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ABSTRACT OF DISSERTATION

TWO TOPICS IN COMBINATORIAL OPTIMIZATION: THE DOMINO 
PORTRAIT PROBLEM AND THE MAXIMUM CLIQUE PROBLEM

Combinatorial Optimization plays a significant role in applied mathemat­
ics, supplying solutions to many scientific problems in a variety of fields, 
including computer science and computational networks. This dissertation 
first reviews a number of problems from combinatorial optimization and the 
algorithms used to solve them.

The author then presents original solutions to the domino portrait 

problem, which involves arranging complete sets of dominos to resemble 
photographic portraits when seen from a distance. The first approach makes 

use of a greedy algorithm. Because the greedy algorithm often encounters 
blockages, a new technique was developed to avoid these blockages. Next, a 
local search algorithm was used to solve the problem. In both new solutions, 
the cost function was modified so that important positions in the portrait 
such as facial features were emphasized, thus improving the results. A 
singular value decomposition (SVD) was used to construct a ’’support ma­
trix” necessary for this new cost function. Algorithms used in computing 
the SVD include the Householder method and the QR method.

The second problem dealt with is the maximum clique problem and 
its application of finding ovoids in finite polar spaces. Again, local search
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provides an efficient way to search for maximum cliques in graphs and hence 

for finding ovoids in finite polar spaces.
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Chapter 1

INTRODUCTION

Combinatorial optimization is an important topic in applied mathe­
matics which plays an important role in many scientific fields, among them 
computer science and computational networks. In this dissertation, numer­
ous combinatorial optimization problems will be presented, followed by two 
original applications of combinatorial optimization to two specific problems, 
the domino portrait problem and the maximum clique problem.

Chapter 2 presents background information about various combinato­

rial optimization problems and the algorithms used to solve them. Sec­

tion 2.1 explains the following problems: the traveling salesman problem, 
the minimum spanning tree, the single source shortest path problem, the 
all pairs shortest path problem and maximum network flow. Section 2.2 
presents a number of greedy algorithms which have been used to solve the 
problems discussed in Section 2.1. These algorithms include Kruskal’s algo­
rithm, used for the traveling salesman problem and the minimal spanning 
tree and Prim ’s algorithm, used for the minimal spanning tree. Dijkstra’s 
algorithm is used for solving the single source shortest path problem, and 

Floyd’s Warshall algorithm helps to solve the all-pair shortest path prob­
lem. Finally, Ford-Fulkerson’s algorithm is presented as a means for solving 
the maximal network flow problem.

Local search algorithms are another group of algorithms which are sig­
nificant in solving combinatorial optimization problems. These algorithms 
are defined in Section 2.3 and the Lin-Kernighan algorithm for a symmetric 
traveling salesman problem is presented. Important issues related to local 
search algorithms are discussed as well.

1
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Section 2.4, the last section of Chapter 2, presents linear programming 
problems including the simplex method.

Chapter 3 presents the combinatorial optimization problem called the 
domino portrait problem (DPP). A domino portrait consists of complete 
sets of dominos arranged in a matrix to create an approximate replication 

of an image when seen from a distance. This problem was first solved 
by Robert Bosch using the integer linear programming method with the 

software program CPLEX. In this dissertation, we employ two significant 
combinatorial optimization algorithms known as greedy algorithms and lo­
cal search algorithms to solve it. Section 3.2 presents the steps of creating a 

domino portrait. The domino structure is described in section 3.4, followed 
by an explanation of the integral linear programming formulation of the 
problem including the parameters, decision variables, objective function, 
constraints and the standard form of the linear programming problem.

Section 3.6 discusses the use of the greedy algorithm for solving the 

DPP. It includes an explanation of the search strategy of the algorithm, 
and shows how the problem must be remodeled to fit this algorithm. An 

analysis of why the algorithm is sometimes blocked in solving the DPP is 
presented along with suggestions as to how to avoid this blockage.

In Section 3.7, the application of the local search algorithm to the DPP 

is presented, including neighborhoods of the DPP and ways to construct the 
set of feasible solutions F  for the DPP.

Section 3.8 deals with ways to improve the cost function in the DPP 
and presents a new cost function. Section 3.9 discusses the singular value 
decomposition method (SVD) used to construct the support matrix neces­
sary for this new cost function. Algorithms used in computing the SVD are 

given, including the Householder’s method and the QR method.
Chapter 4 discusses the maximum clique problem (and hence the in­

dependent set problem). Section 4.2 relates the maximum clique problem 
to the problem of finding ovoids in finite polar spaces, which are maximum 
cliques in a certain graph associated to the polar space.

briefly describes the applications of the maximum clique problem in­
cluding an important application called finding ovoids in projective space.

2
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Section 4.3.1 presents a new technique based on the local search algo­
rithm for finding cliques of a given size in a given graph. The neighborhoods 
of the maximum clique problem are explained and the pseudo code for the 
algorithm are given.

Section 4.4, the last section of Chapter 4, shows computational results 

of the algorithm for finding ovoids in small polar spaces.
Finally, in chapter 5, we discuss our conclusion.

3
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Chapter 2

BACKGROUND

Combinatorial optimization plays an important rule in various sciences. 
Some of these areas are applied mathematics, computer science and compu­
tational networks. In addition, it arises in management science, like finance 
marketing and data base management. Combinatorial optimization is also 
used in engineering sciences, for example, optimal designs of waterways or 

bridges and analysis of data networks. Additional applications can be found 

in Karla Hoffman [26].

Combinatorial Optimization can be considered as operations that search 
for one or more good solutions for optimization problems. This can be done 

by studying and analyzing mathematically the problem and composing a 
set of possible solutions called the feasible solutions set. The goal of combi­
natorial optimization is to find the best (optimal) feasible solution in this 

set.

In the following sections we present combinatorial optimization prob­
lems and their applications. Moreover, we provide important related defi­

nitions and theorems.

2.1 C o m b in a to ria l O p tim iza tio n  P ro b lem s

Combinatorial optimization problems are optimization problems that 
have discrete variables. That is, the domain of possible solutions that satisfy 
the constraints of the problem is finite, countable infinite or can be reduced

4
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to a countable infinite set. The following definitions are stated in order to 
understand combinatorial optimization problems.

D efin ition  2.1. An in s tan ce  of an optimization problem is a pair (F ,c ), 
where F  is the domain of feasible points, and c is a real value function 

c : F  —»■ R, that sometimes refers to capacity, distance, or cost.

The goal of combinatorial optimization problems is to find an y £ F  
such that

c(y) < c(g) V g £ F.

In this case, y is called an o p tim a l so lu tio n  to the given instance.

We need to distinguish between an optimization problem A  and an 
instance a; of a problem. An instance a: is a special case of an optimization 

problem A. That is, a problem is a general case. The following is the 
definition of an optimization problem.

D efin ition  2.2. An optimization problem A  is a quadruple (I ,F x,cx , t ), 
where

• I  is a set of instances of the optimization problem A.

• Fx is the set of feasible solutions associated with a given instance 

x £ I .

• cx(y) is the value of the feasible solution y £ Fx for some instance 
x £ I . cx(y) >  0 in many examples and is called the cost function.

•  t is the type of problem. It can be either a maximization problem 
(t — m ax) or a minimization problem (t = min).

Therefore, the goal of the optimization problem is to find the optimal 
(m in or m ax) feasible solution y of an instance x  of an optimization problem 
A. That is,

{Cx(y) <  cx(y) V y £ Fx, if t  =  m in ;x\y) _  x\y) y

cx(y) > cx(y) V y £ Fx, if t = m ax ,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



In the following sections, we will present several important combinato­

rial optimization problems.

2.1.1 T raveling salesm an  p ro b lem  (T S P )

The traveling salesman problem is the following. A sales person wants 
to visit his clients in n  different cities and wants to optimize his travel time 
by taking into account the various different travel times between the cities. 
That is, he wants to visit each city exactly once and return to his hometown 
at the end. He is looking for the fastest route possible. More precisely, we 
are given n cities a , i , , an and the various costs of traveling from city 

cii to city ( i j .  The problem is to find the cheapest tour that visits all cities 
exactly once and returns to the starting point. In general, the assumption 
chj =  Cjj is made. That is, the cost of traveling from city i to city j  is the 

same cost as traveling from j  to i. The tour is described by a permutation 
( ii , . . . ,  in) of the integers 1 , . . . ,  n. That is, we start in city a^, then move 
to city ai2, then to city ai:i and so on. After visiting city ain we return to 
city ajj. Therefore, the set of feasible solutions is

where Sym n denotes the group of permutations of n  objects. Moreover, for 
y =  (*x ,. . .  , in) e  Fx — Sym n, the cost of traveling tour y is

t= 1

The problem is a minimization problem in that we want to find the cheapest 
tour y € Fx. That is, we want to find y G Fx such that

cx(y) < cx(y) for all y <E Fx 

The following example presents an instance of the traveling salesman prob-

Fx S ym n^

(2 .1)

lem.

6
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fl4

F igu re 2.1: A five cities instance of TSP

E xam ple  2.1.

Figure 2.1 shows an instance of TSP of five cities, 0 4 , 0 2 , 0 3 , 0 4  and a5. The 

cost Cij of traveling between city and city aj is indicated along the edge 

in the graph between a* and Oj. If at and Oj are not connected, the cost 
is + 0 0 . For example, the cost of traveling between city a\ and city 0,3 is 

ci,3 =  4 and the cost of traveling between city 0 2  and city 03 is 02,4 =  + 0 0 . 
The following table shows all possible feasible tours of this instance.

Tour (*172*37475) Ox ( j j i  )

yi (12345) 24

2/2 (12354) 00

2/3 (12435) 00

2/4 (12453) 00

2/5 (12534) 27

2/6 (12543) 23

2/7 (13245) 00

2/8 (13254) 31

2/9 (13425) 00

2/io (13524) 00

V n (14235) 00

2/12 (14325) 27
A table of the feasible tours

However, some of these tours are better than the others. For instance, the

7
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aA
An optimal Tour, y 6 , of cost = 23

aA
A bad tour, y s , of cost = 31

Figure 2.2: Two tours of the instance of the TSP of Example 2.1. Left: An optimal 

tour, ye,  with cost =  23. Right: A bad tour, ye,  with cost =  31.

tour yQ =  (12543) is an optimal tour whereas tour y$ = (13254) is a bad 
tour, ( Figure 2.2 ). This is because the cost of tour y6 is

which is the smallest cost where cx(y) is defined by equation 2.1. While the 
cost of the tour y8 is

which is a large cost. In addition, some of these tours have a cost of +oo 
because there is at least two cities in this tour where the cost of traveling be­

tween them are +oo. For example, tour y2 =  (12354) has cost cx{yi) =  +oo, 
since the cost of traveling between city a2 and city <23 is c2i3 =  + 0 0 . More­

over, tour y\ — (12345) is a good solution since it has a cost cx{y\) =  24 
which is close to the optimal tour which is y6, which has a cost cx(ye) =  23.

In fact, these are not the only feasible tours of this example. This is 
because the total number of all possible permutation of n  objects is equal 
to n\. Therefore, the total number of all possible feasible tours of this 
example is 5! =  120. However, we excluded several feasible tours from the 
total number of possible permutations. A tour is excluded if it satisfies one 
of the following conditions:

c x { y § )  — Cl,2 +  c2,5 +  c5,4 +  C-4 ,3  +  C3>i — 23

cx{y%) ~  C l,3 +  C3j2 +  C2j5 +  C5t4 +  C4,l  — 31,

8
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1. The tour has the same route as a tour that already has been taken 

but starts from a different city. This is because we do not care about 
which city we start in. For example, the following tours are equal

2/! =  (12345), y 1>2 = (23451),

2/1,3 =  (34512), 2/1,4 =  (45123), and

2/1,5 =  (51234).

2. The tour has the same route as a tour that already has been taken 
but has a different direction. This condition is included if the cost of 
traveling from city a* to city aj is the same as the cost of traveling 
from city a,j to city a*. That is, if

Ci,j ~  CjA

In this case we do not care which direction we go in a given tour. For 
example, a tour y\ = (15432) is equal to the tour y\ — (12345).

From this discussion we conclude that the total number of feasible solutions 

of an instance of TSP with n  cities is given by the following equations

Til
|.Fa,| =  — i f  the second condition, Cij = Cjti, is satisfied . (2.2)

Tb
n\

|F J  =  - — otherwise. (2.3)
1 1 2 .n v 1

Therefore, the total number of feasible solutions of a five city instance of 
TSP is

'F-' = S  = 12-
Moreover, if we have a six city instance of TSP, the total number of feasible 
solutions is

\FX\ = —  = 60.I xi 26

Hence, the total number of feasible solutions increases if the number of 
cities increases.

9
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One way to represent the TSP and many other combinatorial optimiza­

tion problems is with graph theory. To illustrate this more clearly, we shall 

give some basic definitions in graph theory.

D efin ition  2.3.

1. A graph is a pair (V , E) where V  is a set whose elements are called 
vertices (nodes) and E  is a collection of two subsets o fV  called 
edges (links).

2. An edge(link) e e  E  is a link between two vertices (nodes) in V.

3. A walk from vertex a to vertex b is a sequence of one or more edges 

eij e2> • ■ • > ek such that e\ = {a, <22}, e2 =  {a2, 03} , . . . ,  =  {a*,, 6} 
where {a, <22, ,  a/t, b} € V. This walk is denoted as a, Gq, 02 , . . . ,  a b  

or e 1 , e2, . . . ,  e*,.

