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ABSTRACT OF DISSERTATION 

Robust Resource Allocation in Heterogeneous 

Parallel and Distributed Computing Systems 

In a heterogeneous distributed computing environment, it is often advantageous to allocate 

system resources in a manner that optimizes a given system performance measure. However, 

this optimization is often dependent on system parameters whose values are subject to 

uncertainty. Thus, an important research problem arises when system resources must be 

allocated given uncertainty in system parameters. Robustness can be denned as the degree 

to which a system can function correctly in the presence of parameter values different from 

those assumed. In this research, we define mathematical models of robustness in both static 

and dynamic stochastic environments. In addition, we model dynamic environments where 

estimates of system parameter values are provided as point estimates where these estimates 

are known to deviate substantially from their actual values. 

The main contributions of this research are (1) mathematical models of robustness 

suitable for dynamic environments based on single estimates of system parameters (2) a 

mathematical model of robustness applicable to environments where the uncertainty in 

system parameters can be modeled stochastically, (3) a demonstration of the use of this 

metric to design resource allocation heuristics in a static environment, (4) a mathematical 

model of robustness in a stochastic dynamic environment, (5) we demonstrate the utility 

of this dynamic robustness metric through the design of resource allocation heuristics, (6) 

the derivation of a robustness metric for evaluating resource allocation decisions in an 

overlay network along with a near optimal resource allocation technique suitable to this 

environment. 
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CHAPTER 1 

INTRODUCTION 

In a heterogeneous distributed computing environment, it is often advantageous to allocate 

system resources in a manner that optimizes a given system performance measure. However, 

this optimization is often dependent on system parameters that are subject to uncertainty. 

Thus, an important research problem arises where system resources must be allocated given 

uncertainty in system parameters. Robustness can be defined as the degree to which a sys­

tem can function correctly in the presence of parameter values different from those assumed. 

Existing research in this area has focused on static resource allocation environments where 

no prior information is available for characterizing the uncertainty in system parameters. 

The main contributions of this research are (1) a mathematical derivation of robustness 

suitable for a dynamic environment based on point estimates of system parameters (2) a 

mathematical definition of robustness applicable to environments where the uncertainty in 

system parameters can be modeled stochastically, (3) a demonstration of the use of this 

metric to design resource allocation heuristics in a static environment, (4) a mathematical 

definition of robustness in a stochastic dynamic environment, (5) a demonstration of the 

use of this dynamic robustness metric to design resource allocation heuristics suitable for a 

given heterogeneous computing system, (6) the derivation of a robustness metric for resource 

allocations in an overlay network along with a near optimal resource allocation technique 

for this environment. 

Chapter 2 provides an overview of robust resource allocation in heterogeneous parallel 

and distributed computing systems. In Chapter 3, we derive a robustness metric for a dy­

namic environment where each task is subject to a hard deadline. We derive a robustness 

metric for a dynamic resource allocation environment in Chapter 4 where all tasks are re­

quired to be completed by a common deadline. In Chapter 5, we define a methodology for 

quantifying the robustness of resource allocations in environments where the uncertainty 
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in system parameters can be modeled stochastically. We analyze the effectiveness of our 

approach through direct comparison with prior work in this area. We demonstrate a design 

methodology in Chapter 6 for utilizing this robustness metric to produce effective resource 

allocation heuristics in a static resource allocation environment where we wish to minimize 

the time required to complete all tasks. In Chapter 7, we derive a methodology for maxi­

mizing the robustness of resource allocations where all tasks must be completed by a fixed 

deadline. 

In chapter 8, we derive a robustness metric suitable for a dynamic stochastic environ­

ment. We derive a mathematical formulation of robustness in such a stochastic dynamic 

environment and analyze the effectiveness of the metric for evaluating a select group of re­

source allocation heuristics. We present an alternate formulation of robustness in a stochas­

tic dynamic environment in Chapter 9 that can be used to aid resource allocation decision 

making. We design two novel resource allocation techniques that utilize our robustness 

metric during resource allocation. 

In Chapter 10, we consider the optimization of resource allocations in an overlay network 

where the arrival rate of packets to the network is not known in advance. We derive a robust 

decentralized methodology for resource allocation in such an environment. 
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CHAPTER 2 

ROBUST RESOURCE ALLOCATION IN 

HETEROGENEOUS PARALLEL AND DISTRIBUTED 

COMPUTING SYSTEMS 

2.1 Introduction 

In parallel and distributed computing multiple computers are collectively utilized to simul­

taneously process a set of tasks to improve performance over that of a single processor [26]. 

Often, such computing systems are constructed from a heterogeneous mix of machines that 

may differ in their capabilities, e.g., available memory, number of floating point units, clock 

speed, and operating system. In a heterogeneous computing system, the execution time of 

a task may differ depending on which computer executes the task. Often, task resource 

requirements lead to inconsistent performance differences between heterogeneous machines. 

That is, machine 1 being faster than machine 2 on some task A does not imply that machine 

1 is uniformly faster on all tasks. 

Resource allocation in heterogeneous parallel and distributed computing is the process 

of assigning tasks to computers for execution such that some performance objective is 

optimized. For example, a common objective in resource allocation is to minimize the 

total time required to complete a set of tasks to be executed. It has been shown that 

resource allocation is an NP-hard problem (e.g., [50]), i.e., an optimal solution cannot be 

found in reasonable time for problems of realistic size. Therefore, the task of resource 

allocation is often addressed heuristically. A resource allocation heuristic generates task to 

machine assignments that attempt to optimize the identified performance objective. The 

design of heuristics for resource allocation is an active area of research, e.g., [25,36]. In this 

chapter, we will evaluate the robustness of resource allocations in both static and dynamic 

The research presented in this chapter has been accepted to appear in [97]. 
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environments. In a static environment, the entire collection of tasks to be allocated is known 

in advance, prior to the start of allocation. In contrast, in a dynamic environment, the set 

of tasks to be executed is not known in advance and tasks are assigned as they arrive to 

the system. 

Resource allocation decisions are often based on estimated values of task and system 

parameters, whose actual values are uncertain and may differ from available estimates. A 

resource allocation can be considered "robust" if it can mitigate the impact of uncertainties 

in system parameters on a given performance objective [3]. That is, a robust resource 

allocation can guarantee a certain level of performance under a wide range of conditions. 

Any claim of robustness for a given system must answer these three questions [6]: (a) What 

behavior makes the system robust? (b) What are the uncertainties that the system is robust 

against? (c) Quantitatively, exactly how robust is the system? These three questions help 

establish an intuitive meaning for the robustness of a system that goes beyond a simple 

nebulous adjective. 

In the next section, we describe the formal FePIA procedure for deriving a robustness 

metric for any given system. In Section 2.3, we provide an example robustness metric 

derivation for environments where uncertainties are due to system parameters whose values 

are only estimates. We use the steps of the FePIA procedure in Section 2.4 to define a 

model of robustness in a stochastic environment where uncertainties are modeled as random 

variables. We conclude with a brief discussion of the open problems in robust resource 

allocation. 

2.2 Determining a Robustness Metric 

The three robustness questions provide the basis for the more formal FePIA procedure for 

deriving a quantitative measure of robustness [3]. The procedure uses the following four 

steps for measuring the impact of uncertainty in estimated system parameters on a stated 

performance objective: (1) identify the performance features of interest within the system, 

(2) identify the source of uncertainty within the system (perturbation parameters), (3) 

clarify the impact of the system uncertainty on the performance features of interest, and 
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(4) analyze the system to quantify robustness. 

To illustrate the intuition behind the steps of the FePIA procedure, we will use the 

following simple resource allocation example throughout our discussion. In this example, 

a set of tasks is to be assigned to a heterogeneous collection of machines such that the 

finishing time of the last to finish machine, i.e., the total time required to complete all 

of the tasks (often referred to as makespan), is minimized. An estimate of the execution 

time of each task on each machine is available, and the resource allocation must take into 

account that there are unknown errors in these estimates (e.g., their actual values may be 

data dependent). The following is a summary of the four steps of the FePIA procedure, 

first presented in [3]. 

Step 1: Describe quantitatively the requirement that makes the system robust. This 

step provides a more precise formulation of the first of our intuitive robustness questions 

(question (a) in the previous section). Based on this robustness requirement, we identify 

the performance features of the system that determine if the robustness requirement is met. 

Establishing the acceptable variation in performance features requires that we define the 

limits on these features that allow us to maintain an acceptable level of performance. For 

example, the acceptable variation in makespan for our sample system may be to limit the 

actual makespan to some constant value r . That is, the actual finish time of the last to 

finish machine should be less than or equal to r . 

Step 2: Identify the uncertainties in system parameters whose values may impact the per­

formance features that are to be limited in variation (question (b) in the previous section). 

The uncertainties in estimated system parameter values are referred to as the perturbation 

parameters of the system. We are interested in the perturbation parameters that may cause 

a variation in the performance features of interest, i.e., those identified in step 1 as part of 

the robustness requirement. For our makespan example, the performance metric is based 

on estimates of task execution times and these estimates may contain unknown errors that 

could impact system performance. That is, the uncertainty in task execution times are 

relevant because changes in these values may directly impact the makespan of the system. 

Thus, we are interested in the robustness of the estimated makespan relative to unknown 
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errors in task execution time estimates. 

S t e p 3: Identify the impact of perturbation parameters (identified in step 2) on the per­

formance features of the system (identified in step 1). With respect to our robustness 

requirement from step 1, the actual value of our performance feature must be within the 

identified acceptable level of variation. For the makespan example, the sum of the actual 

execution times for all tasks assigned to any given machine determines the actual finishing 

time of that machine. Thus, the actual finishing time of the last to finish machine, i.e., 

the actual makespan, must be less than or equal to r . Differences between the estimated 

task execution times and their actual values will directly impact the ability of the system 

to meet the robustness requirement established in step 1. 

S tep 4: The last step is to conduct an analysis to determine the smallest collective change 

in the assumed values of the perturbation parameters of step 2 that would cause any of the 

performance features of step 1 to violate its robustness requirement. The value produced by 

this analysis will provide the degree of robustness for the system (addressing question (c) 

of the previous section). For the makespan example, this is a quantification of the smallest 

collective increase in task execution times that would lead to the actual makespan being 

greater than T. 

2.3 Deterministic Models of Robustness 
2.3.1 Introduction 

In this section, we provide two example derivations of a robustness metric, one in a static 

environment and one in a dynamic environment. For both environments, we present an 

example heuristic that uses the derived robustness metric for that environment during 

resource allocation to facilitate the creation of robust resource allocations. 

2.3.2 Example Static Environment 

2.3.2.1 Deriving a Robustness Metric 

In this environment, similar to the makespan example of the previous section, the goal of 

the resource allocation is to assign T tasks to M_ machines such that the robustness of the 

system is maximized [100]. Because this is a static environment, the T tasks to be assigned 
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are all known in advance. Further, we assume that the estimated time to compute (ETC) 

each task on each machine has been provided (determined by experimental or analytical 

techniques [64]). We also assume that the M machines are heterogeneous, i.e., each ETC 

value for a given task on the M machines may be different. Using the FePIA procedure, we 

can quantitatively define a measure of robustness for this example system as follows. 

Step 1: We first describe the robustness requirement. For this system, we require that the 

actual finishing time of each machine be less than or equal to a fixed constant r . 

Step 2: Uncertainty in this system arises because of unknown inaccuracies in the estimates 

of task execution times, which can lead directly to increases in machine finishing times that 

may violate our robustness requirement. For our example system, unknown inaccuracies 

in the ETC values are expected, e.g., the actual execution time of a task may be data 

dependent. Thus, the perturbation parameters for our system are these inaccuracies and 

we require that resource allocations in this environment be robust to these inaccuracies. 

Step 3: To understand the impact that uncertainties in ETC times can have on machine 

finishing times, we need to define a model for calculating machine finishing times in this 

system. For a given resource allocation fi, let C e s t be the vector of estimated execution 

times for the T tasks to be executed, and let C be the corresponding vector of actual 

execution times for the tasks (i.e., C e s t plus the estimation error for each execution time). 

The finishing time for each machine j (1 < j < M) is determined based on the execution 

times for tasks assigned to that machine under a specified resource allocation /i. Given 

C e s t we can denote the estimated finishing time of machine j under resource allocation [i 

as Fj (C e s t , /i). Let Tj_ be the subset of tasks in T assigned to machine j under resource 

allocation fi. We can calculate the estimated finishing time of each machine j as the sum 

of the task execution times for all tasks in Tj. The set of performance features of interest 

for the system, denoted <fr_ are the set of actual finishing times for the machines given our 

resource allocation /i, i.e., <fr = {Fj(C, //)|1 < j < M}. Therefore, the unknown errors in our 

ETC estimates will directly impact the performance features of interest within this system. 

Step 4: Finally, we conduct an analysis to determine exactly how robust the system 

is under a specific resource allocation. The robustness radius of a performance feature, 
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denoted ru(Fj(Cest,(i),C), is defined as the smallest collective increase in system parameters 

that would lead to a violation of the robustness requirement for that performance feature. 

That is, for a given machine j , we would like to know the smallest collective increase in 

the execution times of tasks assigned to that machine that would result in FJ(C,LI) > r . 

Quantitatively, if the Euclidean distance between the vector of actual computation times 

and the vector of estimated computation times for tasks assigned to machine j is no larger 

than r^(Fj(Cest, fj),C), then the finishing time of machine j will be less than the makespan 

constraint r . Because the finishing time of a machine is the sum of the execution times 

of all tasks assigned to that machine, the makespan contsraint can be represented as a 

hyperplane in a multi-dimensional space whose axes are defined for each machine in terms 

of the tasks assigned it. That is, each perturbation parameter provides a single dimension 

along which the robustness radius can vary. For example, in Figure 1, the two tasks c\ 

and C2 have been assigned to machine j and provide the axes for this geometric analysis. 

The radius r^(Fj(Cest, LX), C), interpreted geometrically, is the shortest distance from C e s t 

to the hyperplane given by Fj(Cest,n) — r. Thus, as long as the estimation error contained 

in C e s t does not exceed 7-p,(Fj(Cest, fx)) then the finishing time of machine j will not exceed 

r . In Figure 1, the robustness requirement is plotted as a solid gray line—highlighting 

the boundary between robust performance and non-robust performance. The estimated 

execution times of c\ and c2 are plotted together in the figure as the estimated value of 

the perturbation parameters. Figure 1 demonstrates the robustness radius for this example 

as the shortest distance from the point estimate of the perturbation parameters to the 

hyperplane defined by the robustness requirement, i.e., a line in two dimensions. The 

general calculation of r^(Fj(Cest, fx), C) can be expressed using the point-to-plane distance 

formula as follows, 

r (F-(Cest a) C) = r - Fj{Ces ,ii) 
^ 3 ' ^number of tasks assigned to machine j 

Finally, the robustness metric can be expressed in terms of the set of robustness radii, where 

the metric is equal to the smallest of the robustness radii for the set of performance features 
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F i g u r e 1: An example geometric analysis of the robustness radius for a given machine. 
In the example, resource allocation // includes the assignment of tasks c\ and c<i to a sin­
gle machine j . The robustness requirement for the finishing time of this machine, i.e., 
Fj(Cest,iJ,) = r , can be interpreted as a hyperplane (a line in two dimensions). The esti­
mated execution times for tasks c\ and 01 define a point within the space of all possible 
values for the perturbation parameters of this system. The robustness radius for this ma­
chine under allocation \i is the shortest distance from the point estimate of the perturbation 
parameters to the hyperplane defining the robustness requirement for this machine. 

4>, denoted p^. Mathematically, this is expressed as follows, 

pM(0,C)= min MFjiCF*,!*)^). (2) 
F,-(CO!,t,M)e0 

As long as the collective increase in execution times for the set of tasks assigned to a given 

machine does not exceed the robustness metric value, then the system will continue to meet 

the robustness requirement. 

2.3.2.2 Using Static Robustness 

The robustness metric can be used directly to compare resource allocations for their ability 

to deliver on promised performance, as in [3]. Alternatively, the robustness metric can be 

used during resource allocation to improve the overall robustness of the resulting alloca­

tion. That is, using the robustness metric of Subsection 2.3.2.1, we can define a resource 

allocation heuristic that attempts to maximize the robustness of the resource allocations 

that it produces. In this subsection, we give an example resource allocation heuristic that 
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attempts to maximize robustness. 

The max-max heuristic, presented in [100], uses a measure of robustness during alloca­

tion to maximize robustness. Max-max starts with an initial set of tasks to be assigned 

to machines within the system. For each task, we consider what the robustness radius for 

each machine would be if that task were assigned to it and select the machine that provides 

the largest overall robustness radius. From this set of task-machine pairs, max-max selects 

the task-machine pair that provides the overall largest robustness radius. The selected task 

is assigned to its selected machine, removed from the set of tasks to be assigned, and the 

machine's completion time is updated accordingly. Max-max continues in this way until 

all tasks have been assigned to machines in the heterogeneous system. Note that when 

evaluating r / i(F i(C7es t, fi), C), as in Equation 1, during resource allocation we replace the 

complete machine finishing time Fj(Cest) with the finishing time of the machine given the 

set of tasks that have previously been assigned to this machine plus the task under consid­

eration. This value can be thought of as an intermediate robustness radius determined by 

the partial allocation when it is calculated. 

This heuristic was evaluated in [100] alongside several other resource allocation tech­

niques. By performing resource allocation in this way, the resulting allocation is able to 

tolerate a larger variation in task execution times than many commonly used techniques, 

as demonstrated in [100]. The paper also demonstrates the utility of this approach through 

comparison with some other techniques for resource allocation. 

2.3.3 Example Dynamic Environment 

2.3.3.1 Deriving a Robustness Metric 

This subsection focuses on deriving a robustness metric for a dynamic resource allocation 

environment, where the set of tasks to execute and their arrival times are not known in 

advance. The set of tasks to be executed in this environment are assumed to be taken from 

a frequently executed collection of tasks, as is common in many environments. Consequently, 

the ETC values for these tasks on each of the machines in the computing environment are 

assumed to be known. Although the ETC times are known for the tasks to be executed, 
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the actual execution times may vary due to a dependence on the characteristics of the input 

data that are not known until execution time. 

Tasks in a dynamic environment can be assigned in either immediate mode or batch 

mode. In immediate mode, tasks are assigned immediately as they arrive. In batch mode, 

tasks are instead collected as they arrive and assigned as a batch [66,72]. The robustness 

metric developed in this subsection is appropriate for use in heuristics that operate in 

either immediate mode or batch mode. In the next subsection, we will give an example of 

an immediate mode heuristic developed for this environment. 

In this system, T independent tasks arrive dynamically, where the set of tasks to execute 

and their arrival times are not known in advance. Each arriving task is assigned to one ma­

chine within the set of M heterogeneous machines. The robustness of a resource allocation 

must be determined at each mapping event, where mapping events occur whenever a task 

arrives or completes. Note that because this is a time varying problem, the relevant set of 

tasks to consider is time dependent. Let T(t) be the set of tasks at time t whose arrival 

time is less than or equal to t and have not completed execution by time t. Let Fj (t) be 

the predicted finishing time of machine j , at time t, for a given resource allocation LI, based 

on the provided ETC values. Let MQjjt) denote the subset of T(t) previously mapped to 

machine j and let scetj(t) denote the start time of the currently executing task on machine 

j . Using these parameters, we can mathematically express Fj(t) as follows, 

Fj{t) = scetjit) + Yl E T C ( ^ ' ) - (3) 
VieMQj(t) 

According to Section 2.1, we can intuitively define robustness by considering answers to 

the three questions of that section. What behavior makes the system robust? To be robust, 

the finishing time of each machine at each mapping event should be limited in variation. 

What uncertainties is the system robust against? In this environment, unknown estimation 

errors in the ETC values may cause machine finishing times to increase unpredictably. 

Quantitatively, exactly how robust is the system? To answer this question, we have to 

determine exactly how much variation in task execution times can be tolerated while still 
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ensuring that the finishing time of each machine at each mapping event remains within a 

allowed range. We address these points more precisely using the FePIA procedure to derive 

a robustness metric for this environment. 

Step 1: We first define the robustness requirement for this system in terms of Fj(t), i.e., 

the performance feature of interest is the maximum of the machine finishing times at each 

mapping event. Let (3{t) denote the maximum of the predicted machine finishing times at 

time t. That is, 

p(t) = max (Fj(t)). (4) 

A resource allocation is considered robust if at each mapping event the actual finishing time 

for each machine is no more than r seconds greater than /?(£), i.e., Vj, Fj(t) < r + j3{t). 

Step 2: In this environment, task execution time estimates are subject to unknown esti­

mation errors that may cause actual task execution times to deviate from their predicted 

values. Thus, the perturbation parameter of this system is the uncertainty in task execution 

time estimates. 

Step 3: The identified perturbation parameter will directly impact the Fj (t) values. That 

is, because Fj(t) is found using the sum of the ETC values for all tasks in MQj(t), any 

increase in the execution time of a task in MQj(t) over its estimate can cavise Fj(t) to 

increase. 

Step 4: Given a resource allocation y, at time t, the robustness radius rtl(Fj(t)) of machine 

j can be defined as the largest collective increase in the estimated task execution times that 

can occur without violating the robustness requirement. Given the count of the number of 

tasks assigned to machine j at time t, expressed as \MQj(t)\, and using the point-to-plane 

formula of the previous subsection, we can express r^(Fj(t)) as follows, 

In the static environment of the previous subsection, the number of robustness radii 

was equivalent to the number of machines in the computing system. However, in this 

environment we need to measure the robustness radius of each machine at each point in 

13 



time where our information about the robustness radius may change. Let pu(t) be the 

robustness of the resource allocation as measured at time t and found as follows, 

/V(i) = mi r ir^Fj i t ) ) . (6) 
vj€M 

Thus, because the mix of tasks pending execution changes whenever a task arrives and 

all tasks must complete, there will be 2 x T x M robustness radii to be considered. The 

minimum over all of these robustness radii will provide the robustness metric, denoted p^, 

for the resource allocation. Let E be the set of all times when mapping events occur in the 

system during a resource allocation. Mathematically, p^ can be expressed as follows, 

^ = m i n ^ ( e ) . (7) 
Vee£ 

Defining the robustness metric in this way, p^ corresponds to the largest collective deviation 

from assumed circumstances that the resource allocation can tolerate while still ensuring 

that system performance will remain acceptable. In particular, in this example system, p^ 

corresponds to the largest collective increase in task execution times that the system can 

tolerate and still guarantee that at all mapping events Fj(t) < (3(t) + r . 

2.3.3.2 Using Dynamic Robustness 

This subsection uses the example problem formulation of the previous subsection (presented 

in [72]) and focuses on generating a dynamic resource allocation for a set of dynamically 

arriving, independent tasks. The resource allocation is expected to minimize (3(t), while 

still being able to tolerate a quantifiable amount of variation in the ETC values for the 

assigned tasks. Therefore, the goal of heuristics in this environment is to assign tasks to 

machines such that (3t is minimized at each mapping event while still maintaining a specified 

level of robustness, e.g., p^t) > a at each mapping event. The following is an example of 

an immediate mode heuristic, known as feasible fc-percent best, that successfully addresses 

these competing concerns by iteratively reducing the set of machines under consideration 

until a "best" machine has been selected. 
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Because this resource allocation heuristic operates in immediate mode, each task is 

assigned as it arrives. For each newly arrived task, feasible fc-percent best identifies the set 

of all "feasible" machines for the task. The set of feasible machines is defined for each task 

when it arrives and includes only those machines that will satisfy the robustness requirement 

for the system even if the task under consideration were assigned to it, i.e., r^F^t)) > a. 

Thus, reducing the set of machines under consideration to only those that would satisfy 

the robustness constraint. If no machines are feasible, then the heuristic must exit with 

an error condition indicating that no allocation exists given the current circumstances that 

can satisfy the robustness requirement. 

Recall that this resource allocation environment employs a heterogeneous collection of 

machines, thus, the possible execution times for a given task may vary from one machine 

to the next. To reduce the set of machines under consideration further, we select from the 

set of feasible machines the k machines that would provide the smallest execution times 

for the task under consideration. Intuitively, we want to minimize the impact that this 

task execution has on future task completion times by ensuring that the execution time of 

this task is relatively small. Thus, we select a subset of the feasible machines that consists 

of only the k machines that provide the smallest execution times for the task. For these 

machines, we compute the completion time for each of the machines and assign the task to 

the machine that provides the smallest completion time for the task. The heuristic continues 

in this way until either an error occurs or the resource allocation is terminated. 

2.4 Stochastic Models of Robustness 

2.4.1 Introduction 

In some environments, there may be more information available regarding the probability of 

variations in system parameters. For example, we may have historical information regarding 

past execution times for a given task that can be used to approximate the probabilities of 

all possible execution times. This stochastic information can be utilized to derive a robust­

ness metric. In a stochastic environment, we model the system parameters that contain 

uncertainty as random variables and we assume that stochastic information is available 
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that characterizes this uncertainty beyond a simple point estimate, as used in the previous 

section. 

To illustrate the usefulness of stochastic data in resource allocation consider an allocation 

environment with two machines (A and B). In the example situation of Figure 2, some tasks 

have previously been assigned to machines A and B. We would like to select a machine 

to execute task 3 and we would like task 3 to complete by the plotted completion time 

constraint. If we use a point estimate for the completion time of task 3, e.g., the mean of 

the completion time distributions, then it would appear that the best decision would be to 

assign task 3 to machine A whose point estimate of the completion time is smaller than 

on machine B. However, by using the full stochastic information we can see that although 

the point estimate of the completion time distribution for task 3 on machine A is smaller 

than on machine B, the tail of the distribution is much smaller on B than on A. That is, 

there is a much higher probability that task 3 will violate its completion time constraint on 

machine A, making machine B the statistically better choice. 

2.4.2 Stochastic Robus tness in a Static Environment 

2.^.2.1 Deriving a Robustness Metric 

In this sample environment, we are concerned with allocating a set of X1 tasks to M heteroge­

neous machines where we are concerned with system makespan as the performance metric. 

Below, we use the FePIA procedure to derive a robustness metric for this environment. 

Step 1: For this system, the performance feature of interest is system makespan, denoted i£. 

A resource allocation can be considered robust if the actual finishing time of each machine 

is less than or equal to a fixed constant /3 m a x , i.e., t/j < / 3 m a x . 

Step 2: Uncertainty in this system arises because the exact execution time for each task is 

unknown. We can model the execution time of each task i on each machine j as a random 

variable [104], denoted rja. 

Step 3: The finishing time of each machine in a stochastic environment is calculated as 

the sum of the execution time random variables for each task assigned to that machine [86]. 

Let nj_ be the count of the number of tasks assigned to machine j . The finishing time of 
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Figure 2: An example system where we are to assign task 3 to either machine A or machine 
B and we would like task 3 to complete prior to the plotted completion time constraint. 
Presented are the task completion time probability density functions for task 3 on both 
machine A and machine B. Using the point estimate, plotted as a dashed line in the figure, 
machine A appears to be the better choice. However, accounting for the complete stochastic 
information describing all possible completion times, machine B has a lower probability to 
violate the makespan constraint and is clearly the better choice. 
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machine j , referred to as a local performance characteristic z/jj, can be expressed as follows, 

i=l 

Thus, the system makespan can be expressed in terms of the local performance character­

istics as follows, 

i\> — max {4>\, • • • ,ipM} • (9) 

Because of its functional dependence on the execution time random variables, the system 

makespan is itself a random variable. That is, the uncertainty in task execution times can 

have a direct impact on the performance metric of this system. 

Step 4: Finally, we conduct an analysis to determine exactly how robust the system is 

under a specific resource allocation. The stochastic robustness metric, denoted 9_ is defined 

as the probability that the performance characteristic of the system is less than or equal 

to /3max> i-e., 0 = P[ip < /3max]- For a given resource allocation, the stochastic robustness 

metric measures the probability that the generated system performance will satisfy our 

robustness requirement. Clearly, unity is the most desirable stochastic robustness metric 

value, i.e., there is a zero probability that the system will violate the established robustness 

requirement. 

Assuming no inter-task data transfers exist among the tasks to be assigned, the random 

variables for the local performance characteristics ('(/>i, -02, • • • , V'M) a r e mutually indepen­

dent. As such, the stochastic robustness metric for a resource allocation can be found as 

the product of the probability that each local performance feature is less than or equal to 

Anax- Mathematically, this is given as, 

9=n (p fyj - / 3 m a x ] ) • ( io ) 

If the execution times t]ij for tasks assigned to machine j are mutually independent, then 

the summation of Equation 8 can be computed using an (rij — l)-fold convolution of the 

corresponding pmfs [63,86]. 
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2.4-2.2 Using Static Robustness 

Two way's of using the static stochastic robustness metric are apparent by inspecting the 

parameters of Equation 10. The two parameters pmax and 9 can alternately be either 

optimized or specified by the user. For example, the user could specify a f5max value as a 

constraint and employ a heuristic to attempt to maximize the robustness (0) of the resulting 

resource allocation. That is, in this case, the user is interested in a resource allocation 

that has the highest probability to complete all of the tasks by (3max. Maximizing the 

robustness of a resource allocation given a fixed /3max requires minimizing the ipj values, 

thus, maximizing the probability that each machine will finish before (3max. 

For some systems, it may be unclear how to select an appropriate j3max value. Thus, we 

can instead define a minimum acceptable 9 value, denoted ui, and at tempt to minimize pmax 

such that the probability that all tasks complete by (5max is at least u>. In this subsection, we 

consider the case where the minimum acceptable robustness value UJ is specified by the user 

and we want to minimize (3max such that 9 > ui. In [87], the period minimization routine 

(PMR) was introduced to iterate through the possible f3max values for a given resource 

allocation to find the smallest j3max value, provided by that allocation, such that 9 >ui. 

To demonstrate the use of the stochastic robustness metric in a resource allocation, we 

introduce a static stochastic environment where a set of machines periodically receive data 

sets to be processed by a collection of n tasks [87]. Each data set must be processed by all 

of the tasks before the next data set arrives. The execution times for each of the n tasks 

is assumed to be inherently data dependent, thus, the exact execution time for each task is 

unknown prior to its execution. However, we are provided a pmf describing the probabilities 

of task execution times for each machine. 

It is important to note that because this is a static environment, we are determining 

the allocation of tasks to machines in advance of deploying the system, i.e., before it will 

be required to process real data. Thus, by optimizing the allocation of machines to tasks in 

advance of processing real data, we can improve the frequency with which the system can 

process data sets. 

The stochastic robustness metric for this system is the probability that the actual 
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makespan of the system does not exceed f3max, i.e., 9 = P[tp < /3max]. The goal of re­

source allocation heuristics in this environment is to minimize j3max such that 9 is always 

greater than or equal to a given fixed probability UJ, i.e., 9 > u). Intuitively, by specifying 

a minimum robustness value (9), the user is specifying an acceptable probability for the 

makespan to be greater than f3max, i.e., 1 — 9. 

We can use this formulation of robustness along with the PMR procedure to design a 

two-phase greedy heuristic for resource allocation in this system [87]. The two-phase greedy 

heuristic first initializes the set of tasks to be executed to the entire set of tasks that are 

available. While there are still tasks to execute, the heuristic uses two phases to find the 

next task assignment. In the first phase, the heuristic determines a machine assignment for 

each unassigned task that minimizes (3max (ignoring all other unassigned tasks), where we 

use the PMR procedure to determine the smallest pmax for each possible allocation such 

that the robustness constraint (u) is still satisfied. In the second phase, the heuristic selects 

the task machine pair (found in the first phase) that provides the smallest overall (3max. 

The selected task is then allocated to its chosen machine and removed from the set of tasks 

to be assigned. The heuristic continues in this way until all tasks have been allocated. 

This subsection presented just two example uses of the static stochastic robustness 

metric, many more uses may be possible. The next section considers open problems in 

robust resource allocation and heterogeneous computing as a whole. 

2.5 Open Problems 

The open problems in robust resource allocation are directly related to the long term goals 

of heterogeneous computing research [56]. The principal goal in heterogeneous computing 

(HC) research is to develop software environments that automatically assign and execute 

applications, where applications are expressed in a machine independent, high-level lan­

guage. Developing such environments will facilitate the use of heterogeneous computing by 

(1) increasing software portability (i.e., programmers need not be concerned with the ma­

chine details of the heterogeneous environment) and (2) increasing the possibility of deriving 

better task machine assignments than users themselves derive using ad-hoc methods. 
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A four stage conceptual model for using a heterogeneous computing environment com­

prised of dedicated machines is shown in Figure 3. The rectangles in the figure indicate 

actions to be taken and ovals indicate the information produced by those actions. The model 

is "conceptual" because as yet no complete automatic implementation exists. The goal of 

the model is to describe the steps required for the automatic execution of applications in 

a heterogeneous computing environment. Each of the rectangles in Figure 3 represents an 

open research problem, where additional new techniques need to be developed. 

In stage 1, the system will determine parameters relevant to both the applications that 

are to be executed and the machines that are to execute them. The information gener­

ated by this stage includes a scheme for categorization of application needs and a similar 

scheme for machine capabilities. An application is assumed to be composed of one or more 

independent tasks. Some tasks can again be further decomposed into a collection of two 

or more communicating subtasks, where subtasks are assumed to have data dependencies, 

e.g., execution results may need to be communicated between subtasks. It is assumed that 

individual subtasks may be assigned to different machines for execution. 

The information generated in stage 1 is passed to stage 2, where task profiling and 

analytical benchmarking are performed. In task profiling, applications are partitioned into 

tasks and subtasks that have different computational needs, where the computational needs 

within a given task are consistent. Each of the tasks and subtasks is then profiled to quan­

titatively determine their computational requirements. Analytical benchmarking quantifies 

the performance of each machine in the suite with respect to executing each type of operation 

being considered. Techniques for performing task profiling and analytical benchmarking are 

needed. 

In stage 3, task profiling data and analytical benchmarking results are combined to 

create execution time estimates for each task and subtask on each machine in the suite. 

These results, along with initial loading and "status" of each machine in the suite, are used 

to generate machine assignments, based on a chosen optimization criteria, for each task 

and each subtask to be executed. Hierarchical scheduling techniques are of interest to allow 

the development of very large HC environments, e.g., grids [44]. In some environments, 
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the scale of the distributed system requires that task assignment be done in a distributed 

fashion, as opposed to a centralized resource allocation. 

Stage 4 corresponds to the execution of the applications in the heterogeneous comput­

ing environment. In general, information regarding task execution times may be estimated 

in advance (e.g., taken from the task profiling of stage 2) but exact information regard­

ing actual task execution times may not be known in advance, e.g., task execution times 

may be data dependent. In a dynamic environment, task completion times and machine 

loading/status information are monitored during execution and may be used to influence re­

source allocation decisions. For example, the information may be used to alter task machine 

assignments to reflect current user needs. Improved methods for determining and dissemi­

nating the current loading and status of machines in the HC suite must also be determined. 

Similarly, methods are required for monitoring current network load and status. 

To realize this automatic heterogeneous computing environment requires further re­

search in many areas. For example in stage 2, machine independent languages with user-

specified directives are needed to (1) allow compilation of applications into efficient code 

suitable for any machine in an HC system, (2) aid in decomposing applications into tasks 

and subtasks, and (3) facilitate the determination of task and subtask computational re­

quirements. 

Incorporating a model for multi-tasking within a machine is another area of ongoing 

HC research related to stage 2. Most modern operating systems support some level of 

multi-tasking for an individual processor, however, it is unclear how to incorporate this 

information into the resource allocation process. 

Another area of research related to stage 2 involves modeling uncertainty in perturba­

tion parameters for robust resource allocation. For example, in a stochastic environment, 

methods are needed for leveraging experiential data to model uncertainty in perturbation 

parameters [51]. This is important because prior work in stochastic resource allocation envi­

ronments has assumed that these models are available, i.e., in the form of probability mass 

functions. Further, once a pmf has been established for a perturbation parameter, methods 

are needed for updating the existing pmf with new experiential data. Updating pmfs with 
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the most current information is important in a dynamic environment because it enables 

the model to track changes in perturbation parameter distributions over time. In addition, 

pint's based on experiential data may provide only an approximation of the true distribution 

of perturbation parameter values and methods are needed for determining the impact of 

estimation error in pmfs on robustness calculations. That is, how to make resource alloca­

tion decisions robust with respect to estimation errors in perturbation parameter pmfs is 

an open problem. 

Many HC environments have inherent quality of service constraints that must be met 

during resource allocation. Determining such resource allocations is an active area of re­

search related to stage 3. For example, this chapter has presented several examples of HC 

environments with quality of service constraints and shown how to apply the robustness 

methodology to determine resource allocations that meet those constraints. In addition to 

these examples, other quality of service requirements might involve multiple robustness re­

quirements, e.g., minimum bandwidth requirements, guaranteed processor time for certain 

users, or real-time response capabilities. 

Current research in robust resource allocation, related to stage 3, is investigating com­

bining multiple types of perturbation parameters into a single robustness metric, e.g., com­

bining machine failure probabilities and task execution time uncertainty into a single metric. 

Combining multiple perturbation parameters into a single measure of robustness will extend 

the applicability of robust resource allocation into problem domains where these uncertain­

ties occur simultaneously. 

In a stochastic environment, resource allocation decisions made in stage 3 of our model 

may depend on combining perturbation parameter pmfs. For example, pmfs for perturba­

tion parameters can be used to produce an overall metric for the robustness of a resource 

allocation. In a dynamic environment, where resource allocation decisions must be made 

quickly, it is important to identify new fast methods for combining perturbation param­

eter distributions to produce a robustness value during resource allocation. If heuristics 

can quickly combine perturbation parameter distributions, then we can determine meth­

ods for using the stochastic robustness metric to guide resource allocation decisions during 
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execution. 

2.6 Summary 

Robust resource allocation is an important research area within heterogeneous parallel and 

distributed computing systems. The three robustness questions are fundamental to the 

understanding of robustness in any system: (1) What behavior makes the system robust? 

(2) What uncertainties must the system be robust against? (3) Quantitatively, exactly how 

robust is the system? These three core questions led to the development of the FePIA 

procedure for deriving a robustness metric. We have applied the FePIA procedure to derive 

robustness metrics in a variety of contexts, including a number of different perturbation 

parameters. In addition to demonstrating the derivation of a robustness metric, we have also 

demonstrated a number of ways to incorporate a robustness metric into resource allocation 

heuristics. 
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Figure 3: A model of required support for utilizing heterogeneous computing environ­
ments. Ovals indicate information and rectangles actions. The dashed lines represent the 
components needed to perform a dynamic resource allocation. 
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CHAPTER 3 

ROBUST RESOURCE ALLOCATION IN A CLUSTER 

BASED IMAGING SYSTEM 

3.1 Introduction 

Recently there has been an increased demand for imaging systems in support of high-speed 

color digital printing. Increases in print speeds and resolution have necessitated a significant 

increase in the performance of imaging systems in support of digital printing systems. This 

required increase in performance can be achieved through an effective parallel execution of 

image processing applications in a distributed computing environment. In this paper, we 

present a mathematical model of a distributed raster imaging system, where the output 

of the system must be presented to a raster based display at fixed regular time intervals, 

effectively establishing a hard deadline for the completion of each output image. This 

mathematical model is used as the basis for the design of a resource allocation heuristic 

applicable to this distributed computing environment. We extend the use of our model 

by deriving a robustness metric appropriate to this environment. This robustness metric is 

used within our presented resource allocation heuristic as an alternate optimization criterion 

for the heuristic. 

