Legacies of precipitation change alter ecosystem responses

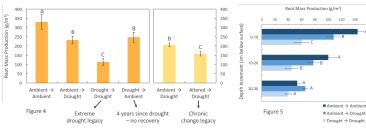
to extreme drought

Ingrid Slette¹

John Blair², David Hoover³, Melinda Smith¹, Alan Knapp¹ ¹Colorado State University, ²Kansas State University, ³USDA-ARS

Purpose- improving understanding of climate change impacts

- Global climate change is causing more extreme droughts, as well as subtler chronic changes in precipitation patterns.
- Both extreme and chronic climate changes can alter ecosystem structure and function, and that may affect how systems respond to future extreme climate events.
- Understanding how legacies of past precipitation changes may alter the impacts of future extreme droughts is important for predicting ecosystem responses to climate change.


Procedure- measuring grassland production during extreme drought

We imposed an extreme drought (66% rainfall reduction for 2 years, via rainout shelters) in two experiments with different precipitation change legacies:

- A long-term (15-year) experiment that chronically altered rainfall variability (longer dry intervals and larger rain events, but no change in total rainfall amount). Figure 1.
- An experiment that imposed a previous short-term (2-year) extreme drought (66% rainfall reduction). Figure 2.
- We measured plant production both aboveground (via vegetation harvests) and belowground (via root ingrowth cores).
- Location: Konza Prairie Biological Station, Kansas.

Results- significant impacts of past precipitation change, especially extreme change belowground

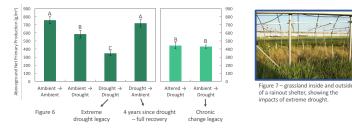


Fig. 4 – Root biomass production

- Extreme drought reduced root production (by ~30% compared to controls).
- Both chronic and extreme precipitation change legacies amplified the impact of extreme drought.
- The legacy of extreme drought was greater than the legacy of chronic precipitation change (65% vs. 23% reduction from control, respectively).
- Legacy effects of extreme drought are long-lasting (no recovery 4 years later).

Fig. 5 – Root biomass production by depth

The greatest differences in root production were in the shallowest soil layers.

Figure 6 – Aboveground production

- Extreme drought reduced aboveground production (y ~38% from controls).
- Extreme drought legacy impacts were less pronounced than belowground (57% vs. 65% reduction from controls).
- We found no evidence of a chronic rainfall change legacy aboveground.
- Legacy effects of extreme drought were shorter-lasting aboveground than belowground (recovery was faster).

Implications- better forecasts of extreme drought impacts

- Failing to consider precipitation legacy effects and/or belowground production (both often understudied) significantly underestimates the impacts of extreme droughts.
- The disproportionate decrease in root production and lack of recovery suggest lower long-term sustainability than would be predicted from aboveground data only.

Future Directions- assessing

recovery from extreme drought

- In the coming years, we will cease drought treatments and continue measuring aboveground and belowground production in both experiments as they recover from the drought under ambient precipitation conditions.
- Species-specific root production and traits will be assessed during and after extreme drought.

Acknowledgments

Thanks to Patrick O'Neal at the Konza Prairie and to the Knapp and Smith lab groups at Colorado State University.