4 . A path  from vertex a to vertex b is a walk from vertex a to vertex b 
where the vertices are all distinct. The length of a path is the number 
of edges in this path.

5. A w eighted graph is a graph G =  (V, E), together with a function

w : E  —> Z+.

I f  e = {ai,a j}, then w(e) — Wij is called the weight of the edge e. 
The w(e) represents a cost, capacity or distance between vertex ai and 
vertex a.j. Moreover, the w eight o f  a path  is the sum of the weights 
of all edges in this path.

For example, in the graph in Figure 2.3, the sequence of edges 
ex, e2, e3, e4, e5 and e6 forms a walk from vertex a to vertex b. However, they 
do not form a path from vertex a to vertex b since the vertex a2 is used 
twice. On the other hand, the sequence of edges e\ and e(i form a path from 
vertex a to vertex b. Moreover, the length of this path is 2 and its weight 

is 18.

10

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



F igu re 2.3: A connected weighted graph of six vertices

Now, we can describe the traveling salesman problem by a weighted graph 

G =  (V, E ) where the cities are the vertices V  and the cost function Wij 
represents the cost of traveling between cities i and j  (here, we assume that 
the cost of travel does not depend on whether we go from city i to city j  or 

vice-versa). Therefore, the goal is to find a path that has minimum weight 
and starts and ends at the same vertex. Moreover, each vertex must be 
visited exactly once.

Usually the global optimal solution of an optimization problem is hard 
to find. However, sometimes it is possible to find a solution that is close 

to the optimal one. In the next chapters we present some significant al­
gorithms that are capable of finding the optimal solution or near to the 

optimal solution to the traveling salesman problem and other combinato­
rial optimization problems. For example, we will use Kruskal’s algorithm 

[13], which is an example of a greedy algorithm, and a local search algorithm 

to solve the TSP problem.

2.1.2 M in im al S pann ing  Tree

Finding the minimal spanning tree is one of the most important com­
binatorial optimization problems. To illustrate the problem we state the 
following definitions in graph theory:

D efin ition  2.4.

11
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1. A graph G = (V, E) is connected if there is a path from any vertex 

a G V  to any vertex b E V.

2. A circuit is a path that begins and ends at the same vertex. A circuit
is simple if it does not contain two similar edges.

3. A tree is a connected undirected graph that does not contains any
simple circuits. The weight of a tree is the sum of the weight of its 

edges.

4- Let G be a graph. A tree is called spanning tree of G if contains all 

vertices of G.

E xam ple  2.2. Graph G in Figure 2.3 is a connected weighted graph 
since there is a path between any two vertices in G. In addition, the 
path ei, e2, e3, e4 , e5, eg does not form a circuit because it does not start 
and end with the same vertex. Whereas, the path C2 ,e\,e-j,eg,e2 is a 
circuit, it is not simple since it contains e-i twice. The edges e\ , eg 

and e5 form a tree; however, they do not form a spanning tree because 
they do not contain every vertex of the graph. The weight of this tree 

is 19.

Now we can define the minimal spanning tree by the following defini­

tion.

5. Let G be a connected weighted graph. A minimal spanning tree of 
the graph G is a spanning tree that has the smallest weight. That 
is, a minimal spanning tree is a connected weighted subgraph of the 
graph G with no simple circuits , containing all vertices of the graph 

G, and having a minimum weight.

Usually there are various spanning trees in a connected weighted graph. 

The problem in the minimal spanning tree is to determines which of these 
spanning trees, which contains all vertices of the graph, has minimal weight.

12
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Figure 2.4: A connected weighted graph representation of a phone network design with 

five cities

Many important problems can be modeled as minimal spanning tree 
problems. A phone network design is an example of a minimal spanning 
tree problem that is described in the following example.

E xam ple  2.3. (A phone network design)

Assume that you are the owner of a business company consisting of five 

offices located in five different cities. You want to build a phone network 

to connect them with each other. A phone company can link each pair of 
these offices at various costs. The problem is we want to find which links 
connect all the offices so tha t the total cost of these links is minimum.
This problem can be solved by modeling it as a connected weighted graph 

and finding a spanning tree that has a minimum weight. The connected 
weighted graph representative of this problem is shown in Figure 2.4. The 
vertices represent the cities where the offices are located. The edges repre­
sent the links of each pair, and the weights of these edges represent the cost 

of the link represented by the edges. The goal here is to find a spanning tree 
that has minimum weight. That is, we want to find a tree tha t contains all 

vertices , that has no simple circuits, and in which the sum of the weights 
of its edges has minimum value. This problem is considered as a minimal 
spanning tree problem since we can cancel some links and reduce the cost.

There are several spanning trees of this problem. However, some of 
them are better than others. For example, an optimal spanning tree is

13
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A: An optimal spanning tree for the phone network design of cost $3500

$1000

12100

$2000

B: A bad spanning tree for the phone network design of cost $6200 

Figure 2.5: A n  O ptim al and a bad spanning tree  o f  a phone netw ork  design

shown in Figure 2.5-A, and it has a cost of $3900; whereas, a bad spanning 
tree is shown in Figure 2.5-B and its cost equals $6200.

Several algorithms can solve this problem, and we will present two of 

the most important ones. These algorithms are called Prim’s algorithm and 
Kruskal’s algorithms [43]. These algorithms are examples of greedy algo­
rithms that we will explain in the next chapter.

2.1.3 S ingle-Source S h o rtes t P a th  P ro b lem

One of the major questions associated with a connected weighted graph 
is finding the path between two vertices that has the smallest weight. This 
problem is called the shortest path problem, and it can be solved by Dijk- 
stra’s algorithm. This algorithm is an example of a greedy algorithm and 
will be discussed in the next chapter.

14
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There are many applications that can be modeled as shortest path 
problems. For example, airline routing systems, computer networks , and 
subway systems are all shortest path problems. For instance, an airline 

routing system can be represented in a connected weighted graph where 
the vertices represent cities and the edges on the graph represent flights 

between these cities. The weight assigned each edge represents the dis­
tance, fare, or flight times between these cities. Figure 2.6 - A, displays the 
problem involving the distance between cities; Figure 2.6 - B, displays the 
problem involving the fare between cities; And Figure 2.6- C, displays the 

problem involving the flight times between cities.

The following questions arise here:

1. W hat is the shortest distance that can be found to reach one city from 

another city?

2. W hat is the lowest fare which can be found to travel between two 

cities?

3. W hat is the shortest time needed to travel between two cities?

These questions can be solved by finding the shortest path in its corre­
sponding graph. The shortest path means that a path that has minimal 
weight. The weight of a path can be determined by the sum of the weight 
assigned to each edge in this path. For example, the question involving the 
shortest times needed to travel between two cities can be solved by finding 

the shortest path between these cities.

Several algorithms can be used to solve the shortest path problem. One 
of these algorithms is called Dijkstra’s algorithm, which is one of greedy 
algorithms that will be discussed in the next chapter.

2.1.4 A ll P a irs  S h o rte s t P a th  (A P S P ) P ro b lem

15
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C: A connected weighted graph representing the flight times of airline system

Figure 2.6: A  c o n n e c te d  w e ig h te d  g ra p h  r e p r e se n ta t io n  o f  d is ta n c e s , fligh t  

t im e s , a n d  fares o f  an  a ir lin e  sy s te m
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The all-pairs shortest path problem is a generalization of the single­

source shortest path problem where the single-source shortest path problem 

searches for the lowest weight of a path between two vertices in a weighted 
directed graph, while the all-pair shortest path problem searches for the 
shortest paths between all pairs of vertices of the graph. In the other 
words, given a weighted directed graph G =  (V, E), the goal of the APSP is 
to compute the shortest path from each vertex a E V  to every other vertex 
b E V. The solution of APSP can be considered as a table or a matrix 
D(dij) where the entry di3 is the shortest path between vertex i and j  for 

all i , j  E V.

The all-pairs shortest path problem has many applications in commu­

nication, electronic and transportation problems [16]. For example, in a 
road atlas, it is important to determine the distance between all pairs of 

cities [13]. That is, we need to construct a table that shows the distance be­
tween all pairs of cities in the road atlas. This can be solved by modeling it 
in to a weighted directed graph and solving the APSP problem of this graph.

Many algorithms can solve the all-pairs shortest path problem. Floyd’s 
Warshall algorithm, which is an example of a greedy algorithm, can solve 
the APSP problem. This algorithm can compute the weight of the shortest 

path between all pairs of vertices in a weighted directed graph [43]. More­
over, the APSP also can be solved using Dijkstra’s algorithm by applying 
this algorithm to all pairs of vertices of a weighted directed graph G(V, E ) 
with non-negative weights, while Floyd’s algorithm works for both negative 

and non-negative weights. These algorithms will be explained in the next 
chapter.

2.1.5 M axim um  N etw ork  Flow

A flow  netw ork  is a weighted directed graph that displays a system of 

rules of moving liquid, electronics, or material from a node s  called source

17
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where the material is supplied to a demand node t called the sink. These 
materials flow from the source s to the sink t through intermediate nodes, 
which are any node in the graph other than s and t. A material that flows 
between two nodes is restricted by an amount called capacity. That is, the 
amount of flow of material between two nodes cannot exceed this capacity. 
Moreover, for any node on this graph, except the source s and the sink t, 

the amount of material that flows into a node should be the same amount 
that leaves from this node. The source s has only outgoing flow and the 

sink t  has incoming flow, on the other hand.

The maximum network flow is a problem that searches for a way of 
moving a maximum amount of material from a source s to a sink t  without 
breaking the capacity restrictions, and computes the value of this flow.
The definition of a flow network is as follows:

D efin ition  2.5. A flow network is a weighted directed graph G (V,E) 
where V  is a set of nodes containing a source node s, a sink node t and 
additional intermediate nodes. For any intermediate node, there is a path 

from the source s to the sink t that passes through this node. Moreover, 
for any edge (0 *,%) E E  is assigned a value called a capacity c(ai,aj) >  0 

such tha t the material passing through this edge cannot exceed its capacity. 

We give a zero capacity for any edge that is not in E. That is, if an edge 
(ai,a j) E, then c(ai,aj) =  0.

The definition of a flow network is defined as follows:

D efin ition  2.6. A flow network is a weighted directed graph G (V,E) 

where V  is a set of nodes containing a source node s, a sink node t and 
additional intermediate nodes. For any intermediate node, there is a path 
from the source s to the sink t that passes through this node. Moreover, 
for any edge (a*, a,-) £ A is assigned a value called a capacity c(a.t, afl > 0 
such that the material passing through this edge cannot exceed its capacity. 
We give a zero capacity for any edge that is not in E. That is, if an edge 
(a i,a j) ^  E, then c(ai}aj) = 0.

18
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Figure 2.7: A  flow netw ork  show ing flow/ capacity

Now we define a flow in a network by the following definition.

D efin ition  2.7. Given a flow network G(Vy E) with capacity c{a^aj) > 0 

for all aj ,aj  E V, let s be the source node and t be the sink node of this 
network. A network flow afl) from node a* to node aj is a real function 
/  : V  x V  —»• M with the following properties for all nodes a ,, a, E F :

C ap ac ity  C o n stra in ts : f (ai ,aj )  < c(a,:, a,). The flow along an edge can­

not exceed its capacity.

Skew sym m etry : f(a,i,a,j) =  —f(aj ,ai).  The net flow from a; to a,j must 

be the opposite of the net flow from aj to a,.

Flow  conservation : Y lajev f ( aii aj) =  0, a* G V — the net flow to
a node is zero, except for the source s, which supplies flow, and the 
sink t, which demands flow.

The quantity f ( a iyaj) is called the net flow from node a* to node aj. The 

total net flow out of the source s is called the flow f  of a network and can 
be computed as:

I/I =  5 ^ / ( s ’ a )'
a € V

E xam ple  2.4.

Consider the weighted directed graph G(V,E)  shown in Figure 2.7 that 
represents a network flow of a source 5 , sink t, and 4 additional intermediate
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nodes 01 , 012,03 and 04 . A weight assigned in an edge is a pair f / c  that 
represents the flow and the capacity. The flow /  of this network is

| / |  =  / ( s , a 1) +  / ( s , a 3) =  12 +  9 =  21.

There is no edge from node a2 to node a4, therefore the capacity 0(02 , 04) =

0. We can observe that this graph satisfies all network flow properties. For 

example, the amount of flow does not exceed the capacity for any node on 

this graph. For instance,

/ ( o 2, o3) =  4 < c(o2, a3) =  6 .

Moreover, the net flow from node Oj to node aj is the negative of the net 
flow from node a,j to node a* for all nodes in G. For example,

/ ( a 2,a 3) =  4 =  - / ( a 3,a 2) =  -4 .

In addition, for any intermediate node cii E V  we have Y^aj&v f ( ai iaj ) =  0- 
For example,

y :  i ( a i , aj ) = K a 1 , s ) + K a 1,0-3) + / ( a  1, 02) =  + 4 + 8 = 0 .
aj-ev

A maximum network flow problem in a flow network with source s and 
sink t is a problem of finding the maximum value of flow from the source 
s to the sink t , and/or computing the value of this flow. There are several 
algorithms for solving this problem. In the next chapter we will discuss one 
of these algorithms called the Ford-Fulkerson algorithm, which can solve a 

maximum network flow.

