
DISSERTATION

TWO TOPICS IN COMBINATORIAL OPTIMIZATION: THE DOMINO

PORTRAIT PROBLEM AND THE MAXIMUM CLIQUE PROBLEM

Submitted by

Bader Alshamary

Department of Mathematics

In partial fulfillment of the requirements

for the degree of Doctor of Philosophy

Colorado State University

Fort Collins, Colorado

Spring 2007

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

UMI Number: 3266398

INFORMATION TO USERS

The quality of this reproduction is dependent upon the quality of the copy

submitted. Broken or indistinct print, colored or poor quality illustrations and

photographs, print bleed-through, substandard margins, and improper

alignment can adversely affect reproduction.

In the unlikely event that the author did not send a complete manuscript

and there are missing pages, these will be noted. Also, if unauthorized

copyright material had to be removed, a note will indicate the deletion.

®

UMI
UMI Microform 3266398

Copyright 2007 by ProQuest Information and Learning Company.

All rights reserved. This microform edition is protected against

unauthorized copying under Title 17, United States Code.

ProQuest Information and Learning Company
300 North Zeeb Road

P.O. Box 1346
Ann Arbor, Ml 48106-1346

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

COLORADO STATE UNIVERSITY

March 26, 2007

WE HEREBY RECOMMEND THAT THE DISSERTATION PRE­

PARED UNDER OUR SUPERVISION BY BADER ALSHAMARY EN­
TITLED “TWO TOPICS IN COMBINATORIAL OPTIMIZATION: THE

DOMINO PORTRAIT PROBLEM AND THE MAXIMUM CLIQUE PROB­

LEM ” BE ACCEPTED AS FULFILLING IN PART REQUIREMENTS
FOR THE DEGREE OF DOCTOR OF PHILOSOPHY.

Committee on Graduate Work

D r/R oss Beveridge

Dr. Michael Kirby

Dr. Christopher Peterson

I A <̂ c y b (£
A dviser: Dr. Anton Betten

W t ______________
D e p a rtm e n t H ead: Dr. Simon Tavener

ii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

24

ABSTRACT OF DISSERTATION

TWO TOPICS IN COMBINATORIAL OPTIMIZATION: THE DOMINO
PORTRAIT PROBLEM AND THE MAXIMUM CLIQUE PROBLEM

Combinatorial Optimization plays a significant role in applied mathemat­
ics, supplying solutions to many scientific problems in a variety of fields,
including computer science and computational networks. This dissertation
first reviews a number of problems from combinatorial optimization and the
algorithms used to solve them.

The author then presents original solutions to the domino portrait

problem, which involves arranging complete sets of dominos to resemble
photographic portraits when seen from a distance. The first approach makes

use of a greedy algorithm. Because the greedy algorithm often encounters
blockages, a new technique was developed to avoid these blockages. Next, a
local search algorithm was used to solve the problem. In both new solutions,
the cost function was modified so that important positions in the portrait
such as facial features were emphasized, thus improving the results. A
singular value decomposition (SVD) was used to construct a ’’support ma­
trix” necessary for this new cost function. Algorithms used in computing
the SVD include the Householder method and the QR method.

The second problem dealt with is the maximum clique problem and
its application of finding ovoids in finite polar spaces. Again, local search

iii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

provides an efficient way to search for maximum cliques in graphs and hence

for finding ovoids in finite polar spaces.

Bader Alshamary
Department of Mathematics
Colorado State University
Fort Collins, Colorado 80523
Spring 2007

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ACKNOWLEDGEMENTS

I would like to express my deepest gratitude to Dr. Anton Betten who

agreed to supervise my work and who encouraged and guided me patiently
to the finish. I wish to thank every member in my committee, Dr. Ross

Beveridge, Dr. Michael Kirby, and Dr. Chris Peterson, for all the patience,
advice and care they extended to me, which made this work possible. Fi­
nally, I would like to thank every one how provide me help to this work.

v

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

TABLE OF CONTENTS

1 In tro d u c tio n 1

2 B ackground 4
2.1 Combinatorial Optimization Problems 4

2.1.1 Traveling salesman problem (T S P) 6
2.1.2 Minimal Spanning T ree .. 11
2.1.3 Single-Source Shortest Path P ro b le m 14
2.1.4 All Pairs Shortest Path (APSP) P ro b lem 15
2.1.5 Maximum Network F lo w ... 17

2.2 Greedy algorithms for Solving Combinatorial Optimization

Problem s.. 20
2.2.1 Greedy A lg o rith m s... 21

2.2.2 Kruskal’s algorithm for Traveling salesman problem . 22
2.2.3 Prim ’s Algorithm for Minimal Spanning T ree 25
2.2.4 KruskaPs Algorithm for Minimal Spanning Tree . . . 28

2.2.5 Dijkstra’s Algorithm for Single-Source Shortest Path
p ro b le m ... 31

2.2.6 Floyd’s Warshall Algorithm for the All-Pair Shortest
Path (APSP) p ro b le m .. 35

2.2.7 Ford-Fulkerson’s Algorithm for Maximal Network Flow
P ro b le m ... 39

2.3 The Local Search Algorithms ... 43

2.3.1 Definitions and P ro p e r tie s .. 44
2.3.2 Lin-Kernighan (2-opt) Algorithm for Symmetric Trav­

eling Salesman P r o b le m .. 47
2.3.3 Important Issues in Local Search A lgorithm s............. 52

2.4 Linear Programming (LP) Problem s.. 54

vi

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.4.1 Linear Programming (LP) Problems 54

2.4.2 Simplex Method ... 58

3 D om ino P o r tra i t P ro b lem (D P P) 65
3.1 In troduction ... 65

3.2 Creating a Domino P o r t r a i t .. 66

3.3 Two-Dimensional Wavelet T ran sfo rm 69
3.4 Domino S tru c tu re .. 72
3.5 Integral Linear Programming F o rm u la tio n 74

3.5.1 Parameters .. 74
3.5.2 Decision Variables .. 74

3.5.3 Objective F u n c tio n .. 78
3.5.4 C o n s tra in ts .. 80
3.5.5 Standard Form LP for the Domino Portrait Problem 82

3.6 Greedy Algorithm For Solving The Domino Portrait Problem 86
3.6.1 Search S tra te g y .. 86
3.6.2 Remodeling the Domino Portrait P r o b le m 89
3.6.3 The Greedy algorithm applied to the New Model of

D P P .. 90

3.6.4 Analyzing The Reasons Of getting B lo ck ag e 94
3.6.5 Greedy algorithm that avoids b lo ck ag e 101

3.7 A Local Search Algorithm for the Domino Portrait Problem 109
3.7.1 The Neighborhoods of the D P P 112
3.7.2 Constructing the Set of Feasible Solutions F of the

D P P ...115
3.8 Improving The Cost F u n c tio n .. 124

3.8.1 New Cost Function ... 126
3.9 Singular Value Decomposition (S V D)... 131

3.9.1 Definitions and T h e o re m s ..131
3.9.2 Algorithm for Computing the S V D137

Householder’s M e th o d ...140
QR M e th o d ..151

vii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4 M axim um C lique P ro b lem (M C P) 160
4.1 Definitions... 160
4.2 A pplications.. 162

4.2.1 Finding ovoids in finite polar s p a c e 163
4.3 Algorithms... 168

4.3.1 New Technique for Solving MCP Based on Local Search

A lg o rith m ... 169
4.3.2 The Neighborhoods of M C P ...170

4.4 R esu lts ..174

5 C onclusions 177

viii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 1

INTRODUCTION

Combinatorial optimization is an important topic in applied mathe­
matics which plays an important role in many scientific fields, among them
computer science and computational networks. In this dissertation, numer­
ous combinatorial optimization problems will be presented, followed by two
original applications of combinatorial optimization to two specific problems,
the domino portrait problem and the maximum clique problem.

Chapter 2 presents background information about various combinato­

rial optimization problems and the algorithms used to solve them. Sec­

tion 2.1 explains the following problems: the traveling salesman problem,
the minimum spanning tree, the single source shortest path problem, the
all pairs shortest path problem and maximum network flow. Section 2.2
presents a number of greedy algorithms which have been used to solve the
problems discussed in Section 2.1. These algorithms include Kruskal’s algo­
rithm, used for the traveling salesman problem and the minimal spanning
tree and Prim ’s algorithm, used for the minimal spanning tree. Dijkstra’s
algorithm is used for solving the single source shortest path problem, and

Floyd’s Warshall algorithm helps to solve the all-pair shortest path prob­
lem. Finally, Ford-Fulkerson’s algorithm is presented as a means for solving
the maximal network flow problem.

Local search algorithms are another group of algorithms which are sig­
nificant in solving combinatorial optimization problems. These algorithms
are defined in Section 2.3 and the Lin-Kernighan algorithm for a symmetric
traveling salesman problem is presented. Important issues related to local
search algorithms are discussed as well.

1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Section 2.4, the last section of Chapter 2, presents linear programming
problems including the simplex method.

Chapter 3 presents the combinatorial optimization problem called the
domino portrait problem (DPP). A domino portrait consists of complete
sets of dominos arranged in a matrix to create an approximate replication

of an image when seen from a distance. This problem was first solved
by Robert Bosch using the integer linear programming method with the

software program CPLEX. In this dissertation, we employ two significant
combinatorial optimization algorithms known as greedy algorithms and lo­
cal search algorithms to solve it. Section 3.2 presents the steps of creating a

domino portrait. The domino structure is described in section 3.4, followed
by an explanation of the integral linear programming formulation of the
problem including the parameters, decision variables, objective function,
constraints and the standard form of the linear programming problem.

Section 3.6 discusses the use of the greedy algorithm for solving the

DPP. It includes an explanation of the search strategy of the algorithm,
and shows how the problem must be remodeled to fit this algorithm. An

analysis of why the algorithm is sometimes blocked in solving the DPP is
presented along with suggestions as to how to avoid this blockage.

In Section 3.7, the application of the local search algorithm to the DPP

is presented, including neighborhoods of the DPP and ways to construct the
set of feasible solutions F for the DPP.

Section 3.8 deals with ways to improve the cost function in the DPP
and presents a new cost function. Section 3.9 discusses the singular value
decomposition method (SVD) used to construct the support matrix neces­
sary for this new cost function. Algorithms used in computing the SVD are

given, including the Householder’s method and the QR method.
Chapter 4 discusses the maximum clique problem (and hence the in­

dependent set problem). Section 4.2 relates the maximum clique problem
to the problem of finding ovoids in finite polar spaces, which are maximum
cliques in a certain graph associated to the polar space.

briefly describes the applications of the maximum clique problem in­
cluding an important application called finding ovoids in projective space.

2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Section 4.3.1 presents a new technique based on the local search algo­
rithm for finding cliques of a given size in a given graph. The neighborhoods
of the maximum clique problem are explained and the pseudo code for the
algorithm are given.

Section 4.4, the last section of Chapter 4, shows computational results

of the algorithm for finding ovoids in small polar spaces.
Finally, in chapter 5, we discuss our conclusion.

3

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 2

BACKGROUND

Combinatorial optimization plays an important rule in various sciences.
Some of these areas are applied mathematics, computer science and compu­
tational networks. In addition, it arises in management science, like finance
marketing and data base management. Combinatorial optimization is also
used in engineering sciences, for example, optimal designs of waterways or

bridges and analysis of data networks. Additional applications can be found

in Karla Hoffman [26].

Combinatorial Optimization can be considered as operations that search
for one or more good solutions for optimization problems. This can be done

by studying and analyzing mathematically the problem and composing a
set of possible solutions called the feasible solutions set. The goal of combi­
natorial optimization is to find the best (optimal) feasible solution in this

set.

In the following sections we present combinatorial optimization prob­
lems and their applications. Moreover, we provide important related defi­

nitions and theorems.

2.1 C o m b in a to ria l O p tim iza tio n P ro b lem s

Combinatorial optimization problems are optimization problems that
have discrete variables. That is, the domain of possible solutions that satisfy
the constraints of the problem is finite, countable infinite or can be reduced

4

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

to a countable infinite set. The following definitions are stated in order to
understand combinatorial optimization problems.

D efin ition 2.1. An in s tan ce of an optimization problem is a pair (F ,c),
where F is the domain of feasible points, and c is a real value function

c : F —»■ R, that sometimes refers to capacity, distance, or cost.

The goal of combinatorial optimization problems is to find an y £ F
such that

c(y) < c(g) V g £ F.

In this case, y is called an o p tim a l so lu tio n to the given instance.

We need to distinguish between an optimization problem A and an
instance a; of a problem. An instance a: is a special case of an optimization

problem A. That is, a problem is a general case. The following is the
definition of an optimization problem.

D efin ition 2.2. An optimization problem A is a quadruple (I ,F x,cx , t),
where

• I is a set of instances of the optimization problem A.

• Fx is the set of feasible solutions associated with a given instance

x £ I .

• cx(y) is the value of the feasible solution y £ Fx for some instance
x £ I . cx(y) > 0 in many examples and is called the cost function.

• t is the type of problem. It can be either a maximization problem
(t — m ax) or a minimization problem (t = min).

Therefore, the goal of the optimization problem is to find the optimal
(m in or m ax) feasible solution y of an instance x of an optimization problem
A. That is,

{Cx(y) < cx(y) V y £ Fx, if t = m in ;x\y) _ x\y) y

cx(y) > cx(y) V y £ Fx, if t = m ax ,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

In the following sections, we will present several important combinato­

rial optimization problems.

2.1.1 T raveling salesm an p ro b lem (T S P)

The traveling salesman problem is the following. A sales person wants
to visit his clients in n different cities and wants to optimize his travel time
by taking into account the various different travel times between the cities.
That is, he wants to visit each city exactly once and return to his hometown
at the end. He is looking for the fastest route possible. More precisely, we
are given n cities a , i , , an and the various costs of traveling from city

cii to city (i j . The problem is to find the cheapest tour that visits all cities
exactly once and returns to the starting point. In general, the assumption
chj = Cjj is made. That is, the cost of traveling from city i to city j is the

same cost as traveling from j to i. The tour is described by a permutation
(ii , . . . , in) of the integers 1 , . . . , n. That is, we start in city a^, then move
to city ai2, then to city ai:i and so on. After visiting city ain we return to
city ajj. Therefore, the set of feasible solutions is

where Sym n denotes the group of permutations of n objects. Moreover, for
y = (*x ,. . . , in) e Fx — Sym n, the cost of traveling tour y is

t= 1

The problem is a minimization problem in that we want to find the cheapest
tour y € Fx. That is, we want to find y G Fx such that

cx(y) < cx(y) for all y <E Fx

The following example presents an instance of the traveling salesman prob-

Fx S ym n^

(2 .1)

lem.

6

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

fl4

F igu re 2.1: A five cities instance of TSP

E xam ple 2.1.

Figure 2.1 shows an instance of TSP of five cities, 0 4 , 0 2 , 0 3 , 0 4 and a5. The

cost Cij of traveling between city and city aj is indicated along the edge

in the graph between a* and Oj. If at and Oj are not connected, the cost
is + 0 0 . For example, the cost of traveling between city a\ and city 0,3 is

ci,3 = 4 and the cost of traveling between city 0 2 and city 03 is 02,4 = + 0 0 .
The following table shows all possible feasible tours of this instance.

Tour (*172*37475) Ox (j j i)

yi (12345) 24

2/2 (12354) 00

2/3 (12435) 00

2/4 (12453) 00

2/5 (12534) 27

2/6 (12543) 23

2/7 (13245) 00

2/8 (13254) 31

2/9 (13425) 00

2/io (13524) 00

V n (14235) 00

2/12 (14325) 27
A table of the feasible tours

However, some of these tours are better than the others. For instance, the

7

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

aA
An optimal Tour, y 6 , of cost = 23

aA
A bad tour, y s , of cost = 31

Figure 2.2: Two tours of the instance of the TSP of Example 2.1. Left: An optimal

tour, ye, with cost = 23. Right: A bad tour, ye, with cost = 31.

tour yQ = (12543) is an optimal tour whereas tour y$ = (13254) is a bad
tour, (Figure 2.2). This is because the cost of tour y6 is

which is the smallest cost where cx(y) is defined by equation 2.1. While the
cost of the tour y8 is

which is a large cost. In addition, some of these tours have a cost of +oo
because there is at least two cities in this tour where the cost of traveling be­

tween them are +oo. For example, tour y2 = (12354) has cost cx{yi) = +oo,
since the cost of traveling between city a2 and city <23 is c2i3 = + 0 0 . More­

over, tour y\ — (12345) is a good solution since it has a cost cx{y\) = 24
which is close to the optimal tour which is y6, which has a cost cx(ye) = 23.

In fact, these are not the only feasible tours of this example. This is
because the total number of all possible permutation of n objects is equal
to n\. Therefore, the total number of all possible feasible tours of this
example is 5! = 120. However, we excluded several feasible tours from the
total number of possible permutations. A tour is excluded if it satisfies one
of the following conditions:

c x { y §) — Cl,2 + c2,5 + c5,4 + C-4 ,3 + C3>i — 23

cx{y%) ~ C l,3 + C3j2 + C2j5 + C5t4 + C4,l — 31,

8

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1. The tour has the same route as a tour that already has been taken

but starts from a different city. This is because we do not care about
which city we start in. For example, the following tours are equal

2/! = (12345), y 1>2 = (23451),

2/1,3 = (34512), 2/1,4 = (45123), and

2/1,5 = (51234).

2. The tour has the same route as a tour that already has been taken
but has a different direction. This condition is included if the cost of
traveling from city a* to city aj is the same as the cost of traveling
from city a,j to city a*. That is, if

Ci,j ~ CjA

In this case we do not care which direction we go in a given tour. For
example, a tour y\ = (15432) is equal to the tour y\ — (12345).

From this discussion we conclude that the total number of feasible solutions

of an instance of TSP with n cities is given by the following equations

Til
|.Fa,| = — i f the second condition, Cij = Cjti, is satisfied . (2.2)

Tb
n\

|F J = - — otherwise. (2.3)
1 1 2 .n v 1

Therefore, the total number of feasible solutions of a five city instance of
TSP is

'F-' = S = 12-
Moreover, if we have a six city instance of TSP, the total number of feasible
solutions is

\FX\ = — = 60.I xi 26

Hence, the total number of feasible solutions increases if the number of
cities increases.

9

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

One way to represent the TSP and many other combinatorial optimiza­

tion problems is with graph theory. To illustrate this more clearly, we shall

give some basic definitions in graph theory.

D efin ition 2.3.

1. A graph is a pair (V , E) where V is a set whose elements are called
vertices (nodes) and E is a collection of two subsets o fV called
edges (links).

2. An edge(link) e e E is a link between two vertices (nodes) in V.

3. A walk from vertex a to vertex b is a sequence of one or more edges

eij e2> • ■ • > ek such that e\ = {a, <22}, e2 = {a2, 03} , . . . , = {a*,, 6}
where {a, <22, , a/t, b} € V. This walk is denoted as a, Gq, 02 , . . . , a b

or e 1 , e2, . . . , e*,.

4 . A path from vertex a to vertex b is a walk from vertex a to vertex b
where the vertices are all distinct. The length of a path is the number
of edges in this path.

5. A w eighted graph is a graph G = (V, E), together with a function

w : E —> Z+.

I f e = {ai,a j}, then w(e) — Wij is called the weight of the edge e.
The w(e) represents a cost, capacity or distance between vertex ai and
vertex a.j. Moreover, the w eight o f a path is the sum of the weights
of all edges in this path.

For example, in the graph in Figure 2.3, the sequence of edges
ex, e2, e3, e4, e5 and e6 forms a walk from vertex a to vertex b. However, they
do not form a path from vertex a to vertex b since the vertex a2 is used
twice. On the other hand, the sequence of edges e\ and e(i form a path from
vertex a to vertex b. Moreover, the length of this path is 2 and its weight

is 18.

10

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

F igu re 2.3: A connected weighted graph of six vertices

Now, we can describe the traveling salesman problem by a weighted graph

G = (V, E) where the cities are the vertices V and the cost function Wij
represents the cost of traveling between cities i and j (here, we assume that
the cost of travel does not depend on whether we go from city i to city j or

vice-versa). Therefore, the goal is to find a path that has minimum weight
and starts and ends at the same vertex. Moreover, each vertex must be
visited exactly once.

Usually the global optimal solution of an optimization problem is hard
to find. However, sometimes it is possible to find a solution that is close

to the optimal one. In the next chapters we present some significant al­
gorithms that are capable of finding the optimal solution or near to the

optimal solution to the traveling salesman problem and other combinato­
rial optimization problems. For example, we will use Kruskal’s algorithm

[13], which is an example of a greedy algorithm, and a local search algorithm

to solve the TSP problem.

2.1.2 M in im al S pann ing Tree

Finding the minimal spanning tree is one of the most important com­
binatorial optimization problems. To illustrate the problem we state the
following definitions in graph theory:

D efin ition 2.4.

11

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1. A graph G = (V, E) is connected if there is a path from any vertex

a G V to any vertex b E V.

2. A circuit is a path that begins and ends at the same vertex. A circuit
is simple if it does not contain two similar edges.

3. A tree is a connected undirected graph that does not contains any
simple circuits. The weight of a tree is the sum of the weight of its

edges.

4- Let G be a graph. A tree is called spanning tree of G if contains all

vertices of G.

E xam ple 2.2. Graph G in Figure 2.3 is a connected weighted graph
since there is a path between any two vertices in G. In addition, the
path ei, e2, e3, e4 , e5, eg does not form a circuit because it does not start
and end with the same vertex. Whereas, the path C2 ,e\,e-j,eg,e2 is a
circuit, it is not simple since it contains e-i twice. The edges e\ , eg

and e5 form a tree; however, they do not form a spanning tree because
they do not contain every vertex of the graph. The weight of this tree

is 19.

Now we can define the minimal spanning tree by the following defini­

tion.

5. Let G be a connected weighted graph. A minimal spanning tree of
the graph G is a spanning tree that has the smallest weight. That
is, a minimal spanning tree is a connected weighted subgraph of the
graph G with no simple circuits , containing all vertices of the graph

G, and having a minimum weight.

Usually there are various spanning trees in a connected weighted graph.

The problem in the minimal spanning tree is to determines which of these
spanning trees, which contains all vertices of the graph, has minimal weight.

12

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 2.4: A connected weighted graph representation of a phone network design with

five cities

Many important problems can be modeled as minimal spanning tree
problems. A phone network design is an example of a minimal spanning
tree problem that is described in the following example.

E xam ple 2.3. (A phone network design)

Assume that you are the owner of a business company consisting of five

offices located in five different cities. You want to build a phone network

to connect them with each other. A phone company can link each pair of
these offices at various costs. The problem is we want to find which links
connect all the offices so tha t the total cost of these links is minimum.
This problem can be solved by modeling it as a connected weighted graph

and finding a spanning tree that has a minimum weight. The connected
weighted graph representative of this problem is shown in Figure 2.4. The
vertices represent the cities where the offices are located. The edges repre­
sent the links of each pair, and the weights of these edges represent the cost

of the link represented by the edges. The goal here is to find a spanning tree
that has minimum weight. That is, we want to find a tree tha t contains all

vertices , that has no simple circuits, and in which the sum of the weights
of its edges has minimum value. This problem is considered as a minimal
spanning tree problem since we can cancel some links and reduce the cost.

There are several spanning trees of this problem. However, some of
them are better than others. For example, an optimal spanning tree is

13

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A: An optimal spanning tree for the phone network design of cost $3500

$1000

12100

$2000

B: A bad spanning tree for the phone network design of cost $6200

Figure 2.5: A n O ptim al and a bad spanning tree o f a phone netw ork design

shown in Figure 2.5-A, and it has a cost of $3900; whereas, a bad spanning
tree is shown in Figure 2.5-B and its cost equals $6200.

Several algorithms can solve this problem, and we will present two of

the most important ones. These algorithms are called Prim’s algorithm and
Kruskal’s algorithms [43]. These algorithms are examples of greedy algo­
rithms that we will explain in the next chapter.

2.1.3 S ingle-Source S h o rtes t P a th P ro b lem

One of the major questions associated with a connected weighted graph
is finding the path between two vertices that has the smallest weight. This
problem is called the shortest path problem, and it can be solved by Dijk-
stra’s algorithm. This algorithm is an example of a greedy algorithm and
will be discussed in the next chapter.

14

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

There are many applications that can be modeled as shortest path
problems. For example, airline routing systems, computer networks , and
subway systems are all shortest path problems. For instance, an airline

routing system can be represented in a connected weighted graph where
the vertices represent cities and the edges on the graph represent flights

between these cities. The weight assigned each edge represents the dis­
tance, fare, or flight times between these cities. Figure 2.6 - A, displays the
problem involving the distance between cities; Figure 2.6 - B, displays the
problem involving the fare between cities; And Figure 2.6- C, displays the

problem involving the flight times between cities.

The following questions arise here:

1. W hat is the shortest distance that can be found to reach one city from

another city?

2. W hat is the lowest fare which can be found to travel between two

cities?

3. W hat is the shortest time needed to travel between two cities?

These questions can be solved by finding the shortest path in its corre­
sponding graph. The shortest path means that a path that has minimal
weight. The weight of a path can be determined by the sum of the weight
assigned to each edge in this path. For example, the question involving the
shortest times needed to travel between two cities can be solved by finding

the shortest path between these cities.

Several algorithms can be used to solve the shortest path problem. One
of these algorithms is called Dijkstra’s algorithm, which is one of greedy
algorithms that will be discussed in the next chapter.

2.1.4 A ll P a irs S h o rte s t P a th (A P S P) P ro b lem

15

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1560
340ai 1289J1456 1230

1258129* .1290

1188

19501420
12002150

1350

A: A connected weighted graph representing the distances of airline system

$110

$100
$160 $89

$59%T$;i25

$79

$200$159
(98$150

$100

B: A connected weighted graph representing the fares of airline system

3:25
: 10a,

2:45
4 :0 2

2 :36
: 05

1:55

3:092 :55
2:35

4 :15
2 :45

C: A connected weighted graph representing the flight times of airline system

Figure 2.6: A c o n n e c te d w e ig h te d g ra p h r e p r e se n ta t io n o f d is ta n c e s , fligh t

t im e s , a n d fares o f an a ir lin e sy s te m

16

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The all-pairs shortest path problem is a generalization of the single­

source shortest path problem where the single-source shortest path problem

searches for the lowest weight of a path between two vertices in a weighted
directed graph, while the all-pair shortest path problem searches for the
shortest paths between all pairs of vertices of the graph. In the other
words, given a weighted directed graph G = (V, E), the goal of the APSP is
to compute the shortest path from each vertex a E V to every other vertex
b E V. The solution of APSP can be considered as a table or a matrix
D(dij) where the entry di3 is the shortest path between vertex i and j for

all i , j E V.

The all-pairs shortest path problem has many applications in commu­

nication, electronic and transportation problems [16]. For example, in a
road atlas, it is important to determine the distance between all pairs of

cities [13]. That is, we need to construct a table that shows the distance be­
tween all pairs of cities in the road atlas. This can be solved by modeling it
in to a weighted directed graph and solving the APSP problem of this graph.

Many algorithms can solve the all-pairs shortest path problem. Floyd’s
Warshall algorithm, which is an example of a greedy algorithm, can solve
the APSP problem. This algorithm can compute the weight of the shortest

path between all pairs of vertices in a weighted directed graph [43]. More­
over, the APSP also can be solved using Dijkstra’s algorithm by applying
this algorithm to all pairs of vertices of a weighted directed graph G(V, E)
with non-negative weights, while Floyd’s algorithm works for both negative

and non-negative weights. These algorithms will be explained in the next
chapter.

2.1.5 M axim um N etw ork Flow

A flow netw ork is a weighted directed graph that displays a system of

rules of moving liquid, electronics, or material from a node s called source

17

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

where the material is supplied to a demand node t called the sink. These
materials flow from the source s to the sink t through intermediate nodes,
which are any node in the graph other than s and t. A material that flows
between two nodes is restricted by an amount called capacity. That is, the
amount of flow of material between two nodes cannot exceed this capacity.
Moreover, for any node on this graph, except the source s and the sink t,

the amount of material that flows into a node should be the same amount
that leaves from this node. The source s has only outgoing flow and the

sink t has incoming flow, on the other hand.

The maximum network flow is a problem that searches for a way of
moving a maximum amount of material from a source s to a sink t without
breaking the capacity restrictions, and computes the value of this flow.
The definition of a flow network is as follows:

D efin ition 2.5. A flow network is a weighted directed graph G (V,E)
where V is a set of nodes containing a source node s, a sink node t and
additional intermediate nodes. For any intermediate node, there is a path

from the source s to the sink t that passes through this node. Moreover,
for any edge (0 *,%) E E is assigned a value called a capacity c(ai,aj) > 0

such tha t the material passing through this edge cannot exceed its capacity.

We give a zero capacity for any edge that is not in E. That is, if an edge
(ai,a j) E, then c(ai,aj) = 0.

The definition of a flow network is defined as follows:

D efin ition 2.6. A flow network is a weighted directed graph G (V,E)

where V is a set of nodes containing a source node s, a sink node t and
additional intermediate nodes. For any intermediate node, there is a path
from the source s to the sink t that passes through this node. Moreover,
for any edge (a*, a,-) £ A is assigned a value called a capacity c(a.t, afl > 0
such that the material passing through this edge cannot exceed its capacity.
We give a zero capacity for any edge that is not in E. That is, if an edge
(a i,a j) ^ E, then c(ai}aj) = 0.

18

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 2.7: A flow netw ork show ing flow/ capacity

Now we define a flow in a network by the following definition.

D efin ition 2.7. Given a flow network G(Vy E) with capacity c{a^aj) > 0

for all aj ,aj E V, let s be the source node and t be the sink node of this
network. A network flow afl) from node a* to node aj is a real function
/ : V x V —»• M with the following properties for all nodes a ,, a, E F :

C ap ac ity C o n stra in ts : f (ai ,aj) < c(a,:, a,). The flow along an edge can­

not exceed its capacity.

Skew sym m etry : f(a,i,a,j) = —f(aj ,ai). The net flow from a; to a,j must

be the opposite of the net flow from aj to a,.

Flow conservation : Y lajev f (aii aj) = 0, a* G V — the net flow to
a node is zero, except for the source s, which supplies flow, and the
sink t, which demands flow.

The quantity f (a iyaj) is called the net flow from node a* to node aj. The

total net flow out of the source s is called the flow f of a network and can
be computed as:

I/I = 5 ^ / (s ’ a)'
a € V

E xam ple 2.4.

Consider the weighted directed graph G(V,E) shown in Figure 2.7 that
represents a network flow of a source 5 , sink t, and 4 additional intermediate

19

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

nodes 01 , 012,03 and 04 . A weight assigned in an edge is a pair f / c that
represents the flow and the capacity. The flow / of this network is

| / | = / (s , a 1) + / (s , a 3) = 12 + 9 = 21.