In this system, an input stream of data, described using a high level language known as 

a page description language (pdl), e.g., postscript or the portable document format (pdf), 

arrives at an imaging system for rasterization [47]. Rasterization of pdl images converts 

the images from a pdl description to a bitmap. Requests for rasterization of pdl images 

are processed by a dedicated cluster of workstations, where individual pdl image requests, 

referred to as sheetsides, are distributed to the heterogeneous cluster by a centralized image 

The research presented in this chapter was jointly conducted with my colleagues Vladimir Shestak and 

Prasana Sugavanum [95]. 
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dispatcher. The collection of sheetside requests together describe an image stream that is 

displayed on a raster based device, e.g., a printer or computer monitor. The frequency of 

requests and the magnitude of the data required to describe each request pose a considerable 

challenge for even modern workstations. Input streams in this environment routinely consist 

of over 100,000 images, where each image typically requires 10-100 megabytes of storage 

and successive image deadlines are on the order of a tenth of a second apart. 

For the studied environment, the images that comprise the input datastream are required 

to be displayed in order on the output device. That is, each pdl image has a unique 

number assigning its place in the overall stream of images and will be requested by the 

raster display in that order. In addition, the system has a finite amount of storage capacity 

(distributed evenly across the cluster of workstations) in which to store rasterized images. 

The bitmaps to be displayed are retrieved at a regular interval directly from the workstation 

output buffers by the display device. Bitmaps are displayed for a fixed time interval, 

thus, the display time of the first bitmap establishes a hard deadline for each subsequent 

bitmap. Missing a deadline for a required bitmap results in an interruption of service that 

is unacceptable. 

The studied rasterization system has some additional special requirements that compli­

cate the task of assigning the stream of incoming pdl images to available workstations. The 

computation required to convert a pdl image to a bitmap depends on the content of the pdl 

file. The system only has an estimate of the time required to rasterize each incoming pdl 

image on each type of processor and this estimate may differ substantially from the actual 

time required for rasterization. Many of the system design decisions are motivated by an 

attempt to mitigate the impact of this uncertainty. 

Second, the overall system has finite input and output storage capacity, thus, there is 

a limit on the number of pdl images that can be buffered in the system, both as input pdl 

images and as output bitmaps. Finally, pdl images continue to arrive for rasterization while 

others are being rasterized, i.e., the resource allocation must be produced dynamically [66]. 

The general problem of assigning tasks to workstations in a dynamic environment has been 

shown to be NP-complete (e.g., [32,42,50]). Consequently, the design of heuristics for 
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dynamic resource allocation is an active area of research [12,44,66,72,93,107]. 

The concept of robustness of a resource allocation was introduced in [3,89], and later 

efforts applied the concept to resource management [5,72,88,89,93,100]. The mathematical 

model presented in this work builds upon principles addressed in our earlier work on ro­

bustness. In analyzing this image processing system, we identified that rasterization times 

are a source of uncertainty in the system and that the arrival ordering of sheetsides is not 

known a priori. This uncertainty can impact the system by causing sheetsides to miss their 

deadline, resulting in an interruption of service that is unacceptable in this system. Clearly, 

the area of robust operation within this system exists where bitmaps are always available 

in advance of their deadlines. 

The primary contributions of this work are: (1) a mathematical model of a distributed 

raster image processing system, (2) the derivation of a robustness metric for a dynamic 

distributed computing system with hard deadlines for task completions, and (3) the design 

of the resource allocation heuristics suitable for this type of system. We clearly demonstrate 

the superiority of our heuristic technique (using two different optimization criteria) over a 

technique commonly used in this type of environment. 

The details of the system model that motivated this research are given in the next 

Section. This system model is used to design a mathematical model of rasterization com­

pletion times presented in Section 3.3. Section 3.4 describes a new resource allocation 

heuristic that incorporates this mathematical model for rasterization completion times. We 

present a discussion of the performance objective for this initial heuristic in Section 3.5. 

This performance metric motivated the derivation of the robustness metric in Section 3.6. 

The details of the simulation setup are described in Section 3.7 and the results of the heuris­

tics are presented in Section 3.8. A sampling of related work is in Section 3.9 and Section 

3.10 concludes the paper. 

3.2 System Model 

Figure 4 is a conceptual drawing of the system that motivated this research. In this envi­

ronment, two display devices combine to provide a high-speed digital continuous-form, color 
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Figure 4: A conceptual model of a high performance, cluster-based imaging system. 

duplex (i.e., two-sided) printer. Paper is physically moved through each press successively 

at high speed and cannot be immediately stopped. Consequently, if a bitmap is not readily 

available in the display device when it is needed, then a service interruption occurs because 

the printer must be stopped to accommodate the delay and the advanced paper removed 

from the output of the device. 

The imaging system is composed of a collection of workstations dedicated to image 

rasterization, controlled by a separate master workstation called the head node. Individual 

sheetsides are transferred to the head node, where they are dispatched by the centralized 

image dispatcher to one of the dedicated workstations for rasterization. Each sheetside 

completely describes an entire display image suitable for the output device, and is expressed 

in a logical page description language (pdl) that must be transformed into a bitmap suitable 

for the display device. 

Input sheetsides are queued for rasterization in the Head Node Input Queue (HNIQ). 

The centralized image dispatcher assigns sheetsides from the HNIQ to workstations for ras­

terization. After assignment, the head node places the sheetside in a queue for a transmitter 

that will then transmit the sheetside to its destination. The size of the transmitter queue 

is limited to only two sheetsides and the transmitter may only transfer one sheetside at a 

time. Further, once a sheetside has been placed into the transmitter queue, the destination 

workstation for the sheetside can no longer be modified. Each workstation has a finite 

capacity input buffer for storing sheetsides prior to their rasterization. Therefore, before 

the incoming sheetside can be placed in the transmit queue, the head node must ensure 
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that sufficient capacity exists in the input buffer of the receiving workstation to acquire the 

file. If there is sufficient input buffer capacity, then the sheetside may be queued up for 

transmission. 

It is assumed that M heterogeneous dedicated workstations are available to convert pdl 

sheetsides to bitmaps. Each workstation is interconnected to the head node via a 1 Gbit 

ethernet network and interconnected to the two output display devices using a 4Gbit fiber 

channel. The memory of each workstation is divided into two blocks, where one block is 

used to store sheetside pdl files (the input to rasterization) and the other block is used to 

store output bitmaps. The sheetsides in the input block are accessed in a FIFO fashion. 

When a workstation completes the rasterization of a sheetside, notification of the com­

pletion is sent to the head node, and the appropriate display device. When the display 

device is ready to display the bitmap, it retrieves the completed bitmap directly from the 

output buffer of the workstation where the rasterization was performed. Each display device 

has an input buffer with sufficient capacity to store two bitmaps, i.e., the bitmap currently 

being displayed and the next bitmap to be displayed. In this system, all bitmap files are 

assumed to be the same size, and the time required to display each bitmap is assumed 

constant. 

3.3 Model of Rasterization Completion Time 

The mathematical model of this system defines a method for calculating the deadline for 

a given sheetside, and a method for determining the estimated rasterization completion 

time for a sheetside on a given workstation in the system at a specific point in time. The 

completion of every sheetside is subject to a hard deadline. That is, to prevent a service 

interruption, each sheetside must complete rasterization, and be available for consumption 

in the input buffer of the appropriate display device by its given deadline. To calculate the 

deadline for a sheetside, let to. be the absolute wall-clock start time for both display devices. 

Starting at to, each display will require a new bitmap every tdispiai/ seconds, where tdiSpiay is 

the time required to display a bitmap on the device. Sheetsides are numbered starting with 

1. Incoming sheetsides are divided between the two displays such that the odd numbered 
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sheetsides go to display 1 and the even numbered sheetsides go to display 2 (see Figure 

4). For the kth actual sheetside of the job, denoted Sk_, the bitmap must be available for 

printing at time to + ^display (~k^— J, if ft is odd, and at time to + tdispiay ( - j f) , if ft is even 

(note: the division by 2 is because two sides are printed simultaneously). Let tf
z
r™

ap be the 

bitmap transfer time from any workstation to either display device. Then, the deadline for 

completing Sk, denoted td\Sk], is the latest wall-clock time for a workstation to produce the 

bitmap for Sk-

td[Sk] = { 
k + tdispiay ( \ I ) - thtr<ZP if sk is odd; 

*0 + tdispiay ( i f J - 4 r a T P i f Sk i s e v e n 

The value of td[Sk] will be used later to determine the availability of output buffer 

space on a workstation. For this purpose, the deadline equation needs to be expressed in 

terms of the ordering of sheetsides on a given workstation. Let BQ] be the itlx sheetside 

to have entered the input queue of workstation j for a given job. We define the following 

operator imm.(BQJ-) that evaluates to the actual sheetside number of sheetside BQj, i.e., 

Sk — num(BQj). Then Sk in Equation 11 can be replaced by num(BQ^). Note that Sk and 

BQj represent the same physical sheetdside and by using the num operator these notations 

can be used interchangeably. 

The estimated rasterization completion time for a sheetside is composed of the ear­

liest possible time that rasterization can begin and the estimated rasterization time. Let 

tstart\BQ3-\ be the earliest possible rasterization start time for sheetside BQ\, let ERT\BQj] 

be the estimated rasterization time for sheetside BQj, and let ^eomip[^Qf1 be the estimated 

rasterization completion time for a given sheetside BQ\ on workstation j . Then £comp[-BQ^] 

can be calculated as: 

U P [ 5 Q J ' 1 = tstart{BQi] + ERT[BQ{]. (12) 

The estimated rasterization time, ERT\BQ\}, for each sheetside is assumed known based 

on empirical data. There are many well-known techniques for gathering these execution time 

estimates from empirical data [46,54,61,91,108]. The start time for rasterization depends 
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on several factors: when the sheetside was transferred to the workstation, when the previous 

sheetside assigned to the workstation completed, and the availability of the output buffer of 

the workstation. The rasterization for a sheetside starts only if the output buffer has enough 

capacity to accomodate the resultant bitmap. During the rasterization process the amount 

of memory required to store a bitmap remains reserved in the output buffer. The memory 

held by a sheetside in the input buffer is released when rasterization for that sheetside is 

completed. 

To determine when a sheetside was (or will be) transferred to a workstation, we have to 

consider all other sheetsides in the HNIQ that are ahead of it. Let S^ be the kth sheetside 

to enter the HNIQ for a given job, where 6\_i is the sheetside ahead of S^ in the HNIQ. 

To evaluate the estimated departure time for Sk to workstation j , the input buffer capacity 

of workstation j must be determined. Space in the input buffer is limited by two factors: 

the maximum number of sheetsides (Q) allowed in the input buffer and the size in bytes of 

the input buffer. 

Recall that the estimated rasterization times are known to be only estimates of the 

actual rasterization times. The number of sheetsides that are allowed to queue up on any 

given workstation is limited to a relatively small, fixed number of pending sheetsides, to 

attempt to mitigate the impact of delays caused by under-estimating sheetside rasterization 

times. If the size of the pdl file describing sheetside Sk is less than or equal to the available 

input buffer capacity of workstation j , then, assuming there are fewer than Q sheetsides in 

the input buffer of workstation j , Sk can be immediately sent to j following the transmission 

of S/j-i out of the head node. Otherwise, Sk will be delayed at the head node (blocking Sz, 

z > k) for the amount of time required for a certain number of sheetsides previously assigned 

to workstation j to be rasterized, thus, creating buffer capacity sufficient to accommodate 

the pdl file of sheetside Sk or for the number of pending sheetsides on workstation j to be 

less than Q. 

To calculate the available input buffer capacity at workstation j , let /C be the sequence 

of sheetsides that are in the input buffer of workstation j when the head node transmitter 

is ready to send sheetside Sk- Note that this will include any sheetside currently being 
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if ( (size(5fc) < ACl) & (\K\<Q)) 
tlpt[Sk]=t*dept[Sk^]+tfan[Sk_l}; 

end if 
else 

BQ\ = first element of /C; 
min_size — ACjn; 
files = |/C|; 
while ((size(5fc) > min_size) OR (files 

min_size = min_size + size(BQl); 
BQj <— next element in /C; 
files = files - 1; 

end while 
* deptlS k] = tcomplBQj] 

end else 

>Q)) 

Figure 5: Pseudo-code for determining the earliest estimated departure time for sheetside 
Sk assigned to workstation j . 

rasterized by workstation j . Let the operator size(ffi) give the size in bytes of the pdl file 

for sheetside Si, and let CAP-n describe the total input buffer capacity of workstation j . 

Then, the available capacity of the input buffer for workstation j , denoted ACfn, is: 

ACi = CAP{n- ^ s i z e ( ^ ) . (13) 

Define t* +\Sk-i\ as the departure time of Sk-i for HNIQ to workstation x. Let tf/nn\Sk-i] 

be the time required to transfer the sheetside description file describing Sk-i, from HNIQ 

to workstation x. If size(S'fc) < AC\n and \K\ < Q, S^ can depart at time: 

tiptlSk] = tx
dept[Sk-i] + Cl[5fc-i] . (14) 

Otherwise, sheetside Sk cannot be transmitted until a sufficient number of sheetsides have 

been processed from the input buffer of workstation j , to ensure that these two conditions 

hold. If after processing some sheetside Sm £ /C these conditions hold, then t^e t[Sk] = 

tJcomp[Sm]- If k = 1, i.e., Sk is the first sheetside to be dispatched by the centralized image 

dispatcher, then Sk can depart immediately. Figure 5 presents a concise pseudo-code form 

for determining the earliest estimated departure time for a given sheetside. 
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Prior to rasterization, accurately determining when rasterization can begin for some 

sheetside BQ\, where Sk — num(BQl), must also account for possible delays incurred due 

to the limited capacity of the output buffer on each workstation. Consider workstation j 

with output buffer capacity CAP^lt. Because bitmaps are all assumed to be the same size, 

i.e., require the same number of bytes to store, the number of bitmaps that could be stored 

in the output buffer of any workstation is constant and known in advance. Assume that 

N_ bitmaps can be placed in the output buffer of a given workstation. Define the delay to 

begin processing sheetside BQ\, denoted AputlBQl], as the time that BQ\ must wait after 

arriving at the head of the input queue of workstation j until there is sufficient capacity in 

the output buffer of the workstation to store the output bitmap. To quantitatively determine 

Acmt[BQi\, there are three cases to consider. First, if fewer than N sheetsides have entered 

input queue of workstation j , then the output buffer of workstation j cannot be full, i.e., 

AputlBQl] = 0 . In the second case, assume that more than N sheetsides have entered 

the input queue of workstation j , but at the time when sheetside BQ{ completes there 

will be at least one free slot in the output buffer of workstation j , i.e., at least sheetside 

BQ\_N has left the output buffer, then Aout[i3Qj] = 0. In the final case, if the output 

buffer of workstation j is full when sheetside BQ1
i_l completes, then BQ\ must wait for an 

opening in the output buffer before its processing can begin. Therefore, sheetside BQ? will 

be delayed until the sheetside at the head of the output buffer of the workstation completes 

transmission to the raster device. The three delay cases for BQ{ to begin processing can 

be described succinctly as follows. 

Case 1: if i < N, Aout[BQ{] = 0 (15) 

Case 2: if td[BQi-N] + tfZ^ < tcompWUl A0Ut[BQ{\ = 0 (16) 

Case 3: otherwise,Aout[BQ{] = td[BQ{_N\ + tf™V ~ tcomp[BQU} (17) 

Using A0Ut[BQj], we can define the estimated rasterization start time of sheetside BQj. 

That is, tgtartiBQl] occxirs when two conditions are satisfied: BQ\ is present at the head 
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of the input queue on workstation j , and the output buffer of workstation j has sufficient 

capacity to accommodate the rasterization result. If these conditions are not satisfied, then 

tstart[BQl] is defined by one of two cases. First, if there is no opening in the output buffer 

of workstation j when BQ3
i_l completes and BQj is available at the head of the input buffer 

of workstation j , then: 

tstart{BQi\ = tcompiBQLJ + A o u t {BQi\. (18) 

In the second case, if there is an opening in the output buffer of workstation j when BQ]
i_l 

completes and BQ\ is not in the input buffer of workstation j , then the estimated start 

time of BQ\ is equal to the arrival time of BQj in the input buffer, i.e.: 

tstartlBQi] = tdeptlBQ{} + ttfan[BQ{}. (19) 

That is, as soon as BQ\ arrives in the input buffer of workstation j , it will be rasterized 

without further delay. Note that if there is no opening in the output buffer on workstation 

j and BQ\ is not in the input buffer of workstation j , then one of the previous two cases 

will occur some time in the future. The two equations corresponding to the two cases for 

the earliest rasterization start time can be combined to calculate the estimated start time 

for BQ\ as follows: 

tstart\BQ\\ = max{ ( t c o m v \BQ\_ x \ + A0Ut[BQj]) , (tdept{BQi] + ts
tfan[BQ{\)}. (20) 

Note that calculation of t^jn^BQ3^ is based on a recursion because it depends on tstart[BQJ
i] 

which in turn relies on icompt-SQJ-il- The recursion basis is formed with BQ\, whose 

tComp[BQ{] is found as: 

tcomP[BQ{] = ERT[BQ{] + tdept[BQ{] + ts
tfan[BQ{\. (21) 

That is, because BQ\ is the first sheetside to be rasterized on workstation j , there can be 
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no delays incurred from processing earlier sheetsides on this workstation. 

3.4 Minimum Rasterization Completion Time Heuristic 

The resource allocation heuristic described in this section assumes that the system is in a 

steady state of operation, i.e., some sheetsides have already been rasterized and the start 

time to for the display devices is known. In this situation, sheetsides are dispatched to the 

workstation that provides the minimum rasterization completion time as defined by our 

mathematical model of the system. That is, tcomv\S%\ is calculated for every workstation as 

if Su were assigned to it, and the workstation that gives the minimum value is selected. 

Because this is a dynamic environment, updates to the minimum rasterization comple­

tion time occur when rasterization completes for a given sheetside, i.e., the actual time 

required for rasterization becomes known. Immediately following a sheetside completion, a 

control message is sent to the head node informing it of the completion. The head node 

then updates the recurrence equation for calculating the completion time of any subsequent 

sheetsides with this new information, thus, the rasterization completion time estimates be­

come more accurate. As a result of these updates, the minimum rasterization completion 

time workstation for a given sheetside may change over time, i.e., the heuristic choice is 

time dependent. 

The Minimum Rasterization Completion Time heuristic (MRCT) begins by calculating 

the tJcomp[Sk] values for the sheetside at the head of the head node input queue (Sk) for all of 

the workstations in the system. Workstations are then ranked in ascending order according 

to their ti0m.p[Sk} values and placed together in a table in that order. 

After MRCT creates the table for ranking workstations for Sk- If there is room in the 

input buffer of the highest ranked workstation j , i.e., AC\ > size(Sfc) and |/C| < Q, and 

there is a free slot in the transmit queue, then Sk is assigned to the selected workstation 

and placed in the transmit queue. If any of the required conditions is not satisfied, then 

the conditions will be satisfied some time in the future. As each workstation completes a 

sheetside, the table for Sk is updated and reordered. 

Because the execution time estimates for rasterization are known to be estimates of 
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the actual execution times, the heuristic must account for cases where the estimated ras­

terization completion time for Sk is significantly under-estimated. For an under-estimated 

rasterization completion time to be significant, another workstation in the system must 

have a smaller or equivalent completion time for Sk compared to the actual rasterization 

completion time that has been under-estimated. The time at which the under-estimate for 

Sk becomes significant is referred to as the invalidation time for workstation j , denoted 

INVTj. 

To calculate INVTj, the head node uses the rasterization completion notifications that 

it receives from each workstation. Because of this feedback, the head node can calculate 

the earliest expected feedback time (EEFTj) f° r the completion of the sheetside currently 

being rasterized on workstation j , using the start time of the rasterization and the expected 

rasterization execution time. Using EEFTj and the estimated completion time for Sk on 

workstation (j) that is estimated to complete it soonest and the next best workstation (x), 

the invalidation time for a given workstation j (INVTj) can be calculated as follows: 

INVTj = EEFTj + {tx
comp[Sk} - 4 m P [ ^ l ) • (22) 

That is, if at time INVTj the current sheetside being rasterized on workstation j has 

not completed, it has exceeded its estimated completion time (EEFTj) by an amount 

(tx
comp[Sk\ — tcompi[Sk\) that now must make workstation x the best choice for Sk. 

Once the ordering of workstations has been established, the INVTj values can be cal­

culated for each of the workstations. If any of the INVTj values are in the past, then the 

corresponding workstations are "invalidated." The MRCT heuristic will not consider any 

workstations during allocation that are currently invalidated, i.e., while a workstation is 

marked as invalid no sheetsides will be assigned to it. When feedback regarding a sheetside 

completion on workstation j is received, the EEFTj, tiornp[Si\, and INVTj values for the 

associated workstation are recalculated and the invalidation status of the workstation is 

reset to valid. 
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3.5 Bitmap Lifetime 

In general, the primary goal of the system is to ensure that all incoming sheetsides are 

rasterized and available by their deadline for display. To assess whether a sheetside is 

available by its deadline, we denned a new measure known as "bitmap lifetime." Bitmap 

lifetime is measured as the time difference between when the rasterized image is made 

available in some workstation's output buffer and when the raster display consumes the 

image from the system, i.e., the amount of time that a bitmap lives in an output buffer of 

the system before it is displayed. 

When the bitmap lifetime is greater than ttl^
ap, the bitmap will arrive in time to be 

displayed without disrupting the system. If lifetime of a bitmap is not greater than tt
l
r^

ap, 

then the bitmap will not arrive in time to be displayed by its deadline, and the system is 

disrupted. To represent this in our simulations, we say that whenever a bitmap lifetime is 

not greater than ttl^
ap, it is given the value ttl™

ap and will cause a system disruption. 

The MRCT heuristic attempts to minimize the rasterization completion time of a sheet-

side Sk based on its most current estimates of the system state. Alternatively, we can view 

this minimization as an attempt to maximize the bitmap lifetime of Sk- Because the dead­

line for the completion of each sheetside is fixed relative to to, by minimizing the estimated 

completion time for each sheetside we are maximizing the difference between the deadline 

for a sheetside and its completion time. 

3.6 Quantifying Robustness 
3.6.1 Overall Robustness Metr ic 

To derive a robustness metric suitable for this environment, we follow the FePIA proce­

dure presented in [3]. In step 1 of the FePIA procedure, we describe quantitatively the 

requirement that makes the system robtist. Intuitively, the system is robust if no service 

interruptions occur. That is, the performance measure of interest in this system is the 

completion time of each sheetside. If the completion time for each sheetside is less than its 

deadline, then the system can be considered to be robust. 
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In step 2, we identify the uncertainty in system parameters that may impact our per­

formance feature of interest. In this system, there are two sources of uncertainty in system 

parameters that may cause our rasterization completion times to increase (possibly violat­

ing our robustness requirement). First, we have assumed throughout this work that our 

rasterization execution time estimates may differ substantially from actual rasterization ex­

ecution times. Second, the arrival order of sheetsides to the system is unknown. That is, 

we do not know in advance when complex sheetsides will arrive for rasterization. 

Step 3 of the FePIA procedure requires that we identify the impact of uncertainty 

in system parameters on our performance feature of interest. In this case, rasterization 

completion time estimates are created based on a sum of rasterization execution estimates 

that each may contain errors. Consequently, the uncertainty in rasterization execution times 

will directly impact rasterization completion time estimates. 

The last step is to conduct an analysis to determine the smallest collective change 

in assumed values for system uncertainty parameters (from step 2) that would cause the 

performance feature of step 1 to violate the robustness requirement. To determine the 

robustness of an overall resource allocation, we will first quantify the robustness of the 

completion time estimate for a single sheetside BQ\. Let Bj^ be the set of sheetsides pending 

on machine j before and including BQj. The rasterization execution time estimates for any 

of the sheetsides in B\ may be a source of uncertainty in calculating the rasterization 

completion time estimate for BQf. The completion time estimates for these sheetsides are 

coupled because they are executed sequentially on the same workstation. That is, if the 

rasterization time of the first sheetside is longer than expected, then this will impact the 

completion time calculations for each of the subsequent sheetsides on that workstation. 

From [3], we can use a geometric interpretation of our robustness requirement where the 

rasterization completion time estimate is a single point in an A/"-dimensional space. Each of 

the J\f dimensions in this space corresponds to a member of B\ and we wish to find the small­

est distance from our rasterization completion time estimate to the surface defined by our 

robustness requirement. This distance defines the smallest collective increase in assumed 

system parameters that would cause our robustness requirement to be violated (based on a 
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Euclidean distance). Because the completion time estimates for each sheetside are coupled, 

the true geometric interpretation of the robustness requirement must be expressed as an A/" 

dimensional surface. Without knowing the exact shape of this surface, we cannot calculate 

the shortest distance from our known point to the surface. Thus, to calculate this distance 

in our Robust MRCT heuristic (presented in Subsection 3.6.2, we have chosen to approxi­

mate this surface by a hyperplane. Using the equation for the distance from a point to a 

hyperplane [3] we can find the robustness of the completion time for sheetside BQ\ given a 

current assignment of sheetsides /i at time t, denoted r/Ji(BQJ
i,t) as: 

rJBQl,t) = td[BQ']-^BQ']. (23) 

To find the overall robustness of a resource allocation at time t, we identify the smallest 

robustness value for each workstation and then compare this smallest value across all work­

stations. We combine the r^ yBQ\,t\ values for all B\ at time t to form the robustness 

metric for workstation j at time t, denoted pji(t) as follows: 

d(t) = min Vi € B\ {r„ (B^t) } . (24) 

The smallest of the pjj,(t) values over all workstations defines the local robustness value for 

the system at time t. That is, 

/V(t) = m i n V j { ^ ( i ) } . (25) 

Because any service interruption is unacceptable in this environment, we have chosen to 

use the smallest local robustness value encountered throughout a simulation run as the 

overall robustness metric. Formally, we can express the overall robustness metric value for 

a particular resource allocation in this system as: 

plt = minVt{plt(t)} (26) 
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3.6.2 Robus t M R C T 

The robustness of each sheetside completion time estimate can be used during resource 

allocation to aid in selecting the best workstation to process a given sheetside. In the 

MRCT heuristic presented earlier, we can replace the rasterization completion estimate 

determined for each workstation with the robustness metric. 

If we compare the bitmap lifetime metric with robustness, then we can see that the 

numerator in the robustness equation (23) is actually an estimate of bitmap lifetime at 

time t. The fundamental difference between the two calculations is the denominator of the 

robustness equation that attempts to account for the multiple uncertainty parameters in the 

bitmap lifetime estimate. However, in this environment, because the number of sheetsides 

that can be buffered in the input queue of each workstation is limited, the magnitude of 

the denominator in the robustness equation is also limited. 

3.7 Simulation Setup 

To evaluate our heuristics, we created a simulation model of a real printing system using 

the OpNet simulation environment [76]. Each simulation run consisted of a rasterization 

job that included on the order of 100,000 sheetsides. The simulation was executed with a 

head node connected by a gigabit ethernet network to six workstations used to process the 

incoming job. The workstations are connected to the two raster display devices by a four 

gigabit fiber channel. It is assumed that the raster display device requires 0.11 seconds to 

display each output bitmap. 

Each sheetside rasterization time estimate is modeled by sampling one of two normal 

distributions. The first distribution was chosen to have a mean of 0.01 seconds and a 

standard deviation of 20% of the mean. The second distribution was chosen to have a 

mean of 0.85 seconds and a standard deviation of 20% of the mean. In our simulations, the 

ratio of 0.85 second sheetsides to 0.01 second sheetsides was chosen such that the average 

rasterization time was 0.22 seconds. This average rasterization time was chosen to match 

the processing time required to output a single bitmap from each display device. Using the 

chosen ratio of sheetsides, for every rasterization time sampled from the 0.85 second mean 
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distribution there are three sheetsides selected from the 0.01 second mean distribution. 

For comparison, we implemented a round-robin heuristic that was run on identical sim­

ulations to that of our MRCT heuristic and Robust MRCT heuristic. Round-robin tries 

to assign the same number of sheetsides to each workstation in the cluster by defining an 

arbitrary fixed ordering of the workstations and repeatedly assigning one sheetside to each 

workstation in the ordering as buffer sizes permit [101]. If there is insufficient capacity in the 

input buffer of any workstation j or there are greater than Q sheetsides in the input buffer 

already, then round-robin waits until both of these conditions are satisfied on workstation 

j so that the machine ordering is obeyed. Consequently, round-robin ignores the current 

workload on each of the workstations, instead relying on a strict "balanced" ordering of 

sheetside assignments to fairly assign the workload among machines. 

Although the simulation study did not at tempt to directly evaluate a startup strategy 

for starting the displays, the simulation required some startup to begin execution. For 

this simulation study, we chose a simplistic strategy where the sheetsides are allocated 

to workstations in a round-robin fashion, prior to starting the displays, until all of the 

workstation output buffers are full. At this point, the displays are turned on and the 

centralized image dispatcher begins to use one of the three studied heuristics to allocate the 

remaining sheetsides for the remainder of the simulation: Round Robin, MRCT, or Robust 

MRCT. 

3.8 Simulation Results 

Figure 6 presents the results of the simulation study in terms of bitmap lifetime. The x axis 

of each plot represents the simulation time in seconds and the y axis represents the bitmap 

lifetime in seconds. The plots show the bitmap lifetime values for each bitmap consumed by 

the system. As described in Section 3.5, if the lifetime of a bitmap is not greater than tt
l
r^l

ap, 

then the display device will have to stop to wait for the bitmap to become available—which 

is unacceptable in practice. In a large scale production printing environment, the paper 

where the raster device is displaying the images cannot be immediately stopped to wait for 

bitmaps to become available. Attempting to abruptly stop the paper may ruin the result, 
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e.g., by tearing the paper. 

In each of the plots of Figure 6, at the beginning of each simulation the bitmap lifetimes 

are high relative to the mean bitmap lifetime. These artificially high values occur before to, 

i.e., during this time the displays have not started to consume bitmaps. Thus, the initial 

bitmap lifetimes are equal to the time required to fill up the output buffers on all of the 

workstations prior to starting the display device. 

The simulation required that each heuristic rasterize the same number of sheetsides on 

the same set of workstations (four in this study), where the output was consumed by two 

displays. The round-robin heuristic is able to complete the entire run in only slightly more 

time than both of the MRCT heuristics, however, it did experience a significant number 

of service interruptions as a result of its allocation decisions. Recall that in a high-speed 

printing environment any interruption is considered catastrophic. In contrast, the MRCT 

heuristic based on bitmap lifetime is able to complete the entire run with no interruptions. 

For the MRCT heuristic, bitmap lifetimes were in the range of [1.64s, 16s] throughout the 

simulation. These results demonstrate the utility of the mathematical model to estimate 

rasterization completion times within the context of a resource allocation heuristic. 

Finally, the results of our Robust MRCT heuristic surpass that of the bitmap lifetime 

based MRCT heuristic, as can be seen by comparing the plots of the two heuristic results. 

That is, the mean bitmap lifetime for sheetsides in the Robust MRCT heuristic is higher 

than that of the MRCT heuristic. This implies, that the Robust MRCT heuristic is capa­

ble of tolerating more additional complex sheetsides without interrupting service than the 

bitmap lifetime based MRCT heuristic. Because the Robust MRCT heuristic uses the same 

rasterization completion time model as MRCT, the improvements of Robust MRCT can be 

attributed to the use of robustness in the heuristic in place of bitmap lifetime. 

3.9 Related Work 

According to the literature, the problem of workload distribution considered in our research 

falls into the category of dynamic resource allocation, assuming that multiple invocations 

of a resource allocation heuristic are overlapped in time with task arrivals. The general 
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(a) Round-Robin Result 
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(c) Robust MRCT result 

Figure 6: Sample plots of the results for the three heuristics (a) round-robin, (b) MRCT, 
and (c) Robust MRCT. 
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problem of dynamically allocating a class of independent tasks onto heterogeneous com­

puting systems was studied in [66]. The primary objective in [66] was to minimize system 

makespan, i.e., the total time required to complete all tasks sent for mapping. This ob­

jective is very different from the primary objective in our work: complete rasterization of 

each sheetside in a given job before its assigned deadline. Our MRCT heuristic at tempts 

to map each sheetside to its estimated minimum rasterization completion time worksta­

tion, which is analogous to the MCT heuristic of [66] attempting to map each task to its 

minimum completion time machine. However, the method of computing a completion time 

in [66] does not take into account the impacts of buffering tasks, communication links, etc. 

Furthermore, that study assumes no deviation of the actual time to compute a task from 

its estimated time to compute (ETC) value, i.e., the performance predicted by a resource 

allocation heuristic is assumed to match the actual performance. In our simulations, the 

heuristics are provided with estimated execution times that can differ from the "simulated 

actual" execution times. In our MRCT approach, rasterization completion time estimates 

for a sheetside are continuously updated with the most current information regarding the 

"simulated actual" sheetside completion times. 

In [69], an end-to-end quality of service system is described for a distributed real-time 

embedded system. The authors define quality of service within an embedded system loosely 

as, "how well an application performs its function." The authors advocate an approach 

where resource allocation decisions are dynamically adapted to changes in the environment 

based on the coordinated monitoring and control of constrained system resources. Our 

work is an application of this methodology within a specific real-time imaging system. In 

the terminology of [69], the resource management techniques of our research are appropri­

ate for use in the System Resource Manager role of the muli-layer resource management 

architecture. 

In [52], a number of resource allocation heuristics for a class of independent tasks were 

tested on a homogeneous cluster of eight DEC Alpha workstations running Digital Unix. 

The set of presented heuristics includes the following five: round-robin; round-robin with 

clustering; minimal adaptive; continual adaptive; and first-come first-served. None of these 

45 



heuristics built a prediction model. 

The robustness requirement in this work differs substantially from our earlier work on 

robustness in a dynamic environment [72]. In [72], the robustness requirement was expressed 

in terms of the overall resource allocation, i.e., expressed in terms of the entire allocation. 

In this work, each sheetside has an individual deadline, thus, the robustness metric must 

be expressed in terms of individual sheetsides. In [93], each dynamically arriving task is 

assigned its own deadline relative to its arrival time. However, that work assumes that 

stochastic information is available regarding the possible execution times of tasks. In this 

enviromnent, we are only provided with a deterministic estimate of task execution times 

and this stochastic information is unavailable. 

3.10 Conclusion 

The goal of this research was to rasterize dynamically arriving sheetsides (i.e., execute tasks) 

before an assigned deadline for each sheetside so that service interruptions can be avoided 

during execution. We presented a mathematical model suitable for determining an estimate 

of rasterization completion times in a dynamic environment where task execution times are 

uncertain. We used the mathematical model to design the MRCT resource management 

heuristics that clearly outperformed a commonly used approach, i.e., round robin. Further, 

this mathematical model was used as the basis for deriving a robustness metric suitable for 

this environment. We presented an extension of our MRCT heuristic, Robust MRCT, that 

successfully utilized this robustness metric during resource allocation to surpass the results 

of our bitmap lifetime based approach. 
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CHAPTER 4 

ROBUST DYNAMIC RESOURCE ALLOCATION 

HEURISTICS 

4.1 Introduction 

Heterogeneous parallel and distributed computing is defined as the coordinated use of com­

pute resources—each with different capabilities—to optimize certain system performance 

features. Heterogeneous systems may operate in an environment where system performance 

degrades due to unpredictable circumstances or inaccuracies in estimated system parame­

ters. The robustness of a computing system can be defined as the degree to which a system 

can function correctly in the presence of parameter values different from those assumed [3]. 

Determining an assignment and scheduling of tasks to machines in a heterogeneous com­

puting system (i.e., a mapping or resource allocation) that maximizes the robustness of a 

system performance feature against perturbations in system parameters is an important 

research problem in resource management. 

This research focuses on a dynamic heterogeneous mapping environment where task 

arrival times are not known a priori. A mapping environment is considered dynamic when 

tasks are mapped as they arrive, i.e., in an on-line fashion [66]. The general problem of 

optimally mapping tasks to machines in heterogeneous parallel and distributed computing 

environments has been shown in general to be NP-complete (e.g., [32,42,50]). Thus, the 

development of heuristic techniques to find a near-optimal solution for the mapping problem 

is an active area of research (e.g., [2,12,13,26,39,44,62,66,73,107]). 

The tasks considered in this research are assumed to be taken from a frequently executed 

predefined set, such as may exist in a military, lab or business computing environment. The 

The research presented in this chapter was jointly conducted with my colleagues Arun Jayaseelan, Ashish 

Mehta, and Bin Ye [70-72]. 
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estimated time to compute (ETC) values of each task on each machine are assumed to be 

known based on user supplied information, experiential data, task profiling and analytical 

benchmarking, or other techniques (e.g., [1,45,46,56,67,109]). Determination of ETC values 

is a separate research problem, and the assumption of such ETC information is a common 

practice in mapping research (e.g., [46,54,56,61,91,108]). 

For a given set of tasks, estimated makespan is defined as the completion time for the 

entire set of tasks based on ETC values. However, these ETC estimates may deviate from 

actual computation times; e.g., actual task computation times may depend on characteris­

tics of the input data to be processed. For this research, the actual makespan of a resource 

allocation is required to be robust against errors in estimated task execution times. Two 

variations to this basic problem are considered in this work. 

The first problem variation (robustness constrained) focuses on determining a dynamic 

mapping for a set of tasks that minimizes the estimated makespan (using the estimated 

ETC values) while still being able to tolerate a quantifiable amount of variation in the ETC 

values of the mapped tasks. Therefore, the goal of heuristics in this problem variation is to 

obtain a mapping that minimizes makespan while maintaining a certain level of robustness 

at each mapping event. 

In the second problem variation (makespan constrained), the goal of the heuristics is 

to maximize the robustness of a resource allocation while ensuring that the makespan for 

the resource allocation is below a specified limit. Maximizing robustness in this context is 

equivalent to maximizing the amount of tolerable variation that can occur in ETC times for 

mapped tasks while still ensuring that a makespan constraint can be met by the resource 

allocation. 

Dynamic mapping heuristics can be grouped into two categories: immediate mode and 

batch mode [66]. Immediate mode heuristics immediately map a task to some machine in the 

system for execution upon the task's arrival. In contrast, batch mode heuristics accumulate 

tasks until a specified condition is satisfied before mapping tasks—e.g., a certain number 

of tasks accumulate, or a specified amount of time elapses. When the specified condition is 

satisfied a mapping event occurs and the entire batch of tasks is considered for mapping. 
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A pseudo-batch mode can be defined where the batch of tasks considered for mapping is 

determined upon the arrival of a new task (i.e., a mapping event occurs) that consists of all 

tasks in the system that have not yet begun execution on some machine and are not next 

in line to begin execution, i.e., previously mapped but unexecuted tasks can be remapped. 

One of the areas where this work is directly applicable is the development of resource 

allocations in enterprise systems that support transactional workloads sensitive to response 

time constraints, e.g., time sensitive business processes [75]. Often, the service provider in 

these types of systems is contractually bound through a service level agreement to deliver on 

promised performance. The dynamic robustness metric can be used to measure a resource 

allocation's ability to deliver on a performance agreement. 

The contributions of this chapter include: 

1. a model for quantifying dynamic robustness, 

2. heuristics for solving the two resource management problem variations, 

3. simulation results for the proposed heuristics for each problem variation, and 

4. a mathematical bound on the performance feature for each of the resource manage­

ment problem variation. 

The remainder of the chapter is organized as follows. Section 4.2 formally states the 

investigated research problem. Section 4.3 describes the simulation setup. Heuristic solu­

tions to the robustness constrained problem variation of the presented problem including 

an upper bound on the attainable robustness value are presented and evaluated in Section 

4.4. Section 4.5 presents heuristics for the makespan constrained problem variation of the 

dynamic robustness problem along with their evaluation and a bound on the performance 

feature. Related work is considered in Section 4.6. 