2.2 G reedy algorithm s for Solving Com binatorial O ptim ization  
Problem s

There are various significant algorithms that solve combinatorial op­
timization problems. Examples of these algorithms are the local search 
algorithm, greedy algorithms, the grasp algorithm and the genetic algo­
rithm [9]. The choice of which of these algorithms to use depends on the 
kind of problem. In this study we are particularly interested in greedy al­
gorithms and the local search algorithm. In this chapter, we will discuss 
greedy algorithms and their applications.

20

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



2.2.1 G reedy Algorithm s

Greedy algorithms are algorithms that search for the best (an optimal) 
solution to combinatorial optimization problems by building the solution 

using several iterations. At each iteration, they make the optimal choice. 

In general, greedy algorithms have the following characteristics:

1. They compile a candidate set whose elements are all candidate parts 
of the solution from which the final solution is built.

2. They make a selection rule that determines which element we can 
choose from the candidate set.

3. They obtain a decision rule that decides whether or not the candidate 

solution will be added to the final solution.

4. They have an objective function that computes the value of the final 
solution tha t they built.

5. Finally, they state a solution function that decides if the final solution 
is a complete solution or not.

The way the greedy algorithms is used sometimes does not end with an 
optimal solution, or also it might not completely solve the problem. This is 
because the final solution that the greedy algorithm builds does not com­

pletely satisfy all the constraints of the problem. When this happens, it 
gets blocked and cannot find a solution. On the other hand, some greedy 

algorithms can solve completely some combinatorial optimization problems 
and can find a solution. This solution might not be the optimal one, but it 
will be close to the optimal. For example, Prim ’s algorithm and Kruskal’s 

algorithm, which are examples of greedy algorithms, can find an optimal 
solution of the minimal spanning tree [43]. Whereas, Kruskal’s algorithm 
can find a solution that is near to the optimal one of the traveling salesman 
problem. Another example of a greedy algorithm is called Dijkstra’s algo­
rithm [13] which can be used to solve a single-source shortest path problem 
and all-pair shortest path problem. These algorithms will be discussed in 
the following sections.
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2.2.2 Kruskal’s algorithm  for Traveling salesm an problem

In this section we state un example of a greedy algorithm that can be 
used to solve the traveling salesman problem (TSP)(see Section 2.1.1). This 
algorithm, which is called Kruskal’s algorithm, was discovered by Joseph 
Kruskal in 1956 [43].

Usually, Kruskal’s algorithm can find a solution to an instance of the 

traveling salesman problem that is near to the optimal solution. It is es­

pecially effective when the graph is complete [7]. In general, the steps of 

solving the TSP using Kruskal’s algorithm are as follows:

Step 1 Compile the candidate set whose elements are the edges that form 

the parts of the solution.

Step 2 Sort the edges in descending order according to their weights.

Step 3 Choose the first immediate candidate edge from the candidate set.

Step 4 Select or ignore the edge chosen in step 3. That is, we select the 
edge in step 3 if it satisfies the following two conditions when com­
pared with the all edges that already have been chosen:

1. No vertex has a degree of more then two.

2. These edges do not form a cycle in the result graph, except if 
the number of the vertices is equal to the number of edges that 
have already been chosen.

If the chosen edge satisfies these conditions, then it becomes part of 
the solution. That is, we add it to the final solution and continue the 
procedure by repeating step 3 and step 4. Otherwise, we ignore the 
chosen edge and choose another edge by repeating step 3 and step 4. 
The algorithm is terminated when n edges have been found.

Exam ple 2.5.

22

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Figure 2.8: A six cities instance of TSP

An instance of TSP of six cities along with edges and their correspond­

ing weights, is shown in Figure 2.8. According to the steps in Kruskal’s 
algorithm, we have the following:

1. The candidate set p is of the form

P  =  {(ei2, 15), (ei5, 7), (e56,4), (e23,3), (e24,8),

(^26) 11),, (ei6,4), (e36, 10), (e45, 19), (e34,4)}

2. The candidate set p after being sorted in descending order is as follows:

P  =  {(^ 2 3 , 3), (e56,4), (e16,4), (e34,4), (ex5,7),

(^24,8), (e36, 10), (e26 ,11), (ei2, 15), (e45, 19)}

3. In step 3 and step 4 we have the following output
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aA a4
A tour of cost = 49 An optimal tour o f cost = 48

Figure 2.9: A tour of cost =  49, at the left, and an optimal tour of cost =  48 on the 

right, of the instance of the TSP in Example 2.5.

Step 3 
Chosen edge Step 4: Decision

^23 Select

e 56 Select

616 Select

634 Select

6 l5 Ignore: Since it forms a cycle with 

edges e56 and ei6

624 Ignore: Since it forms a cycle with 
edges e23 and e34

636 Ignore: Since the vertex 0,3 will 
have more than two degrees

e26 Ignore: Since the vertex o,6 will 
have more than two degrees

6 1 2 Select

e45 Select

When the fifth edge has been reached, we stop this process and con­
clude that the final tour is reached. We found that the final tour tour 
is y = (123456) with cost 49 ( shown in Figure 2.9 ). Although this 
is a better solution, it is not the optimal one. This is because the 
optimal solution has a cost of 48, (see in Figure 2.9).
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Finally, we have reached a tour of cost 49 which is near to the optimal 
solution tha t has a cost of 48 (Figure 2.9).

As we see, Kruskal’s algorithm has found a solution that is near to the 
optimal solution of TSP. In addition, this problem can be solved using the 

local search algorithm, which is one of the interesting algorithms in combi­
natorial optimization. This will be provided in the next chapter.

Next section will discuss another example of a greedy algorithm. This 
algorithm is called Prim ’s algorithm, and it can be used to solve the minimal 
spanning tree problem.

2.2.3 P rim ’s A lgorithm  for M inim al Spanning Tree

Prim ’s algorithm, an example of a greedy algorithm, can find a span­

ning tree in a connected weighted graph that has minimal weight. This 

algorithm was given by Robert Prim in 1957 [43]. Prim’s algorithm uses 
several iterations and through these iterations it builds a tree that contains 
all vertices of the graph, has no simple circuits, and has minimum weight.

The steps of building a minimal spanning tree in a connected weighted 

graph G where Prim ’s algorithm is used are as follows:

Step 1 Select the edge that has the lowest weight. If there is more than 
one, we choose one of them arbitrarily. From this edge we build a tree 
T  consisting of this edge and the corresponding two vertices.

Step 2 Select the least weighted edge that goes from only the vertices in 

the tree T, and that does not form a simple circuit in the tree T. 
Then, add this edge and the new vertex to the tree T.

Step 3 Repeat step 2 until n — 1 edges have been added to the tree T, 
assuming that the graph G has n  vertices. At that time, we have 
created a tree that contains all vertices of the graph G with no simple 
circuits and with minimum weight. That is, the minimum spanning 
tree of the graph G is reached.

25

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Figure 2.10: A connected weighted graph representation of a phone network design 

with five cities

The algorithm for finding a minimal spanning tree in a connected weighted 

graph using Prim ’s algorithm is as follows [43]:

Algorithm 1: Prim ’s Algorithm for finding the minimal spanning tree of a 
connected weighted graph G = (V ,E ) with n  vertices.

Input: The set of edges E  of G, and the weights w(e)  for every e E E. 
Output: A minimal spanning tree T  of the graph G

T  : = { } , ” a tree with no vertices” 
for i := 1 to n  — 1 
begin e e E E

if  ( e is the least weighted edge that goes from only the vertices in the 

tree T , and that does not form a simple circuit in the tree T) do 
T : = T U { e }

end
end
return T  ( T  is the minimal spanning tree of G)

Exam ple 2.6.
Recall from Chapter 2, the example of the phone network design with five 
cities, ( Example 2.3). The connected weighted graph representation of this

26

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



problem is shown in Figure 2.10. The problem is to find links that connect 
all the offices so that the total cost of these links is minimum. That is, we 
want to find a spanning tree in this graph that has minimum weight.

The steps that Prim ’s algorithm uses to solve this problem, by building 
a spanning tree that has minimal weight, are as follows. First, it starts by 
choosing an edge that has minimum weight. This edge is the one that con­

nects cities ai and a4 tha t has a cost of $700. We call this edge e1 = {ai, a4}. 
From this edge and the two vertices, we form a tree denoted by T. The goal 

is for this tree to be a spanning tree with minimal cost. Second, we select 

the least weighted edge tha t goes from only the vertices in the tree T, which 
are ci\ and a4, and that does not form a simple circuit in the tree T. We 

found that, this edge is e2 =  {a4, a2} with a cost equal to $900. After that, 
we add this edge and the new vertex, a2, to the tree T. Next, we repeat 
the same procedure to find the remaining edges and form a spanning tree 
that has minimum weight. Note that, although the edge { a i,a 2}(with cost 
$1000) has less weight than the edge {a4, a3}(with cost $1100), we selected 

the edge {a4, a3}. This is because the edge {a i,a 2} forms a simple circuit in 
the tree T. The complete steps of Prim ’s algorithm for solving this problem 

are given in the following table.

Chosen edge Decision Weight

{ax, a4} Select $700

{a4, a2} Select $900

{a i,a 2}
Ignore: Forms a simple circuit with 

edges {a4,a 4} and {a4 ,a 2}

---

{a4,a 3} Select $ 1 1 0 0

{&3, 05} Select $800
Total: $3500

Finally, the minimal spanning tree T  in this graph has a weight of cost 
$3500 ( Figure 2.11).
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Figure 2.11: An optimal spanning tree for the phone network design of cost $3500

The minimal spanning tree can also be solved by Kruskal’s algorithm, 
which we will provide in the following section.

2.2.4 K ru sk a l’s A lg o rith m  for M in im al S pann ing  Tree

In Section 2.2.2 of this chapter, we showed that Kruskal’s algorithm 
can solve a traveling salesman problem. In this section we will use this 

algorithm to solve the minimal spanning tree problem (see Section 2.1.2). 

A minimal spanning tree problem is a problem that searches for a spanning 
tree of a weighted connected graph such that this tree has minimal weight. 

KruskaPs algorithm can be used to find such a tree. It starts by selecting 
an edge that has minimal weight and consecutively collects edges tha t have 

minimal weight and do not form a simple circuit with the edges already 
chosen. It continues collecting edges until n  — 1 edges have been collected, 
assuming that the graph has n  vertices.
The steps of finding a minimal spanning tree using Kruskal’s algorithm in 
a connected weighted graph G of n vertices are as follows:

S tep  1 Select an edge that has the lowest weight. If there is more than 
one, we choose one of them arbitrarily.

S tep  2 Select the first immediate least weighted edge that does not form 
a simple circuit with the edges tha t already have been chosen.

S tep  3 Repeat step 2 until n — 1 edges have been added. At that time, 
we have reached a tree that contains all vertices of the graph G with
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no simple circuits and has minimum weight. That is, the minimum 
spanning tree of the graph G is founded.

The following pseudocode is for Kruskal’s algorithm for finding a minimal 
spanning tree for a weighted connected graph G(V, E ) of n  vertices [43].

Algorithm 2: Kruskal’s Algorithm for finding the minimal spanning tree of 
a connected weighted graph G =  (V, E ) with n  vertices.

Input: The set of edges E  of the graph G, and the weights w(e) for every 

e e  E.
Output: A minimal spanning tree T  of the graph G

T  : = { } , ” a tree with no vertices”
for * := 1 to n — 1

begin

e := e € E
if ( e is the least weighted edge that does not form a simple circuit with 

the edges of T) do 
T  :— T U  {e}

end
end
return T , ( T  is the minimal spanning tree of G)

Exam ple 2.7. In Example 2.6, we have solved the phone network design 

problem with five cities, Figure 2.12, using Prim ’s algorithm. In this exam­
ple, we want to solve this problem using Kruskal’s algorithm. Recall that 
the goal of this problem is that we have five offices located in five different 
cities and want to find links that connect all these offices so that the total 
cost of these links is the minimum. That is, we want to find a spanning tree
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F igu re 2.12: A connected weighted graph representation of a phone network design 

with five cities

which contains all cities and has minimum weight.

Kruskal’s algorithm can solve this problem by selecting an edge that 
has minimum weight and does not form a simple circuit with edges already 
chosen. Therefore, the first smallest weighted edge, in Figure 2.12, is e\ =  

{0:1, 04} of cost $700. The second smallest edge is e2 =  {03 , 05} of cost 
$800. Clearly these edges do not form a simple circuit with edges already 
chosen since they are only two edges. Edge e3 =  {o2, 04} is the next smallest 
weighted edge of cost $900 that does not form a simple circuit with edges ei 

and e2 (see Figure 2.18). The following edge that has the smallest weight is 

e2 =  { o i , a 2}; however, this edge forms a simple circuit with edges already 
chosen, which are edge e\ and edge e3. Therefore, we choose edge e4 =  
{04,03} of cost $ 1 1 0 0  since it does not form a simple circuit with edges 
already chosen. Since the total number of selected edges is 4 =  n — 1 =  
5 — 1, where n is the total number of vertices in the graph, we terminate 
the procedure and the minimal spanning tree is reached. This tree has a 
total cost equal to $3500, which is an optimal cost, and composed of edges 
e\ =  { a i ,a 4 } ,e 2 =  {o3,o 5} ,e 3 =  {02,04}, and e4 =  {04,03}. This solution 
is the same solution that have been found using the Prim ’s algorithm, ( see 

Figure 2.11 ).