There is no edge from node a2 to node a4, therefore the capacity 0(02 , 04) =

0. We can observe that this graph satisfies all network flow properties. For

example, the amount of flow does not exceed the capacity for any node on

this graph. For instance,

/ (o 2, o3) = 4 < c(o2, a3) = 6 .

Moreover, the net flow from node Oj to node aj is the negative of the net
flow from node a,j to node a* for all nodes in G. For example,

/ (a 2,a 3) = 4 = - / (a 3,a 2) = -4 .

In addition, for any intermediate node cii E V we have Y^aj&v f (ai iaj) = 0-
For example,

y : i (a i , aj) = K a 1 , s) + K a 1,0-3) + / (a 1, 02) = + 4 + 8 = 0 .
aj-ev

A maximum network flow problem in a flow network with source s and
sink t is a problem of finding the maximum value of flow from the source
s to the sink t , and/or computing the value of this flow. There are several
algorithms for solving this problem. In the next chapter we will discuss one
of these algorithms called the Ford-Fulkerson algorithm, which can solve a

maximum network flow.

2.2 G reedy algorithm s for Solving Com binatorial O ptim ization
Problem s

There are various significant algorithms that solve combinatorial op­
timization problems. Examples of these algorithms are the local search
algorithm, greedy algorithms, the grasp algorithm and the genetic algo­
rithm [9]. The choice of which of these algorithms to use depends on the
kind of problem. In this study we are particularly interested in greedy al­
gorithms and the local search algorithm. In this chapter, we will discuss
greedy algorithms and their applications.

20

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.2.1 G reedy Algorithm s

Greedy algorithms are algorithms that search for the best (an optimal)
solution to combinatorial optimization problems by building the solution

using several iterations. At each iteration, they make the optimal choice.

In general, greedy algorithms have the following characteristics:

1. They compile a candidate set whose elements are all candidate parts
of the solution from which the final solution is built.

2. They make a selection rule that determines which element we can
choose from the candidate set.

3. They obtain a decision rule that decides whether or not the candidate

solution will be added to the final solution.

4. They have an objective function that computes the value of the final
solution tha t they built.

5. Finally, they state a solution function that decides if the final solution
is a complete solution or not.

The way the greedy algorithms is used sometimes does not end with an
optimal solution, or also it might not completely solve the problem. This is
because the final solution that the greedy algorithm builds does not com­

pletely satisfy all the constraints of the problem. When this happens, it
gets blocked and cannot find a solution. On the other hand, some greedy

algorithms can solve completely some combinatorial optimization problems
and can find a solution. This solution might not be the optimal one, but it
will be close to the optimal. For example, Prim ’s algorithm and Kruskal’s

algorithm, which are examples of greedy algorithms, can find an optimal
solution of the minimal spanning tree [43]. Whereas, Kruskal’s algorithm
can find a solution that is near to the optimal one of the traveling salesman
problem. Another example of a greedy algorithm is called Dijkstra’s algo­
rithm [13] which can be used to solve a single-source shortest path problem
and all-pair shortest path problem. These algorithms will be discussed in
the following sections.

21

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.2.2 Kruskal’s algorithm for Traveling salesm an problem

In this section we state un example of a greedy algorithm that can be
used to solve the traveling salesman problem (TSP)(see Section 2.1.1). This
algorithm, which is called Kruskal’s algorithm, was discovered by Joseph
Kruskal in 1956 [43].

Usually, Kruskal’s algorithm can find a solution to an instance of the

traveling salesman problem that is near to the optimal solution. It is es­

pecially effective when the graph is complete [7]. In general, the steps of

solving the TSP using Kruskal’s algorithm are as follows:

Step 1 Compile the candidate set whose elements are the edges that form

the parts of the solution.

Step 2 Sort the edges in descending order according to their weights.

Step 3 Choose the first immediate candidate edge from the candidate set.

Step 4 Select or ignore the edge chosen in step 3. That is, we select the
edge in step 3 if it satisfies the following two conditions when com­
pared with the all edges that already have been chosen:

1. No vertex has a degree of more then two.

2. These edges do not form a cycle in the result graph, except if
the number of the vertices is equal to the number of edges that
have already been chosen.

If the chosen edge satisfies these conditions, then it becomes part of
the solution. That is, we add it to the final solution and continue the
procedure by repeating step 3 and step 4. Otherwise, we ignore the
chosen edge and choose another edge by repeating step 3 and step 4.
The algorithm is terminated when n edges have been found.

Exam ple 2.5.

22

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 2.8: A six cities instance of TSP

An instance of TSP of six cities along with edges and their correspond­

ing weights, is shown in Figure 2.8. According to the steps in Kruskal’s
algorithm, we have the following:

1. The candidate set p is of the form

P = {(ei2, 15), (ei5, 7), (e56,4), (e23,3), (e24,8),

(^26) 11),, (ei6,4), (e36, 10), (e45, 19), (e34,4)}

2. The candidate set p after being sorted in descending order is as follows:

P = {(^ 2 3 , 3), (e56,4), (e16,4), (e34,4), (ex5,7),

(^24,8), (e36, 10), (e26 ,11), (ei2, 15), (e45, 19)}

3. In step 3 and step 4 we have the following output

23

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

aA a4
A tour of cost = 49 An optimal tour o f cost = 48

Figure 2.9: A tour of cost = 49, at the left, and an optimal tour of cost = 48 on the

right, of the instance of the TSP in Example 2.5.

Step 3
Chosen edge Step 4: Decision

^23 Select

e 56 Select

616 Select

634 Select

6 l5 Ignore: Since it forms a cycle with

edges e56 and ei6

624 Ignore: Since it forms a cycle with
edges e23 and e34

636 Ignore: Since the vertex 0,3 will
have more than two degrees

e26 Ignore: Since the vertex o,6 will
have more than two degrees

6 1 2 Select

e45 Select

When the fifth edge has been reached, we stop this process and con­
clude that the final tour is reached. We found that the final tour tour
is y = (123456) with cost 49 (shown in Figure 2.9). Although this
is a better solution, it is not the optimal one. This is because the
optimal solution has a cost of 48, (see in Figure 2.9).

24

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Finally, we have reached a tour of cost 49 which is near to the optimal
solution tha t has a cost of 48 (Figure 2.9).

As we see, Kruskal’s algorithm has found a solution that is near to the
optimal solution of TSP. In addition, this problem can be solved using the

local search algorithm, which is one of the interesting algorithms in combi­
natorial optimization. This will be provided in the next chapter.

Next section will discuss another example of a greedy algorithm. This
algorithm is called Prim ’s algorithm, and it can be used to solve the minimal
spanning tree problem.

2.2.3 P rim ’s A lgorithm for M inim al Spanning Tree

Prim ’s algorithm, an example of a greedy algorithm, can find a span­

ning tree in a connected weighted graph that has minimal weight. This

algorithm was given by Robert Prim in 1957 [43]. Prim’s algorithm uses
several iterations and through these iterations it builds a tree that contains
all vertices of the graph, has no simple circuits, and has minimum weight.

The steps of building a minimal spanning tree in a connected weighted

graph G where Prim ’s algorithm is used are as follows:

Step 1 Select the edge that has the lowest weight. If there is more than
one, we choose one of them arbitrarily. From this edge we build a tree
T consisting of this edge and the corresponding two vertices.

Step 2 Select the least weighted edge that goes from only the vertices in

the tree T, and that does not form a simple circuit in the tree T.
Then, add this edge and the new vertex to the tree T.

Step 3 Repeat step 2 until n — 1 edges have been added to the tree T,
assuming that the graph G has n vertices. At that time, we have
created a tree that contains all vertices of the graph G with no simple
circuits and with minimum weight. That is, the minimum spanning
tree of the graph G is reached.

25

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 2.10: A connected weighted graph representation of a phone network design

with five cities

The algorithm for finding a minimal spanning tree in a connected weighted

graph using Prim ’s algorithm is as follows [43]:

Algorithm 1: Prim ’s Algorithm for finding the minimal spanning tree of a
connected weighted graph G = (V ,E) with n vertices.

Input: The set of edges E of G, and the weights w(e) for every e E E.
Output: A minimal spanning tree T of the graph G

T : = { } , ” a tree with no vertices”
for i := 1 to n — 1
begin e e E E

if (e is the least weighted edge that goes from only the vertices in the

tree T , and that does not form a simple circuit in the tree T) do
T : = T U { e }

end
end
return T (T is the minimal spanning tree of G)

Exam ple 2.6.
Recall from Chapter 2, the example of the phone network design with five
cities, (Example 2.3). The connected weighted graph representation of this

26

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

problem is shown in Figure 2.10. The problem is to find links that connect
all the offices so that the total cost of these links is minimum. That is, we
want to find a spanning tree in this graph that has minimum weight.

The steps that Prim ’s algorithm uses to solve this problem, by building
a spanning tree that has minimal weight, are as follows. First, it starts by
choosing an edge that has minimum weight. This edge is the one that con­

nects cities ai and a4 tha t has a cost of $700. We call this edge e1 = {ai, a4}.
From this edge and the two vertices, we form a tree denoted by T. The goal

is for this tree to be a spanning tree with minimal cost. Second, we select

the least weighted edge tha t goes from only the vertices in the tree T, which
are ci\ and a4, and that does not form a simple circuit in the tree T. We

found that, this edge is e2 = {a4, a2} with a cost equal to $900. After that,
we add this edge and the new vertex, a2, to the tree T. Next, we repeat
the same procedure to find the remaining edges and form a spanning tree
that has minimum weight. Note that, although the edge { a i,a 2}(with cost
$1000) has less weight than the edge {a4, a3}(with cost $1100), we selected

the edge {a4, a3}. This is because the edge {a i,a 2} forms a simple circuit in
the tree T. The complete steps of Prim ’s algorithm for solving this problem

are given in the following table.

Chosen edge Decision Weight

{ax, a4} Select $700

{a4, a2} Select $900

{a i,a 2}
Ignore: Forms a simple circuit with

edges {a4,a 4} and {a4 ,a 2}

{a4,a 3} Select $ 1 1 0 0

{&3, 05} Select $800
Total: $3500

Finally, the minimal spanning tree T in this graph has a weight of cost
$3500 (Figure 2.11).

27

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 2.11: An optimal spanning tree for the phone network design of cost $3500

The minimal spanning tree can also be solved by Kruskal’s algorithm,
which we will provide in the following section.

2.2.4 K ru sk a l’s A lg o rith m for M in im al S pann ing Tree

In Section 2.2.2 of this chapter, we showed that Kruskal’s algorithm
can solve a traveling salesman problem. In this section we will use this

algorithm to solve the minimal spanning tree problem (see Section 2.1.2).

A minimal spanning tree problem is a problem that searches for a spanning
tree of a weighted connected graph such that this tree has minimal weight.

KruskaPs algorithm can be used to find such a tree. It starts by selecting
an edge that has minimal weight and consecutively collects edges tha t have

minimal weight and do not form a simple circuit with the edges already
chosen. It continues collecting edges until n — 1 edges have been collected,
assuming that the graph has n vertices.
The steps of finding a minimal spanning tree using Kruskal’s algorithm in
a connected weighted graph G of n vertices are as follows:

S tep 1 Select an edge that has the lowest weight. If there is more than
one, we choose one of them arbitrarily.

S tep 2 Select the first immediate least weighted edge that does not form
a simple circuit with the edges tha t already have been chosen.

S tep 3 Repeat step 2 until n — 1 edges have been added. At that time,
we have reached a tree that contains all vertices of the graph G with

28

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

no simple circuits and has minimum weight. That is, the minimum
spanning tree of the graph G is founded.

The following pseudocode is for Kruskal’s algorithm for finding a minimal
spanning tree for a weighted connected graph G(V, E) of n vertices [43].

Algorithm 2: Kruskal’s Algorithm for finding the minimal spanning tree of
a connected weighted graph G = (V, E) with n vertices.

Input: The set of edges E of the graph G, and the weights w(e) for every

e e E.
Output: A minimal spanning tree T of the graph G

T : = { } , ” a tree with no vertices”
for * := 1 to n — 1

begin

e := e € E
if (e is the least weighted edge that does not form a simple circuit with

the edges of T) do
T :— T U {e}

end
end
return T , (T is the minimal spanning tree of G)

Exam ple 2.7. In Example 2.6, we have solved the phone network design

problem with five cities, Figure 2.12, using Prim ’s algorithm. In this exam­
ple, we want to solve this problem using Kruskal’s algorithm. Recall that
the goal of this problem is that we have five offices located in five different
cities and want to find links that connect all these offices so that the total
cost of these links is the minimum. That is, we want to find a spanning tree

29

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

F igu re 2.12: A connected weighted graph representation of a phone network design

with five cities

which contains all cities and has minimum weight.

Kruskal’s algorithm can solve this problem by selecting an edge that
has minimum weight and does not form a simple circuit with edges already
chosen. Therefore, the first smallest weighted edge, in Figure 2.12, is e\ =

{0:1, 04} of cost $700. The second smallest edge is e2 = {03 , 05} of cost
$800. Clearly these edges do not form a simple circuit with edges already
chosen since they are only two edges. Edge e3 = {o2, 04} is the next smallest
weighted edge of cost $900 that does not form a simple circuit with edges ei

and e2 (see Figure 2.18). The following edge that has the smallest weight is

e2 = { o i , a 2}; however, this edge forms a simple circuit with edges already
chosen, which are edge e\ and edge e3. Therefore, we choose edge e4 =
{04,03} of cost $ 1 1 0 0 since it does not form a simple circuit with edges
already chosen. Since the total number of selected edges is 4 = n — 1 =
5 — 1, where n is the total number of vertices in the graph, we terminate
the procedure and the minimal spanning tree is reached. This tree has a
total cost equal to $3500, which is an optimal cost, and composed of edges
e\ = { a i ,a 4 } ,e 2 = {o3,o 5} ,e 3 = {02,04}, and e4 = {04,03}. This solution
is the same solution that have been found using the Prim ’s algorithm, (see

Figure 2.11).

In the next section we will state another example of greedy algorithms that
can be used to solve single-source shortest path problem.

30

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

$900

$701

$800

F igure 2.13: A tree (not spanning tree) consists of three edges that were found using

the Kruskal’s algorithm in Example 2.7

2.2.5 D ijkstra’s A lgorithm for Single-Source Shortest Path prob­
lem

Dijkstra’s algorithm is an example of a greedy algorithm that can solve
the shortest path problem (see Section 2.1.3). The shortest path problem is
a problem that searches for the smallest weighted path between two vertices
in a weighted directed (or undirected) graph. Dijkstra’s algorithm, which
was discovered by Dutch mathematician E. Dijkstra in 1959 [43], can find
this path by finding the shortest path from the initial vertex to the following

vertices, until the terminal vertex is achieved. That is, it searches for the

path that has the smallest weight from the initial vertex to the first vertex,
the path that has the smallest weight from the initial vertex to the second

vertex, and continues the same process until it arrives at the terminal vertex.

Dijkstra’s algorithm searches for the shortest path from vertex a to
vertex z in a weighted undirected graph using several iterations. Through
these iterations, it composes a set that is a subset of the set V . This set

is called the distinguished set and is denoted by Sk, where k refers to the
iteration k. At each iteration, one new vertex is added to the distinguished
set Sk- The new vertex is added such that it has the smallest path that

contains only vertices from the previous distinguished set *S'fe_i. That is, a
vertex u is added to S k if there is a path from vertex a to vertex u that
contains all vertices in ,S'fc-i and has the smallest weight. We let L k (u) be
the weight of the smallest path from vertex a to vertex u containing only

31

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the vertices in the distinguished set Sk -

Now, we state the steps of Dijkstra’s algorithm for finding the shortest
path between two vertices in a weighted undirected graph. Given a weighted

undirected graph G(V, E) and assuming that we want to find a shortest path
from vertex a to vertex z, the steps of Dijkstra’s algorithm in searching for

this path are as follows:

Step 1 It starts by initializing all vertices in the graph by labeling the
vertex a with zero and all other vertex by oo. That is,

L 0 (a) = 0, L 0 (u) = 0 0 ,Vu E V — {a}.

Recall that, Lk(u) is the weight at iteration k of the smallest path from

vertex a to vertex u containing only the vertices in the distinguished

set Sk- Now, since there is no vertex added to So, we let So = <f) at
iteration zero.

Step 2 At each iteration k, we add the next smallest labeled vertex to the

distinguished set Sk that is noted in the previous distinguished set
S k-1- That is, a vertex u is added to Sk if there is a path from vertex
a to vertex u that contains all vertices in Sk- 1 and has the smallest
weight. In other words, a vertex u is added to Sk if:

L k-iiu) < L k-i{ t) ,\/t 0 Sk-i.

Step 3 Update the labels of all vertices that are not in Sk, that is, the
vertices that are in Sk-i U{n}> where u is the vertex that is added in
step 2 .
We update the label at iteration k of a vertex v, Lk(v), that is not

in Sk by the following. Lkiy) is the weight of the shortest path from
vertex a to vertex v that contains only the vertices from S k-1, that
is, Sk — {«}, or is the weight of the shortest path from the vertex a
to vertex u at iteration k — 1 plus the weight of edge {u, v}. That is,

L k{v) = m in {L k-i{v),L k -i(u) + u(u, u)} , (2 .4)

where co(u, v) is the weight of edge {u,v}.

32

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

S tep 4 Repeat step 2 and step 3 until the terminal vertex z is added to the
distinguished set. That is, the procedure is terminated when z £ S k -

When the vertex z is added to the distinguished set, the shortest path from
vertex a to vertex z is reached and has the weight given by Lk(z), where k

is the last iteration where vertex z is added.

The pseudocode of Dijkstra’s algorithm in finding the shortest path
between two vertices, say from vertex a to vertex z, in a weighted connected
graph with n vertices and non-negative weights is as follows [43]:

Algorithm 3: Dijkstra’s Algorithm for finding the shortest path between vertex a to

vertex z in the non-weighted connected graph G = (V, E) .

Input: V = { a = o j, 0 2 , . . . , a n = z }, wy > 0 and wy = oo if {a*, a j } E

O utput: L (z) The shortest path from vertex a to vertex z

1. for i := 1 to n

L (a i) : = oo

2 . L (a) := 0

3 . S :=((>

(steps 1 to 3 Initialize the labels of every vertex in G and let the

distinguish set S be the empty set.

w h ile z $ S

b egin
4. v := where v S and has the smallest label L (v)

5. 5 : = SU{ w}

6. for all vertex not in S

if L (v) + u (v , b) < L (b) th en L (b) := L { v) + to(v, b)

(Steps 4 to 6, add a new vertex, v, to the set S and update the

label of every vertex b ^ S)

end

return L (z)

(Where L (z) is the weight of the shortest path from vertex a to vertex z)

33

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

a

Figure 2.14: A weighted undirected graph with six cities of Example 2.8.

Exam ple 2.8.
Consider a weighted undirected graph G(V, E) with six vertices shown in

Figure 2.14. Assume that we want to find the shortest path from vertex a
to vertex 2 . Dijkstra’s algorithm can be used to find such a path as follows:

First, we begin by labeling vertex a with zero and all other vertices with
oo. That is,

L 0 (a) = 0, L 0 (t) = oo, Vi G V — {a},

(see Figure 2.15-A). The distinguished set has no elements at this iteration,
that is, So = {}.
Next, since the smallest labeled vertex is a, L 0 (a) = 0, and all other labeled
vertices are oo, we add vertex a to the set Si. That is, Si = {a}. Now, Si
has only vertex a, so the following labels are as follows:

Li(b) = 3,L i(d) — 6 , and, L i(v) — oo Vu G {c,e, z}.

(see Figure 2.15-B). Now, we repeat the same steps by adding the smallest
labeled vertex that is not in 51 = {a}. This vertex is b with Li(b) = 3.

That is, the distinguished set will be 5 2 = {«; b}. Moreover, we update the
labels of all vertices not in 5 2 using formula 2.4, at iteration k = 2:

L 2 (v) = m in {L i(v) , Li(b) + cu(b,v)}, \/v S 2 = {a, 6}.

34

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

For instance,

L 2 {d) = m in{L i(d), L\{b) + u(b, d)}

= m in{ 6 ,3 + 2 }

= 5,

(see Figure 2.15-c). We continue this procedure until vertex z is added

to the distinguished set. The complete solution of this problem solved by
Dijkstra’s algorithm is shown in Figure 2.15. In this figure, we circle the

elements of the distinguished set at k iteration, Sk and indicate the smallest
path between vertex a and each vertex and containing only vertices in Sk-
At the final iteration, when vertex z is added to the distinguished set, the

shortest path from vertex a and vertex z is reached and has a weight equal
to the value of L k (z) , where k is the last iteration. This path is a, b, d, c, z ,

(see Figure 2.15-F).

In this section, we discussed Dijkstra’s algorithm for solving the single­

source shortest path problem. In the next section, we will see that this
algorithm can be used to solve all-pair shortest path problem with non­
negative weights. Moreover, we will discuss another example of a greedy
algorithm that can be used to solve the all-pair shortest path problem with

negative and non-negative weights. This algorithm is called Floyd’s War-
shall algorithm.

2.2.6 F loyd’s W arshall A lgorithm for the A ll-Pair Shortest Path
(A P SP) problem

Floyd’s Warshall algorithm is an example of a greedy algorithm and
can be used to solve the all-pair shortest path problem (Section 2.1.4). This
problem can be described as follows. We are given a weighted undirected
graph G(V, E) and we want to find the shortest paths between every two

vertices in this graph. That is, we need to determine a matrix called the
shortest path matrix, denoted as D[dij], where the entry dij is a path from

35

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

S0=* S, ={«}

(A) (B)

b [3(a)j c \12(a,b,d,e)\ b K«) C\l2(a,b,d,e)}

e \U{a.b.d)\

Figure 2.15: Dijkstra’s algorithm for finding the shortest path between vertex a and

b. The details of this figure are described in Example 2.8.

36

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

vertex a* to vertex cij, for a;, a3 £ V, and has the smallest weight.

Floyd’s Warshall algorithm can solve this problem and find the shortest
paths matrix D by the following. Given a weighted directed graph G(V, E)
and the set of vertices V = {ai, a2, . . . , an}, we are assuming that the weight

of the edge (a*, aj) E E is non-negative for all a ,, a3 £ V. That is, the weight
u>ij for the edge (a,i,a,j) is given by the following equation:

f 0 , if i = j-

u i,j = ̂°°) if i 7̂ j and i ^ j (the edge (a*, aj) £ E)\ (2-5)
[oJij, if i ^ j and (a^Uj) E E).

Let matrix where the entry witj is defined by equation 2.5, be the
weight matrix of graph G.

Floyd’s Warshall algorithm can find the shortest path matrix D[dij] by
determining a sequence of matrices D ^ \ D ^ \ . . . , D (nk A matrix D k[dG] is
the shortest path matrix at iteration k, where 0 < k < n, and the entry d,G

is the weight of the shortest path from vertex a* to vertex aj with interme­

diate vertices only from the set {ai, a2, . . . , a*,}. That is, matrix D ^ [d kj]
considers only those paths where the only intermediate vertices are those
from {ai, a2 , . . . , %} and which have the lowest weight. Recall that the
definition of the intermediate vertex of a path P = < ai,a,2, . . . ,ak~i,ak >
is any vertex in a path P other than vertex ai and vertex a*,, that is, any

vertex in the set {a2, . . . , afc-1}- If k = 0 , there is no intermediate vertex in
a path from vertex a* to vertex a3. This path consists only of edge (at , a3),
and therefore, it has a weight equal to Hence, the shortest path matrix

when k = 0 is the weighted matrix W[uJij\. Thus:

[d3 j] = W fa j] , where Lohj is defined in equation 2.5.

For k > 1, a matrix [d3 j] is computed from the matrix D^k ^\d k 3 *] as
the following:

dkitj = m in (d kt 1 , d j" 1 4 - d ^ 1) (2 .6)

37

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Therefore, the matrix entries are all getting smaller through these iterations.
That is, when k is increased, the matrix entries d* • are decreased:

When k = n, the shortest path matrix D[dij], which consists of the short­

est path between all pairs of vertices in graph G, is reached and equal to
[dy]. In other words,

and for any vertices aj ,aj € V, the weight of the shortest path between

vertex a* and vertex a3 is given by the value of the entry d” -.

Moreover, the shortest path between each pair of vertices of the graph
G can be constructed using the predecessor matrix P. This matrix can be
computed using the shortest path matrix T>[dy], The algorithm constructs

a sequence of predecessor matrices p (° \ P ^ \ . . . , P ^ where the entry pG

of the predecessor matrix P ^ \p kj\ is the predecessor of vertex j on the
shortest path from vertex % to vertex j with intermediate vertices all in the

set {aj, 02 , . . . , a*,}. That is, the predecessor matrix P^> is computed from
the matrix by the following:

At k = 0, the shortest path from vertex at to vertex Oj has no intermediate
vertices. That is, the entry of the predecessor matrix at k = 0 has entry

Pij defined by:

For k > 1, the entry p\ - of the predecessor matrix P^> is computed as the
following:

The APSP also can be solved using Dijkstra’s algorithm. That is, we apply
this algorithm for all pairs of vertices of a connected weighted graph. A

dfc_1 > dk ■

N IL , if dQhJ = 0 or d? • = oo where d£ ■ is the entry of
the matrix

i, otherwise.

38

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

graph G with n vertices has (”) pairs of vertices where

n\ n\
2 ' ~ 2 !(n — 2)!’

Moreover, for each pair of the vertices of G we should use Dijkstra’s algo­
rithm n times. Therefore, to solve the APSP we need to apply Dijkstra’s
algorithm n x (”) times. This algorithm can be used only if the weights
of a graph are non negative, whereas Floyd’s algorithm works even if the
weights of a graph are negative.

2.2.7 Ford-Fulkerson’s A lgorithm for M axim al Netw ork Flow Prob­
lem

Ford-Fulkerson’s algorithm can solve the maximal network flow prob­
lem discussed in Section 2.1.5. Recall that a flow network is a directed
graph G = (V., E) where the set of nodes V contains a source node s, a
sink node t and extra intermediate nodes (any node other than s and t). A
flow network should satisfy the following constructions. Each edge e E E
is assigned a capacity c where the flow along this edge cannot exceed its
capacity. The net flow f(a i ,a j) from node to node aj must be the op­
posite of the net flow from a j to a*, that is, f (a t , a j) — — f (a j , a>i) , for all

nodes ai,aj E V. Moreover, the flows into a node should equal the flows
that leave this node except for the source s, which has only outgoing flow,

and the sink t , which has only incoming flow.

The maximum network flow problem is a problem of determining the
maximum amount of flow from the source s to the sink t in a flow network
without violating the restrictions of the capacity and the flow for each node
in the network.

Ford-Fulkerson’s algorithm can solve the maximum network flow prob­
lem by finding a path from the source s to the sink t with positive capacity
along all its edges. This path is called an augmenting path. Along this
path, we push flow. We continue finding such paths until no more paths

39

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

can be found.

There are three important ideas that the Ford-Fulkerson’s algorithm
uses for solving such problems. The ideas are the residual network, aug­
menting paths, and cuts. The max-flow min-cut theorem, which will be
described later in this Section 2.1.5, will be used to show that the maxi­
mum flow in a flow network is the same as the capacity of some cut in this
network. To illustrate the algorithm let us state some important definitions

and theorems.

D efinition 2.8.

Given a flow network G (V,E) with source s and sink t, let f(ai,cij) be a
net flow in G from node a* to node ay.

1. The residual capacity of an edge (ai,a j) is the amount of additional
flow we can send from node <xt to a.j before exceeding the capacity
c(ai,aj), denoted as Cf(ai,aj) and defined by the following equation:

/(cij,Qj). (2-7)

For example, if c(ai,aj) = 20 and /(a j ,a j) = 15, then we can send 5
units more through this edge.

2. A residual network associated with a flow network G(V, E) with a net
flow / is denoted as Gf(V, E f) where E f is a set of edges defined as

E f = {(a i,a j) e V x V : cf (ai ,aj) > 0}.

and
— c(ai, aj) y (o j , U j) .

The goal of a residual network is to show what amount of capacity is
available in each node in the original network. In a residual network,
there might exist an edge (a-i, a„j) that does not appear in the original
network.

40

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

F igu re 2.16: A residual netw ork for F igure 2.7 , show ing capacity

3. A path (ai, a2, ■ ■ ■, ak) in a flow network is called an augmenting path if
it is simple and dj = s, % = t, and C/(dj, dj+i) > 0 for i = 1 , . . . , k — 1.
That is, along any augmenting path we can send more flow through
this path. The residual capacity of p is denoted as Cf(p) and given by
cf (p) = m in{cf(a i,a j) : (d^d^) G p]

4. A Cut on the flow network G (V ,E) is denoted as (S ,T) where S and

T are a subset of the set V such that T = V — S, s G S, and t G T.
We define the capacity of the cut (S, T) as c(S, T) and the net flow

across this cut as f (S , T) where / is a flow.

E xam ple 2.9. The residual network Gf(V, Ef) of a flow network of Figure

2.7 defined in section 1.5 is shown in Figure 2.16. In a path p = (s , di, d2, t)
we have the following residual capacities:

c /(s ,d i) = 3, c/(di, d2) = l , c / (d2,t) = 2,

which are greater than 0. That is, this path is an augmenting path with

residual capacity :

cf {p) = m i n { c f (s , a i) , Cf (a1, a 2) , Cf (a2, t) }

= m in{ 3,1,2}

= 1

This means that we can push one unit more from the source s to the sink
t along this path.

41

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

I>II

- 1 2 /1 10/0
10 / 1:

2/15

4/6 - 4 /2 2/3

■9 /0
9/12

ii

Figure 2.17: A cu t (S , T) o f th e flow netw ork in F igure 2.7 w here S = {s, a i , a2}

and S = {0,3, (14, t } . T h e d eta il o f th is figure is show n in E xam p le 2.9

A cut (S ,T) on the flow network of Figure 2.1, is shown in Figure 2.17,
where S = {5 , a\, 0,2 } and S — {a3, a4, t}. The net flow of this cut is

f (S , T) = f (a 1 ,a 2) + / (a 3, a4) = 8 + 13 = 2 1 .

The capacity across this cut is

c(S, T) = c(a1 ,a2) + c(a3, afl) = 9 + 16 = 25.

T h eo rem 2.2.1. (Max-flow min-cut theorem)
Let G — (V,E) be a flow network with a source s and a sink t. I f f is a
flow in G, then the following are equivalent:

1. f is a maximum flow in G.

2. There are no augmenting paths in the residual network G f.

3. There is a cut (S , T) in the flow network G such that \ f \ = c(S,T).

Proof. For the proof of this theorem see [13]. □

Now, we can describe the basic steps of the Ford-Fulkerson’s algorithm
for solving the maximum network flow problem.

In p u t : A flow network G with capacity c, a source node s, and a sink
node t

42

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

O utput : Flow / such that / is maximal from s to t

Step 1 Initialize flow /:

for each edge (u, v) £ E do

• f (u , v) := 0

• f {v ,u) := 0

Step 2 Find an augmenting path p with Cf (p) > 0: That is,find any
path p in the residual network G /. If there are no more such
paths, return (/) which is the maximum flow of G.