4.-2 Problem Statement 

In this study, T independent tasks (i.e., there is no inter-task communication) arrive at 

a mapper dynamically, where the arrival times of the individual tasks are not known in 
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advance. Arriving tasks are each mapped to one machine in the set of M machines that 

comprise the heterogeneous computing system. Each machine is assumed to execute a single 

task at a time (i.e., no multitasking). In this environment, the robustness of a resource 

allocation must be determined at every mapping event—recall that a mapping event occurs 

when a new task arrives to the system. Let T(t) be the set of tasks either currently executing 

or pending execution on any machine at time t, i.e., T(t) does not include tasks that have 

already completed execution. Let Fj (t) be the predicted finishing time of machine j for a 

given resource allocation p, based on the given ETC values. Let MQj(t) denote the subset 

of T(t) previously mapped to machine j ' s queue and let scetj(t) denote the starting time 

of the currently executing task on machine j . Mathematically, given some machine j 

Fj(t) = scetjit) + Y, ETC(hJ)- (27) 
\/ieMQj{t) 

Let j3{t) denote the maximum of the finishing times Fj(t) for all machines at time t—i.e., 

the predicted makespan at time t. Mathematically, 

3(t) = max{F,-(i)}. (28) 
VjeM J 

The robustness metric for this work has been derived using the procedure defined in 

[3]. In our current study, given uncertainties in the ETC values, a resource allocation is 

considered robust if, at a mapping event, the actual makespan is no more than r seconds 

greater than the predicted makespan. Thus, given a resource allocation fi at time t, the 

robustness radius rp,{Fj(t)) of machine j can be quantitatively defined as the maximum 

collective error in the estimated task computation times that can occur where the actual 

makespan will be within r time units of the predicted makespan. Mathematically, building 

on a result in [3], 

r,M.LM. (29, 
-J\MQjlf)\ 

The robustness metric p^(t) for a given mapping [i is simply the minimum of the robustness 

50 



radii over all machines [3], Mathematically, 

Pv(t) = ™$IMm)Y (3°) 

With the robustness metric defined in this way, p^{t) corresponds to the collective deviation 

from assumed circumstances (relevant E T C values) that the resource allocation can tolerate 

and still ensure that system performance will be acceptable, i.e., the actual makespan will 

be within r time units of the predicted makespan. 

For the robustness constrained problem variation, the dynamic robustness metric is used 

as a constraint. Let a be the minimum acceptable robustness of a resource allocation at 

any mapping event; i.e., the constraint requires that the robustness metric at each mapping 

event be at least a. Thus, the goal of the heuristics in the robustness constrained problem 

variation is to dynamically map incoming tasks to machines such that the total makespan 

is minimized, while maintaining a robustness of at least a i.e., Pfi(t) > a for all mapping 

events. The larger a is, the more robust the resource allocation is. 

For the makespan constrained problem variation, let Te be the set of all mapping event 

times. The robustness value of the final mapping is defined as the smallest robustness metric 

that occurs at any mapping event time in Te. The primary objective of heuristics in the 

makespan constrained problem variation is to maximize the robustness value, i.e., 

maximize! min p p ( t e ) ) . (31) 

In addition to maximizing robustness, heuristics in this problem variation must complete 

all T incoming tasks within an overall makespan constraint (7). Therefore, the goal of 

heuristics in this problem variation is to dynamically map incoming tasks to machines 

such that the robustness value is maximized while completing all tasks within an overall 

makespan constraint (based on ETC values). 
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Jf.3 Simulation Setup 

The simulated environment consists of T = 1024 independent tasks and M = 8 machines 

for both the problem variations. This number of tasks and machines was chosen to present 

a significant mapping challenge for each heuristic and to make an exhaustive search for an 

optimal solution infeasible (however, the presented techniques can be applied to environ­

ments with different number of tasks and machines). As stated earlier, each task arrives 

dynamically and the arrival times are not known a priori. For the robustness constrained 

problem variation, 100 different ETC matrices were generated, 50 with high task hetero­

geneity and high machine heterogeneity (HIHI) and 50 with low task heterogeneity and low 

machine heterogeneity (LOLO) ( [26]). While for the makespan constrained problem varia­

tion, 200 different ETC matrices were generated, 100 each for HIHI, and LOLO. The larger 

number of ETC matrices (for the makespan constrained problem variation) was needed 

to produce statistically reliable results. The LOLO ETC matrices model an environment 

where different tasks have similar execution times on a machine and also, the machines have 

similar capabilities, e.g., a cluster of workstations employed to support transactional data 

processing. In contrast, the HIHI ETC matrices model an environment where the com­

putational requirements of tasks vary greatly and there is a set of machines with diverse 

capabilities, e.g., a computational grid comprising of SMPs, workstations, and supercom­

puters, supporting fast compilations of small programs as well as time-consuming complex 

simulations. 

All of the ETC matrices generated were inconsistent (i.e., machine A being faster than 

machine B for task 1 does not imply that machine A is faster than machine B for task 2) [26]. 

All ETC matrices were generated using the gamma distribution method presented in [4]. 

The arrival time of each incoming task was generated according to a Poisson distribution 

with a mean task inter-arrival rate of eight seconds. In order to accentuate the difference 

in performance of the pseudo-batch mode heuristics in the robustness constrained problem 

variation, the mean task inter-arrival rate was decreased to six seconds. 

In the gamma distribution method of [4], a mean task execution time and coefficient 

of variation (COV) are used to generate ETC matrices. In the robustness constrained 
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problem variation, the mean task execution time was set to 100 seconds while, for the 

makespan constrained problem variation, the mean task execution time was 120 seconds. 

For both problem variations, a COV value of 0.9 was used for HIHI and a value of 0.3 was 

used for LOLO. The value of r chosen for this study was 120 seconds. The performance of 

each heuristic, was studied across all simulation trials, i.e., a trial corresponds to a different 

ETC matrix. 

4-4 Robustness Constrained Heuristics 
4.4.1 Heurist ics Overview 

Five immediate mode and five pseudo-batch mode heuristics were studied for this variation 

of the problem. For the task under consideration, a feasible machine is defined to be a 

machine that will satisfy the robustness constraint if the considered task is assigned to it. 

This subset of machines is referred to as the feasible set of machines. 

4.4.2 Immediate M o d e Heuristics 

The following is a brief description of the immediate mode heuristics for this problem 

variation. Recall that in the immediate mode of heuristics, only the new incoming task 

is considered for mapping. Thus, the behavior of the heuristic is highly influenced by the 

order in which the tasks arrive. 

4-4-2-1 Feasible Robustness Minimum Execution Time (FRMET) 

FRMET is based on the MET concept in [26,66,110] where each incoming task is mapped 

to its minimum execution time machine regardless of the number of pending tasks on that 

machine. However, for each incoming task, FRMET first identifies the feasible set of ma­

chines. The incoming task is assigned to the machine in the feasible set of machines that 

provides the minimum execution time for the task. The procedure at each mapping event 

can be summarized as follows: 

i. for the new incoming task find the feasible set of machines. If the set is empty, exit 

with error ("constraint violation") 
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ii. from the above set, find the minimum execution time machine 

iii. assign the task to the machine 

iv. update the machine available time 

4.4-2.2 Feasible Robustness Minimum Completion Time (FRMCT) 

FRMCT is based on the MCT concept in [26,66,110] where each incoming task is mapped to 

its minimum completion time machine. However, for each incoming task, FRMCT first iden­

tifies the feasible set of machines for the incoming task. From the feasible set of machines, 

the incoming task is assigned to its minimum completion time machine. The procedure at 

each mapping event can be summarized as follows: 

i. for the new incoming task find the feasible set of machines. If the set is empty, exit 

with error ("constraint violation") 

ii. from the above set, find the minimum completion time machine 

iii. assign the task to the machine 

iv. update the machine available time 

44.2.3 Feasible Robustness K-Percent Best (FRKPB) 

FRKPB is based on the KPB concept in [58,66]. FRKPB tries to combine the aspects of 

both MET and MCT. FRKPB first finds the feasible set of machines for the newly arrived 

task. From this set, FRKPB identifies the fc-percent feasible machines that have the smallest 

execution time for the task. The task is then assigned to the machine in the set with the 

minimum completion time for the task. For a given a the value of k was varied between 0 

and 100, in steps of 12.5, for sample training data to determine the value that provided the 

minimum makespan. A value of k = 50 was found to give the best results. The procedure 

at each mapping event can be summarized as follows: 

i. for the new incoming task find the feasible set of machines. If the set is empty, exit 

with error ("constraint violation") 
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ii. from the above set, find the top m = 4 machines based on execution time 

iii. from the above find the minimum completion time machine 

iv. assign the task to the machine 

v. update the machine available time 

4-4-2.4 Feasible Robustness Switching (FRSW) 

FRSW is based on the SW concept in [58,66]. As applied in this research, FRSW combines 

aspects of both the FRMET and the FRMCT heuristics. A load balance ratio (LBR) is 

defined to be the ratio of the minimum number of tasks enqueued on any machine to 

the maximum number of tasks enqueued on any machine. FRSW then switches between 

FRMET and FRMCT based on the value of the load balance ratio. The heuristic starts 

by mapping tasks using FRMCT. When the ratio rises above a high set point, denoted 

Thigh FRSW switches to the FRMET heuristic. When the ratio falls below a low set point, 

denoted Tiow FRSW switches to the FRMCT heuristic. The values for the switching set 

points were determined experimentally using sample training data. The procedure at each 

mapping event can be summarized as follows: 

i. for the new incoming task find the feasible set of machines. If the set is empty, exit 

with error ("constraint violation") 

ii. calculate the load balance ratio (LBR) 

iii. initial mapping heuristic - FRMCT 

if LBR > Thigh map using FRMET 

else if LBR < Ttow map using FRMCT 

else if Tiow < LBR < T^igh map using previous mapping heuristic 

4-4-2-5 Maximum Robustness (MaxRobust) 

MaxRobust has been implemented for comparison only, trying to greedily maximize robust­

ness without considering makespan. MaxRobust calculates the robustness radius of each 
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machine for the newly arrived task, assigning the task to the machine with the maximum 

robustness radius. The procedure at each mapping event can be summarized as follows: 

i. for the new incoming task find the robustness radius for each machine, considering 

the previous assignments 

ii. assign task to maximum robustness radius machine 

iii. update the machine available time 

4.4.3 Pseudo-Batch Heurist ics 

The pseudo-batch mode heuristics implement two sub-heuristics, one to map the task as 

it arrives, and a second to remap pending tasks. For the pseudo-batch mode heuristics, 

the initial mapping is performed by the previously described FRMCT heuristic (except 

for the MRMR heuristic). The remapping heuristics each operate on a set of mappable 

tasks; a mappable task is defined as any task pending execution that is not next in line to 

begin execution. The following is a brief description of the pseudo-batch mode re-mapping 

heuristics. 

4-4-3-1 Feasible Robustness Minimum Completion Time-Minimum Completion Time 
(FMCTMCT) 

FMCTMCT uses a variant of Min-Min heuristic defined in [50]. For each mappable task, 

FMCTMCT finds the feasible set of machines, then from this set determines the machine 

that provides the minimum completion time for the task. From these task/machine pairs, 

the pair that gives the overall minimum completion time is selected and that task is mapped 

onto that machine. This procedure is repeated until all of the mappable tasks have been 

remapped. The procedure at each mapping event can be summarized as follows: 

i. map the new incoming task using FRMCT 

ii. if set of mappable tasks is not empty 

(a) for each task, find the set of feasible machines. If the set is empty for any task, 

exit with error ("constraint violation") 
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(b) for each task find the feasible machine that minimizes computation time (first 

Min), ignoring other mappable tasks 

(c) from the above task/machine pairs, find the pair that gives the minimum com­

pletion time (second Min) 

(d) assign the task to the machine and remove it from the set of mappable tasks 

(e) update the machine available time 

(f) repeat a-e until all tasks are remapped 

4-4-3.2 Feasible Robustness Maximum Robustness-Minimum Completion Time (FM-
RMCT) 

FMRMCT builds on concept of the Max-Min heuristic [50]. For each mappable task, FM-

RMCT first identifies the feasible set of machines, then from this set determines the machine 

that provides the minimum completion time. From these task/machine pairs, the pair that 

provides the maximum robustness radius is selected and the task is assigned to that ma­

chine. This procedure is repeated until all of the mappable tasks have been remapped. The 

procedure at each mapping event can be summarized as follows: 

i. map the new incoming task using FRMCT 

ii. if set of mappable tasks is not empty 

(a) for each task, find the set of feasible machines. If the set is empty for any task, 

exit with error ("constraint violation") 

(b) for each task find the feasible machine that minimizes computation time (Min), 

ignoring other mappable tasks 

(c) from the above task/machine pairs, find the pair that gives the maximum ro­

bustness radius (Max) 

(d) assign the task to the machine and remove it from the set of mappable tasks 

(e) update the machine available time 

(f) repeat a-e until all tasks are remapped 
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4-4-3-3 Feasible Minimum Completion Time-Maximum Robustness (FMCTMR) 

For each mappable task, FMCTMR first identifies the feasible set of machines, then from this 

set determines the machine with the maximum robustness radius. From these task/machine 

pairs, the pair that provides the minimum completion time is selected and the task is 

mapped to that machine. This procedure is repeated until all of the mappable tasks have 

been remapped. The procedure at each mapping event can be summarized as follows: 

i. map the new incoming task using FRMCT 

ii. if set of mappable tasks is not empty 

(a) for each task, find the set of feasible machines. If the set is empty for any task, 

exit with error ("constraint violation") 

(b) for each mappable task find the feasible machine that gives maximum robustness 

radius (Max), ignoring other mappable tasks 

(c) from the above task/machine pairs, find the pair that gives the minimum com­

pletion time (Min) 

(d) assign the task to the machine and remove it from the set of mappable tasks 

(e) update the machine available time 

(f) repeat a-e until all tasks are remapped 

4-4-3.4 Maximum Weighted Sum-Maximum Weighted Sum (MWMW) 

MWMW builds on a concept in [90]. It combines the Lagrangian heuristic technique [28,65] 

for deriving an objective function with the concept of Min-Min heuristic [50] here to simulta­

neously minimize makespan and maximize robustness. For each mappable task, the feasible 

set of machines is identified and the machine in this set that gives the maximum value of 

the objective function (defined below) is determined. From this collection of task/machine 

pairs, the pair that provides the maximum value of the objective function is selected and 

the corresponding assignment is made. This procedure is repeated until all of the mappable 

tasks have been remapped. 
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When considering assigning a task i to machine j , let F'^t) = Fj(t) + Y^ETC(i,j) for all 

tasks currently in the machine queue and the task currently under consideration. Let /3'(t) 

be maximum of the finishing times F-(i) at time t for all machines. Let r'{F'At)) be the 

robustness radius for machine j . Let maxrob(t) be the maximum of the robustness radii at 

time t. Given r/ , an experimentally determined constant using training data, the objective 

function for MWMW is defined as 

sM^\1-W^) + {1-^{^^W)J (32) 

The procedure at each mapping event can be summarized as follows: 

i. map the new incoming task using FRMCT 

ii. if set of mappable tasks is not empty 

(a) for each task, find the set of feasible machines. If the set is empty for any task, 

exit with error ("constraint violation") 

(b) for each task find the feasible machine that gives maximum value of the objective 

function (s(j, £)), ignoring other mappable tasks 

(c) from the above task/machine pairs, find the pair that gives the maximum value 

of s{j,t) 

(d) assign the task to the machine and remove it from the set of mappable tasks 

(e) update the machine available time 

(f) repeat a-e until all tasks are remapped 

4-4-3.5 Maximum Robustness-Maximum Robustness (MRMR) 

MRMR is provided here for comparison only as it optimizes robustness without considering 

makespan. When a task arrives it is initially mapped using the MaxRobust heuristic. Task 

remapping is performed by a variant of the Max-Max heuristic [50]. For each mappable 

task, the machine that provides the maximum robustness radius is determined. From 

these task/machine pairs, the pair that provides the maximum overall robustness radius is 
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selected and the task is mapped to that machine. This procedure is then repeated until all 

of the mappable tasks have been remapped. The procedure at each mapping event can be 

summarized as follows: 

i. map the new incoming task using MaxRobust 

ii. if set of mappable tasks is not empty 

(a) for each task find the machine that gives maximum robustness radius (first Max), 

ignoring other mappable tasks 

(b) from the above task/machine pairs, find the pair that gives the maximum value 

(second Max) 

(c) assign the task to the machine and remove it from the set of mappable task 

(d) update the machine available time 

(e) repeat a-d until all tasks are remapped 

4.4.4 Lower Bound 

A lower bound on makespan for the described system can be found by identifying the task 

whose arrival time plus minimum execution time on any machine is the greatest. More 

formally, given the entire set of tasks S where each task i has an arrival time of arv(i), the 

lower bound is given by 

LBi = max((arv(i) + min ETC(i,j)). (33) 
Vies \ VjeM / 

Unfortunately, this bound neglects any time that the task spends waiting to execute. This 

can be significant in highly loaded systems. Therefore, a second lower bound that considers 

the total computational load was also used. This bound is given by, 

T 

V {min ETC(i,j)} 

LB2 = ^ . (34) 
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The lower bound on makespan can then be given by the maximum of the two bounds, i.e., 

LB = max(LB1, LB2). (35) 

Clearly, this lower bound may not be achievable even by an optimal mapping, however, it is 

a tight lower bound because the case described by LB\ is possible if a system is very lightly 

loaded. 

4.4.5 Resul t s 

In Figures 7 through 10, the average makespan results (with 95% confidence interval bars) 

are plotted, along with a lower bound on makespan. Figures 7 and 8 present the makespan 

results for the immediate mode heuristics for HIHI and LOLO heterogeneity, respectively. 

While, Figures 9 and 10 present the makespan results for the pseudo-batch mode heuristics 

for HIHI and LOLO heterogeneity, respectively. Each of the heuristics was simulated using 

multiple values for the robustness constraint a. For each a the performance of the heuristics 

was observed for 50 HIHI and 50 LOLO heterogeneity trials. In Figures 7 through 10, the 

number of failed trials (out of 50) is indicated above the makespan results for each heuristic, 

i.e., the number of trials for which the heuristic was unable to successfully find a mapping 

for every task given the robustness constraint a. 

The average execution times for each heuristic over all mapping events (on a typical 

unloaded 3GHz Intel Pentium 4 desktop machine) in all 100 trials are shown in Table I 

and Table II for immediate and pseudo-batch mode, respectively. For the immediate mode 

heuristics, this is the average time for a heuristic to map an incoming task. For the pseudo-

batch mode heuristics, this is the average time for a heuristic to map an entire batch of 

tasks. 

For the immediate mode heuristics, FRMET resulted in the lowest makespan for HIHI, 

and FRMET and FRSW performed the best for LOLO. The immediate mode FRMET 

heuristic for both HIHI and LOLO heterogeneity performed better than anticipated based 

on prior studies including a minimum execution time (MET) heuristic in other environment 

(that do no involve robustness and had different arrival rates and ETC matrices). It should 
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Figure 7: Simulation results of makespan for different values of robustness constraint (a) 
for immediate mode heuristics for HIHI heterogeneity. 

be noted, however, that its performance in the HIHI case did result in multiple instances 

where it failed to find a mapping. 

It has been shown, in general, that the minimum execution time heuristic is not a good 

choice for minimizing makespan for both the static and dynamic environments [26,66], 

because it ignores machine loads and machine available times when making a mapping de­

cision. The establishment of a feasible set of machines by the FRMET heuristic indirectly 

balances the incoming task load across all of the machines. Also, because of the highly in­

consistent nature of the data sets coupled with the high mean execution time (100 seconds), 

FRMET is able to maintain a lower makespan compared to FRMCT. 

To illustrate this, consider the ETC matrix of Table 4.4.5. 

Mi 

M2 

M3 

*o 
10 
100 
180 

h 
150 
70 
100 

*2 

180 
170 
60 

h 
150 
100 
140 

*4 

100 
150 
300 

Table 1: Example ETC matrix. 

If the tasks arrive in the above order and the robustness constraint is a = 22, the 

mapping obtained by FRMET would correspond to that of table 4.4.5, 

whereas using FRMCT results in the mapping of Table 4.4.5. 
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Mx 

M2 

M3 

*o(10) 
*i(70) 
*2(60) 

<4(100) 
£3 (100) 

Table 2: Example FRMET mapping result. 

Mi 
M2 

M3 

to(10) 
ti(70) 
t2(60) 

t3(150) 
t4(150) 

Table 3: Example FRMCT mapping result. 

Thus, the makespan obtained using FRMET is 170 while that obtained using FRMCT is 

220. 

Figure 8: Simulation results of makespan for different values of robustness constraint (a) 
for immediate mode heuristics for LOLO heterogeneity. 

Table III shows the maximum and average number of mapping events (out of a possible 

1024) over successful trials (out of 50) for which the MET machine was not feasible. That is, 

the table values were calculated based on only the subset of the 50 trials for which FRMET 

could determine a mapping that met the constraint. For each of these trials, there were 

1024 mapping events. Thus, even though the vast majority of tasks are mapped to their 

MET machine, it is important to prevent those rare cases where doing so would make the 

mapping infeasible. 

The FRKPB heuristic performed better than FRMCT (in terms of makespan) for LOLO 
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Figure 9: Simulation results of makespan for different values of robustness constraint (a) 
for pseudo-batch mode heuristics for HIHI heterogeneity. 

heterogeneity and comparable to FRMCT for HIHI heterogeneity. FRKPB selects the k-

percent feasible machines that have the smallest execution time for the task and then assigns 

the task to the machine in the set with the minimum completion time for the task. Thus, 

rather then trying to map the task to its best completion time machine, it tries to avoid 

putting the current task onto the machine which might be more suitable for some task that 

is yet to arrive. This foresight about task heterogeneity is missing in FRMCT, which might 

assign the task to a poorly matched machine for an immediate marginal improvement in 

completion time. This might possibly deprive some subsequently arriving better matched 

tasks of that machine, and eventually leading to a larger makespan than FRKPB. 

The FRSW heuristic switches between FRMCT and FRMET depending on the LBR. 

In the HIHI case Tiow was set to 0.6 and Thigh was set to 0.9. With these values of the 

threshold, FRSW used FRMCT, on average, for 96% of the mapping events (out of total 

1024) to map the incoming task. In the LOLO case Tiow was set to 0.3 and Thigh was 

set to 0.6. For these values of the thresholds FRSW used FRMET, on average, for 80% 

of the mapping events (out of total 1024) to map the incoming task. As stated earlier 

FRMET performs much better than FRMCT for both the HIHI and LOLO cases. Thus 

the better performance of FRSW, for LOLO heterogeneity, can be attributed to the fact 
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Figure 10: Simulation results of makespan for different values of robustness constraint (a) 
for pseudo-batch mode heuristics for LOLO heterogeneity. 

that it maps a large number of tasks using FRMET as opposed to FRMCT. In contrast, 

for HIHI heterogeneity, a larger number of tasks are mapped using FRMCT and so the 

makespan is comparable to that of FRMCT. 

An interesting observation was that the FRMCT heuristic was able to mantain a ro­

bustness constraint of a = 27 for all 50 trials used in this study, but only for 48 trials when 

a = 26 (for HIHI heterogeneity). This could be attributed to the volatile nature of the 

greedy heuristics. The looser robustness constraint (a = 26) allowed for a paring of task 

to machine that was disallowed for a tighter robustness constraint (a = 27). That is, the 

early greedy selection proved to be a poor decision because it ultimately led to a mapping 

failure. 

For the HIHI case all the heuristics (except MaxRobust) failed for at least 4% (20% 

on average) of the trials (out of 50) for the robustness constraint achieved by MaxRobust 

heuristic. 

When considering the performance of the pseudo-batch mode heuristics (figures 9 and 

10) recall that they were evaluated across a different set of ETC matrices (mean task inter-

arrival rate of six seconds as opposed to eight seconds for ETC matrices for immediate 

mode). The MWMW heuristic used a value of r) = 0.6 for HIHI and t] = 0.3 for LOLO. 
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For the HIHI heterogeneity trials, FMCTMCT and FMRMCT performed comparably, 

in terms of makespan, though FMRMCT had a higher failure rate than FRMCTMCT for 

high values of a. The inclusion of the concept of feasible machines helped FMCTMCT 

and FMRMCT maintain a high level of robustness. The FMCTMR heuristic had a higher 

makespan as compared to FMRMCT. The reason being the first stage choice of machines for 

these two-stage greedy heuristics. The FMRMCT heuristic tries to minimize the completion 

time in the first stage and then selects the task/machine pair that maximizes the robustness 

radius, as opposed to maximizing the robustness radius in stage one and then selecting the 

task/machine pair that minimizes the completion time as used by FMCTMR. 

For the LOLO heterogeneity trials, FMCTMCT performed the best on average, while 

MWMW performed comparably (in terms of makespan). The motivation behind using 

MRMR was to greedily maximize robustness at every mapping event. As can be seen from 

figures 9 and 10, the MRMR heuristic was able to maintain a high level of robustness, 

however, it had the worst makespan among the heuristics studied. 

heuristics 

FRMET 

FRMCT 

FRKPB 

FRSW 

MaxRobust 

avg. exec, time (sec.) 

0.001 

0.0019 

0.0019 

0.0015 

0.0059 
Table 4: Average execution times, in seconds, of a mapping event for the proposed imme­
diate mode heuristics. 

heuristics 

FMCTMCT 

FMRMCT 

FMCTMR 

MWMW 
MRMR 

avg. exec, time (sec.) 

0.023 

0.028 

0.028 

0.0211 
0.0563 

Table 5: Average execution times, in seconds, of a mapping event for the proposed pseudo-
batch mode heuristics. 
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HIHI 

Robustness constraint(a) 

max 

avg 

22.00 

41 

14 

24.00 

54 

22 

25.00 

73 

30 

26.00 

79 

36 

27.00 

88 

42 

LOLO 

Robustness constraint(a) 

max 

avg 

18.00 

5 

0 

19.00 

10 

1 

20.00 

14 

3 

21.00 

26 

6 

21.21 

26 

6 

22.00 

56 

7 

Table 6: Maximum and average number of mapping events (over successful trials) for 
which the MET machine was not feasible for HIHI and LOLO heterogeneity. 

4'5 Makespan Constrained Heuristics 

4.5.1 Heurist ics Overview-

Five pseudo-batch mode heuristics were studied for this research. All of the heuristics used 

a common procedure to identify a set of feasible machines, where a machine is considered 

feasible if it can execute the task without violating the makespan constraint that is, for 

a task under consideration, a machine is considered feasible if that machine can satisfy 

the makespan constraint when the task is assigned to it. The subset of machines that are 

feasible for the task is referred to as the feasible set of machines. 

4.5.2 Heuristic Descript ions 

4-5.2.1 Minimum Completion Time-Minimum Completion Time (MinCT-
MinCT) 

The MinCT-MinCT heuristic is similar to the FMCTMCT heuristic studied in the robust­

ness constrained problem variation but with the new definition of the feasible machine. 

4-5.2.2 Maximum Robustness-Maximum Robustness (MaxR-MaxR) 

As was seen in the robustness constrained problem variation, the MRMR heuristic was able 

to maintain a high level of robustness, but had a higher makespan. The goal in this problem 

variation is to maximize the robustness at each mapping event, and hence a variation of 

MRMR heuristic is employed. However, unlike the MRMR heuristic, for each mappable 

task, MaxR-MaxR identifies the set of feasible machines. From each task's set of feasible 

machines, the machine that maximizes the robustness metric for the task is selected. If for 
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any task there are no feasible machines then the heuristic will fail. From these task/machine 

pairs, the pair that maximizes the robustness metric is selected and that task is mapped 

onto its chosen machine. This procedure is repeated until all of the mappable tasks have 

been mapped. The procedure at each mapping event can be summarized as follows: 

i. A task list is generated that includes all mappable tasks. 

ii. For each task in the task list, find the set of feasible machines. If the set is empty for 

any task, exit with error ("constraint violation"). 

iii. For each mappable task (ignoring other mappable tasks), find the feasible machine 

that maximizes the robustness radius. 

iv. From the above task/machine pairs select the pair that maximizes the robustness 

radius. 

v. Remove the task from the task list and map it onto the chosen machine. 

vi. Update the machine available time. 

vii. Repeat ii-vi until task list is empty. 

4-5.2.3 Maximum Robustness-Minimum Completion Time (MaxR-MinCT) 

MaxR-MinCT is similar to the FMRMCT heuristic studied in robustness constrained prob­

lem variation, but with new definition of the feasible machine. 

4-5.2.4 Minimum, Completion Time-Maximum Robustness (MinCT-MaxR) 

The MinCT-MinCT heuristic is similar to the FMCTMR heuristic studied in the robustness 

constrained problem variation but with the new definition of the feasible machine. 

4.5.2.5 MaxMaxMinMin (MxMxMnMn) 

This heuristic makes use of two sub-heuristics to obtain a mapping. It uses a combination of 

Min-Min with a robustness constraint (to minimize makespan while maintaining the current 

robustness value) and Max-Max (based on robustness) to maximize robustness while still 

finishing all T tasks within the overall makespan constraint. The mapping procedure begins 
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execution using the Min-Min heuristic with r as the robustness level to be maintained— 

r was chosen based on the upper bound discussion presented in Subsection 4.5.4. The 

procedure at each mapping event can be summarized as follows: 

i. A task list is generated that includes all mappable tasks, 

ii. Min-Min component 

(a) For each task in the task list, find the set of machines that satisfy the robustness 

level if the considered task is assigned to it. If the set is empty for any task, go 

to step iii. 

(b) From the above set of machines, for each mappable task (ignoring other mappable 

tasks), find the feasible machine that minimizes the completion time. 

(c) From the above task/machine pairs select the pair that minimizes completion 

time. 

(d) Remove the task from the task list and map it onto its chosen machine. 

(e) Update the machine available time. 

(f) Repeat a-e until task list is empty, exit. 

iii. Max-Max component 

(g) A task list is generated that includes all mappable tasks (any task mapped by 

Min-Min in this mapping event are remapped). 

(h) For each task in the task list, find the set of feasible machines. If the set is empty 

for any task, exit with error ("constraint violation") 

(i) For each mappable task (ignoring other mappable tasks), find the feasible ma­

chine that maximizes the robTistness metric. 

(j) From the above task/machine pairs select the pair that maximizes the robustness 

metric. 

(k) Remove the task from the task list and map it onto the chosen machine. 

(1) Update the machine available time. 
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(m) Repeat h-1 until task list is empty. 

iv. Update the robustness level to the new robustness value (the smallest robustness 

metric that has occurred). 

4.5.3 Fine Tuning (FT) 

A post-processing step, referred to as fine tuning (FT) was employed to improve the ro­

bustness value produced by a mapping. Fine tuning reorders tasks in the machine queues 

in ascending order of execution time on that machine (as done for a different problem envi­

ronment in [110]), i.e., smaller tasks are placed in the front of the queues. This procedure 

is performed at each mapping event after executing one of the above heuristics. This pro­

cedure will not directly impact the overall finishing times of the machines, but does help 

in getting the smaller tasks out of the machine queues faster and thus helps reduce the 

numerator in equation 29, which correspondingly improves the robustness metric. 

4.5.4 U p p e r B o u n d 

Let the provided constant r be the upper bound on robustness. To prove that robustness 

can be no higher than r is to show that at least one machine will have at least one task 

assigned to it during the course of the simulation. When the first task is assigned to some 

machine in the system the robustness radius of that machine becomes r . In equation 29, 

(3(t) — Fj(t) goes to zero for the makespan machine. Because the machine with the first 

and only task assigned to it is now the makespan defining machine, its robustness radius 

is now T. The robustness radius of this machine defines the robustness metric for the 

system because it is the smallest of the robustness radii at this mapping event. Because the 

robustness value is defined as the smallest robustness metric over all mapping events, that 

value can be no greater than r . 

4.5.5 R e s u l t s 

In Figures 11 and 12, the average robustness value (over all mapping events) for each 

heuristic is plotted with their 95% confidence intervals. The average execution time of each 

heuristic over all mapping events in all 200 trials is shown in Table IV. Recall that the 
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heuristics operate in a pseudo-batch mode, therefore, the times in Table IV are the average 

time for each heuristic to map an entire batch of tasks. 

I • No Fine Turing a Fine Tuning) 
3400 j - - - -

MinCT-MinCT MaxR-MaxR MaxR-MinCT MlnCT-MaxR MxMxMnMn 

Figure 11: Average robustness value (over all mapping events) for the HIHI case with 
7 = 14000. 

Figure 12: Average robustness value (over all mapping events) for the LOLO case with 
7 = 12500. 

As can be seen from Figures 11 and 12, MxMxMnMn with fine tuning gives the best 

robustness result for both the HIHI and LOLO cases (although there is one failure). The 

good performance of MxMxMnMn can be attributed to the fact that the maintainable 

robustness value is by definition monotonically decreasing, and its approach tries to mini­

mize makespan (using Min-Min) while maintaining the current robustness value. If that is 
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[5 No Fine Tuning B Fine Tunjnjl 

MinCT-MinCT MaxR-MaxR MaxR-MinCT MlnCT-MaxR MxMxMnMn 

Figure 13: Average makespan for the HIHI case with 7 = 14000. 

|fl No Fine Tuning n Fine Tuning] 

MinCT-MinCT MaxR-MaxR MaxR-MinCT MinCT-MaxR MxMxMnMn 

Figure 14: Average makespan for the LOLO case with 7 = 12500. 

not possible it instead maximizes robustness using Max-Max—attempting to minimize the 

degradation in the robustness value. 

Although, MinCT-MinCT is able to achieve one of the best makespan (Figures 13 and 

14) for both the HIHI and LOLO cases, its robustness value is not one of the best, which 

confirms the fact that just minimizing the finishing times of the machines does not guarantee 

a higher value of robustness. 

The high number of failed trials for MaxR-MaxR for both the HIHI and LOLO cases 

can be attributed to the fact that the heuristic tries to maximize the robustness metric at 

all mapping events, but in doing so neglects the corresponding increase in machine finishing 
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times. For example, consider the following two machine system with a current robustness 

value of 60 and machine queues with the task execution times as shown in Table 7. 

mi: 
m2: 

*i(10) 
£2(50) 

*3(10) 

Table 7: Task assignments per machine queue for a given example allocation. 

Assume that a new task £4 arrives with execution times of 10 and 50 time units on 

machines mi and m2, respectively. The MaxR-MaxR heuristic will map task £4 to machine 

m2 , which increases makespan because assigning £4 to machine mi would decrease the 

robustness metric. However, mapping £4 to mi would give a new robustness metric of 80.8 

that is still greater than the current robustness value of 60. 

For both the HIHI and LOLO cases, MinCT-MaxR performed relatively better than 

MaxR-MinCT in terms of robustness. This can be explained in terms of the first stage 

choice of machines for this pair of two-stage greedy heuristics. MinCT-MaxR places more 

emphasis on directly optimizing the primary objective of maximizing the robustness value 

as opposed to minimizing makespan. By minimizing completion time in the second stage, 

MinCT-MaxR is able to stay within the overall makespan constraint while still maximizing 

robustness. This is evident from zero failures that occurred for MinCT-MaxR in both the 

LOLO and HIHI cases. 

The process of fine tuning did improve the results of the heuristics, though not sub­

stantially (less than 12% for the best HIHI case and less than 5% for the best LOLO case). 

Further, it is possible that fine tuning when used with MxMxMnMn can cause some trials 

to fail to meet the makespan constraint. This occurs because fine tuning attempts to reduce 

the number of tasks in the machine queues by moving small tasks up in the queues. Thus, it 

is possible for the heuristic to maintain a higher robustness value over its execution, but at 

certain mapping events when the Min-Min component of the heuristic tries to map a task 

using a higher robustness constraint, it is likely that it will not choose the minimum comple­

tion time machine for the task because it is not feasible, which results in a higher finishing 

time. For example, consider a two machine system with machine queues as shown in Table 

8. Assume that a new task £4 arrives with execution times of 80 and 20 on machines mi 
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mi: 

TO2: 

<i(150) 

i2(30) <3(80) 

Table 8: Example resource allocation in a two machine system. 

and m2, respectively. If MxMxMnMn maps this task using the Min-Min component with 

a robustness level of r/y/2, the mapping would be: But if MxMxMnMn uses the Min-Min 

my. 

VH2: 

ti(150) 
*2(30) 

t4(80) 

*3(80) 

Table 9: Example MxMxMnMn allocation result using the Max-Max portion of the heuris­
tic. 

component with a robustness level of r / 2 , the mapping would be: 

my. 

m2: 
*i(150) 

*2(30) ts(80) t4(20) 

Table 10: Example MxMxMnMn allocation result using the Min-Min portion of the heuris­
tic. 

Finally, because MxMxMnMn uses a Max-Max heuristic to maximize robustness it is 

prone to the same issues discussed previously for the MaxR-MaxR heuristic. 

4-6 Related Work 

The research presented in this paper was designed using the four step FePIA procedure 

described in [3]. A number of papers in the literature have studied robustness in distributed 

systems (e.g., [17,34,80,86]). 

The research in [17] considers rescheduling of operations with release dates using multiple 

resources when disruptions prevent the use of a preplanned schedule. The overall strategy 

is to follow a preplanned schedule until a disruption occurs. After a disruption, part of the 

schedule is reconstructed to match up with the pre-planned schedule at some future time. 

Our work considers a slightly different environment where task arrivals are not known in 

advance. Consequently, in our work it was not possible to generate a preplanned schedule. 

The research in [34] considers a single machine scheduling environment where processing 

times of individual jobs are uncertain. Given the probabilistic information about processing 

times for each job, the authors in [34] determine a normal distribution that approximates 
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heuristic 

MinCT-MinCT 

MaxR-MinCT 

MinCT-MaxR 

MaxR-MaxR 

MxMxMnMn 

average execution time (sec.) 

0.023 

0.028 

0.028 

0.0563 

0.0457 

Table 11: Average execution times, in seconds, of a mapping event for the proposed 
heuristics. 

the flow time associated with a given schedule. The risk value for a schedule is calculated 

by using the approximate distribution of flow time (i.e., the sum of the completion times 

of all jobs). The robustness of a schedule is then given by one minus the risk of achieving 

sub-standard flow time performance. In our work, no such stochastic specification of the 

uncertainties is assumed. 

The study in [80] defines a robust schedule in terms of identifying a Partial Order 

Schedule (POS). A POS is defined as a set of solutions for the scheduling problem that 

can be compactly represented within a temporal graph. However, the study considers the 

Resource Constrained Project Scheduling Problem with minimum and maximum time lags, 

(RCPSP/max), as a reference, which is a different problem domain from the environment 

considered here. 

In [86], the robustness is derived using the same FePIA procedure used here. However the 

environment considered is static (off-line), as opposed to the dynamic (on-line) environment 

in this research. The robustness metric and heuristics employed in a dynamic environment 

are substantially different from those employed in [86], 

4-7 Conclusion 

This research presented a model for quantifying robustness in a dynamic environment. It 

also involved the characterization and modeling of two dynamic heterogeneous computing 

problem environments, and examined and compared various heuristic techniques for each of 

the two problem variations. This work also presented the bounds on the highest attainable 

value of the system performance feature for both the problem variations. 
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The robustness constrained problem variation presented five immediate and five pseudo-

batch mode heuristics. For the immediate mode heuristics, FRMET gave the lowest 

makespan for both the heterogeneity trials, but it also had a high number of failed tri­

als (for HIHI heterogeneity). The FRKPB heuristic had the lowest number of failed trials 

for HIHI heterogeneity. For the pseudo-batch mode, FMCTMCT performed the best in 

terms of both the makespan and failed number of trials. The immediate mode heuristics 

described here can be used when the individual guarantee for the submitted jobs is to 

be maintained (as there is no reordering of the submitted jobs), while the pseudo-batch 

heuristics can be used when the overall system performance is of importance. 