In the next section we will state another example of greedy algorithms that 
can be used to solve single-source shortest path problem.
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$900

$701

$800

F igure 2.13: A tree (not spanning tree) consists of three edges that were found using 

the Kruskal’s algorithm in Example 2.7

2.2.5 D ijkstra’s A lgorithm  for Single-Source Shortest Path  prob­
lem

Dijkstra’s algorithm is an example of a greedy algorithm that can solve 
the shortest path problem (see Section 2.1.3). The shortest path problem is 
a problem that searches for the smallest weighted path between two vertices 
in a weighted directed (or undirected) graph. Dijkstra’s algorithm, which 
was discovered by Dutch mathematician E. Dijkstra in 1959 [43], can find 
this path by finding the shortest path from the initial vertex to the following 

vertices, until the terminal vertex is achieved. That is, it searches for the 

path that has the smallest weight from the initial vertex to the first vertex, 
the path that has the smallest weight from the initial vertex to the second 

vertex, and continues the same process until it arrives at the terminal vertex.

Dijkstra’s algorithm searches for the shortest path from vertex a  to 
vertex z  in a weighted undirected graph using several iterations. Through 
these iterations, it composes a set that is a subset of the set V .  This set 

is called the distinguished set and is denoted by Sk, where k refers to the 
iteration k. At each iteration, one new vertex is added to the distinguished 
set Sk- The new vertex is added such that it has the smallest path that 

contains only vertices from the previous distinguished set *S'fe_i. That is, a 
vertex u  is added to S k  if there is a path from vertex a  to vertex u  that 
contains all vertices in ,S'fc-i and has the smallest weight. We let L k ( u )  be 
the weight of the smallest path from vertex a  to vertex u  containing only
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the vertices in the distinguished set Sk -

Now, we state the steps of Dijkstra’s algorithm for finding the shortest 
path between two vertices in a weighted undirected graph. Given a weighted 

undirected graph G(V, E ) and assuming that we want to find a shortest path 
from vertex a to vertex z, the steps of Dijkstra’s algorithm in searching for 

this path are as follows:

Step 1 It starts by initializing all vertices in the graph by labeling the 
vertex a with zero and all other vertex by oo. That is,

L 0 (a) =  0, L 0 (u) =  0 0 ,Vu E V  — {a}.

Recall that, Lk(u) is the weight at iteration k of the smallest path from 

vertex a to vertex u containing only the vertices in the distinguished 

set Sk- Now, since there is no vertex added to So, we let So =  <f) at 
iteration zero.

Step 2 At each iteration k, we add the next smallest labeled vertex to the 

distinguished set Sk that is noted in the previous distinguished set 
S k-1- That is, a vertex u is added to Sk if there is a path from vertex 
a to vertex u that contains all vertices in Sk- 1 and has the smallest 
weight. In other words, a vertex u is added to Sk if:

L k-iiu ) < L k-i{ t) ,\/t  0  Sk-i.

Step 3 Update the labels of all vertices that are not in Sk, that is, the 
vertices that are in Sk-i U{n}> where u is the vertex that is added in 
step 2 .
We update the label at iteration k of a vertex v, Lk(v), that is not 

in Sk by the following. Lkiy) is the weight of the shortest path from 
vertex a to vertex v that contains only the vertices from S k-1, that 
is, Sk — {«}, or is the weight of the shortest path from the vertex a 
to vertex u at iteration k — 1 plus the weight of edge {u, v}. That is,

L k{v) =  m in {L k-i{v ),L k -i(u )  +  u(u, u )} , (2 .4)

where co(u, v ) is the weight of edge {u,v}.
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S tep  4 Repeat step 2 and step 3 until the terminal vertex z  is added to the 
distinguished set. That is, the procedure is terminated when z £ S k -

When the vertex z  is added to the distinguished set, the shortest path from 
vertex a to vertex z  is reached and has the weight given by Lk(z), where k 

is the last iteration where vertex z is added.

The pseudocode of Dijkstra’s algorithm in finding the shortest path 
between two vertices, say from vertex a to vertex z, in a weighted connected 
graph with n  vertices and non-negative weights is as follows [43]:

Algorithm 3: Dijkstra’s Algorithm for finding the shortest path between vertex a  to  

vertex z  in the non-weighted connected graph G  =  (V,  E ) .

Input: V  =  { a  =  o j, 0 2 , . . .  , a n =  z }, wy >  0 and wy =  oo if {a*, a j }  E

O utput: L ( z )  The shortest path from vertex a  to vertex z

1. for i  :=  1 to  n

L ( a i )  : =  oo

2 . L ( a )  := 0

3 . S  :=((>

(steps 1 to 3 Initialize the labels of every vertex in G  and let the 

distinguish set S  be the empty set.

w h ile  z  $  S

b egin
4. v  := where v  S  and has the smallest label L ( v )

5. 5 : =  SU{ w}

6. for all vertex not in S

if  L ( v )  +  u ( v ,  b) <  L ( b )  th en  L ( b )  := L { v )  +  to(v,  b)

(Steps 4 to 6, add a new vertex, v,  to the set S  and update the 

label of every vertex b ^ S )

end

return  L ( z )

(Where L ( z )  is the weight of the shortest path from vertex a  to vertex z )
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a

Figure 2.14: A weighted undirected graph with six cities of Example 2.8.

Exam ple 2.8.
Consider a weighted undirected graph G(V, E) with six vertices shown in 

Figure 2.14. Assume that we want to find the shortest path from vertex a 
to vertex 2 . Dijkstra’s algorithm can be used to find such a path as follows: 

First, we begin by labeling vertex a with zero and all other vertices with
oo. That is,

L 0 (a) =  0, L 0 (t) =  oo, Vi G V  — {a},

(see Figure 2.15-A). The distinguished set has no elements at this iteration, 
that is, So =  {}.
Next, since the smallest labeled vertex is a, L 0 (a) =  0, and all other labeled 
vertices are oo, we add vertex a to the set Si. That is, Si =  {a}. Now, Si 
has only vertex a, so the following labels are as follows:

Li(b) =  3,L i(d) — 6 , and, L i(v) — oo Vu G {c,e, z}.

(see Figure 2.15-B). Now, we repeat the same steps by adding the smallest 
labeled vertex that is not in 51 =  {a}. This vertex is b with Li(b) =  3. 

That is, the distinguished set will be 5 2 =  {«; b}. Moreover, we update the 
labels of all vertices not in 5 2 using formula 2.4, at iteration k =  2:

L 2 (v) =  m in {L i(v ) , Li(b) +  cu(b,v)}, \/v S 2 = {a, 6}.

34

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



For instance,

L 2 {d) =  m in{L i(d), L\{b) +  u(b, d)}

=  m in{  6 ,3 +  2 }

=  5,

(see Figure 2.15-c). We continue this procedure until vertex z is added 

to the distinguished set. The complete solution of this problem solved by 
Dijkstra’s algorithm is shown in Figure 2.15. In this figure, we circle the 

elements of the distinguished set at k iteration, Sk and indicate the smallest 
path between vertex a and each vertex and containing only vertices in Sk- 
At the final iteration, when vertex z  is added to the distinguished set, the 

shortest path from vertex a and vertex z is reached and has a weight equal 
to the value of L k ( z ) ,  where k is the last iteration. This path is a, b, d, c, z ,  

(see Figure 2.15-F).

In this section, we discussed Dijkstra’s algorithm for solving the single­

source shortest path problem. In the next section, we will see that this 
algorithm can be used to solve all-pair shortest path problem with non­
negative weights. Moreover, we will discuss another example of a greedy 
algorithm that can be used to solve the all-pair shortest path problem with 

negative and non-negative weights. This algorithm is called Floyd’s War- 
shall algorithm.

2.2.6 F loyd’s W arshall A lgorithm  for the A ll-Pair Shortest Path  
(A P SP ) problem

Floyd’s Warshall algorithm is an example of a greedy algorithm and 
can be used to solve the all-pair shortest path problem (Section 2.1.4). This 
problem can be described as follows. We are given a weighted undirected 
graph G(V, E) and we want to find the shortest paths between every two 

vertices in this graph. That is, we need to determine a matrix called the 
shortest path matrix, denoted as D[dij], where the entry dij is a path from
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S0=* S, ={«}

(A) (B)

b [3(a)j c \12(a,b,d,e)\ b  K«) C\l2(a,b,d,e)}

e \U{a.b.d)\

Figure 2.15: Dijkstra’s algorithm for finding the shortest path between vertex a  and 

b. The details of this figure are described in Example 2.8.
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vertex a* to vertex cij, for a;, a3 £  V,  and has the smallest weight.

Floyd’s Warshall algorithm can solve this problem and find the shortest 
paths matrix D  by the following. Given a weighted directed graph G(V, E ) 
and the set of vertices V  =  {ai, a2, . . . ,  an}, we are assuming that the weight 

of the edge (a*, aj) E E  is non-negative for all a ,, a3 £ V. That is, the weight 
u>ij for the edge (a,i,a,j) is given by the following equation:

f 0 , if i = j-

u i,j =  ̂°°) if i 7̂  j  and i ^  j  (the edge (a*, aj) £  E)\ (2-5)
[ oJij, if i ^  j  and (a^Uj) E E).

Let matrix where the entry witj is defined by equation 2.5, be the
weight matrix of graph G.

Floyd’s Warshall algorithm can find the shortest path matrix D[dij] by 
determining a sequence of matrices D ^ \ D ^ \  . . . ,  D (nk A matrix D k[dG] is 
the shortest path matrix at iteration k, where 0 < k < n, and the entry d,G 

is the weight of the shortest path from vertex a* to vertex aj with interme­

diate vertices only from the set {ai, a2, . . . ,  a*,}. That is, matrix D ^ [d kj] 
considers only those paths where the only intermediate vertices are those 
from {ai, a2 , . . . ,  %} and which have the lowest weight. Recall that the 
definition of the intermediate vertex of a path P  = <  ai,a,2, . . .  ,ak~i,ak > 
is any vertex in a path P  other than vertex ai and vertex a*,, that is, any 

vertex in the set {a2, . . . ,  afc-1}- If k =  0 , there is no intermediate vertex in 
a path from vertex a* to vertex a3. This path consists only of edge (at , a3), 
and therefore, it has a weight equal to Hence, the shortest path matrix 

when k = 0 is the weighted matrix W[uJij\. Thus:

[d3  j ] =  W fa j] ,  where Lohj  is defined in equation 2.5.

For k > 1, a matrix [d3 j ] is computed from the matrix D^k ^\d k 3 *] as 
the following:

dkitj = m in (d kt 1 , d j" 1 4 - d ^ 1)  (2 .6 )
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Therefore, the matrix entries are all getting smaller through these iterations. 
That is, when k is increased, the matrix entries d* • are decreased:

When k =  n, the shortest path matrix D[dij], which consists of the short­

est path between all pairs of vertices in graph G, is reached and equal to 
[dy]. In other words,

and for any vertices aj ,aj  € V, the weight of the shortest path between 

vertex a* and vertex a3 is given by the value of the entry d” -.

Moreover, the shortest path between each pair of vertices of the graph 
G can be constructed using the predecessor matrix P. This matrix can be 
computed using the shortest path matrix T>[dy], The algorithm constructs 

a sequence of predecessor matrices p (° \ P ^ \  . . . ,  P ^  where the entry pG 

of the predecessor matrix P ^ \p kj\ is the predecessor of vertex j  on the 
shortest path from vertex % to vertex j  with intermediate vertices all in the 

set {aj, 02 , . . . ,  a*,}. That is, the predecessor matrix P^> is computed from 
the matrix by the following:

At k = 0, the shortest path from vertex at to vertex Oj has no intermediate 
vertices. That is, the entry of the predecessor matrix at k = 0 has entry 

Pij defined by:

For k > 1, the entry p\ - of the predecessor matrix P^> is computed as the 
following:

The APSP also can be solved using Dijkstra’s algorithm. That is, we apply 
this algorithm for all pairs of vertices of a connected weighted graph. A

dfc_1 > dk ■

N IL , if dQhJ =  0 or d? • =  oo where d£ ■ is the entry of 
the matrix 

i, otherwise.
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graph G with n vertices has (”) pairs of vertices where

n\ n\
2 ' ~  2 !(n — 2 )!’

Moreover, for each pair of the vertices of G we should use Dijkstra’s algo­
rithm n  times. Therefore, to solve the APSP we need to apply Dijkstra’s 
algorithm n x (”) times. This algorithm can be used only if the weights 
of a graph are non negative, whereas Floyd’s algorithm works even if the 
weights of a graph are negative.

2.2.7 Ford-Fulkerson’s A lgorithm  for M axim al Netw ork Flow Prob­
lem

Ford-Fulkerson’s algorithm can solve the maximal network flow prob­
lem discussed in Section 2.1.5. Recall that a flow network is a directed 
graph G =  (V., E) where the set of nodes V  contains a source node s, a 
sink node t and extra intermediate nodes (any node other than s and t). A 
flow network should satisfy the following constructions. Each edge e E E  
is assigned a capacity c where the flow along this edge cannot exceed its 
capacity. The net flow f(a i ,a j) from node to node aj must be the op­
posite of the net flow from a j  to a*, that is, f ( a t , a j )  —  — f ( a j ,  a>i ) , for all 

nodes ai,aj E V. Moreover, the flows into a node should equal the flows 
that leave this node except for the source s, which has only outgoing flow, 

and the sink t , which has only incoming flow.

