

𝛽𝑢𝑐 = 𝜒𝑁2𝑉 ∫d𝐫 {∑ ∑ 𝜙P(𝐫)𝜙P′(𝐫)P′≠PP } (9) 
𝑠𝑐𝑘𝐵 = ln𝑄 + 1𝑉∫d𝐫 {∑𝜔P(𝐫)𝜙P(𝐫)P } (10) 
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such that the free energy is recovered via 𝛽𝑓𝑐 = 𝛽𝑢𝑐 − 𝑠𝑐/𝑘𝐵. The internal energy arises from 

unfavorable monomer-monomer contacts at the interfaces in the system while the entropy contains 

two contributions, the conformational entropy of the blocks and the translational entropy of the 

miktoarm junctions – the translational entropy of the blocks is included in the latter. The 

distribution of the junctions in space can also be studied by considering a junction density  

𝜌J(𝐫) ≡ 1𝑄∏𝑞P(𝐫, 𝑓P)P (11) 
such that ∫ d𝐫 𝜌J(𝐫)/𝑉 = 1. In this way, the quantity 𝜌J(𝐫)d𝐫 ≡ 𝜌J(𝑥, 𝑦, 𝑧)d𝑥d𝑦d𝑧 is interpreted 

as proportional to the probability that a miktoarm junction is located in a volume d𝐫 in the system. 

Equations (9) and (10) can then be decomposed further as  

𝛽𝑢𝑐 = 12∑ ∑ 𝛽𝑢𝑐,PP′P′≠PP (12) 
𝑠𝑐𝑘𝐵 =∑𝑠𝑐,P𝑘𝐵P + 𝑠𝑐,J𝑘𝐵 (13) 

with  

𝛽𝑢𝑐,PP′ ≡ 𝜒𝑁𝑉 ∫d𝐫𝜙P(𝐫)𝜙P′(𝐫) (14) 
𝑠𝑐,P𝑘𝐵 ≡ 1𝑉∫d𝐫 [𝜔P(𝐫)𝜙P(𝐫) + 𝜌J(𝐫) ln 𝑞P(𝐫, 𝑓P)] (15) 

𝑠𝑐,J𝑘𝐵 ≡ − 1𝑉∫d𝐫 𝜌J(𝐫) ln 𝜌J(𝐫) . (16) 
Equation (14) corresponds to the dimensionless internal energy per chain from the P-P′ 
interactions while Eqs. (15) and (16) describe the dimensionless conformational entropy per chain 
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of the P-blocks and the dimensionless translational entropy per chain of the junctions, respectively; 

note that Eq. (16) is merely a functional analogue of the ideal entropy of mixing expression for 

component i  Δ𝑆imix/𝑛𝑅 = −𝑥i ln 𝑥i. 
II. Methods 

 To understand how solution of the SCF equations proceeds, note that from Eq. (5), for any 

species P the chemical potential 𝜔P(𝐫) depends on the volume fractions of the other species 𝜙P′(𝐫), which in turn depend on the propagators for those species via Eq. (4). But from Eqs. (1) 

and (2) the propagators for the other species in the system will also depend on 𝜔P(𝐫) – the SCF 

equations thus form a non-linear set of equations that must be solved iteratively. Solution begins 

with trial fields for each of the 𝜔P(𝐫) – the modified diffusion equations are then solved for the 

propagators, the single-chain partition function is evaluated, and the volume fractions 𝜙P(𝐫) 
computed. The chemical potentials can then be recomputed via Eq. (5) from 𝜙P(𝐫) – if the trial 

fields of 𝜔P(𝐫) correspond to a solution, there will be no change in the fields from this process 

such that they have been determined self-consistently.       

 In general, however, the trial fields used will not correspond to a solution such that going 

through the steps will result in recomputed fields of 𝜔P(𝐫) that are not consistent with the 

originally specified ones. The straightforward approach is to simply start the process over again 

with the recomputed 𝜔P(𝐫), solve the MDEs again, and progress until a self-consistent solution is 

reached. In practice, though, this approach has rather poor numerical behavior and is unlikely to 

converge on a solution for most trial fields.14 It is thus necessary to use some form of field update 

algorithm (i.e., that for iteratively solving a set of non-linear equations) to both accelerate the 

iteration and improve its robustness such that the trial fields used do not need to be exceedingly 

close to a solution. With an update algorithm in hand, solution proceeds as described and iteration 
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is then progressed until some convergence criterion is met, which differs depending on the 

investigators. Once convergence is achieved, the free energy is computed via Eq. (7) and the 

process repeated for every morphology of interest. Aside from some minor differences arising 

from the subtleties of the theory, every implementation of SCFT will follow this basic solution 

process – it is in the specific choice of algorithms for solving the MDEs, evaluating integrals, and 

updating the chemical potential fields where implementations differ. The numerical methods used 

by PSCFPP are described at length in Refs. 4 and 15, although some are modified in the version 

used by the Wang group. Here we present a brief discussion of the numerical methods used and 

the parameters they introduce, focusing on those which affect the free energy accuracy most 

significantly.           

 The modified diffusion equations (MDEs) are solved using the pseudospectral (PS) 

method14 in tandem with Richardson extrapolation as introduced by Ranjan, Qin and Morse 

(RQM) with the fourth-order PS method19. The PS method discretizes the contour of the polymer 

into 𝑁𝑠 steps with step-size Δ𝑠 = 1/𝑁𝑠. By accepting a global error of 𝑂(Δ𝑠2) the operators in the 

MDE are split, providing a formula that can be used to step along the chain contour from 𝑠 = 0 to 𝑓P and yield the propagators at each point along the chain: 

𝑞P(𝐫, 𝑠 + Δ𝑠) = exp (−𝜔P(𝐫)Δ𝑠2 ) exp(Δ𝑠∇2) exp (−𝜔P(𝐫)Δ𝑠2 )𝑞P(𝐫, 𝑠) + 𝑂(Δ𝑠3). (17) 
To evaluate this formula, two FFTs (Fast Fourier Transforms) are needed (or equivalently, one 

pair of FFT and iFFT) per contour step, which dominates the computational cost of the method. 