Step 3 Calculate the residual capacity of p:

• Cf(p) = min{cf (u,v) : (u,v) € p}

Step 4 Augment flow / along the path p by the residual capacity

cA p)-
for each edge (u, v) in p do

• f (u , v) := f (u , v) + cf (p)

• f (v , u) := - f (u , v)

Step 5 Go to step 2.

When this algorithm is terminated, that is, when there are no more

augmenting paths in G, the maximum flow of this network is the flow

/
As we have seen, greedy algorithms can be used in solving certain

combinatorial optimization problems. The next chapter discusses the local
search algorithm, which is one of the interesting algorithms in combinatorial
optimization.

2.3 The Local Search Algorithm s

The local search algorithm is one of the successful algorithms for solv­
ing combinatorial optimization problems. It searches through the space of
candidate solutions called the search space. In the search space it searches
for the best solution. It moves from solution to solution until it finds a

43

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

solution that can be considered, in some sense, the best solution. This so­
lution sometimes is the optimal solution or near the optimal. To illustrate

the local search algorithm, let us start with the following section that states
the important definitions and properties of this algorithm.

2.3.1 D efinitions and Properties

D efinition 2.9. Given an optimization problem with an instance (F, c), a
neighborhood is a mapping

iV : F -> 2F

where 2F is the •powerset of F, which is defined as the set of all subsets of

F. That is,

2f = { S : S c F}, and |2F | = 2|F|.

D efinition 2.10. Given a feasible solution y & F in a particular problem
with instance (F ,c), the set

N (y) — { g '■ g e F, g is ” close ” in some sense to the solution y}

is called the neighborhood of y.

Exam ple 2.10.
The neighborhood of a feasible solution y of an instance of the traveling
salesman problem is called k-change and defined as follows:

N k(y) = {g : g G F and g can be obtained from y by removing k edges
from y and replacing them with k new edges}.

For example, a feasible solution y G F of an instance of TSP with 6 cities
is shown in Figure 2.18. When k = 2, the 2-change neighborhood of y is
defined as
W (y) = { g '■ g € F and g can be obtained from y by removing 2 edges

from y and replacing them with 2 new edges}.
The feasible solution g G A ^y) is defined by removing the two edges ei, e2

and replacing them with two new edges as shown in Figure 2.18

44

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A feasible solution y A feasible solution g

F igure 2.18: A feasible solution y of an instance of TSP and a feasible solution g £

Finding the optimal solution of an optimization problem is usually

difficult. On the other hand, we can often find the best solution in the
neighborhood of some feasible point y € F. This is called a local optimal

solution, which is defined in the following definition.

D efin ition 2.11. Given an instance (F, c) of an optimization problem and
a neighborhood N, a feasible solution y E F is called local optimal with
respect to N if

assuming that this is a minimizing type problem, i.e., t = min.

The local search algorithm searches for the best solution in the neigh­
borhood of a feasible solution of a combinatorial optimization problem,
which is called a local optimal solution. That is, it moves from solution
to solution in the feasible solution set until it reaches a solution that is
no longer improved or some condition is satisfied. The condition is called

a stopping rule and sometimes is considered as time bound or iterations
bound.

Now, we briefly explain the local search algorithm for a given instance
(F, c) of an optimization problem. Let N(y) be the set of neighborhood of
y G F. Consider the following subroutine

N2(y)

c(y) < c(g), V g e N(y)

improve(y)
Any g : g G N(y), c(g) < c(y);

False : if no such g exists.

45

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The idea of the local search algorithm is that we start with an arbitrary
initial feasible solution y e F. Then we use a loop that searches for a better
solution in the neighborhood of y, N(y), using the subroutine improve(y).
The loop is stopped when the current solution no longer can be improved,
and therefore, this solution is called the local optimal solution. The main
body of the general local search algorithm is shown as follows:

P ro d u c in g a local optima

beg in

y = completely random starting feasible solution belongs to F\

W hile (improve(y) ^ False) do
y — improve(y)-,

re tu rn y

end

There are several decisions that we have to decide when we use this algo­
rithm. First, the number of initial feasible solutions that we start with and

how we classify them must be determined. Often, a local search algorithm
uses several initial feasible solutions to start with and chooses the best re­
sult. The next decision that we should make is the neighborhood for the
problem and the method for searching for it. This method provides a way
of searching for the best solution in the set of the neighborhood. The size
of the neighborhood usually determines the quality of the resulting local
optimal solution. That is, a neighborhood which has the largest size usu­

ally leads to a better solution that is near to the global solution. On the
other hand, using a neighborhood that has a large size takes more time to

achieve the local optimal.

The local search algorithm can be used to solve important combinato­
rial optimization problems that arise in various areas. These include, for
example, problems from engineering, computer science, operations research,
and mathematics.

46

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

There are several examples of local search algorithms. GSAT and
WALKSAT are examples of local search algorithms that can be used in
solving the boolean satisfiability problem [46]. Another example of a local

search algorithm is Lin-Kernighan [23] for solving the symmetric traveling
salesman problem.

In the next section we will describe briefly the 2-opt (Lin-Kernighan)
algorithm for solving the symmetric TSP.

2.3.2 Lin-Kernighan (2-opt) A lgorithm for Sym m etric Traveling
Salesm an Problem

In this section we will talk briefly about the Lin-Kernighan (2-opt)

algorithm for solving the symmetric traveling salesman problems. For more
detail about this method you can refer to [23, 34].

The Lin-Kernighan algorithm is one of the most successful examples

of local search algorithms that can find an optimal or near to the optimal
solution for the symmetric traveling salesman problems. It has been given
the optimal solutions for all solved problem instances that we have been

able to obtain, as well as the largest nontrivial problem instance, which is
a 7397-city problem that has been solved to optimality today. Moreover, it
has improved the best known solution for an 85900-city problem.

Recall that the goal of the traveling salesman problem is to find the
cheapest tour that visits all given cities exactly once and then returns to
the starting point. In weighted graph representation, we are looking for a

path that has the minimum weight, starts and ends at the same vertex and
visits each vertex one time. The cost of traveling from city i to city j is

denoted as C %j . If C \ j = C j i , the problem is called a symmetric traveling
salesman problem; otherwise it is called asymmetric TSP. Usually, the sym­
metric TSP is more difficult.

47

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

F igure 2.19: A 2-opt move of an instance of a TSP where a,; denotes the city i

The idea of 2-opt algorithm for solving the symmetric TSP is simple.
It starts with a completely random tour and tries to find the best tour in
its neighborhood using the subroutine improvement (y). It replaces 2 edges
with 2 new edges so that the resulting tour is a feasible tour and has less

cost. For example, Figure 2.19 shows a 2-opt move of an instance of a TSP
where a* denotes the city i. The algorithm continues improving the current

tour until there are no more improvements of the current tour.

The 2-opt (or 2-change) neighborhood of a tour T, N 2 (T), of an instant of
the TSP with n cities can be described as follows. Assume that the tour
T — { t i , . . . , tn}, where fj is a city in this tour. A tour T € N 2 (T) if a set
X of two edges is removed from the tour T and replaced by a set Y of two
new edges such that the resulting tour is a feasible tour.

To insure that the resulting tour, T, is a feasible tour, the edges in the

two sets X = { x i ,x 2} and Y = {yi, 2/2} should be selected such that

In other words, a tour T e N 2 (T) where T = (t\ , . . . , tn) if T is of the form

^i+1) j

x 2 = { t j j t j + l)j

and

yi = (M j)

y 2 =

1 Y i < j < n, j i + 1 and j ^ i — 1 (2 .8)

T (ti^2 • • • 1 fn)

48

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

a4

Figure 2.20: An instance of TSP of 5 cities of Example 2.11, on the left, and a feasible
tour T = (0,10,20,60,40 ,30,5) on the right.

The following example is used to illustrate the 2-opt neighborhood.

Exam ple 2.11.
Consider an instance of TSP of 6 cities a\ , . . . , a6 and a feasible tour T =

(aia2a6a4a3a5) which are shown in Figure 2.20. To construct the 2-opt

neighborhood of T, N 2 (T), first, rename the cities of T so that T =
That is,

t\ — cti, t2 ~ a2, = a,Q,ti = 0,4 , t§ ~ a3 and t§ = a$,

(see Figure 2.21-A). Now, a tour T £ N 2 (T) if T is of the form

T (t]_t2 . . . i fn)

For instance, if i = 3, than the edges of X and Y are

xi = (t3 , t4), yi = (t3 , t j)

x 2 = (tj, tj+i), y2 = (t3, 4̂)

where tj can be any vertex other than £4=*+! and £2=1- 1- For example, if
j — 6 , then

x i = (£3,£4), yi = { h ,t&)
x 2 = (t6 , t 1), y2 = (£4 , £1)

and the resulting tour is

T = (tit2 t3 tet 5 t4) £ N 2 (T),

(see Figure 2.21-B).

49

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The cost of a tour T £ N 2 (T) is denoted by c(T) and can be computed
as follows. If the tour T is composed by removing the edges in the sets X —

{ x i ,x 2} from T and replacing them by the edges in the set Y — {yi, 1/2 },
the cost of the tour T is given by

2 2

c (f) = c(T) — G, where G = J 2 c(x s)
8 = 1 S = 1

G is the gain of exchanging the edges in the set X = {x i ,x 2} with the
edges in the set Y = {y i,y 2 }- For example, the tour T 6 N 2 (T) in the
previous example was constructed by exchanging the edge aq = (f3, tA) and

x 2 = (tejG) with the edges y\ = (t3 , t e) and y2 = (̂ 4 , i i) - Since the cost of
the tour T is c(T) = 64, the cost of the tour T, c(T), is equal

c(T) = c(T) — G

= c(T) - [c ^) + c(x2) - c(yi) - c(y2)\

= 64 - [8 + 7 - 4 - 16]

= 69

Now, the 2-opt algorithm for solving an instance of TSP is described as
follows:

S tep 1 Randomly choose an initial feasible tour T

S tep 2 At each step, we generate two sets of edges X and Y . Each set
contains two edges such that the edges in the set X are removed from

the current tour T and replaced with the edges in the set Y so that

the resulting tour should have less cost.

S tep 3 Stop when the sets X and Y are impossible to generate.

When we reach step 3, the current tour is considered as the local optimal
tour. The details of Lin-Kernighan algorithm can be found in [23, 34].

50

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A : A feasible tour T = Q : A feasibletour T =

t whe E -*! = (t3, t 4), y, = (t 3, t 6)

* 2 = M l) > y-J = (t 4 , t l)

\ y

C : A feasibletour TK = (/,/3/2f4/5/6) e N 2 (T)
whee -x, = (t^t^), ^ = (t „ t 3)

*2 = (t3,t4), y2=(t2,t4)

Figure 2.21: Feasible tours of the instance of TSP of Example 2.11. The tours T and

T1 3 was constructed from the tour T by exchanging the two edges in the set X = {x'i, X2 }

with the two edges in the set Y = { y i , 2/2 }-

51

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Exam ple 2.12.

Suppose that a tour T = (h t ^ t ^ t e) of the instance of six cities of the
previous example is selected randomly. Next, we try to find a tour T €

N 2 (T) such that the cost c(T) < c(T). Since the cost of the tour T is

c(T) — 69, which is greater than the cost of T , c(T) = 64, we ignore this
tour and select a different tour. Now, suppose we select a tour T13, which

is constructed by exchanging two edges x\ = (h , t 2) and x 2 = (£3, £4) with
two new edges y\ = and y2 = (£2,^4), (see Figure 2.21-C). The cost
of this tour is c(Ti3) = 51, which is less than the cost of the current tour
T. Therefore, we keep this tour and try to improve it until we reach a tour
that cannot be improved. This tour is considered the local optimal tour of
the problem.

Many surprising results have been found for the TSP using the Lin-
kernighan (2-opt) algorithm. The results are different both in the value of
the local optimal and in the time consumed for finding that value. This
depends on the choice of the integer k in the k-change neighborhood [30].
For example, the 3-change has a better local optimal solution than the

2-change neighborhood. However, the 3-change neighborhood needs more
time to find the local optimal solution [30].

2.3.3 Im portant Issues in Local Search Algorithm s

Local search algorithms have some important issues that need to be
specified. The first issue is the selection of the neighborhood. Recall that a
neighborhood of a feasible solution y £ F is a set of feasible solutions that
are close in some sense to y. A feasible solution g & F can be considered
as in the neighborhood of y if it can be easily obtained from y, or if they
almost have the same structures.

The second issue is selecting the initial feasible solution t that the
algorithm should start with. The resulting local optimal solution corre­
sponding to a neighborhood of some initial feasible solution is, sometimes,

52

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 2.22: The first improvement strategy of local search algorithm where g G N(y i) ,

means a feasible solution g belongs to the neighborhood of y,

near to the global optimal solution, and sometimes not. This usually de­
pends on the selection of the neighborhood and the feasible solution that
the algorithm starts with. Therefore, to examine fairly the set of local op­

timal solutions we need to start with a a completely random initial starting
point [39].

The next important issue is specifying the strategy that searches for
the neighborhood. There are several search strategies of the local search
algorithm. The First-improvement and steepest-decent are the two greatest
strategies for this search [6]. The first improvement strategy starts with a
random feasible solution as an initial starting point. Then it selects a so­
lution that is better than the current one and considers the new selection
as the new starting point. It continues with this procedure until it reaches

a solution that can no longer be improved. This solution is considered as

the local optimal solution. Figure 2.22 shows a graphical depiction of the
first improvement strategy [1]. On the other hand, the strategy of steepest-
decent is to examine the entire neighborhood, and the neighborhood that
has the greatest improvement becomes the new starting point.

For example, if we use the first improvement strategy in the 2-opt algorithm,
then the search will be as follows. It uses a random tour as a starting point.
Then it uses its 2-change neighborhood to select any tour in its neighbor­

hood. If the selected tour has less cost, it is considered as a starting point.
Otherwise, it selects a different one and repeats the same operation. The

53

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

algorithm continues in the same manner until it reaches a solution that can

no longer be improved. This solution is called the local optimal solution.

In this chapter we have included a brief description of local search algo­
rithms and their applications for solving important combinatorial optimiza­
tion problems. In the next chapter we will describe the linear programming

(LP) and integer linear programming (IP) problems which play important

roles in optimization theory.

2.4 Linear Program m ing (LP) Problem s

In this chapter we will briefly discuss linear programming and inte­
ger linear programming problems. Moreover, we will propose the simplex
algorithm for solving such problems.

2.4.1 Linear Program m ing (LP) Problem s

Linear programming problems are optimization problems where we
maximize or minimize a linear function called objective function in n vari­

ables called decision variables that satisfy some linear conditions called
constraints. That is, we need to minimize (or maximize) a linear function
f (x i , . . . , xn) such tha t the decision variables x i , . . . , x n satisfy the following
linear constraints

(A) X = a n X \ + a i 2 X 2 + ... + a i n x n > 6j.

The goal of the LP is to determine the values of the decision variables
x i , . . . , x n such that the linear function f (x i , . . . ,x n) has the largest (or
smallest) value, and satisfies the conditions of the linear constraints.

The general form for a linear programming problem is called a standard
form LP and is given by the following:

M inim ize cx = C\X\ + . . . + cnxn , x > 0,

Subject to A x = b (A is m x n matrix of integers)

54

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A standard form LP is constructed as follows: minimize a linear function
in non-negative n decision variables subject to a system of linear equations

with constraints that are satisfied by the decision variables. The constraints
model the requirements of the decision variables in the objective function
that we need to optimize. For example:

M inim ize f (x i , . . . , xn) = CiX\ + C2 X2 + C3 X3

Subject to ai\X\ + a 12X2 + 0 -13X3 = 61

a 2 lX \ + 0,22X2 + O23X3 = 62

0 3 l X \ + O32X2 + 0*33X3 = 6 3

X \ > 0 , X 2 > 0 , £ 3 > 0

In other words, the standard form of LP can be modeled in matrix form as
follows:

where X is the vector of unknown decision variables to be determined and
should be nonnegative [14], A is the m x n matrix whose entries are the

coefficients in the equation constraints, (A)ij — aij, and c and b are vectors
of known coefficients.

To understand more clearly the linear programming problems and the
standard form for LP, the following example is provided.

Exam ple 2.13. An oil refinery can buy and process two types of crude oil,
light crude oil for $11 per barrel and heavy crude oil for $8.78 per barrel.
The following quantities of gasoline, kerosene and jet fuel are produced per
barrel of each type of oil.

/

Minimize

Subject to A x — b, X > 0,

55

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Gasoline Kerosene Jet Fuel

Light Crude Oil .4 .25 .35

Heavy Crude Oil .32 .4 .28

Assume that the refinery has contracted to deliver 1 million barrels of gaso­

line, 400,000 barrels of kerosene and 700,000 barrels of jet fuel. Excess

quantities of these products can be stored at no cost.
In order to solve a linear programming problem, it is important to under­

stand the problem clearly. There are three important steps for modeling a
linear programming problem. These steps are as follows:

S tep 1 Specify the decision variables:
In this example, the decision variables are the following:

X\ = The number of barrels of light crude oil to be processed

x'2 = The number of barrels of heavy crude oil to be processed

S tep 2 Specify the constraints:

The constraints in this case will be:

0.4xi + 0.32x2 > 1000000,

since each barrel of light crude oil, aq, and heavy crude oil, x 2, can
produce 40% and 32% of gasoline respectively. Moreover, the refin­

ery is required to deliver 1,000,000 barrels of gasoline. The second
constraint is

0.25xi + 0A x 2 > 400000.

This constraint is for the kerosene, of which the refinery should deliver
400,000 barrels. In addition, 25% of one barrel of light crude oil and
40% of one barrel of heavy crude oil must produce kerosene. Finally,
the following constraint is for the jet fuel, which is formed using the
same ideas as the formulas for the gasoline and the kerosene,

0.35xx + 0.28x2 > 700000.

56

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Therefore, the constraints of this example can be written in a system

of linear inequalities as follows:

O.Trj + 0.32x2 > 1000000

0.25xi + 0.4x2 > 400000

0.35xi + 0.28x2 > 700000

Step 3 Specify the objective function. This can be formulated as the cost

of buying and processing one barrel of light crude and one barrel of
heavy crude oil. This formula is given by

l l x i + 8.78x2.

Hence, the standard form of this LP is as follows:

minimize l lx i + 8.78x2

subject to 0.4xi + 0.32x2 = 1000000

0.25X! + 0 . 4 x 2 = 400000

0.35xj + 0 . 2 8 x 2 = 700000,

, x i > 0, x2 > 0

which can be written in a matrix form

1000000
400000 .
700000

There are many applications of linear programming problems in var­
ious areas. Some examples of these areas are operations research [24, 15],
business, economics and engineering problems.

Operations research is a huge field in mathematics which covers various

57

minimize 11 8.78

0.4 0.32
subject to 0.25 0.4

0.35 0.28

Xi

Xl

Xi

x 2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

areas of minimization and optimization [19]. It has significant applications,
for example, in data analysis, health care management, emergency and res­
cue operations, engineering systems design, and financial planning.
In business, examples of its applications include financial portfolios, truck
routing, product mix planning, and maximizing profit in a factory tha t pro­

duces various products from the same material. Examples of economics are

determination of shadow prices and Leontief’s input-output model.

One of the significant methods with which linear programming prob­

lems can be solved is called the simplex method, which was created by
George Dantzing. This method will be described in the following section.

2.4.2 Sim plex M ethod

The simplex method was developed by George Dantzing in 1947 [25].
It was created to find an optimal solution to a linear programming problem
by testing the points in a feasible set that consists of points that satisfy

all the constraints for an LP problem. This set is also called the feasible
region. The objective function of an LP problem has maximum value at one

or more points that lie at the corner of the feasible region. Therefore, the
simplex method searches for the optimal solution by moving from corner to

corner until there is no more improvement of the objective function.

In this section we briefly discuss the simplex algorithm for solving the LP
problem. For more details of this algorithm see [39, 14]. To illustrate the
method let us state the following definitions and notations.

D efinition 2.12.
Given a standard form of an LP problem

min cx, x > 0,

subject to A x = 6 (A is an n x n matrix)

1. A solution x = (x i , . . . ,x n) of A x = b is called a feasible solution to
the LP if Xi > 0 for a lii = 1 ,n .

58

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2. A solution x = (x \ , . . . , xn) of A x = b is called a basic solution if the

columns of the matrix A corresponding to the nonzero entries in x are
linearly independent.

3. A basic feasible solution (BFS) is a solution that is basic and feasible.

Exam ple 2.14.

Consider the following linear programming problem

min X\ + 2 x 2 + 4®3
2

subject to x \ + —X2 + X3 < 1
O

-X \ + X2 + < 1,

x\ > 0 , x 2 > 0, xz > 0

Here we add two slack variables X4 and x 5 to change the constraints from
” < ” to equality ” = ” . The matrix A will be

a = a = (1 * 1 1 °)\ 0.5 1 0 0 1 J
A solution x = (0 ,0 ,0 ,1 ,1) is a basic feasible solution to LP since it satisfies
the equation A x = b, x > 0 and the columns of the matrix A, a4 = (1,0) and
a5 = (0,1), corresponding to the nonzero entries in x, X4 = 1 and x 5 = 1 ,

are linearly independent. Whereas, the x = (2,0,0,—1,0) of A x = b is not
a feasible solution since X4 = — 1 0

There are two important matrices tha t can be composed from the con­
straints matrix A in a standard-from LP. The matrices are called matrix B

and matrix V, which are composed as follows. W ithout loss of generality,
suppose that the matrix A has rank m. That is, there are m linearly inde­
pendent columns of A. If the matrix A = [ax,. . . , am, am+x,. . . , an] where
a i , . . . ,am are the m independent columns of A, then 5 = [ax,. . . , am] and
V = [am+\• ■ ■ ■, an\. The matrix B has rank m and the columns of B form
a basis for M.

The matrix B can be composed from the m x n matrix A of rank m

59

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

as follows. Suppose that x is a BFS with X{ > 0 for 1 < i < p and
xj = 0 for p < j < n. Let the columns of the matrix A be the set
{a\ , . . . , ap, ap+1, . . . , am, am+1, . . . , an}, then the first p columns of the ma­
trix B are a 1;. . . , ap. The other m — p columns of B can be chosen from
the columns ap+\ , . . . , an so that these columns together with the columns
a i, . . . , ap form m linear independent columns. The rn—p columns can be re­

labeled as ap+1, . . . , am, and the B matrix will be B = [ai, . . . , ap, ap+1, . . . , am].

Exam ple 2.15. Given a standard form LP

A solution x = (2,0,0,0) is a BFS of the LP problem with p = 1 and the
matrix A has rank 2 , rn = 2 , so m — p = 1. Therefore, the first column of
B is ai = (1,0). Since any of the second, third and fourth columns of A is

linearly independent with a\, we can choose any of them to be the second
column of B . That is, B can be any of the following matrices

Note that, the fifth column a$ is not linearly independent with fti; therefore,
it cannot be the second column of matrix B.

There are two important tableaus that the simplex method uses. These
tableaus are given by the following definitions.

D efin ition 2.13. Given an LP problem in a standard form

min cx = CiXi + . . . + cnxn, Xi > 0 fo r i = 1, Idots, n,

subject to A x = b (A is an n x n matrix)

mm + 2 xz - x 4

subject to
0 4 2
1 - 2 3

x 2

x 4

\ x* /
x = {x1 , x 2 ,x z ,x 4 ,x*)) > 0.

60

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1 . A constraint tableau o f t h e s t a n d a r d f o r m L P is g i v e n b y

p |6] = [B\V\b]

where B is the m x m matrix B

2. Let a row c = [c\,. . . ,cm, cm+1, . . . , cn] represent the coefficients of the
object function ex. The simplex tableau of the standard form LP is

'a b V_b
c 0 cs cv 0

where Cb [ĉ , . . . , j and cv [cm_j_j, . . . , cnj

In the following steps we explain briefly the algorithm of the simplex
method for finding the optimal solution of a linear programming problem.
For more explanation about the algorithm, look at [39, 13, 14], The method
starts with an initial basic feasible solution of the standard-form LP and

searches for a better basic feasible solution until the optimal BFS is reached.
The steps of the simplex method are as follows:

Step 1 Convert the LP problem into standard-form LP.

Step 2 Determine an initial BFS Xb to start with.

Step 3 Compose the simplex tableau associated to x b - That is,

■A b- \ B V b-
. c 0 .

—
-Cb Cy 0 .

Step 4 Calculate the reduced cost. In this step we apply row reduction to

convert the matrix B and the row eg to the identity I and the zero
row, (0, . . . ,0), respectively. The simple tableau becomes

\ B V b 1 r/
— •*—» —

-Cb C y OJ Lo

to 1 B - Xb] r I W d
Cy - CBB - lV - c BB - lbi lo C y - c BB - lb

Now, xb = B ~ xb is a basic solution to the system A x = b and is a
basic feasible solution if x b > 0. The entry of d y = [cm+1, . . . , cn] is
called the reduced cost relative to xb

61

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

S tep 5 Check for the optimality. The BFS Xb obtained in step 4 is optimal
if and only if c y — c b B ~ x V > 0 [14]. That is, if c; = q — > 0

for all i = m + 1, . . . , n, we have reached to the optimal solution

and xb is the optimal BFS to the LP. Otherwise, we continue the
procedure. The following example is stated for the illustration.

E xam ple 2.16. Consider the following standard form of an LP

Min Zx\ + 2 x 2 + + £5

subject to x \ + £5 = 2

x 2 — 2 x 3 + £ 4 = 0

I f we choose the BFS xb = (2 , 0 , 0 , 0) as an initial BFS to start the
simplex algorithm, The simplex tableau is of the form

A b ' ’ B V b ’

c 0 . °B C y 0

1 0 0 1 2

0 1 - 2

CO 0

J
CO 2 1 1 1

O

In step 3, we apply row reduction to convert the matrix B to the
identity matrix and to make the entries of c b = 0 . That is,

1 0 0 1 2 1 0 0 1 2

0 1 - 2 3 0 0 1 - 2 3 0

3 2 1 1 0 0 0 5 - 8 - 6

From step f , since c y = [5 — 8] ^ 0 ,6 4 — — 8 ^ 0, the solution
xb = (2,0,0,0) is not the optimal BFS. Therefore, we continue the

procedure of the algorithm.

S tep 6 Choosing a pivot column and pivot point. In step 5, if the BFS xb

is not an optimal, there is one or more nonnegative reduced cost Cj in
c y . Therefore, we improve the BFS xj5 by modifying an entry in x R
that corresponds to a point called a pivot point in the matrix tableau
defined by the following definition.

D efin ition 2.14. In step 5, the simplex tableau is in the following

form
/
0

B ~ lV B ~ lb i r I W d 1

c-y — Cb B ~ 1V — C B B ~ l b. lo C y - c BB - lb\

62

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

where W = [wj],Wj = [wij]T,andd = A pivot column j in the

simplex tableau is a column corresponding to the entry Cj that has the

smallest negative entry in c y . A pivot point (i , j) is a point in the
pivot column j where i corresponds to the smallest positive ratio ^ L-
in

S tep 6 Modify the matrix B. In this step we modify the matrix B by
replacing a column in B with the pivot column j and repeat the
procedure starting from step 4. Note that in step 4 we apply row
reduction to make the pivot point (i , j) to 1 and all other entries of
the pivot column j to zero. Moreover, in step 5, if the reduced cost

Cj < 0 and Wj < 0 , in this case we say that the objective function is

not bounded below and the optimal solution of the LP does not exist.

E xam ple 2.17. Consider the following standard form of an LP

Min + 2a;3 — Xi
subject to x i — 4x3 + z4 + 3x5 = 1

x 2 + 60:3 — Xi — 2

We apply the simplex method to this example starting with the initial BFS
xb — (1,2,0,0,0). The simplex tableau of this example is

A b ' ’ B V b '

c 0 . °B C y 0

rH
1

0 - 4 1 3 1

0 1 6

0

1 2

1
O 0 2

0r—H1 0

Since the reduced cost c y = [2 — 10] relative to the BFS xb = (1,2,0,0,0) is
negative, c4 = — 1 < 0, the BFS xb is not an optimal solution. Therefore,
we modify the BFS Xb by replacing a column in B with the pivot column j.
The column is the fourth column and the pivot point is (1,4). Applying the
simplex method to the simplex tableau we have:

1 0 - 4 1 3 1

0 1 6 - 1 0 2

0 0 2 - 1 0 1
O

(1) to (2)

(!) to (3)

1 0 - 4 1

CO 1

1 1 2 0

CO 3

1 0 - 2 0 CO 1

63

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Since the reduced cost dy < 0 , the BFS xb 2 = (0 , 3 , 0 , 1 , 0) is not an optimal
solution. So, we make another pivot step. The next pivot point is (2 , 3) and
the simplex tableau will be as follows:

1 0 - 4 1 3 1 ---------> 1 0 4 1 3 1

1 1 2 0 3 3
2 <2>

1 i
2 2 1 0 1

3
2

1 0 - 2 0 3 1 1 0 2 0 3 1

3 2 0 1 9 7
4 (2) to (1)

i i
1 0

3 3

2 (2) to (3)
2 2 2 2

2 1 0 0 6 4

Since all reduced costs are nonnegative, we conclude that x§ = (0 , 0 , | , 7 , 0)

is the optimal BFS to the LP and the objective function has value — 4 .

In this chapter we have included a brief description of Linear programming
problems and the simplex method that solves these problems. In the next
chapter we will provide a new problem that can be considered as one of the

combinatorial optimization problems. This problem is called the domino
portrait problem, and we will apply some combinatorial optimization tech­
niques to solve this problem. Finally, we will use mathematics properties
to improve the solution of this problem.

6 4

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 3

DOMINO PORTRAIT PROBLEM (DPP)

In the previous chapters we briefly discussed combinatorial optimiza­
tion problems and the techniques that solve these problems. In this chapter,

we provide a new problem which can be considered as a combinatorial opti­
mization problem. This problem, called the domino portrait problem, was
developed by Robert Bosch [7]. We apply some powerful combinatorial op­
timization algorithms to solve this problem. The algorithms we will use are

a greedy algorithm and a local search algorithm. In addition, this chap­
ter introduces a program that can construct instances of domino portraits.
Also, singular value decomposition is used to improve the results.

3.1 Introduction

A domino portrait is an image which is constructed from a complete set
of dominos, arranged in a matrix to create an approximate image. The
artist Ken Knowlton constructed a portrait of columnist Martin Grander,

of Mathematical Scientific American, from six complete sets of double nine
dominoes in 1993. The purpose of this problem is to find a good position of

dominoes so that when seen from a distance it looks like the same image.
You can observe this when you look at the domino portraits of Marilyn
Monroe and John Lennon (Figure 3.1), each of which was constructed
from double nine sets of dominoes by Robert Bosch [7].