The maximum network flow problem is a problem of determining the 
maximum amount of flow from the source s to the sink t in a flow network 
without violating the restrictions of the capacity and the flow for each node 
in the network.

Ford-Fulkerson’s algorithm can solve the maximum network flow prob­
lem by finding a path from the source s to the sink t  with positive capacity 
along all its edges. This path is called an augmenting path. Along this 
path, we push flow. We continue finding such paths until no more paths
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can be found.

There are three important ideas that the Ford-Fulkerson’s algorithm 
uses for solving such problems. The ideas are the residual network, aug­
menting paths, and cuts. The max-flow min-cut theorem, which will be 
described later in this Section 2.1.5, will be used to show that the maxi­
mum flow in a flow network is the same as the capacity of some cut in this 
network. To illustrate the algorithm let us state some important definitions 

and theorems.

D efinition 2.8.

Given a flow network G (V,E) with source s and sink t, let f(ai,cij) be a 
net flow in G from node a* to node ay.

1. The residual capacity of an edge (ai,a j) is the amount of additional 
flow we can send from node <xt to a.j before exceeding the capacity 
c(ai,aj), denoted as Cf(ai,aj) and defined by the following equation:

/(cij,Qj). (2-7)

For example, if c(ai,aj) =  20 and /(a j ,a j)  =  15, then we can send 5 
units more through this edge.

2. A residual network associated with a flow network G(V, E) with a net 
flow /  is denoted as Gf(V, E f) where E f  is a set of edges defined as

E f  =  {(a i,a j) e  V  x V  : cf (ai ,aj ) > 0}.

and
— c(ai, aj) y ( o j , U j ) .

The goal of a residual network is to show what amount of capacity is 
available in each node in the original network. In a residual network, 
there might exist an edge (a-i, a„j) that does not appear in the original 
network.
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F igu re 2.16: A  residual netw ork for F igure 2.7 , show ing capacity

3. A path (ai, a2, ■ ■ ■, ak) in a flow network is called an augmenting path if 
it is simple and dj =  s, % =  t, and C/(dj, dj+i) > 0 for i = 1 , . . . ,  k — 1. 
That is, along any augmenting path we can send more flow through 
this path. The residual capacity of p is denoted as Cf(p) and given by 
cf (p) = m in{cf(a i,a j)  : (d^d^) G p]

4. A Cut on the flow network G (V ,E) is denoted as (S ,T ) where S  and 

T  are a subset of the set V  such that T  =  V  — S, s G S, and t  G T. 
We define the capacity of the cut (S, T) as c(S, T ) and the net flow 

across this cut as f (S ,  T ) where /  is a flow.

E xam ple  2.9. The residual network Gf(V,  Ef )  of a flow network of Figure

2.7 defined in section 1.5 is shown in Figure 2.16. In a path p =  (s , di, d2, t) 
we have the following residual capacities:

c /(s ,d i) =  3, c/(di, d2) =  l , c / (d2,t) =  2,

which are greater than 0. That is, this path is an augmenting path with 

residual capacity :

cf {p) =  m i n { c f ( s , a i ) , Cf ( a1, a 2) , Cf ( a2, t ) }

= m in{  3,1,2}

=  1

This means that we can push one unit more from the source s to the sink 
t along this path.
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Figure 2.17: A  cu t (S , T ) o f  th e  flow netw ork in F igure 2.7 w here S  =  {s, a i , a2} 

and S  =  {0,3, (14, t } .  T h e d eta il o f  th is  figure is show n in E xam p le 2.9

A cut (S ,T ) on the flow network of Figure 2.1, is shown in Figure 2.17, 
where S  =  {5 , a\, 0,2 } and S  — {a3, a4, t}. The net flow of this cut is

f (S ,  T)  = f ( a 1 ,a 2 ) +  / ( a 3, a4) =  8 +  13 =  2 1 .

The capacity across this cut is

c(S, T) =  c(a1 ,a2) +  c(a3, afl) =  9 +  16 =  25.

T h eo rem  2.2.1. (Max-flow min-cut theorem)
Let G — (V,E) be a flow network with a source s and a sink t. I f  f  is a 
flow in G, then the following are equivalent:

1. f  is a maximum flow in G.

2. There are no augmenting paths in the residual network G f.

3. There is a cut (S , T ) in the flow network G such that \ f \  =  c(S,T).

Proof. For the proof of this theorem see [13]. □

Now, we can describe the basic steps of the Ford-Fulkerson’s algorithm 
for solving the maximum network flow problem.

In p u t : A flow network G with capacity c, a source node s, and a sink 
node t
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O utput : Flow /  such that /  is maximal from s to t

Step 1 Initialize flow /:

for each edge (u, v) £ E  do

• f ( u , v ) :=  0

• f {v ,u)  := 0

Step 2 Find an augmenting path p with Cf (p) > 0: That is,find any 
path p in the residual network G /. If there are no more such 
paths, return ( /)  which is the maximum flow of G.

Step 3 Calculate the residual capacity of p:

•  Cf(p)  =  min{cf (u,v)  : (u,v) € p}

Step 4 Augment flow /  along the path p by the residual capacity

cA p )-
for each edge (u, v ) in p do

•  f ( u , v )  := f ( u , v )  + cf (p)

• f ( v , u)  := -  f ( u , v )

Step 5 Go to step 2.

When this algorithm is terminated, that is, when there are no more 

augmenting paths in G, the maximum flow of this network is the flow 

/
As we have seen, greedy algorithms can be used in solving certain 

combinatorial optimization problems. The next chapter discusses the local 
search algorithm, which is one of the interesting algorithms in combinatorial 
optimization.

2.3 The Local Search Algorithm s

The local search algorithm is one of the successful algorithms for solv­
ing combinatorial optimization problems. It searches through the space of 
candidate solutions called the search space. In the search space it searches 
for the best solution. It moves from solution to solution until it finds a
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solution that can be considered, in some sense, the best solution. This so­
lution sometimes is the optimal solution or near the optimal. To illustrate 

the local search algorithm, let us start with the following section that states 
the important definitions and properties of this algorithm.

2.3.1 D efinitions and Properties

D efinition 2.9. Given an optimization problem with an instance (F, c), a 
neighborhood is a mapping

iV : F  -> 2F

where 2F is the •powerset of F, which is defined as the set of all subsets of 

F. That is,

2f = { S : S c F},  and |2F | =  2|F|.

D efinition 2.10. Given a feasible solution y & F  in a particular problem 
with instance (F ,c ), the set

N ( y )  — { g  '■ g  e  F,  g is ” close ” in some sense to the solution y}

is called the neighborhood of y.

Exam ple 2.10.
The neighborhood of a feasible solution y of an instance of the traveling 
salesman problem is called k-change and defined as follows:

N k(y) =  {g : g G F  and g can be obtained from y by removing k edges 
from y and replacing them with k new edges}.

For example, a feasible solution y G F  of an instance of TSP with 6 cities 
is shown in Figure 2.18. When k =  2, the 2-change neighborhood of y is 
defined as
W (y) =  { g  '■ g € F  and g can be obtained from y by removing 2 edges 

from y and replacing them with 2 new edges}.
The feasible solution g G A ^y) is defined by removing the two edges ei, e2 

and replacing them with two new edges as shown in Figure 2.18

44

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



A feasible solution y A feasible solution g

F igure 2.18: A feasible solution y  of an instance of TSP and a feasible solution g  £

Finding the optimal solution of an optimization problem is usually 

difficult. On the other hand, we can often find the best solution in the 
neighborhood of some feasible point y € F.  This is called a local optimal 

solution, which is defined in the following definition.

D efin ition  2.11. Given an instance (F, c) of an optimization problem and 
a neighborhood N,  a feasible solution y E F  is called local optimal with 
respect to N  if

assuming that this is a minimizing type problem, i.e., t =  min.

The local search algorithm searches for the best solution in the neigh­
borhood of a feasible solution of a combinatorial optimization problem, 
which is called a local optimal solution. That is, it moves from solution 
to solution in the feasible solution set until it reaches a solution that is 
no longer improved or some condition is satisfied. The condition is called 

a stopping rule and sometimes is considered as time bound or iterations 
bound.

Now, we briefly explain the local search algorithm for a given instance 
(F, c) of an optimization problem. Let N(y)  be the set of neighborhood of 
y G F.  Consider the following subroutine

N2(y)

c(y) < c(g), V g e  N(y)

improve(y)
Any g : g G N(y),  c(g) < c(y); 

False : if no such g exists.
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The idea of the local search algorithm is that we start with an arbitrary 
initial feasible solution y  e  F. Then we use a loop that searches for a better 
solution in the neighborhood of y, N(y),  using the subroutine improve(y). 
The loop is stopped when the current solution no longer can be improved, 
and therefore, this solution is called the local optimal solution. The main 
body of the general local search algorithm is shown as follows:

P ro d u c in g  a local optima

beg in

y =  completely random starting feasible solution belongs to F\

W hile  ( improve(y) ^  False ) do 
y — improve(y)-,

re tu rn  y

end

There are several decisions that we have to decide when we use this algo­
rithm. First, the number of initial feasible solutions that we start with and 

how we classify them must be determined. Often, a local search algorithm 
uses several initial feasible solutions to start with and chooses the best re­
sult. The next decision that we should make is the neighborhood for the 
problem and the method for searching for it. This method provides a way 
of searching for the best solution in the set of the neighborhood. The size 
of the neighborhood usually determines the quality of the resulting local 
optimal solution. That is, a neighborhood which has the largest size usu­

ally leads to a better solution that is near to the global solution. On the 
other hand, using a neighborhood that has a large size takes more time to 

achieve the local optimal.

The local search algorithm can be used to solve important combinato­
rial optimization problems that arise in various areas. These include, for 
example, problems from engineering, computer science, operations research, 
and mathematics.
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There are several examples of local search algorithms. GSAT and 
WALKSAT are examples of local search algorithms that can be used in 
solving the boolean satisfiability problem [46]. Another example of a local 

search algorithm is Lin-Kernighan [23] for solving the symmetric traveling 
salesman problem.

In the next section we will describe briefly the 2-opt (Lin-Kernighan) 
algorithm for solving the symmetric TSP.

2.3.2 Lin-Kernighan (2-opt) A lgorithm  for Sym m etric Traveling 
Salesm an Problem

In this section we will talk briefly about the Lin-Kernighan (2-opt) 

algorithm for solving the symmetric traveling salesman problems. For more 
detail about this method you can refer to [23, 34].

The Lin-Kernighan algorithm is one of the most successful examples 

of local search algorithms that can find an optimal or near to the optimal 
solution for the symmetric traveling salesman problems. It has been given 
the optimal solutions for all solved problem instances that we have been 

able to obtain, as well as the largest nontrivial problem instance, which is 
a 7397-city problem that has been solved to optimality today. Moreover, it 
has improved the best known solution for an 85900-city problem.

Recall that the goal of the traveling salesman problem is to find the 
cheapest tour that visits all given cities exactly once and then returns to 
the starting point. In weighted graph representation, we are looking for a 

path that has the minimum weight, starts and ends at the same vertex and 
visits each vertex one time. The cost of traveling from city i to city j  is 

denoted as C %j . If C \ j  =  C j i ,  the problem is called a symmetric traveling 
salesman problem; otherwise it is called asymmetric TSP. Usually, the sym­
metric TSP is more difficult.
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F igure 2.19: A 2-opt move of an instance of a TSP where a,; denotes the city i

The idea of 2-opt algorithm for solving the symmetric TSP is simple. 
It starts with a completely random tour and tries to find the best tour in 
its neighborhood using the subroutine improvement (y). It replaces 2 edges 
with 2 new edges so that the resulting tour is a feasible tour and has less 

cost. For example, Figure 2.19 shows a 2-opt move of an instance of a TSP 
where a* denotes the city i. The algorithm continues improving the current 

tour until there are no more improvements of the current tour.

The 2-opt (or 2-change) neighborhood of a tour T, N 2 (T), of an instant of 
the TSP with n  cities can be described as follows. Assume that the tour 
T  — { t i , . . . ,  tn}, where fj is a city in this tour. A tour T  € N 2 (T) if a set 
X  of two edges is removed from the tour T  and replaced by a set Y  of two 
new edges such that the resulting tour is a feasible tour.

To insure that the resulting tour, T, is a feasible tour, the edges in the 

two sets X  =  { x i ,x 2} and Y  =  {yi, 2/2} should be selected such that

In other words, a tour T  e  N 2 (T ) where T  = (t\ , . . . ,  tn) if T  is of the form

^i+1) j

x 2 =  { t j j t j + l)j

and

yi =  (M j)  

y 2 =

1 Y i < j  < n, j  i + 1 and j  ^  i — 1 (2 .8)

T  (ti^2 • • • 1 . . . . . .  fn)
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a4

Figure 2.20: An instance of TSP of 5 cities of Example 2.11, on the left, and a feasible 
tour T = (0,10,20,60,40 ,30,5) on the right.

The following example is used to illustrate the 2-opt neighborhood. 