The RQM algorithm computes a PS solution with step-size Δ𝑠 followed by another solution with 

step-size Δ𝑠/2, then uses Richardson extrapolation with this information to eliminate the leading-

order term from the error series and yield an error of 𝑂(Δ𝑠4). This idea can be extended to 
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eliminate an arbitrary number of terms in the error series via successive step-size halving – to 

encapsulate all of these methods we refer to them as the REPS-𝐾 methods where 𝐾 indicates the 

order of the method, or equivalently how many terms are removed from the error series. The 

pseudospectral method corresponds to REPS-0 and the RQM method to REPS-1 – note that while 

REPS-0 has a cost of two FFTs per contour step, REPS-1 has a cost of six. In general, the number 

of FFTs per contour step of the 𝐾th REPS method is given by 2𝐾+2 − 2 while the size of the 

smallest step is Δ𝑠/2𝐾 .          

 All integrals are computed using Romberg integration. The contour integrals in the 

expressions for 𝜙P(𝐫) are computed such that the order of the integration method is matched to 

that of the REPS-𝐾 method used. The various types of Romberg integration are referred to as the 

RI-𝐾 methods, with RI-0 corresponding to the composite trapezoidal rule and  RI-1 to Simpson’s 

rule. Note that the contour discretization of the polymer is the same for solving the MDEs and 

evaluating the contour integrals – as the 𝐾th RI method requires an integer multiple of 2𝐾 steps 

along each direction, larger 𝐾 values place a significant constraint on the allowed values of 𝑁𝑠 
and, by extension, 𝑓P. All spatial integrals are evaluated using RI-4, constraining the meshes along 

each direction to be an integer multiple of 16.      

 In our PSCFPP, methods up to and including 𝐾 = 4 are available to a user to compile the 

code in. From the perspective of computing phase diagrams, this has the advantage of providing a 

method to calculate highly accurate solutions via the 𝐾 = 3 and 4 methods that can then be used 

to benchmark the 𝐾 = 0 and 1 methods. This allows the free energy accuracy to be thoroughly 

studied and saves a significant amount of memory via lower 𝑁𝑠 values at the cost of much fewer 

available points for a given 𝑁𝑠. The higher-order methods are thus not very suited to mapping out 

fine phase diagrams in {𝑓P} space while the lower-order methods lend themselves well to this 
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problem, particularly 𝐾 = 1 for its excellent balance between accuracy and accessibility.  

 Anderson mixing (AM) is used to update the chemical potential fields – this algorithm has 

been extensively used in recent SCF calculations in the literature.5, 15 With 𝑁𝑚 denoting the number 

of monomer types in the system, 𝑁𝑐 the number of cell parameters, and 𝑁𝑓 the number of 

independent degrees of freedom needed to represent the chemical potentials and volume fractions 

of a monomer, AM’s formulation is based on the expression of Eqs. (5), (6), and (8) as a system 

of 𝑁𝑚𝑁𝑓 + 𝑁𝑐 equations.15 This non-linear system of equations can then be expressed as a 

requirement that 𝟎 = 𝐑(𝐱) where 𝐑(𝐱) is a column vector of 𝑁𝑚𝑁𝑓 + 𝑁𝑐 residuals and 𝐱 a vector 

with 𝑁𝑚𝑁𝑓 + 𝑁𝑐 elements.15 The column vector 𝐱 contains the field values for all monomer types 

at every point in the mesh (or for each basis function) as well as the cell parameters – in this way, 

the error in the SCF equations can be defined as 𝜀 ≡ |𝐑(𝐱)|.15 In this method, rather than using 

Eq. (5) to update 𝜔P(𝐫) the chemical potentials are recomputed via 𝜔Pnew(𝐫) = 𝜔Pold(𝐫) +𝛿𝜔P(𝐫), where 𝛿𝜔P(𝐫) is the update to the field determined by the AM update scheme. The cell 

parameters are additionally updated in a similar manner at each iteration. The scheme uses past 

trial values of 𝐱 to compute its value at the next iteration and includes the number of histories 𝑁ℎ 

as a user specified parameter – this refers to the maximum number of past trials that will be used 

by the AM algorithm.15 Note that this parameter has no effect on 𝛽𝑓𝑐 and simply affects how 

quickly a solution of the SCF equations at a specified 𝜀 is converged on. The Eqs. (5), (6), and (8) 

then serve as the measure of error rather than the mechanism by which the fields are updated – this 

measure of error enforces that the solution is self-consistent via Eq. (5), satisfies the 

incompressibility constraint via Eq. (6), and optimizes the cell parameters via Eq. (8), all 

simultaneously.          

 The first step to studying any system with SCFT, regardless of implementation, is to 
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construct trial fields 𝜔P(𝐫) (in real-space) or 𝜔̂P(𝐤) (in reciprocal-space) for all monomer types. 

PSCFPP favors the latter, performing optimally when trial fields are provided in the symmetry-

adapted basis format. The easiest way to obtain a set of trial fields is to use one that is already built 

into PSCFPP in the ‘examples’ folder, where suitable trial fields for most diblock phases of interest 

can be found. However, the morphologies that exist near the center of the phase triangle in ABC 

miktoarms are known to be nothing like the morphologies that form in diblocks, making few of 

the built in solutions useful to us. Ideally, we would thus like to be able to identify the symmetry 

group of a morphology of interest and then select the coefficients 𝜔̂P(𝐤) that contribute 

significantly to its structure – the problem is that it is not obvious which values of 𝐤 should be 

chosen or what their coefficients should be. It is relatively easy, however, to construct {𝜙P(𝐫)} for 

a known morphology and transform it to a suitable set of trial fields {𝜔P(𝐫)} via Eq. (5) with 𝜂(𝐫) = 0. Using PSCFPP, these trial fields can then be expanded in a symmetry adapted basis of 

one’s choosing to obtain the corresponding {𝜔̂P(𝐤)} that can then be iterated on.    