For the makespan constrained problem variation five pseudo-batch heuristics were de­

signed and evaluated. A process of fine tuning was also adapted to maximize the robustness 

level. Of the proposed heuristics, MxMxMnMn with fine tuning performed the best for the 

proposed simulation environment. 
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CHAPTER 5 

MEASURING THE ROBUSTNESS OF RESOURCE 

ALLOCATIONS IN A STOCHASTIC ENVIRONMENT 

5.1 Introduction and Problem Statement 

Often, parallel and distributed computing systems must operate in an environment replete 

with uncertainty while providing a required level of quality of service (QoS). This reality 

has inspired an increasing interest in robust design. The following are some examples. The 

Robust Network Infrastructures Group at the Computer Science and Artificial Intelligence 

Laboratory at MIT takes the position that "... a key challenge is to ensure that the network 

can be robust in the face of failures, time-varying load, and various errors." The research at 

the User-Centered Robust Mobile Computing Project at Stanford "concerns the hardening 

of the network and software infrastructure to make it highly robust." The Workshop on 

Large-Scale Engineering Networks: Robustness, Verifiability, and Convergence (2002) con­

cluded that the "Issues are ... being able to quantify and design for robustness ..." There 

are many other projects of similar nature at other schools and organizations. 

To provide insight into the target systems operating under uncertainty that must main­

tain a certain level of QoS, consider the following two examples. 

Fig. 15 schematically depicts part of a total ship computing environment in the Adaptive 

and Reflective Middleware Systems (ARMS) program supported by DARPA's Information 

Exploitation Office [10]. This part of the ARMS example represents a large class of systems 

that operate on periodically updated data sets, e.g., surveillance for homeland security, 

monitoring vital signs of medical patients. Typically, in such systems, sensors (e.g., radar, 

sonar, video camera) produce data sets with a constant period of A time units. Periodic 

The research presented in this chapter was jointly conducted with my colleague Vladimir Shestak [86,89]. 
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data updates imply that the total processing time for any given data set must not exceed A, 

i.e., A is an imposed timing QoS constraint for the system. Suppose that each input data 

set must be processed by a collection of N_ independent applications that can be executed 

in parallel on the available set of M heterogeneous compute nodes. Due to the changing 

physical world, the periodic data sets produced by the system sensors typically vary in such 

parameters as the number of observed objects present in the radar scan and signal-to-noise 

ratio. Variability in the data sets results in variability in the execution times of processing 

applications. Due to an inability to precisely predict application execution times, they can 

be considered uncertainty parameters in the system. 

A time units 

—J ^ 
data set i I data set 

compute nodes 

./ -| // 

machine 1 

a. \M 

Figure 15: Major functional units and data flow for a class of system that operates on 
periodically updated data sets. The a^-'s denote applications executing on machine j . 
Processing of each data set must be completed within A time units. 

An important task for a mapper (resource management system) is to distribute process­

ing applications across compute nodes such that a produced resource allocation is robust, 

i.e., it can guarantee (or has a high probability) that the imposed QoS constraint is satisfied 

despite uncertainties in application execution times. 

Another example of a distributed computing system that must accommodate uncertainty 

under tight timing QoS constraints is a web search engine. In the Google search engine [16], 

the user query response time is required to be at most 0.5 seconds—including network round 

trip communication latency. Query execution in this system consists of two major phases. 

The first phase produces an ordered list of document identifiers (docids). This list is a result 
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of merging the responses from multiple index servers, each searching over a particular subset 

(index shard) of the entire index database. The second phase uses the list of docids and 

computes the actual title and uniform resource locators of these documents, along with any 

query-specific document summary information. Document servers perform this job, each 

processing a certain part of the docids list. 

Consider the first phase of the system where a fork-join job [59] must be performed, as 

shown in Fig. 16 (similar analysis can be derived for phase 2). To speed up overall execution 

time, each query is split into multiple copies which are processed in parallel by a subset of 

the available index servers—chosen by the cluster manager such that they cover the entire 

index database. Each copy queues to a different index server, and each index server has 

its own input buffer where it serves requests in the order of their arrival (for simplicity 

of analysis, sequential query processing at each index server is considered in this study). 

The cluster manager must be able to accommodate uncertainty in query processing times 

because the exact time required to process a query is not known a priori. However, it is 

possible for the fork node to use the attributes of an incoming query to identify a subset of 

the past queries that have similar attributes and share a common distribution of execution 

times. These past execution times taken from the identified subset of queries can be used 

to create a probability density function (pdf) that describes the possible execution times 

for the incoming query. 

incoming query 
stream 

index servers 

query processing « 0.5 sec. 

docids list 

Figure 16: Fork (F) and Join (J) query processing in the first phase of Google Web search 
engine. 
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In both examples, simple load balancing algorithms may be sufficient when a distributed 

system is not over-subscribed, i.e., the number of queued tasks at each compute node is 

small. However, more sophisticated stochastic analysis is required for resource allocation as 

the system experiences workload surges or a loss of resources. 

Robust design for such systems involves determining a resource allocation that can ac­

count for uncertainty in a way that enables the system to provide a probabilistic guarantee 

that a given QoS is achieved. We define a stochastic methodology for quantiftably deter­

mining a resource allocation's ability to satisfy QoS constraints in the midst of uncertainty 

in system parameters. 

In this work, a new stochastic robustness metric is presented where the uncertainty 

in system parameters and its impact on system performance are modeled stochastically. 

This stochastic model is then used to derive a quantitative evaluation of the robustness of a 

given resource allocation, which is interpretable as the likelihood that the resource allocation 

will satisfy the expressed QoS constraints. The problem of deriving a resource allocation 

represents a large body of research in the field of parallel and distributed computing (e.g., 

[1,26,32,36,39,42,50,61,66,86,103]), In this chapter, we will analyze the utility of the 

proposed stochastic robustness metric by applying the metric to resource allocations in 

a simulated prototype of the distributed system described in the ARMS Example. The 

simulation results of the application are also compared with a deterministic approach for 

determining the robustness of a resource allocation. In Chapter 6, we will utilize the derived 

stochastic robustness metric to design iterative resource allocation heuristics that leverage 

the metric to perform resource allocation. 

The major contribution of this work is a mathematical model for a stochastic robustness 

metric that utilizes the available information to quantifiably determine a resource alloca­

tion's ability to satisfy expressed QoS constraints. In addition, the utility of the proposed 

metric is demonstrated by comparison with a common performance measure of resource 

allocations, as well as a comparison with a similar metric taken from the literature. We 

show that when the additional information required by the stochastic model is available, 

a better selection among resource allocations is possible. F\irther, this work presents two 
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alternative means for computing the metric that render the required computation practical 

in a number of common environments. 

The remainder of this chapter is organized in the following manner. Section 5.2 develops 

the general framework upon which the stochastic robustness metric is built. Specifically, 

in Subsection 5.2.1 a formal definition of stochastic robustness is given. Subsection 5.2.2 

discusses methods of computing the stochastic robustness metric given the independence of 

input parameters. A bootstrap method for estimating probabilities in distributed systems 

is analyzed in Subsection 5.2.3. A numerical study is included in Section 5.3 to further 

validate the utility of the proposed methodology. Section 5.4 presents this work in relation 

to the published work from the literature. Section 5.5 concludes the paper. 

5.2 Mathematical Model of Stochastic Robustness 
5.2.1 Definit ion of Stochastic Robus tness 

The derivation of a stochastic robustness metric for a given distributed computing environ­

ment requires a mathematical model that accounts for the existing uncertainty to reasonably 

predict the performance of the system. To emphasize the distinction between the system and 

its mathematical model, any new terminology related to the model will explicitly reference 

the model. 

In the ARMS example, let Sj be the sequence of rij applications assigned to compute 

node j in the order they are to be executed, i.e., Sj = [ay, aij, ....,anjj\. In the Google 

example, sequence Sj represents rij queries assigned to index server j . Let random variable 

Tij denote the execution time of each individual application (query) a^ on compute node 

(index server) j . In a variety of systems, the execution time T^ represents the time required 

for aij to process an individual data set on compute node j . The random variables Tij serve 

as the inputs to the mathematical model that characterize the uncertainty in execution time 

for each of the applications in the system. These random variables will be referred to as 

the uncertainty parameters of the mathematical model. The performance of the considered 

distributed system is measured according to an established performance metric and may be 

different on a per system basis [1,57]. In the mathematical model, the system performance 
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ip referred to as the performance characteristic, is an output of the mathematical model of 

the system. 

In the ARMS example, the evaluation of system performance is based on the makespan 

value (total time required for all applications to process a given data set) [26] achieved by a 

given resource allocation, i.e., a smaller makespan eqtiates to better performance. The func­

tional dependence between the uncertainty parameters and the performance characteristic 

in the model can be expressed mathematically as 

m nM 

*P = m&x{Y,Tii,...,J2TiM}- (36) 

In the Google example, the performance in phase 1 is measured for each individual 

query. Unlike the ARMS example where the evaluation of makespan values occurs at each 

A prior to the execution of any application, query performance evaluation in the Google 

example is performed while the system is busy processing queries. Assume that M copies of 

a query arrive at index servers at wall-clock time t, and rij is the number of queries pending 

execution or being executed by index server j at that time. Let ioj denote the wall-clock 

start time of execution for the query being processed by index server j at time t. In 

the corresponding mathematical model, the functional dependence between the uncertainty 

parameters and the performance characteristic at time t, denoted as ip{t), can be stated as 

n\ nM 

ij(t) = m a x { r u - (t - toi) + Y,TH' •••>TIM ~ (* ~ *OM) + J2TiM^ ( 3 7 ) 
i=2 i=2 

Due to its functional dependence on the uncertainty parameters Tij, the performance char­

acteristic %l) is itself a random variable. 

Let the QoS constraints be quantitatively described by the values pmin and (3max 

limiting the acceptable range of possible variation in the system performance [3], i.e., 

Pmin < ^ ^ ftmax- The stochastic robustness metric is the probability that the 

performance characteristic of the s y s t e m is confined to the interval [Pmim flmax]) 

i.e., P[/3min < if} < (3max]. For a given resource allocation, the stochastic robustness 

quantitatively measures the likelihood that the generated system performance will satisfy 
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the stipulated QoS constraints. Clearly, unity is the most desirable stochastic robustness 

metric value, i.e., there is zero probability that the system will violate the established QoS 

constraints. 

5.2.2 Independence Assumpt ion 

In the model of compute node j , the functional dependence between the set of local 

uncertainty parameters {Ty|l < i < rij} and the local performance characteristic i/'j 
ni 

can be stated in the ARMS example as ipj = JZ ^ j ! m t n e Google example as tpj = 
i=\ 

rij 

Tij - (t-toj) + 52Tij. 
i=2 

Independence of the local performance characteristics implies that the random variables 

ipi, ^2) •••) i>M are mutually independent. If such independence is established, the stochastic 

robustness in a distributed system can be expressed as the product of the probabilities of 

each compute node meeting the imposed QoS constraints. Mathematically, this is given as 

M 

P[/?min < V> < Pmax] = \[ P[Anin < Vj < Pmax] • (38) 

i = i 

Specifically in (38), j3max = A in the ARMS example and (3max <C 0.5 sec. in the Google 

example. In both examples j3min is set to zero because there is no minimum time constraint 

on execution. 

If the execution times T;j of applications mapped on a compute node j are mutually 

independent (e.g., this assumption is valid for non-multitasking execution mode commonly 

considered in the literature [26,36,59,66,103]), then f[(3min < 4> < Pmax] can be computed 

using an rij-fold convolution of probability density functions (pdfs) / r y (*i) [63] 

PPmax 

P[/3min < V>j < Pmax] = / [fTlj (<l) * - * hn .j (tnj)]dt. (39) 

An rij-fold convolution of (39) requires rij —I computations of the convolution integral [63]; 

thus, a direct numerical integration may become a formidable task when rij is a relatively 

large number. However, a high quality approximation to the nj-fold convolution can be 

obtained, at a low computational expense, by applying Fourier transforms. Thus, if $r 4 . (<*>) 
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denotes the characteristic function [78] of 2]j, then (39) can be computed as follows 

r Pretax 

P [ / W , < 'h < Pmax] = / %j{^Ttj M X ... X <&Tn. . (w)}. (40) 
" Pmin 

From this point on we assume that each pdf fTtj{U) is expressed as a discrete probabil­

ity mass function (pmf) utilizing £2 points—this is common in practical implementations. 

As such, the calculation can be performed in the frequency domain using a Fast Fourier 

Transform (FFT) that reduces the computational cost of finding the corresponding char­

acteristic functions ®Tir The F F T method is a discrete Fourier transform algorithm that 

reduces the number of computations needed for Q, points from 2J72 to 2S7 log f2 [78]. Thus, 

the computational complexity of determining the local performance characteristic can be 

drastically reduced, making the approach reasonable to compute. 

Table 12 shows the empirical computation times required to execute n-fold convolution 

with respect to two different levels of n and four different levels of f2. The table demon­

strates that, as the number of sequential convolution operations grows, the corresponding 

computation time increases at a reasonable rate. This result reflects a potential applicabil­

ity of the stochastic robustness metric for a broad spectrum of distributed systems where 

the imposed QoS constraints are either substantially longer than the total time needed for a 

mapper to execute a required number of convolutions, or a mapping is generated in off-line 

fashion, i.e., this time is not an issue. 

Table 12: Computation times (sec.) required to achieve different levels of n-fold convolu­
tion computed with the Fast Fourier Transform method. 

n in n-fold 
convolution 

10 
100 

number of points f2 in Tjj's 
pmf 

62 

0.0216 

1.2 

128 

0.0462 

1.79 

256 

0.0953 

3.57 

512 

0.2059 

7.28 

In dynamic systems, processing a continuous stream of tasks (e.g., in the Google ex­

ample) , the number of convolutions required at each mapping event is relatively low. For 

example, evaluating a potential allocation of a given task on a particular compute node 
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requires only one convolution of the execution time distribution for the task with the com­

pletion time distribution of the the task assigned last to the considered compute node. Once 

the assignment of a given task is finalized, its computed completion time distribution will 

be used for future assignment assessments. 

5.2.3 Boots trap Approximat ion 

This subsection presents an alternative method of evaluating P[/3mjn < V'j — @max\ known 

in the literature as the bootstrap method [104]. In contrast to convolution that is appli-

cable only when ipj = ^ Tij, the bootstrap procedure can be applied to various forms of 
i=l 

functional dependence between local uncertainty parameters Tij and the local performance 

characteristic ipj, making it very useful in practical implementations. For example, pro­

cessing of queries by a Web server is typically done in a parallel multitasking environment, 

and there exists a complex functional dependence [9] between the time required to process 

the query and a number of currently executing threads, amount of data cached, types of 

requests, etc. 

Suppose that for each Tij, there are k sample observations obtained as a result of past 

executions of application i on compute node j . As k grows, new sample observations are 

added, and the sample pmf f(k)Ti (*i)> constructed from these observations, converges in 

probability to / T ^ J ) , i.e., f(k)Tij(ti) -+ hijiU)- Let T*k)ij denote one draw from the 

sample distribution /(fc)r^(^i)- Let ipfk\j be a bootstrap replication whose computation 

is based on a known functional dependence between the set of drawn T*j and ipj, i.e., 

'iphy; = 9&(k)\i^ •••'T(k\n.j)- In the bootstrap simulation step [104], B_ bootstrap replications 

oiip%s- are computed: ip1u\j p •••, V'ffcw #• HF{B)ti>-{t) represents a sample cumulative density 

function (cdf) of ipj derived from these bootstrap replications, then the probability for the 

local characteristic function ipj can be approximated as 

W[Pmin 5= Ipj < Pmax] ~ F{B)ij>j{Pma,x) ~ F(B)4>j(Pmin)- (41) 

Equation (41) assumes the existence of a monotone normalizing transformation for the 

ipj distribution, and it is based on a proof of bootstrap percentile confidence interval [104]. 
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An exact normalizing transformation will rarely exist, but approximate normalizing trans­

formations may exist—the latter causes the probability that tjjj is in the interval [Pmin, Pmax] 

to be not exactly F{B)lp.((3max) - F[B)lp.((3min). 

The pseudocode for the bootstrap analysis is as follows: 

1. B <— number of bootstrap replications 

2. Vboot <— vector of length B 

3. Vsample <— vector of length rij 

4. for(6 in 1 : B) { 

5. for(i in 1 : rij) { 

6. Vsample <— sample with replacement /(&)!; (U) 

7- } 

8. Vboot <— g (Vsample) 

9. nullify Vsample 

10. } 

11. construct F(s)y,.(i) from Vboot 

12. Nsamples <— number of samples in Vboot G [(3min, (3max\ 

13. F[pmin < 4>j < Pmax] » Nsamples/S 

Table 13 presents the empirical data for an experiment conducted to illustrate the accu­

racy of the bootstrap approximation for the case where the functional dependence between 

Tij and tpj was a summation. Table 13 captures the percent error of the achieved ap­

proximations based on equation 41 with respect to the exact convolution results. In the 

experiment, f3min was set to 0, f3max was set to the mean value of t from F^B^., and all 

T^ distributions were modeled by randomly assigning a probability associated with each 

of CI data points with final normalizations. Each value in Table 13 represents the average 
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across 100 different trials. As the results show, (1) relative accuracy remains insensitive to 

the number of applications assigned to compute node j , (2) tighter approximations were 

obtained by increasing the number of bootstrap replications. If distributions of uncertainty 

parameters were closer to normal—which occurs often in practice—the resultant bootstrap 

approximations would be more precise as described in the proof of equation 41 [104]. There 

are other bootstrap approximations that may be more accurate, especially when the nature 

of the expected cdf of the performance metric is known. However, some bootstrap methods 

require a significant amount of computation and might be prohibitively expensive in certain 

distributed systems. 

Table 13: Percent error achieved with bootstrap approximations. 

nj 

10 
100 

1000 

number of bootstrap 
replications 

100 
5.63 
8.35 
6.52 

1000 
5.61 
3.23 
2.84 

10000 
2.16 
2.13 
1.04 

5.3 Example Application of Stochastic Robustness 

The experiments in this section seek to establish the utility of the stochastic robustness 

metric in distinguishing between resource allocations that perform similarly in terms of the 

deterministic robustness metric from [3] and a commonly used metric, such as makespan. 

The simulation of the system outlined in the ARMS example of Section 5.1 included 1000 

randomly generated resource allocations where 128 independent applications (N = 128) 

were allocated to eight machines (M = 8). Each of the application execution time distribu­

tions, specific to each application-machine pair, was modeled with a discrete pdf randomly 

constructed on the range [0,40] seconds, inclusive. To construct each discrete pdf, ten ran­

domly selected values spread across the range of the distribution were assigned probabilities 

sampled uniformly on the range (0,1). All application execution time distributions were 

subsequently normalized. Let meanav be the average value computed across the means of 

all constructed application execution time distributions. In the conducted simulation, the 
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QoS constraint A was set as follows A = 1.5 x N x meanav/M. Recall, for the ARMS ex­

ample A is a QoS constraint on system processing time that is used in the definition of the 

stochastic robustness metric given in equation (38). In Fig. 17, the "stochastic robustness" 

vertical axes correspond to the probability that the makespan will be < A. In this simula­

tion, the deterministic robustness metric and makespan were calculated using the mean of 

the execution time distribution for each application-machine pair in the given allocation. 

In Fig. 5.3, a comparison between the stochastic robustness metric and makespan is 

presented for 1000 randomly generated resource allocations. Fig. 5.3 demonstrates that, 

as can be expected, resource allocations that produce a very large makespan also tend 

to have a very small stochastic robustness metric value. However, as can also be seen in 

the figure, there can be a large discrepancy between the predicted performance as found 

using the expected makespan and the predicted performance using the stochastic robustness 

metric. For example, in the figure, compare the two resource allocations labeled A and B. 

If the comparison of these two resource allocations is made using the expected makespan, 

allocation A appears to be slightly superior to allocation B. However, resource allocation B 

presents a 99.8% probability of meeting the imposed QoS constraints, where as allocation A 

has only a 75% probability of meeting it. In this case, using only the expected makespan to 

compare the two resource allocations leads to a sizable increase in risk for a modest ( « 5%) 

improvement in the expected makespan. Any of the approximately 100 resource allocations 

above and to the right of allocation A, delineated by the dashed lines in the figure, will 

have a higher robustness value yet higher (worse) makespan value than A. 

In Fig. 5.3, a comparison of the stochastic robustness metric and the deterministic 

robustness metric is presented for 1000 randomly generated resource allocations. In Fig. 

5.3, compare the two resource allocations C and D. Based on using deterministic robustness 

measures as in [3], allocation D (with a deterministic measure of 6.13 sec.) is preferred over 

C (with a deterministic measure of 3.25 sec) . However, under the new stochastic model, 

allocation C (with a stochastic measure of 99.9%) is preferred over D (with a stochastic 

measure of 75%). Thus in this case, using only the deterministic robustness metric to select 

a resource allocation, D appears to be more robust than C. In contrast, the stochastic 
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robustness metric, which accounts for the distribution of makespan outcomes, shows that 

allocation C has a 99.9% probability of meeting the QoS constraint while allocation D has 

only a 75% probability of meeting the QoS constraint. 

2-100 
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\ 60 

§ 20 

3 

300 500 

makespan (sec.) 

700 

(a) width=5in 
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deterministic robustness (sec.) 
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Figure 17: A plot of stochastic robustness metric versus (a) makespan and (b) determinis­
tic robustness, for 1000 randomly generated resource allocations. The stochastic robustness 
metric values for allocations A and B exemplify the conflict between the stochastic robust­
ness metric and makespan. Similarly, the stochastic robustness metric values for allocations 
C and D exemplify the conflict with the deterministic robustness metric. 

Consider the sub-region identified in Fig. 5.3 with dotted lines originating from the 

point D, containing all of the points above and to the left of D. Each of the identified 

points in the sub-region lias a higher stochastic robustness metric value than D but a lower 

deterministic robustness metric value than D. 

The results also show a number of resource allocations that have a negative deterministic 

robustness value. For the data used in this simulation study, a negative value for the 

deterministic robustness correlates with a low stochastic robustness value. 
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It is shown in [3] that the deterministic robustness metric provides better information 

than just makespan. However, when execution time distributions are available, the stochas­

tic robustness metric is even better. 

Differences between the stochastic robustness metric and the deterministic robustness 

metric can be explained by the fact that the stochastic robustness metric uses information 

about the distribution of outcomes for the resource allocation to determine robustness. In 

contrast, the deterministic robustness metric uses a scalar estimate of each application's 

execution time on each machine to determine a resource allocation's robustness. In this 

study, there were a significant number of resource allocations where the stochastic robustness 

metric's use of the distribution of outcomes caused the metric to produce a robustness value 

for the allocation that failed to correlate well with the deterministic robustness metric. Thus, 

if the information needed for using the stochastic model is available, or can be obtained, 

then a better selection among resource allocations is possible. 

5.4 Related Work 

Prior work [3] in this area has referred to a resource allocation's tolerance to uncertainty 

as the robustness of that resource allocation. That work also defines a set of criteria for 

definitively claiming that a resource allocation is robust given a deterministic estimate for 

each considered system parameter. This determination of robustness begins by asking the 

claimant to define the behavior of the system that makes it robust, i.e., differentiate between 

acceptable performance and unacceptable performance of the system. Given this definition 

of acceptable performance, the uncertainty in system parameters must be identified along 

with its impact on the system's ability to deliver acceptable performance. 

In [3], a four-step procedure is defined for deriving a deterministic robustness metric. 

The authors proposed procedure was used here to motivate the derivation of a stochastic 

robustness metric. According to [3], the first step in defining a robustness metric requires 

quantitatively describing what makes the system robust. This description establishes the 

required QoS level that must be delivered to refer to the system as robust—essentially 

bounding the acceptable variation in system performance. A pair of values, /3mjn and 
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Pmax that bound each performance feature must be identified, quantitatively defining the 

tolerable variation in each of the performance features. 

In the second step, all modeled system and environmental parameters that may impact 

the system's ability to deliver acceptable QoS are identified. These parameters are referred 

to as the perturbation parameters of the system. In our new stochastic approach, each 

perturbation parameter, or uncertainty parameter, is modeled as a random variable fully 

described with a pmf. In this way, all possible values of the considered perturbation pa­

rameters, and their associated probabilities, are included in the calculation of the stochastic 

robustness metric. Our new approach differs from that in [3], where a single deterministic 

estimated value for each of the identified perturbation parameters is used. 

In the third step, the impact of the identified perturbation parameters on the system's 

performance features is defined. This requires identifying a function that maps a given 

vector of perturbation parameters to a value for the performance feature of the system. 

Similarly in our new stochastic environment, this involves defining the functional depen­

dence between the input random variables and the given performance feature. However, in 

our new model this involves more complex computations to combine random variables. 

Finally, in the fourth step, the previously identified relation is evaluated to quantify the 

robustness. As a measure of robustness, the authors in [3] use the "minimum robustness 

radius" that relies on a deterministic performance characteristic. Furthermore, it assumes 

there is no a priori information available about the relative likelihood or magnitude of 

change for each perturbation parameter. Thus, the minimum robustness radius is used 

in a deterministic worst-case analysis. In our new stochastic model, more information 

regarding the variation in the perturbation parameters is assumed known. Representing 

the uncertainty parameters of the system as stochastic variables enables the robustness 

metric in the stochastic model to account for all possible outcomes for the performance 

of the system. This added knowledge comes at a computational cost. The stochastic 

robustness metric requires more information and is far more complex to calculate than 

its deterministic counterpart. To handle the computational complexity, we considered an 

approximation scheme that greatly simplifies the required calculations. 
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In [25], the robustness of a resource allocation is denned in terms of the schedule's 

ability to tolerate an increase in application execution time without increasing the total 

execution time of the resource allocation. In this formulation, the authors define a resource 

allocation's robustness in terms of system slack thereby focusing their metric on a single 

very important uncertainty parameter, i.e., variations in application execution times. Our 

stochastic robustness metric is more generally applicable, allowing for any definition of QoS 

and able to incorporate any identified uncertainty parameters. 

Our presented methodology relies heavily on an ability to model the uncertainty param­

eters as stochastic variables. Several previous efforts have established a variety of techniques 

for modeling the stochastic behavior of application execution times [18,35,64]. In [18], three 

methods for obtaining probability distributions for task execution times are presented. The 

authors also present a means for combining stochastic task representations to determine 

task completion time distributions. Our work leverages this method of combining indepen­

dent task execution time distributions and extends it by defining a means for measuring 

the robustness of a resource allocation against an expressed set of QoS constraints under 

uncertainty. 

In [51], a statistical algorithm for predicting task execution times is presented. The 

authors present a methodology for defining data driven estimates of uncertainty parameters 

in a heterogeneous computing environment. In that work, the method is applied to the 

problem of generating an application execution time prediction given a set of observations 

of that application's execution times. Their model defines an application execution time 

random variable as the combination of two elements. The first element corresponds to a 

vector of known factors that have an impact on the execution time of the application and 

is considered to be a deterministic component of the execution time random variable. A 

second element accounts for all unmodeled factors that may impact the execution time of an 

application and represents the stochastic component of the execution time approximation. 

This method for predicting application execution times can be used to determine probability 

density functions describing the input random variables in our framework. 

In [36], the authors present a derivation of the makespan problem that relies on a 
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stochastic representation of task execution times. The authors also demonstrate that their 

presented stochastic approach to scheduling can significantly reduce the actual simulated 

system makespan as compared to some well known scheduling heuristics that are founded 

in a deterministic approach to modeling task execution times. The heuristics presented 

in that study were adapted to the stochastic model and used to minimize the expected 

system makespan given a stochastic model of task execution times. In our research, the 

emphasis is on quantitatively comparing one resource allocation to another by deriving a 

metric for the resource allocation's robustness, i.e., the probability to deliver on expressed 

QoS constraints. Thus, [36] is focused on designing a heuristic for the makespan problem 

in a stochastic environment, while this paper is focused on the evaluation of the robustness 

of a resource allocation given a modeled stochastic environment. 

5.5 Conclusion 

This paper presents a stochastic robustness metric suitable for evaluating the likelihood 

that a resource allocation will perform acceptably, i.e., satisfy identified QoS constraints, 

in an uncertain environment. In addition to the general statement of the stochastic robust­

ness metric, the derivation, mathematical description, and computational methods of the 

stochastic robustness metric were also presented. The stochastic robustness metric was then 

applied to an example class of systems operating with periodic data sets to demonstrate its 

utility in evaluating the robustness of a resource allocation. 

Given the raw volume of computation required to evaluate such a stochastic metric, a 

developed approximation scheme based on the bootstrap technique and the FFT method 

were tested to aid the practitioner in the actual application of the metric in different real 

world scenarios. A conducted simulation study demonstrates the accuracy of the bootstrap 

approximation and a baseline timing analysis for F F T . 

There are many ways that this research on stochastic robustness may be built upon in 

future work. The results of this work can be leveraged to develop methods for calculating 

the stochastic robustness metric given system parameters that include dependencies, as 

was discussed earlier. Another extension of this research, discussed in Chapter 5 involves 
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applying the stochastic robustness metric to resource allocations in a dynamic environment, 

where the mix of tasks to be executed is not known in advance and system feedback about 

completed tasks is available [93]. In the next chapter we will discuss applying this research 

to the design of resource allocation techniques that utilize the stochastic robustness metric 

to generate allocations that are more robust [85,87]. 
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CHAPTER 6 

ITERATIVE ALGORITHMS FOR STOCHASTICALLY 

ROBUST STATIC RESOURCE ALLOCATION IN 

PERIODIC SENSOR DRIVEN CLUSTERS 

6.1 Introduction 

This chapter investigates the problem of robust resource allocation for a large class of hetero­

geneous cluster (HC) systems operating on periodically updated data sets. The application 

domains include surveillance for homeland security, monitoring vital signs of medical pa­

tients, and automatic target recognition systems. We introduced this class of sensor driven 

system in the previous chapter. Recall that sensors (e.g., radar, sonar, video camera) in this 

environment produce data sets with a constant period of A time units. Due to the changing 

physical world, these periodic data sets typically vary in such parameters as the number 

of observed objects present in the radar scan and signal-to-noise ratio. Suppose that each 

input data set must be processed by a collection of N_ independent applications that can 

be executed in parallel in an HC system composed of M compute nodes. Unpredictable 

changes in input data sets result in variability in the execution times of data processing 

applications. This makes the problem of resource allocation (i.e., allocation of resources 

to applications) rather challenging, especially in situations where the system experiences 

workload surges or loss of hardware resources, as the total processing time for a specified 

percentage of data sets must not exceed A. Robust design for such systems involves de­

termining a resource allocation that can account for uncertainty in application execution 

times in a way that enables a probabilistic guarantee for a given percentage. Furthermore, 

in many systems of the considered class, it is highly desirable to minimize the period A 

The research presented in this chapter was jointly conducted with my colleague Vladimir Shestak [85, 

86,89]. 
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between subsequent data updates, e.g., more frequent radar scans are needed to identify an 

approaching target in military applications. 

The major contribution of this chapter is the design of resource allocation techniques 

based on iterative algorithms [73] to address the problem of minimizing A while providing 

a probabilistic guarantee that the time required for processing a complete data set is less 

than or equal to A. The resource allocation problem has been shown, in general, to be 

NP-complete in HC systems [32,44,106]. Thus, the development of heuristic techniques to 

find near-optimal solutions is an active area of research, e.g., [26,50,66,73,84]. The notion of 

stochastic robustness, considered as a constraint in the addressed optimization problem, was 

established in [86] based on a developed mathematical model of this class of HC systems. 

Three greedy approaches to the resource allocation problem were then designed presented 

in [87]. The latter study revealed that the adopted greedy techniques required a significant 

amount of time to produce a resource allocation while operating in the stochastic domain. 

As the research continued, more sophisticated iterative algorithms were created resulting in 

a significant performance improvement. These techniques are the focus of this chapter. 

The remainder of this work is organized in the following manner. Three iterative al­

gorithms designed for this environment are described in Section 6.3, each determining the 

lowest achievable value of period A for the required level of stochastic robustness. The 

parameters of the simulation setup are discussed in Section 6.5 along with the simulation 

results and evaluation of the heuristics' performance. A sampling of some related work is 

presented in Section 6.6. Section 6.7 concludes the paper. 

6.2 Simulation Setup 

This research assumes that an acceptable level of stochastic robustness is specified for the 

considered system. Thus, the performance goal for the mapper is to find resource allocations 

for a given set of N applications on M compute nodes that allows for the minimum period 

A between sequential data sets while maintaining a given level of stochastic robustness 9. 

To evaluate the performance of the iterative heuristics described in Section 6.3 for the 

considered class of HC systems operating on periodic data, the following approach was used 
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to simulate a cluster-based radar system. The execution time distributions for twenty eight 

different types of possible radar ray processing algorithms on eight ( M = 8) heterogeneous 

compute nodes were generated by combining experimental data and benchmark results. 

The experimental data, represented by two execution time sample pmfs, were obtained by 

conducting experiments on the Colorado MAI radar [53]. These sample pmfs contain times 

taken to process 500 radar rays of different complexity by the Pulse-Pair & Attenuation 

Correction algorithm [22] and by the Random Phase & Attenuation Correction algorithm 

[22], both executed in non-multitasking mode on the Sun Microsystems Sun Fire V20z 

workstation. To simulate the effect of executing these algorithms on different platforms, 

each sample pmf was scaled by a factor corresponding to the performance ratio of a Sun 

Microsystems Sun Fire V20z to each of eight selected compute nodes x based on the results of 

the fourteen floating point benchmarks from the CFP2000 suite [98]. Combining the results 

available from CFP2000 for fourteen different benchmarks on eight selected compute nodes 

and two sample pmfs provided a means for generating a 28 X 8 matrix where the yjth element 

corresponds to the execution time distribution of a possible ray processing algorithm of type 

y on compute node rrij. 

A set of 128 applications (N = 128) was formed for each of 50 simulation trials, where 

for each trial the type of each application was determined by randomly sampling integers 

in the range [1,28]. The 50 simulation trials provide good estimates of the mean and 95% 

confidence interval computed for every resource allocation algorithm. 

6.3 Iterative Resource Allocation Techniques 
6.3.1 Overview 

Three iterative algorithms were designed for the problem of finding a resource allocation 

with respect to the performance goal the previous section. Iterative algorithms are proba­

bilistic search techniques that have been widely used as a tool in optimization [73,84,105], 

artificial intelligence [49], and many other areas. The first two of the developed heuristics 

lrThe eight compute nodes selected to be modeled were: Altos R510, Dell PowerEdge 7150, Dell Pow-
erEdge 2800, Fujitsu PRIMEPOWER 650, HP Workstation i2000, HP ProLiant ML370 G4, Sun Fire V65x, 
and Sun Fire X4100. 
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operate with a set of resource allocations; whereas the third heuristic iteratively changes 

a single resource allocation. As opposed to greedy algorithms investigated in our previous 

work, where a single complete resource allocation was "constructed" [87], iterative heuristics 

progress toward a final solution through modified versions of complete resource allocations. 

In each iteration, the existing complete resource allocation (or resource allocations) is modi­

fied and evaluated. Such an iterative search process continues until an appropriate stopping 

criterion is reached. 

To establish a basis for the comparison of the developed iterative algorithms and demon­

strate the performance over time for each of them, a unique stopping criterion (USC) of 

150,000 evaluations of the produced resource allocations was used in this study. It is im­

portant to note that the evaluation in the considered stochastic domain is the most com­

putationally intensive part of any of the developed algorithms as it calls for M executions 

of (rij — l)-fold convolutions, followed by a recursive search for a minimum A level. The 

evaluation mechanism, referred to as the Period Minimization Routine, is described next. 

Period Minimization Routine: The PMR procedure determines the minimum pos­

sible value of A for a given resource allocation and a given level of stochastic robustness. As 

a first step, the results of (nj — l)-fold convolutions are obtained with the F F T or bootstrap 

methods for each compute node corresponding to the completion time (i.e., J ] Tjj) distribu-

tions expressed in a pmf form. The completion time pmf for compute node rrij is comprised 

of K£ impulses, where every impulse corresponds to a possible pair of time outcome tkj_ and 

associated probability pkj_ for k 6 [1, Kj\. 

As a second step, the minimum A is determined recursively as the smallest value among 

{tkj | 1 < k < Kj, 1 < j < M } , such that the specified level of stochastic robustness is less 
M Kj 

than or equal to Yl Yl (Pkj x l(*fcj ^ A))> where l(condition) is 1 if condition is true; 0 
3=1fc=l 

otherwise. T h e P M R procedure is s u m m a r i z e d in Pig. 18. 

After Q iterations, the PMR procedure reduces the uncertainty range by the factor 

w (0.5)", which is the fastest possible uncertainty reduction rate. This optimality becomes 

possible due to the fact that 9 is strictly increasing as the number of impulses considered 

for its computation grows. 
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lo = ti <- m.in{tkj | 1 <k < Kj,l <j < M}; 

hi = t2<- max{tfcj | 1 < fc < Kj, 1 < j < M}; 

P *- specified level of P[</> < A]; 

whi le 3 tkj <E (lo, hi) \ {l<k<Kj,l<j< M} 
M \Kj "1 

Pty' < A] <- I ] £ Pfcj x l(*fcj G [*x,*2]) 5 

switch P[V> < A] : 

= P : return; 

> P : hi i— t2; 

<P :lo<-t2] 

end of switch 

h *~ tkj | {1 < k < Kj, 1 < j < M} closest to lo + (hi - lo)/2; 

end of while 

A <— hi. 

Figure 18: The Period Minimization Routine procedure 

6.3.2 S teady Sta te Genet ic Algor i thm 

The adopted genetic algorithm (GA) implementation was motivated by the Genitor evolu­

tionary heuristic [105]. For the considered system, each chromosome in the GA models a 

complete resource allocation as a vector of numbers of length N where the i element of 

the vector identifies the compute node assignment for application dj. Order in which appli­

cations are placed in a chromosome does not play any role and can be considered arbitrary. 

The population size for the GA was fixed at 200 for each iteration. The population size was 

chosen experimentally by varying the population size between 100 and 250 in increments of 

50. For the samples tried, a value of 200 performed the best and was chosen for all trials. 

The initial members of the population were generated by applying the one-phase sorting 

greedy heuristic presented in [87], in which the application ordering used as an input was 

perturbed to produce different resource allocations. 

The GA used in this work was implemented as a steady state GA, i.e., for each iteration 

of the GA only a single pair of chromosomes will be selected for crossover. Selection for 

crossover was implemented as rank based selection where the population of chromosomes is 
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sorted according to their evaluation of A values. For the considered problem, the most fit 

chromosome corresponds to a resource allocation with the smallest A value supportable at 

the specified level of stochastic robustness 9. Each chromosome generated by crossover or 

mutation is inserted into the population according to its evaluation such that after insertion 

the population remains sorted according to each chromosome's evaluation. After insertion 

the population is truncated to the original population size. 

To reduce the number of duplicate chromosome evaluations, each chromosome that is 

trimmed from the active population is recorded in a list of known bad chromosomes referred 

to as the graveyard. Selecting the size of the graveyard reflected a trade-off between the 

time required to identify that a new chromosome was not present in the population and the 

time required to evaluate the new chromosome. 