Exam ple 2.11.
Consider an instance of TSP of 6 cities a\ , . . . ,  a6 and a feasible tour T  = 

(aia2a6a4a3a5) which are shown in Figure 2.20. To construct the 2-opt 

neighborhood of T, N 2 (T), first, rename the cities of T  so that T  =
That is,

t\ — cti, t2 ~  a2, =  a,Q,ti = 0,4 , t§ ~  a3 and t§ = a$,

(see Figure 2.21-A). Now, a tour T  £ N 2 (T ) if T  is of the form

T  (t]_t2 . . .  i . . .  . . .  fn)

For instance, if i =  3, than the edges of X  and Y  are

xi = (t3 , t4), yi = (t3 , t j )

x 2 = (tj, tj+i), y2 =  (t3, 4̂)

where tj can be any vertex other than £4=*+! and £2=1- 1- For example, if 
j  — 6 , then

x i =  (£3,£4), yi = { h ,t&)
x 2 =  (t6 , t 1), y2 =  (£4 , £1 )

and the resulting tour is

T  = (tit2 t3 tet 5 t4 ) £ N 2 (T),

( see Figure 2.21-B ).
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The cost of a tour T  £ N 2 (T ) is denoted by c(T) and can be computed 
as follows. If the tour T  is composed by removing the edges in the sets X  — 

{ x i ,x 2} from T  and replacing them by the edges in the set Y  — {yi, 1/2 }, 
the cost of the tour T  is given by

2 2

c (f)  =  c(T) — G, where G = J 2 c(x s)
8  =  1 S = 1

G is the gain of exchanging the edges in the set X  = {x i ,x 2} with the 
edges in the set Y  =  {y i,y 2 }- For example, the tour T  6  N 2 (T ) in the 
previous example was constructed by exchanging the edge aq =  (f3, tA) and 

x 2 =  (tejG) with the edges y\ =  (t3 , t e) and y2 = (̂ 4 , i i ) - Since the cost of
the tour T  is c(T) = 64, the cost of the tour T, c(T), is equal

c(T) = c(T) — G

=  c(T) -  [ c ^ )  +  c(x2) -  c(yi) -  c(y2)\

= 64 -  [8 +  7 -  4 -  16]

=  69

Now, the 2-opt algorithm for solving an instance of TSP is described as 
follows:

S tep  1 Randomly choose an initial feasible tour T

S tep  2 At each step, we generate two sets of edges X  and Y . Each set
contains two edges such that the edges in the set X  are removed from

the current tour T  and replaced with the edges in the set Y  so that

the resulting tour should have less cost.

S tep  3 Stop when the sets X  and Y  are impossible to generate.

When we reach step 3, the current tour is considered as the local optimal 
tour. The details of Lin-Kernighan algorithm can be found in [23, 34].
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A : A feasible tour T = Q : A feasibletour T =

t  whe E -*! =  (t3, t 4),  y,  = ( t 3, t 6)

* 2 = M l ) >  y-J = ( t 4 , t l )

\  y

C : A feasibletour TK = (/,/3/2f4/5/6 ) e N 2 (T) 
whee -x, = (t^t^), ^ = ( t „ t 3)

*2 = (t3,t4), y2=(t2,t4)

Figure 2.21: Feasible tours of the instance of TSP of Example 2.11. The tours T  and 

T1 3  was constructed from the tour T  by exchanging the two edges in the set X  =  {x'i, X2 } 

with the two edges in the set Y  =  { y i ,  2/2 }-
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Exam ple 2.12.

Suppose that a tour T  =  ( h t ^ t ^ t e )  of the instance of six cities of the 
previous example is selected randomly. Next, we try to find a tour T  € 

N 2 (T ) such that the cost c(T) < c(T). Since the cost of the tour T  is 

c(T) — 69, which is greater than the cost of T , c(T) = 64, we ignore this 
tour and select a different tour. Now, suppose we select a tour T13, which 

is constructed by exchanging two edges x\ = ( h , t 2) and x 2 = (£3, £4 ) with 
two new edges y\ =  and y2 =  (£2,^4), (see Figure 2.21-C). The cost
of this tour is c(Ti3) =  51, which is less than the cost of the current tour 
T. Therefore, we keep this tour and try  to improve it until we reach a tour 
that cannot be improved. This tour is considered the local optimal tour of 
the problem.

Many surprising results have been found for the TSP using the Lin- 
kernighan (2-opt) algorithm. The results are different both in the value of 
the local optimal and in the time consumed for finding that value. This 
depends on the choice of the integer k  in the k-change neighborhood [30]. 
For example, the 3-change has a better local optimal solution than the 

2-change neighborhood. However, the 3-change neighborhood needs more 
time to find the local optimal solution [30].

2.3.3 Im portant Issues in Local Search Algorithm s

Local search algorithms have some important issues that need to be 
specified. The first issue is the selection of the neighborhood. Recall that a 
neighborhood of a feasible solution y £ F  is a set of feasible solutions that 
are close in some sense to y. A feasible solution g & F  can be considered 
as in the neighborhood of y if it can be easily obtained from y, or if they 
almost have the same structures.

The second issue is selecting the initial feasible solution t that the 
algorithm should start with. The resulting local optimal solution corre­
sponding to a neighborhood of some initial feasible solution is, sometimes,
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Figure 2.22: The first improvement strategy of local search algorithm where g  G N( y i ) ,  

means a feasible solution g  belongs to the neighborhood of y,

near to the global optimal solution, and sometimes not. This usually de­
pends on the selection of the neighborhood and the feasible solution that 
the algorithm starts with. Therefore, to examine fairly the set of local op­

timal solutions we need to start with a a completely random initial starting 
point [39].

The next important issue is specifying the strategy that searches for 
the neighborhood. There are several search strategies of the local search 
algorithm. The First-improvement and steepest-decent are the two greatest 
strategies for this search [6]. The first improvement strategy starts with a 
random feasible solution as an initial starting point. Then it selects a so­
lution that is better than the current one and considers the new selection 
as the new starting point. It continues with this procedure until it reaches 

a solution that can no longer be improved. This solution is considered as 

the local optimal solution. Figure 2.22 shows a graphical depiction of the 
first improvement strategy [1]. On the other hand, the strategy of steepest- 
decent is to examine the entire neighborhood, and the neighborhood that 
has the greatest improvement becomes the new starting point.

For example, if we use the first improvement strategy in the 2-opt algorithm, 
then the search will be as follows. It uses a random tour as a starting point. 
Then it uses its 2-change neighborhood to select any tour in its neighbor­

hood. If the selected tour has less cost, it is considered as a starting point. 
Otherwise, it selects a different one and repeats the same operation. The
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algorithm continues in the same manner until it reaches a solution that can 

no longer be improved. This solution is called the local optimal solution.

In this chapter we have included a brief description of local search algo­
rithms and their applications for solving important combinatorial optimiza­
tion problems. In the next chapter we will describe the linear programming 

(LP) and integer linear programming (IP) problems which play important 

roles in optimization theory.

2.4 Linear Program m ing (LP) Problem s

In this chapter we will briefly discuss linear programming and inte­
ger linear programming problems. Moreover, we will propose the simplex 
algorithm for solving such problems.

2.4.1 Linear Program m ing (LP) Problem s

Linear programming problems are optimization problems where we 
maximize or minimize a linear function called objective function in n vari­

ables called decision variables that satisfy some linear conditions called 
constraints. That is, we need to minimize (or maximize) a linear function 
f ( x i , . . . , xn) such tha t the decision variables x i , . . . ,  x n satisfy the following 
linear constraints

(A) X  =  a n X \  + a i 2 X 2  + ... + a i n x n  > 6j.

The goal of the LP is to determine the values of the decision variables 
x i , . . . , x n such that the linear function f ( x i , . . .  ,x n) has the largest (or 
smallest) value, and satisfies the conditions of the linear constraints.

The general form for a linear programming problem is called a standard 
form LP and is given by the following:

M inim ize  cx = C\X\ + . . .  + cnxn , x > 0,

Subject to A x = b (A is m  x n matrix of integers)
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A standard form LP is constructed as follows: minimize a linear function 
in non-negative n decision variables subject to a system of linear equations 

with constraints that are satisfied by the decision variables. The constraints 
model the requirements of the decision variables in the objective function 
that we need to optimize. For example:

M inim ize  f ( x i , . . . ,  xn) = CiX\ +  C2 X2 +  C3 X3 

Subject to ai\X\ +  a 12X2 +  0 -13X3 =  61

a 2 lX \  +  0,22X2 +  O23X3 =  62 

0 3 l X \  +  O32X2 +  0*33X3 =  6 3

X \  >  0 ,  X 2 >  0 ,  £ 3  >  0

In other words, the standard form of LP can be modeled in matrix form as 
follows:

where X  is the vector of unknown decision variables to be determined and 
should be nonnegative [14], A  is the m  x n  matrix whose entries are the 

coefficients in the equation constraints, (A)ij — aij, and c and b are vectors 
of known coefficients.

To understand more clearly the linear programming problems and the 
standard form for LP, the following example is provided.

Exam ple 2.13. An oil refinery can buy and process two types of crude oil, 
light crude oil for $11 per barrel and heavy crude oil for $8.78 per barrel. 
The following quantities of gasoline, kerosene and jet fuel are produced per 
barrel of each type of oil.

/

Minimize

Subject to A x — b, X  > 0,
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Gasoline Kerosene Jet Fuel

Light Crude Oil .4 .25 .35

Heavy Crude Oil .32 .4 .28

Assume that the refinery has contracted to deliver 1 million barrels of gaso­

line, 400,000 barrels of kerosene and 700,000 barrels of jet fuel. Excess 

quantities of these products can be stored at no cost.
In order to solve a linear programming problem, it is important to under­

stand the problem clearly. There are three important steps for modeling a 
linear programming problem. These steps are as follows:

S tep  1 Specify the decision variables:
In this example, the decision variables are the following:

X\ =  The number of barrels of light crude oil to be processed 

x'2 =  The number of barrels of heavy crude oil to be processed

S tep  2 Specify the constraints:

The constraints in this case will be:

0.4xi +  0.32x2 > 1000000,

since each barrel of light crude oil, aq, and heavy crude oil, x 2, can 
produce 40% and 32% of gasoline respectively. Moreover, the refin­

ery is required to deliver 1,000,000 barrels of gasoline. The second 
constraint is

0.25xi +  0A x 2 > 400000.

This constraint is for the kerosene, of which the refinery should deliver 
400,000 barrels. In addition, 25% of one barrel of light crude oil and 
40% of one barrel of heavy crude oil must produce kerosene. Finally, 
the following constraint is for the jet fuel, which is formed using the 
same ideas as the formulas for the gasoline and the kerosene,

0.35xx +  0.28x2 > 700000.
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Therefore, the constraints of this example can be written in a system 

of linear inequalities as follows:

O.Trj +  0.32x2 >  1000000 

0.25xi +  0.4x2 >  400000 

0.35xi +  0.28x2 >  700000

Step 3 Specify the objective function. This can be formulated as the cost

of buying and processing one barrel of light crude and one barrel of
heavy crude oil. This formula is given by

l l x i  +  8.78x2.

Hence, the standard form of this LP is as follows:

minimize l lx i  +  8.78x2 

subject to 0.4xi +  0.32x2 =  1000000

0.25X! +  0 . 4 x 2 =  400000

0.35xj +  0 . 2 8 x 2 =  700000,

, x i  >  0, x2 >  0

which can be written in a matrix form

1000000 
400000 .
700000

There are many applications of linear programming problems in var­
ious areas. Some examples of these areas are operations research [24, 15], 
business, economics and engineering problems.

Operations research is a huge field in mathematics which covers various
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areas of minimization and optimization [19]. It has significant applications, 
for example, in data analysis, health care management, emergency and res­
cue operations, engineering systems design, and financial planning.
In business, examples of its applications include financial portfolios, truck 
routing, product mix planning, and maximizing profit in a factory tha t pro­

duces various products from the same material. Examples of economics are 

determination of shadow prices and Leontief’s input-output model.

One of the significant methods with which linear programming prob­

lems can be solved is called the simplex method, which was created by 
George Dantzing. This method will be described in the following section.

2.4.2 Sim plex M ethod

The simplex method was developed by George Dantzing in 1947 [25]. 
It was created to find an optimal solution to a linear programming problem 
by testing the points in a feasible set that consists of points that satisfy 

all the constraints for an LP problem. This set is also called the feasible
region. The objective function of an LP problem has maximum value at one

or more points that lie at the corner of the feasible region. Therefore, the 
simplex method searches for the optimal solution by moving from corner to 

corner until there is no more improvement of the objective function.

In this section we briefly discuss the simplex algorithm for solving the LP 
problem. For more details of this algorithm see [39, 14]. To illustrate the 
method let us state the following definitions and notations.

D efinition 2.12.
Given a standard form of an LP problem

min cx, x  >  0,

subject to A x  =  6 (A is an n x n matrix)

1. A solution x  =  (x i , . . .  ,x n) of A x  = b is called a feasible solution to 
the LP if Xi > 0 for a lii = 1 ,n .
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2. A solution x  =  (x \ , . . . ,  xn) of A x  = b is called a basic solution if  the 

columns of the matrix A  corresponding to the nonzero entries in x are 
linearly independent.

3. A basic feasible solution (BFS) is a solution that is basic and feasible. 

Exam ple 2.14.