 The process used to generate the trial volume fractions for 2D morphologies is discussed 

here in some detail – these methods are simple to extend to 1D and 3D so as to obtain the L, TPL, 

and HPL morphologies. All trial fields were created using Python, relying on NumPy arrays to 

store and manipulate the field data before writing to a text file in the format PSCFPP reads. A 2D 

morphology formed by a neat melt of ABC miktoarm terpolymers is described by a set of three 

volume fraction fields, one for each type of monomer. Only two of these fields are independent 

owing to the incompressibility constraint Eq. (6) – in all cases, we create 𝜙P(𝐫) for P = A, B and 

compute 𝜙C(𝐫) from Eq. (6). To create competent trial fields for particle forming phases in SCFT 

it is generally sufficient to place simple geometric objects (cylinders, spheres, tetrahedra) at the 

corresponding locations of concentrated regions in the morphology of interest. An ‘object’ in this 
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Figure 2.1 Cylinder motif generated with a 100x100 mesh, used to 

create 2D trial volume fraction fields. 

context is a field that varies between 0 and 1 such that it captures a desired geometry – an example 

of this for a cylinder in 2D is shown in Fig. 2.1. This object was created using a simple analytic 

function 𝑐(𝑥, 𝑦) given by 

𝑐(𝑥, 𝑦) = 14 (1 − cos 𝑥)(1 − cos 𝑦) (18) 
where 𝑥 and 𝑦 correspond to the horizontal and vertical directions, respectively, and are both 

bounded by 0 and 2𝜋. By controlling the number of grid points along each direction, the radius of 

the resulting cylinder can be specified freely. This allows cylindrical domains of arbitrary size to 

be placed at arbitrary locations in a 2D array using array operations, forming the basis of the 

methods used to create trial fields in this study. First, two meshes corresponding to 𝜙A(𝐫) and 𝜙B(𝐫) are created whose aspect ratio approximately matches that of the trial cell parameters – all 

field values are initially set to zero. Cylindrical domains are then placed at the appropriate regions  

 

 



28 

 

for a morphology of interest by using Eq. (18) and explicitly inserting them with array operations. 

Once this has been completed for 𝜙A(𝐫) and 𝜙B(𝐫), 𝜙C(𝐫) is then computed via 1 − 𝜙A(𝐫) −𝜙B(𝐫). The trial fields 𝜔P(𝐫) are then calculated (for a specified 𝜒𝑁) via 

𝜔P(𝐫) = 𝜒𝑁 ∑ 𝜙P′(𝐫)P′≠P . (18) 
 These fields are then written to a text file in the appropriate format for PSCFPP to interpret them. 

This approach is not limited to 2D, for 3D morphologies can also be considered as a set of 3D 

arrays – for example, spherical domains analogous to that shown in Fig. 2.1 can be created through 

the incorporation of a term that depends on 𝑧 to Eq. (18). These can then be placed at arbitrary 

locations in 3D space to create trials fields suitable for the two 3D phases considered in this study, 

although whether techniques like this could be used to create trial fields for more complex 3D 

morphologies remains to be seen.         

 In order to interface completely with PSCFPP it is necessary to have methods available for 

creating trial fields, encoding/decoding text files, and visualizing results – additionally, if one 

wishes also to compute thermodynamic information from outputs such as {𝜔P(𝐫)}, {𝜙P(𝐫)} or {𝑞P(𝐫, 𝑠)} then a high-accuracy multi-dimensional numerical integration technique must be 

available. As PSCFPP does not have any of these capabilities accessible to a user, Python based 

methods were developed capable of creating trial fields in real-space, reading and writing text files 

in real-space for the chemical potential/volume fraction fields, plotting fields of interest in any 

dimension (though the 3D methods are still somewhat immature), and computing 1D/2D integrals 

numerically for any specified field using RI-4. These methods are at a level such that they can 

dramatically simplify the task of further study on ABC miktoarms with PSCFPP by providing the 

basic tools necessary to obtain, interpret, and analyze outputs from SCFT. The 3D methods, while 
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perfectly functional, are in some need of refinement and the code is not general enough to allow 

use for arbitrary systems in PSCFPP – methods generally only work for files corresponding to 

three-component systems and some diblock phases.        

 Finally, we note that all of the converged SCF results from this study including {𝜔̂P(𝐤)} 
files for all morphologies are stored in corresponding folders in a PSCFPP install. This data, were 

it to be incorporated into the distributed version, would provide an immensely useful basis for 

studying ABC miktoarm terpolymers, much as the included diblock examples have made studying 

diblock copolymer phases with PSCFPP vastly simpler. It would also make replicating the results 

obtained here trivial, something many SCF studies have not provided. 

 

 

 

 

 

 

 

 

 

 

 



30 

 

Chapter 3: Results 

 

 This chapter is divided into three sections – section I, Numerical Accuracy, discusses the 

effects that need to be accounted for (both physical and numerical) in order to compute high-

accuracy SCF solutions and presents the results of a detailed free energy study for (3.3.4.3.4) and 

TPL. Section II, Phase Diagram, details how a composition phase diagram (at constant 𝜒𝑁) is 

computed within SCFT of the ‘standard’ model for a neat melt of ABC miktoarms using the REPS-

K methods, with the corresponding central region of the phase diagram mapped out for 𝜒𝑁 = 30. 

Section III, Free Energy and Stability Analysis, presents the relative Helmholtz free energies of all 

morphologies along the 𝑓B = 𝑓C isopleth and decomposes them into their entropic and energetic 

contributions (as described in Chap. 2.1) to explain their stability; the same is done for all 

morphologies at a point 𝑓A = 0.45, 𝑓B = 0.30 where (3.3.4.3.4) is shown to be stable, with their 

entropic and energetic contributions decomposed further into the contributions of each species and 

the junctions. 

I. Numerical Accuracy 

All calculations were done on an NVIDIA A100 GPU with ~20 GB of available memory. 

The numerical parameters necessary to achieve high accuracy in 𝛽𝑓𝑐 resulted in 2D jobs requiring 

1-5 GB of memory while 3D jobs generally required at least 10 GB. By ‘accuracy’ we mean the 

number of decimals that the quantity in question has been computed to – for example, an accuracy 

of 10−3 would mean that the quantity is known to three decimals or equivalently that the error is 

on the order of 10−4. The memory required to store the information necessary for an SCFT 

solution, such as {𝜔̂P(𝐤)}, {𝑞P(𝐫, 𝑠)}, etc., scales heavily with the contour discretization 𝑁𝑠 and 

spatial discretization {𝑚𝑑} where 𝑚𝑑 denotes the number of intervals along any direction 𝑑 – recall 
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that RI-4 is used to evaluate all spatial integrals such that 𝑚𝑑 must be an integer multiple of 16. 