To maintain the selective pressure of rank based selection an additional constraint was 

placed on the population where each chromosome in the population must be unique, i.e., 

clones are explicitly disallowed. If a chromosome produced by the crossover operation were 

to generate a clone of an individual already present in the population or the graveyard, then 

that clone would be discarded prior to its evaluation. 

The crossover operator was implemented using a two-point reduced surrogate proce­

dure [105] where the elements between the crossover points are exchanged between the two 

parents. In the reduced surrogate approach, crossover points are selected such that at least 

one element of the parent chromosomes differs between the selected crossover points. By 

selecting the crossover points in this way, each child chromosome produced by the crossover 

operation is guaranteed to not be a clone of its parents. However, the chromosome may 

still be a clone of another member of the population or the graveyard. Therefore, prior to 

evaluating each child chromosome the GA first attempts to locate the chromosome in either 

the population or the graveyard. Only if the chromosome is not present in either will it be 

evaluated and inserted into the population. 

The final step in a single iteration of the GA is mutation. For each iteration of the GA, 

the mutation operator is applied to every element of each chromosome in the population 

with probability referred to as the mutation rate. For the simulated environment, the best 
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results were achieved using a mutation rate of 0.01. For a given application, the mutation 

operator randomly selects a different compute node assignment from a subset of compute 

nodes. The subset includes compute nodes providing the smallest mean values of execution 

time distributions for a given application. The best results in the simulation studies were 

achieved when the size of this subset was set to three. 

The steady state GA procedure is summarized in Fig. 19. 

generate initial population; 
evaluate each chromosome; 
rank population based on A values; 
while USC not met 

select two chromosomes from the population; 
select crossover points; 
exchange compute node assignments 
between crossover points; 
ascertain if either offspring are unique; 
insert unique offspring into population; 
trim population down to population size 
move dead chromosomes to the graveyard; 
for each element of each chromosome in population 

generate a random number x in the range [0,1]; 
if x < mutation rate 

arbitrarily change the compute node assignment 
of the selected application; 

ascertain if the mutated chromosome is unique; 
insert unique offspring into population; 
trim population down to population size; 
move dead chromosomes to the graveyard; 

end of while 
output the best solution. 

Figure 19: The steady state Genetic Algorithm procedure 

6.3.3 Ant Colony Optimizat ion 

The ACQ heuristic belongs to a class of swarm optimization algorithms where low-level 

interactions between artificial (i.e., simulated) ants result in large scale optimizations by 

the larger ant colony. The technique was inspired by colonies of real ants that deposit a 

chemical substance (pheromone) when searching for food. This substance influences the 

behavior of individual ants. The greater the amount of pheromone on a particular path, 

the larger the probability that an ant will select that path. Artificial ants in ACO behave 
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in a similar manner by recording their chosen path in a global pheromone table. 

The ACO algorithm implemented here is a variation of the ACO algorithm design de­

scribed in [37]. During ACO execution, the N x M pheromone table is maintained and 

updated allowing the ants to share global information about good compute nodes for each 

application. Let r{aj,mj) represents the "goodness" of compute node rrij for application 

ctj. At a high level, the ACO heuristic works in the following way. A certain number of ants 

are released to find different complete mapping solutions. Based on the mapping produced 

by the individual ants, the pheromone table is updated. This procedure is repeated as long 

as the unique stopping criterion is not reached. The final mapping solution is determined 

by mapping each application to its highest pheromone value compute node. 

At a low level, each ant heuristically "constructs" its complete mapping, and its mapping 

decision process balances between the (a) performance metric and (b) pheromone table 

information. The ant procedure involves two phases. In Phase 1, for each unmapped 

application, the compute node, denoted as m^g^aj), is determined such that it would 

provide the minimum, /Ltmjn(aj), across M compute nodes with respect to the mean values 

of the completion time distributions, obtained as a mapping with a% added was evaluated 

for each of these compute nodes. The worth of application at, denoted as rj{aj), is then 

determined as a result of the following normalization 

ri(<H) = ^ J-T. (42) 

unmapped a^ 

In Phase 1, instead of operating with mean values, intermediate minimum levels of A could 

be computed through PMR calls. However due to the time consuming FFT executions, this 

approach significantly slows down each ant's production of a completed resource allocation 

which, in turn, limits the number of high level iterations. 

In Phase 2, an unmapped application is stochastically selected (procedure described 

later) and assigned to its rn&eSi(aj) compute node. The ant procedure is repeated until all 

applications are mapped. 

Let the fitness of ant s, denoted as f(s) £ (0,1), be determined as a rank of ant s in the 
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sorted order of ants in the current iteration. Sorting is based on the minimum possible level 

of A, obtained as a PMR call invoked at the end of each ant procedure. The pheromone 

table is updated at the end of each high level iteration, i.e., when all ants complete their 

paths. Specifically, if £ denotes a coefficient that represents pheromone evaporation, B^ 

denotes the set of application-compute node assignments comprising the path of ant s, and 

assuming Q_ ants released, each r(ai, rrij) is updated as follows 

T(ai,m,j) = p x r (a j ,mj) + Y^ —— x l(aj assigned to rrij in B„). (43) 

Initially, all values in the pheromone table were set to 1. 

Let a be the scalar that controls the balance between the pheromone value and worth. 

The probability that ant s selects application Oj to be mapped next is 

P[a, selected next] = " X ^ . m ^ . ) ) + ( l - a ) x , ( a . ) 
E aXT{ak,mbest(ak)) + (l-a)xri(ak) 

unmapped a^ 

The scalar a was determined experimentally by incrementing from 0 to 1 in 0.1 steps. In 

the simulation trials tested, the performance peak was detected with a equal to 0.5. The 

pheromone evaporation factor p of 0.01 was determined in a similar manner. The total 

number of ants for each iteration was set to 50; any further increase of this number in the 

experiments resulted in performance degradation. 

The ACO procedure is summarized in Fig. 20. 

6.3.4 Simulated Anneal ing 

The SA algorithm—also known in the literature as Monte Carlo annealing or probabilistic 

hill-climbing [73]—is based on an analogy taken from thermodynamics. In SA, a randomly 

generated solution, structured as the chromosome for GA and used as a startup point, is 

then iteratively modified and refined. Thus, SA in general, can be considered as an iterative 

technique that operates with one possible solution (i.e., resource allocation) at a time. 

To deviate from the current solution in an attempt to find a better one, SA repetitively 

performs the mutation operation in the same fashion as for GA. Once a new unique solution, 
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initialize pheromone table; 
while USC not met 

for each ant 
while there are unmapped applications 

select application Oj according 
map application aj to m(,esi(aj 
break ties arbitrarily; 

end of while; 
compute / ( s ) via P M R call; 

update pheromone table according 
end of while 
map each application a« to its mfce-si(c 

to (44); 
) compute 

to (43); 

ij) compute 

node; 

node. 

Figure 20: The Ant Colony Optimization procedure 

denoted as Snew is produced (SA relies on the same GA concept of uniqueness), a decision 

regarding the replacement of a previous solution with a new one has to be made. If the 

quality of a new solution, A(Snew), found after evaluation, is higher than the old solution, 

the new solution replaces the old one. Otherwise, SA uses a procedure that probabilistically 

allows poorer solutions to be accepted during the search process, which makes this algorithm 

different from other strict hill-climbing algorithms [73]. This probability is based on a system 

temperature, denoted as T, that decreases with each iteration. As the system temperature 

"cools down" it becomes more difficult for poorer solutions to be accepted. Specifically, in 

the latter case, the SA algorithm selects a sample from the range [0,1) according to the 

uniform distribution. If 

random[0,1) > \(snld)-\<.snew)^ 
(45) 

1 + exp1
 T > 

the new poorer resource allocation is accepted; otherwise, the old one is kept. As it follows 

from (45), the probability for a new solution of similar quality to be accepted is close to 

50%. In contrast, the probability of poor solutions to be rejected is rather high, especially 

when the system temperature becomes relatively small. 

After each mutation (described in the GA procedure) that successfully produces a new 

unique solution, the system temperature T is reduced to 90% of its current value. This 

percentage, defined as a cooling rate, was determined experimentally by varying the rate in 
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the range of (0,1] in 0.1 steps. The initial system temperature in (45) was set to the A of 

the chosen s tar tup resource allocation. 

The SA procedure is summarized in Fig. 21. 

Sold *— initial randomly generated resource allocation; 

T <- A(SM); 
while USC not met 

&n -result of successful mutation: 
if A(Snew) < A(Sold) 

else if (45) holds 

T <- 0.9 x T; 
end of while 

Figure 21: The Simulated Annealing procedure 

6.4 Lower Bound Calculation 

To evaluate the absolute performance attainable by the developed resource allocation tech­

niques, a lower bound (LB) on the minimum period A was derived based on the assumption 

that the specified level of the stochastic robustness metric is greater than or equal to 0.5, 

i.e., 9 > 0.5. A requirement to support levels of stochastic robustness metric below 0.5 ap­

pears to be quite unreasonable for practical implementations; therefore, it is not considered 

in this work. The process of calculating LB involves two major steps. In the first step, a 

"local" lower bound on A is established for a given mapping. In the second step, a unique 

LB is computed for all possible local lower bounds by solving a relaxed form of the Integer 

Linear Program formulated for the addressed resource allocation problem. 

Step 1: Consider a given complete resource allocation of N applications on M compute 

nodes. Let A denote the maximum of the means across all M completion time distributions, 
ni _ ni 

v(Yl Tij), i.e., A = m&x{/j,(Yl T^) | 1 < j < M}. As an assumed level of the stochastic 
1=1 (=1 

robustness metric is greater than or equal to 0.5, A represents the smallest possible time 

period for a given mapping. To observe this, recall that 

1. mean fi(a) is a "center of mass" of the distribution of random variable a, so that if £ is 
ni _ 

the compute node given by z = argmax{/x( ^ Tij) | 1 < j < M}, then P[i/>2 < A] = 0.5; 
i=l 
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2. W[il>z < A] > P[V> < A] because according to (38), W[ij> < A] is computed as an 

M-product of P[^j < A], where each of M terms is less than or equal to one. 

Step 2: An objective here is to determine LB, denoted as A/% such that A* < min{A | 

all possible mappings}. Relying on an important property of sum of means stating that 

Y2 n(Tij) = £ i ( £ Tij), the problem of finding A* can be formulated in the following Integer 
i=i i=i 

Linear Programming (ILP) form. 

Let a binary decision variable ff[», j ] \ {1 < i < N;l < j < M} be equal to one if 

application a^ is assigned to compute node j , and equal to zero if a^ is not assigned to 

compute node j . The ILP objective function can be stated as 

N 

minimize A* = m&x{S_]^(Tij) x x[i,j] | 1 < j < M}. 
j = i 

The objective function is subject to conditions (a) and (b): 

x[i, j] G {0,1} for l<i<N, 1 < j < M; (a) 

N 

E 4 i ] = l f o r l < j < M ; (b) 

In addition to condition (a) explained above, condition (b) forces each application to 

be mapped to the system. For small-scale problems, a global optimal solution can be 

found for the derived ILP form in a reasonable time (e.g., by applying Branch-and-Bound 

[20]). However, condition (b) makes the ILP form NP-complete [74], so that for large-scale 

problems an exact solution requires an unaffordable amount of time. Thus for latter cases, 

a Linear Programming (LP) relaxation can be applied to the ILP form which implies that 

condition (a) is relaxed to real numbers, i.e., x[i,j] € [0,1] | {1 < i < N, 1 < j < M}. A 

global optimal solution to the LP form can be found in polynomial time [48], and it will be 

a lower bound for the corresponding ILP global optimal solution A*. Also note that the 

derived LB is tighter for stochastic robustness levels closer to 0.5; this is a result of using 

mean values in the LB computation. 
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Figure 22: A comparison of the results obtained for the described heuristics where the 
minimum acceptable robustness value was set to be 0.90. The y-axis corresponds to a A 
value obtained by executing the corresponding heuristics. The A value for each heuristic 
corresponds to the average over 50 trials. 

6.5 Experimental Results 

The results of the simulation are presented in Fig. 22. Both the GA and SA heuristics 

were able to improve upon the results of the Basic heuristic of [87] by more than 7% with 

respect to the absolute performance and by 50% with respect to the derived LB. However, 

the ACO procedure was unable to improve upon the results of the Basic heuristic but was 

able to produce a result such that the confidence intervals of the ACO and Basic results 

were overlapping. 

For the 50 trials tested, LB produced a mean minimum supportable A of 469.8 msec. 

The mean of the minimum supportable A for the Basic heuristic over the same 50 trials 

was found to be 542.5 with a 95% confidence interval of 7.07. The ACO result had a 

mean minimum supportable A value of 553.7 with a 95% confidence interval of 6.2. The 

SA procedure for the same trials produced a mean A value of 505.6 with a 95% confidence 

interval of 5.9. The GA result was very similar to the SA result, producing a mean A value 

of 505.3 with a 95% confidence interval of 6.1. 

Both the GA and SA heuristics performed comparably in this simulation environment. 
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The success of the SA procedure and the near overlap of the SA and GA results may 

suggest that the local search procedure used in the mutation operator by both GA and 

SA is responsible for their marked improvement over Basic. Additional experiments were 

conducted with the GA without utilizing local search and although the simple GA was able 

to improve the average result of the Basic heuristic by almost 2% the improvement was not 

statistically significant. The GA with the local search mutation operator outperforms the 

GA without local search by a significant margin. 

The ACO heuristic was unable to improve upon the results of the Basic heuristic of our 

previous work. This might suggest that using only the mean values of the execution time 

distributions to construct solutions in Phase 1 is insufficient. Instead of operating with 

mean values, intermediate minimum levels of A could be computed through PMR calls to 

potentially improve the results of the ACO procedure. However, this would dramatically 

increase the number of evaluations required by ACO to produce the ants of each iteration. 

In so doing, the number of high-level iterations that the ACO procedure would be able 

to complete within the CSC would be significantly reduced. The major hindrance to the 

effectiveness of ACO in this environment is that it relies on the repetitive application of a 

constructive heuristic within an iteration to update the pheromone table. As shown in [87], 

constructive heuristics such as the Basic heuristic require a large number of time-consuming 

FFT executions, this approach significantly slows down each ant's production of a completed 

resource allocation, which, in turn, limits the number of high-level iterations that can be 

performed within the CSC. 

The success of combining a simple local search with GA and SA suggest that a more 

exhaustive local search may be worth investigating in future work. The more exhaustive 

local search might consider swapping applications between compute nodes in addition to 

moving applications between compute nodes. Although the introduction of swapping will 

increase the number of evaluations required to complete the local search procedure, it may 

lead to an improved result over the current coarse approach to local search. 
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6.6 Related Work 

Often, modern parallel and distributed computing systems must operate in an environment 

replete with uncertainty while providing a required level of QoS. This reality inspired an 

increasing interest in robust resource allocation design in such systems. The following are 

some examples. The Robust Network Infrastructures Group at the Computer Science and 

Artificial Intelligence Laboratory at MIT takes the position that "... a key challenge is to 

ensure that the network can be robust in the face of failures, time-varying load, and various 

errors." The research at the User-Centered Robust Mobile Computing Project at Stanford 

"concerns the hardening of the network and software infrastructure to make it highly ro­

bust." The Workshop on Large-Scale Engineering Networks: Robustness, Verifiability, and 

Convergence (2002) concluded that the "Issues are ... being able to quantify and design 

for robustness ..." There are many other projects of similar nature at other schools and 

organizations. 

In HC systems the concept of robust resource allocation called for a foundation of a 

universal robustness framework. The latter issue was first addressed in [3], where the 

authors proposed a four-step FePIA procedure to derive a robustness metric for a given 

resource allocation in a distributed system. The framework was based on deterministic 

estimates (e.g., current or nominal values) for each of the considered system parameters. 

As a measure of robustness, the "minimum robustness radius" was used that indicates the 

distance from the current (or nominal) state of the system in a multidimensional space 

of perturbation parameters to the nearest point where a QoS violation occurs. Assuming 

no a priori information available about the relative likelihood or magnitude of change for 

each perturbation parameter, the minimum robustness radius implies a deterministic worst-

case analysis. In our stochastic model, more information regarding the variation in the 

perturbation parameters is assumed known. Representing the uncertainty parameters of 

the system as stochastic variables enables the robustness metric in the stochastic model to 

account for all possible outcomes for the performance of the system. An example comparison 

analysis between the stochastic robustness metric and deterministic one is given in [86]. The 

stochastic robustness metric requires more information and, in general, is far more complex 
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to calculate than its deterministic counterpart. 

In [25], the robustness of a resource allocation is defined in terms of the schedule's 

ability to tolerate an increase in application execution time without increasing the total 

execution time of the resource allocation. A resource allocation's robustness implies system 

slack thereby the authors are focusing their metric on a single very important uncertainty 

parameter, i.e., variations in application execution times. Our metric is more generally ap­

plicable, allowing for any definition of QoS and able to incorporate any identified uncertainty 

parameters. 

Our methodology relies heavily on an ability to model the uncertainty parameters as 

stochastic variables. Several previous efforts have established a variety of techniques for 

modeling the stochastic behavior of application execution times [18,35,64]. In [18], three 

methods for obtaining probability distributions for task execution times are presented. The 

authors also present a means for combining stochastic task representations to determine task 

completion time distributions. Our work leverages this method of combining independent 

task execution time distributions and extends it by defining a means for measuring the 

robustness of a resource allocation against an expressed set of QoS constraints. 

In [51], a procedure for predicting task execution times is presented. The authors in­

troduce a methodology for defining data driven estimates in a heterogeneous computing 

environment based on nonparametric inference. The proposed method is applied to the 

problem of generating an application execution time prediction given a set of observations 

of that application's past execution times on different compute nodes. The model defines an 

application execution time random variable as the combination of two elements. The first 

element corresponds to a vector of known factors that have an impact on the execution time 

of the application and is considered to be a mean of the execution time random variable. A 

second element accounts for all unmodeled factors that may impact the execution time of 

an application and is used to compute a sample variance. Potentially, this method can be 

extended to determine probability density functions describing the input random variables 

in our framework. 

The deterministic robustness metric established for distributed systems in [3] was used 
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in multiple heuristics approaches presented in [86]. Two variations of robust mapping of 

independent tasks to machines were studied in that research. In the fixed machine suite 

variation, six static heuristics were presented that maximize the robustness of a mapping 

against aggregate errors in the execution time estimates. The variety of iterative algorithms 

such as Sum Iterative Maximization, Greedy Iterative Maximization, Genitor, and Memetic 

Algorithm, demonstrate higher performance as compared to the non-iterative greedy heuris­

tics. However in deterministic domain, greedy heuristics required significantly less time to 

complete a mapping. A similar trade-off was observed for another variation where a set 

of machines must be selected under a given dollar cost constraint that will maximize the 

robustness of a mapping. In contrast, our previous study [87] demonstrated that greedy 

heuristics applied in a stochastic domain experienced a significant execution slowdown due 

to a substantial number of PMR calls required for evaluation at each step of a mapping 

"construction" process. 

In [36], the authors present a derivation of the makespan problem that relies on a 

stochastic representation of task execution times. The paper demonstrates that the pro­

posed stochastic approach to scheduling can significantly reduce the actual simulated system 

makespan as compared to some well known scheduling heuristics that are founded in a deter­

ministic approach to modeling task execution times. The heuristics presented in that study 

were developed to minimize the expected system makespan given a stochastic model of task 

execution times. In contrast to [36] in our research, the emphasis was to build resource 

allocations capable of maintaining a certain level of probability to deliver on expressed QoS 

constraints by applying iterative resource allocation algorithms. 

6.7 Conclusion 

This chapter presented a set of iterative algorithms for finding stochastically robust re­

source allocations in heterogeneous clusters where workload surges are likely to occur. The 

objective function used in the design of our resource allocation techniques was based on 

our stochastic robustness metric. The resulting objective function was demonstrated to 

be suitable for evaluating the likelihood that a resource allocation will perform acceptably 
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in this environment, i.e., satisfy imposed QoS constraints, despite uncertainty in system 

parameters. 

Multiple parameters pertaining to each iterative algorithm were setup for the best per­

formance in the simulated environment which replicated a heterogeneous cluster-based pro­

cessing center of a radar system. The goal in the conducted experiments was to generate 

a resource allocation that allows for the minimum time period between sequential sensor 

outputs and guarantees a specified probability level that data processing is completed in 

time. 

The performance analysis of multiple test trials revealed a great potential of the GA 

algorithm to efficiently manage resource allocation in a large class of heterogeneous clusters 

operating on periodical data sets. In addition to complex radar systems, the developed 

workload distribution mechanism can be applied in other practical implementations such as 

surveillance for homeland security, monitoring vital signs of medical patients, and automatic 

target recognition systems. 
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CHAPTER 7 

MAXIMIZING STOCHASTIC ROBUSTNESS OF STATIC 

RESOURCE ALLOCATIONS IN A PERIODIC SENSOR 

DRIVEN CLUSTER 

7.1 Introduction 

In parallel and distributed computing, multiple compute nodes are collectively utilized to 

simultaneously process a set of applications to improve performance over that of a single 

processor [26]. Often, such computing systems are constructed from a heterogeneous mix 

of machines that may differ in their capabilities, e.g., available memory, number of floating 

point units, clock speed, and operating system. This paper investigates robust resource 

allocation for a large class of heterogeneous computing (HC) systems that operate on peri­

odically updated sensor data sets. Sensors (e.g., radar systems, sonar) in this environment 

produce new data sets at a fixed period A (see Fig. 23). Often, the period at which the 

sensor produces new data sets is fixed by the sensor and cannot be extended to account 

for long-running applications. Because these sensors typically monitor the physical world, 

the characteristics of the data sets they provide may vary in a manner that impacts the 

execution times of the applications that must process them. Suppose that each input data 

set must be processed by a collection of N_ independent applications that can be executed 

in parallel on the available set of M heterogeneous compute nodes. The goal of resource 

allocation heuristics in this environment is to allocate the N tasks to the M compute nodes 

such that all of the applications finish in less than A time units. 

The allocation of compute nodes to applications can be considered static, i.e., all of the 

applications that are to be executed are known in advance and are immediately available for 

execution upon the arrival of a new data set. Because this is an HC system, the execution 

A preliminary version of the research in this chapter appeared in [96]. 
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times for each of the N independent applications differs across the M compute nodes. 

Resource allocation in such computing environments has been shown in general to be an 

NP-hard problem (e.g., [32,50]). Thus, designing techniques for resource management in 

such environments is an active area of research (e.g., [1,25,26,36,72]). 

In this environment, a new data set arrives every A time units. Thus, the completion 

time of the last to finish application must be less than or equal to A to ensure that the system 

is ready to begin processing the next data set upon its arrival. However, unpredictable 

variance in the characteristics of the input data sets may result in a significant change in 

the execution times of the applications that must process the data. This variance may cause 

the makespan of the resource allocation to exceed A, which is unacceptable. Robust design 

for such systems involves determining a resource allocation that can account for uncertainty 

in application execution times in a way that enables a probabilistic guarantee that all of 

the applications will complete within A time units. 

The notion of stochastic robustness was established in [89] based on a mathematical 

model of HC systems. That research presented three greedy heuristics for resource alloca­

tion and three more sophisticated random search based algorithms. The emphasis of that 

research was on minimizing A subject to a constraint on the robustness of the resulting 

resource allocation. 

Often, the required time period A is fixed by the sensor platform. In this work, we 

consider two cases for maximizing the robustness of resource allocations. In the first case, 

compute nodes 

machine 1 

a 

machine M 

Figure 23: Major functional units and data flow for a class of systems that must periodi­
cally process da ta sets from a collection of sensors. 

A time units 

— JT p=3 
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we consider a system where the A vahie is relatively loose. In this situation, we can apply 

simpler greedy heuristics to generate resource allocations with a non-zero probability of 

meeting the imposed deadline defined by A. In the second case, we consider tighter A 

values such that naive greedy heuristics are incapable of producing resource allocations with 

a non-zero probability of meeting the deadline A. In this situation, the direct application 

of random search techniques, such as a genetic algorithm, are ineffective early in their 

search because naive attempts to generate an initial population (typically based on random 

assignment or simple greedy techniques) also fail to produce resource allocations with a 

non-zero probability of meeting the provided deadline. 

The major contributions of this paper include (1) the design of heuristic techniques 

that maximize the robustness of resource allocations subject to a constraint on the maxi­

mum allowable A, (2) a novel methodology for generating resource allocations with a non­

zero probability of completing within a tight A time constraint, and (3) incorporating this 

methodology into heuristics. 

The remainder of this work is organized in the following manner. Section 7.2 describes 

the model of stochastic compute node completion times used in this work. A brief intro­

duction to the stochastic robustness framework is presented in Section 7.3 along with an 

introduction to using the stochastic robustness metric within a heuristic. Three random 

search based algorithms designed for this environment and one sample greedy heuristic are 

described in Section 7.4. The parameters of the simulation study used to evaluate a direct 

maximization of robustness are discussed in Section 7.5. Section 7.6 defines our methodology 

for satisfying timing constraints where simple greedy techniques produce allocations with 

no probability of success. This section presents the details of a steady-state genetic algo­

rithm that successfully applies this approach for denning an initial population to maximize 

robustness through random search. A sampling of the relevant related work is presented in 

Section 7.7. Section 7.8 concludes the paper. 
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7.2 Stochastic Completion Times 

In this environment, we are concerned with allocating a set of N independent applications 

to a collection of M dedicated heterogeneous compute nodes. Each of the N applications 

must process data that is produced by the system's sensors. In a static resource allocation, 

all of the applications to be executed are known in advance of performing a resource alloca­

tion. In this environment, although the data sets to be processed vary every A time units, 

the applications executed are the same, thus, the resource allocation environment can be 

considered static. 

Application execution times are known to be data dependent. The data sets produced 

by the system sensors vary with changes in the real world, causing application execution 

times to vary in unpredictable ways. For this reason, we model the execution time of each 

application i (1 < i < N) on each compute node j (1 < j < M) as a random variable [104], 

denoted r^_. We assume that probability mass functions (pmfs) describing the possible 

execution times for each application on each compute node exist and are available for each 

rjij. (See [64] for some techniques for estimating these pmfs.) 

Using the application execution time pmfs, we can produce a completion time distri­

bution for each compute node in a given resource allocation. The finishing time of each 

compute node is calculated as the sum of the execution time random variables for each ap­

plication assigned to that compute node [89]. Let rt£ be the number of applications assigned 

to compute node j . The pmf for the finishing time of compute node j , referred to as a local 

performance characteristic ]/>£, can be expressed as follows: 

i = l 

Thus, the system makespan, denoted ijj, can be expressed in terms of the local performance 

characteristics as follows: 

tp = m a x { t p i , - - - ,'>PM} • (47) 
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If the execution times r/^j for the applications assigned to compute node j are mutually inde­

pendent, then the summation of Eq. 46 can be computed using an (rij — l)-fold convolution 

of the corresponding pmfs [63,89]. 

7.3 Stochastic Robustness 

The goal of each resource allocation heuristic is to assign applications to compute nodes such 

that the robustness of the resulting resource allocation is maximized subject to a constraint 

on the overall makespan (i.e., the completion time of the last to finish compute node). A 

robustness metric for this environment was derived using the FePIA procedure [3], in [89] 

and is summarized below. 

For this system, the performance feature of interest is makespan, ip. A resource alloca­

tion can be considered robust if the actual finishing time of each compute node is less than 

or equal to the periodicity of the data set arrivals A, i.e., V < A. We refer to this as the 

robustness requirement of the system. 

Uncertainty in the system arises because the exact execution time for each application is 

not known in advance of its execution. That is, each of the execution time random variables 

r]ij is a source of uncertainty in a resource allocation. Because of its functional dependence 

on the execution time random variables, the system makespan is itself a random variable. 

That is, the uncertainty in application execution times can have a direct impact on the 

performance metric of the system. 

To determine exactly how robust the system is under a specific resource allocation, 

we conduct an analysis of the impact of uncertainty in system parameters on our chosen 

performance metric. The stochastic robustness metric, denoted 9_ is defined as the prob­

ability that the performance characteristic of the system is less than or equal to A, i.e., 

0 = ¥[tp < A]. For a given resource allocation, the stochastic robustness metric measures 

the probability that the generated system performance will satisfy our robustness require­

ment. Clearly, unity is the most desirable stochastic robustness metric value, i.e., there is 

a zero probability that the system will violate the established robustness requirement. 

For each compute node j , the robustness of the local performance characteristic is found 
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as the sum over the impulses in the pmf describing 'ipj whose impulse values are less than 

or equal to A. Because there are no inter-task data transfers among the applications to be 

assigned, the random variables for the local performance characteristics {ipi,ip2, • • • , V'M) are 

mutually independent. As such, the stochastic robustness metric for a resource allocation 

can be found as the product of the probability that each local performance characteristic is 

less than or equal to A. Mathematically, this is given as: 

0 = n(Pl>i<A]Y (48) 

Intuitively, the stochastic robustness of a resource allocation defines the probability that 

all of the applications will complete within the allotted time period A. In this research, we 

are provided a constraint on the maximum time period required to process all applications, 

i.e., A, and attempt to derive a resource allocation to maximize the probability that all of 

the applications will complete by this deadline. 

7.4 Heuristics 
7.4.1 Two-Phase Greedy 

The Two-Phase Greedy heuristic is based on the principles of the Min-Min algorithm (first 

presented in [50], and shown to perform well in many environments, e.g., [26,73]). The 

heuristic requires N iterations to complete, resolving a single application to compute node 

assignment during each iteration. 

In the first phase of each iteration, the heuristic determines the application to compute 

node assignment that minimizes the expected completion time for each of the applications 

left unmapped. In the second phase, the heuristic selects the application to compute node 

assignment from the first phase that has the smallest expected completion time. Pseudo­

code for the Two-Phase Greedy heuristic is provided in Figure 24. 

In this heuristic, we chose to minimize the expected completion time of applications 

as opposed to maximizing robustness because early in an allocation, many of the possi­

ble application/compute-node assignments will have identical robustness values, i.e., unity. 
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while not all applications are mapped 

for each unmapped application a, find the compute node mu such that 

k <- a r g m i n 1 ! ^ ^ {E [^(a , ) ]} ; 

resolve ties arbitrarily; 

from all (a,i,mk) pairs found above select pair (ax,my) such that 

{ax,my) <- argmin(a. imfe) { E [ ^ ( a j ) ] } ; 

resolve ties arbitrarily; 

map application ax to compute node my; 

end of while 

Figure 24: Pseudocode for the Two-Phase Greedy heuristic. We use the shorthand nota­
tion, ipj(a,k), to denote an evaluation of the local performance characteristic tpj given the 
set of applications already assigned to compute node j with the addition of application aj,. 

This happens because many of the applications have yet to be assigned, therefore, the sub­

set that have already been assigned are all guaranteed to finish before A (i.e., SRM = 1). 

Thus, an application of the Min-Min algorithm that directly maximizes robustness in this 

environment in ineffective. 

7.4.2 Genet ic Algorithm 

The adopted genetic algorithm (GA) was motivated by the Genitor evolutionary heuristic 

first introduced in [105]. Our GA implementation models a complete resource allocation as 

a sequence of numbers, referred to as a chromosome, where the i entry in the sequence 

corresponds to the compute node assignment for the i application, denoted Oj. The 

ordering of applications in a chromosome is not significant for this environment and can 

be considered arbitrary. The fitness of each chromosome is determined according to the 

robustness of the resource allocation it represents. That is, a higher robustness value 0 

indicates a more fit chromosome. 

In our implementation, we use a sorted list of the 100 most fit chromosomes encountered, 

referred to as the population, where the chromosomes are sorted according to robustness. 

The appropriate size of the population was selected through experimentation. 

Argmin is an operation that returns the value of the argument for which the given expression attains its minimum 
value. 

119 



The initial members of the population were generated by applying the simple greedy 

heuristic from [89] and applying a local search operator to the result (the details of the 

local search operator are defined below). The simple greedy heuristic randomly selects an 

application and assigns it to the compute node that provides the smallest completion time. 

After a chromosome is produced by this simple greedy heuristic, we apply the local search 

operator to produce a new chromosome that is a local minimum, i.e., the robustness of the 

chromosome cannot be further improved upon using our local search procedure. Before the 

generated chromosome can be inserted into the population, a check is performed to ensure 

that the new chromosome is unique. In this way, we ensure that no member of the initial 

population is overrepresented. This chromosome generation process is repeated until the 

population size reaches its limit, i.e., 100 chromosomes. 

Our GA operates in a steady state manner, i.e., for each iteration of the GA only a 

single pair of chromosomes is selected from the population for crossover [81]. Chromosome 

selection is performed using a linear bias function [105], where the rank of each chromosome 

is determined by its fitness. Each new chromosome generated is inserted into the population 

in sorted order according to its fitness value. For each chromosome inserted, the least fit 

chromosome in the population is removed, so that the size of the population is held fixed. 

To maintain a diverse population, the insertion process prevents duplicate chromosomes 

from being inserted into the population. 

The crossover operator was implemented using the two-point reduced surrogate proce­

dure [105], where the parent chromosomes are compared to identify the entries that differ 

between them. Crossover points are randomly selected such that at least one element of 

the parent chromosomes differs between the selected crossover points to guarantee offspring 

that are not clones of their parents. Each execution of the crossover operator will produce 

two new offspring. 

Following crossover, a local search procedure, conceptually analogous to the steepest 

descent technique [30], is applied to each of the produced offspring prior to their insertion 

into the population. The local search implemented in our GA is similar to the coarse 

refinement presented as part of the GIM heuristic in [100]. Local search relies on a simple 
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four-step procedure to maximize 9 relative to a fixed A value. First, for a given resource 

allocation, the compute node with the lowest individual probability to meet A is identified. 

From the applications assigned to this compute node, local search identifies the application 

that, if moved to a different machine, would increase 9 the most. This requires re-evaluating 

9 every time an application-compute node re-assignment is considered. Once an application-

compute node pair has been identified, the chosen application is moved to its chosen compute 

node. If no application can be moved to a new compute node to attain an improvement in 

9, then we consider swapping two applications. One of the two applications considered for 

swapping must currently be assigned to the compute node under consideration, selecting 

the alternate application that improves 9 the most. 

The procedure repeats from the first step until there are no application moves from the 

lowest probability compute node that would improve 9. The procedure is then repeated 

for each compute node in increasing order of the probability that the local performance 

characteristic is less than or equal to A until no application can be moved to improve 9. For 

this procedure, it is assumed that 9 < 1; otherwise, no improvements can be made through 

local search. 

The final step within each iteration of our GA implementation applies a mutation oper­

ator. For each iteration of the GA, the mutation operator is applied to a small percentage 

of the overall population, referred to as the mutation selection rate. In our implementation, 

we chose a mutation selection rate of 0.1, i.e., during each iteration we selected 10% of 

the population for mutation. We arrived at this mutation selection rate through experi­

mentation, i.e., given the details of our simulations a selection rate of 10% produced the 

best results. During mutation, each application assignment within the chromosome to be 

mutated is individually modified with a probability referred to as the mutation rate. For 

the simulated environment, the best results were achieved using a mutation rate of 0.02, 

determined through experimentation. Once an application-compute node assignment has 

been selected for mutation, the mutation operator randomly selects a different compute 

node assignment for the chosen application. After mutation, the local search operator is 

applied to the new chromosome and the result is inserted into the population. 
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generate initial population using simple greedy heuristic and local search; 

rank population based on 9 values; 

while eval count < 4,000,000 

select two chromosomes from the population for crossover; 

select crossover points; 

exchange compute node assignments between crossover points; 

apply local search to the two offspring; 

insert resulting offspring into population 

if not already present in the population; 

if needed, remove worst chromosome(s) 

to maintain fixed population size; 

for each chromosome in the population 

generate a random number x in the range [0,1]; 

if x < mutation selection rate 

for each application in the selected chromosome; 

generate a random number y in the range [0,1]; 

if y < mutation rate 

arbitrarily change compute node assignment 

of the selected application; 

apply local search to resulting chromosome; 

insert resulting offspring into population 

if not already present in the population; 

if needed, remove worst chromosome(s) 

to maintain fixed population size; 

end of while 

output the best solution encountered. 

Figure 25: Pseudo-code for the GA heuristic. 

We limited the total number of chromosome evaluation function calls in our GA imple­

mentation to 4,000,000, because for the simulation trials tested, this number of chromosome 

evaluation function calls enabled the GA to find a resource allocation that provided a near 

unity robustness value. The GA procedure is summarized in Fig. 25. 
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7.4.3 Genet ic Algor i thm with Path Rel inking ( G A P R ) 

Within the context of a genetic algorithm, path relinking can be used as a means of com­

bining two "parents" to form a new type of crossover operator [81]. The path relinking 

implementation of crossover begins with a pair of chromosomes, and draws a path from one 

parent to the other by exchanging one application/compute-node assignment at a time. 

Our implementation of path relinking begins with a pair of chromosomes to be used 

as parents in the operation. One is labeled the start chromosome and the other is labeled 

the end chromosome. Next, we initialize the "best chromosome encountered" to the parent 

chromosome with the highest robustness value and initialize the " current chromosome" to 

the start chromosome. For each application i (i = 1, • • • , N), in the current chromosome, we 

change the compute node assignment of ai in the current chromosome to the assignment of 

aj in the end chromosome. Next, we copy the current chromosome into a temporary location 

and apply local search to this temporary chromosome. If the compute node assignments 

for a{ are the same in each parent, then we skip the local search procedure because it 

will produce the same result as the previous application of local search. Finally, if the 

robustness of the chromosome produced by the local search is greater than that of the best 

chromosome encountered, then we replace best with this result. We then iterate i and 

the procedure continues in this manner until the current chromosome is identical to the 

end chromosome. When this occurs, the procedure outputs the best chromosome as the 

offspring of the operation and exits. To generate a second offspring from this operator, we 

proceed as before, but we exchange the start and end chromosomes to follow a second path. 

An example of the path relinking procedure is depicted in Figure 26. In the figure, two 

initial chromosomes y and x are connected by transforming chromosome y into chromosome 

x. For each intermediate point along the path from y to x, we apply the local search 

procedure to find the resource allocation whose robustness defines a local optimum. Because 

all of the members of our steady-state GA population are local optima, the chromosomes y 

and x are themselves local optima. By transforming solution y into solution x one compute 

node assignment at a time, path relinking encounters an intermediate chromosome that is 

in the basin of attraction denned by the local optimum o. Thus, the local search starting 
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Figure 26: A conceptual depiction of the path relinking procedure. Each contour line in 
this depiction corresponds to the same robustness value. The search begins at chromosome 
y and generates a path to chromosome x using the path relinking procedure. Local search 
is applied to each intermediate chromosome produced along the path from y to x. The path 
connecting y and x passes into a basin of attraction leading to an improved solution o. 

from this intermediate chromosome produces o as an output. Further, if the fitness of o is 

greater than that of both y and x, then o may be one of the offspring produced by this path 

relinking crossover operation. In our implementation, we produce only a single offspring 

from each direction of the path relinking operator. 

We form a new GA heuristic based on the steady-state GA presented in the previ­

ous subsection by replacing the two-point reduced surrogate crossover operator with path 

relinking. Pseudo-code for our implementation of path relinking is provided in Figure 27. 

7.4.4 Simulated Anneal ing 

The Simulated Annealing (SA) algorithm—also known in the literature as Monte Carlo 

annealing or probabilistic hill-climbing [73]—is based on an analogy taken from thermo­

dynamics. In SA, a randomly generated solution, structured as the chromosome from our 

GA, is iteratively modified and refined. SA in general can be considered a random search 

technique that operates with one possible solution (resource allocation) at a time. 