Robert Bosch used the integer linear programming method to construct
domino portraits. He also made a domino portrait of Carl Friedrich Gauss,

65

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

F igu re 3.1: A domino portrait of Marilyn Monroe on the left and John Lennon on the
right, each of which was constructed from double nine sets of dominoes by Robert Bosch

[7]

which was constructed from 48 complete sets of double nine dominoes (Fig­
ure 3.2). For more detail about his products see [7].

In the following sections we discuss in detail how to create a domino

portrait. This method involves using a two-dimensional wavelet transform,

which is a filter in the image process that rescales the target image. In
Section 4 we describe the structure of a complete set of dominoes. Section
5 provides the integral linear programming technique that Robert Bosch
[7] has used to construct such portraits. In the rest of the sections we
develop new techniques to create domino portraits using combinatorial op­
timization algorithms such as the greedy algorithm and the local search
algorithm. Moreover, we use mathematics properties, like singular value
decomposition and image processing, to improve our results. Finally we
include the conclusions of our results and the C + + code tha t we use in our

work.

3.2 Creating a D om ino Portrait

In this section we illustrate the steps of creating a domino portrait.
These steps are as follows. First, we start with a regular image. Then, we
convert this image into a portable graymap format (PGM)(Figure 3.3-A).
Now, the image is divided into pixels which have a grayscale value between

66

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A portrait of Carl Friedrich G a u ss A D om ino portrait of G a u ss

Figure 3.2: The portrait of Carl Friedrich Gauss is on the left and the dominoes portrait

is on right, which was constructed from 48 complete sets of double nine dominoes by

Robert Bosch.

0 and 255. These values are arranged so that each color has its own number.
For example, completely black has 0 value, whereas 255 is for completely
white. The values in between correspond to different shades of gray. Next,
we to rescale the target image into a matrix (see Figure 3.3-B) using any
standard techniques include the Photoshop and Gimp [17]. The matrix
has a dimension of 10s x 11s if we are using a complete set of double nine
dominoes (Figure 3.6-A) or 7s x 8s if we are using a complete set of double

six dominoes (Figure 3.6-B), where s2 is the number of complete sets of
dominoes that we use to create a domino portrait. In addition, the two-
dimensional (2D) wavelet transform, which is a filter in the image process,

can also be used to rescale the target image. The description of the process
using 2D wavelet transform will be explained in the next section.

After that, we compute the mean grayscale value for each square in the
results matrix. That is, we convert these squares from the ”0 - 255” scale
into a domino scale which is 0 (completely white) to 9 (completely black),
assuming that we are using white double nine dominoes. If we use black
dominoes, we change that conversion. That is, 0 (completely black) to 9
(completely white). To perform this conversion, simply divide the maximum
value of the grayscale, which is 255, by the largest numerated number in a

domino plus one for the empty square. For example, the largest numerated

67

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A: Target image B: Rescaling the target image

*,» i i H•
i i X

Hi
;;

. . *.* p x X X X
• **• X X VA X X X X

<-
I * m

X
X
p

X X X X **
.X X \ X *

Hi u
i i

m \ x \ X
• m x • j ; **
X x : :

X
X * • %

iii X X X X X • . *

0 0 1 1 2 2 1 1
0 1 0 1 5 8

1 1 1 1 1 7 4 6
1 1 1 0 5 5 6 6 7
0 1 0 5 6 8 5 7 4 5
0 0 4 9 7 6 5 6 2 4
2 0 7 5 e 2 2 4 1 1
0 0 8 9 8 4 3 5 2 3
2 1 9 6 7 4 1 2 3
0 5 8 6 4 2 2 3 3 3
0 9 5 5 5 5 4 4 5 1 2

C: Photo-matrixD: Domino-matrix

Figure 3.3: The steps of creation domino portrait

number in double nine dominoes is 9. The mean value is 255/10 = 25.5.
That is, for each square that has a grayscale value between 0 and 25.5, we

give it a 0. Whereas, if it has a value between 25.5 and 50 we give it a 1
and so on.
Now, we have a matrix of 10s x 11s squares tha t have values from 0 to 9.
This matrix is called a photo-matrix (Figure 3.3-C). We denote the square

(i , j) in this matrix by phJ. For instance, in Figure 3.3-C, the first square
of the first row, which has value 0, is denoted as p00.
Finally, we use the combinatorial optimization algorithms to convert the

photo-matrix into a matrix that is composed of dominoes by finding a good
place for these dominoes, such that they create an image that resembles
the real image when seen from a distance. This matrix is called a domino
matrix.

In the next section we briefly illustrate the 2D wavelet transform to
rescale the target image.

68

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

N 2 " (w z ") / z

LL HL
LH HH

A: T h e original im ag e B: T he first level o f th e two-
d im ensional w av e le t transfo im

(WZ")/4 ^

A f l

D: A photo-m atrix o f s iz e M y n after
applying n tim es o f 2D -w avelet transform

Figure 3.4: The steps of rescaling the target image, figure A, using the two-dimensional

wavelet transform and composing the photo-matrix, figure D.

3.3 Tw o-D im ensional W avelet Transform

In this section we will use the two-dimensional wavelet transform when

we rescale the target image (Figure 3.3-A). The two-dimensional wavelet
transform is a filter in the image process that has many applications. For
example, it used by the Federal Bureau of Investigation (FBI) in its finger­
print identification system [6].

The two-dimensional wavelet transform rescales the target image by reduc­
ing the resolution of its columns and rows using four combinations of low
and high pass filters, which are denoted as H and L respectively. First, we
start with an M 2n x N 2n target image (see Figure 3.4-A) where n is an in­
teger number that refers to the number of times the two-dimension wavelet
transform is applied so that we end up with an image of size M x N. Sec­
ond, we divide the original image into four subimages, each of which is of

69

LH
t 1

HH
HL

LH HH
C : T he seco n d level o f th e two>

dim ensional w av e le t transfo im

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

size x We apply the low pass filter to the columns and the rows

of the top left image. The bottom left image can be obtained by applying
the low pass filter to its columns and the high pass filter to its rows. For
the top right image, we apply the high pass filter to its columns and the
low pass filter to its rows. Finally, the bottom right image is obtained by
applying the high pass filter to its columns and rows. These subimages are
shown in Figure 3.4-B.
This is one level of the decomposition of the two-dimensional wavelet trans­

form. The second level is the same as the first level; however, we apply it
to the subimage that is in the top left where the low pass filter is applied to

its columns and rows. That is, we divide this image into four subimages of
size ATfA x Then, we apply the same operation to these four subimages

(see Figure 3.4-C).

After applying the two-dimensional wavelet transform n times, we will
have a matrix of size M x N (Figure 3.4-D) with real numbers that can be
mapped to 0 to (D — 1), which is the photo-matrix defined in Figure 3.3-C.

E xam ple 3.1. Figure 3.5-A, shows an original image of an instance of
Marilyn Monroe of size 264 x 240, i.e., 33(23) x 30(23). Assume that we

need to construct a domino portrait of Marilyn Monroe of size 33 x 30;
Therefore, we rescale the original image to a size of 33 x 30. That is,
we apply the two-dimensional wavelet transform three times to the original
image. Figure 3.5-B, shows the first reduced resolution of the original image
where we applied the low pass filter to the columns and rows of its top left
subimage. The size of this image is 33(22) x 30(22). Applying the two-
dimensional wavelet transform a second time to the image in Figure 3.5-B,
we obtain a reduced resolution image of size 33(2) x 30(2) which is shown
in Figure 3.5-C. Finally, Figure 3.5-D, shows a reduced resolution of the
image of Marilyn Monroe. The size of this image is 33 x 30 which is a

matrix of real values that can be mapped to 0 to 9.

70

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

50 100 150 200
A: A n o r ig in a l im a g e o f M arilyn M o n ro e .

S iz e : 33(23)x 3 0 (2 5)

5 10 15 20 25

D: A r e d u c e d re s o lu t io n o f th e o r ig in a l im ag e .

S iz e : 33x30

20 40 60 60 100 120

B : A r e d u c e d re s o lu t io n o f th e o r ig in a l im ag e .

S iz e : 33(22)x 3 0 (2 a)

10

20

30

40

50

60

6040 5020 3010

C : A r e d u c e d re s o lu t io n o f th e o r ig in a l im a g e .

S iz e : 33(2) x 30(2)

Figure 3.5: Rescaling the image of Marilyn Monroe of size 264 x 240, (A), using the

two-dimensional wavelet transform. The reduced resolution of the Marilyn Monroe image

of size 33 x 30 is on the (D). The detail o f these images is described in Example 3.1

71

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

**•
•••

• • •

• • • • • • • • • • • • • • • •
• • • • • • • • • • • • • • • •

• • • • • • • • • • • • • • ,* • •
• • • • • • • * • • • • • • • • • •

• * • • • • • •
• •• • • • • •• *

• • •• • • •• • • • • • 1 : s.: • • • • •
• • • • • • • • •

• • • • • • • •
• • •• •

• • • • • • • • • • • :::• • •
• • •• • : : • •• • •

• • • • • • • « • • • • • • • • • •
ft.ft • * t * • • • • • • • • t f
• * • • • • • • • • • • • • • • • **• • • •
• • • • • • • • • M• • • • • • • • • • • • • •
• • • • • • • • : : • • • • • • •• • • • • • •• • •

• •
•

•••
• •
• • V • • : : • •

• •
•

~
. * • • •• • • • • • •

• • • • • • •
. * • • • • • • • • • •• • • • • •

•
• _.

•
•

•
•

•
•

•••
•••

•••
• •• • • • • • • • • • • : : : : : t

•••
• •
• •

t •
• •

• •
• •

• • • • •• •
• • • • • •

A: A complete set of double nine dominoes B: A complete set of double six dominoes

Figure 3.6: Complete sets of double nine and six dominoes

A black domino A white domino

Figure 3.7: A black and white dominoes

By using the two-dimensional wavelet transform, we will get a better
resolution tha t allows us to find a better solution for the domino portrait
problem.

3.4 D om ino Structure

There are several kinds of complete sets of dominoes. We are interested
in two kinds of them, which are a complete set of double nine and double
six dominoes (see Figure 3.6) and completely white or completely black
(see Figure 3.7). A complete set of double nine dominoes is composed of
55 individual dominoes, with each domino made from two squares. These
dominoes are divided into 10 double dominoes and 45 non-double domi­
noes. Whereas, the complete set of double six dominoes is composed of 28
dominoes which are divided into 7 double dominoes and 21 non-double (see
Figure 3.6).

The next important issue in a domino structure is the orientation of each
domino in the domino-matrix. That is, we denote each domino by letter

72

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

• • ••
• • •

h h2

• •
• •

V V, v 2

Figure 3.8: The notations of the dominoes according to their orientation in the domino-

matrix

according to its orientation in the domino matrix. These orientations (Fig­
ure 3.8) are as follows: The non-double dominoes have four orientations.
The dominoes that have vertical orientation with the lower number square

on top are denoted by v\. If the lower number square is on the bottom,
it is denoted as If a domino has a horizontal orientation and the lower

number square is on left, we denote it by hi, and /12 if the square that has

the lower number is on the right. In the case of double dominoes, however,

there are only two orientations, v for vertical and h for horizontal, as both
sides are equal. All these notations are shown in Figure 3.8.

After we describe the structure of a complete set of dominoes and the
steps in creating domino portraits, we can formulate the domino portrait
problem as a combinatorial optimization problem. That is, we define the

objective function and the constraints of the domino portrait problem that
was developed by Robert Bosch [7].

73

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.5 Integral Linear Programming Formulation

In this section, we will convert the domino portrait problem to a combi­

natorial optimization problem. That is, we will define the objective function
and the constraints of the domino portrait problem that were developed by

R. Bosch [7].

3.5.1 Param eters

First, we define new parameters of this problem. Let D be the largest
number in a complete set of dominoes plus one. For example, D = 10 and
D — 7 in a complete set of double nine and double six dominoes respectively.
The total number of dominoes in a complete set of double D dominoes is
given by:

A complete set of double D dominoes creates D 2 + D squares of a portrait.
The goal is to construct a domino portrait of dimensions sD x * (D + 1)
using s2 complete sets of double (D — 1) dominoes, s > 1. The dimensions

of a portrait is M x N , where

For example, if D = 10, s = 3, we have a domino portrait of dimensions
30 x 33 , with 9 complete sets of double nine dominoes.

3.5.2 D ecision Variables

The decision variables of this problem are determined according to the
position and the orientation of each domino in the domino-matrix. Let
x (m , n , o , i , j) be the decision of placing the domino (m , n) in the position
(i , j), row i and column j, in the domino-matrix with orientation o. The

variable x (m , n , o , i , j) takes only two possible numbers, 1 or 0. That is, if

D 2 + D
2

M = s(D + 1) and N = sD

74

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1i

A: A domino (m,n) in the domino-matrix B: A domino (m,n) in the domino-matrix
where squares m and n are in where squares n and m are In
posidon (IJ) and (1+1J) respectively position (IJ) and (i+IJ) respectively

C: A domino (m ji) In the domino-matrix D: A domino (m ji) in the domino-matrix
where squares m and n are In where squares n and m are in
position (ij) and (IJ+1) respectively position (IJ) and flj+1) respectively

Figure 3.9: The position of the domino (m , n) in the domino-matrix according to the

orientation o in the decision variable x (m , n , o, i , j) . The detail of this figure is described

in Remark 3.5.1

the domino (m,n) is placed in position (i , j) , in the domino-matrix with

orientation o , we let x (m , n , o , i , j) = 1 or 0 if not. For example, if the
domino (1,2) is placed in position (3,4) of the domino-matrix with orienta­
tion o = vi, the decision variable x{\ , 2, iq, 3,4) = 1.

The position of each square of the domino (m , n) in the domino-matrix
depends on the orientation o in the decision variable x (m, n , o , i , j) . To
illustrate this, we state the following remarks:

R em ark 3.5.1. Let the square m be the square that has value m in the
domino (m , n) and the square n be the square that has value n. Let m < n

throughout.

1. If the orientation o = vi in the decision variable x (m , n , v i , i , j) , the

domino (m, n) takes the position in the domino-matrix such that the
square m is in the position (i, j) and the square n in the position
(i + 1 , j) of the domino-matrix, (see Figure 3.9-A).

75

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

N N

M

A: A dom ino (m,n) in the domino-matrix
with horizontal orientation o 6

M

B: A domino (m ji) in the domino-matrix
with horizontal orientation °e{v,v ,,v2}

Figure 3.10: All possible places in the domino-matrix that the domino (m, n) can takes

with vertical orientations (A), and horizontal orientations (B).

2. If o = v2 in the decision variable x(m, n, v2 , i , j) , the square m will be
in the position (i + 1 , j) of the domino-matrix and the square n in the
position see Figure 3.9-B.

3. If the orientation o = hi in the decision variable x (m ,n ,h i , i , j) , the
domino (m, n) takes the position in the domino-matrix such that the
square m is in the position (i , j) and the square n is in the position
(■i , j + 1) of the domino-matrix, (see Figure 3.9-C).

4. If o = h2 in the decision variable x(m, n, h2, i , j) , the square m will be
in the position (i , j + 1) of the domino-matrix and the square n will

be in the position (see Figure 3.9-D).

5. If the orientation o = v or o = h (m = n) is the decision variable, the
domino (m, n) is placed in the domino-matrix so that the square m is
in the positions (i ,j) and (i + 1 , j) if o — v and in the positions (i ,j)
and (*, j + 1) if o = h.

These remarks are important when we construct the objective function
of this problem.

The total number of decision variables can be computed by answering the
following question: How many ways can the domino (m, n) with orientation

76

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

o take place in the domino-matrix of dimensions M x N ?
We classify all dominoes (m , n) into two cases: double dominoes (m = n);
and non-double dominoes (m ^ n). Each of them has two subcases accord­
ing to the orientation o. If the orientation is vertical, o E {v, Vi, v2}, these
kinds of dominoes can take (M - 1) x A' possible places in the domino-

matrix of dimensions M x N, (see Figure 3.11-A). Whereas, the horizontal

dominoes, 0 E {h,h±,h2}, can take M x (N — 1) possible places in the
domino-matrix, (see Figure 3.11-B). The following table describes all pos­

sible decision variables x (m ,n ,o , i , j) . We let m < n throughout.

1 — c a s e m = n ,o = v : x(m, m, v , i , j) ,

There are D x (M - l) x J V decision variables,

for m := 0 to D — 1

for i := 1 to M — 1

for j := 1 to N

2 — c a s e m = n ,o = h : x (m , m , h , i , j) ,

There are D x M x (N — 1) decision variables,

for m : = 0 to D — 1

for i := 1 to M

for j : = 1 to N — 1

3 — case m < n ,o = v i , v 2 '■ x (m , n , o , i , j) ,

There are 2 x (f() x (M — 1) x N decision variables

for to := 0 to D — 2

for n := m + 1 to D — 1

for i : = 1 to M — 1

for j : = 1 to N

4 — case m < n ,o = h i , h 2 : x (m , n , o , i , j) ,

There are 2 x (^) x M x (N — 1) decision variables

for to := 0 to D — 2

for n : = m + 1 to D — 1

for i := 1 to M

for j := 1 to N — 1

Table 3.5.1: The decision variables of the domino portrait problem

Note that, a complete set of double (D — 1) dominoes has (^) non­
double dominoes (m 7 ̂n) and D double dominoes (m = n), where D is the
largest numerated number in a complete set of dominoes plus one. Case 1
and 2 include double dominoes with vertical orientation (o = v) and hor­
izontal orientation (0 = h) respectively. Since a complete set of dominoes

77

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

has D double dominoes, the total number of possible places that the domi­
noes with vertical orientation is equal D x (M — 1) x IV and D x M x (N — 1)

for the dominoes with horizontal orientation.
In Case 3 and 4, we have non-double dominoes with vertical orientation
(o = {v i ,v2}) and horizontal orientation (o = {hi, h2}) respectively. More­
over, there are (^) non-double dominoes in a complete set of dominoes, so
the vertical orientation dominoes have 2 x x f l x (M — 1) x N possible

places in the domino-matrix and the horizontal orientation dominoes have
2 x (^) x D x M x (TV — 1) possible places.

Consequently, the total number of decision variables is equal to the summa­
tion of all these cases. That is, the total number of the decision variables
('Tdv) needed to create an M x N domino portrait using s2 of complete sets

of double (D — 1) dominoes is given by the following equation:

Tdv = D 2 (2M2 - M - N) (3.1)

where M — s(D + 1) and N = sD. For example, If D = 10 and for any

s > 1, we have an M x N domino-matrix where M = 10s and N = 11s.
The total number of decision variables for creating a domino portrait using
s2 of complete set of double 9 dominoes using equation 3.1 is:

Tdv = (1 0) 2 [2 (1 0 s) 2 - 10s - 11s]

= 100 [200s2 -2 1 s]

= 22000s2 - 2100s

If s = 3, the total number of decision variables is equal to 191,700 variables.
In the next section we introduce the objective function of the domino por­

trait problem.

3.5.3 O bjective Function

The objective function of the domino portrait problem is the sum­
mation of the costs or the penalties of placing each domino (m, n) in the
domino-matrix. The cost of placing a domino (m, n) in domino-matrix can

78

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

0 8 9 N
0

7

8

M
Figure 3.11: The photo-matrix P\pij\ of the Example 3.2.

be determined by computing the L2-norm between the domino (m, n) and
each s q u a r e , , in the photo-matrix (Figure 3.3-C). This cost also depends

on the orientation o of the domino (m, n) in the domino-matrix (remarks
3.5.1). Let the variable c (m ,n ,o , i , j) be the cost of placing domino (m , n)
with orientation o in position (i , j) in the domino-matrix. We use L2-norm
to compute the cost c(m ,n ,o , i , j) . Using the remarks in 3.5.1, the cost of
placing domino (m , n) with orientation o in position (i , j) of the domino-
matrix, c(m ,n ,o , i , j) , is given by the equation:

1 - I f o = v => c (m ,n ,v , i , j) = (m - p i j) 2 + (n - p i + l t j) 2

2 - I f o = h => c (m ,n ,h , i , j) = (m - p i j) 2 + (n - p i t j + 1) 2

3 - I f o = v1 =*• c (m ,n ,v i , i , j) = (r n - p i j) 2 + (n - p i+1j) 2

4 - I f o = v2 =>• c(m,n,V2 , i , j) = (n - p i t j) 2 + (m - p i + l i j) 2

5 - I f o = h\ c{m ,n ,h 1 , i , j) = (m - p i j) 2 + { n - p iij+i) 2

6 - I f o = v2 => c (m ,n ,h 2 , i , j) = (n - p i j) 2 + (m - p i J + 1) 2

where ph:j is the entry of row i and column j of the photo-matrix P\p%J].

E xam ple 3.2. Assume that a photo-matrix has the following positions
Pi,8 = 4, ps,8 = 5 and p7>9 = 6 , (see Figure 3.2). The costs of placing the
following dominoes are as follows:
1. c(2,3, v\ , 7 ,8) = (2 — 4)2 + (3 — 5)2 = 8

2. c(3,6,n1,7,8) = (3 - 4)2 + (6 - 5)2 = 2

79

4 6

5

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3. c(3,6, hi, 7,8) = (3 — 4)2 + (6 — 6)2 = 1
From 1 and 2, the cost of placing domino (3,6) with orientation vx in position
(7,8) is 2, which is less than the cost of placing domino (2,3) with the same
orientation and position. Hence, the domino (3,6) is a candidate to be
placed in row 7 and column 8 in the domino-matrix. That is, we let the
decision variable x(3 ,6 , vx, 7 ,8) = 1 and x(2 ,3, vx, 7 ,8) = 0. Furthermore,

from equation 3 and 4, we can determine the best direction of domino (3,6)
in position (7,8). Since the cost of placing domino (3,6) with o = hx is 1,

which is less than the cost of placing it with orientation vx, it is a better

candidate to be in horizontal orientation o = hx. Consequently, we let the

decision variable x(3 ,6 , hx, 7 ,8) = 1 and x(3 ,6 , vx, 7 ,8) = 0.

The objective function of this problem is determined as follows: First
for each decision variable x(m, n, o, i , j), we compute its corresponding cost
c(m, n, o, i , j). After that, we multiply each decision variable x by its corre­
sponding cost c. Finally, we minimize the summation of these multiplication
terms. That is, the objective function of creating a domino portrait of di­
mensions M x N using s2 complete set of double D dominoes is given by
the following linear function:

where X is the set of all decision variables x (m , n , o , i , j) defined in table
3.5.1.

3.5.4 Constraints

The constraints of the domino portrait problem can be classified into
two types. Type-one (Tj) is for the dominoes to not overlap if they are
placed in the domino-matrix. That is, if a domino (to, n) is placed in po­
sition (i , j) in the domino matrix, all other dominoes that cause overlap
with this domino should be excluded from the solution. For example, if a

domino (2,3) is placed in position (1,2) of the domino-matrix with orien­
tation v2 that is, the value of the decision variable x(2 , 3, v2 , 1 , 2) = 1 , all
other dominoes that cause overlap with this domino should be eliminated.

Minimize (3.3)

80

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

That is, if the decision variable x(2,3, v2 , l ,2) = 1, the value of all other
decision variables corresponding to those dominoes that cause overlap with
domino (2,3) should equal zero. These variables are of the following form:

. x(m, n, o, 1, 2) = 0 : m ^ 2, n 7 ̂ 3, o = v\, v2, hi, h2

. x (m ,m ,o , 1,2) = 0 :V m and o — v ,h

. x(m, n, o, 2 , 2) = 0 : V m, n and o = v\, V2 , hi, h2

. x(m, m, 0 , 2,2) = 0 :V m and o = v ,h

That is, the summation of the decision variable rc(2,3, ^2? 1, 2) and all deci­
sion variables that satisfy the above form should equal 1 .

Therefore, the type-one constraints of creating a domino portrait of
dimensions M x N from s2 complete set of double (D — 1) dominoes is
given by the following system of linear equations:

x(m, m, v , i , j) + Y ^ x (m > m, v , i + 1 , j) + ^ x (m >m , h, h j)
m m m

+ Y ^ x (m ,m ,v , i , j + 1) + ^ x { m ,n ,v i , i , j) + ^ x (m ,n , v 2 , i , j) +
m m < n m < n

+ ^ 2 x (m ,n , v u i + l , j) + x (m ,n ,v 2,i + l , j) + ^ x (m ,n ,h i , i , j) +
m < n m < n m < n

Y . x (m ,n ,h 2 , i , j) + Y x (m , n , h i , i , j + 1) + ^ x (m ,n ,h 2 , i , j + 1) = 1
m < n m < n m < n

(3.4)

where
0 < m < D — 1, 1 < n < — 1,

1 < i < M , i ^ M — 1 i f o £ { v ,v i ,v2}
1 < j < N , j ^ N - 1 i f o £ { h , h u h2}

and M — s(D + 1), N = s (N + 1). Since the domino-matrix is of dimen­
sions M x N , we have M x N squares to be filled with exactly one domino.

That is, each square of the domino-matrix has one constraint. Therefore,
type-one constraint has M x N constraints.

The type-two constraint of the domino portrait is as follows. Because
the problem requires to use s2 complete sets of domino, each domino (m, n)

81

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

must be used exactly s2 times. That is, the type-two constraint is the
following system of linear equations

]P x (m , n , o , i , j) = s2, (3.5)
o,i,j

which is one constraint for each domino (m, n) in a complete set of double
(.D — 1) dominoes. For instance, the domino (2,3), case s = 3 , since we

are required to use s2 — 32 complete sets of dominoes, the constraint is as
follows:

^ 2 x (2> 3, V!,i , j) + x (2> 3, V2 , i , j) + x(2 ,3, h i , i , j) +
i , j h j i , j

^ ^ £ (2 ,3 , h2 , i , j) = 9

where the indices i and j run as follows:

for i := 1 to M — 1

for j := 1 to N — 1

M = s(D + 1) and N = sD
Since a complete set of dominoes consists of D + (D2) , dominoes, we have

(.D + (2)) 6'2 type-two constraints. Consequently, the total number of con­
straints (Tc) is the summation of type-one and type-two constraints, which
is defined by the following equation:

Tc = M x N + [D + (^ j] s 2 (3.6)

For example, in the case where D = 10 and s = 3 , the total number of

constraints, both type-one and type-two, is 1045.

The standard form of the domino portrait problem, which was developed
by Robert Bosch [7], will be introduced in the next section.

3.5.5 Standard Form LP for the Dom ino Portrait Problem

We conclude from the previous section that the domino portrait prob­
lem maybe cast as a linear programming problem. This is because the ob­
jective function is a linear function of the decision variables, x (m ,n ,o , i , j)

82

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

• •
•

• •
•

•
•

• • •
•

Figure 3.12: A complete set of double two dominoes

, subject to a system of linear equations being satisfied by these decision
variables. Hence, this problem is a linear programming problem and the
standard form of this problem is as follows:

Standard Form LP

Minimize E c (m ,n ,o , i , j) x (m ,n ,o , i , j)
x£X

subject to

A xX = 1

A 2X = s 2 ,

where X is the set of all decision variables defined in table 3.5.1 and X is
the column vector whose entries are all elements in X . The matrices A\ and
A 2 are the coefficient matrices of equation 3.4 and 3.5 respectively. More­
over, since the decision variables take only the values 0 or 1, that is, integer

values, this problem becomes an integer linear programming problem.

This problem is not simple because the decision variable and the con­

straints are huge. To see that, let us consider the following example where
D = 3 and s = 1, which is a simple example compared with a problem
where D = 10 and 5 = 3:

E xam ple 3.3. Case D = 3, Double two dominoes, Figure 3.12, and 5 = 1,
we have a photo-matrix P\pij] and a domino-matrix D\diJ] of dimensions
M x N where M = s(D + 1) = 4 and N = sD = 3, that is, these matrices
are of dimensions 4 x 3 which are given by the following:

83

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

0 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 152 h
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1
1 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1
2 0 1 0 0 0 0 0 0 0 1 0 □ 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1
3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 1
4 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 1 0 0 1
5 0 0 0 1 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 1 0 0 0 1 0 1
6 0 0 0 0 1 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 1 0 0 0 1 1
7 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 1
B 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 1
9 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 0 1
10 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 1
11 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1
12 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
13 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 1
15 0 1
16 0 0 0 0 0 0 0 □ 0 1
17 0 1
Ct 1 1 1 4 0 1 4 8 4 1 1 1 2 2 1 2 2 2 5 5 5 4 8 5 4 0 4 4 1 0 2 4 4 4 0

Figure 3.13: The simplex tableau of the domino portrait problem with D = 3 and

s = 1. The first row represents the decision variables after they are relabeled. The last

row represents the cost function. The detail of this tableau will be provided later.

Domino-Matrix

The domino portrait of dimensions 4 x 3 should be created from one
complete set of double two dominoes. There are 153 decision variables and
18 constraints in this problem. The first 33 columns of the simplex tableau

of this problem is shown in Figure 3.13.

Exam ple 3.4.
If D = 10 and s = 9, we have a domino portrait of dimensions 33 x 30. That
is, the domino-matrix should be created from 9 complete sets of double nine
dominoes. There are 191700 decision variables and 1045 constraints in this
case. The simplex tableau is given by Figure 3.14.

As we have seen from the above tableaus, these kinds of problems are quite
difficult to solve.

84

0 to 0

1 0 2

0 0 1
^

1 1 0

Photo-Matrix

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 191699 b
0 1
1 1
2

989 1
990 9

9

9
1045 0

Figure 3.14: The simplex tableau of the domino portrait problem with D — 10 and

s = 3.

There are some methods that might solve such kind of problem, for exam­

ple, Branch-And-Bound method [36] or Branch-and-cut method [4], These
kinds of algorithms need subroutines to work with such as the simplex
method or interior point algorithms which are based on many steps that
are appropriate to use to solve small problems, however are inadequate for
long problems similar to the current problem. Robert Bosch [7] has used
software, called CPLEX (version 6 .6), in his computation. In the following
sections we will formulate the domino portrait problem as a combinatorial

optimization problem and solve it using significant combinatorial optimiza­
tion algorithms. In the next section, we use a greedy algorithm to solve the
domino portrait problem.

85

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.6 G reedy Algorithm For Solving The Dom ino Portrait Prob­
lem

The domino portrait problem is a problem of finding a good rectangular

arrangement of dominoes such that it forms a resemblance to an ordinary
portrait when seen from a distance. An instance of the domino portrait
is that we are given two integers s and D and an M x N photo-matrix
(Figure 3.3-C) where M = s(D + 1) and N = sD. The problem is to

create a domino portrait of dimensions M x N from s 2 complete sets of
double (D — 1) dominoes. That is, each domino (m, n) should be placed in

the domino-matrix (Figure 3.3-D) with orientation o. A feasible solution
of this problem can be considered as a feasible domino arrangement. The
solution space, from which a feasible solution is created, is the set of all de­
cision variables x(m, n, o, i , j) defined in tableau 3.5.1. Since these variables
and therefore the solution space are finite, this problem can be formulated
as a combinatorial optimization problem.