The accuracy of the Helmholtz free energy also depends strongly on these parameters, and one 

would like to minimize the amount of memory used while simultaneously maximizing the 

accuracy of 𝛽𝑓𝑐. This accuracy has a limit set by the tolerance 𝜀 that the SCF equations are solved 

to – as the free energy Eq. (7) depends on {𝜔P(𝐫)}, {𝜙P(𝐫)}, and 𝑄 it is only possible to resolve it 

to the accuracy that these quantities are resolved. It is thus necessary to study the effect of 𝑁𝑠 and {𝑚𝑑} before making any definitive statements on values of 𝛽𝑓𝑐. The results of this accuracy study 

are presented first as these results guide the numerical parameter values used in constructing the 

phase diagram and computing any other quantities of interest.    

 The test phases to conduct the study described here are chosen as (3.3.4.3.4) and TPL for 

their complexity and relatively large unit cells, with (3.3.4.3.4) having the largest cell parameters 

of any phase – see Table 3.1. This table gives the optimal cell parameters minimizing 𝛽𝑓𝑐 of the  

 

corresponding phase at block fractions where each is stable with the exception of the metastable 

TPL, as well as the symmetry group of each morphology in standard Hermann-Mauguin notation. 

Table 3.1 Optimized cell parameters (in units of 𝑅) and symmetry groups for all 

morphologies at 𝜒𝑁 = 30, corresponding to the unit cells shown in Fig. 1.2 and listed in order 

of magnitude. The third parameter for TPL and HPL shows the size of the parameter 

perpendicular to the faces with four and six-fold symmetries, respectively. 
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The cell parameters of any morphology are, in general, sensitive to the block fractions {𝑓P} as well 

as the degree of segregation 𝜒𝑁 though the values provided here would serve as suitable trial 

values near any phase’s region of stability – in practice, provided the trial fields are reasonably 

good then the trial cell parameters do not need to be exceptionally close to their optimal values. 

The symmetry groups associated with each phase specify the set of basis functions the trial fields 

are expanded in – note that since a rectangular unit cell is used for [6.6.6] it is expanded in a pm 

basis rather than p3m1. This is because PSCFPP associates a p3m1 basis with a hexagonal unit 

cell – if a rectangular unit cell is to be used, a symmetry-adapted basis associated with a rectangular 

cell must also be used. Other than requiring a larger mesh than the corresponding hexagonal unit 

cell to achieve the desired free energy accuracy this has little consequence on calculations, the only 

notable difference being that more basis functions are required to represent the morphology than 

would be with p3m1.          

 To study the free energy accuracy of (3.3.4.3.4), Eq. (7) was evaluated repeatedly for the 

unit cell shown in Fig. 1.2 at 𝑓A = 0.45, 𝑓B = 0.30, and 𝜒𝑁 = 30 by systematically varying the 

contour discretization 𝑁𝑠 ∈ [64, 448], spatial discretizations 𝑚𝑑 ∈ [16, 512], and numerical order 𝐾 ∈ [1, 4]. As (3.3.4.3.4) has a square unit cell the discretizations along the 𝑥 and 𝑦 directions are 

the same, i.e., 𝑚 ≡ 𝑚𝑥 = 𝑚𝑦. We define the error Δ of 𝛽𝑓𝑐(𝑁𝑠, 𝑚, 𝐾) as  

Δ(𝑁𝑠, 𝑚, 𝐾) ≡ 𝛽𝑓𝑐(𝑁𝑠, 𝑚, 𝐾) − 𝛽𝑓𝑐∗ (19) 
𝛽𝑓𝑐∗ ≡ 𝛽𝑓𝑐(𝑁𝑠max, 𝑚max, 𝐾max). (20) 

This quantity can then be computed at every set of numerical parameters and compared to see what 

values are necessary to achieve the desired accuracy. By Eq. 20, 𝛽𝑓𝑐∗ is simply the most accurate 

available value for the free energy – in all cases we take 𝛽𝑓𝑐∗ = 𝛽𝑓𝑐(𝑁𝑠 = 448,𝑚 = 512, 𝐾 =
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4) = 8.43668488. As the values of the cell parameters also affect the value of 𝛽𝑓𝑐, they must be 

held constant during the accuracy study. This was accomplished by first computing a solution to 

the specified tolerance of 𝜀 = 10−8 while allowing the cell parameter to be optimized, then using 

the optimal values held constant for all subsequent calculations. All computations used the same 

trial fields {𝜔̂P(𝐤)} obtained from an already converged (3.3.4.3.4) solution such that the only 

variance between jobs was the numerical parameters whose effect was being studied.   

 The results are shown in Fig. 3.1 for 𝐾 = 1 and 𝐾 = 4 to highlight the memory savings 

that can be gained from larger 𝐾, where REPS-4 allows nearly 10−7 accuracy in 𝛽𝑓𝑐 with only  

 

𝑁𝑠 = 64 and 𝑚 = 256 while REPS-1 yields barely 10−4 accuracy at the same discretizations. 

Figure 3.1b clearly shows the collapse of all curves, indicating that the contour discretizations 

considered are large enough such that the error is controlled solely by the mesh discretization 𝑚 

Figure 3.1 Log-log plot of 𝛽𝑓𝑐 error data for (3.3.4.3.4) 

and various 𝑁𝑠 at 𝜒𝑁 = 30 with (a) 𝐾 = 1 and (b) 𝐾 = 4. 
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with REPS-4. We note that with a method such as REPS-1 (equivalent to the fourth-order 

pseudospectral method) in Fig. 3.1a, the error is largely controlled by the spatial discretization up 

until 𝑚 ≈ 128 at which point the inaccuracies from the contour discretization become apparent. It 

is at this point that the curves flatten out with respect to 𝑚, indicating that the accuracy is being 

limited by 𝑁𝑠, while the 𝑁𝑠 curves themselves can be seen to collapse to the same as that in Fig. 

3.1b as 𝑁𝑠 = 512 is approached. This indicates the fundamental resolution of the numerical 

methods used, where it is clear that relatively large parameters must be used to obtain results of 

high accuracy.           