124 



start <— first chromosome selected for crossover; 
end <— second chromosome selected for crossover; 
if d(start) > 9(end) 

best <— start; 
else 

best <— end; 
current <— start; 
for i = 1 to N 

if ai in start 7̂  Oj in end 
ai in current •*— aj in end; 
result <— apply local search to current; 
if ^(result) > 6>(best) 

6esi <— result; 
end of for 
offspring <— 6es£; 
output offspring; 

Figure 27: Pseudo-code of one direction of the path-relinking crossover procedure. 

To deviate from the current solution in an attempt to find a better one, SA repeatedly 

applies the mutation operation of our steady-state GA, applying the local search operator 

to the mutated result prior to its evaluation. The mutation rate was set to 10% for our 

simulation trials. Once a new solution, denoted Snew, is produced, a decision regarding the 

replacement of the previous solution, denoted S0id, with Snew has to be made. If the fitness 

of the new solution, denoted 0(Snew), found after evaluation, is higher than the old solution, 

the new solution replaces the old one. Otherwise, SA will probabilistically allow poorer 

solutions to be accepted during the search process, which makes this algorithm different 

from other strict hill-climbing algorithms [73]. The probability of replacement is based 

on a system temperature, denoted T, that decreases with each iteration. As the system 

temperature "cools down," it becomes more difficult for poorer solutions to be accepted. 

Specifically, the SA algorithm selects a random number from the range [0,1) according to 

a uniform distribution. If 

random[0,1) > /e(snew)-e(.sold)\ ' 
(49) 

1 + exp^ T > 

then the new poorer resource allocation is accepted; otherwise, the old solution is kept. As 

can easily be seen in Eq. 49, the probability for a new solution of similar quality to be 
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accepted is close to 50%. In contrast, the probability that a poorer solution is rejected is 

rather high, especially when the system temperature becomes relatively small. 

After each mutation (described in Subsection 4.3) and subsequent local search, the 

system temperature T is reduced to 99% of its current value. This percentage, defined as the 

cooling rate, was determined experimentally by varying the cooling rate in the range [0.9,1). 

The fitness of each chromosome, 6, is inherently bound to the interval [0,1]. Consequently, 

only small differences between 0(Snew) and 9(S0id) are possible, causing Eq. 49 to remain 

very near 0.5 for large values of T. Based on our experimentation, we set the initial system 

temperature in Eq. 49 was to 0.1. 

For the simulation trials tested, our implementation of SA was terminated after 4,000,000 

chromosome evaluation function calls. Limiting the overall number of chromosome evalu­

ation function calls to 4,000,000 enabled a fair comparison with the results of both of our 

steady-state GA implementations. The SA procedure is summarized in Fig. 28. 

^old *— initial Two-phase greedy solution; 

T <-0 .1 ; 

while eval count < 4,000,000 

Snew ^-imitate S0w; 

apply local search to Snew; 

if 9(Snew) > 9(Sold) 

^old i &new\ 

else if Eq. 49 holds 

T <- 0.99 x T; 

end of while 

output S0id; 

Figure 28: Pseudo-code for the Similated Annealing heuristic. 
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7.5 Simulation Study 
7.5.1 Setup 

For our simulations, the periodicity A of data set arrivals was assumed fixed at 540 time 

units. The value for the constraint A was selected to present a challenging resource allocation 

problem for our chosen heuristics (i.e., the resulting 9 was neither 1 nor 0) based on the 

number of applications, the number of compute nodes, and the execution time pmfs used 

for rjij. The goal of the heuristics is to find resource allocations that have the highest 

probability to complete all of the applications within the given time period A. 

To evaluate the performance of the heuristics described in Section 7.4, the following 

approach was used to simulate a cluster-based system for processing radar data sets. The 

execution time distributions for 28 different types of possible radar ray processing algorithms 

on eight (M = 8) heterogeneous compute nodes were generated by combining experimental 

data with benchmark results. The experimental data, represented by two execution time 

sample pmfs, were obtained from experiments conducted on the Colorado MAI radar [53]. 

These sample pmfs contain application execution times for 500 different radar data sets of 

varying complexity by the Pulse-Pair & Attenuation Correction algorithm [22] and by the 

Random Phase & Attenuation Correction algorithm [22]. Both applications were executed in 

non-multitasking mode on the Sun Microsystems Sun Fire V20z workstation. To simulate 

the execution of these applications on a heterogeneous computing system, each sample 

pmf was scaled by a performance factor corresponding to the performance ratio of a Sun 

Microsystems Sun Fire V20z to each of eight selected compute nodes1 based on the results of 

the fourteen floating point benchmarks from the CFP2000 suite [98]. Combining the results 

available from the CFP2000 benchmarks with the sample pmfs produced by the two available 

applications provided a means of generating the 28 x 8 matrix of application execution times, 

where the kjth element in the matrix corresponds to the application execution time pmf of 

a possible ray processing algorithm of type k on compute node j . 

'The eight compute nodes selected to be modeled were: Altos R510, Dell PowerEdge 7150, Dell Pow-
erEdge 2800, Fujitsu PRIMEPOWER 650, HP Workstation i'2000, HP ProLiant ML370 G4, Sun Fire V65x, 
and Sun Fire X4100. 
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Each simulation trial consisted of a set of 128 applications (2V = 128) to be assigned to 

any one of the eight available heterogeneous compute nodes. To evaluate the performance 

results of each heuristic, 50 simulation trials were conducted. For each trial, the type of 

each application was determined by randomly sampling integers in the range [1,28]. 

7.5.2 Results 

The results of the simulation trials are presented in Figure 29. The 50 simulation trials 

provide a good estimate of the mean as demonstrated by the 95% confidence intervals for 

the results of the resource allocation techniques. The GA, GAPR, and SA heuristics were 

able to improve upon the robustness values achieved by the Two-Phase Greedy solution. For 

the 50 conducted trials, the Two-Phase Greedy heuristic produced an average robustness 

value of 67.63%. The SA results showed a mean robustness value of 94.02%. Including the 

path relinking crossover operator in the GA, we were able to produce an average robustness 

value of 96.62%. The regular steady-state GA performed better on average than any of the 

other heuristics with an average robustness value of 98.15%. The confidence intervals for 

the GA, GAPR, and SA heuristic results overlap. Given their values, their performance 

may be similar because they are all near the achievable optimal value. The comparable 

performance of the SA and the two GA variants may suggest that the local search operator, 

common to all of the techniques, may have a significant impact on the results attained. 

There was a significant difference between the heuristics in terms of their worst-case 

completion time performance. The worst-case completion time performance for a resource 

allocation corresponds to the largest possible completion time from the completion time 

distributions taken across all compute nodes in the allocation. This value is significant 

because it also corresponds to a robustness value of 1, i.e., the smallest value of A for which 

the resource allocation is guaranteed to complete. For our simulation study, the regular 

steady state GA had a mean worst case completion time of 543.25 time units with a 95% 

confidence interval of plus or minus 6.09 time units. The mean worst case completion time 

for the GA with path relinking was found to be 550.57 time units with a 95% confidence 

interval of plus or minus 5.6 time units. The SA mean worst case completion time was 
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Comparison of Heuristic Results 

Two-P hase G reedy S A GA GAPR 

Figure 29: A comparison of the average robustness values over 50 trials attained through 
simulation for the GA with Path Relinking (GAPR), GA, SA, and Two-Phase Greedy 
heuristics. 
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best encountered 
path relinking 
local search 

Figure 30: An example result obtained by applying the path relinking crossover procedure 
in one direction. 

found to be 564.84 time units with a 95% confidence interval of plus or minus 4.27 time 

units. Thus, comparing the three approaches on the basis of mean worst case completion 

time shows a significant difference between the SA heuristic and the two variants of the 

steady-state GA. 

To better visualize the path-relinking procedure, we plotted the robustness attained by 

each step of the operation. Figure 30 shows the results of an example application of the path 

relinking crossover operator. The result was obtained by transforming one chromosome into 

another using our defined path relinking procedure. After each application to compute node 

assignment is modified, the local search operator is applied to the intermediate solution. 

The dashed line of the figure corresponds to the robustness of the current chromosome 

before local search has been applied and the solid line corresponds to the robustness of the 

allocation after applying local search. The dotted line provides an indication of the highest 

robustness value encountered during this run of path relinking. The first robustness value 

of the dashed line corresponds to the first parent in the crossover and the last robustness 

value corresponds to the robustness value of the alternate parent. In this example, the initial 

allocation of the first parent had a robustness value of 0.9808 and the alternate parent had 

a robustness of 0.8224. Applying the path relinking crossover operator produced a final 

allocation with a robustness value of 0.9981. 
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7.6 Maximizing Robustness for Tighter A Values 
7.6.1 Overview 

Maximizing robustness using the random-search based approaches described earlier can 

function properly only if the robustness of the initial and intermediate solutions are non-zero. 

That is, in all of the presented random search techniques, intermediate resource allocations 

are directly compared to one another based on robustness and ranked accordingly. Thus, 

if the robustness of two allocations are equal to zero, then we cannot discriminate between 

them based on robustness alone. For this case, we would like to identify an alternative 

metric for evaluating resource allocations that can always discriminate between resource 

allocations whose robustness value is zero. 

The metric that we use is the expected makespan of a given resource allocation, which 

allows us to differentiate between solutions that both have a zero robustness value. Using a 

GA to find chromosomes that will minimize the expected makespan may lead us to solutions 

with non-zero robustness values. 

In the next sub-section, we prove that if the expected makespan for a given resource 

allocation is less than or equal to A, then the stochastic robustness value of that allocation 

will be non-zero. In Subsection 7.6.3, we define a resource allocation technique based on a 

steady-state genetic algorithm that minimizes the expected makespan of resource allocations 

to produce an initial population for our "robustness" based GA. This section concludes with 

the results in Subsection 7.6.4. 

7.6.2 Alternat ive Metric for Evaluating Al locat ions 

Define the expected makespan of a resource allocation, denoted ^ , as the makespan of the 

resource allocation as found using the expectation of machine completion time distributions. 

Let fij_ be the expected completion time of machine j , i.e., E[V>j] = / t j , then // can be found 

by taking the max over all expected completion times, 

u — max /i ; . (50) 
l<j<M J 
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A useful property of the expected makespan of an allocation is that if /z < A then 0 is 

bounded below by (0.5)M, i.e., the robustness of the allocation is guaranteed to be non­

zero. To prove this property, assume that fi < A. Recall that JJ, is the maximum expected 

completion time over all machines, which implies that /ij < y, < A (Vj). Define 9j to be 

the robustness of the completion time distribution for machine j relative to A. From our 

assumption that /x < A and the definition of /z, we know that for some machine k the largest 

that Hk can be is A, which corresponds to the smallest value of 0&. If Mfc = A, then 0*. must 

equal 0.5 because Hk is the mean of the completion time distribution. From our definition 

of /i, for each machine j , /J,J < [i^ implying 0j > 0.5 (Vj). Thus, 

9 = Yl 0j> (0.5)M . (51) 
i<i<M 

Therefore, if there are M compute nodes with n < A, then 0 > (0.5)M . This proves that if 

the expected makespan of a resource allocation is less than or equal to A, then the robustness 

of that allocation is non-zero. For cases based on pmfs, because the expected value may not 

be a possible outcome, we replace the expected value of the pmf with the smallest possible 

outcome that is greater than the expected value, ensuring that Equation 51 still holds. 

If we can establish an initial population where each resource allocation satisfies // < A, 

then our earlier robustness GA heuristics can be applied to cases where A is tight. We 

make the simplifying assumption that A has been selected such that resource allocations 

exist that can satisfy this constraint on n. 

To establish an initial population using this method, we can employ simpler minimiza­

tion techniques that operate on the mean execution times of applications as opposed to 

the entire distribution of possible execution times. In the next subsection, we describe a 

GA that minimizes the expected makespan of each resource allocation (referred to as the 

makespan GA). 
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7.6.3 G A for Establishing Initial Populat ion 

In our original robustness GA implementation, we employed a simple greedy heuristic to 

generate the initial population. Unfortunately, if the A constraint is too small, then this 

simple method of population generation will not produce solutions with non-zero robustness 

values. Based on the discussion of the previous subsection, we implemented a makespan 

GA that minimizes the mean makespan of allocations. The output of the makespan GA is 

an initial population whose members all have a non-zero robustness value, and so can be 

used as the initial population in the robustness GA. 

The implementation of the makespan GA operates in a manner similar to the robustness 

GA, using the path relinking crossover operator and local search (but based on minimizing 

the expected makespan). The fitness of each resource allocation in the makespan GA is 

measured by the expected makespan of the allocation instead of its robustness. Based 

on our earlier analysis, if the expected makespan can be reduced to at least A, then the 

resulting robustness of the allocation will be non-zero. The makespan GA terminates when 

the expected makespan of the worst member of the population is less than or equal to A 

or a maximum number of iterations has elapsed. If the makespan GA terminates because a 

maximum number of iterations has elapsed, then the robustness GA can be populated with 

any members whose fi < A. In addition, it may be possible to identify chromosomes where 

/x > A and the robustness of the solution is non-zero. In our simulations, the makespan GA 

was always able to find a complete initial population whose expected makespan was less 

than or equal to A. 

After the makespan GA terminates, we are left with a population whose robustness 

values are all non-zero. However, the order of the chromosomes is based on the expected 

makespan, as opposed to robustness. Thus, before the population can be used by our 

robustness GA heuristic, we must evaluate each chromosome based on robustness and re­

sort the population. Although the makespan GA applied local search to each member of 

the population, the local search was based on the expected makespan. To ensure that the 

population consists only of local minima relative to robustness, we apply the robustness 

based local search operator to each chromosome, then insert the resulting chromosome into 
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the population. It is possible that after applying robustness based local search to each 

chromosome and rebuilding the population that some of the chromosomes will result in 

clones (i.e., duplicate chromosomes). Because the insertion procedure of the robustness 

GA explicitly disallows clones, the initial population in our robustness GA may begin with 

fewer chromosomes than our desired population size. However, the population will typically 

steadily grow back to the predetermined population size in the first few rounds of the 

robustness GA and will remain fixed at our chosen population size for the remainder of the 

simulation. 

7.6.4 Results for Tighter A Values 

To evaluate the effectiveness of generating an initial population for tighter A values using 

the makespan GA approach, we re-ran the simulation trials with a new A value that is 

tailored to each simulation trial. In these trials, the A constraint was uniquely set for 

each simulation trial based on the collection of tasks to be executed for that trial. In [89], 

we presented a mechanism for calculating a lower bound on A. In this work, we applied 

the lower bound calculation to each trial and used 120% of a lower bound value as the A 

constraint. This resulted in an average A constraint of 506 time units as opposed to the 

fixed A constraint of Section 7.5.2, i.e., A = 540. 

For this tighter A constraint, the direct robustness maximization techniqiies in Section 

7.4 were unable to find solutions with non-zero robustness values. Using the same number 

of chromosome evaluations, this modified approach that used both the makespan GA and 

the robustness GA, denoted GAPR2, was able to generate solutions with an average robust­

ness value of 89.6% with a 95% confidence interval of plus or minus 2 percentage points. 

These results clearly indicate the success of the proposed approach for generating resource 

allocations with high robustness values under tighter A constraints. 

As a final comparison, we compared the results of the GAPR2 heuristic to those of our 

direct methods for simulations where A was set to 540, as was done in Section 7.5.2. For 

these simulations, GAPR2 performed comparably to GAPR, suggesting that the GAPR2 

heuristic is capable of performing well for both loose A constraints and tight A constraints. 
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7.7 Related Work 

A universal framework for denning the robustness of resource allocations in heterogeneous 

computing systems was addressed in [3]. This work referred to the ability of a resource allo­

cation to tolerate uncertainty as the robustness of that resource allocation and established 

the FePIA procedure for deriving a deterministic robustness metric. In [89], the authors 

used the FePIA procedure to define a robustness metric for static stochastic resource alloca­

tion environments. The research in [89] focused on minimizing the makespan of a stochastic 

resource allocation subject to a constraint on the robustness of that allocation. In this cur­

rent paper, we have shown that it is possible to instead directly maximize the robustness 

of a resource allocation given a constraint on the allowed makespan. 

In [25], the problem of robust resource allocation was addressed for scheduling directed 

acyclic graphs (DAGs) in a heterogeneous computing environment. Robustness was quan­

titatively measured as the "critical" (i.e., the smallest) slack among all components that 

comprise a given DAG. The authors focused on designing resource allocations that max­

imized robustness for a deterministic environment. Our robustness metric is based on 

stochastic information about the uncertainties. 

Our methodology requires that the uncertainty in system parameters can be modeled as 

stochastic variables. A number of methodologies exist for modeling the stochastic behavior 

of application execution times (e.g., [18,35,64]). In [18], a method is presented for combin­

ing stochastic task execution times to determine task completion time distributions. Our 

work leverages this method of combining independent task execution time distributions and 

extends it by defining a means for measuring the robustness of a resource allocation against 

an expressed set of QoS constraints. 

In [36], the authors demonstrate the use of a GA to minimize the expected system 

makespan of a resource allocation in a heterogeneous computing environment where task 

execution times are modeled as random variables. This research demonstrates the efficacy 

of a stochastic approach to resource scheduling, by showing that it can significantly reduce 

system makespan as compared to some well known scheduling heuristics that are based on a 

deterministic modeling of task execution times. The heuristics presented in that study were 
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used in the stochastic domain to minimize the expected system makespan given a stochastic 

model of task execution times, i.e., the fitness metric in that approach was based on the 

first moment of random variables. The emphasis of our approach is on quantitatively com­

paring one resource allocation to another based on the stochastic robustness metric, i.e., the 

probability of satisfying a given makespan constraint. The success of the Genetic Algorithm 

applied to stochastic resource allocation in [36] was a motivating factor for our selection of 

a Genetic Algorithm in this study; however, our GA methodology differs significantly from 

that in [36], for both the robustness GA and the makespan GA. 

7.8 Conclusions 

This research presented three distinct heuristics for directly maximizing the robustness of 

a resource allocation. The GA, GAPR, and SA techniques were shown to significantly 

outperform a simpler Two-Phase greedy heuristic. A comparison of the three heuristics 

revealed the great potential for the GA and SA algorithms to efficiently manage resources 

in distributed heterogeneous systems operating under uncertainty. 

We also proposed a new method for applying these heuristics when the stochastic robust­

ness metric indicates that all of the initial resource allocations found by the greedy heuristic 

have zero probability of finishing in less than A time units. We applied this methodology 

to create the makespan GA heuristic for generating an initial population for use in our 

robustness GA technique that directly maximizes the robustness of resource allocations 

subject to a constraint on the makespan of the solution. Our simulations clearly indicate 

the viability of this combined approach to maximizing the stochastic robustness metric of 

resource allocations. 
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C H A P T E R 8 

MEASURING T H E ROBUSTNESS OF RESOURCE 

ALLOCATIONS IN A STOCHASTIC DYNAMIC 

E N V I R O N M E N T 

8.1 Introduction 

Heterogeneous parallel and distributed computing is defined as the coordinated use of com­

pute resources that have different capabilities to optimize system performance features. 

Often, heterogeneous, distributed computing systems must operate in an environment re­

plete with uncertainty. Robustness in this context can be defined as the degree to which 

a system can function correctly in the presence of parameter values different from those 

assumed [3]. We present the use of a stochastic robustness metric [86] to quantify the 

robustness of a resource allocation in a dynamic environment. This formulation of the 

stochastic robustness metric is used to predict the typical relative performance of three dif­

ferent resource allocation heuristics taken from the literature and adapted to the presented 

problem. A Bayesian regression model is fit to the combined results of the three heuristics 

to demonstrate the relationship between the stochastic robustness metric and the presented 

performance metric. The accuracy of the robustness predictions are then evaluated to de­

termine their utility in predicting resource allocation heuristic performance in a dynamic 

environment. 

The major contribution of this chapter is a mathematical formulation for quantifying 

The research presented in this chapter was jointly conducted with my colleagues Louis Bricefio, Tim­

othy Rentier, Vladimir Shestak, Joshua Ladd, Andrew Sutton, David Janovy, Sudha Govindasamy, Amin 

Alqudah, Rinku Dewri, and Puneet Prakash [93]. 
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the robustness of a resource allocation in a stochastic dynamic environment and a method­

ology for applying the robustness formulation to predict heuristic performance. We demon­

strate the proposed methodology by successfully predicting the relative performance of three 

heuristics taken from the literature and adapted to this environment. Finally, we present a 

detailed evaluation of the three heuristics using both the proposed robustness metric and a 

performance objective appropriate to the studied environment. 

The environment considered in this research is that of a heterogeneous, distributed 

computing system designed to service a high volume web site of world-wide interest. The 

system being modeled was used to implement the 1998 World Cup web site [8] that processed 

more than 1.3 billion HTTP requests during the summer of 1998. The web site was provided 

to a world-wide audience by four heterogeneous, geographically dispersed systems—each 

with their own processing capacity and workload distribution techniques. This class of 

system is very challenging to implement but occurs surprisingly frequently. The World Cup 

football tournament is just one example of an event of world-wide appeal that necessitates 

web based coverage. Sites of this type are typically constructed for specific events and the 

volume of traffic is on the order of billions of requests in a period of only a few months or 

less. Other such events might include the Summer Olympics, the Winter Olympics, or the 

tour de France; all are reasonably expected to draw the attention of a world-wide audience 

in the billions. 

This research developed resource allocation heuristics for a single location of a dis­

tributed system capable of processing a high volume of requests. Incoming requests were 

dispersed to one of four processing centers. Thus, each location was responsible for process­

ing some fraction of the total traffic to the site. This work focused on a location comprising 

eight heterogeneous servers responsible for processing 45% of the overall traffic [7]. 

A task is defined to be a menu-driven HTTP request for data from the web site. Mapping 

tasks to machines in this distributed system is rather challenging as it must be done under 

uncertainty because the exact execution time required to process a task is not known a 

priori. However, past observations of task execution times can be used to construct a 

probability mass function (pmf) [104] that models the possible execution times for a given 

138 



task. The pattern of task arrivals to the site was modeled after real traffic patterns observed 

by the 1998 World Cup web site [7]. 

In the next section, we present the details of the problem to be addressed. Section 

8.3 defines a means for determining stochastic completion times for tasks in this system 

using the details of the problem statement. The definition of stochastic completion times is 

then used in Section 8.4 to derive a stochastic robustness metric that is subsequently used 

to predict heuristic performance. In Section 8.5, we present the heuristics that have been 

developed as part of this research. Details of the simulation environment are presented 

in Section 8.6 and the results of the heuristics are evaluated in Section 8.7. Section 8.8 

presents an overview of the relevant related work. Section 8.9 concludes the chapter. 

8.2 Problem Statement 
8.2.1 Introduct ion 

The system studied in this research is an instance of a more general class of dynamic, 

heterogeneous computing (HC) system where task arrival times are not known in advance 

and exact task execution times are uncertain prior to their completion. All incoming tasks 

to the system are assumed to have been previously classified into one of C_ classes prior 

to their arrival. Each of the classes corresponds to a gross classification of the relative 

complexity of the request being processed. Each task class defines a set of pmfs, where 

each pmf describes the probability of all execution times for that class on a given machine 

within the HC suite. Further, all of the classes of tasks (HTTP requests) that the system 

may be asked to perform are known in advance, i.e., the web server has prior knowledge 

about what web pages it is providing. 

Each arriving task has a relative deadline limiting the total time available to process 

each request. The relative deadline for each task class is assumed to have been established 

in advance. Because tasks in this environment are HTTP requests for data, made by a 

user of the website, it is assumed that if a task cannot be completed by its deadline then 

the request can be considered to be "timed out" and the user that submitted the original 

request will make the request again. Therefore, there is no benefit to completing tasks that 
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miss their deadlines and, consequently, tasks that miss their deadlines will be discarded. 

8.2.2 Performance Metric 

In this environment, each incoming task has a hard deadline for its completion, i.e., failure 

to complete a task by its deadline will result in a penalty. To model the impact of missing 

a task deadline the resource allocation heuristic will be penalized by a constant factor of 

1 for each task deadline that is missed. That is, for a given task i with deadline /?™ax let 

comp{i) be the actual completion time of task i and define the cost to process a task i, 

denoted cost(i), as follows 

0, if comp{i) <[3™ax; 
cost(i) = < (52) 

1, otherwise. 

The overall cost of a resource allocation is defined as the sum of the cost of each processed 

task. Define PT as the set of all tasks that are processed by the system, then the objective 

of a resource allocation in this environment can be expressed as, 

Minimize 2_] cost(i). (53) 
VizPT 

Intuitively, resource allocations in this environment are expected to minimize the number 

of tasks that miss their deadlines. 

8.2.3 Mapping Events 

All of the resource allocation heuristics evaluated in this work operate in a pseudo-batch 

mode [66,72]. In a pseudo-batch mode heuristic, all tasks that have not begun execution 

and are not next in line to begin execution can be considered for remapping when a mapping 

event occurs. Mapping events occur within the system whenever a new task arrives or an 

existing task completes. 
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8.3 Stochastic Task Completion Time 

Although some tasks may belong to the same class, task execution times may still vary 

depending on the details of the data requested. For this reason, task execution times 

are modeled as random variables. In addition, it is reasonable to assume that each task 

execution time is independent because any single HTTP request can be satisfied without 

any need to process another HTTP request, i.e., each request is self-contained. 

Let each task i belong to exactly one class CJ in the set of all task classifications C where 

membership in a class implies a specific random variable TCij representing the execution time 

of that task class on machine j (one of the M machines in the HC suite). In this research, 

it is assumed that the probability distributions describing the random variable TCij were 

created from measurements of the response times of actual requests for data from the site. 

A typical method for creating such a distribution relies on a histogram estimator [104] that 

produces a discrete probability distribution known as a probability mass function. Define 

fcj to be a unimodal pmf describing the execution time of tasks in class c on machine j . 

We consider only unimodal distributions of execution times to simplify the application of 

the stochastic robustness metric. 

Determining the completion time for a machine j , and therefore the completion time of 

a particular task i, requires a means of combining the execution times for all tasks assigned 

to that machine. In a deterministic model of task execution times, the estimated execution 

times for all tasks assigned to machine j would be summed with the machine ready time 

to produce a completion time. A similar procedure is followed in the stochastic case as 

well. However, calculating stochastic completion times requires the summation of random 

variables as opposed to deterministic values. The summation of random variables given 

their pmfs can be found as the convolution of their corresponding pmfs [63]. 

Let MQ(t) be the set of all tasks that are either pending execution or are currently 

executing on any of the M machines in the HC suite at time t. To determine the completion 

time for a task i on machine j at time t, identify the subset of tasks in MQ{t) that were 

mapped to machine j in advance of task i, denoted MQij(t). The execution time pmfs 

for the pending tasks will be convolved [63] with the completion time distribution of the 
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currently executing task and the execution time distribution for task i on machine j to 

produce the stochastic completion time pmf for task i on machine j . 

The execution time pmf for the currently executing task on machine j requires some 

additional processing prior to its convolution with the pmf's of the pending tasks to create 

a completion time pmf. For example, if the currently executing task on machine j began 

execution at time tj prior to time i, some of the impulse values of the pmf describing the 

completion time of the currently executing task may be in the past. Therefore, to accurately 

describe the completion time of task i at time t requires that these past impulses be removed 

from the pmf and the remaining distribution renormalized. After renormalization, the 

resulting distribution describes the completion time of the currently executing task at time 

t on machine j . To simplify notation, define an operator GT(s,d) that accepts a scalar s 

and a pmf d as input and returns a renormalized probability distribution where all impulse 

values of the returned distribution are greater than s. The completion time pmf of the 

currently executing task on machine j is determined by applying the GT operator to its 

completion time pmf, using the current time t. The resulting distribution is then convolved 

with the pmfs of the pending tasks on machine j and the execution time distribution of 

task i to produce the completion time pmf for task i on machine j at the current time t. 

8.4 Dynamic Stochastic Robustness Metric (SRM) 
8.4.1 I n s t a n t a n e o u s S R M 

Recall that the individual deadline of each task has been defined in advance; let (if-ax denote 

the deadline for the ith task to arrive to the system. Let fC[j be the execution time pmf 

of the currently executing task on machine j . Order the members of MQij(i) according to 

their scheduled order of execution on machine j and let fc.2j be the execution time pmf of 

the first pending task on machine j , with fciMQ..(t)ij
 a s the execution time pmf of the last 

pending task on machine j that is ahead of task i. 

Convolution of a scalar with a pmf has the effect of shifting the pmf by the value of 

the scalar and has no impact on the distribution of probabilities in the pmf. Therefore, if 

MQij(t) = 0, i.e., MQij(t) is empty, the completion time distribution for task i on machine 
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j is merely its execution time distribution fCij shifted to the current time. The completion 

time distribution at time t for task i, denoted Fi(t) can be found as follows, 

r t*fcd, ifMQ i i(t) = 0; 

Fi(t) = { 
GT{t,tj*fClj}*fC2J*---

{ *fc\MQim* fai, otherwise. 

(54) 

Following from our prior work on robustness [86] (presented in Chapter 3), the robustness 

of the finishing time for task i can be found as the probability that task i will finish before 

its deadline. This probability defines a local robustness characteristic, denoted tpi(t), and 

can be expressed as P [Ft (t) < /3!™aa;j. The individual local robustness characteristics can 

then be combined to produce the stochastic robustness metric at time t, denoted if'{t), as 

follows, 

m= n Uim^Pr*])- (^) 
ViEMQ(t) ^ ' 

This combination of local robustness characteristics defines an instantaneous measure of 

robustness (instantaneous SRM) for this resource allocation at a particular time t. Intu­

itively, the measure defines the probability that all tasks pending or currently executing at 

time t will meet their deadlines. 

8.4.2 Dynamic SRM Value 

The instantaneous measure of robustness is used as a basis for defining a single dynamic 

SRM value. To define that value, recall that a mapping event occurs whenever a task 

completes execution or a new task arrives at the system. An instantaneous SRM value is 

generated at each mapping event during the course of a simulation trial. These instanta­

neous SRM values are then combined to create a sample dynamic SRM value for the resource 

allocation heuristic. Given the relationship between the dynamic SRM value and the per­

formance metric, the dynamic SRM value can be used to predict the relative performance 

of two resource allocation heuristics. 
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If a heuristic consistently maintains a high xp(t) value over some number of mapping 

events then there is a consistently low probability that tasks will miss their deadlines over 

that same period. Therefore, the average ip(t) value over a large enough number of map­

ping events should correlate with a consistently low probability that tasks will miss their 

deadlines. That is, heuristics that maintain a high average ip(t) value can reasonably be 

expected to produce a low cost. For this reason, the dynamic SRM value is denned as the 

average of the instantaneous SRM values found, at each mapping event, during a simulation 

trial. 

8.4.3 Using the Dynamic S R M value 

In a dynamic environment, the set of tasks being considered is constantly changing due to 

task arrivals and completions. Recall that to compute ifj(t) the start time of the currently 

executing task on each machine is required (i.e., tj). Determining the start time for a 

task i requires knowledge of the actual execution time of the previously executed task k 

on that machine to calculate task fc's actual completion time. During simulations used for 

heuristic evaluation, our methodology utilizes the expectation of the execution time pmf as 

the actual execution time for each task. Thus, the start time of the subsequent task i is 

known, enabling the calculation of ip(t). 

Taking the expectation of the class pmfs to produce the most likely actual execution 

times to use for the evaluation simulations is reasonable in this environment because the task 

execution time pmfs are assumed to be unimodal. Further study is required to determine 

the most effective approach when execution time pmfs are not unimodal. 

A second factor in evaluating a resource allocation heuristic is the set of tasks and 

the ordering of task arrivals. Because of variations in the set of tasks to be executed 

and changes in their arrival ordering, multiple simulation trials should be conducted to 

adequately predict the typical relative performance among the evaluated resource allocation 

heuristics. In evaluating our results, we will demonstrate tha t in a dynamic environment a 

small number of simulation trials are required to sufficiently indicate the performance of a 

resource allocation heuristic relative to our given performance objective. Each trial involves 
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a unique set of tasks with a unique arrival order. 

To produce a dynamic SRM value for a resource allocation heuristic a relatively small 

number of simulations are executed where the mean of each task execution time distribution 

is used as the actual execution time. This produces a dynamic SRM value for each resource 

allocation (simulation trial) where the dynamic SRM value is determined as the average of 

the instantaneous SRM values within that simulation trial. The dynamic SRM values for 

all of the simulation trials are then combined by taking their average to determine a single 

dynamic SRM value for the resource allocation heuristic. 

The dynamic SRM values for different resource allocation heuristics can then be com­

pared to select the approach that is more robust within the given environment. That is, 

given the presented formulation of the instantaneous SRM, a simulation trial that has a 

higher dynamic SRM value should reasonably be expected to produce fewer task deadline 

misses. In the next section, we present the heuristics that are to be evaluated using the 

dynamic SRM value in Section 8.7. 

8.5 Resource Allocation Heuristics to Evaluate 
8.5.1 Introduction 

The goal of resource allocation heuristics is to select a mapping of tasks to machines and 

scheduling of tasks within a machine that minimizes an objective function. The presented 

heuristics do not directly at tempt to maximize the stochastic robustness metric, instead 

focusing on minimizing the primary objective function. In the results section, the heuristics 

will be compared using both the stochastic robustness metric and their average performance 

relative to minimizing Equation 53. All of the heuristics were given a limited amount of 

time to complete a mapping event. 

8.5.2 Two Phase Greedy 

The Two Phase Greedy heuristic is based on the principles of the Min-Min algorithm (first 

presented in [50], and shown to perform well in many environments [26], [66], [87]). The 

heuristic allocates one task at each iteration, continuing until all task allocations have been 

resolved. In the first phase of each iteration, the Two Phase Greedy heuristic determines the 
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best assignment (according to the performance goal) for each of the tasks left unmapped. 

In the second phase, it selects the task to map based on the best result found in the first 

phase. The completion time distribution for a given machine j at time t is denoted F J (t). 

Given the set of tasks assigned to machine j at time t, denoted MQi(t), FJ '(i) can be found 

as follows: 

Fi{t) = GT{t,tj*fClj}*fC2J*--- *fc \MQ3(t)\ 
(56) 

The Two Phase Greedy heuristic is summarized in Figure 31. 

while not all tasks are mapped 
for each unmapped task i 

find machine rrij such that 
m,j <- argmin [E[i"(t) * /CjJ-]]; 

\<j<M 

resolve ties arbitrarily; 
end for loop 
let A = all (i, rtij) pairs found above 
select pair(s) (x, rnv) such that 
(x,y)*- argmin [E[Fm>(t) * / C j m . ] ] ; 

V(i,mj)eA 

resolve ties arbitrarily; 
map x to machine y; 
update Fy{t) based on assignment; 

end while loop. 

Figure 31: Pseudo-code describing the Two Phase Greedy heuristic. 

8.5.3 Segmented Two Phase Greedy (STG) 

The segmented two phase greedy heuristic relies on "segmenting" the collection of tasks to be 

allocated into n groups and then applying a two phase greedy heuristic to each group [107]. 

A weighting factor is used to determine segments. The new STG heuristic introduced here 

for this environment calculates a task's weight based on the probability of the task meeting 

its deadline. That is, the lower the probability that a task will complete within its deadline 

the higher its queuing priority will be. A weight 7T£ that is used to assign the task queueing 

order is defined for a task i given M machines as follows, 

TTi = 

M 

E nm) < ft 
j = i 

M 

•max] 

(57) 
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The individual weights are used to define a weighted expected time to compute for each 

task, denoted W;7- for a given task i on machine j . 

Wij = TTiE[TCij (58) 

The weighted expected execution times are combined to produce a weighted expected 

completion time, denoted yV,^CT(t) for a given task i on machine j at time t. The weighted 

expected completion time is calculated using Equation 59. 

mcl(t) = Wij + K\F'(t)} (59) 

Tasks are sorted in ascending order according to the average of their Wij values across 

all machines at the time of the mapping event. The sorted task list is then divided into n 

segments of equal length that are allocated to machines using a two phase greedy heuristic. 

The two phase greedy heuristic is used to minimize the weighted expected completion time 

for the last to finish task. Figure 32 presents the details of the STG heuristic discussed 

here. 

sort tasks in ascending order by average W,j value 
partition sorted task list into n segments 
for each segment <S 

while not all tasks are mapped 
for each unmapped task i in S 

find the machine rrij such that 

rtij <— argmin WECT(t) 
i<j<M L 

resolve ties arbitrarily; 
end for loop 
from all {i,m,j) pairs found above 
select pair(s) (x, y) such that 

(x,y) «rW argmin 
V(z,mj) 

resolve ties arbitrarily; 
map task x to machine y; 
update Fv(t) based on assignment; 

end while loop 
end for loop. 

Figure 32: Pseudo-code describing the STG heuristic. 
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Because a new mapping event occurs each time a task finishes, in general, each machine 

needs no more than two pending tasks. Thus, once every machine has two tasks pending, 

the heuristic can terminate the mapping event. This was utilized in the implementation of 

the STG heuristic to improve the heuristic's execution time. 

8.5.4 Negot ia t ion 

Iterative approaches have been applied to static mapping problems to search the space of 

task permutations in a schedule [14,15,102]. Local search also has been applied to dynamic 

scheduling problems [77,82]. The negotiation heuristic introduced here is modeled after such 

iterative heuristics operating in a dynamic environment. A total ordering of tasks serves 

as input to a schedule builder that assigns tasks to machines such that the performance 

objective is maximized. The total ordering is iteratively permuted and the schedule builder 

re-applied to produce a new resource allocation. Schedules with a higher value are kept, 

where value is defined by the evaluation of a fitness function. The procedure is analogous 

to a next-descent search in schedule space. 

Each iteration of the negotiation heuristic relies on computing the following two metrics. 

The local earliness metric quantifies the difference between a task's expected finishing time 

and its deadline given the current mapping and scheduling. The local earliness metric for 

a given task i at time t, denoted LEMg, can be quantified as, 

LEMij = jlfax - E[Fi{t)]. (60) 

Using the local earliness metric the global earliness metric, denoted GEM for a given 

mapping event, can be found as the sum of the local earliness metrics for all mappable 

tasks. That is, given a task ordering o and an operator m(i) that returns the machine that 

task i has been assigned 

GEM(o)= Y, LEMim(i)- (61) 

VieMQ(t) 

An iteration of the negotiation algorithm is defined as follows. From a current ordering LO_ 

of tasks in MQ(t), two tasks are randomly selected for swapping (tasks are initially ordered 
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by arrival times). The ordering that results from this modification, denoted u/_, is used 

as an activity list for a schedule builder. The schedule builder assigns each task in u/, in 

order, to the machine that maximizes the local earliness metric as defined by Equation 60. 

The fitness of the resulting mapping is measured using the global earliness metric defined 

in Equation 61, where a higher global earliness metric indicates a more fit schedule. If the 

fitness of this mapping is the best encountered, the ordering u/ is kept for the next iteration. 

Otherwise, the ordering is discarded and the original ordering w is maintained for the next 

iteration. Negotiation terminates after AT iterations have been executed. The Negotiation 

heuristic is summarized in Figure 33. 

initialize u> to an ordering of all tasks to be mapped 
for N iterations 

randomly select two tasks for swapping 
swap ordering of selected tasks 
assign resultant total ordering to u/ 
execute schedule builder using u/ 
if {GEM{J) < GEM{u)) 

ui <— u>' 
end for loop. 

Figure 33: Pseixdo-code describing the Negotiation heuristic. 

8.6 Simulation Setup 

For this research, it is assumed that 1) the time necessary for a mapping event is negligible 

compared to the task arrival time, and 2) task execution times are considerably longer than 

the difference between successive inter-task arrival times. 