A greedy algorithm can be used to solve an instance of the domino

portrait problem. A greedy algorithm (Section 2.2) is an algorithm that

searches for a best (optimal) solution of a problem using several stages. At
each stage, it makes its choice optimal. Some times, because of the strategy
that greedy algorithms use, they reach a solution that is not feasible. This
is because the constraints are not exhaustively satisfied.

In the next section we illustrate the search strategy that is used in a
greedy algorithm to solve the domino portrait problem.

3.6.1 Search Strategy

The greedy strategy that is used for solving an instance of the domino
portrait problem depends on several stages. Through these stages, it builds
a best solution consisting of decision variables x(m, n, o, i , j) which are ele­
ments of the solution space X where

X = {a; : x is a decision variable defined in tableau 3.5.1,}

86

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

and x = x (m , n , o , i , j) means the domino (m , n) has position row i and
column j in the domino-matrix with orientation o.
The search strategy of the greedy algorithm for solving this problem can
be described as follows. First, we start by sorting all decision variables

x (m ,n ,o , i , j) G X in increasing order according to their corresponding

cost c (m ,n ,o , i , j) of the objective function (section 5.5.3). Second, we
choose a decision variable x (m , n, o, i , j) that has the smallest corresponding

cost c (m ,n ,o , i , j) to be a part of the solution that we are trying to build.
That is, the domino (m , n) is placed in position (i, j) of the domino-matrix
with orientation o. Consequently, in the next stage, we ignore all decision

variables that conflict with the one already chosen. After ignoring these
variables, we create a new set that consists of all the remaining decision

variables. This set is called the active set, which is the set of decision
variables which do not conflict with the choice already made. After that,

we choose the next decision variable from the active set that has the smallest
corresponding cost and update the active set by deleting from the active
set all decision variables that conflict with the chosen decision variable.
We continue the same procedure until the algorithm is terminated. The
algorithm is terminated if one of the following two condition is satisfied:

1. If the number of chosen decision variables reaches the total required

dominoes (T rd) which is given by the following equation

Trd = s2 [D2 + — ~ V], (3.7)
z

In this case, the algorithm has successfully found a feasible solution
that satisfies the all constraints of the problem. This solution may or

may not the best feasible solution.

2. If the active set has no remaining elements. In this case, the algorithm
has reached a solution that is not a feasible solution. This is because
constraints have not been completely satisfied.

Usually, as we mention above, the solution that is built by the greedy
algorithm does not satisfy all the constraints (section 5.5.4) of this problem.

87

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

0 1 2

0

1

2

3

Figure 3.15: A solution, not feasible, of the instance of the D PP in Example 3.5 found

using the greedy algorithm

Exam ple 3.5.
Figure 3.15 shows a solution y of the problem in example 3.3 which is an
instance of domino portrait problem with D — 3 and s — 1. The solution
y which is given by

y = {aq(0 , 1 , V\, 1 , 1), aj2(0 , 2 , rq, 1 ,3), ®3(0 ,0 , v, 2 , 2),

2:4 (1 ,1, Fi, 3,1), £ 5(1 ,2, w2, 3,3)},

is found using the greedy algorithm. The algorithm built the solution y
by choosing these decision variables x\, X2 , £3 , X4 and x 5 according to their

corresponding costs 0 ,0 ,0,1 and 1 respectively, which are the smallest costs
of the objective function. Since the solution y does not contain all the
required dominoes, which are 6 using equation 3.7, this solution is not a
feasible solution. Later, we will see how can we force the greedy algorithm
to build a feasible solution that satisfies all the constraints of the problem.
This can be done by analyzing mathematically the problem and finding
a new strategy that can build a feasible solution to the domino portrait
problem.

In the following section we will remodel the domino portrait problem
so that we can use the computer language to apply the greedy algorithm to

the domino portrait problem.

88

FI 0LJ
0

2

-

1
0

2

1 1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.6.2 Remodeling the Domino Portrait Problem

In this section we remodel the domino portrait problem so that we can
apply the greedy algorithm to solve it. This will be shown in the following

1. Labeling th e D ecision Variables:
In this step we re-label the decision variable, x (m ,n ,o , i , j) , with a

new variable X t where t is arranged from 0 to Tdv — 1 , where Tdv is
the total number of decision variables defined by equation 3.1. The

new decision variables are of the form:

For example, in Example 3.5, we label x (0 ,1,v\, 1,1) by X 4 and
x(l , 2 , V2 , 1 , 0) by X 79, where we denoted the orientations v, h, v4, v2, hi
and h2 by 0, 1, 2, 3, 4, and 5 respectively. Moreover, since the decision
variables x (m , n , o , i , j) take values 0 or 1, the variables X t also take
values of 0 or 1, that is, X t e {0,1}

2. C onstructing th e sim plex tableau:
We began by constructing a tableau, called the simplex tableau which

is the tableau that is defined in the simplex method (section 4.2). The
number of rows in the new matrix is the total number of constraints
Tc defined in equation 3.6, plus one row for the objective function.
Whereas, the number of columns is the total number of decision vari­
ables, Tdv defined in equation 3.7, plus one column for the matrix

b, which is defined below. Therefore, the dimensions of the simplex
tableau is (Tc + 1) x (Tdv + 1), and it is of the form:

steps.

X Q, X U . . . ,Xrdv- 1

(1 \

simplex tableau: b
s
1
,2

\ s 2 J

89

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

where A is T e x Tdv matrix, representing the constraints of the domino
portrait problem. The row d represents the coefficients of the objective
function. The entries l ’s and s2’s in column d are the right hand side
of the type-one and type-two constraints respectively and defined in
equation 3.4 and 3.5 respectively.

3. Creating the Boundary Variables
In this step we create the boundary variables, X„min[t] and A_max[t],

for each variable X t. These boundaries take values of 0 or 1 and bound

the variable X t. That is,

X_min[t]< Xt < Xjmax\b]

These boundaries determine whether or not X t is a part of the solution
of the problem. Therefore, if the value of X„min[t] and V_max[t] are
both equal to one, then X t — 1, so X t is a solution and hence we

place the corresponding domino in the domino-matrix (Figure 3.3-
D). However, if AT_min[t] and X_max[t] are both equal to zero, then

X t = 0 and we exclude the corresponding domino. At the beginning,
we require that

X_min[t]= 0 and AT_max[t]= 1, for all t € {0,1 , . . . , Tdv — 1}

that is,

0 = X j n i n [t] < X t < X_max[t] = 1, V t € {0,1 , . . . , Tdv — 1}

3.6.3 The G reedy algorithm applied to the N ew M odel o f D P P

After creating the simplex tableau and the boundary variables, we
apply the greedy algorithm steps, defined in Section 3.6.1, for the new

model of the domino portrait problem (DPP). We create a recursive function
called choose-function. The function builds a solution for the DPP using
the steps of the greedy algorithm. The choose_function stops when one of
the conditions defined in Section 3.6.1 is satisfied.
Following is the procedure the greedy algorithm uses for solving the new
model of the domino portrait problem.

90

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Step 1. Ordering th e Colum ns and Com posing th e A ctive Set M atrix
Before we start with the procedure of choose Junction, we sort the

columns, X t , in increasing order according to the smallest
cost c (m ,n ,o , i , j) of the objective function defined in equation 3.2.

That is, the column i x is before i2, if the corresponding value in the

last row of the simplex tableau of i\ is less than the corresponding

value of 12 ■ In other words, the first column we start with must have
the least value in the corresponding last row in the simplex tableau.
In the case where the values of the costs are equal, we sort them ac­
cording to the least index. For example, in Example 3.3, case D = 3
and s = 1, the first row of the simplex tableau tha t is defined below
shows the index t, which represents the decision variable X t. The last
row represents the cost for the corresponding column t.

column 0 1 2 3 4 5 6 7 8

Last row 1 1 1 4 0 1 2 5 8
(The first and the last rows of the simplex tableau for the instance of the D PP

with D = 3 and s = 1.)

That is, the last row in the simplex tableau is the corresponding cost

for each column. As we see from the above tableau, column 4 has a
cost of 0, which is the smallest cost, so the first column in that list is

4. Moreover, columns 0, 1, 2, and 5 have the same costs value, so we
sort them as 0, 1, 2, 5. Hence, we sort all these columns as follows:

4 , . . . , 0 , 1 , 2 ,5 , . . . , 6 , . . . , 3 , . . . , 7 , . . . , 8 , . . . , and so on.

After we sort these columns, we save them in the first row of a new
matrix, called the active set matrix (A-S), which is a matrix of or­
der Trd x Tdv , where Trd is the total required dominoes and Tdv
is the total decision variables defined in equation 3.7 and 3.1 respec­
tively. The active set, A-S, is the set of columns which do not conflict
with the choice already made. The entries of the first row of this

91

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

matrix represent the decision variables x (m , n , o , i , j) in descending

order according to the smallest cost value c(m ,n ,o , i , j) . The active
set {A — S) matrix is of the following form:

depth/dv 0 1 Tdv-1
0
1

Trd

(Active set (A-S) matrix)

The columns in the A-S matrix are ordered with respect to the ob­
jective function.

Step 2. Choose_function [depth]
In this step, the choose_function starts by making a loop of several
steps, which are as follows:

Step 2.1 Select Colum n
After sorting those columns, we select the first column in the
A-S matrix, say tc. This column is a candidate column to be

part of the solution tha t we want to build. Therefore, we let the
corresponding boundary variable, Xjmin[tc], equal to one. That

is,

1 = Xjmin[tc] < X tc < X jmax[tc] = 1 =>- X tc = 1

Now, the variable tc represents some decision variable

x{mtc,n tc,otc,itc, j tc)- This means, the domino (mtc, ntc) is placed
in position row itc and column j tc with orientation otc in the
domino matrix.

Step 2.2 Ignoring the conflicting colum ns
In the previous step we selected the candidate solution, X t that
customizes a position in the domino matrix for the correspond­
ing domino. Therefore, we have to ignore all the columns that
conflict with X t .

92

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Step 2.3. Saving the rem aining active columns

After selecting the candidate column, tc, and ignoring the con­
flicting columns, we save the remaining active columns in the

next row of the A-S matrix. To illustrate this, we consider the
following example:

Exam ple 3.6.
Suppose that row i of the A-S matrix before the selecting and

ignoring steps, steps 2.1 and 2.2 respectively, is

column 0 1 2 3 4 5 6 7 8

i 15 26 3 72 80 85 90 93 95

Also, suppose that the columns 15, 72, 85, and 93 have the same
orientation. Then, in step 2.1 we select column 15 and ignore the
conflicted columns in step 2.2, which are 72, 85, and 93. More­
over, in step 2.3, we save the remaining columns which are 26,

3, 80, 90, 95 ,..., in row i + 1, of the A-S matrix. Therefore, the
row i T 1 of A-S matrix will be as follows:

column 0 1 2 3 4 5 6

i 15 26 3 72 80 85 90

i+1 26 3 80 90 95 85

Step 2.4 Calling th e Choose_function [depth + 1]
After finding the solution X tc and saving the remaining columns
of the A-S matrix, we are prepared to select the next solution.
Therefore, we call the choose_function, with entry equal depth+1,
(choose_function [depth + 1]) where the depth here determines
the number of solutions that we have found so far. In this case,

we repeat the same procedure starting from step 2.1.

93

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The stopping rules of the choose_function is when the one of the fol­
lowing conditions is satisfied:

1. If the depth reaches the total required dominoes Trd which is defined
in equation 3.7. That is, if depth = Trc.

2. If the last row of the A-S matrix has no data. This means, there are
no remaining active columns in the last row of the A-S matrix.

Condition one of the stopping rules means the chooscJunction has

reached a feasible solution that satisfies all the constraints of the DPP.

This solution may be the optimal or close to the optimal.
Condition two of the stopping rules means the choose_function has reached
a solution that is not a feasible solution. This is, because this solution did
not satisfy all the constraints of the problem.

In the next section, we will analyze the reasons why the reasons of
why the greedy algorithm failed to build a feasible solution of the DPP.

Moreover, we will develop a new constraint of the DPP that forces the
greedy algorithm to build a feasible solution that satisfies the all constraints

of the DPP.

3.6.4 A nalyzing The Reasons Of getting Blockage

In this section we analyze the reasons why the greedy algorithm failed
to find a feasible solution to an instance of the DPP. When we apply the
greedy algorithm to DPP we found that it reaches a solution that is not
a feasible solution. This is because this solution did not satisfy some con­
straints of the problem and it was blocked as usually happens in greedy
algorithms.
Therefore, to use the greedy algorithm we have to avoid being blocked. This
can be done by answering the following two questions:

Q l: W hy did we get blocked?

Q2: How do we avoid being blocked?

94

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The answer of these questions is as follows:
For the first question, we study the domino portrait graphically and use the
graph theory to analyze the problem of why we get blocked. We discovered
that there were three reasons for being stuck. To understand these reasons
lets first state the following definitions of the graph theory.

D efinition 3.1. Two columns, X tl = (rrii,ni,0 i , i i , j i) and

X t2 = (m2, n2, o2, i2, j f) have the sam e p o sitio n if the following conditions
are satisfied:

1 . ii = i 2

2 . j i = j 2

3. o\ U o2 C {0,2,3} or cq U o2 C {1,4,5}, i.e., cq and o2 are both
vertical or horizontal orientation.

Exam ple 3.7. suppose that

X tl = (2,3, 2 ,1,3), X t2 = (4 ,5 ,3 ,1 ,3), X*3 = (0 ,1 ,4 ,1 ,3), and X u =
(0,0,0,1,3), then X t l , X t2 and X t4 have the same position. Whereas X tl
and X ts have different positions.

D efinition 3.2.

1. A graph is a pair (V , E) where V is a set whose elements are called

points and E is a collection of two subsets of V, called edges.

2. A point x E V is in c id en t with an edge e G V if x is in E. We say
that a vertex x € V has degree d if x is incident with exactly d edges
in E. A vertex of degree zero is call isolated.

D efinition 3.3. The domino matrix can be considered as a graph board
G = iV ,E) where the vertices set, V, are the squares (i , j) of the domino-
matrix and the edges set, E, are the neighbors of these squares. That is,

95

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 3.16: The graph board of the domino portrait

the graph board is a graph G — (V, E) where

V = {(i , j) : 1 < i < m and 1 < j < n}

E = { (i , j) - (i , j + l) : i = l , . . . , m and j = 1, . . . , n - 1,

(*> j) - (* + 1 J) '■ i = 1>- ■ ■ 1 a n d J = ! ,■■■,«}

The vertices in the center have degree 2, in the sides have degree 3 and in
the middle have degree 4■ This can be shown in Figure 3.16.

We recall some definitions from Chapter 2.

D efinition 3.4. A walk from vertex a to vertex b is a sequence of edges
ex,e2, . . . , e k such that ex = {a,a2 } ,e 2 = {a,a2} , . . . ,ek = {ak,b}.

Definition 3.5. A path from vertex a to vertex b is a walk from vertex
a to vertex b whose vertices are all distinct. The length of the path is the
number of edges.

For example, in the graph in Figure 3.17, the sequence of edges

Ci) <22, e3 , e4, es and e§ form a walk from vertex a to vertex b. However, they
do not form a path from vertex a to vertex b since the vertex a2 is used

twice. On the other hand, the sequence of edges ei and e6 form a path from
vertex a to vertex b. Moreover, the length of this path is 2.

D efinition 3.6. A graph G — (V, E) is connected if there is a path from
any vertex a € V to any vertex b 6 V.

D efinition 3.7. A subgraph of a graph G = (V, E) is a graph H = (Vi, E\)
such that Vi C V and Ei C E.

96

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

« 3< g 3-----i----

«2 «4

b ^ '

e i

a 5

*a

Figure 3.17: A connected weighted graph of six vertices.

t •— •
1

Figure 3.18: The subgraph on the right is an induced subgraph, while the subgraph

on the left is not.

D efinition 3.8. An induced subgraph of a graph G = (V, E) is a graph

H = (Vi,Ei) such that V\ C V and Vx, y £ V\ : {x, y} £ E x •$=>• {x , y} £
E

For example, Figure 3.18 shows an induced subgraph on the right and a not
induced subgraph on the left.

D efinition 3.9. A connected com ponent of a graph G is a subgraph of
G which is connected.

D efinition 3.10. Let G = (V,E) be a graph where V is the vertex set of
even s ize and E is the edge set. Assume \V\ is even. A one fa c to r or a
m atch in g is a subset E\ of the edge set E such that for any x £ V there
is exactly one edge {x , y} £ E\, y £ V . That is, if {x , y} £ E\, there is no
z ^ y e V such that {x, z} £ E\.

Lem ma 3.6.1. A path has 1-factor i f and only i f its length is odd

This can be shown in the following graph.

97

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

g l e 2 ‘?4 e 5• ------------• ------ *---- 0 ------ i-----»------ 2---- • ------ i---- •

(This path has length 5 and has 1-factor)

Since the length of this path is 5, which is an odd length, this path has one

factor.

In the following graphics, the gray part stands for a subgraph D =
(Vq, Ed) of G which has a one factor. It corresponds to the dominos which
have been placed already. The white part is the subgraph H = (Vh , E h) of
G, which has not yet been tiled by dominos. The vertices of the subgraphs
D and H satisfy the following:

1. VH = V \ V D.

2. H is an induced subgraph of G

3. The size of Vq always gets bigger and V# gets smaller.

As an example, consider the graph G\ shown in Figure 3.19. The gray area
indicates a partial domino tiling. The dominoes are indicated by edges. The
white part has not yet been tiled, and has all possible edges shown. The
corresponding subgraphs D x and Hi of the graph G\ are shown in figures
3.20 and 3.21 respectively. The graph G\ can be completed by dominos

since its corresponding subgraph H\ has a one factor. Note that the bold
lines in these figures refer to the edges that form one factor.

Whereas, graph G2 in Figure 3.22 cannot be completed by dominos since
its corresponding subgraph H2, Figure 3.23 has no one factor.

98

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

• • • •

• «ft • •
T <ft * •

f - 4ft H 4»

1 Q a t

Figure 3.19: The graph G i that can be completed by dominoes

Figure 3.20: The corresponding subgraph H i of the graph G \ and has one factor

Figure 3.21: The corresponding subgraph D \ of the graph G i

Figure 3.22: The graph G 2 cannot be completed by dominoes

Figure 3.23: The corresponding subgraph H i of the graph G 2 has no one factor

99

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 3.24: isolated square

Figure 3.25: Connected components of odd size

Now we go back to those reasons of getting blocked which are the following:

1. An isolated square: an isolated square is a square in the domino-
matrix that has no empty neighbor. For example, in Figure 3.24,

squares 1 and 2 are isolated squares where the gray area indicates a
partial domino tiling and the dominoes are indicated by edges. The

white part indicates to the squares that have not yet been tiled.

2. Connected components of an odd size. (See Definition 7). For exam­
ple, Figure 3.25 has two connected components of size 3, i.e., of odd
size.
Note: Case 1 is a special cases of case 2.

3. There is at least one subgraph H C G tha t has no one factor. Note:
Case 1 and 2 are special case of case 3.

From these cases we observe the following: For the domino tiling to
be complete, it is necessary and sufficient that the induced subgraph of the
empty squares has 1 -factor.
That is, the greedy algorithm has reached a solution tha t is not a feasible

100

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

solution. This is because at the end of this solution, the A-S matrix will

be out of data with no remaining active columns. Therefore, to solve this
problem we need to check first, after we choose a column in step 2.1, whether
that column causes the one-factor property or not and then decide either
to choose or ignore it. Furthermore, we not only ignore that column but

also ignore all other columns that have the same position, Definition 3.1,
as that column. Otherwise, they will cause the same problem which is
the one-factor property problem. That is, we need to find a quick search
algorithm for one-factor property in a given graph, which will be provided
in the following section.

3.6.5 G reedy algorithm th at avoids blockage

After we study these reasons, we found a technique to avoid being
blocked. This technique is called a one-factor/matching technique, where
we start with an initial one factor and then we modify it.

Before we start with the idea of this technique, lets consider the sequence
of vertex complementary graphs (D ^ \ H ^) , i = 0 , 1 , . . . , (Trd — 1), where
Trd is defined in equation 3.7. These graphs satisfy the following:

• £)(0) = (0,0) the empty graph and = (Vh , Eh) = (1/, E) = G the
whole graph board (see Fig 3.16).

• lA'-+1) results from D (T by addition of 2 vertices connected by one
edge. ZZ6+1) results from by removing those two vertices and all
incident edges.

• V r '1 ~ V \ V d \ - (v£> and are vertex complementary).

The idea is to only consider such domino tiles for which the new empty
places subgraph //b+i) have a matching (1-factor).

To illustrate this method in detail we recall Example 3.3, which is an
instance of the DPP with D = 3 and s = 1. The subgraphs D and iZ®
are in the following figures

101

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

}

One-factor search method starts with labeling the squares of the domino-
matrix from 0 to (M x i V - 1) . The new matrix is called matching tableau.

In this case the matching tableau will be of the form

/O /i /2

/3 /4 /5
/6 A /8
/9 /10 /H

Mate ring tableau'

Before we start, let us describe the following notation. In matching tableau
we give the square (i, j) a sign to tell us the location of its neighbor in the
one-factor. This sign is the letter S, N, E or W according to the location of

its neighbor in one factor, where S, N, E and W stand for the South, North,

East and West respectively. For example, if we have chosen the square
(i , j + 1) to be the neighbor, in one factor, of the square (i , j), then we give
the square (i , j) the letter E, since its neighbor’s location is on the right.
Also,we give the square (i , j +1) letter W, since its neighbor’s location is on
the left (see Figure 3.26-A). Whereas, if we have chosen the square (i + l , j)
to be the neighbor of the square we assign the squares (i + 1 , j) and
(hi) by S and N respectively (see Figure 3.26-B). We use the same manner
for the other squares.

Now, let us start by choosing the following initial one factor:

102

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

s
N

E W

A B

Figure 3.26: The matching tableaus where their squares are assigned by the letters

S,N,E, or W according to the location of their neighbors

S/o S/1 S/2

N / 3 N / 4 N / 5

S/6 S/r S/8

N / 9 N /io N /ii

(Matching tableau)

We let AfW to be a graph that refers to the one factor in the subgraph H^K

In this example, the one factor in is given by the following:

Af<°> =
I

We want to be able to modify the one factor so that we can put the dominos
anywhere we wish in the domino matrix. Assume that in step 3 we have
chosen a column, X t l , in which we must place in position squares 4 and 7.
Now, we are in the process of producing the H ^ and D ^ \ So, we need to
change the neighbor, in the 1-factor, of the square 4 to be the square 7 and

103

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

to know whether this column will give us a one-factor or not. To see that,

we have to modify the neighbor of all squares other then the squares 4, 7
and the non empty squares. The matching tableau starts with the following
form:

S/o ?/l S/2

N /3 1/4 N /5

S/6 1/7 S/8

N /9 ?/10 N /i i

(Matching tableau)

The idea here is that we find a path in H ^ +1̂ connecting square 10 with
square 1. Such a path necessarily has odd length and hence, by lemma

3.6.1, it can be tiled by dominoes. That is, we start with square 10 and end
with square 1. If we could not reach square 1, in this case we conclude that
there is no one factor. Now, square 10 can choose square 11 or 9. We choose
first square 9 to be its neighbor. If we could not reach square 1, we choose
square 11 instead of square 9 and continue the procedure. Consequently,

we modify the sign of square 10 to be W and square 9 to be E. Square 6
can choose only square 3 to be its neighbor. That is, we give squares 6 and
3 the letters N and S respectively. Finally, square 0 has only one choice,
which is square 1 and we give square 0 letter E and 1 letter W. Since we
have reached square 1 and found a neighbor of each square in the matching
tableau, we conclude that this column, X t l , gives a one-factor. Hence, this
column is good to be part of the solution of our main problem. Therefore,

we give squares 4 and 7 the letters S and N respectively. After this step,
the matching tableau and figure will be as follows:

104

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

E/o W/1 S/2

S /3 S /4 N /5

N /6 N /7 S/8

E /9 W/io N /11

(Matching tableau)

the subgraph D ^ is

and the subgraph H 1' 1 '1 and the corresponding M^> are given by the follow­
ing

=

Therefore, we continue the procedure of choose_function with depth = i + 1
to search for the next solution. That is, the greedy algorithm continues
searching for the solution without being blocked.

105

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Now we want to see the other case. That is, when we could not find

a one-factor in the subgraph for some i. Consider the following case
of the matching tableau

S/o E /i W/2

N /3 T / 4 T /5

S/6 T / 7 T/8

N /9 E/io W/11

<==>

(Matching tableau)

where T means a taken (non empty) square. Assume, for some i, we want
to choose a column, X ti, that has to be placed in the positions of squares
3 and 6. In this case the subgraph £)W and are given by the following
figures

D® =

We apply the same procedure and start with the matching tableau:

? /o E /i W /2

!/3 T / 4 T /5

!/6 T / 7 T/8

? /9 E/io W/11

(Matching tableau)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 3.27: A domino portrait of Einstein which was constructed from 16 complete

sets of double six dominoes using the greedy algorithm

We need to know whether this column returns a one-factor or not. We
are in the process of composing the subgraph H ^ +1\ One-factor match­
ing starts with square 9 and ends with square 0. Square 9 has only one
choice, which is square 10, so we give square 9 letter E and 10 letter W.
At this time, square 11 has only one choice, which is square 8; however, it

is a non empty square, that is, we cannot choose it. As a result, square
11 has no neighbor and we cannot reach square 0, which is the end point.

Consequently, there is no one-factor in this case and we need to ignore this
column and all other columns that have the same position. That is, the
choose_function continues to search for the next candidate column.

By this technique, we have our greedy algorithm which proceeds with­
out being blocked and we find a feasible solution that satisfies all constraints
of the domino portrait problem. For example, we found a feasible solution
for an instance of the domino portrait of Einstein which was constructed

from 16 complete sets of double six dominoes, that is, D = 3 and s = 4
(see Figure 3.27).

107

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

In this section we used the greedy algorithm strategy to solve the
domino portrait problem. Moreover, we developed a one-factor technique
to apply the greedy algorithm without being blocked and found a feasible

solution to an instance of the domino portrait problem.
In the next section we will use the local search algorithm (chapter 3) to

solve the domino portrait problem.

108

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.7 A Local Search Algorithm for the Domino Portrait Problem

In this section we will use local search algorithm to find the best so­
lution of an instance of the domino portrait problem. The local search
algorithm, which already was described in Section 2.3, is one of the power­

ful algorithms that can solve difficult combinatorial optimization problems.
For example, it can be applied to solve the traveling salesman problem (

Section 2.3.2). It searches for the best solution in the neighborhood of fea­
sible solutions of an instance of an optimization problem. An instance of an

optimization problem is the pair (F, c), where F is the set of feasible solu­
tions and c is the cost function over the solutions. Solving the optimization
problem means finding an / G F such that

c(f) < c(g) V g e F

f is called a globally op tim al solution to the given instance.
An instance of the domino portrait problem is tha t we are given an
sD x s(D + 1) photo-matrix (Figure 3.3-C) that represents a target image
(Figure 3.3-B) where s and D are integers. The problem is we want to

create a domino portrait consisting of s2 complete sets of double (D — 1)
dominoes. That is, we need to compose a domino-matrix (Figure 3.3-D) of
dimensions sD x s(D + 1). Each feasible domino arrangement is a feasible
solution. This means, we can take the set of feasible solutions F as

F = {all feasible domino arrangements in the domino-matrix}.

That is,

F = {y '■ V is a feasible solution that satisfies the constraits of the domino

portrait defined in equations 3.4 and 3.5}.

A feasible solution y G F consists of the decision variables x (m ,n ,o , i , j) .
The decision variable x(m, n, o, i , j) is the domino (m, n) has position row i
and column j in the domino-matrix with orientation o. The cost function c

109

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

is considered as the penalty of placing these dominoes in the domino-matrix.

That is, if a feasible solution y e F such that

y = {xi : Xi is the decision variable n?;, o.(,

the cost of the solution y is

c(y) = c(XJ (3-8)
xi £y

where c(x,) = n*, o,, ij, jj), defined in equation 3.2, is the cost of plac­

ing the domino in the row i and column j of the domino-matrix
with orientation o*. Later in this section we will describe in detail the set

of feasible solutions F of an instance of the domino portrait problem.

Recall from Section 2.3 that the neighborhood of a feasible solution
y € F of an instance (F, n) is denoted as N(y) and defined by

N(y) = {g : g £ F, g is ” close ” in some sense to the point /} .

In the domino portrait problem, we can define four neighborhoods of a

given feasible point / € F which are called the rotation, shift, flip and swap

neighborhoods. These neighborhoods will be defined in the next section.
Usually the global optimal solution of an optimization problem is hard

to find. However, sometimes we can find the best solution in the neighbor­
hood of some feasible point / € F. This solution is called a local optimal
solution. The goal of the domino portrait problem is tha t we are given an
instance (F, c) of the DPP and we want to find a feasible solution y € F
such that y is the optimal or close to the optimal solution. We will use the
local search algorithm to find the local optimal solution y G F such that

c(y) < c(g) Vg e N(y)

Given an instance (F, c) of the domino portrait problem and the neighbor­
hood N , the idea of the local search algorithm for finding a local optimal

solution in the neighborhood of y G F is as follows. First, we start with an
arbitrary initial solution y €E F. We search for a better solution g € N(y)

110

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

such that c(g) < c(y). We let the solution g be the starting point and
search for a better solution in the neighborhood of g. That is, we search
for a solution g E N(g) such that c(g) < c(g). We keep the solution g as a
starting point and repeat the same procedure until we reach a solution that

cannot be improved. This solution is called the locally optimal solution.

The following pseudo code provides a template for local search:

Let the subroutine

If the local optimal is reached, the while loop will be terminated.

Before we start with the local search algorithm, we need to specify
some important issues. The first issue is the selection of the neighborhood.

In the domino portrait problem, we use rotating, shifting, flipping, and
swapping as neighborhoods. Second, what is the feasible solution y that
the algorithm starts with? Here we should start with a completely random
initial starting point. The details of choosing the starting point randomly
and the neighborhoods of the DPP will be in the next sections. Finally, we

should specify the search strategy for the local optima. First-improvement
and steepest-descent are the two greatest strategies for this search [6]. In

the first-improvement strategy (see Figure 2.22), the first better solution
is found and considered as the new starting point. On the other hand,
the strategy of steepest-descent is to examine the entire neighborhood and
the neighbor that has greatest improvement becomes the new starting point.

i m p r o v e (y)
g : for any g e N (y) , c (g) < c(y) ;

F a l s e : if no such g exists.

begin
y = an arbitrary initial solution in F \

W h ile (i m p r o v e (y) ^ F a l s e) do

y = i m p r o v e { y) \

return y

end

111

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

I

A: x(m, n, , i, j) , a domino (m,n) in position QJ) and
orientation h, in the domino-matrix.

. / + !

I I

B: A domino x(m,n,vui,j)
resulting from rotating the
domino in figure A

C: A domino x(m,n,hl,i,j + l)
resulting from shifting to the
right the domino in figure A

D: A domino x(m,n,h2,i,j)
resulting from flipping the
domino in figure A

Figure 3.28: A domino (m , n) in position row i and column j of the domino-matrix

with orientation o = h i shown in figure A. The rotation, shift, and flip neighborhood of

the domino in figure A, x (m , n , h i , i , j) , are shown in figure B,C, and D respectively.