 The study on TPL was carried out in a similar manner at 𝑓A = 0.50, 𝑓B = 0.30, and 𝜒𝑁 =30 near where it is a competitor in the phase diagram. In this case the SCF equations were solved 

to a tolerance of 𝜀 = 10−6 but the procedure was otherwise identical, with less total numerical 

parameters considered for simplicity. Here we took 𝛽𝑓𝑐∗ = 𝛽𝑓𝑐(𝑁𝑠 = 80,𝑚 = 112, 𝐾 = 3) =8.161733 and a cubic mesh of total discretization 𝑚3 with the results shown in Fig. 3.2. This again 

highlights the resource savings that can be achieved with the higher-𝐾 methods, something 

particularly important for 3D phases owing to their large computational costs. In this case, it is 

possible to achieve contour saturation with only 𝑁𝑠 = 80, allowing mesh accuracy to be pushed 

further. While this is less important at smaller degrees of segregation such as 𝜒𝑁 = 30, larger 

degrees of segregation increase the computational cost of obtaining a solution with the same 

accuracy dramatically, making memory-efficient options more appealing. In fact, owing to the 

large computational costs of the REPS-𝐾 methods and the current amount of available GPU 

memory on the server used, it is likely that high-accuracy computations would be impossible with 𝐾 = 1 at stronger segregations. Larger 𝐾 would have to be used, which would then limit the 

resolution of the phase diagram significantly – to avoid this, more memory would have to be 
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available or a less resource intensive solution method used, such as the spectral method. In this 

work, only 𝜒𝑁 = 30 is considered in phase-space such that these results are sufficient for our 

purposes, though this must be kept in mind for future studies of this system with PSCFPP. 

  

II. Phase Diagram 

To achieve the goal of computing high-accuracy SCF results for a neat melt of ABC 

miktoarms at 𝜒𝑁 = 30 we choose a standard tolerance of 𝜀 = 10−5 in all the following results. 

This means that the maximum accuracy one can resolve 𝛽𝑓𝑐 to for any morphology is 10−5 or 5 

decimals, dependent on using contour and spatial discretizations large enough to ensure 

convergence. When choosing these other numerical parameters that are to be used in computing 

phase data, the first parameter to set is that of 𝐾 as it specifies both the 𝛽𝑓𝑐 accuracy that will be 

obtained and the number of accessible points in the phase diagram for any given 𝑁𝑠. This second 

Figure 3.2 Log-log plot of 𝛽𝑓𝑐 error data for TPL at 𝜒𝑁 = 30 with 𝐾 = 1 and 3. 
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constraint is equivalent to setting the resolution one can achieve in {𝑓P} space – with 𝐾 = 0 or 1 

the contour discretizations 𝑁𝑠 and {𝑁P} are constrained to be integer multiples of 1 or 2, 

respectively. In practice this means that both methods have a large number of points available to 

them for any allowed 𝑁𝑠, although we note that for 𝐾 = 0 the discretization 𝑁𝑠 = 100 yields 

access to all points {𝑓P} describable by 2 decimals (i.e., 0.40, 0.41, 0.42, etc.) for any 𝑓P. The same 

points are available with 𝐾 = 1 at a contour discretization of 𝑁𝑠 = 200, and for 𝐾 = 2 at 𝑁𝑠 =400. For 𝐾 > 1 the value of 𝑁𝑠 necessary to allow access to these points is too large, particularly 

considering the higher computational cost per contour step and extreme accuracy of these methods. 

For 𝐾 = 1, however, 𝑁𝑠 = 200 is not prohibitively large and further allows an accuracy of 10−5 

in 𝛽𝑓𝑐 to be easily obtainable with the appropriate spatial discretizations for both (3.3.4.3.4) and 

TPL, via Figs. 3.1 and 3.2. The combination of these qualities makes the choice of 𝐾 = 1, 𝑁𝑠 =200 an optimal one for the construction of the phase diagram at 𝜒𝑁 = 30, and so these parameters 

are used for all morphologies to obtain all of the following results.      

 For any given morphology, the final numerical parameters left to specify are the spatial 

discretizations {𝑚𝑑} which simply need to be chosen so as to match the 10−5 accuracy in 𝛽𝑓𝑐 

afforded by the other quantities. Based off Figs. 3.1 and 3.2, we choose 𝑚 = 256 and 𝑚 = 96 for 

(3.3.4.3.4) and TPL, respectively, both being large enough to guarantee 10−5 accuracy. For other 

morphologies, we use these spatial discretizations as guidelines and are careful to ensure that 10−5 

accuracy in 𝛽𝑓𝑐 is always retained. In practice, the 3D morphologies (TPL and HPL) always use 𝑚 = 96 while the discretizations for the 2D morphologies along any direction 𝑑 are 𝑚𝑑 ≥ 192. 

The sole 1D morphology L is always computed with 𝑚 = 512. To construct the phase diagram 

for the system at 𝜒𝑁 = 30, we compute 𝛽𝑓𝑐 for each morphology at each point in block fraction 

space afforded by the chosen 𝐾 and 𝑁𝑠 and compare the values. The stable morphology at any 
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point is selected as that having the lowest 𝛽𝑓𝑐. We focus our calculations on finding all of the 

points in the region of the phase diagram considered that bracket phase boundaries between the 

various morphologies, as these are what specify the structure of the phase diagram. For all 

computations the unit cell parameters are allowed to be optimized via PSCFPP’s built-in 

algorithm, and the constructed phase diagram is shown in Fig. 3.3. Note that symmetric interaction 

parameters reduce the area that calculations need to be done for to 1/6 that of the total phase 

diagram – the rest of the phase diagram can be generated from this triangular region by reflection  

 

 

 

Figure 3.3 Phase diagram for a neat melt of ABC miktoarms at 𝜒𝑁 = 30. 

Calculations are done at points that bracket phase boundaries, with the 

interior regions of each phase filled in for clarity of visualization. 
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across the various isopleths. In this computed region, we have 𝑓A > 𝑓B > 𝑓C except for the 𝑓B = 𝑓C 

isopleth that forms the hypotenuse and the 𝑓A = 𝑓B isopleth bounding the region to the right. The 

underlying grid in the triangle shows every {𝑓P} where calculations can be done with 𝑁𝑠 = 200 

and 𝐾 = 1, the available points being located at the intersections of lines. The colored dots overlaid 

at various points denote the phase found to be stable at that point with different colors 

corresponding to different morphologies.       