To evaluate the effectiveness of the dynamic SRM value for predicting heuristic perfor­

mance we considered two sets of simulations. In the first set of simulations, a small number 

of simulation trials were conducted to produce a dynamic SRM value for a resource allo­

cation heuristic, as defined in our methodology. For the second set of simulations, a larger 

number of trials were conducted to produce sample cost values for each heuristic, where 

the actual execution time for each task is determined by sampling the execution time pmf 

for that task. For this work 10 simulation trials were used to produce a dynamic SRM 

value for a resource allocation heuristic as compared to 100 simulation trials to evaluate the 
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performance metric. 

All simulations consisted of 1024 tasks to be processed by eight machines, where task 

arrival times were not known in advance. Each arriving task belonged to one of five classes 

whose execution time pmfs for each machine were known in advance. The execution time 

for a mapping event for all heuristics was limited to 0.1 seconds. 

8.7 Simulation Results 

The heuristics were compared using the dynamic SRM value and their ability to minimize 

cost, i.e., the number of tasks that miss their deadlines. Recall that the dynamic SRM value 

for each heuristic was constructed using a small number of independent simulation trials, 

where the actual execution times for tasks were set to the expectation of the task execution 

time pint's. 

Evaluating the success of the dynamic SRM value in comparing heuristics requires the 

actual performance of each heuristic over a significant number of simulation trials. Given 

the formulation of the dynamic SRM value, a high dynamic SRM value for a heuristic should 

indicate a low cost for the heuristic. In other words, heuristics that produce higher dynamic 

SRM values should have lower cost, i.e., have fewer task deadline misses, than those with 

low dynamic SRM values. 

Figure 34 presents the cost distributions for each of the three heuristics. Each distribu­

tion was generated using a kernel density estimator where the kernel function was set to be 

Gaussian [24]. The cost results from the 100 simulation trials were used as the sample data 

for the kernel density estimator. Also plotted in the figure are the means of each distribution 

and the calculated dynamic SRM value for each heuristic. The cost distributions for the 

three heuristics are only valid in the interval [0,1024] corresponding to the lowest possible 

cost for a heuristic and the highest possible cost given the defined simulation setup. 

As can be seen in Figure 34, the Negotiation heuristic produced the lowest mean cost of 

87.77 and had the highest dynamic SRM value of 0.609. The Two Phase Greedy heuristic 

had the next lowest mean cost with 279.28 and the next highest dynamic SRM value of 
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F i g u r e 34: The distributions of cost values for all three heuristics. The cost distributions 
were generated using a kernel density estimator and the results of the 100 simulation trials. 

0.392. Finally, the STG heuristic produced the highest mean cost of 593.6 and the lowest 

dynamic SRM value of 0.206. 

The results of Figure 34 suggest that there is a correlation between the dynamic SRM 

value and the number of tasks that miss their deadlines. If there is a correlation between the 

dynamic SRM value and the number of deadline misses, then a plot of all of the simulation 

sample points taken for the three heuristics should lie on a common curve. To evaluate this 

conjecture, we combined the sample points for the three heuristics and applied Bayesian 

regression to produce Figure 35. 

The sample costs taken from the three heuristics are plotted as points in the figure 

where triangles represent the sample points taken from the Negotiation heuristic, diamonds 

represent the sample points for the STG heuristic, and circles the sample points for the 

Two Phase Greedy heuristic. Using these data points a Bayesian regression model [24] 

was generated to fit the points to a common curve. The results of the regression model 

are plotted in Figure 35 as the the dynamic SRM value versus the logarithm of the cost. 
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Figure 35: Plot of dynamic SRM value versus the logarithm of the costs for all three 
heuristics. A Bayesian regression model has been used to fit a curve to the combined set of 
sample points for all three heuristics. The line in the figure is the mean of the regression 
model and the shaded region represents one standard deviation around the mean. 

The model combines a series of radial basis functions with variance 0.2 that were uniformly 

distributed on the interval [0,1]- The range of cost results for the simulation trials were 

re-mapped to the interval [0,1] where 0 corresponds to the smallest possible cost and 1 to 

the highest possible cost, i.e., 1024. The line plotted in the figure represents the mean of 

the Bayesian model and the shaded region represents one standard deviation around the 

mean. The generated model appears to fit the combined sample points taken from the 

three heuristics to a single simple curve suggesting that there may be a correlation between 

changes in the dynamic SRM value and changes in cost. Next, we consider the relative 

performance of the individual heuristics. 

From the plot of Figure 34, it appears that the negotiation heuristic generally outper­

forms the others. To more accurately compare the results of the three heuristics another 

distribution was generated to assess the frequency with which the Negotiation heuristic 

outperforms the STG and Two Phase Greedy heuristics. Using the resource allocation cost 

152 



data taken from the 100 trials, Figure 36 shows the cost distributions with mean values for 

both the Negotiation heuristic and the STG heuristic and a cost comparison for the two. 

To generate the cost comparison distribution, labeled "STG vs. Negotiation Cost Compar­

ison," the cost values generated for the Negotiation heuristic were subtracted from those 

generated by the STG heuristic for each simulation trial. The samples used to define the 

actual execution times were drawn in advance of the simulation trials and were the same for 

each heuristic. A kernel density estimator was then applied to the resultant data points to 

generate the distributions in the figure. For each simulation trial, the Negotiation heuristic 

produced a lower cost than that produced by the STG heuristic. However, for a small 

number of simulation trials the STG heuristic performed comparably to the Negotiation 

heuristic. These cost comparison values were very close to zero but still slightly positive 

causing the tail of the cost comparison curve generated by the kernel density estimator to 

edge into negative values. This suggests that there is a small probability that given the 

right circumstances STG might perform better than Negotiation. 

Figure 37 compares the cost distribution for the Two Phase Greedy heuristic with the 

cost distribution for the Negotiation heuristic. As can be seen in the comparison plot, 

labeled "Two Phase Greedy vs. Negotiation Cost Comparison," the density estimate of 

the comparison cost distribution has a non-zero frequency for a sizable number of negative 

values. That is, for these trials the Two Phase Greedy Heuristic had fewer task deadline 

misses than the Negotiation heuristic. However, for the majority of the trials the Negotiation 

heuristic outperformed the Two Phase Greedy heuristic. From the cost comparison plot this 

can be seen because the mean of the comparison cost distribution is positive implying that 

more often than not the Two Phase Greedy heuristic had a higher cost than Negotiation. 

8.8 Related Work 

In [86], the authors define a stochastic methodology for evaluating the robustness of a 

resource allocation in a static environment. In that work, uncertainty in system parameters 
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Figure 36: A comparison of the STG heuristic's cost distribution and the Negotiation 
heuristic's cost distribution. The comparison plot, labeled "STG vs. Negotiation Cost 
Comparison," shows that the Negotiation heuristic consistently performs better than the 
STG heuristic for all simulation trials. 

and its impact on system performance are modeled stochastically. This stochastic model 

was then used to derive a quantifiable measure of the robustness of a resource allocation in 

a static environment. This was done by defining stochastic completion times in a similar 

manner to our current presentation. A major distinction between the two formulations is 

that our previous work only considered a static environment where all machines are idle at 

the beginning of a mapping and the set of all tasks to be mapped is known in advance. In this 

work, the completion time calculations are very similar but machines may not be idle when a 

mapping event occurs and new tasks are constantly arriving. The stochastic completion time 

calculations are an important component of the stochastic robustness metric calculation in 

[86]. The result of the calculation is a probability distribution for task completion times that 

is then used in the calculation of the stochastic robustness metric for a resource allocation. 

Intuitively, the expression of robustness presented in [86] provides a measure of the 
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Figure 37: A comparison of the Two Phase Greedy heuristic's cost distribution and the 
Negotiation heuristic's cost distribution. The comparison plot, labeled "Two Phase Greedy 
vs. Negotiation Cost Comparison," shows that the Negotiation heuristic was not uniformly 
better than the Two Phase Greedy heuristic. 

likelihood that the makespan of a resource allocation will fall within the provided bounds. 

This general concept has been used in this work but has been adapted to the details of 

the present dynamic environment. In this work, we were given bounds on the acceptable 

completion times for each task as opposed to a bound on the acceptable completion time for 

a collection of tasks. The derived joint probability distribution that defines the stochastic 

robustness metric corresponds to the probability that all tasks complete by their deadline 

as opposed to the probability that the collection of tasks will complete by a given deadline 

as in [86]. A further distinction of this work over [86] is the use of many individual measures 

of the resource allocation to produce a predictive measure of the robustness. 

In [72], the robustness concept is used to develop resource allocations in a dynamic 

environment. However, that work utilizes a deterministic estimate of task execution times 

to develop the robustness of the resource allocation's makespan when the task execution time 
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estimates vary from their predicted values. In this work, the robustness of a given resource 

allocation heuristic is instead formulated with respect to its ability to meet individual task 

deadlines. Another distinction between this work and [72] is that task execution times 

in [72] are simply deterministic execution time estimates. In contrast, this work models 

task execution times as random variables where we assume the existence of an empirical 

distribution. 

The study in [80] defines a robust schedule in terms of identifying a Partial Order 

Schedule (POS). A POS is defined as a set of solutions for the scheduling problem that 

can be compactly represented within a temporal graph. However, the study considers the 

Resource Constrained Project Scheduling Problem with minimum and maximum time lags, 

(RCPSP/max), as a reference, which is a different problem domain from the environment 

considered here. 

8.9 Conclusions 

Our results suggest that there is an inverse relationship between the dynamic SRM value 

and the performance objective of the problem studied. In reviewing our results, we explored 

the general relationship between the dynamic SRM value and the performance objective by 

analyzing the fit of a Bayesian regression model to our results. The relatively good fit of 

the regression model to the combined data of the three heuristics is strong evidence of the 

relationship between the dynamic SRM value and the stated performance objective. Our 

results appear to demonstrate that the dynamic SRM value can simplify the evaluation 

of resource allocation heuristics in a dynamic environment. That is, the methodology for 

determining the dynamic SRM value for a heuristic reduces the number of simulations 

required to demonstrate the superiority of one heuristic over another in a dynamic resource 

allocation environment. 

Using these results we compared the performance of three different heuristics taken from 

the literature and applied to a stochastic dynamic environment. From this comparison, the 

Negotiation heuristic showed promising results in this environment. Given the apparent 
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relationship between the dynamic SRM value and the stated performance objective, a valu­

able extension of this work would be the development of resource allocation heuristics that 

incorporate the dynamic stochastic robustness metric during a resource allocation. 

As an extension of this initial work, we will consider the application of the stochastic 

robustness concept within a resource allocation heuristic. This extension will explore how 

best to use the presented metric within a resource allocation. An important element that 

must be investigated within this context is how to differentiate between two resource allo­

cation events that both present 0 probability for all tasks to meet their completion time 

goals. One proposal for accommodating this lack of fidelity in the robustness metric is to 

identify all of the tasks that have a 0 probability to meet their completion time goals and 

consider the robustness metric for only the remaining tasks. By adding this dimension to 

the robustness metric we can increase the sensitivity of the metric in over-subscribed sit­

uations that are of principal interest. Our proposal is to evaluate the use of the dynamic 

robustness metric during resource allocation and possibly extending the definition of the 

metric to improve its capabilities within a resource allocation. 
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CHAPTER 9 

BAYESIAN INFERENCE BASED RESOURCE 

ALLOCATION IN A HETEROGENEOUS COMPUTING 

SYSTEM 

9.1 Introduction 

This work was motivated by a heterogeneous parallel and distributed computing system 

used for image processing. In this system, user requests for processing are queued to a 

resource manager for assignment to any one of a collection of dedicated machines. Each 

request consists of an application to be executed, e.g., compression, decompression, rotation 

and an image to be processed. The list of available image processing applications that the 

user may select from is limited to a small set of frequently requested algorithms such as 

may be found in a lab or military environment. 

Often, heterogeneous, distributed computing systems must operate in environments 

where uncertainty in system parameters is common. Robustness in this context can be 

defined as the degree to which a system can function correctly in the presence of parameter 

values different from those assumed [3], We define a stochastic robustness metric [89,93] 

for quantifying the robustness of a resource allocation in a stochastic dynamic environment. 

In this environment, the exact execution time of any given application is dependent on the 

details of the image that is to be processed. Thus, the execution times of these applications 

may be highly variable and are treated as random variables. Because the list of algorithms 

that may be requested is limited, the execution time random variable for each algorithm 

is assumed to be well characterized. That is, we assume that a probability mass function 

(pmf) is available for each application execution time random variable [104] (determined by 

either experimental or analytical techniques [64]). 

The exact sequence of user requests for processing are unknown prior to their arrival, 
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i.e., job arrival times are not known in advance. Each arriving request is assigned a deadline 

relative to its arrival time, the size of the image that is to be processed, and the expected 

execution time of the algorithm requested (averaged across all machines). The system 

provider requires that each request complete by its assigned deadline. However, if the 

system were to fail to complete a request by its deadline, then the request must be completed 

on a best effort basis. From this set of requirements, we formulate a robustness metric for 

resource allocations in terms of the probability that the allocation will complete all assigned 

requests by their deadlines. We use this formulation of the stochastic robustness metric to 

design resource allocation heuristics capable of allocating a dynamically arriving set of 

requests to a heterogeneous computing system. The problem of resource allocation in the 

field of heterogeneous parallel and distributed computing is NP-complete (e.g., [32,50]), 

therefore, the development of heuristic techniques to find near-optimal solutions represents 

a large body of research (e.g., [1,36,39,42,50,61,66,103]). 

The major contributions of this work include: (1) a mathematical model for quantifying 

the robustness of resource allocations in a stochastic dynamic environment that can be used 

during resource allocation to inform decision making and (2) the design of two novel resource 

allocation techniques based on this formulation of robustness. Specifically, we propose a 

one-step lookahead procedure for resource allocation that compares the value of available 

allocation decisions for their impact on the defined robustness metric. Our results clearly 

suggest the viability of this approach in this environment. 

In the next section, we present an overview of the system model used to evaluate the 

chosen approach. Section 9.3 presents our mathematical model of robustness in a dynamic 

environment. Two new heuristics based on this model of robustness are presented in Section 

9.4. The details of the simulation setup used to evaluate our heuristics are presented in 

Section 9.5. Section 9.6 provides the results of our simulation study. A sampling of the 

related work is presented in Section 9.7 and Section 9.8 concludes the paper. 
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9.2 System 

The computing system used in this work is comprised of a collection of heterogeneous ma­

chines that are dedicated to executing a dynamically arriving collection of image processing 

requests. Incoming imaging requests are queued at a resource manager for assignment to a 

machine for processing. Each request has three elements: the application to be executed, 

the data that is to be processed by that application, and a deadline for completing the 

processing. After assignment, a request is placed in the input queue of its assigned machine 

and any required data are staged to the machine in advance of application execution. We 

assume that once assigned requests cannot be reassigned to another machine. In this work, 

we make the simplifying assumption that any data required to complete a request can be 

pre-staged before the machine begins processing the associated request. 

The set of applications to be executed is assumed to be composed of a collection of 

frequently run algorithms. The actual execution time of each application is dependent 

on the data that are to be processed, where the exact details of this dependence are not 

known in advance. However, we assume that an accurate pmf describing the possible 

execution times for each application exists and is available to the resource manager to aid 

in decision making. There are several existing techniques for generating such a probability 

distribution [51]. 

The system is required to complete each request for processing by its assigned deadline. 

If the system fails to complete a request by its assigned deadline, then it is penalized a 

fixed amount for each failed request. For any requests that miss their assigned deadline, the 

system is required to complete them on a "best effort" basis, i.e., requests must be completed 

as soon as possible when they miss their deadline. The goal of resource allocation heuristics 

in this environment is to minimize the number of requests that miss their deadline. 

9.3 Mathematical Model 
9.3.1 Stochastic Appl icat ion Complet ion T i m e 

Although some applications may belong to the same class, application execution times are 

inherently data dependent and may vary in an unpredictable manner. Application execution 
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times are modeled as random variables. 

We assume that all applications that are to be executed by the system can be individually 

classified into one of C_ classes according to the details of the application that is to be 

executed. That is, each application i is assigned to exactly one class, denoted Cj, (CJ £ C). 

The execution time of each application i (i e Cj), executed on machine j (one of the M 

machines in the HC suite), is modeled as a random variable, denoted aCij. In addition, 

each application execution time is assumed independent, i.e., there are no inter-application 

data dependencies in this environment. This assumption of independence is valid for non-

multitasking execution mode which is commonly considered in the literature [36,59,66,103]), 

and applied in practice in a variety of systems, e.g., an iterative universal datagram protocol 

server model [43]. 

We assume that the probability distribution describing the random variable aCij has 

been created from measurements of the response times of actual application executions. A 

typical method for creating such distributions relies on a histogram estimator [104] that 

produces a discrete probability distribution known as a probability mass function (pmf). 

Each application class defines a set of pmfs that each describe the probability of all possible 

execution times for that class of application on each machine within the HC suite. The pmf 

describing the execution time of application class c executed on machine j is denoted Ty. 

We assume that the collection of application execution time pmfs have been provided in 

advance and that all of the application classes that the system may be asked to execute are 

known prior to system execution. Finally, each arriving application i is assigned a deadline 

for completion, denoted 5j, based on its arrival time, denoted a.j. 

Determining the completion time for a machine j at time-step t^k\ and therefore the 

completion time of a particular application i, requires a means of combining the execution 

times for all applications assigned to that machine. Using a deterministic model of task 

execution times, the estimated execution times for all applications assigned to machine j 

would be summed with the machine ready time to produce a completion time. A simi­

lar procedure is followed using a stochastic model as well. However, calculating stochastic 
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completion times requires the summation of random variables as opposed to determinis­

tic values. A summation of random variables can be found as the convolution of their 

corresponding pmfs [63,78]. 

Let MQ(t(k>) be the set of all applications that are either pending execution or are 

currently executing on any of the M machines in the HC suite at time-step t ^ . To determine 

the completion time for an application i on machine j at time-step t^\ identify the subset 

of applications in MQ(t^k>) that were assigned to machine j in advance of application i 

that have not yet completed execution, denoted MQij(t^). The execution time pmfs for 

the pending applications will be convolved [63,78] with the completion time distribution of 

the currently executing application and the execution time distribution for application i on 

machine j to produce the stochastic completion time pmf for application i on machine j . 

The execution time pmf for the currently executing application on machine j requires 

some additional processing prior to its convolution with the pmfs of the pending applications 

to create a completion time pmf. For example, if the currently executing application on 

machine j began execution at time-step t^ (j < k), some of the impulse values of the 

pmf describing the completion time of the currently executing application may be in the 

past. Therefore, to accurately describe the completion time of application i at time t^ 

requires that these past impulses be removed from the pmf and the remaining distribution 

renormalized. After renormalization, the resulting distribution describes the completion 

time of the currently executing application at time-step vk> on machine j . To simplify 

notation, define an operator GT(s, d) that accepts a scalar s and a pmf d as input and returns 

a renormalized probability distribution where all impulse values of the returned distribution 

are greater than s. The completion time pmf of the currently executing application on 

machine j is determined by applying the GT operator to its completion time pmf, using 

the current time-step t^ >. The resulting distribution is then convolved with the pmfs of 

the pending applications assigned to machine j and the execution time distribution of 

application i to produce the completion time pmf for application i on machine j at the 

current time-step 
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9.3.2 Calculating Robustness 

The robustness of a resource allocation in this environment is defined by the joint probabil­

ity that all applications will complete by their assigned deadline at a given time-step t^k\ 

To calculate this value, for each machine j , we calculate the joint probability of completing 

all applications assigned to this machine by iteratively applying Bayes theorem [24] to con­

vert the joint probability of completing all applications by their deadline into a combination 

of simpler known probabilities. The basis for this calculation is the known probability of 

completing the currently executing application a\j by its deadline, denoted p(a\j). Because 

the start time of the currently executing application is known and its completion time dis­

tribution is not dependent on any of the remaining applications assigned to this machine, 

we can find this probability directly. For machine j , we calculate the completion time distri­

bution of a\j by convolving its execution time distribution with its start time comparing the 

completion time distribution for a y with its deadline to find p(a\j). Given rij applications 

assigned to machine j , we iteratively apply Bayes theorem as follows: 

P(a2j) = p(alj)p(a2j\aij) 

P(a3j) = P{a2j)p{a3j\a2j) 

P{anjj) = P(0n j-_1i)p(0n jj|0n j-ij)-

Convolving the distribution of p{a\j) with the execution time distribution of a2j gives 

the completion time distribution for a<ij, given a\j completed by its deadline. The final step 

in determining p{a2j\a\j) is to compare the completion time distribution for a^j with its 

deadline. That is, p(a,2j\aij) is found as the sum over the completion time distribution for 

ct2j that corresponds to a^j completing by its deadline. More generally, to calculate each 

p(a,ij\ai-\j), we extract the portion of the completion time distribution for aj_ij whose 

completion times are less than or equal to the deadline for ai-ij. This portion of the 
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probability distribution is then renormalized to form the pmf corresponding to p(a(i-i)j)-

At any time-step t^k\ each application in the resource allocation has been previously 

assigned to the input queue of some machine j (1 < j < M). Recall that there are no explicit 

inter-application dependencies—the only dependence that may exist between applications 

is their reliance on the same machine for execution. Thus, we can formally define the 

stochastic robustness of a resource allocation at a given time-step # ) , denoted 0 ^ , as the 

product of each joint probability associated with a given machine. That is, 

0{k) = X\p{aij,a2jr-- ,an3J). (62) 

9.4 Heuristics 
9.4.1 Immedia te Bayes Allocator 

Finding an optimal allocation in this environment requires the evaluation of each possible 

application allocation at every time-step throughout the entire simulation [20]. Unfortu­

nately, for any problem of reasonable size, this calculation is infeasible to complete within 

the context of a dynamic system such as ours. We explore an approximation of an optimal 

allocation policy that constrains the set of controls considered at each time-step to a small 

subset of those available. 

We begin our approximation by sorting the available applications based on the urgency 

of each request.Urgency is determined based on a combination of the deadline for complet­

ing the request, its arrival time, and average expected execution time of the application 

associated with the request. That is, the urgency of the kth application request, denoted 

Uk, can be calculated as, 

uk = Sk - ak -1/MJ2 (E[rCfci]). (63) 
j 

Each allocation begins by ranking all pending requests based on urgency and sorts them 

according to decreasing urgency. For the most urgent task, we identify the machine that 

provides the highest probability to complete the application before its deadline. Because 
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the robustness values are limited to the range [0,1], multiple machines may equivalently 

maximize robustness. In this case, the heuristic identifies all of the machines that would 

achieve this robustness value for the task allocation. In addition to finding the best alloca­

tions at this time-step, the heuristic also identifies the best allocations one time-step in the 

future. The probabilities associated with these two choices are then compared to determine 

if there is any penalty for waiting to assign the request now. That is, as long as there is 

no reduction in robustness in the next time-step relative to the robustness value achievable 

in this time-step, the heuristic will wait on assigning the request. By waiting, the heuristic 

may benefit from the additional information that is revealed in the next time-step, e.g., an 

application may complete earlier than expected allowing for a more robust assignment on 

another machine. 

If the heuristic identifies that the current robustness value is higher than the robustness 

value in the next time step, then the heuristic is at a critical point in the allocation of the 

request under consideration. That is, the probability of completing the selected request by 

its deadline is declining from this time-step to the next. Once a critical point has been 

reached, the heuristic assigns the request to its chosen machine in this time-step to avoid 

the obvious decline in the robustness of the resource allocation. 

Alternatively, if the most urgent request can wait an additional time-step with no degra­

dation in robustness, then the heuristic checks the remaining unmapped requests. Each 

unmapped request is considered for allocation in order of urgency, identifying the machine 

assignments for the request that maximize the probability of completing the request by its 

deadline, in both this time-step and in the next. If the robustness of the completion time for 

the chosen assignment is lower in the next time-step than in this time-step and the selected 

machine is different from the chosen machine for the most urgent request, then we assign 

the request. However, if there is a change in robustness but the selected machine is the same 

as the selected machine for the most urgent request, then we apply the sufferage concept 

of [66] comparing the difference in robustness values for the best and second-best machines 

for each of these requests. If the most urgent request would suffer the most by not getting 

its best machine, then the heuristic waits on the application assignment. Otherwise, the 
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alternate application is assigned to its first choice machine over the most urgent request. 

That is, if the most urgent request would suffer the most, then we know that we can wait 

another time-step and achieve the same robustness value for this request. Thus, we can 

avoid committing to any assignments at this time-step. If there is no penalty for waiting on 

the second most urgent request, then we proceed to examine all other remaining requests 

in order of urgency using this same procedure. 

Allocations based on deadlines ignore the arrival process for new requests. For exam­

ple, assume that a number of requests have recently arrived that all have relatively loose 

deadlines, i.e., none of the requests will be allocated at this time-step or in the near future. 

Next, in a future time-step a number of requests arrive that have tight deadlines. By this 

time, the robustness for the earlier requests may begin to decline. That is, in this time-step 

all of the pending requests may need to be assigned, but the system does not have sufficient 

capacity to complete all requests in such a short period of time. However, by allocating 

the original requests when they arrived, the heuristic may have been able to avoid this ar­

tificial congestion. Our simple approach accounts for this situation by limiting the number 

of pending requests at each time-step. In the event that the number of pending requests 

exceeds this threshold, then the heuristic assigns the most urgent request to the machine 

that maximizes the probability of completing the request by its deadline, continuing in 

this manner until the number of applications drops below the provided threshold. For our 

environment, the best results were achieved using a threshold of 5 pending applications. 

9.4.2 M a x R o b u s t 

The MaxRobust heuristic applies a simple greedy approach to maximizing the robustness 

of the resource allocation. Upon the arrival of each new application execution request, 

MaxRobust assigns the application to the machine that maximizes 9^ at each time-step t ^ . 

That is, MaxRobust calculates the 9^ value for each possible machine assignment selecting 

the assignment that maximizes 9^. In this way, MaxRobust greedily assigns applications 

so as to attempt to maximize the joint probability that all applications complete by their 

deadline. 
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9.4.3 Min imum Comple t ion T ime ( M C T ) 

For comparison, we implemented a Minimum Completion Time (MCT) heuristic [66,110] 

that ignores the robustness of each allocation, instead allocating applications such that their 

expected completion time is minimized. That is, upon arrival each application is assigned 

to the machine that provides the earliest expected completion time. 

9.5 Simulation Setup 

Our simulation environment consisted of eight machines that exhibited inconsistent hetero­

geneous performance. To model the sample mean application execution times for each class 

of application on each machine, we used the base execution results for the twelve SPECint 

2006 benchmark applications [98]. The execution times of the selected benchmarks were 

used to define the mean of a gamma distribution used to generate 500 random sample 

execution times for each application class on each machine. After generating the sample 

execution times, we applied a histogram to the result to produce a noisy approximation of 

the original distributions—one for each application class assigned to each machine. Each 

benchmark served as a model for an application class to be executed by the system creating 

an eight by twelve matrix of execution time pmfs. 

To evaluate the effectiveness of our heuristics we conducted 50 different simulation trials. 

Each simulation modeled a bursty arrival period of application requests. That is, the 

frequency of application arrivals during each simulation is such that none of the heuristics 

tried were able to complete all applications by their assigned deadline for each trial. Each 

simulation trial included 150 applications that arrived over a period of 1,900 time-steps. 

Application arrivals were assumed to follow a Poisson process, where the class of the arriving 

application was randomly selected with a uniform probability. 

9.6 Results 

The heuristics were evaluated based on the percentage of the arriving applications that 

completed by their assigned deadlines. Figure 38 shows a plot of the results for our heuristics 

along with their 95% confidence intervals. From the results of our simulation trials, both 
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Figure 38: A comparison of our heuristic results over 50 simulation trials. The results 
achieved for each heuristic are plotted along with their 95% confidence intervals. 

MaxRobust and the Immediate Bayes Allocator are capable of outperforming the naive 

MCT approach. In our simulations, the MaxRobust and MCT heuristics both operate in an 

immediate mode, i.e., applications are assigned to machines as soon as they arrive. However, 

the MaxRobust approach makes allocation decisions that only maximize robustness while 

MCT allocation decisions at tempt to only minimize application completion times. The 

performance difference between these two approaches is significant and suggests the value 

of the stochastic robustness model for making immediate allocation decisions. 

The 1MB heuristic on average slightly outperforms the MaxRobust heuristic both in 

the number of applications that make their deadline and the average delay incurred by 

each application that misses its assigned deadline. Both heuristics make allocation deci­

sions based on robustness, but the 1MB heuristic also incorporates the value of information 

into resource management. That is, the 1MB heuristic generally waits to allocate applica­

tions until any further waiting would decrease the probability of an application making its 

assigned deadline. 

Figure 39 compares the three heuristics on the basis of the number of simulation trials 
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Figure 39: A comparison of the three heuristic results, where each point on the curve 
corresponds to the percentage of applications that miss their deadlines (plotted on the x-
axis) relative to the percentage of trials where this occurs (plotted on the y-axis). The solid 
line corresponds to the results for the 1MB heuristic, the dotted line corresponds to the 
results for the MaxRobust heuristic, and the dashed line corresponds to the results for the 
MCT heuristic. 

where a given percentage of the applications miss their deadlines. The x-axis of the figure 

defines the percentage of applications that miss their deadlines and the y-axis of the figure 

expresses the corresponding percentage of the simulation trials. The best result achievable 

in the figure corresponds to the line y = 1 (i.e., no applications ever miss their deadline) and 

the worst result is defined by y = 0 (i.e., all applications miss their deadlines). Comparing 

our heuristic results to these two known limits on performance, we see that the MCT 

heuristic (plotted as a dashed line in the figure) appears generally incapable of completing 

applications by their assigned deadlines. We also see that the 1MB heuristic (solid line) 

generally outperforms the MaxRobust heuristic (dotted line). 

Finally, we compare the 1MB and MaxRobust heuristics in terms of average completion 

time delay. We define average completion time delay as the average additional time that 

needs to be added to the deadline of each request to ensure it would complete on-time. 
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Figure 40: Average completion time delay versus the percentage of applications that 
complete by their adjusted deadline for the MaxRobust heuristic (plotted as a solid line) 
and the 1MB heuristic (plotted as a dashed line). 

Using this adjusted deadline, we can compare the simulation results of the heuristics based 

on the percentage of requests that complete by their adjusted deadline. We range the 

adjusted deadline from 0 to 300. Increasing, application deadlines by 300 enabled both 

heuristics to complete all applications on-time. Figure 40 provides a comparison of average 

completion time delay for the MaxRobust (plotted as a solid line in the figure) and 1MB 

(plotted as a dashed line) heuristics. In the figure, the x-axis defines the amount of time 

that each deadline would have to be increased to ensure that the corresponding percentage 

of requests identified on the y-axis would complete on-time. In this figure, the best values 

correspond to the smallest increase in deadline (small x-axis values) that result in the 

largest percentage of applications that complete on-time (large y-axis values). Recall that 

for this environment, the heuristics are required to complete all applications on a best effort 

basis, if they miss their assigned deadlines. We define "best effort" to mean as close to 

the assigned deadline as possible. From the results of Figure 40, we can see that for the 

majority of applications that miss their deadline the 1MB heuristic finishes more of these 

applications closer to their assigned deadline than the MaxRobust heuristic. The difference 

in average completion delay between the two heuristics may account for the difference in 

overall performance seen in the results of Figure 39. 
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9.7 Related Work 

According to the literature, the problem of workload distribution considered in our research 

falls into the category of dynamic resource allocation, assuming that multiple invocations of 

a resource allocation heuristic are overlapped in time with task arrivals. The general problem 

of dynamically allocating a class of independent tasks to heterogeneous computing systems 

was studied in [66]. The primary objective in [66] was to minimize system makespan, i.e., the 

total time required to complete all tasks sent for mapping. This objective is very different 

from the primary objective in our work: complete each application execution before its 

assigned deadline. Both our MaxRobust and 1MB heuristics employ our robustness model 

to effectively achieve this goal. For comparison, we employed the MCT heuristic of [66] in 

this environment and demonstrated the superior performance of the MaxRobust heuristic 

at achieving our resource allocation objective. The research in [66] assumes no deviation 

of the actual time to compute a task from its estimated time to compute (ETC) value, 

i.e., the performance predicted by a resource allocation heuristic is assumed to match the 

actual performance. In our environment, the uncertainty in application execution times is 

significant and must be accounted for in the mathematical model. 

The robustness requirement in this work differs substantially from our earlier work on 

robustness in a dynamic environment [72]. In [72], the robustness requirement was expressed 

in terms of the overall resource allocation, i.e., expressed in terms of the entire allocation. 

In this work, each application has an individual deadline, thus, the robustness metric must 

be expressed in terms of individual applications. In reviewing our results, we compare our 

heuristics using a robustness metric that combines the pending application completion time 

distributions into an evaluation of heuristic performance at each time-step. 

In [93], similar to this environment, each dynamically arriving task is assigned its own 

deadline relative to its arrival time and the execution time of each task is modeled as 

a random variable. However, our previous work focused on predicting the performance 

of heuristics in a stochastic dynamic environment. In this work, we model robustness in a 

manner that enables the use of the resulting robustness metric during resource allocation. In 

addition, this work presents two novel resource allocation techniques based on our robustness 
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metric that appear to perform well in this environment. 

The study in [80] defines a robust schedule in terms of identifying a Partial Order 

Schedule (POS). A POS is defined as a set of solutions for the scheduling problem that 

can be compactly represented within a temporal graph. However, the study considers the 

Resource Constrained Project Scheduling Problem with minimum and maximum time lags, 

(RCPSP/max), as a reference, which is a different problem domain from the environment 

considered here. 

9.8 Conclusions 

In this work, we defined a model of stochastic robustness that facilitates its use during 

resource allocation. We applied this model of robustness to the design of two novel re­

source allocation heuristics capable of assigning applications to machines in a manner that 

minimizes the number of applications that miss their deadline. Both heuristics showed 

significant promise for achieving the desired result in a dynamic environment. In this re­

search, it appeared that the MaxRobust heuristic was comparable to the 1MB heurisitic 

and was significantly less complex. A detailed comparison of our simulation results for the 

MaxRobust and 1MB heuristics suggests that in this environment there may be limited 

value to new information acquired during resource allocation. The results clearly show the 

value of our robustness model in aiding resource allocation decision making. Future work 

in this area should investigate the application of the 1MB heuristic to environments where 

application execution times are less predictable. In such an environment, actual application 

completion time information should be more valuable 
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CHAPTER 10 

OVERLAY NETWORK RESOURCE ALLOCATION 

USING A DECENTRALIZED MARKET-BASED 

APPROACH 

10.1 Introduction 

Recently, information technology systems have begun to rely heavily on the concept of Ser­

vices Oriented Architecture (SOA). SOA is a means of leveraging existing applications as ser­

vices within a distributed computing environment to develop new applications. One mech­

anism commonly used to integrate existing applications is known as the enterprise services 

bus (ESB) [83]. According to the Business Integration Journal [38], "The [ESB] supports 

the unifying integration infrastructure required for SOA and heterogeneous environments." 

By relying on an ESB to implement a distributed application, service requesters—using 

the ESB to communicate with service providers—need not depend on the details of service 

provider implementations, e.g., the physical location of the service provider. Instead, ser­

vice requesters depend on the abstract definition of the service that they are using and trust 

the ESB to forward their requests to an appropriate service provider. Because the service 

requester is not dependent on an explicit instance of a service provider, multiple service 

providers could be deployed within the ESB to provide additional capacity for a service 

that is in high demand. 

An important aspect of an ESB implementation is that it can be decentralized both to 

increase its reliability and to ensure its scalability [23,38]. A common approach to increasing 

the reliability of a system is to duplicate that system many times across many hardware 

deployments, a technique often referred to as replication [23,33], 

Successfully replicating ESB components requires maintaining network transparency 

A preliminary version of this research appeared in [94]. 
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[33]; i.e., the user of the ESB infrastructure should be shielded from the existence of any 

redundant components used to provide the replicated ESB or its attached services. To the 

user, the ESB should appear as a single highly available system that always has sufficient 

capacity to route service requests. Achieving this kind of transparency in service delivery 

requires a mechanism for allowing the ESB infrastructure to adapt dynamically to changes in 

system load. That is, transparently utilizing replicas within an ESB infrastructure requires 

that the replication infrastructure provide a mechanism for routing requests to their physical 

destination. In this work, we focus on the allocation of ESB resources to the shipment of 

service requests to service providers. 

We investigate the application of a decentralized market-based approach to resource 

allocation within a heterogeneous deployment of a replicated ESB environment. Service 

requesters send tasks to service providers using an overlay network provided by the ESB 

infrastructure. The decision of how to allocate ESB capacity to service requests is made 

in a decentralized manner based on a quantification of current resource demand relative 

to current system capacity. Individual service requesters select transmission rates through 

ESB resources that maximize their individual benefit, while the ESB adjusts "prices" for 

network links and ESB computing capacity to reflect current demand. Thus, price setting 

enables service requester decision making by enabling shared resources to communicate a 

simple quantification of current system congestion to requesters. 

Figure 41 presents a graphical model of a simple overlay network provided by a replicated 

ESB. Service requesters are depicted in the figure as triangles, service providers as squares, 

and ESB components as circles. Each service requester is connected to a collection of ESB 

components that "service" requests by dispatching them to a service provider capable of 

completing the request. The number of requests produced by each service requester may 

vary with time according to some unknown process. The capacity of the ESB components 

to service incoming requests may differ from one component to another, i.e., the collection 

of ESB components are assumed heterogeneous in their performance [39,45,56]. Finally, 

each ESB component is connected to a collection of service providers by a finite capacity 

link. 
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Figure 41: An example system where four service requesters are utilizing two ESB com­
ponents to communicate with three service providers. Service requesters are shown as 
triangles, ESB components as circles, and service providers as squares. Each input link to 
an ESB component from a service requester has a finite capacity, denoted Cre • Likewise, 
each output link from an ESB component to a service provider has a finite capacity denoted 
CepU . Finally, each ESB component has a finite capacity for servicing requests, denoted ce. 

Our mechanism for resource allocation can be thought of as a market-based approach 

where market demand for shared resources helps the system to set prices for those resources. 

Some market-based approaches rely on an auction to create a market where prices are set 

by the highest bidder [11,27,41,60]. In contrast, our approach utilizes price setting based 

on duality theory [30]. In duality theory, selected constraints are directly accounted for 

in the optimization criterion as a penalty. This approach is analogous to that used in 

congestion control on the Internet [99] and in ad-hoc sensor networks [29,31,68]. In our 

system model, price variables are introduced to model market demand for shared resources, 

where prices provide a simple quantification of demand relative to supply. For example, as 

the number of requests through an ESB component increases, the ESB component raises 

its "price." Conversely, if the number of requests through an ESB component decreases, 

its quoted price also decreases. In addition to measuring the demand for the component 
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itself, the ESB component also is responsible for stating the demand for the links from that 

ESB component to all of the service providers with which the component can communicate. 

The procedure used to calculate optimal prices for resources is presented in Section 10.3. 

Individual service requesters directly utilize the current pricing information provided by the 

ESB components to make local resource allocation decisions about how best to assign their 

volume of requests within the overlay network given current network utilization. In concert, 

we will show that this mechanism results in provably optimal resource allocations. 

In the replicated ESB environment, we assume that each service provider offers a unique 

service to the overall system and that each service provider always has sufficient capacity 

to service all incoming requests. In a real system, a service provider may be implemented 

using a collection of finite-capacity replica providers, where the replicas combine to provide 

a more reliable scalable service implementation. Within each of these collections, we treat 

the allocation of finite-capacity service provider resources as a separate resource allocation 

problem. In Figure 42, we have re-drawn the distributed ESB environment to show how 

the collection can be used to provide such a service to the ESB system. When treated in 

isolation, the allocation of service provider capacity within each collection is simpler than 

our original distributed ESB problem because there is only one class of shared resource to 

manage. 