Consider the following linear programming problem

min X\ +  2 x 2 +  4®3 
2

subject to x \ +  —X2 + X3 < 1
O

-X \ +  X2 + < 1,

x\ > 0 , x 2 > 0, xz > 0

Here we add two slack variables X4  and x 5 to change the constraints from  
” < ” to equality ” =  ” . The matrix A will be

a  = a = (  1 * 1 1 ° )\ 0.5 1 0 0 1 J
A solution x = (0 ,0 ,0 ,1 ,1) is a basic feasible solution to LP since it satisfies 
the equation A x  =  b, x > 0 and the columns of the matrix A, a4 =  (1,0) and 
a5 =  (0,1), corresponding to the nonzero entries in x, X4 = 1 and x 5 = 1 , 

are linearly independent. Whereas, the x  =  (2,0,0,—1,0) of A x  = b is not 
a feasible solution since X4 = — 1  0

There are two important matrices tha t can be composed from the con­
straints matrix A  in a standard-from LP. The matrices are called matrix B  

and matrix V, which are composed as follows. W ithout loss of generality, 
suppose that the matrix A  has rank m. That is, there are m  linearly inde­
pendent columns of A. If the matrix A  =  [ax,. . . ,  am, am+x,. . . ,  an] where 
a i , . . .  ,am are the m  independent columns of A, then 5  =  [ax,. . . , am] and 
V  =  [am+\• ■ ■ ■, an\. The matrix B  has rank m  and the columns of B  form 
a basis for M.

The matrix B  can be composed from the m  x n matrix A  of rank m
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as follows. Suppose that x  is a BFS with X{ > 0 for 1 <  i < p and 
xj =  0 for p < j  < n. Let the columns of the matrix A  be the set 
{a\ , . . . ,  ap, ap+1, . . . ,  am, am+1, . . . ,  an}, then the first p columns of the ma­
trix B  are a 1;. . . ,  ap. The other m  — p  columns of B  can be chosen from 
the columns ap+\ , . . . ,  an so that these columns together with the columns 
a i, . . . ,  ap form m  linear independent columns. The rn—p columns can be re­

labeled as ap+1, . . . ,  am, and the B  matrix will be B  = [ai, . . . ,  ap, ap+1, . . . ,  am].

Exam ple 2.15. Given a standard form LP

A solution x  = (2,0,0,0) is a BFS of the LP problem with p =  1 and the 
matrix A has rank 2 , rn = 2 , so m  — p = 1. Therefore, the first column of 
B is ai =  (1,0). Since any of the second, third and fourth columns of A  is 

linearly independent with a\, we can choose any of them to be the second 
column of B . That is, B  can be any of the following matrices

Note that, the fifth column a$ is not linearly independent with fti; therefore, 
it cannot be the second column of matrix B.

There are two important tableaus that the simplex method uses. These 
tableaus are given by the following definitions.

D efin ition  2.13. Given an LP problem in a standard form

min cx =  CiXi +  . . .  +  cnxn, Xi >  0 fo r  i = 1, Idots, n, 

subject to A x  = b (A is an n x n matrix)

mm +  2 xz -  x 4

subject to
0 4 2
1 - 2  3

x 2

x 4

\ x* /
x = {x1 , x 2 ,x z ,x 4 ,x*)) > 0.
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1 . A  constraint tableau o f  t h e  s t a n d a r d  f o r m  L P  is  g i v e n  b y

p |6 ]  =  [B\V\b]

where B  is the m  x m  matrix B

2. Let a row c = [c\,. . .  ,cm, cm+1, . . . ,  cn] represent the coefficients of the 
object function ex. The simplex tableau of the standard form LP is

'a b V_b
c 0 cs cv 0

where Cb [ĉ  , . . . ,  j and cv [cm_j_j, . . . ,  cnj

In the following steps we explain briefly the algorithm of the simplex 
method for finding the optimal solution of a linear programming problem. 
For more explanation about the algorithm, look at [39, 13, 14], The method 
starts with an initial basic feasible solution of the standard-form LP and 

searches for a better basic feasible solution until the optimal BFS is reached. 
The steps of the simplex method are as follows:

Step 1 Convert the LP problem into standard-form LP.

Step 2 Determine an initial BFS Xb to start with.

Step 3 Compose the simplex tableau associated to x b - That is,

■A b- \ B V b-
. c 0 .

—
-Cb Cy 0 .

Step 4 Calculate the reduced cost. In this step we apply row reduction to 

convert the matrix B  and the row eg to the identity I  and the zero 
row, (0, . . .  ,0), respectively. The simple tableau becomes

\ B V b 1 r/
— •*—» —

-Cb C y OJ Lo

to 1 B - Xb ] r I W d
Cy -  CBB - lV - c BB - lbi lo C y - c BB - lb

Now, xb = B ~ xb is a basic solution to the system A x = b and is a 
basic feasible solution if x b  > 0. The entry of d y  =  [cm+1, . . . ,  cn] is 
called the reduced cost relative to xb
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S tep  5 Check for the optimality. The BFS Xb obtained in step 4 is optimal 
if and only if c y  — c b B ~ x V  >  0  [14]. That is, if c; =  q  — > 0

for all i =  m  +  1, . . .  , n, we have reached to the optimal solution 

and xb is the optimal BFS to the LP. Otherwise, we continue the 
procedure. The following example is stated for the illustration.

E xam ple  2.16. Consider the following standard form of an LP

Min Zx\ +  2 x 2 +  +  £5

subject to x \ +  £5 = 2

x 2 — 2 x 3 +  £ 4  = 0

I f  we choose the BFS xb  = ( 2 , 0 , 0 , 0 )  as an initial BFS to start the 
simplex algorithm, The simplex tableau is of the form

A b ' ’ B V b ’

c 0 . °B C y 0

1 0 0 1 2

0 1 - 2

CO 0

J
CO 2 1 1 1

O

In step 3, we apply row reduction to convert the matrix B  to the 
identity matrix and to make the entries of c b = 0 .  That is,

1 0 0  1 2 1 0 0 1 2

0 1 - 2  3 0 0 1 - 2  3 0

3 2 1 1 0 0 0 5 - 8 - 6

From step f ,  since c y  =  [5 — 8] ^  0 ,6 4  — — 8 ^  0, the solution 
xb  =  (2,0,0,0) is not the optimal BFS. Therefore, we continue the 

procedure of the algorithm.

S tep  6  Choosing a pivot column and pivot point. In step 5, if the BFS xb  

is not an optimal, there is one or more nonnegative reduced cost Cj in 
c y .  Therefore, we improve the BFS xj5 by modifying an entry in x R 
that corresponds to a point called a pivot point in the matrix tableau 
defined by the following definition.

D efin ition  2.14. In step 5, the simplex tableau is in the following 

form
/
0

B ~ lV B ~ lb i r I W d 1

c-y — Cb B ~ 1V — C B B ~ l b. lo C y - c BB - lb\
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where W  =  [wj],Wj = [wij]T,andd = A  pivot column j  in the

simplex tableau is a column corresponding to the entry Cj that has the 

smallest negative entry in c y .  A pivot point (i , j ) is a point in the 
pivot column j  where i corresponds to the smallest positive ratio ^ L- 
in

S tep  6  Modify the matrix B. In this step we modify the matrix B  by 
replacing a column in B  with the pivot column j  and repeat the 
procedure starting from step 4. Note that in step 4 we apply row 
reduction to make the pivot point (i , j )  to 1 and all other entries of 
the pivot column j  to zero. Moreover, in step 5, if the reduced cost 

Cj < 0 and Wj <  0 , in this case we say that the objective function is

not bounded below and the optimal solution of the LP does not exist.

E xam ple  2.17. Consider the following standard form of an LP

Min + 2a;3 — Xi
subject to x i — 4x3 +  z4 +  3x5 = 1

x 2 +  60:3 — Xi — 2

We apply the simplex method to this example starting with the initial BFS  
xb — (1,2,0,0,0).  The simplex tableau of this example is

A b ' ’ B V b '

c 0 . °B C y 0

rH
1

0 - 4 1 3 1

0 1 6

0

1 2

1
O 0 2

0r—H1 0

Since the reduced cost c y  =  [2 — 10] relative to the BFS xb  =  (1,2,0,0,0) is 
negative, c4 =  — 1 < 0, the BFS xb is not an optimal solution. Therefore, 
we modify the BFS Xb by replacing a column in B  with the pivot column j. 
The column is the fourth column and the pivot point is (1,4). Applying the 
simplex method to the simplex tableau we have:

1 0 - 4 1 3 1

0 1 6 - 1  0 2

0 0 2 - 1  0 1
O

(1) to (2 )

(!) to (3)

1 0 - 4 1

CO 1

1 1 2 0

CO 3

1 0 - 2 0 CO 1
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Since the reduced cost dy < 0 ,  the BFS xb 2 =  ( 0 , 3 , 0 , 1 , 0 )  is not an optimal 
solution. So, we make another pivot step. The next pivot point is ( 2 , 3 )  and 
the simplex tableau will be as follows:

1 0 - 4  1 3 1 ---------> 1 0 4 1 3 1

1 1 2  0  3 3
2 <2>

1 i
2 2 1 0  1

3
2

1  0 - 2  0  3 1 1  0 2  0  3 1

3  2 0  1 9 7
4 ( 2 )  to ( 1 )

i  i
1 0

3 3

2 ( 2 )  to ( 3 )
2 2 2 2

2  1 0  0 6 4

Since all reduced costs are nonnegative, we conclude that x§ = ( 0 , 0 ,  | , 7 , 0 )  

is the optimal BFS to the LP and the objective function has value — 4 .

In this chapter we have included a brief description of Linear programming 
problems and the simplex method that solves these problems. In the next 
chapter we will provide a new problem that can be considered as one of the 

combinatorial optimization problems. This problem is called the domino 
portrait problem, and we will apply some combinatorial optimization tech­
niques to solve this problem. Finally, we will use mathematics properties 
to improve the solution of this problem.

6 4
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Chapter 3

DOMINO PORTRAIT PROBLEM (DPP)

In the previous chapters we briefly discussed combinatorial optimiza­
tion problems and the techniques that solve these problems. In this chapter, 

we provide a new problem which can be considered as a combinatorial opti­
mization problem. This problem, called the domino portrait problem, was 
developed by Robert Bosch [7]. We apply some powerful combinatorial op­
timization algorithms to solve this problem. The algorithms we will use are 

a greedy algorithm and a local search algorithm. In addition, this chap­
ter introduces a program that can construct instances of domino portraits. 
Also, singular value decomposition is used to improve the results.

3.1 Introduction

A domino portrait is an image which is constructed from a complete set 
of dominos, arranged in a matrix to create an approximate image. The 
artist Ken Knowlton constructed a portrait of columnist Martin Grander, 

of Mathematical Scientific American, from six complete sets of double nine 
dominoes in 1993. The purpose of this problem is to find a good position of 

dominoes so that when seen from a distance it looks like the same image. 
You can observe this when you look at the domino portraits of Marilyn 
Monroe and John Lennon ( Figure 3.1), each of which was constructed 
from double nine sets of dominoes by Robert Bosch [7].

Robert Bosch used the integer linear programming method to construct 
domino portraits. He also made a domino portrait of Carl Friedrich Gauss,

65

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



F igu re 3.1: A domino portrait of Marilyn Monroe on the left and John Lennon on the 
right, each of which was constructed from double nine sets of dominoes by Robert Bosch

[7]

which was constructed from 48 complete sets of double nine dominoes (Fig­
ure 3.2). For more detail about his products see [7].

In the following sections we discuss in detail how to create a domino 

portrait. This method involves using a two-dimensional wavelet transform, 

which is a filter in the image process that rescales the target image. In 
Section 4 we describe the structure of a complete set of dominoes. Section 
5 provides the integral linear programming technique that Robert Bosch 
[7] has used to construct such portraits. In the rest of the sections we 
develop new techniques to create domino portraits using combinatorial op­
timization algorithms such as the greedy algorithm and the local search 
algorithm. Moreover, we use mathematics properties, like singular value 
decomposition and image processing, to improve our results. Finally we 
include the conclusions of our results and the C + +  code tha t we use in our 

work.

3.2 Creating a D om ino Portrait

In this section we illustrate the steps of creating a domino portrait. 
These steps are as follows. First, we start with a regular image. Then, we 
convert this image into a portable graymap format (PGM)(Figure 3.3-A). 
Now, the image is divided into pixels which have a grayscale value between
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A portrait of Carl Friedrich G a u ss A D om ino portrait of G a u ss

Figure 3.2: The portrait of Carl Friedrich Gauss is on the left and the dominoes portrait 

is on right, which was constructed from 48 complete sets of double nine dominoes by 

Robert Bosch.

0 and 255. These values are arranged so that each color has its own number. 
For example, completely black has 0 value, whereas 255 is for completely 
white. The values in between correspond to different shades of gray. Next, 
we to rescale the target image into a matrix ( see Figure 3.3-B) using any 
standard techniques include the Photoshop and Gimp [17]. The matrix 
has a dimension of 10s x 11s if we are using a complete set of double nine 
dominoes (Figure 3.6-A) or 7s x 8s if we are using a complete set of double 

six dominoes (Figure 3.6-B), where s2 is the number of complete sets of 
dominoes that we use to create a domino portrait. In addition, the two- 
dimensional (2D) wavelet transform, which is a filter in the image process, 

can also be used to rescale the target image. The description of the process 
using 2D wavelet transform will be explained in the next section.