 The most notable results are the regions of stability of [10.6.4;10.6.6], [12.6.4], (3.3.4.3.4), 

and HPL; this is the first time the HPL phase has been reported as stable. By definitively computing 𝛽𝑓𝑐 to 10−5 accuracy and observing that the smallest difference in 𝛽𝑓𝑐 between any two phases is 

on the order of 10−5 we leave no question as to the stability of the presented morphologies, thus 

resolving the discrepancies brought about by the differences in results of Refs. 12 and 17. This 

further provides proof that (3.3.4.3.4), [12.6.4], and [10.6.4;10.6.6] do not enter into the diagram 

at larger 𝜒𝑁 but are present at smaller values, and most likely always play a significant role 

regardless of the degree of segregation based off the similarity with the results computed in Ref. 

18 at 𝜒𝑁 = 60. It is interesting to note that the general structure of the phase diagram computed 

here at 𝜒𝑁 = 30 is nearly identical to that of Ref. 18 (shown in Fig. 1.4a), excepting the presence 

of HPL which was not included in their calculations. Based off these results it would appear that 

the stable regions of all phases become elongated and occupy a larger area as 𝜒𝑁 is increased, with 

the effect becoming more pronounced the farther away from the center one is. For example, we 

find L+C to be stable up until 𝑓A = 0.6 on the 𝑓B = 𝑓C isopleth, past which point lamellae L 

becomes stable at 𝜒𝑁 = 30. At 𝜒𝑁 = 60, however, Ref. 18 finds the stable region of L+C to 

extend out to nearly 𝑓A = 0.8 along this isopleth with L notably not found near this region. It is 

possible that the stable region of L shrinks significantly as 𝜒𝑁 is increased, owing to the constraint 
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that the miktoarm topology places on this morphology of having the shortest C arms constantly in 

contact with A and B arms – this would result in prohibitively large internal energy at stronger 

segregations. The [12.6.4] phase additionally occupies a much larger region in Fig. 1.4a, extending 

out to nearly 𝑓A = 0.6 rather than 𝑓A ≈ 0.5 as we find in this study; however, Ref. 18 did not 

consider HPL which is the phase we find to dominate this region. The phases closer to the center 

of the diagram occupy similar regions in both studies, being shifted minorly in Fig. 1.4a relative 

to those shown in Fig 3.3 – it would thus appear that while stronger segregations may cause phase 

boundaries to shift significantly they do not result in the appearance (or disappearance) of phases 

near the center of the diagram, though further research is necessary to confirm this for 

morphologies such as HPL. As this is largely the case for diblock copolymers, it would be fitting 

for the same phenomenon to be at play in ABC miktoarms – not enough is known to definitively 

conclude this, however.         

 Upon comparison with the results of Ref. 17 in Fig. 1.3a the agreement is generally quite 

good, with the exception of the [12.6.4] and [8.8.4] phases. The stable region of [8.8.4] is presented 

as much larger than that in Fig. 3.3b because Ref. 17 did not consider (3.3.4.3.4), leading to the 

area of [8.8.4] being overestimated. Based off our results, [12.6.4] occupies a significantly larger 

region than that shown in Fig. 1.3a, though we did not consider the possible existence of the 

[8.6.4;8.8.4;12.6.4;12.8.4] phase. While this phase has not been reported in any other studies on 

ABC miktoarms, that does not mean that it should be ignored – to justify its inclusion in future 

work, we note the presence of an anomaly in our results. In Fig. 3.3b, at 𝑓A = 0.49 and 𝑓B = 0.3 

we find HPL to be stable at a single point outside of its nominal stable region. We do not believe 

that this is a mistake – the free energy difference between HPL and competing phases is on the 

order of 10−3, well within the accuracy of this study. Rather, this result suggests that another phase 
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is probably stable here, one that was not included in our computations. Ref. 17 finds 

[8.6.4;8.8.4;12.6.4;12.8.4] to have a very small region of stability in the direct vicinity of this point 

– it is possible that this atypical tiling pattern is a stable phase here, and has not been observed 

elsewhere because of the small area it occupies in the phase diagram. It is also possible that other 

morphologies not considered in this work play a role here, including the [8.6.4;8.6.6;12.6.4] tiling 

pattern reported in Ref. 18 or one of the other possible 3D morphologies reported in Ref. 12. 

III. Free Energy and Stability Analysis 

A great deal of information about morphologies and their stability can be extracted from 

the Helmholtz free energy per chain and its decompositions. To study this, the dimensionless 

Helmholtz free energy per chain for all candidate morphologies is shown as a function of 𝑓A along 

the 𝑓B = 𝑓C isopleth in Fig. 3.4. Note that the composition is specified solely by 𝑓A along this 

isopleth, and all values are taken relative to that of the L+C phase (with 𝛽𝑓𝑐R denoting a reference 

Figure 3.4 Free energy data relative to L+C along the 𝑓𝐵 = 𝑓𝐶  isopleth. 
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free energy of phase R). Increasing 𝑓A in Fig. 3.4 corresponds to moving out from 𝑓A = 0.4 along 

the isopleth in Fig. 3.3, where there is a transition from tiling patterns to lamellae-based phases as 

one moves along this isopleth that is indicative of the general trend observed in ABC miktoarms. 

Additionally, [12.6.4] is found to be metastable at every point along the isopleth – the fact that Fig. 

1.4c shows [12.6.4] occupying a relatively large region of this isopleth further supports the trend 

that stronger segregations widen the stability region of phases near the center of the diagram. 

Considering the lamellae-based morphologies, we note that TPL has only slightly higher 𝛽𝑓𝑐 than 

HPL – this is consistent with the general trend observed for these morphologies, where their 𝛽𝑓𝑐 

are close to degenerate with HPL always being slightly (on the order of 10−3) lower than TPL. 

Further, the free energies of the four lamellae-based phases appear to converge to the same value 

at 𝑓A = 0.6; at this point it is found that regardless of the trial field used for these phases, all 

morphologies will converge on L except L+C which retains some two-dimensional character. L+C 

also retains the lowest 𝛽𝑓𝑐 at this point, although L (and thus the other phases) have values only ~10−4 higher. Fig. 3.4 also informs us that the free energy of a morphology whose stable region 

is relatively far from the isopleth, such as [8.8.4], will be significantly higher than morphologies 

that lie closer to it in the phase diagram. This trend is valid for any phase that is computed at a 

point far from where it is stable, and allows the list of candidate phases to be adjusted depending 

on where in the phase diagram computations are being done.     