To demonstrate resource allocation in this simpler environment, we apply it to a related 

distributed web hosting environment [8]. In a distributed web hosting environment, the 

hosted web site is replicated to multiple web servers to increase the apparent reliability and 

performance of the web site. Incoming user-driven HTTP requests for data are routed to the 

web servers for processing by a collection of independent service requesters. By indirecting 

web server access through service requesters, we can allocate incoming user requests using 

a decentralized approach that is similar to that of the replicated ESB environment. The 

overlay network topology of this environment includes only service requesters and service 

providers, where a service provider is defined to be a web server. This two-layer overlay 

network can also be used to model the allocation of requests by ESB components to repli­

cated service providers in our previous example. That is, in this simpler model, the ESB 
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Figure 42: An example use of finite-capacity service provider resources to implement 
a scalable reliable service within the context of the distributed ESB system. We have 
expanded the depiction of a service provider to reflect the added complexity of providing 
a scalable, highly available implementation through replication. In this example, the ESB 
environment operates as before and the added complexity within a service provider can be 
treated as a separate allocation problem. 

components act as service requesters to a collection of replicated service providers. 

Although an analogous methodology has been studied previously in the context of inter­

net congestion control, it has never been applied within the context of an Enterprise Services 

Bus or to request routing in a distributed web hosting environment. A major contribution 

of this work is the design of a decentralized market-based approach to resource allocation. 

This approach is a novel use of market-based control over shared resources within an ESB 

environment and a distributed web hosting environment. We also demonstrate through 

simulation that our decentralized market-based control mechanism is capable of providing 

near optimal resource management in an ESB setting. 

In the next section, we present an example derivation of a decentralized routing mech­

anism for the distributed web hosting environment. Using the concepts developed in this 

example environment, Section 10.3 provides a more detailed view of the ESB system model 
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and develops an analogous decentralized approach. In Section 10.4, we analyze the robust­

ness of this approach to resource allocation in the replicated ESB environment. Sections 

10.5 and 10.5.2 present our simulation setup and results for the evaluation of this approach 

in a real-world setting. 

10.2 Web Hosting Example 
10.2.1 Sys tem Model 

The environment in this example is that of a heterogeneous, distributed computing system 

designed to service a high-volume web site of world-wide interest. The system being modeled 

was used to implement a portion of the 1998 World Cup web site [8] that processed more 

than 1.3 billion HTTP requests during the summer of 1998. The web site was provided to 

a world-wide audience by four heterogeneous, geographically dispersed systems, each with 

their own processing capacity and workload distribution techniques. This class of system is 

very challenging to implement but occurs surprisingly frequently. The World Cup football 

tournament is just one example of an event of world-wide appeal that necessitates web-based 

coverage. Sites of this type are typically constructed for specific events, and the volume of 

traffic is on the order of billions of requests processed in a period of only a few months or 

less. Other such events that are reasonably expected to draw the attention of a world-wide 

audience in the billions might include the Olympics or the Tour de France. 

Mapping requests to service providers is challenging because of the large volume of 

requests that must be processed. To help cope with this large volume of requests, the 

providers of the World Cup web site [8] chose a hierarchical deployment of the web site, 

where multiple instances of the distributed web hosting environment are deployed through­

out the world. This work focuses on the application of our decentralized resource allocation 

mechanism to the design of a single instance of a distributed web hosting environment. 

Figure 43 presents a graphical depiction of the distributed web hosting environment 

employed to deliver the 1998 World Cup web site. In this example system, users send 

requests for data to a web site over the Internet. These incoming requests are first routed 

to an instance of the web hosting environment by a network-layer load balancer (e.g., [40]). 
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Figure 43: An example deployment of a distributed web-hosting environment. The system 
is designed to provide a web-site of world-wide appeal. Users send requests for data to a 
web site over the Internet. These incoming requests are first routed to an instance of the 
web hosting environment by a network layer load balancer (e.g., [40]). Incoming requests 
are queued for a service requester within the environment. The service requester applies 
our decentralized allocation mechanism to route each incoming request to one of the service 
providers. The service provider processes the incoming request and returns the results to 
the user. 

A request in this environment is defined to be a menu-driven H T T P request for data that 

originates with a user. When incoming requests arrive to a web-hosting environment they 

are placed into the input queue of a service requester within that environment. Acting 

on the user's behalf, service requesters remove incoming requests from the input queues 

and route them to a service provider (i.e., web server) for processing. The service provider 

processes the request and returns the results to the user. 

In our model, each distributed web hosting environment utilizes a collection of service 

requesters to route incoming requests to web servers for processing. Each web server is 

defined to be a service provider capable of servicing any incoming request. 

Let TZ denote the set of all service requesters and let V_ denote the set of all service 

providers. Each service requester r (r G TZ) routes each incoming request to a service 

provider p (p GV). Service requester r produces a variable number of requests at each time 
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step k, denoted /r(fc), based on the arrival rate of user driven requests. Each link connecting 

service requester r and service provider p is assumed to have a finite capacity for moving 

requests, denoted ĉ 'p . Finally, each service provider p can only process a limited number 

of requests in each time step, denoted cp. 

For each service requester, the fraction of its incoming requests that are sent to service 

provider p is denoted gvp. In this example, each service requester r uniquely quantifies 

the value of using each service provider p with a simple scalar measure of value, denoted 

srp, e.g., speed. For a given service requester r and service provider p, we can define an 

aggregate service quality delivered by the system as: 

Y^drpSrp- (64) 
V 

Intuitively, the service quality delivered by the system for traffic sent by service requester 

r can be thought of as the weighted average route quality realized for this traffic, where 

the grp values provide the weights. Finally, the system realizes some utility from delivering 

service requests to their destination. We account for differing service quality by quantifying 

utility, denoted U(x), as the worth of receiving service quality x. In our model, we have 

chosen a utility function that depends on a scalar quantification of service quality. However, 

our technique is applicable to a more general utility function that accepts the full vector of 

grp and srp values to compute a scalar utility value. 

10.2.2 Central ized Optimization 

We initially model resource allocation in this system as a constrained optimization problem 

that will serve as the basis for the derivation of our decentralized approach to resource allo­

cation. We combine the elements of our system model presented in the previous subsection 

to form the following optimization problem: 

maximize /_^fr{k)U I 2^grpSrp I (65) 
r \ p ) 
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subject to: V r, ^ grp — 1 (66) 
p 

Vr ,p , grp>0 (67) 

V r , grpMk) < $f> (68) 

V p, Y^9rPfr(k) < cp (69) 
r 

Intuitively, for each service-requester-service-provider pair Equation 65 sums the real­

ized utility of the service quality scaled by the production rate for that service requester. By 

taking this sum over all service requester-provider pairs we are evaluating the total realized 

utility for the system at time step k. 

The four constraints that must be satisfied for this optimization enforce the capacity 

limitations of the system. First, Equation 66 requires that, for each service requester r, 

all of the requests received in a given time step are sent to a service provider for process­

ing, and Equation 67 enforces the fact that negative decision variables are meaningless in 

this context. Equation 68 enforces the constraint on processing capacity for each service 

provider. Equation 69 enforces the constraint on capacity for each service provider. 

The solution to this constrained optimization problem provides an optimal allocation 

of system resources at any given time step k. The solution can be applied by a centralized 

resource manager to allocate requests to service providers. However, because the production 

rates of requests change from one time step to the next, the optimal allocation of requests 

also changes from one time step to the next. In a problem of reasonable size, the time 

required to solve the constrained optimization problem may be longer than a single time 

step. That is, because the optimal allocation changes with time, a centralized approach 

may continually lag behind the optimal allocation. 

10.2.3 Decentral ized Approach 

To transform the original optimization problem described in the previous subsection into a 

decentralized algorithm for resource allocation, we apply the Lagrangian multiplier method 

[19,21,30]. In this way, we convert the centralized optimization problem into an equivalent 
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problem that can be separated into \7Z\ independent sub-problems where each of the sub-

problems is much simpler to solve. The constraint of Equation (69) in the centralized 

problem reflects a constraint on shared resources. The Lagrangian method provides a 

mechanism for introducing Lagrange multipliers (interpreted as "prices") for these shared 

resources that can be directly accounted for during optimization as a penalty. An important 

feature of this approach is that solving for the grp values for each service requester no longer 

requires detailed knowledge of the grp values of the other service requesters. These detailed 

values are instead replaced by a collection of prices produced by the service providers, where 

each price reflects the current demand for the capacity of that service provider. Let <j)v{k) 

denote the price of using service provider p (Vp 6 V) at time step k. Each service requester 

r must choose grp values to solve the following problem: 

maximize fr(k) ^ [U (grpsrp) - <t>P(k)grp\ (70) 
p 

subject to: \ grp = 1 (71) 
p 

Vp, grp>0 (72) 

grpfr(k) < c£) (73) 

The above optimization problem only depends on the prices obtained from each service 

provider and information that is locally available to the service requester. The maximization 

of this simpler problem is modified to account for the cost of using each service provider. 

In this way, the constraint on service provider capacity is accounted for as a penalty as 

opposed to a direct constraint [30]. However, the remaining constraints on local resources 

must still be enforced as before. 

By reformulating the centralized optimization problem in this manner, we are able to 

obtain a collection of sub-problems whose combined solution is mathematically equivalent to 

the solution of the original centralized optimization problem. The final required ingredient 
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in this model is an algorithm for computing the appropriate price for the consumption of 

capacity at each service provider. 

Each service provider p is required to update the price in the model for its capacity 

such that the price reflects expected near-term future demand for the resource. The price 

of each shared resource reflects the amount of excess capacity that the resource has for 

processing requests. If the demand for a shared resource is greater (less) than the supply, 

then the price of the resource should increase (decrease). The price of each shared resource 

is updated according to the difference between the capacity of the shared resource and 

current demand for the resource scaled by a constant factor. In our model, we introduce 

a constant step-size parameter for controlling price updates for service provider capacity, 

denoted v\ whose value must be greater than 0. Each service provider p can simply update 

prices (f>p(k) using the following update procedure where [a;|+ = max{x,0}: 

Mk + 1) = 

The update procedure is intentionally expressed in terms of abstract time-steps. Each 

pair of successive time-steps can be mapped to a specific interval of real time. There are a 

variety of possible interpretations of the real time that passes during the interval between 

any pair of successive time-steps k and k + 1. One natitral interpretation treats all of the 

time intervals as having the same constant length, i.e., each interval corresponds to the 

same amount of real time. 

The step-size v determines how the system will react to fluctuations in demand for shared 

resources. Notice that the step-size determines the magnitude of price updates. That is, if 

v is too small, then the prices will be slow to react to changes in demand. For example, if 

price updates are too small and the demand for a resource is much greater than its capacity, 

then the price for the shared resource may not increase enough to deter future requesters 

from using it until a much later time. Consequently, the number of queued requests in the 

input buffer of the shared resource may increase because it is consistently receiving more 

requests than it can process. The value v needs to be large enough to enable the system 

bp{k) -v cp - ^ 9rPfr(k) 
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to react to substantial changes in demand, i.e., increase the price enough to deter recurrent 

excessive demand. Care must also be taken to prevent the opposite scenario, where prices 

are increased so much that future demand for the shared resource is unnecessarily reduced 

to 0. That is, if v is set too high, then the system may thrash, i.e., demand may oscillate 

between shared resources potentially overwhelming some resource in any given time step. 

An example to illustrate communicating prices is shown in Figure 44. In this example, 

service requester r\ is sending requests to service providers p\ and p2- To facilitate the 

allocation decisions made by r\, each of the service providers provide prices for using each 

of the shared resources that it is responsible for in the system, e.g., the capacity of service 

provider p\. 

*„.(*) 

Figure 44: An example of the price update procedure. In the example, service requester 
r\ receives updates for the price of using service provider p\ and service provider p^. 

10.3 Replicated ESB 
10.3.1 Sys tem Mode l 

In this section, we introduce a more complex system model involving multiple shared re­

sources. This example system is based on modeling a replicated ESB as an overlay network 

(shown in Figure 41). In this computing system, there are three types of entities: service 

requesters, ESB components, and service providers. As in our previous example, service 

requesters send requests to service providers, however, in this example, requests are routed 

to the service providers by a collection of independent ESB components. In our previous 
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example, the service providers all performed the same function, i.e., they all served up pages 

from the same web-site. In this example, each service requester is assumed to provide a 

unique service to the system. Service requesters request a service by name and it is the 

responsibility of the ESB components to route incoming requests to a service provider ca­

pable of processing the request. It is helpful to consider a service requester in this context 

as an agent that is making requests to an ESB on behalf of an application that is exter­

nal to the replicated ESB system. That is, an external application passes requests to the 

service requester which makes routing decisions to ESB components on behalf of the appli­

cation. In this way, the service requester can be treated as a component of the overall ESB 

infrastructure instead of as an outside entity. 

Let £_ denote the set of all ESB components, let H continue to denote the set of all 

service requesters, and let V continue to denote of the set of all service providers. In 

this system, rates of requests from individual service requesters are not required to be 

observable; instead, the system only requires that each ESB component be able to measure 

the number of requests that have arrived in each time step—a value readily available by 

inspection of the input buffer of each ESB component. In this system, each service provider 

is assumed to provide a unique service to the system. Thus, each service requester r (r G TV) 

produces requests for a service provider p (p G V) at a rate o£ frv(k) requests per time step k. 

Service requesters are modeled as having an output buffer, and all requests produced by the 

requester are written to this output buffer prior to transmission. Requests are transmitted 

from the output buffer of the service requester using the appropriate overlay network link to 

the input buffer of the selected ESB component. Each ESB component processes requests 

from its input buffer, forwarding each request to its chosen service provider. 

In the example of Figure 41, service requesters are connected to all of the ESB com­

ponents, i.e., there is a finite-capacity link connecting each service requester to each ESB 

component, where the finite-capacity of each link is modeled as a constraint on the trans­

mission rate through that link. Thus, a link between a service requester r GlZ and an ESB 

component e G £ is subject to a capacity constraint Cre such that the rate of requests sent 

from service requester r to ESB component e cannot exceed cj.e in any given time step. 
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Requests received by an ESB component are assumed to be buffered in a finite-capacity 

input buffer for that ESB component. Each ESB component also maintains a finite-capacity 

output buffer for storing requests that have been processed and are ready to be transmitted 

to an appropriate service provider. Each ESB component e € £ is subject to its own capacity 

constraint on its computing capabilities such that the rate at which each ESB component e 

can process requests is limited to Ce. That is, an ESB component e with processing capacity 

ce can move at most ce requests from its input buffer to its output buffer in a single time 

unit. 

The outgoing links from each ESB component to its attached service providers are 

subject to capacity constraints. The link connecting an ESB component e to a service 

provider p € V has a finite capacity c^ to move data from the output buffer of ESB 

component e to the input buffer of service provider p. Lastly, in this example, there are 

no modeled constraints on the capacity of the service providers. That is, for this model 

we chose to focus on applying the market-based resource allocation strategy to the ESB 

components. However, it should be clear based on our earlier presentation of the web hosting 

environment that the presented approach could easily be extended to include allocation 

decisions regarding multiple service providers for the same class of service. That is, by 

applying the model of Section 10.2 to the selection of service provider replicas, the capacity 

of each service can be extended to accommodate excessive demand. 

There are two types of shared resources: the ESB components and the links connecting 

ESB components to the service providers. For these shared resources, there is a difference 

between the advertised capacity (ce and c"pl ) of a shared resource and the physical capacity 

of the underlying resource. The physical capacity of any given shared resource can be viewed 

as the "true" capacity afforded by the physical limitations of the device, i.e., the physical 

capacity is an upper bound on the best possible performance of the device. If a system 

were sized such that it were required to operate at its physical limit for the duration of its 

execution, then if that system were ever asked to process more than that limit, it would 

be incapable. It is incumbent upon each ESB component e to construct prices from its 

advertised capacity and not from true capacity. Specifically, the advertised capacity is given 
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as some reasonable fraction of the true system capacity, e.g., we can define the advertised 

capacity as p times the true capacity where p € (0,1) is often called the "load factor." By 

communicating availability in terms of advertised capacity, the ESB component is insulated 

from instantaneous fluctuations that occur during the normal course of system operation 

that might otherwise overwhelm the component. Thus the capacity for each shared resource 

used in our model (ce and c°^ ) is assumed to be the advertised capacity. 

The Information Technology industry is attempting to recover the cost of maintaining 

Wide Area Network (WAN) links by billing for network traffic that is transported across 

these links. That is, some companies are beginning to monitor WAN traffic volume in an 

attempt to bill customers for the amount of data transferred across these expensive network 

links. In a globally distributed system such as a replicated ESB, network link costs need 

to be accounted for during resource allocation. By introducing a pricing scheme for WAN 

links, the network provider has created a situation where some links are more valuable than 

others. To help illuminate the impact of such a decision, consider the following simple 

example. Using the model of Figure 41, assume that one ESB component is physically 

located in Fort Collins, CO, in the U.S.A., and another is located in Bangalore, India. If 

a service requester located in the U.S.A. intends to communicate with a service provider 

also in the U.S.A., then the lowest cost route for this traffic may be through the ESB 

component located in Fort Collins. In this example, by sending traffic through the U.S.A. 

based ESB component, a network charge can be avoided. Although somewhat exaggerated, 

this example illustrates the heterogeneity of the available routes. The system model accounts 

for this heterogeneity by incorporating a quantification of route quality into the optimization 

problem. The quality of each route from service requester r through ESB component e to 

a service provider destination p is given a single numeric value, denoted srev, quantifying 

the quality (e.g., speed) of the route from the perspective of each service requester. 

The goal of this model is to help ascertain an optimal allocation of ESB components and 

associated links to service providers for transmitting service requests. Recall, each service 

requester r produces frp(k) service requests per time step k for a particular service provider 

p. This traffic is sent through some ESB component in £ and all of the traffic must be 
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eventually transmitted to its destination, e.g., to some service provider p. Thus, we can 

identify the percentage of requests from a service requester r sent to a service provider 

p that are transmitted through ESB component e, denoted grev. The goal of a resource 

management heuristic in this environment is to choose a combination of the grep values 

such that a system-wide goal is maximized. 

In this example, we assume that a service requester receives some utility from the suc­

cessful transfer of a request to a service provider. For example, the service provider may 

provide a printer repair service—the data being transferred by the service requester might 

be a notification of a printer outage. Delivering this service request to an appropriate ser­

vice provider enables the provider to dispatch a technician to repair the broken printer. 

That is, each service requester can realize some quantifiable utility from each request that 

is successfully delivered through the system. Additionally, some service requesters may be 

considered more important than others. For example, the system provider may wish to pro­

vide a higher level of service to some special customers than what is normally offered. To 

model this behavior, we prioritize the traffic sent by each service requester to each service 

provider. Let Oj-^ denote the priority of requests sent from service requester r (r £ TV) to 

service provider p (p eV). 

For a given service requester r and service provider p, we can define an aggregate service 

quality delivered by the system as: 

/ j QrepSrep- {'^1 
e 

Intuitively, the service quality delivered by the system for traffic sent by service requester r 

to service provider p can be thought of as the weighted average route quality for this traffic, 

where the grep values provide the weights. As described earlier, the system realizes some 

utility from delivering service requests to their destination. As in our previous example, we 

account for varying service quality in the model by quantifying utility, denoted U(x). 

10.3.2 Centralized Optimizat ion 

In a manner similar to our previous example, we pose the replicated ESB resource allocation 

problem as an optimization problem. The resulting optimization can be directly solved using 
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a centralized approach by a system-wide resource manager. Using the definitions and system 

constraints from the previous section, the following constrained optimization problem can 

be defined, where each grep value is chosen such that the following objective is maximized: 

m a x i m i z e ^ Orpfrp(k)U I ]PgrepSrep I (75) 
r,p \ e / 

subject to: V r,p, 2_,9rep — 1 (76) 
e 

V r,e,p, grep > 0 (77) 

Vr,e,Y,9repfrp{k)<($? (78) 
p 

Vp,e ,^ f f re P / r P (A: )<c(° u t ) (79) 
r 

V e , ^ ] grepfrp(k) < Ce (80) 

r,p 

In the proposed centralized problem, the realized utility of the overall achieved service 

quality is scaled by the priority and volume of the traffic. Equation (75) expresses the 

overall goal of the optimization to maximize the realized utility given a collection of service 

requesters each with their own priority. The constraint of Equation (76) ensures that all 

of the requests from a given service requester are routed through the overlay network. 

Equation (77) ensures that the grep values are positive and Equations (78), (79), and (80) 

enforce the capacity constraints for each of the constrained system resources. 

This centralized approach could be a reasonable solution for the special case of a static 

rate of requests from each service requester. That is, if the rate of requests produced by 

all requesters in the system remains constant, then it may be reasonable to calculate a 

solution to the centralized problem off-line. However, if the rate of requests to be processed 

is changing with time, then the centralized solution becomes infeasible to maintain for all 

systems of reasonable size because the optimal solution to the problem changes faster than 

the centralized solution can be calculated. Similarly, if the centralized problem requires too 
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many decision variables, i.e., there are too many service requesters, service providers, or 

ESB components, then it may be unreasonable to calculate the solution in advance off-line. 

That is, the centralized approach to resource allocation does not scale well. 

In this environment, because the rate of requests sent from each service requester to 

each service provider, i.e., frp(k), is a function of time, this centralized form of the problem 

must be solved whenever any of the request production rates change. However, for any 

problem of reasonable size, the computation time required to solve this problem makes it 

difficult to complete the solution prior to the request production rates changing again. In 

the next section, we identify an equivalent solution that is much faster to calculate and does 

not require central control. 

10.3.3 Decentral ized Approach 

To transform the centralized optimization problem into a decentralized algorithm, we again 

apply the Lagrangian multiplier method to the centralized optimization problem to define 

an equivalent problem that is separable into \1Z\ independent sub-problems. The constraints 

of Equations (78) and (79) in the centralized problem reflect constraints on shared resources. 

An important feature of this approach is that solving for the grep values for each service 

requester no longer requires detailed knowledge of the grep values of the other service re­

questers. These detailed values are instead replaced by a collection of price vectors that 

are produced by the ESB components, where each price vector reflects the current demand 

for shared resources attached to that ESB component. Let 7re(fc) denote the price of ESB 

component e (Ve € £) at time k and let qev(k) be the price for a link from component e to 

service provider p (Ve € £, Vp € V) at time step k. Each service requester r must choose 

grep values to solve the following problem: 

maximize ^ 8rpfrp(k)U I ^greP8rep I - ]T) (ne(k) + qep(k)) grepfrP(k). (81) 
V \ e / e,p 
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Service requester r also must enforce the following constraints corresponding to Equations 

(76), (77), and (78) from the centralized problem, 

vp, £ 9rep 

V e,p, grep > 0 

(82) 

(83) 

(84) 

The prices ire(k) and qep(k) (Ve & £,\/p & V) are obtained from each ESB component e 

as input to the above model in the form of an update 7re(fc) + qep{k) (Vp £ V) received at 

every time step k. 

To complete the decentralized algorithm, we require a mechanism for computing the 

prices for each of the ESB components and the links connecting them to the service 

providers. Each ESB component e is required to update prices in the model for its shared 

resources such that the prices reflect expected near-term future demand. The price of each 

shared resource reflects the amount of excess capacity that the resource has for processing 

requests. In this model, we differentiate between updates to ESB component prices and link 

prices by introducing two different constant step-size values, one for the ESB component 

prices, denoted a, and one for the link prices, denoted 7—both step-sizes must be greater 

than 0. The ESB component e can simply update prices 7re and qep (Vp) using the following 

update procedure: 

7Te(fc + 1) = 

qep(k + 1) = 

TTe(k) - a I Ce - Y^9rePfrp{k) j 
\ rp / 

QeP(k) - 7 Lg*) -Y,9rePfrP(k)j 

+ 

As in the previous example, care must be taken in selecting an appropriate step-size to 

ensure that prices react expeditiously to market fluctuations. 
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10.3.4 Resource Management Using this Approach 

Each service requester r must have a procedure for utilizing the results obtained by solving 

the local optimization problem for the grep values. Because the service requester cannot send 

fractions of a record, we need to approximate the direct use of the grep decision variables. 

The simplest mechanism for converting the grep decision variables into a resource allocation 

is to interpret their values as probabilities. Recall that the grep values are constrained to 

the interval [0,1]. Thus, each grep value can be interpreted as the probability that any given 

record will utilize the route from service requester r through ESB component e to service 

provider p. We can apply the grep values to the route selection process, by constructing a 

cumulative distribution function (cdf) where each grep value is interpreted as the probability 

of selecting its associated route. The service requester then indexes into the constructed 

cdf using a generated uniform random number in the range [0,1]. Using the grep values in 

this way will, over many sent records, approximate the direct use of the grep values. 

10.4 Robustness of the Decentralized Approach 

In a real-world computing environment, network traffic is often triggered by world events 

outside the control of the computing system. For example, a financial market sell off could 

reasonably be expected to result in an increase in network traffic communicating market 

sell orders to the financial market. In a similar manner, changes in the volume of service 

requests that a replicated ESB must process is a source of system uncertainty. That is, 

a resource manager responsible for allocating ESB components to service requests cannot 

accurately predict the upcoming volume of requests that will need to be serviced. 

A system can be considered robust to perturbations in system parameters, if the change 

in system performance due to this uncertainty is limited [3]. In this system, we utilize an 

overall performance measure that accounts for requester priorities, the number of requests 

being transferred, and the quality of the network routes being used. Requests are produced 

by service requesters at some rate and transmitted to ESB components where they are 

buffered before being forwarded on to their final destination. Because the system is de­

centralized and the production rate of service requests is changing with time, it is possible 

192 



for t h e sys tem to experience con ten t ion for shared sys tem resources . W h e n content ion for 

shared resources occurs, potentially due to changes in the production rate of requests, it 

is possible for low-priority requests to inhibit the transfer of high-priority requests causing 

the performance measure to degrade. 

Intuitively, the robustness [3, 25, 89, 93] of the decentralized allocation approach can 

be established by answering the following three questions. What behavior of the system 

makes it robust? What uncertainties is the system robust against? Quantitatively, exactly 

how robust is the system? Uncertainty in service request production rates can directly 

impact the system performance measure. In this system, we might consider a resource 

allocation strategy robust as long as it maintains a performance measure that is within X% 

of the optimal value, where X is a user defined constraint on the acceptable performance 

of the system. We can quantify robustness in this environment as the proximity of the 

system performance measure to its optimal value. Based on this intuitive understanding of 

robustness in this context, we can utilize the FePIA procedure [3] to derive a more formal 

definition of robustness. 

In step 1 of the FePIA procedure, we derive a robustness requirement that clearly defines 

robust operation of the system. Let the realized utility of the system be defined as: 

(jrepSrep (85) 
r,p \ e / 

From our intuitive definition of robustness, we can state that the system is robust if at each 

time step k the realized utility $(fc) remains within an acceptable range. Let /3min{k) be the 

smallest acceptable realized utility value where (3min(k) is expressed in terms of the optimal 

realized utility value as given by the centralized solution found at time step k. That is, 

given an optimal utility value measured at time step k, denoted co(k), let f3min(k) = Xcj(k) 

where X is in the range (0,1). The robustness requirement for our system can be expressed 

as Pmin(k) < \P(fc). That is, if the realized utility at each time step k remains larger than 

Pmin(k), then the system can be considered robust. 

The principal source of uncertainty in this system that may cause fluctuation in ^(k) 
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is the variability in the production rate of requests. Recall that the production rate of 

requests frp{k) is not known in advance and may differ from one time step to the next. This 

variability in the production rate may directly impact the realized utility and consequently 

ty(k). Finally, the robustness of a resource allocation can be quantified as the smallest <£(&) 

value that occurs over all time steps k. That is, the robustness of a resource allocation, 

denoted V&, can be measured through time step k and expressed as: 

# = m i n * ( / c ) . (86) 
k 

10.5 Simulation Study 
10.5.1 Setup 

Several simulations were conducted to evaluate both the accuracy of the implemented system 

as well as the efficacy of the overall approach. We evaluate the approach in a realistic 

application of the replicated ESB system where the production rate for each service requester 

varies as a function of time. The variable production rate of records in the system is modeled 

using a simple scaled sinusoid that provides a periodic change in record production unique to 

each service requester. The superposition of the record production functions of the service 

requesters is presented in Figure 45(a). Each point in the plot corresponds to the number 

of records produced in the simulation at that time step and presents a view of the load 

placed on the overall system in that time step. The combination of sinusoids chosen is 

such that the summed traffic is periodic, repeating the exact same pattern of production 

approximately every 2200 time steps. 

The plot of Figure 45(a) can be scaled according to the priority of each service requester 

service provider pair (0rp) producing a plot (Figure 45(b)) of the optimal utility given 

homogeneous network routes, i.e., assuming all routes are of equal value (srep = 1 Vr, e,p). 

Ideally, the solution found by the described decentralized routing mechanism will track this 

optimal time-varying utility. The simulations conducted consisted of four service requesters, 

two ESB components, and three service providers, where the collective production rate of 

the service requesters is varied according to Figure 45(a). 
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(a) production rate 

2000 3000 4000 

(b) priority scaled production rate 

Figure 45: (a) The summed production rates over all service requesters plotted versus 
simulation time step; (b) the summed production rates scaled by service requester priority 
plotted versus simulation time step. 

10.5.2 Resul t s 

For this simulation, we compared the results of the centralized solution to the results of our 

decentralized solution to demonstrate the effectiveness of the approach. The comparison 

was made by periodically extracting the information required to produce the centralized 

optimization problem from the details of the dynamic simulation at a given time step. We 

solved these instances of the centralized problem offline and compared the centralized result 

to the result produced by our decentralized approach. Recall that the centralized solution 

provides an optimal solution as described in Section 10.3. 

In a real-world environment, the rate of requests submitted to the system will vary 

with time in an unpredictable manner. To assess the viability of our approach, we mod­

eled the production rate of requests from service requesters as a function of time. Thus, 

at each instant in time the optimal allocation is given by a unique optimization problem 

with its own unique solution. Consequently, a centralized solution in this environment is 
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impractical because it would require recalculating the entire solution at every time-step. 

In the decentralized approach, each service requester can effectively solve their own op­

timization problem locally using the prices provided by the ESB components along with 

information that is locally available to each requester. The combined results of all of the 

service requesters should be equivalent to that found using the centralized solution—the 

decentralized implementation should be capable of tracking the optimal solution as it varies 

over time. 

Figure 46 presents the results for a sample implementation where service requester 

production rates are functions of time and all routes in the system are of equal quality, i.e., 

srep = 1 Vr, e, p. The three plots of Figure 46 present (a) the total number of requests at 

each time step during the simulation, (b) the realized utility over time, and (c) the average 

price for shared resources in the system over time. 

Embedded within the plot of realized utility (Figure 46(b)), we have plotted the exact 

centralized solution overlaid as circles on top of the decentralized solution. From the plots 

of the figure, we can clearly see that the decentralized solution tracks the periodic results of 

the centralized solution. However, there is a slight (less than 1%) fluctuation in performance 

due to the buffering of data within the system. That is, each service-requester - service-

provider pair has a different priority and in any given instant there may be minor contention 

for a shared resource (i.e., an ESB component or ESB to service provider link). When this 

contention occurs, some high-priority traffic may be delayed due to the system processing 

lower priority traffic first. The realized utility will be temporarily reduced as a result of the 

delay but will increase in some subsequent time step as the delayed records arrive at their 

destination. Thus, the realized utility from the decentralized solution in this later time-

step will appear to be greater than optimal. Because of contention and request delays at 

a previous time-step, the decentralized and centralized approaches are considering different 

sets of requests. 

An alternative approach to evaluating the results of the decentralized solution is possible 

in this case, i.e., when the quality of the given routes are homogeneous ()srep = 1 Vr, e,p). 

In this case, it is possible to compare the results of the decentralized solution to the sum 
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of the scaled request production rate over all service requesters. In other words, we sum 

the decentralized realized utility over each time step for the entire simulation and do the 

same for the request production rate scaled by priority. Ideally, these two values should be 

identical given homogeneous route quality. Our decentralized technique realizes 99.5% of 

the scaled production rate result. 

Our second simulation includes routes of differing quality, where the srep values were 

different for each route. For this simulation, individual srep values were selected at random 

in the range [1,10]. Recall that the srep values appear in the utility function as a multiplier 

for the grep values. In this way, the grep values are scaled according to the srep values prior 

to calculating utility. Consequently, a centralized controller might attempt to maximize the 

likelihood that high priority traffic will be assigned to its best route, thus maximizing the 

realized utility. In Figure 47, we can see that given heterogeneous routes the results of the 

decentralized solution still effectively track the results of the centralized solution. 

In both Figures 46(c) and 47(c), we plotted the average shared resource price for the 

entire simulation. Notice that the prices are periodic with a period identical to that of the 

production rates plotted in Figures 46(a) and 47(a), respectively. For these simulations the 

system appears stable. That is, because the request production rate is periodic, a stable 

system would imply that the average shared resource price would return to its starting point 

at the end of any given period. Recall that the periodicity of the request production rate 

is such that the pattern repeats approximately every 2200 time steps; similarly the average 

shared resource price is periodic repeating the exact same pattern every 2200 time steps. In 

our simulations, the initial configuration of the system represents a slightly over-provisioned 

system. Thus, the initial prices of the shared resources are all 0. At the end of the period, 

we should expect the average shared resource price to return to 0, and indeed, it does. 

Our simulation study results clearly demonstrate the viability of our decentralized 

market-based approach to resource management in a heterogeneous distributed comput­

ing system such as the distributed ESB environment. The plots of realized-utility in both 

Figure 46(b) and Figure 47(b) demonstrate the approaches ability to successfully track the 

highest performance possible for such a system. 
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10.6 Related Work 

A related field to the study of an Enterprise Services Bus is that of a Content Delivery 

Network (CDN) commonly used to improve the apparent performance and reliability of 

web sites by distributing their content throughout the world wide web. In a CDN, web-site 

content is cached at replica servers that are capable of replying to web requests on behalf 

of the owning web site. In [79], the authors introduce the concept of a collaborative CDN 

(CCDN). A CCDN is described as being an overlay network that utilizes end-user machines 

in a peer-to-peer fashion to provide a CDN across a wide-area network. In the Globule 

system, user requests for data available on the CCDN are delivered to replica servers using 

a redirection service capable of H T T P redirection. In [92], the authors present the AS-path 

length heuristic used in Globule to provide a redirection policy for user requests. The AS-

path length heuristic greedily redirects user requests to the closest replica server available 

in the CDN, where proximity is defined in terms of the number of network hops between 

the requester and the replica. This simple greedy approach does not account for contention 

among the shared resources of the CCDN, i.e., the replica servers. Because the Globule 

system is an instance of an overlay network it can be modeled as a trans-shipment network 

flow problem. By modeling an overlay network in this manner, our market-based resource 

allocation technique can be applied to the routing of web-site requests to replica servers 

based on current network load, where the proximity of the requester to the caches and the 

network bandwidth of the caches can be used to construct a quality value for each route in 

the CDN, i.e., srep. In this way, our approach can account for both the proximity of replicas 

to users as well as any contention for the shared resources of the CCDN, where contention 

is not considered in [92]. 

Another approach to market-based resource allocation involves the use of an auction as 

opposed to price setting. The Tycoon resource allocation system presented in [60] provides 

such an auction based market for resource allocation in a distributed system. In the Tycoon 

system, users bid for the right to use compute resources within the Tycoon network. Bids 

are accepted by a collection of auctioneers that manage access to Tycoon compute resources. 

In an auction system, the auctioneer must accept bids for a resource for some period of time 
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before closing the auction. The waiting period for an auction to close is acceptable as long 

as the time required to complete the auction is less than that of the task to be executed. In 

our environment, tasks are extremely short lived, e.g., the time required to produce a static 

web page or deliver a message in an overlay network. Consequently, the time delays incurred 

by an auction for a resource are infeasible within our context. However, prices for shared 

resources are set within our network based on current demand. Thus, our price setting 

approach is more analogous to a bid-ask auction system where the resource seller sets an 

asking price and the buyer accepts that price by purchasing the right to that resource. In 

this way, as demand for a shared resource fluctuates, so do the prices for that resource. 

In [55], a system called WebSeAl is introduced that provides resource allocation in a 

CDN. One of the many claims of the WebSeAl system is its ability to balance the request load 

for a web site across multiple geographically dispersed replica web servers. Their approach 

to resource management of the server pool is to introduce prices for the use of servers in their 

network that force the clients to route their requests based on this price information. Clients 

in the WebSeAl environment make routing decisions based on a combination of performance 

data about the response time of each replica server and a weighting factor for each replica. 

The authors assume that clients in the WebSeAl environment will be "sensitive" to the 

weighting factor and account for current system weights while making resource allocation 

decisions. As the authors of [55] state, the WebSeAl environment is therefore best suited 

to serving web sites where there is no incentive to circumvent the balancing aspects of the 

system, e.g., web sites delivered on a corporate intranet. By ignoring the weighting factor 

a client may instead request solely based on selfish performance data, i.e., always selecting 

the replica that provides the best possible performance to the client. 

Like the WebSeAl environment our system utilizes a price setting scheme to enable 

clients in the system to make routing decisions. However, unlike WebSeAl, prices in our 

environment are set based on direct feedback from the system regarding current demand 

for shared resources. Further, the clients (service requesters) in our system solve an opti­

mization problem locally that leverages current prices for shared resources to account for 

network congestion. By solving the local optimization problem to maximize their individual 
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utility, the system as a whole is able to maximize its realized utility. In our system, because 

the prices are set by current demand and utilization, there is no benefit to the client to try 

and "cheat" the pricing scheme, i.e., the prices in the system directly reflect the impacts of 

congestion on the client's selfish interests. 

10.7 Conclusion 

In this chapter, we have demonstrated a technique for resource allocation in overlay network 

based environments that are derived from Lagrangian optimization techniques similar to 

those used in Internet congestion control. Our approach has some clear advantages over 

some obvious solutions for routing data within an overlay network. Principally, our decen­

tralized approach is capable of producing a near-optimal assignment, and maintains the 

more attractive attributes of a decentralized solution, e.g., scalability and reliability. In 

addition, we use the model of this overlay network to derive a metric suitable for measuring 

the robustness of this approach. 

Throughout this chapter we have assumed that a feasible solution to the centralized 

allocation problem exists. Future work in this area may explore problems where fluctuations 

in the production rate of requests results in an infeasible system. Additional research also 

may include combining the two example environments into a single system. 
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CHAPTER 11 

CONCLUSIONS 

In this research, we have demonstrated numerous techniques for resource allocation in a 

variety of environments that are based on a quantifiable measure of robustness. In each 

of these environments we have sought to derive a mathematical model of robustness that 

can be used to evaluate resource allocation decisions as well as guide resource allocation 

decision making. 

The main contributions of this research are (1) a mathematical derivation of robustness 

suitable for a dynamic environment based on point estimates of system parameters (2) a 

mathematical definition of robustness applicable to environments where the uncertainty in 

system parameters can be modeled stochastically, (3) a demonstration of the use of this 

metric to design resource allocation heuristics in a static environment, (4) a mathematical 

definition of robustness in a stochastic dynamic environment, (5) a demonstration of the 

use of this dynamic robustness metric to design resource allocation heuristics suitable for a 

given heterogeneous computing system, (6) the derivation of a robustness metric for resource 

allocations in an overlay network along with a near optimal resource allocation technique 

for this environment. 
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