Before applying the local search algorithm to the domino portrait prob­

lem, lets describe the neighborhoods and the set of feasible solution F of
the DPP. This will be in the following section.

3.7.1 T h e N eig hborhoods o f th e D P P

In the domino portrait problem, we can define four neighborhoods of

a given feasible point / 6 F, which are called the rotation, shift, flip,

and swap neighborhoods. These neighborhoods are defined in the following
definition:

D efin ition 3.11. Assuming that we have a domino-matrix of dimensions
M x N and we let the ho — h and vo = v overall,

1. R o ta tio n neighborhood : Which is defined as
Nr(f) = {g : g G F and g can be obtained from f by rotating a

112

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

domino in f 90° counterclockwise, if it is in vertical orientation, and
clockwise if it is in horizontal orientation.}
The rotation depends on the orientation o. That is, the rotation

of a domino represented by x (m ,n ,V t , i , j) is x (m ,n ,h t , i , j) for t G

{0,1,2}, (see Figure 3.29-B); and vice versa, the rotation of the domino

x (m ,n ,h t , i , j) is x (m ,n ,v t , i , j) , (see Figure 3.28-B.)

2. Shift neighborhood: This neighborhood is defined as
Nt (f) = {g : g G F and g can be obtained from f by shifting a domino
in f one step down if it is in vertical orientation, and one step to the
right if it is in horizontal orientation.}
That is, the vertical shift of the domino x (m ,n ,o , i , j) is x (m ,n ,o , i +

1 >j) f or 1 < i < M — 2 or x (m ,n ,o , i — 1 , j) for i = M — 1 for
all j and o G { t ’o, f i , v2} (see Figure 3.29-C.) The horizontal shift of
a domino x (m ,n ,o , i , j) is x (m ,n ,o , i , j + 1) for 1 < j < N — 2 or

x (m ,n ,o , i , j — 1) for j = N — 1 for all i and o G { ^ 0 , ^ 1 , ^ 2 } (see
Figure 3.28-C.)

3. Flip neighborhood:
N f (f) = {g : g G F and g can be obtained from f by flipping a domino
in / .}

This m eans, the flip o f the dom ino x (m , n , V \ , i , j) is x (m , n , V 2 , i , j)

(see Figure 3.29-D) whereas, the flip of the domino x (m , n , h \ , i , j) is

x (m ,n ,h 2 , i , j) , (see Figure 3.28-D.) Note that, in vertical or hori­
zontal flip we change the orientation o from v2 to v\ and h2 to h\ re­
spectively. Moreover, i f the orientation 0 = v0 or ho, that is , m = n,
we do not apply the flip neighborhood, otherwise, it would be the same
domino.

4. Swap neighborhood: Which is defined as,
N s(f) = {g : g G F and g can be obtained from f by swapping two
dominoes in / .}
The swap of the two dominoes x \ (m i ,n \ , 0 \t ,i\ , j i) and x 2 (m 2 ,n 2 ,o2t2 , i 2 , j 2)

113

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

I

A: x(m, n, v ,, i, j) , a domino (m,n) in position (i,j) and
orientation v, in the domino-matrix,

j j j

i i

B: A domino x{mtn,hL,i,j) C: A domino x (in n v , , i+ l ,y) D: A domino x(m,n,v2,i,j)
resulting from rotating the resulting from shifting down resulting from flipping the
domino in figure A the domino in figure A domino in figure A

Figure 3.29: A domino (m , n) in position r o w 't and column j of the domino-matrix

with orientation o = v i shown in figure A. The rotation, shift, and flip neighborhood of

the domino in figure A, x (m , n , v i , i , j) , are shown in figure B,C, and D respectively.

is as follows:

x i (m i ,n i ,o i t i , i i , j i) x 1 (m 2 ,n 2 ,olt2 , i 1 , j 1),

and

x 2 {m2 ,n 2 , 0 2 t2 , i 2 , J2) x 2 (mu n u o2t i , i 2, j 2),

where the 01 and o2 take the vertical or horizontal orientation. For
example, if we swap the domino x \ (m \ ,n \ ,h i , i i , j \) with the domino
x 2 (m 2 ,n 2 ,v 2 , i 2 , j 2), these dominoes will be Xi(m 2 ,n 2 ,h 2 , i i , j i) and
x 2 (m i,n i ,v± ,i 2 , j 2) (see Figure 3.30.)

The rotation and shift neighborhoods cause changes to the positions of two
or more dominoes. This is because the new domino in the instance g is mak­
ing an overlapped problem. In other words, two dominoes are overlapping.

114

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

<1

h

‘i

h

Figure 3.30: The two dominoes x (m i , n i , h i , i i , j i) and x (m 2 , r i2 , V2 , i 2 , j 2) are on the

left and the swapping of these dominoes is on the right.

Therefore, we need to repair this problem by using the one-factor/matching
algorithm which was described in Section 3.6.5. This algorithm will solve
the problems caused by these neighborhoods.

3.7.2 C onstructing the Set of Feasible Solutions F of the D P P

According to the constraints of the domino portrait problem, we con­
struct the set of feasible solutions F. The constructing strategy of this set

depends on the one-factor property (see Definition 3.10) in the domino ma­

trix and all possible flipping and swapping of the dominoes in this matrix.

Recall that the domino matrix can be represented as a graph board (see

Figure 3.16. The graph board has several variations of the one-factor prop­
erty. Each one-factor can be considered as a feasible solution. Moreover,
each possible flip and swap of the dominoes in this one-factor can also be a
feasible solution.
Let F = { / o , f i , ...} be the set of the feasible solutions of an instance of the
DPP. The construction of this set is described in the following steps:

Step 1 We start by letting / 0 be a feasible solution so that each domino
in the domino matrix has a vertical orientation. For example, in
Example 3.3, which is an instance of the DPP when D = 3 and s = 1,

the feasible solution / 0 is shown in Figure 3.31.

115

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 3.31: /o case D = 3, s = 1

S tep 2 A set of feasible solutions Fix Q F is obtained from / 0 by flipping

every non-double domino. That is, for each single flip of a domino in

/o creates an element /j £ Fix.

S tep 3 From each element in Fn , we can obtain a set Fi2 C F by swap­

ping two non-similar dominoes.

At this time we have considered all possible solutions derived from
the one-factor in the feasible solution / 0. Next, we obtain a new one-
factor in the domino matrix by using the rotation neighborhood or

shift neighborhood.

S tep 4 In this step we rotate a domino in the feasible solution / 0. This
rotation obtains a new one-factor different from the one in /o. The
new one-factor can be considered as a feasible solution.

S tep 5 The new subsets can be obtained from the feasible solution con­
structed in step 4 by repeating steps 2 and 3.

Therefore, every time we rotate or shift a domino in the feasible so­

lution obtained from step 1, a new one factor is generated. Hence, new
subsets of F follow by repeating steps 2 and 3 to the generated one-factor.

Consequently, the set of feasible solutions F is the union of all subsets
obtained from the previous steps.

From the way that we construct the set of feasible solutions F, we con­
clude tha t the probability of choosing any feasible solution in F is equally

116

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

likely. For example, starting with the feasible solution / 0, we can choose a
random feasible solution / E F by choosing randomly the numbers Ay, k'2l kA
and Aq. These values refer to the number of times that we do a rotation,

shift, flip and swap neighborhood respectively. Moreover, each time we do
the rotation, shift, flip, and swap neighborhood, we also choose randomly

which domino this neighborhood applies to.

Now, we describe the steps of the local search algorithm for solving the

domino portrait problem. Given an instance (F, c) of the domino portrait
problem

Step 1 Select the starting point y & F: We start with a completely random
feasible solution y E F. As mentioned above, starting with the solu­

tion /o defined in Figure 3.31, the solution y can be chosen randomly
by selecting randomly the number of times that we do the rotation,
shift, flip, and swap neighborhoods, defined in Definition 3.11, to the

feasible solution / 0.

Step 2 Compute the cost of the solution y . Assume that the solution

y = {Xi, . . . ,XTrd} where Xi is a decision variable X i (m , n , o , i , j) and
Trd is the total required dominoes defined in 3.7. The cost of the
solution y , c (y) , is given by the equation 3.8, which is

where c(xi) = defined in equation 3.2.

Step 3 Search for a feasible solution g E F such that it is in the neighbor­
hood of y , that is, g E N(y). The solution g is determined using the
rotation, shift, flip or swap neighborhood defined in Definition 3.11.

Step 4 Compute the cost of the solution g, c (g) , found in step 3. To com­
pute the cost of the solution g , we will use the following: Assume that
the solution g is obtained from solution y by replacing the decision

xi£y

117

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

variables x i , . . . , x r with x i , . . . , x r. The cost of g can be computed
easily without using the formula in equation 3.8, by using the equation

r
c(g) = c(y) + [c(®t) - c(xT)}

T— 1

Step 5 Decide whether we choose or ignore the solution g. The solution

g G N(y) must be chosen so that the it is better than the solution y.

That is, we choose the solution g if

c(g) < c(c)

Otherwise, we ignore it. In the case of choosing the solution g, the
algorithm considers the solution g as the starting point and contin­
ues searching for a better solution by repeating the same procedure
starting from step 3. If the solution g is not better than the solution
y, the algorithm searches for a different solution g G N(y) such that

9 < V-

Step 6 Stop until there is no more improvement of the current solution.
The algorithm is terminated when all possible neighbors of the cur­
rent solution is examen and no more improvement is found. In this
case, the current solution is called the locally optimal solution.

Applying the local search algorithm to the domino portrait problem,

we can construct a domino portrait of dimensions sD x s(D + 1) from s2

complete sets of double D — 1 dominoes. For instance, we construct two
domino portraits, Marilyn Monroe and George W Bosh, the president of
the USA, each of which were constructed from 32 complete sets of double

nine dominoes (Figure 3.32).

For example, when we apply the local search algorithm for the instance of
Marilyn Monroe, we start with a completely random initial feasible solution
y0 as a starting point, (see Figure 3.33-A). Figure 3.33-B shows the first of
500 improvement solutions. Since this solution has less cost, we keep it

118

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 3.32: A domino portrait of Marilyn Monroe on the left and George W. Bush on
the right, each of which were constructed from 3 2 complete sets of double nine dominoes

using the local search algorithm

and search for a better solution that is in the neighborhood of the previous

solution. Some of these improvements that we have found are shown in
Figures 3.33-C-E. Finally, we have reached a solution that cannot be im­
proved, which is shown in Figure 3.33-F.

The local optimal solution can be reached when we first search for all pos­
sible improvements of the rotation-neighborhood and then all possible im­

provements of the shift-neighborhood. This result is obtained when we run
the local search algorithm 300 times of the instance of Marilyn Monroe with
different random starting points. The table in Figure 3.34 shows the differ­
ent outcomes of the cost function (the second column) and the number of
times tha t these outcomes are repeated (the third column).

This table shows 30 different outcomes. Comparing between these outcomes
we found that they are approximately close to each others. The maximum
different between two outcomes is equal 68. The largest cost function is
equal 4865 which appears one time; whereas, the smallest (the best) cost
function is equal 4797 and appears one time. The most repeated outcome
has value 4825 which appears 28 times.

119

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A: An initial random starting point m B: After 500 improvements

l l l ’s S H O X ' ' . \ M R X M
yfw x x a . ::?m

«|»/]\ alw!a Hi
•a = s ' s w a n

x x fa p
y,
oim i:; Hi:axsjs

%
 if x as\

*.■ IV bm ♦ :: •
■ ■ s.’IXX

au’iD IE] St
i'im juu i

x]»
m!x oIh

la tir .sH
a er
xKxL

.ismjaisla
all' a usaix

si a, MjXXlW
i .=aif»

i j s h s x i s xi a 1 lit!
v s a * m

s\s\s Mia
: # ,x a.x aix .1 ,11.-srrstenu =«*= jjte st

rieim m\]x
u st > :x x 'u

M H . K X . I j ’ . \ Mifi® W I %jj&s tixaaaaa

C: After 1000 improvements

rrnxxsB'xn'iir *ppilxi'Mpî b:]*::]*,
d.« = £<■*. * / / x :
m as :s \ W ::kU]ii[it »[i \ »
B * d l l '. u t i :
:: . ; i t u *ih] : : i\ s
x : : ' . D n ' i i i ' ' « ! : :! • i x x l t :
• x ‘u ’Plfs’iij p t:%i gr~sx ah: : : x . r . \ j » i / i sfx [.•
ti . ' s ' x i u : : V x . - ’ - j i ’
w y l n m ! m m . t . s v l i i . ! . i . i i i i i . d v

» a x ;a= :H {M x
BIX 1»i,X *.■

MIX S il lXiB X!

as. ?*..« m. x »* m* **• *V _ -qj *p]x'i;*j*i > xv xvi .1 *.] *1. «.*T xi' x»*a a . i awix \x
Mix'll a

jxbt|xM::a[M
X BIB X

H MiX X

D: After 1500 improvements

E: After 2000 improvements F: The local optimal solution

Figure 3.33: A sequence of feasible solutions of the instance of Marilyn Monroe that

was found using the local search algorithm. Figure A shows the starting point yo. Figures

B through E show the first 500 to 2000 improvement solutions. Figure F shows the local

optimal solution.

120

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Cost Function Repetitions
1 4865 1
2 4857 2
3 4853 2
4 4849 3
5 4847 2
6 4845 1
7 4843 2
8 4841 2
9 4839 7
10 4837 2
11 4835 14
12 4833 11
13 4831 17
14 4829 17
15 4827 16

Cost Function Repetitions
16 4825 28
17 4823 21
18 4821 20
19 4819 25
20 4817 21
21 4815 14
22 4813 20
23 4811 16
24 4809 10
25 4807 8
26 4805 6
27 4803 5
28 4801 3
29 4799 2
30 4797 1

Figure 3.34: 30 different outcomes of applying the local search algorithm 300 tim es to

the instance of Marilyn Monroe with different random starting points.

IS 5
IO O O lo CO o ffiOJONK) (Mi ooD(or - -ai oT co a> rs r r r r r r N N N N O W

Running Time

Figure 3.35: A plot of the decreasing cost function of the instance of Marilyn Monroe
when the local search algorithm is applied.

121

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The average outcomes is equal 4822. Since all outcomes are close to this
average, we conclude that these outcomes are approximately equal and the

maximum error is equal

the maximum error = the largest outcome — the average outcome

= 4865 - 4822

= 43.

Therefore, to search for the local optimal solution of an instance of the DPP
using the local search algorithm we first search for all possible improvements
of the rotation-neighborhood followed by all possible improvements of the
flipping and swapping neighborhoods; and then search for all possible im­
provements of the shift-neighborhood followed by all possible improvements
of the flipping and swapping neighborhoods.

For example, applying the local search algorithm for the instance of

Marilyn Monroe (see Figure 3.33) with random starting point, we have the

following. The cost function of the starting point is equal 15,285. This solu­

tion is improved step by step using first the all possible shift-neighborhood
and then all possible rotation-neighborhood. This improvement of this solu­
tion can be reached faster in the beginning of the search and then it becomes
more difficult. For instance, the value of the cost function decreases to 5433
in the first second and then it decrease slowly until it reaches the local opti­
mal solution. The local optimal solution of this instance is equal 4809 with

running time equal 411 seconds on an 800 M z Pentium 3 PC (see Figure
3.35).

Figure 3.36 shows the decreasing cost function, with running times, for

the various runs of the instance of Marilyn Monroe.

Although, some of the local optimal solutions of the DPP are repeated
more than once, the domino constructions of the portraits corresponding
to these solutions are different. That is, two local optimal solutions having

the same value of the cost function need not have same domino construc­
tions in their portraits. For example, Figure 3.37- A and B, shows two local

122

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

r f ' I W O ' - t (O C t O lO W S N r l O O r" t 10 (D

Running T im e

p
*± 10000

6 0 0 0 - • ! ----------
__

04 04 *~ <fr K K n r i D l l i n r r l p f O OCOr-M'flO(D&CD
' r O C O f f l N ' f t - n o r l f l r

R unning T im e

^ & & a<& & & & & & & & *& & •& &
Running T im e

Figure 3.36: Plots of the decreasing cost function for the various runs of the instance

of Marilyn Monroe using the local search algorithm.

123

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

optimal solutions of the instance of Marilyn Monroe, each of which were
constructed from nine complete sets of double nine dominoes using the local
search algorithm. These solutions have the same value of the cost function

which is equal 4833. These images have two different domino constructions.
This can be shown by determining the intersection of all dominoes in both

images. That is, we consider only the dominoes that have the same position
in both images. These dominoes are shown in Figure 3.37-C. Therefore, the

domino portrait problem has several local optimal solutions.

As we have seen the local search algorithm can find a local optimal
solution of an instance of the domino portrait problem. This solution can

be improved by modifying the cost function. The current cost function does

not care about the important data in the photo-matrix (see Figure 3.3-C)
for example, eyes, mouth and nose. In the next section we will modify
the cost function so that the algorithm starts filling the dominoes in the
important positions. This can be done by constructing a matrix called the
support matrix that tells us the important data in the photo-matrix. The
support matrix is constructed using a significant method called the singular
value decomposition.

3.8 Im proving The Cost Function

In this section we modify the cost function so that we can get a better
solution for the domino portrait. The current cost function does not care
about the important data in the photo-matrix (see Figure 3.3-C) like eyes,

nose, and mouth, and insignificant data like background. The function is
improved using a matrix called the support matrix. The purpose of the
support matrix is to help in determining facial features and to weigh the
entries of the photo matrix. That is, the entries in the support matrix that
have higher numbers are referred to the position of important data in the
photo matrix. The support matrix can be constructed using the significant
method called the singular value decomposition. In the following, we show

how can we modify the current function.

124

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A: A local optimal solution of
cost function equal 45*33

B: A second local optimal solution of
cost function equal 4833,

[13 S3
I

K 1
1

H is.

i
S3 | |

S I £zwaiaffl-n .
:ls B 8

i.i y
C; The intersections of the dominoes in Figure A and B.

Figure 3.37: Two local optimal solutions of the instance of Marilyn Monroe (A and

B) and the intersection between these solutions (in C).

125

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.8.1 New Cost Function

According to the information that we will get from the support matrix,
we modify the old cost formula of the objective function and construct a

new one. This formula can tell us which important data we have to start
with. This can be done by increasing or decreasing the cost of the decision

variables x (m ,n ,o , i , j) according to whether this variable is important or

not. This means, the penalty of placing a domino in an important position
is more than the penalty of placing it in an insignificant position like the

background.
The steps of developing the new cost function are as follows: Let A(aij) be
the M x N photo-matrix (Figure 3.3-C) and B(bij) be the M x N support
matrix where the entry 6^ is the measure of the entry a,;7- in the photo­
matrix A. That is, if bi1j 1 > h 2 j 2, the entry is more important than
the entry ai2 j 2 .
Now, we modify the cost c (m ,n ,o , i , j) of placing the domino (m ,n) with
orientation o in the position (i ,j) of domino-matrix (Figure 3.3-D). W ithout

loss of generality, we let o = v\. For the other orientations v ,h ,v 2,hi and
h2 the procedure is the same.

S tep 1 : We start with the old cost c (m ,n ,v i , i , j) = ci(m, n, v\, i, j) which
is defined as

ci(m, n, v \ , i , j) = { m - ai y j) 2 + (n - ai+1J)2,

The cost ci take the values between 0 and 2(D — l) 2, where (D — 1)

is the kind of the complete set tha t we are using. For example if we
are using a complete set of double 9 dominoes, then D — 10. That is,

0 < Ci < 2(D — l) 2.

The best value of the cost Ci is 0 and the worst (bad) value is 2(D—l) 2.
The real line presentation of the cost Ci is as follows

Good Bad
 1 1 >

0 2(D-1)2

126

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

S tep 2 : We shift the cost c\ to the left with the amount of

D\ = j , where |_-J is the greatest integer function. The cost c4

becomes c2 which is defined as

c2 (m ,n ,v 1 , i , j) = [(m - ai t j) 2 - D j + [{n - ai + l t j) 2 - D^\

that is,
— (D — l)2 < c2 < (D - l)2

The real line presentation of the cost c2 is

G o o d Bad
H—>

- (D - l) 2 0 (Z)- l)2

S tep 3 : Now, we use the support matrix B(bij) to weigh the entries of
the photo matrix A. That is, we multiply each term of the cost c2 by

(1 + bij) and rename it as C3. The cost c3 is given by

c3(m, n, vu i, j) = (1+bitj) [{ m - a ^ f - D i] +(l+bi+1>j) [(n -a i+i j) 2-£»i

and bounded by

D(D — l)2 D (D - l) 2
 S c3 < ------ ,

G o o d Bad
 1--------------------+----------------- 1— >
D (D - l) 2 0 D (D - t f

S tep 4 :

Finally, we shift c3 back by D 2 = D(D — l)2 so that c3 > 0. The cost
c3 becomes C4 which is defined as

c4(m, n, vu i , j) = (1 + k j) [(m -a ^ j f -D x] +(l+bi+1>j) [(n -a i+i j) 2- D i

and so, it is bounded by 0 and 2D2, that is,

0 < c 4 < 2 D2.

The corresponding real line representation of the cost c4 is given by

127

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Good Bad
— i----------------------------- 1

o 2 D 2

Hence, the new cost of placing the domino (m, n) with orientation v\ in po­
sition row i and column j in the domino-matrix is denoted as c(m, n, v \,i , j)

and defined by the following equation

c (m ,n ,vu i , j) = (1 + 6<j)[(m - ai d) 2 - A] + (1 + bi+1J) [{n - ai+i j) 2 - A] +
(3.9)

where
A = | ^ 1)2 j and A = D(D - l) 2

E xam ple 3.8. Assume that the following data are taken from a photo ma­
trix A, and the corresponding support matrix B , case D = 7 and s = 1:

®iiji ^ 2j 2 0'ii+iji ®*2+iij2 ^hji 3, Ẑ2).?2 ® and ^ ,+ 1 ai2jr\ j 2

The ph o to -m atrix and the support m atrix are as follow

 Ji_______ .h___ J_______ h___

3
1

6
1

2
4

2
4

(photo matrix A) (Support matrix B)

Since, s = 1, we have only one complete set of dominos. Namely, each
domino (m , n) must be used exactly one time. Therefore, we need to use
them in places that have important data. Here we use the support matrix
B to determine that. Assume that we need to use the domino (2,4) in
the domino matrix and want to know which place is important so that this
domino is placed in

128

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A k

I-* ?
■lid

•
m ?

■m m
V *

(The domino-matrix)

Now, by formula (3), The cost of placing domino (2,4) with orientation v\
in position { i\,ji) of the domino-matrix can be computed as follows:
Note:
D 1 = = 18 and D 2 = D(D - i f = 252, so

c(2,4,-o1,z1, j 1) = (1 + biltjl)\{2 - ailyjlf - £>J +

(1 + bh+lijl) [(4 - ah+i j xf - D f + D2

= (1 + 3)[(2 - 2f - 18] + (1 + 1)[(4 - 4f - 18] + 252

= 144

whereas, the cost i f it placed in position (i2 , j 2) with the same orientation is
equal to

c(2,4, v i , i2, j 2) = (1 4- bi2 j 2)[(2 — ai2 j 2f — -Di] +

(1 + K + iji) [(4 - ai2+i,h)2 _ Di] + D2

= (1 + 6) [(2 - 2 f - 18] + (1 + 1)[(4 - 4 f - 18] + 252

= 90

Hence, we place the domino, (2,4) in position (*2,^2) of the domino ma­
trix (see Figure). That is, we let the corresponding decision variables
x (2 ,4 ,v i , i 2 , j 2) = 1 and x (2 ,4, v\, i\, j f) = 0. The domino matrix will be of
the form

129

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(D o m i n o m a t r i x)

Therefore, once the support matrix determines the important data, like
eyes, nose and mouth in the photo-matrix we use the new cost function to

tell us which important position we should start with. By this modifica­
tion we will find a better solution of the domino portrait problem when

we apply the greedy algorithm and the local search algorithm. For exam­

ple, Figure 3.38 shows the domino portrait of Marilyn Monroe which was
constructed from 32 complete set of double nine dominoes. The portrait
is constructed using the local search algorithm with the new cost function
defined in equation 3.9 and the support matrix. The matrix is determined
using the singular value decomposition.

In the next section, we will use the singular value decomposition to
construct the support matrix so that we can use the new cost function

defined above.

130

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

IXXBM «W W»
srmn

x m*
:<ma
• ter . .
or \ r h m :■

' ' Q x :♦: :*

x,%4XHH v- v
I B I

m’S::a
w* s.
» xjB «;«'.{ !« BIX “ W H
i l ls ami »
ii& S n

• : » as i j j

* • ::[»« u|::K six aMx «»
' >: x m’m u myJWM

a s :<:

M il l
a a sMpxif

lyfelk
IK XXX
S XtX~B Bj?W

r „

J p s I h J O h I s T b J h i
MMlaMWfiM 1
sTlT ff1B TllSn»fB pi/'tlB 'lll'X

F igure 3.38: A domino portrait of Marilyn Monroe that was constructed using the

local search algorithm with the new cost function and the support matrix which was

determined using the SVD.

3.9 Singular Value D ecom position (SV D)

A singular value decomposition is a factorization of a given m x n ma­
trix. It has a lot of important applications in many areas. Specifically in
our area it can help us to determine the important data in the photo ma­
trix. In the following sections we will state the algorithm of the singular
value decomposition and related theorems and definitions. Moreover, we
will show how it determines the important data in the photo matrix.

3.9.1 D efinitions and Theorem s

D efinition 3.12.
An n x n matrix Q is said to be an orthogonal matrix if the column vectors
of Q form an orthogonal set in !Rn.

D efinition 3.13.
Let A be an m x n matrix with (m>n). The factorization UT,Vt is called
a singular value decom position of A where: U is an m x m orthogonal

131

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

matrix, V is an n x n orthogonal matrix and X is an m x n matrix of the
form

(

E = <r\ > <?2 > ■ ■ ■ > <rn > 0
0 on

\ 0

and Gi’s are called the singular values of A

R em ark 3.9.1.

The rank of A = the number of non zero singular values.

D efin ition 3.14.
An n x n matrix A is said to be diagonalizable i f there exists a nonsingular
matrix X and a diagonal matrix D such that X _1A X — D. We say that X
diagonalizes A.

T h eo rem 3.9.1. (Singular Value Decomposition)

If A is a real m x n matrix, then A has a singular value decomposition.
That is, A = LTEVr where U is an m x m orthogonal matrix, V is an n x n
orthogonal matrix and E is an m x n matrix of the form

Proof.
Since A TA is an n x n symmetric matrix, its eigenvalues are real and it has
an orthogonalizing matrix V. Moreover, the eigenvalues are non-negative.

/

E = 01 > 02 > • • • > On > 0
0 Gn

To see that let A be an eigenvalue of A TA and X be the eigenvector corre-

132

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

sponding to A. We have the following:

{ATA) X = XX

X TA TA X = X X TX

(A X)T(A X) = \ X T X

II AX

Hence, A > 0.
We can order the columns of Matrix V so that the corresponding eigenvalues
of A TA satisfy

Ax > A2 > • • • > An > 0

The singular values, cr* , of A are given by

Rem ark 3.9.2.
The rank of A equals the rank of A TA, say r, which is equal to the number

of non-zero eigenvalues A j, i.e., the rank of A = r.

Now let

Ax ^ A2 ^ ^ Ar > 0 and Ar+x — >V+ 2 — ■ ■ ■ — — 0?

also

(Ti > cr2 > • ■ ■ > (7 r > 0 and oy+x = crr+2 — ■ ■ • = an = 0

Let

£1 =

V 0 /
so

133

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

is the m x n diagonal matrix. Let V\ = (v\, - • • , vr) and V2 = {vr+\, • • ■ , vn)
where Vi is the eigenvector of A T A corresponding to the eigenvalue A j,

i = 1, • • • , n. We have V = V\ + V2. Since vj = 0, j = r + 1, • ■ ■ , n, then

Ar Avj = Aw, = Ot’j = 0

Hence the column vectors of V2 form an orthogonal basis for
N {A TA) = N{A)
That is,

AV:2 = 0

Now, since V is Orthogonal matrix, I = V V T and hence

i = v v T = v xv '{ + v 2v:[

also,

A = A I = AiVrV? + V2 V f) = AVXV? + AV2 V2r = AVXV ? ,

the matrix A can be written as

A - AV{V?

We can Construct the m x m matrix U of the singular value decomposition
UT,Vt by the following:
since U is orthogonal matrix we have

UTU = I,

so

A = U Z V T <=* A V = UZ.

By comparing the first r columns of each side of equation 1, we get

A v j = crj U j , j = 1 , - ■ • ,r

which is equivalent to

Uj = — Avj, j = l , - - - , r . (3.10)
° 3

134

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

If we let

Ui = (ui, ■ ■ ■ ,u r),

then

AVX = U1Y 1.

Moreover, the column vectors of U\ form an orthogonal set. This is because

u ju j = (—v j A T)(— Avj) 1 < i < r, 1 < j < r (by equation 3.10)
<jj a j

= - L v f (A TA Vj)
cricrj 1 v

= —:—:v f(\jV j) (since Vj is an eigenvector of A T A corresponding to A j)

•\/Aj A j G j

-y/Aj CTiyfXj &i
T ^7 T1

= ► u i u 3 = - r v i v 3

Because V is an orthogonal matrix and its column vectors form an orthog­
onal set, i.e.,

T f 1, fori = j;
Vi Vj = 1 n - -L-\ 0, i ^ j

therefore
T T? T f l > * = J) r

“ i = — A V3 = { n . , . = f?Pi (0, j .

= Si3-

Furthermore, from equation 1, we have Uj, 1 < j < r, in the column space
of A and the dimension of the column space is r, so u i , . . . ,u r form an
orthogonal basis for R(A).

D efinition 3.15.
Let Y be a subspace o /R ". The set of all vectors in R" that are orthogonal
to every vector in Y is denoted by Y -L, i.e.,

y x = { X E R" : X Ty = 0 V y € Y }

The vector space = N (A T) has dimension m — r.

135

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Now since u\, u^, . . . , ur form an orthogonal basis for R(A) and ttr+ i , . . . , urn
form an orthogonal basis for R (A) , then U i , , um form an orthogonal basis
for Rm.
Hence U is an orthogonal matrix.
Because

u ju j = Sij 1 < i < r, 1 < j < r,

and

= U & V ?

= AViV?

= A

Hence

A = UHVT.