 By using the decomposition of 𝛽𝑓𝑐 given by Eqs. (9) and (10) in Chap. 2.1 it is possible to 

study the thermodynamic effects that govern each phase’s stability. These quantities are shown for 

every phase along the 𝑓B = 𝑓C isopleth in Fig. 3.5, where we notice two general trends: the tiling 

patterns are consistently able to achieve lower dimensionless internal energy per chain 𝛽𝑢𝑐 than 

the lamellar phases at the cost of lower dimensionless entropy per chain 𝑠𝑐/𝑘𝐵, while lamellar  
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phases are more easily able to maximize their 𝑠𝑐/𝑘𝐵 at the cost of higher 𝛽𝑢𝑐. Near the center of 

the phase diagram at 𝑓A = 0.4, [6.6.6] achieves its stability by having the lowest 𝛽𝑢𝑐 of competing 

Figure 3.5 Decomposed free energy data relative to L+C along the 𝑓𝐵 = 𝑓𝐶 isopleth, 

with (a) internal energy per chain and (b) entropy per chain for each morphology. 
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phases, though it also has the lowest 𝑠𝑐/𝑘𝐵. The [8.6.4;8.6.6] and [10.6.4;10.6.6] morphologies 

are similarly energetically stabilized at the next four points along the isopleth as they retain both 

the lowest 𝑠𝑐/𝑘𝐵 and 𝛽𝑢𝑐 of any phase. At 𝑓A = 0.5 L+C becomes stable, and has somewhat 

unique behavior – it neither manages to minimize its 𝛽𝑢𝑐 or maximize its 𝑠𝑐/𝑘𝐵 relative to the 

other phases. However, it combines the beneficial effects of both the tiling patterns and lamellar 

phases as it is able to attain lower 𝛽𝑢𝑐 than any other lamellar phase while also achieving higher 𝑠𝑐/𝑘𝐵 than any of the tiling patterns. The combination of these effects serves to stabilize L+C until 𝑓A > 0.6 at which point L is able to lower its 𝛽𝑢𝑐 enough to become stable.   

 The results in Fig. 3.5 also serve to explain the general trend of tiling patterns into lamellar 

phases as one progresses outward in the phase diagram. From visualizing the morphologies at each 

point along the isopleth, it is observed that as 𝑓A is increased, the largest cylindrical domains (in 

red in Fig. 1.2) in the tiling patterns become swollen, forcing the smaller B and C blocks to mix 

together in a disordered matrix surrounding the A domains that are still highly pure. This forced 

transition to a pseudo-disordered morphology occurs for all tiling patterns as 𝑓A is increased, and 

has a large energetic cost due to the mixing of B and C segments as can be seen in Fig. 3.5a. As 

the mixing is entropically favorable, this phenomena is accompanied by an increase in entropy of 

the affected morphologies, though it is not enough to outweigh the energetic penalty. The transition 

to lamellar phases occurs because these morphologies are capable of significantly reducing 𝛽𝑢𝑐 

relative to the tiling patterns while simultaneously affording the system a reasonable 𝑠𝑐/𝑘𝐵, nearly 

competitive to the tiling patterns. These results serve to highlight the delicate balance between 

entropic and energetic effects at play in microphase-separated BCPs, where subtle differences in 

parameters can drive the formation of completely different phases.    

 We turn now to studying the (3.3.4.3.4) tiling pattern in more depth. This morphology is 
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interesting for a number of reasons – it is an example of a cylindrical Frank-Kasper 𝜎 phase, with 

its structure being the same as a cross-section of the spherical 𝜎 phase formed via conformational 

asymmetry in neat diblock melts.5 Theoretical calculations11 have shown that the morphology 

could potentially exhibit photonic band gaps with the appropriate dielectric contrast, and the 

frequent experimental observations of it10, 21 (in addition to the results of Fig. 3.3b) show that it 

plays a prominent role in neat melts of ABC miktoarms. To understand more about this 

morphology and what effects drive its stability over competing phases, we present a detailed 

breakdown of 𝛽𝑓𝑐 for (3.3.4.3.4) and its adjacent tiling patterns, as well as L+C and L. This analysis 

is conducted at a point where (3.3.4.3.4) is known to be stable, 𝑓A = 0.45 and 𝑓B = 0.3, and is 

based on the decomposition given by Eqs. (14)-(16) where we compute each of these quantities 

for every species at the point of interest.        

 To carry out these computations it is necessary to know the junction density 𝜌J(𝐫) for each 

morphology, given by Eq. 11 – this field is of some interest itself as well, as it provides information 

about how the polymers are distributed throughout a morphology. From the plots given in Fig. 1.2, 

we would expect the junctions to be located primarily at the intersections of the majority regions 

of each component – Fig. 3.6 shows 𝜌J(𝐫) in a unit cell of (3.3.4.3.4) at 𝑓A = 0.45 and 𝑓B = 0.3, 

which confirms this expectation. However, there is a surprising amount of networking present 

from the junctions which can be attributed to the value of 𝜒𝑁 = 30 this field was obtained for. As 𝜒𝑁 is increased, this networking should diminish significantly until the junctions are concentrated 

along nearly one-dimensional lines perpendicular to the page at strong segregations. It is clear, 

though, that at 𝜒𝑁 = 30 considered here the junctions are smeared along interfaces rather than 

tightly aligned.  The same features are observed in general for all morphologies, with the junctions 

being smeared out in space while concentrated at vertices. Note that the lamellae-based phases are 
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observed to have junction densities that occupy a relatively larger area than the tiling patterns – 

this effect is quantified by the translational entropy of the junctions, discussed next.  

  

 

Table 3.2 shows the results from computing the quantities in Eqs. (14)-(16) for (3.3.4.3.4) 

and the tiling patterns it shares a phase boundary with as well as two lamellar phases, L+C and L. 