□

In the following we will explain how the singular value decomposition

can be used to construct the support matrix that is described in Section
3.8. Let the M x N matrix A be the matrix of the target image, after we
rescale it. Theorem 3.9.1, guarantees that the singular value decomposition
is defined for matrix A. Now, let r > 0 be the rank of matrix A, the singular
value decomposing can be used to determine an M x iV matrix A of rank
k and 0 < k < r that is close to A with respect to Frobenius norm || . \\F
[33], where

m n

II a ||F= (< A , A > y =
i= 1 j = 1

136

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

That is, if

rp rri m m
A = t/E V = critiif! + a 2 U2 V2 + . . . + arurvr

then

A = U T , V t = (T i U i v J + cr2 U 2 V 2 + ... + + < J k U k V k

where 0 < k < r. After that, we find the M x N different matrix (AA)
which is defined by

AA = \ A - A\

and rescale it from 0 to D — 1. Finally, the entries of the different matrix,
A A, that have higher scale are reflected to the positions of the important
data in the photo matrix, which is the support matrix. That is, the different
matrix, A A, is the support matrix described in Section 3.8.

E xam ple 3.9. Figure 3.39 shows an original image of Marilyn Monroe of
size 195 x 250. Applying the singular value decomposition to this image we

have the following low rank images A i, . . . , A5, A10 and A^o- These images
getting better when the rank is is increasing. Moreover, Figure S.fO show

the different between the original image and every images with low rank,
i.e., |A — A i | , . . . , |A — A5I, |A — Ai0| and |A — A50|.

Consequently, we compose the support matrix so that we can use the new
cost function, defined in equation 3.9, that forces the algorithms, the greedy
and local search algorithms, to start with the important positions in the
image.

3.9.2 A lg o rith m for C o m p u tin g th e SVD

As we have seen, the singular value decomposition can be used in our
main problem to determine the important data in the photo matrix. Be­
cause we are using C + + language, we need, as well, to use it for the singular
value decomposition. There are some programs, for example, CLAPACK ,

137

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Rank-1 a p p r o x i m a t i o n R a n k ? .i| t|>ioxim.iTi-vn

R ank -3 a p p r o x i m a t i o n Rank-4 ap p ro x im a tio n

Rank-5 a p p ro x im a tio n Rank-10 ap p ro x im a tio n

Rank-50 ap p ro x im a tio n Original Im age

F igure 3.39: An original image of Marilyn Monroe and the low rank approximations

when the SVD is applied. The details of this image is described in Example 3.9

138

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

M •*
The original image A

Truncated image A — 4a

Thmeated image A - A t

Truncated image A - At

Truneated image .4 — A3

Thiraated image A - As

Truncated image A - Aia Truncated image A — .Ass

Figure 3.40: The differences between the original image of Marilyn Monroe (top left)

and the low rank approximations images defined in Figure 3.39

139

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

that compute the SVD. In this thesis, we developed a C + + program that
computes the SVD. Determining the approximate eigenvalues of A TA is a

complicated step in computing the singular value decomposition. There­
fore, we need an efficient method to do that. Such methods are called

Householder’s and the QR methods [9].

Given m x n matrix A, (m > n), The singular value decomposition,

UJ2Vt of the matrix A, can be computed by the following steps:

S tep 1 Compute the A TA.

S tep 2 Evaluate the eigenvalues \ and the eigenvectors vt of A TA.

S tep 3 Let V\ = (wi , . . . , iv) and V\ = (ur+i , . . . , vn) such that,

Vi = where vt are the eigenvectors of A TA corresponding to
the eigenvalues Aj,

Ai + A2 ■ • • Ar > 0, and Ar_|_i = • • ■ — Xn = 0.

S tep 4 Let U = ^ U\ U2) •

Ui = (ui ,u2, . . . , ur); Ui = — Avi, i = l , . . . , r

U2 = (ur+1 ,u r+2 , . . . , u m); A Tuj = 0, j = r + 1 , . . . ,m.

i.e., ur+1, ur+2, . . . , urn must form an orthogonal basis for N (A T).

H o u seh o ld er’s M eth o d

Householder’s method [9] has a large application in mathematical areas.
One of the famous areas is called an eigenvalue approximation. We will
use this method to help us approximate the eigenvalues of A TA in order
to determine the singular values of a given matrix A. In this section we
discuss Householder’s method briefly. The idea of Householder’s method
is to determine a symmetric tridiagonal matrix that is similar to a given
symmetric matrix. The new similar matrix has the same eigenvalues that
the original matrix does. To approximate the eigenvalues of the similar

140

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

matrix, we use one of the proficient methods called the QR method which

we will talk about in the following section.

D efin ition 3.16. Let w E R" with wTw — 1. The n x n matrix

P = I — 2 wwT

is called a Householder’s transformation.

There are some properties of the householder’s transformation. Two
important properties are the symmetry and the orthogonality which are

stated in the following theorem:

T h eo rem 3.9.2. A Householder’s transformation, P = I — 2wwT, is sym­
metric and orthogonal, i.e., P -1 = P.

Proof.
For the symmetry we need to show that P 1 = P. we have

P T = (J - 2wwT)T = I T - 2(wwJ)J = I - 2wr T wJ = I - 2wwT = P.

And for the orthogonality we need to proof that P P T = I, which can be
proved as follow: since P is symmetric we have P T = P, i.e.,

(.I — 2 wwT)T = (I — 2 wwT)

moreover, by the definition of the Householder’s transformation, we have

wTw = 1

and hence

P P T = (J - 2wwT)(I - 2wwT)T = (/ - 2wwT)(I - 2wwT)

= I — 2 wwT — 2 wwT + 4 w(wTw)wT = I — 4 wwT + 4 wwT

= 1 ,

consequently,
P T = P - 1 = P.

□

141

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The tridiagonal symmetric matrix A n 1 that we want to be similar to
the symmetric n x n matrix A is defined by the following:

_ p(n-2)p(n-3) _ _ _ p{l) j^pW ■ ■ ■ p("~3)p(n“2)_

where pW are the Householder’s transformation matrices. The House­

holder’s method starts by finding the first transformation P ^ such that
the entries of A ® = pd)^4 p (1) satisfy the following properties:

a,jf = a f) = 0, fo r each j = 3 , 4 , . . . , n (3-11)

Now our aim is to determine P ^ which is equal to P ^ = I — 2wwT.
That is to determine the vector w = (w i,w2, . ■ ■, wn)T € M". We chose to;
according to two conditions given by the following:

1. wr w = 1

2. The entries in the matrix

A {2) = p (i)^p (i) = (I - 2wwt)A (I - 2wwT)

have the property that

an = an and afi — a i2j — 0) f or each j = 3 , 4 ,n

by this choice we have n conditions on the n unknown wl , i = 0 , 1 , . . . , n.
To satisfy = an we let w\ — 0 and hence the transformation P ^
becomes

1 \ 0 ••• 0 N

P (1) = °
: p

\ °)
where P = I — 2wwT is (n — 1) x (n — 1) Householder’s transformation and

w = (w2, • • •, wn)T €
To determine the remaining Wi we multiply P ^ by the first column of A
and equating the result by the following

142

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

P (1)(au , . . . ,a„i)T = (a n ,a ,0 , . . ■ ,0) (3 .1 2)

where a will be determined later.
now if we let y = (021, . . . , ani)T G then equation 3.12 becomes

p i 1)

U P
&21

 ̂ ®nl J

(

= p i 1)

1 0

0

0 \ (a n \

y
V /

/ a u \
a

0

V 0
Now

P y = (/(n_i) - 2 w w r) y = y - 2 w w T) y

= y — 2h)(rt)Ty), (uiTy = r s c a l e r)

= y - 2r w = (a , 0 , . . . ,0)T (3.13)

That is

(a2i - 2 r w 2 , o3i - 2 r w 3 , . . . , anl - 2ru;ri)T = (a , 0, . . . , o)
T

and by equating the component of each side we get

a = a 21 — 2 r w 2

0 = a 31 - 2r w 3

0 = a n 1 — 2 r w n

that is,

w2 =
a 21 — a

2 r
CLj 1

Wj ^ ~ 2 r ’ = 3>4>--->n -

(3.14)

(3.15)

consequently, once we determine a and r we know W j , j = 2 ,3, . . . ,0. We
observe from equations 3.14 and 3.15 that Wj is defined for r 7 ̂ 0. That

143

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

means we need to choose a so that 0.
Now to find a we rewrite equations 3.14 and 3.15 as follows

2rw2 = a2i — a (3.16)

2 rwj = an, j = 3,4, . . . , n . (3.17)

and then we square both sides of the equations and add them togethers
n

4r2 (w% + w\ + • • • + w2n) = (a2i - a) 2 + ^ a2x (3.18)
j = 3

Now since

Wi = 0 and 1 = wTw — ŵ , + w\ + . . . +

= > w 22 + . . . + w2n = 1

and hence, equation 3.18 becomes as follows
n

4 r 2 = X ^ a2± — 2aa2\ + a 2 (3.19)
3=2

From equation 3.13 we have

P y = (cq0 , . . . , 0)T

so

a 2 = (a, 0 , . . . , 0)(a, 0 , . . . , 0)T = (P y)T (Py) =

= y T(PT P)y — y Ty
n

= a 21 + a 31 + • • • + a nl = “ i 1'
3=2

Note: P TP = 1, by the orthogonality of P.
thus

n n

ap = > a = (5 Z a^) 5 (3 -20)
3=2 3=2

Hence equation 3.19 will be
n n n

4 r2 = aji — 2aa2i + X^ a]\ = 2 XZ aP — 2aa2i
j=2 j=2 j = 2

144

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

By dividing both sides by 2, we get

n
2r 2 = a*! - aa 21

3=2

As we mentioned earlier, wj is defined as whenever r ^ 0.

Now, r = 0 when
n

y ; - a«2 i = o
3=2

from equation 3.20 we have

n n

E “t - (E A) b 2 i = 0 (3.21)
j=2 j=2

Let x = '^2 "=2aji> the solution of equation 3.21 will be as follows

a; — a;1//2a2i = 0 =>■ x 1̂ 2(x 1̂ 2 — a2i) = 0

by solving this equation we get

n
x l / 2 = 0 =>- y a2i = 0 <=> 0 2 1 = a31 = . . . = anl = 0

i= 2

or n
x 1! 2 — a2i = 0 => a2! = a2x = + a31 + • • • + a2x

3=2
031 = . . . = Oral = 0

So, for any number of a2i and a31 = . . . = anl = 0, we have r = 0. That is,
for j = 2 , 3 , , n, we have Wj, is defined whenever aj\ ^ 0.
To define more efficiently, we add the following condition a2i = 0 to the
above condition, i.e. a2i = a3i = . . . = ani = 0, and change the a to be
equals n

a = -5071(02!) (J]] 4 0 ̂
3=2

This can be shown in claim 3.9.1. Before we state the claim, let us put

forth the following definition,

145

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Definition 3.17. (Signum of x, sgn{x))

{1 i f x > 0
0 i f x = 0
— 1 i f x < 0

C laim 3.9.1.

Let n
2r 2 = ^ a2x - a a 2i (3.22)

j =2

and, a = — sgn(a2 i) (S " =2aj i) ^ 2; ^ en

r = 0 i / and only i f a2i = a3i = . . . = ani = 0.

Proof.

(4 =) Let a2i = a3i = . . . = o-ni = 0, so we have

n
2 r 2 = — a a 2i = 0 — a(0) = 0.

J'=2

hence, r = 0

(=£■) Let r = 0 and a = — sgn(a2 i)(Y2 = 2 we need to show that

0,21 = 0-31 = ■■■ — U n l = 0 .

We have
n n

0 = 2 r 2 = ^ 2 a |j - a2i [- s#n(a21) (afi)1/2]
i=2 i=2

n n

= a^l + a21Sffn (a2l) (J] a^) V2
j=2 j=2

now, applying Definition 3.17 to o,2i we get the following three cases.

Case 1, when a2i > 0,
we have n n

sgn(a2 i) = 1, an^ ^ l) ^ 2 > 0
i=2 j=2

146

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

which implies that

2r2 = 5 Z aii + a2 i (E s 2i) > 0
3 = 2 3 = 2

= > 2r 2 > 0 =► r = 0

=> contradiction since r = 0 and so a2i ^ 0

Case 2, when a2i < 0 , in this case

sgn(a2 1) = —1 , and 031 = . . . = an 1 = 0

so

2 r = a21 — q2i(o2i) ̂ = o2i — ®2i (a2\) — 2a21 7 ̂ 0

=>- r = 0

which is also a contradiction.

Hence, a21 should be zero, moreover,

«2i = &31 = . . . = an 1 = 0

□

Prom claim 3.9.1 and choice of a and r we have Wj, j = 1 ,2 ,3 , . . . , n
is obtained and the construct of P^2) js as follows:

let
n

2 \ 1/2

and

a = - s g n (a 2 i) (^ 2 a 2j l)

3 = 2

_ , 0 ? - a 2 i a , i/ 2
r - I 2 ' ’

= 0,
a 21 — a

u>j = for each j = 3 , . . . , n.
Zr

147

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Thus
/ (2) / a -

^ (2) _ p W j^p W =

11
(2)
21

a (2)a 12

a (2)22

a (2)u 32

0
a (2)23

(2)
33

0 \

a

a (2)
(2)O3 n

V n (2) (2) (2) .
\ 0 a n2 a n3 ' ' ' a ^ n /

After computing + 1) and + + we do the same process for fc = 2,3,.

which is as follows:

., n —1

a: (fc)l2\l/2
= -^w (4 + i,fc)(] C («S})2)

j = k + 1
2 (0 a ~ o ia k+l k l /2

r = (------- 5) ’
(fc) (fc) W \ '= W \

M

(fc)
= 0 ,

u>(fc)
fc+i

‘fc+i.fc — a
2 r

, (fc)
(fc) _ _ j k _ £o r eaĉ j = ̂ 2, fc + 3 ,
J 2 r

pik) = I - 2 w {k).(w{k))T

,n,

and
(̂fc+l) _ p (k) j ^ (k) p { k)

The tridiagonal and symmetric matrix + n ^ is computed when fc reaches

n — 2, i.e.,

1) _ p { n - 2)p (n - 3) _ _ _ p W ^ p t 1) _ _ _ p (« - 3)p (n ~ 2)

Remark 3.9.3.

J/ aK + 1 = aS +2 = ■ ■ • = a£ = 0 where k = l , 2 , . . . , n - 2 , in this
let A = + fc) and continue the process for the rest.

case we

Householder’s algorithm in C + +
In this program we obtain a symmetric tridiagonal n x n matrix A t"-1)
similar to a given n x n matrix A = + + where A ^ = (a +) for fc =

148

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1, 2 , . . . , n — 1 [33]

INPUT Dimension n; matrix A.

OUTPUT

S tep 1 For k = 1 ,2 , . . . , n — 2 do steps 2 - 14.

S tep 2 Recall: ” Remark 3.9.3
Tf „(fc) _ „(fe) _ . . . _ Afc) _ n pnr u — i o r? — 211 afc,fc+l ~ kyk+2 — — k,n ~ U rUI — r, Z, . . . , 7i
Set
A(fc+1) = A a n d continue (i.e., start from step 1 with k = &+1).

S tep 3 Set

7 = ± (4 t ’) 2-
j=k+1

S tep 4

I f o,^_lk = 0 then set a = —q*
i (k)

92afc+i,fcCISC SCt (X —----- 7T\-----
lafc+i,fcl

S tep 5 Set RSQ = a 2 — ac4+i,fc (here RAQ = 2r 2)

S tep 6
For i = 1 , . . . , k set Vi = 0

(k)
Vk+1 = 4+l,fe - a
For j = k + 2 , . . . 7n set vj = a^k
(Note:w = T-v)

S tep 7 For j = k , . . . , n set uj = (RSQ) Y^=k+i af i vi
(Note: u = ^A ^w)

149

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

S tep 8 Set P R O D = Yli=k+ 1 viui (Note: P R O D = v Tu)

S tep 9 For j = k , . . . , n set Zj = Uj — (^rs 'q') 1̂
(Note: z = u — w w Tu)

S tep 10 For I = k + 1 , . . . , n — 1 do step 11 and 12

(Note: computed A^k+V> = (I — 2wwT)A(fe)(/ — 2wwT)

S tep 11 For j — I + 1, . . . , n set

1) (k)
a)l aH VlZ0 - V3Zl

„(fc+l) _ (k+1)
alj - ajl

Step 12 Set = aj^ — 2vizi.

Step 13 Set ait+1) = a™ - 2vnzn

Step 14 For j = k + 2 , . . . , n set = a ife+1 ̂ = 0

Step 15 set

(fc+i) (k)
ak+lk ~ ak+l,k vk+lzk
„(fc+l) _ „(*+!)uk,k+1 — uk+l,k-

(Note: The other elements of A^k+1̂ are the same as A ^)

Step 16 Print A^n~^ which is symmetric, tridiagonal and similar to A.

After applying the Householder’s Method for A TA, we have produced the

150

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

matrix A ^ 1̂ . This matrix is symmetric, tridiagonal and similar to A TA.
In the next step we will use the QR method to determine the eigenvalues
of A ('n~1'> which are approximately the same as those of the matrix A TA.
This will be in the following section.

QR M ethod

As we have seen, the Householder’s method was used first to determine
the symmetric tridiagonal A^n~^ matrix. In this section we continue the

procedure and use the QR method [33] to convert the matrix A ^n ~ 1'1 to a
diagonal matrix that has approximately the same eigenvalues as the original
matrix A TA.

The idea of the QR method is to obtain a sequence of symmetric tridi­

agonal matrices
A (n-1) = ^ (1) 4 (2) ^ (3)

such that the matrix A^+1) has the same eigenvalues as A ^ \ Moreover, it
tends to a diagonal matrix and its diagonal entries are approximately the
eigenvalues of A^n~^ as well as A TA.

QR starts with the matrix

= A =

(

\

ax

b2

0

0

b2

a2

\

0 /
If 62 = 0 or bn = 0, a2 or an is the eigenvalue of the matrix A. If bj = 0 for
some 2 < j < n, we split the matrix A into two small matrices and repeat

the procedure for both of them individually. The small matrices are of the

151

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

following form:

(

\

o-i

b2

0

0

b2

0 2

and

a,- fy+i

V

aj+i

0

0 0 br, /
If there is no bj — 0, we continue the procedure by producing the matrices

A(2\ , . . . as follows:

1. The matrix A (n_1) = is factored as a product A ^ = Q ^ R ^ ,
where is an orthogonal matrix and is an upper triangular
matrix.

2. The matrix A ^ is defined as

A ® = i?(1)g (1).

3. The rest of the matrices are defined as follows: A ^ is factored as
A 1-1'1 = gb)_R(») and yjb+1) = R ^ Q b f where is an orthogonal ma­

trix and is an upper triangular matrix.

The construction of the factors and R ^ use the rotation matrix which
is defined by this definition:

D efinition 3.18.
A rotation matrix P differs from the identity in at most four elements.
These four elements are of the form

P (i i) = P (j j) = cos 9 and p ^ = ~ P (j i) = sin 6

for some 6 and i ^ j

The angle 9 can be chosen so that the product P A has zero entries
at (P A) i j . The factorization R ^ ia a product of n — 1 rotation matrices
P 2 , P 3 , . . . , P n and A ^ f i.e.,

RW = Pn,Pn_1 , . . . , P 2 A<‘1\

152

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

QR starts by choosing the rotation matrix P2 such that

P{ 11) = P{22) = cos 02 and 12) = - p (21) = sin02.

Where
■ a b2 j a a lsm02 = —. and cos U2 = —.

s /W T a f y l T o }

The entries in the positions (2,1) and (1,4) , . . . , (1, n) in the matrix A ^ =

p 2a w are zeros since

• n , u n —h a i aib2- a x sin02 + b2 cos 02 = ■■■ • T. + = 0.
^ / ^ + a?1 y/b\ + af

and the only entry in position (1,3) may not equal to zero.
In general

4 ° = T u (fc_1)

where the matrix Pk is chosen so that the entry in position (k, k —1) are zero,
and therefore, the {k — 1, k + 1) entry becomes non zero. The construction

of the matrices 4 ^ and Pk+i are of the following form

ri 0 0 \

0 z k - 1 qk - 1 r fc_ i :

0 xk yk 0 :

h+i Ofe+i h + 2 ' ■ 0

0

bn
0 bn an J

and
I fc - l 0 0

Qc+1 $ k -\-1

0 0

•Sfc+l Qc+1

0 I n —fc—1

153

4 l , =

Zl

0

0

V 0

<7i

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

where

and

£fc+i
frfc+i

bl+1 + 4
a n d c k + 1

Xk

blfc+i X I

(z\ qi n o
o ••• •••

a (1) _A k+1 —

0 \

0

0 Zk q k r k

0 xk+1 yk+i 0

bk + 2 ak + 2 bk+3 0

0

V o 0 bn a a J

By continuing this construction for the rotation matrices P \ , . . . , Pn we get
the matrix

/ „ „ „ n . . . n \zi qi n o
0 •••

: ' • • z

V o

which is an upper triangular matrix.

0

0

' ’ • r n_2

Zn —1 Qn—1
0 xn

The construction of the other factor, which is Q ^ \ is defined by the
following:

q W = p ? p ? . . . p J .

where the matrix P is the rotation matrix that is defined in the factor R ^ \
Since the rotation matrices are orthogonal, then

Q W r W = (P 2T p T _ _ _ P^).(P 2 P3 . . . Pn) A ^ = A™.

154

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

and so, the matrix is equal + 1) = R ^ Q i 1) which is closer to being a

diagonal matrix than is + + This because the magnitude of the entries off
diagonal of the matrix A ^ are, in general, smaller than the corresponding
entries of the matrix + + We do the same procedure for other matrices
+ 3\ + 4),

Now, let Aj, i = 1 ,2 , . . . , n be the eigenvalues of the matrix + " ~ + If

I Ai| > | A21 > . . . > |An|, the rate of convergence of determines the rate
of convergence of the entry hl̂ \ to 0 in the matrix + t+1A In addition, the

rate of convergence of the entry to the eigenvalue Xt is determined by

the rate of convergence of bl̂ \ to 0. That is, if

bljW —> 0, then —> A;

Usually this convergence is slow. We use a shift technique to make this
convergence faster. A shift technique uses a constant s, which is called a
shift constant s. This constant, Si is determined at each step, say step i, by
the eigenvalue of the matrix

+) 1,(0 \
a n - 1 bn
6(0Vn (0an

that is close to the entry a„\ After that, we use this constat, s* to modify
the factorization matrices Q (0 and i?(0 so that

A(i) - SiI = Q (i)R {i) and A(i+1) = + s j .

QR algorithm in C + +
In this program we obtain the eigenvalues of a symmetric, tridiagonal n x n

A = A X

(

, where

a ? 0 . . . o

0 2]

0 ••• 0

b{l)Vn
0 0 fe(1) a (1)vn Usn

\

155

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

IN P U T : Dimension n; a ^ , . . . , c in \b ^ \ . . . , 5 ^ ;
tolerance TOL] maximum number of iterations M

O U T P U T : Eigenvalues of A.

S tep 1 Set k — 1; S H I F T = 0. (Accumulated shift)

S tep 2 While fc < M do steps 3 - 1 9

S tep 3 if (n = = 1)

• A = a f '1 + S H I F T

• Print out (A)

• return (return from where you came)

S tep 4 if (\b{n }\ < TOL)

• A = a(n] + S H I F T

• Print out (A)

• n — n — 1

• continue (repeat steps starting from step 2)

S tep 5 if (Ib^l < T O L)

• A = a f] + S H I F T

• Print out (A)

• n = n — 1
(fc) (fc)• a) = a\

• for j = 2, /dots, n
set

(fc) (fc)
- ai = at+i
_ fe(*0 = &(*0

S+i
• continue (repeat steps starting from step 2)

S tep 6 for j = 2 , . . . , n — 1

if (|& f| < TOL) (Splitting case) in this case we split the ma­
trix A into two small matrices {af^\ . . . , a k̂}1, , . . . , b̂ }l }

and { a f \ . . . , a ^ j b ^ i , • ■ •, ^ S H IF T } and we apply QR
method for the first matrix and then for the second one.

156

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

S tep 7 (Computing the Shift)
set

t> = - (“ i - i + « ! ?)

C = <.<M A - P f] 2

d = (b2 - 4c)1/2

S tep 8 If (b > 0) then set

-2 c
* = b T d

—(6 -F c?)
^ 2 = 2

else set

d - b

2c
^ - J d ^ b)

S tep 9 If (n = = 2) then

• set

Xi =f i i + S H I F T

X2 = /jl2 + S H I F T

• Print out (Ai, A2)

• return (return from where you came)

S tep 10 Choose s so that s = min{|//i — a ^ \ , |/x2 — |

S tep 11 Set S H I F T = S H I F T + s

S tep 12 (Perform shift)
For j = 1 , . . . , n set dj = — s

157

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Step 13 (Steps 14 and 15 compute RW)

Xi = dx
u (k)

V\ = &2

Step 14 For j — 2,.

• set

in

Z j - x —

Ci =

* u + (b f r
X3- 1
* 3 - 1

1/2

<,()*

Z j - l

Qj—i = cj V j -1 F S j d j

X j = — S j D j - x + Cj d j

If j ^ n then set

ri-i = S j b
(fc)

'•Fj+i)
, (fc)

Vi = ci&i+i)

= PjA^}^ has just been computed and

Step 15 (Steps 16 - 18 compute A^k+l ̂ = R W Q W) set

Zn %n

(fc+1) .aj = s2gi + c2zi
Ak+!)fej = S2Z2

Step 16 For j = 2 , . . . , n — 1 set

a (*-U _
•j ^ j + i ^ Q j F Cj C j+ x Zi

6
(fc+i)
j+i — s j + i z j + i

158

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

S tep 17 Set aifc+1̂ = cnzn

S tep 18 Set k = k + 1

159

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 4

MAXIMUM CLIQUE PROBLEM (MCP)

The maximum clique problem is one of the most important problems in
combinatorial optimization. In this chapter we briefly discuss the maximum

clique problem including its applications and the algorithms that can solve
the problem. Moreover, we will present an important application of the

(MCP) called finding ovoids in finite polar spaces. In addition, we develop

a new technique based on the local search algorithm to find cliques of a
given size in agiven graph. To understand clearly the problem let us start

with the following definitions.

4.1 D efin itions

In this section we provide the definitions that help us understand the

maximum clique and independent set problems and how they are related.
Also, we recall some definitions from previous chapters.

D efin ition 4.1. Let G — (V ,E) be an undirected graph where V is the
set of vertices and E C V x V is the set of edges. The graph G is co m p le te

if for every two distinct vertices aiy a,j there is an edge (a.j, aj) G E. A graph

G = (V, E) is called a subgraph of the graph G if V C V and E C E such

that if (a i,a j) G E, then ai taj G V.

D efin ition 4.2. A subgraph C = (VC,E C) of a graph G = (V, E) is called
a clique if it is complete. That is, for every two vertices a, b G Vc, there is
an edge (a, b) G E c. The size of a clique C is denoted as ui(c) or \C\ and
defined by the number of vertices contained in Vc.

160

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

F igure 4.1: Graph G\ = (V,E), V = {1 ,.. . ,5}, of example 4.1

The maximum clique problem involves finding a clique C in a given
graph such that it has the maximum size. In other words, given a graph G,

we want to find a clique C such that \C\ > \C\ for any clique C in G.

E xam ple 4.1. In figure 4.1, we have a graph G\ = (V ,E) where V =
{ 1 , . . . , 5}. Graph G\ is not complete since there are at least two vertices
not connected with an edge; for instance, vertex 2 and 3, are not adjacent.

In the following subgraphs

1 . Cx = (VC1 ,E C1), where VC1 = {1,3,5} and E Cl = {(1 ,3), (1,5)}.

2. C2 = (VC2 ,E C2), where K 2 = {1,3,4} and E C2 = {(1,3), (1,4), (3,4)}.

3. C3 = (VC3 ,E C3), where VC3 = {1,2,4,5} and
E C3 = {(1,2), (1,4), (1,5), (2,4), (2,5), (4,5)}.

we have the following: the subgraph Ci is not a clique since not all its

vertices are pairwise adjacent, i.e., the edge (1,5) ECl. The subgraphs C2

and C3 are cliques of size 3 and 4 respectively. The maximum clique of this
graph is C3 since it has the maximum size.

D efin ition 4.3. A set S in a graph G = (V, E) is called an in d ep en d en t

s e t , if it is a subset of V such that every two vertices in S are nonadjacent.

In other words, if S C V such that V a,b £ S, the edge e = (a, b) E.
The size of an independent set S is the number of vertices contained in S
and is denoted as co(S) or IS1}
Finding the maximum independent set in a given graph is called the max­
imum independent set problem. That is, we need to find an independent
set S C V in a graph G = (V ,E) such that |Sj < |S| for all independent
sets S in G.

161

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

F igu re 4.2: Graph G2 = (V, E) , V = { 1 , . . . , 5}, of example 4.2

E xam ple 4.2. In figure 4.2, we have a graph G2 — (V, E) where V =

{ 1 ,. . . , 5}. The set Si = {1,3,5} is not an independent set since there are
two vertices 3,5 £ S\ which are connected in G2, i.e., the edge e = (3,5) £
E. The sets S 2 = {1,3,4} and S 3 = {1,2,4,5} are independent sets and
have size 3 and 4 respectively. The set S 3 is the maximum independent set

of this example since it has the largest size.

D efin ition 4.4. Given a graph G = (V, E) where V is the set of vertices
and E is the set of edges, the complement of a graph G is a graph G = (V, E)
such that the two following conditions are satisfied:

1. The set of vertices V of G is the same as the set of vertices V of graph

G, i .e .,V = V

2. Two vertices in G are connected if and only if they are not connected

in G.

For example, graph G2 in figure 4.2 is the complement of graph G in figure
4.1.

It is not hard to see that the set C is an independent set of a graph G
if and only if C is a clique of its complement [40].

Therefore, finding the maximum independent set in a graph G corre­
sponds to finding the maximum clique in its complement. For example, the
maximum independent set S 3 of graph G2 in example 4.2, is the maximum
clique of the graph G\ in example 4.1, which is the complement of the graph
G2.

4.2 A pplications

162

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The maximum clique problem arises in various areas including com­

puter vision, cluster analysis, and coding theory [27, 22, 12].
For example, in coding theory, one question which arises is to compute
A(n, d) which is the maximum number of binary vectors of size n with
Hamming distance d. The Hamming distance between two codewords
u (u i , . . . , un) and v(v \ , . . . , vn) is the number of coordinates where they dif­

fer, and is denoted by d(u, v). The idea is to determine the graph G — (V, E)
where the set of vertices V has size 2” and corresponds to all possible code­

words, while E is all possible edges such that two vertices are connected
with an edge e € E if their Hamming distance is at least d. The value of

A(n, d) can be computed by determining the maximum clique of the graph

G.
Another problem in coding theory involves finding a weighted binary

code A (n ,w ,d). This value is determined by finding the maximum clique
corresponding to the graph G = (V ,E) where the size of the set V is (”).
For more details regarding these applications see [22, 2],

Yet another interesting application of the maximum clique problem is
finding ovoids in finite polar spaces. This will be described in the following
section.