Comparing the tiling patterns first, the rectangular patterns [10.6.4;10.6.6] and [8.6.4;8.6.6]  are 

able to achieve the lowest 𝛽𝑢𝑐 though they accomplish this at the cost of the lowest 𝑠𝑐/𝑘𝐵, as 

discussed earlier for the phases along the 𝑓B = 𝑓C isopleth. The [8.8.4] and [12.6.4] patterns, on 

the other hand, are able to maximize their 𝑠𝑐/𝑘𝐵 at the cost of 𝛽𝑢𝑐. (3.3.4.3.4) is uniquely able to 

balance these effects, achieving a 𝛽𝑢𝑐 nearly as low as the rectangular patterns while 

simultaneously achieving an 𝑠𝑐/𝑘𝐵 nearly as large as [8.8.4] and [12.6.4]. This can be attributed 

to the conformational flexibility that (3.3.4.3.4) allows the C block as well as the low AB internal 

energy the morphology is able to achieve, as can be seen from the corresponding rows in Table  

Figure 3.6 Unit cell of (3.3.4.3.4) (left) and the corresponding 

junction density (right) at 𝜒𝑁 = 30, 𝑓𝐴 = 0.45, 𝑓𝐵 = 0.3. 
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3.2. The conformational entropy of the C block in (3.3.4.3.4) is significantly greater than that 

allowed by the rectangular morphologies, while its AB internal energy is also much lower. This is 

balanced by relatively large AC and BC internal energies, although the morphology is still able to 

achieve lower values here than [8.8.4] and [12.6.4]. Similar to L+C along the 𝑓B = 𝑓C isopleth, 

(3.3.4.3.4) thus achieves its stability by being the morphology that achieves the greatest 

compromise between energetic and entropic effects.      

 It is interesting to note that, with the exception of [8.8.4], the largest interaction energies 

for all morphologies come from the BC monomer overlaps. This is most likely due to the fact that 

shorter blocks (B and C in this case) are allowed higher mobility in a given morphology at lower 

segregations, and can thus spread out more in space resulting in more unfavorable contacts with 

the other minority blocks. This is further supported by the majority blocks having the smallest 

interaction energies for all morphologies. Another notable result is that there is little difference in 

the translational entropy afforded the junctions of each tiling pattern – considering the translational 

Table 3.2 Decomposed 𝛽𝑓𝑐 data for (3.3.4.3.4) and competing phases at 𝜒𝑁 = 30, 𝑓𝐴 = 0.45, 𝑓𝐵 = 0.3. Each row denotes the contribution of those species to the italic quantity above it. 
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entropies of the lamellae-based junctions, this appears to be a distinguishing feature between the 

two classes of morphology. The lamellar phases can be seen to have significantly larger 𝑠𝑐,J/𝑘𝐵, 

especially L+C which maximizes this quantity relative to the other phases – this would suggest the 

miktoarms in this morphology are highly distributed in space, or networked. By observing the 

density 𝜌J(𝐫) in Fig. 3.7 it can be seen that this is indeed the case, with the miktoarms showing a 

strongly 2D distribution along the interfaces. As expected, L+C and L both have prohibitively high 𝛽𝑢𝑐 at this point in {𝑓P} space while simultaneously having much higher 𝑠𝑐/𝑘𝐵 than any of the 

tiling patterns. This is in part owed to the greater 𝑠𝑐,J/𝑘𝐵 afforded these phases, but has a more 

significant contribution from the increased 𝑠𝑐,P/𝑘𝐵 the lamellar phases attain for all blocks. L in 

particular manages to achieve an enormous amount of 𝑠𝑐,C/𝑘𝐵, but as discussed it does this at even 

higher energetic costs. 

 

 

Figure 3.7 Similar to Fig. 3.6 but for L+C. 
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Chapter 4: Conclusions 

 

 In this work, the phase behavior of symmetrically interacting ABC miktoarm terpolymers 

was studied with self-consistent field theory (SCFT) using an open-source software, PSCFPP, to 

implement the requisite numerical methods. The numerical error in the results was rigorously 

studied to ensure that 5 decimals of accuracy were obtained in the dimensionless Helmholtz free 

energy per chain, and the center of the ternary phase diagram was mapped out at 𝜒𝑁 = 30 by 

considering ten candidate morphologies including six 2D tiling patterns and two 3D phases. 

Discrepancies in the literature concerning the stability of a number of 2D phases were resolved, 

and a 3D phase previously found to be metastable was identified as a prominent stable phase. Free 

energy data was analyzed for various morphologies to understand what drives their stability, and 

some properties of (3.3.4.3.4) were investigated including the distribution of the miktoarm 

junctions.           

 The morphologies included in our calculations were based on those known to play a 

significant role from previous theoretical and experimental studies on ABC miktoarms – however, 

it is possible that some important morphologies may have been missed. 2D phases that could play 

an important role near the center of the diagram and should be included in future work are the 

[8.6.4;8.6.6;12.6.4] tiling pattern10, 18, [8.6.4;8.8.4;12.6.4;12.8.4] tiling pattern17, and core-shell 

hexagonal cylinders – this last phase is unlikely to be stable near the center but should be 

considered regardless until it is known for a fact that it does not play a role here. 3D phases that 

need to be considered in future work include the core-shell variants of the known diblock phases 

(such as BCC, FCC, gyroid, etc.), the HHC morphology18, and various others that can be picked 

from experimental results21 and Ref. 12. While the discrepancies between the phase diagram 

presented in Fig. 3.3b and that in Fig. 1.5 lead us to question the accuracy of their computations, 
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the enormous number of 3D morphologies they present (that are all solutions of the SCF equations) 

makes it an excellent reference for choosing candidate morphologies outside the center of the phase 

diagram.           

 Despite the progress made thus far on our understanding of miktoarm phase behavior with 

SCFT there is still much left to be done. With this work, the behavior of the center of the diagram 

has been established definitively by building on the efforts of past studies – however, the outer 

region of the phase diagram is still poorly understood, and demands the consideration of more 3D 

phases beyond the simple morphologies known from diblocks. Further, even the center of the 

diagram still has some discrepancies that need to be resolved, such as the re-entry of HPL observed 

in this study. Before extending research to asymmetric interaction parameters, our understanding 

of the effect of composition should be further refined and the phase diagram mapped out 

completely for a degree of segregation such as 𝜒𝑁 = 30. Once this has been accomplished, the 

segregation strength should be increased systematically to study its effect on phase behavior and 

only then the various combinations of asymmetric interactions studied in detail. The results 

presented in this thesis provide an excellent basis for this future work, and the availability of a 

high quality open-source software to implement SCFT will hopefully expedite studies on this 

intriguing class of material. 
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