4.2.1 Finding ovoids in finite polar space

One important application for the maximum clique problem is search­

ing for ovoids in finite polar spaces, which is equivalent to finding an in­
dependent set with a specific size in a specific graph. To understand this
application, the following definitions are necessary.

D efin ition 4.5. The n-dimensional projective space over a finite field
GF(q), denoted PG (n,q) is defined by means of an (n + 1)—dimensional
vector space V (n + 1 ,GF(q)). The 1-dimensional subspaces of V are the
points, the 2-dimensional subspaces are the lines and the 3-dimensional
subspaces of V are the planes [11].

There are three important properties of projective space, which are
given as follows:

163

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1. Two points lie on at most one line.

2. Two intersecting lines lie in a unique plane.

3. Two lines in the same plane must intersect.

D efinition 4.6. A quadratic form in indeterminates Xq, . . . , x „ over a fi­

nite field F is a homogeneous polynomial of degree two in those indetermi­
nates,.i.e.,

n
Q i .^0 Q { % 0) • ■ ■ j ®n) ^] (S' i jXiXj)

i , j= 0

Where the coefficients Cy are in F [48].

For x £ GF(q), we write P(x) to denote the projective point which is the
one-dimensional subspace spanned by x. From now on, q will always be a
prime power (i.e., q £ {2 ,3 ,22, 5 ,7 ,...}).

D efinition 4.7. Let Q be a quadratic form in (n + 1) variables. A quadric
Q in PG(n, q) is the zero set of Q. That is,

Q = {P(x) : Q(x) = 0}

Let / and g be two quadratic forms. We say that / and g are pro-
jectively equivalent if g can be obtained from / using an invertible linear

substitution of the variables. That is, in matrix form, / and g are projec-
tively equivalent if there is a nonsingular n x n matrix A such that

g(X) = f(X A) .

Given a quadratic form Q in n variables x0, , xn over a field F, then Q
has rank r if r is the least number of variables that occur in any projective
equivalent quadratic form [48].

D efinition 4.8. Let Q be a quadratic form in r variables. A quadric Q is

call nondegenerate if Q has degree r. That is, if Q cannot be transformed
into a homogeneous polynomial with fewer degrees.

164

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The nondegenerate quadrics in PG(n, q) can be put into three types
up to projective equivalence. These types are as follows (we let n be the

dimension of the projective space):

1. Parabolic quadrics: The formula of this type is given by

Q { n i Q) = X0X \ + X2X 3 + • • • + %2m—2x 2m—l + a x 2m'

where n = 2 m is even and a is a non-zero scalar.

2. Hyperbolic quadrics: This is presented by

Q+(n, q) = X 0 X 1 + X 2 X 3 + . . . + X 2 m —2 x 2 m —l-

where n = 2 m — 1 is odd.

3. Elliptic quadrics: The formula of this type is given by

Q ~ (n , q) = X0x 1+ x 2x 3 + . . . + X 2 m - 2 X 2 m - l + a x l m + b X 2 m X 2 m + l + C x l m + 1 .

with ax2 + bx + c irreducible over the field F9. The number n in this
type is odd and equals 2 m + 1, i.e., n — 2 m + 1.

where m is an integer called the witt-index, which is the largest di­
mension of a vector subspace in which the quadratic form vanishes
completely.

For example, Figure 4.3 shows the hyperbolic quadric Q+(3,q) with equa­

tion £020 + ^ 2^3 = 0, Cameron [10].

A line of a quadric Q is a projective line (i.e., a 2-dimensional subspace)

which is completely contained in the quadric. Let Qi denote the lines of Q.
There are formulas of the number of projective points and the number

of projective lines for each type of nondegenerate quadric Q in PG(n,q).
These formulas are as follows:

1. The parabolic quadric Q (n,q), where n = 2m and is even:

165

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 4.3: The hyperbolic quadric Q+(3, q) with equation XqX\ + X2 X3 = 0, which is

called ’’ruled quadric” , Cameron [10].

• The number of projective points:
qn — 1

I <31 = p —p (41)

• The number of projective lines:

i<3ii = tofa~ \))faT -n1)'(<;m + + 4)- (42)

2. The hyperbolic quadric Q+(n,q), where n = 2m — 1 and is odd:

• The number of projective points:

t /J(«+1)/2 _ p [0 M) /2 4 . ij
\Q+\ = ^ ^ (4.3)

• The number of projective lines:

l4?'l = + 1)(l,m' 2 +1} ' (44)

3. The elliptic quadric Q~(n, q), where n = 2m + 1 and is odd:

• The number of projective points:
(g(n+l)/2 , j W (n - l) / 2 _ I)

\Q~\ = ^ t l (4.5)

D efin ition 4.9. An ovoid O of a quadric Q(n, q) in PG(n, q) is a set of s
points such that there are no two collinear in a line of the quadric, where

qm + 1, i fQ
s = < qm~l + 1, if Q

qm+i + 1? i fQ

166

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

For example, the size of an ovoid of a hyperbolic quadric Q+(3,q) is q + 1
(since in this case 3 = n = 2m — 1, we have m = 2 and s = q('2~1') + 1).

In order to describe the search for ovoids as an instance of the maximum
clique problem, we define the collinearity graph of a polar space.

D efin ition 4.10. Let Q = Q(n, q) be a nondegenerate quadric in PG(n, q).

Let Qi be the set of lines of Q. The collinearity graph of Q has as vertices

the points of Q. Two vertices are adjacent if the corresponding points are
collinear in a line of Qi.

T heo rem 4.2.1. The following are equivalent:

1. O is an ovoid in Q(n,q).

2. O is an independent set of size s in the collinearity graph of Q.

3. O is a clique of size s in the complement of the collinearity graph of

Q .

where s is as in formula f . 6 .

Therefore, the search for ovoids in polar spaces is an instance of the
maximum clique problem.

E xam ple 4.3. Figure 4.3 shows the hyperbolic quadric Q+(3, q), Cameron

[10]. An ovoid of this quadric has q + 1 points. For instance, if q = 2,
i.e., Q+(3,2), then we have an ovoid of size 3. The number of points
and lines of the quadric Q+(3,2) are 9 and 6 respectively (see Figure 4.4-
A). Therefore, the corresponding collinearity graph has 9 vertices and is
shown in Figure 4.4-B. In this graph, two vertices are adjacent if they

are connected by a line in Q+(3,2). For instance, since vertex 1 is con­
nected with vertex 2 and vertex 3 by a line in Q+(3,2), these points are
connected by edges in the collinearity graph. The complement of the
collinearity graph is shown in Figure 4.4-C. All possible cliques of size 3
of this graph are C i { l , 5,9}, C2 {1 ,6 , 8 }, 6 3 (2 ,4,9}, C±{2 , 7 ,6 }, 6 5 (3 , 4 , 8 }
and Cej{3, 5, 7}. By theorem 4.2.1, these cliques are independent sets in the
collinearity graph and are ovoids in the quadric C)+(3,2).

167

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1 2 3

5 6

8 9

A: The hyperbolic quadric Q+(3 ,2)

G: The complement graph B: The collineari ty graph

Figure 4.4: The hyperbolic quadric Q+ (3 ,2) and its collinearity graph and the com­
plement of the collinearity. The details of this figure is described in example 4.3.

In the following section, we will present algorithms which are used in
combinatorial optimization to solve this problem.

4.3 Algorithm s

Much research has been done on the maximum clique problem and var­

ious algorithms have been developed to solve it. For example,(Johnson, D.
S. [29, 22] used the greedy algorithm to solve the maximum clique problem.
This algorithm is based on several iterations. It starts by choosing a vertex

that has the maximum degree and adds at each iteration a new vertex to
the current clique so tha t the result is also a clique. This algorithm contin­
ues adding vertices until no more vertices can be added.
Other examples of algorithms used for solving MCP are the enumerative

algorithms including Harary and Ross [21], Maghout [35], and Pauli and
Unger [41]. The details regarding the enumerative algorithm can be found
in [2],
One of the more interesting algorithms used for MCP is the one based on the
local search algorithm e.g. the reactive local search for the maximum clique

168

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

problem by Roberto Battiti and Marco Protasi [3]. This algorithm solves
the maximum clique problem based on the local search. Another example
of an algorithm that is based on the local search algorithm is the k-opt
local search for solving MCP by Kengo, Kihiro, and Hiroyuki [30]. This al­
gorithm searches for a k-opt neighborhood using several 1-opt moves. The
1-opt move is either an add or a drop move. The add move is when a pos­
sible vertex is added to the current clique, whereas the drop move is when

one vertex is dropped from the current clique. The details of this algorithm

can be found in [30].

In the next section we develop a new technique for solving the maxi­
mum clique problem. This technique is based on the local search algorithm.

4.3.1 N ew Technique for Solving M C P Based on Local Search
A lgorithm

In this section we develop a new technique for solving the maximum

clique problem. The technique is based on the local search algorithm (see
Section 2.3). Before discussing our technique, let us state the following.

Given a graph G = (V ,E) ,V = {1 , . . . , n} is the set of vertices and E is the
set of edges represented by a {0 ,1} n x n matrix Afe^], called the adjacency

matrix. That is, if E E, then we let the entry = 1 and 0 otherwise.

An instance of the maximum clique problem is a pair (F, c), where F is the
set of feasible solutions. This set considers all subgraphs which are cliques
in the graph G. That is,

F — {the set of all clique in the graph G}

= {y : y is a clique in G}.

Whereas, c represents the cost function, which is defined by the size of the
clique y G F. That is, cost of a feasible solution y E F given by

c(y) — 12/1 = {the number of vertices contained in the clique y}.

The problem is to find a clique y E F such that this clique has the maxi­
mum (or close to the maximum) size. In other words, we are looking for a

169

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 4.5: Graph G = (V, E) , where V = {1 , . . . ,4}, of example 4.4.

feasible solution y £ F such that c(y) > c{g) for all cliques g £ F.

Exam ple 4.4. In the graph in Figure 4.5, the set of feasible solutions F
is as follows:

F = {0, {1}, {2}, {3},{4},{1,2},{2,3},{2 ,4},{3,4},{2,3,4}}

The cost of the clique y\ = {3} and y2 = {2,4} is c(yi) = 1 and c(y2) = 2
respectively, while the cost of y3 = {2,3,4} is c(y3) = 3. Clearly, the
maximum clique of this graph is given by the feasible solution y3 since it
has the maximum cost.

In the following section we introduce a definition of the neighborhood of

the maximum clique problem.

4.3.2 The N eighborhoods of M CP

In the maximum clique problem we may develop three neighborhoods of
a given feasible clique y £ F. These neighborhood are called add, exchange,
and remove neighborhoods and are given by the following definition.

D efinition 4.11. Given a graph G = (V ,E) with n vertices where V is

the set of vertices and E is the set of edges, the neighborhoods of a feasible
solution y £ F are

1. yWd-neighborhood: This neighborhood is defined as

N a(y) — {g : g £ F and g can be obtained from y by adding one
vertex to y.}
This neighborhood can be determined by the set of all vertices in
V \y that connect to all vertices of y. That is, g £ N a(y) if there is a

170

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

vertex u G V \y such that u ~ 6, V b G y where u ~ b means vertex
u is adjacent to vertex b. Therefore, g = y U {u}. For example, in
the graph in Figure 4.5, the clique g = {1,3,4} belongs to the add-

neighborhood of y, N a(y), where y = {1,3}. This is because vertex 4
connects to vertex 1 and 3.

2. Exchange-neighborhood: This neighborhood is defined as
N e(y) = {<7 : g G F and g can be obtained from y by exchanging one
vertex in y with one vertex in V \y .}
This neighborhood can be determined by the set of all vertices in
V \y that are adjacent to all vertices in y \{u } for some u G y. In
other words, g G N e(y) if g = y \ { w } U { a } where a G V \y and
a ~ b, V b G y\{u}. For instance, in the graph in Figure 4.5,
let y G F be a clique y = {1,3,4}. Since vertex 2 is adjacent to all
vertices except 3, we can exchange vertex 3 with 2 to obtain the clique

g = {1,2,4} which belongs to the exchange-neighborhood of y, N e(y).

3. .Remove-neighborhood: This neighborhood is given by
N r(y) = {g : g G F and g can be obtained from y by removing one
vertex from y.}

Now we discuss our technique for solving the maximum clique problem.

Given a graph G — (V, E) of size n, assume that we need to find all
possible cliques of size s. The steps for finding these cliques are as follows:

S tep 1: Select a starting point y G F. We select a completely random
clique y as the starting point. The starting point can be chosen by
randomly selecting any vertex v G V. This is because any vertex in
V is a clique of size 1.

S tep 2: Add a new vertex, if possible, to the current clique y. In this step,
we search for any feasible solution g G N a(y). That is, we search
randomly for a vertex v G V \y such that v ~ b, V6 G y.

171

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

S tep 3: Repeat step 2 until no more vertices can be added to the current
clique. In this step, we continue adding a new vertex to the current

clique y until one of the following conditions is satisfied:

1. The size of the current clique reaches the value s, which is the
size of the maximum clique.

2. No more vertices can be added to the current clique and the
size of the current clique is less then s. That is, the set of the
add-neighbor hood of y, N a(y), is empty.

S tep 4-i: If condition 1 is satisfied, remove one vertex from the current
clique and go to step 2. This step follows step 3 if condition 1 (|y| — s)
holds. This means that the maximum clique has been found and

therefore we search for another clique that has the maximum size s.
In this case, we remove one vertex from the current clique y and go
to step 2 to search for another clique.

S tep 4-ii: If condition 2 is satisfied, exchange one vertex, if possible, from
the current clique with a new vertex in the set V \y so that the result

is a clique, and go to step 2. This step follows step 3 if it is impossible
to add a vertex in the current clique. In this case, we randomly choose

a vertex v G V \y such that v ~ b for all b G y\{a} for some a G y.
Therefore, we exchange vertex v with vertex a. The result must be
a clique and belong to the exchange-neighborhood of y, N e(y). After

that, we go to step 2 to add a new vertex to the resulting clique.

S tep 5: Remove one vertex from the current clique and go to step 2. If
it is impossible to add or exchange a vertex to the current clique, we
remove one vertex from the current clique and go to step 2 to add
vertices to the resulting clique.

S tep 6: Stop when all possible maximum cliques are found. The stopping
rule of the algorithm is when all possible maximum cliques are found
or the current clique cannot be improved.

172

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The pseudo code of the algorithm for finding the cliques of a size in a
given graph is as follows:

Algorithm: Local search algorithm for finding all possible cliques of a

In p u t:

1. The set of vertices v = { 1 ,. . . ,n }

2. The n x n adjacency matrix Adj [e,:j]

3. The size, s, of the cliques that we are looking for

O u tp u t: All possible cliques yi, y2, . . . , yt of size s.

Definition of the following sets:

• y := the current clique.

• A := {a : a <= V \y and a b, V b e y}.

• E := {e : e G V \y and e ~ b, V b € y, for some v G y}.

• R := {r : r E y and y is the current clique},

beg in
1. y := {u} where v € V is chosen randomly as a starting point;
2. t := 0; (The number of cliques of size s that have been found so far.)
3. re p e a t

given size in a given graph.

4.

5.
6 .

7.

if (A ^ 0) do
a := a E A and a is chosen randomly;

y := y U {a};
if (|y| = s) do

8 if (y is new) do
9. yt = y\

173

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

10. t = t + 1;
11. en d if
12. r := r E R and r is chosen randomly;

13. y := y \{r};
14. go to line 4.

15. else ” (if \y\ ^ s) ” go to line 4

16. else ” (if A = 0) ”
17. if (E ^ 0) do
18. e := e E E and e is chosen randomly;

19. v := v E y and e ~ b, V b E 2/\{^};
20. y := y U {a};
21. go to line 4.
22. else ” (if E = 0)

23. r := r E R and r is chosen randomly;
24. y := y \{ r };
25. goto line 4.
26. u n til No more cliques of size s can be found;
27.end

4.4 R esults

Since we are interested in finding ovoids in quadrics Q in PG (n , q)
with prime power q, we use these quadrics as instances to evaluate the
performance of our new algorithm for finding cliques of a given size in
a given graph. These include graphs which are the complement of the
collinearity graphs corresponding to both the hyperbolic quadrics Q+(n, q)
with n = 2m and parabolic quadrics Q(n, q) with n = 2 m — 1, where m > 2.

The graphs are constructed using a program called ovoid.cpp which
was developed by Dr. Anton Betten. This program takes parameters e, n, q
as the input where the e = 0,1 or —1 represents the parabolic quadrics
Q(n, q), hyperbolic quadrics Q+(n, q), and elliptic quadrics Q~(n, q) respec-

174

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

tively, where the parameters n and q are described as above. The output of
this program has a lot of information related to the ovoid, the quadric Q,
and the complement of its corresponding collinearity graph including the
number of vertices and the adjacency matrix of this graph. Moreover, this
program provides the size of cliques, which is the size of the ovoids of the

quadric..

Table [4.1], shows comparative results of our algorithm applied to various

graphs which are the complement of collinearity graphs which correspond
to quadrics. The algorithm is applied to the instances of the hyperbolic
quadrics Q+(n, q) and the parabolic quadrics Q(n, q). For each instance we
indicate the name of the quadric Q (the second column), the number of
vertices |Q| of the complement of the collinearity graph corresponding to
the quadric Q (the third column), the size of the clique s that we need to
find (the fourth column), and the running time (Time), in seconds, till the

first clique is found (the last column).

Instance 101 s Time

1 0(4 ,7) 400 50 0
2 0(4 ,8) 585 65 1

3 0(4 ,9) 820 82 15

4 Q+(5,4) 357 17 0

5 Q+(5,5) 806 26 0

6 0 +(5 ,7) 2850 50 20

7 Q+(7,2) 139 9 0.00

8 0 +(7,3) 1120 28 5
9 0 +(7,4) 5525 65 138

Table 4.1: Computational results of the new technique, which is based on the local

search algorithm, for finding cliques of a size s, where s is as in formula 4.6, in the

collinearity graph corresponding to quadrics Q. (Times in seconds).

From Table [4.1], we can see the algorithm found ovoids of small instances
of quadrics Q in PG(n, q). For example, the algorithm found ovoids of the

175

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

parabolic quadrics Q(4, q) for 2 < q < 9 (rows 1-3). The largest number of
q of this quadric tha t the algorithm solved is 9, i.e., <5(4,9) with a running

time of 15 seconds (row 3). The number of points of this quadric is 820
and the size of the ovoid is 82. The algorithm also found ovoids for the
hyperbolic quadrics Q+(h,q) for 2 < q < 7 (rows 4-6). The running time

needed for the algorithm to solve the instance of this quadric where q = 7,

i.e. <5+(5 ,7) (row 6), which is the largest number of q in this quadric, is 20
seconds. This instance has has 2850 points and the size of ovoid is 50. In
addition, the algorithm found ovoids for the hyperbolic quadrics Q+(7,q)
for 2 < q < 4 (rows 7-4). The largest number of q of this quadric that the
algorithm solved is 4, i.e., <5+(7,4) with a running time of 138 seconds (row
6). The number of points of this quadric is 5525 and the size of the ovoid
is 65.

From these computational results, we conclude tha t our algorithm,
which is based on the local search algorithm can find ovoids in small polar

spaces.

176

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 5

CONCLUSIONS

Combinatorial optimization consists of operations that search for one
or more solutions to an optimization problem. We have discussed briefly
a number of combinatorial optimization problems and the algorithms for
solving these problems. Examples of these problems are the traveling sales­
man problem, minimal spanning tree, shortest path problem and maximum
network flow. In addition, we provided discussion about some significant
combinatorial optimization algorithms including greedy algorithms and lo­

cal search algorithms. The properties and the characters of each algorithm
are also provided. Example of the greedy algorithms are Kruskal’s, Prim ’s,
Dijkstra’s, Floyd’s, and Ford-Fulkerson’s.

We have introduced the domino portrait problem and converted it to a
combinatorial optimization problem. A domino portrait is an image which

is constructed from complete sets of dominoes. These dominoes are ar­
ranged in a matrix, creating an approximation image when seen from a
distance. The problem is to create a domino portrait of dimensions M x N

from s2 complete sets of double (D — 1) dominoes where M = s(D + 1)

and N = sD. In this, we have used one of the powerful methods of image
processing called two-dimensional wavelet transform.

In addition, we have solved the domino portrait problem using the
greedy algorithm and the local search algorithm. Because of the search
strategy that the greedy algorithms use, they usually usually get blocked
and cannot find complete solutions to problems. To avoid such blocks in

177

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the DPP, we have developed a technique called the one-factor search tech­
nique. This technique allows us to apply the greedy algorithm without its
being blocked and to solve the domino portrait problem. Moreover, we have
used the local search algorithm to solve one instance of the domino portrait

problem. Using these algorithms, we can create an M x iV domino portrait

constructed from s2 complete sets of double (D — 1) dominies. For example,
we created domino portraits of Marilyn Monroe and George W. Bush, each

of which was constructed from 9 complete sets of double nine dominoes (see
Figure 3.32).

Since we are restricted to using a specific number of dominoes, we need
to place them in important positions in the image, such as eyes, nose, and

mouth. In this, we have developed a new cost function by modifying the
old cost. This function forces our methods, the greedy algorithm and local

search algorithm, to start filling the dominoes in the important positions in
the image first. The new cost function is obtained by developing a matrix
called the support matrix. This matrix is determined using a method called

the singular value decomposition. Finally, we have discussed briefly about
the Householder’s and QR methods and used them to compute the singular
value decomposition.

The C + + language is used in all our computations. We developed a

C + + program that solved the domino portrait problem using the greedy
algorithm and the local search algorithm.

By successfully applying the greedy algorithm and the local search

algorithm to solve the DPP we have illustrated the usefulness of these al­
gorithms in new arenas. In particular, by solving the problem of blockage
faced by the greedy algorithm, we have proved that this algorithm has good

potential. It is possible that further research will yield more uses for these
algorithms.

The second combinatorial optimization problem addressed in this paper
is the Maximum Clique Problem. The local search algorithm was used to
find cliques of a given size in a graph. We used the relation between the

178

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

maximum clique problem and the independent set problem to find ovoids
of quadrics in PG(n, q) with prime power q.

The successful solution of several instances of this problem by the local

search algorithm has shown the versatility of this tool. Although we were

able to find ovoids in small polar spaces, perhaps the lessons learned in this
research will enable other researchers to improve the results in graphs of

larger size.

179

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Bibliography

[1] Jose Luis Ambite; Craig A. Knoblock, Planning by Rewriting, Journal
of Artificial Intelligence Research 15 (2001) 207-261.

[2] E. Balas; V. Chvfital; J. Ne etril, On the Maximum Weight Clique
Problem, Math, of Operations Research 12 (3), 522-535, (1987).

[3] R. Battiti; M. Protasi, Reactive Local Search for the Maximum Clique

Problem, Printed in: Algorithmica, (2001), vol. 29, no. 4, 610-637.

[4] John E. Beasley, Branch and cut algorithms, The Management School,

Imperial College, London SW7 2AZ, England.

[5] Anton Betten Twisted Tensor Product Codes and a Review of BLT
Sets, Combinatorics Seminar, Colorado State University. 27 Oct. 2006.

[6] J. Ross Beveridge, Local Search Algorithm for Geometric Object Recog­
nition: Optimal Correspondence and Pose, Ph.D., University of Mas­
sachusetts (1993).

[7] Robert Bosch, Constructing Domino Portrait, Department of Mathe­
matics, Oberlin, OH USA, 44074.

[8] Coen Bron; Joep Kerbosch, Algorithm f5 7 Finding All Cliques of an
undirected Graph, Communications of the ACM. Sept. 1973: 16-9.

[9] Richard L. Burden; Douglas J. Faires, Numerical Analysis,
Brooks/Cole, 511 Forest Lodge Road, Pacific Grove, CA 93950 USA.

180

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[10] Peter J. Cameron, Projective and Polar Spaces, The School of Math­

ematical Sciences, Queen Mary and Westfield College (University of
London), Mile End Road, London E l 4NS,(1991) U.K.

[11] Peter J. Cameron, Combinatorics: Topics, Techniques and Algorithms,
1st ed. New York, NY: Cambridge University Press, 2001.

[12] Lus Caviquea; Csar Regob; Isabel Themidoc, A Scatter Search Algo­

rithm for the Maximum Clique Problem, School of Business Adminis­
tration, University of Mississippi, University, MS 38677, USA, 2001.

[13] Thomas H. Cormen; Charles E. Leiserson; Ronald L. Rivest; Clif­
ford Stein, Introduction to Algorithms, Second Edition. MIT Press and
McGraw-Hill, 2001.

[14] Richard B. Darst, Introduction To Linear Programming, Marcel

Dekker, INC, 270 Madison Avenue, New York, New York 10016.

[15] Joseph G. Ecker; Michael Kupferschmid, Introduction to Operations
Research, Krieger Pub Co ISBN 0-89464-576-5

[16] Ian Foster, Designing and Building Parallel Programs, An Online
Publishing Project of Addison-Wesley Inc., Argonne National Labo­
ratory, and the NSF Center for Research on Parallel Computation,

http://www-unix.mcs.anl.gov/dbpp/.

[17] GIMP Version 2.2, 03 Jun. 2007, TGNU Image Manipulation Program.
10 Feb. 2007, http://www.gimp.org.

[18] Javier Garcia; Zeev Zalevsky; David Mendlovic, Two-Dimensional
Wavelet Transform by Wavelength Multiplexing, APPLIED OPTICS,
Vol. 35, No. 35, 10 December 1996.

[19] R. E. Gomory, Mathematical programming, Amer. Math. Monthly 72
1965 no. 2, part II 99-110. MR30#4595

[20] Jonathan L. Gross; Jay Yellen, Handbook of Graph Theory, 1st ed. New
York, NY: CRC Press, 2004.

181

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www-unix.mcs.anl.gov/dbpp/
http://www.gimp.org

[21] F. Harary; I. C. Ross, A Procedure for Clique Detection Using the
Group Matrix, Sociometry 20, 205-215, (1957).

[22] J. Hasselberg; M. Panos; G. Vairaktarakis, Test Case Generators and
Computational Results for the Maximum Clique Problem , Depart­
ment of Industrial and Systems Engineering, University of Florida,

Gainesville, FL 32611, USA, 1992.

[23] Keld Helsgaun,” An Effective Implementation of the Lin-Kernighan
Traveling Salesman Heuristic,” Department of Computer Science,

Roskilde University, DK-4000 Roskilde, Denmark.

[24] Frederick S. Hillier; Gerald J. Lieberman Introduction to Operations
Research, McGraw-Hill: Boston MA. Eight edition. International edi­
tion. (2005) ISBN 0-07-321114-1

[25] Frederick S. Hillier; Gerald J. Lieberman: Introduction to Operations

Research, 8th edition. McGraw-Hill. ISBN 0-07-123828.

[26] Karla Hoffman, Combinatorial Optimization and Integer Programming,
h ttp://iris.gm u.edu/ khoffman/papers/newcombl.html.

[27] M. Immanuel; B. Marco; M. Panos; P. Marcello, The Maximum Clique

Problem, ISE Department University of Florida, Gainesville, FL 32611
USA, 1999.

[28] Arnold T. Insel; Stephen H. Friedberg; Lawrence E. Spence, Linear Al­
gebra, Pearson Education, Inc. Upper Saddle River, New Jersey 07458.

[29] D.S. Johnson, Approximation algorithms for combinatorial problem, J.
Comput. Syst. Sci., 9, 256-278, (1974).

[30] Kengo Katayama, Akihiro Hamamoto, Hiroyuki Narihisa, Solving the
Maximum Clique Problem by k-opt Local Search, Proceedings of the
2004 ACM symposium on Applied computing, March 14-17, 2004,
Nicosia, Cyprus.

182

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://iris.gmu.edu/

[31] C.T. Kelley, Iterative Methods for Linear and Nonlinear Equations,
Society for Industrial and Applied Mathematics, 3600 University City
Science Center, Philadelphia, PA 19104-2688.

[32] Michael Kirby, Geometric Data Analysis,John Wiley and Sons, Inc.
605 Third Avenue, New York, NY 10158-0012.

[33] Steven J. Leon, Linear Algebra With Applications, Pearson Education,

Inc. Upper Saddle River, NJ 07458.

[34] S. Lin; B. W. Kernighan, An Effective Heuristic Algorithm for the
Traveling Salesman, Bell Telephone Laboratories, Incorporated Mur­
ray Hill, N.J. (1971).

[35] K. Maghout, Sur la Determination des Nombres de Stabilit6 et du
Nombre Chromatiqued’un Graphe, C.R. Acad. Sci., Paris 248, 2522-
2523, (1959).

[36] John E. Mitchell, Branch-And-Bound Methods for integer program­
ming, Department of Mathematics Sciences, Rensselaer Polytechnic
Institute, Troy, NY 12180-3590,(1997) USA.

[37] John E. Mitchell, Interior point algorithm for integer programming,
Department of Mathematics Sciences, Rensselaer Polytechnic Institute,
Troy, NY 12180-3590, USA.

[38] Y. Narahari, Data Structures and Algorithms, Web-Enabled Lecture
Notes, http://lcm.csa.iisc.ernet.in/hari/content_10pages.html.

[39] Christos H. Papadimitriou; Kenneth Steiglitz Combinatorial Optimiza­

tion: Algorithms and Complexity, Corrected reprint of the 1982 origi­

nal. Dover Publications, Inc., Mineola, NY, 1998.

[40] PANOS M. PARDALOS, The Maximum Clique Problem, Department
of Industrial and Systems Engineering, 303 Weil Hall, University of
Florida, Gainesville, FL 32611, (1993) USA.

183

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://lcm.csa.iisc.ernet.in/hari/content_10pages.html

[41] M. C. Pauli; S. H. Unger, Minimizing the Number of States in Incom­
pletely Specified Sequential Switching Functions, IRE TRANS. Elec­
tronic Computers, EC-8: 356-367, (1959).

[42] Alex Pentland; Baback Moghaddam; Thad Starner, View-Based and
Modular Eigenspaces for Face Recognition ,Computer Vision and Pat­
tern Recognition, 201 Broadway Cambridge MA 02139 USA.

[43] Kenneth H. Rosen, Discrete Mathematics and Its Applications, Second
Edition, McGraw-Hill, INC Mineola, NY 11501.

[44] Yousef Saad, Iterative Methods For Sparse Linear Systems, PWS Pub­

lishing Co., 20 Park Plaza Boston, MA 02116.

[45] Kristian Sandberg, The Daubechies Wavelet Transform,
http://amath.colorado.edu/courses/5720/2000Spr/Labs/DB/db.html.

[46] Bart Selman; Henry A. Kautz; Bram Cohen, Noise Strategies for Im ­

proving Local Search, Proceedings of AAAI94, Seattle, WA, July 1994.

[47] Steven S. Skiena, The Algorithm Design Manual, Springer-Verlag, New

York, 1997.

[48] J.H. Van Lint; R.M. Wilson, Course in Combinatorics, Cambridge,

UK: Cambridge University Press, 1992.

184

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://amath.colorado.edu/courses/5720/2000Spr/Labs/DB/db.html