After that, we compute the mean grayscale value for each square in the 
results matrix. That is, we convert these squares from the ”0 -  255” scale 
into a domino scale which is 0 (completely white) to 9 (completely black), 
assuming that we are using white double nine dominoes. If we use black 
dominoes, we change that conversion. That is, 0 (completely black) to 9 
(completely white). To perform this conversion, simply divide the maximum 
value of the grayscale, which is 255, by the largest numerated number in a 

domino plus one for the empty square. For example, the largest numerated
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A: Target image B: Rescaling the target image
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C: Photo-matrixD: Domino-matrix

Figure 3.3: The steps of creation domino portrait

number in double nine dominoes is 9. The mean value is 255/10 =  25.5. 
That is, for each square that has a grayscale value between 0 and 25.5, we 

give it a 0. Whereas, if it has a value between 25.5 and 50 we give it a 1 
and so on.
Now, we have a matrix of 10s x 11s squares tha t have values from 0 to 9. 
This matrix is called a photo-matrix (Figure 3.3-C). We denote the square 

(i , j )  in this matrix by phJ. For instance, in Figure 3.3-C, the first square 
of the first row, which has value 0, is denoted as p00.
Finally, we use the combinatorial optimization algorithms to convert the 

photo-matrix into a matrix that is composed of dominoes by finding a good 
place for these dominoes, such that they create an image that resembles 
the real image when seen from a distance. This matrix is called a domino 
matrix.

In the next section we briefly illustrate the 2D wavelet transform to 
rescale the target image.
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A: T h e  original im ag e  B: T he first level o f th e  two-
d im ensional w av e le t transfo im

(WZ")/4 ^

A f l

D: A photo-m atrix  o f s iz e  M y n  after 
applying n tim es o f 2D -w avelet transform

Figure 3.4: The steps of rescaling the target image, figure A, using the two-dimensional 

wavelet transform and composing the photo-matrix, figure D.

3.3 Tw o-D im ensional W avelet Transform

In this section we will use the two-dimensional wavelet transform when 

we rescale the target image (Figure 3.3-A). The two-dimensional wavelet 
transform is a filter in the image process that has many applications. For 
example, it used by the Federal Bureau of Investigation (FBI) in its finger­
print identification system [6].

The two-dimensional wavelet transform rescales the target image by reduc­
ing the resolution of its columns and rows using four combinations of low 
and high pass filters, which are denoted as H and L respectively. First, we 
start with an M 2n x N 2n target image (see Figure 3.4-A) where n  is an in­
teger number that refers to the number of times the two-dimension wavelet 
transform is applied so that we end up with an image of size M  x N. Sec­
ond, we divide the original image into four subimages, each of which is of
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size x We apply the low pass filter to the columns and the rows 

of the top left image. The bottom left image can be obtained by applying 
the low pass filter to its columns and the high pass filter to its rows. For 
the top right image, we apply the high pass filter to its columns and the 
low pass filter to its rows. Finally, the bottom right image is obtained by 
applying the high pass filter to its columns and rows. These subimages are 
shown in Figure 3.4-B.
This is one level of the decomposition of the two-dimensional wavelet trans­

form. The second level is the same as the first level; however, we apply it 
to the subimage that is in the top left where the low pass filter is applied to 

its columns and rows. That is, we divide this image into four subimages of 
size ATfA x Then, we apply the same operation to these four subimages 

(see Figure 3.4-C).

After applying the two-dimensional wavelet transform n  times, we will 
have a matrix of size M  x N  ( Figure 3.4-D ) with real numbers that can be 
mapped to 0 to (D  — 1), which is the photo-matrix defined in Figure 3.3-C.

E xam ple  3.1. Figure 3.5-A, shows an original image of an instance of 
Marilyn Monroe of size 264 x 240, i.e., 33(23) x 30(23). Assume that we 

need to construct a domino portrait of Marilyn Monroe of size 33 x 30; 
Therefore, we rescale the original image to a size of 33 x 30. That is, 
we apply the two-dimensional wavelet transform three times to the original 
image. Figure 3.5-B, shows the first reduced resolution of the original image 
where we applied the low pass filter to the columns and rows of its top left 
subimage. The size of this image is 33(22) x 30(22). Applying the two- 
dimensional wavelet transform a second time to the image in Figure 3.5-B, 
we obtain a reduced resolution image of size 33(2) x 30(2) which is shown 
in Figure 3.5-C. Finally, Figure 3.5-D, shows a reduced resolution of the 
image of Marilyn Monroe. The size of this image is 33 x 30 which is a 

matrix of real values that can be mapped to 0 to 9.
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50 100 150 200
A: A n  o r ig in a l im a g e  o f  M arilyn  M o n ro e .

S iz e :  33(23)x 3 0 (2 5)

5 10 15 20 25

D: A  r e d u c e d  re s o lu t io n  o f  th e  o r ig in a l im ag e . 

S iz e :  33x30
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B : A  r e d u c e d  re s o lu t io n  o f  th e  o r ig in a l im ag e .

S iz e :  33(22)x 3 0 (2 a)
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C : A  r e d u c e d  re s o lu t io n  o f  th e  o r ig in a l im a g e .

S iz e :  33(2) x 30(2)

Figure 3.5: Rescaling the image of Marilyn Monroe of size 264 x 240, (A), using the 

two-dimensional wavelet transform. The reduced resolution of the Marilyn Monroe image 

of size 33 x 30 is on the (D). The detail o f these images is described in Example 3.1
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A: A complete set of double nine dominoes B: A complete set of double six dominoes

Figure 3.6: Complete sets of double nine and six dominoes

A black domino A white domino

Figure 3.7: A black and white dominoes

By using the two-dimensional wavelet transform, we will get a better 
resolution tha t allows us to find a better solution for the domino portrait 
problem.

3.4 D om ino Structure

There are several kinds of complete sets of dominoes. We are interested 
in two kinds of them, which are a complete set of double nine and double 
six dominoes (see Figure 3.6) and completely white or completely black 
(see Figure 3.7). A complete set of double nine dominoes is composed of 
55 individual dominoes, with each domino made from two squares. These 
dominoes are divided into 10 double dominoes and 45 non-double domi­
noes. Whereas, the complete set of double six dominoes is composed of 28 
dominoes which are divided into 7 double dominoes and 21 non-double (see 
Figure 3.6).

The next important issue in a domino structure is the orientation of each 
domino in the domino-matrix. That is, we denote each domino by letter
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Figure 3.8: The notations of the dominoes according to  their orientation in the domino- 

matrix

according to its orientation in the domino matrix. These orientations (Fig­
ure 3.8) are as follows: The non-double dominoes have four orientations. 
The dominoes that have vertical orientation with the lower number square 

on top are denoted by v\. If the lower number square is on the bottom, 
it is denoted as If a domino has a horizontal orientation and the lower 

number square is on left, we denote it by hi, and /12 if the square that has 

the lower number is on the right. In the case of double dominoes, however, 

there are only two orientations, v for vertical and h for horizontal, as both 
sides are equal. All these notations are shown in Figure 3.8.

After we describe the structure of a complete set of dominoes and the 
steps in creating domino portraits, we can formulate the domino portrait 
problem as a combinatorial optimization problem. That is, we define the 

objective function and the constraints of the domino portrait problem that 
was developed by Robert Bosch [7].
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3.5 Integral Linear Programming Formulation

In this section, we will convert the domino portrait problem to a combi­

natorial optimization problem. That is, we will define the objective function 
and the constraints of the domino portrait problem that were developed by 

R. Bosch [7].

3.5.1 Param eters

First, we define new parameters of this problem. Let D be the largest 
number in a complete set of dominoes plus one. For example, D = 10 and 
D — 7 in a complete set of double nine and double six dominoes respectively. 
The total number of dominoes in a complete set of double D dominoes is 
given by:

A complete set of double D dominoes creates D 2 + D  squares of a portrait. 
The goal is to construct a domino portrait of dimensions sD  x * ( D + 1 )  
using s2 complete sets of double (D — 1) dominoes, s >  1. The dimensions 

of a portrait is M  x N , where

For example, if D = 10, s =  3, we have a domino portrait of dimensions 
30 x 33 , with 9 complete sets of double nine dominoes.

3.5.2 D ecision Variables

The decision variables of this problem are determined according to the 
position and the orientation of each domino in the domino-matrix. Let 
x ( m , n , o , i , j ) be the decision of placing the domino (m , n ) in the position 
(i , j),  row i and column j, in the domino-matrix with orientation o. The 

variable x ( m , n , o , i , j )  takes only two possible numbers, 1 or 0. That is, if

D 2 + D 
2

M  = s(D +  1) and N  = sD
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1i

A: A domino (m,n) in the domino-matrix B: A domino (m,n) in the domino-matrix
where squares m  and n are in where squares n and m  are In
posidon (IJ) and (1+1J) respectively position (IJ) and (i+IJ) respectively

C: A domino (m ji) In the domino-matrix D: A domino (m ji) in the domino-matrix
where squares m and n are In where squares n and m are in
position (ij) and (IJ+1) respectively position (IJ) and flj+1) respectively

Figure 3.9: The position of the domino (m , n ) in the domino-matrix according to the 

orientation o  in the decision variable x ( m ,  n ,  o,  i ,  j ) .  The detail of this figure is described 

in Remark 3.5.1

the domino (m,n)  is placed in position (i , j )  , in the domino-matrix with 

orientation o , we let x ( m , n , o , i , j ) =  1 or 0 if not. For example, if the 
domino (1,2) is placed in position (3,4) of the domino-matrix with orienta­
tion o = vi, the decision variable x{\ ,  2, iq, 3,4) =  1.

The position of each square of the domino (m , n ) in the domino-matrix 
depends on the orientation o in the decision variable x (m, n , o , i , j ) .  To 
illustrate this, we state the following remarks:

R em ark  3.5.1. Let the square m  be the square that has value m  in the 
domino (m , n) and the square n  be the square that has value n. Let m  < n  

throughout.

1. If the orientation o = vi in the decision variable x (m , n , v i , i , j ) ,  the 

domino (m, n) takes the position in the domino-matrix such that the 
square m  is in the position (i, j )  and the square n  in the position 
(i +  1 , j )  of the domino-matrix, (see Figure 3.9-A).
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N N

M

A: A dom ino (m,n) in the domino-matrix 
with horizontal orientation o 6

M

B: A domino (m ji) in the  domino-matrix 
with horizontal orientation °e{v,v ,,v2}

Figure 3.10: All possible places in the domino-matrix that the domino (m, n) can takes 

with vertical orientations (A), and horizontal orientations (B).

2. If o =  v2 in the decision variable x(m, n, v2 , i , j ) ,  the square m  will be 
in the position (i +  1 , j )  of the domino-matrix and the square n in the 
position see Figure 3.9-B.

3. If the orientation o = hi in the decision variable x ( m ,n ,h i , i , j ) ,  the 
domino (m, n ) takes the position in the domino-matrix such that the 
square m  is in the position (i , j)  and the square n is in the position 
(■i , j  +  1) of the domino-matrix, (see Figure 3.9-C).

4. If o = h2 in the decision variable x(m, n, h2, i , j ) ,  the square m  will be 
in the position (i , j  +  1) of the domino-matrix and the square n will 

be in the position (see Figure 3.9-D).

5. If the orientation o = v or o = h (m =  n) is the decision variable, the 
domino (m, n) is placed in the domino-matrix so that the square m is 
in the positions (i ,j)  and (i +  1 , j )  if o — v and in the positions (i ,j)  
and (*, j  + 1) if o = h.

These remarks are important when we construct the objective function 
of this problem.

The total number of decision variables can be computed by answering the 
following question: How many ways can the domino (m, n) with orientation
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o take place in the domino-matrix of dimensions M  x N ?
We classify all dominoes (m , n ) into two cases: double dominoes (m =  n); 
and non-double dominoes (m ^  n). Each of them has two subcases accord­
ing to the orientation o. If the orientation is vertical, o E {v, Vi, v2}, these 
kinds of dominoes can take (M  -  1) x A' possible places in the domino- 

matrix of dimensions M  x N,  (see Figure 3.11-A). Whereas, the horizontal 

dominoes, 0  E {h,h±,h2}, can take M  x (N  — 1) possible places in the 
domino-matrix, (see Figure 3.11-B). The following table describes all pos­

sible decision variables x (m ,n ,o , i , j ) .  We let m  < n  throughout.

1 — c a s e m  =  n ,o  =  v  : x(m,  m,  v , i , j ) ,  

There are D  x  (M  - l ) x J V  decision variables,

for m  :=  0 to D  — 1 

for i  := 1 to M  — 1 

for j  := 1 to N

2 — c a s e m  =  n ,o  =  h : x ( m , m , h , i ,  j ) ,  

There are D  x M  x ( N  — 1) decision variables,

for m  : =  0 to D  — 1 

for i :=  1 to M  

for j  : =  1 to N  — 1

3 — case m  <  n ,o  =  v i , v 2 '■ x ( m , n , o , i , j ) ,  

There are 2 x (f() x (M  — 1) x N  decision variables

for to :=  0 to D  — 2 

for n  :=  m  +  1 to D  — 1 

for i  : =  1 to M  — 1 

for j  : =  1 to N

4 — case m  <  n ,o  =  h i , h 2 : x ( m , n , o , i , j ) ,  

There are 2 x (^ ) x M  x ( N  — 1) decision variables

for to :=  0 to D  — 2 

for n  : =  m  +  1 to D  — 1 

for i  :=  1 to M  

for j  :=  1 to N  — 1

Table 3.5.1: The decision variables of the domino portrait problem

Note that, a complete set of double (D  — 1) dominoes has (^) non­
double dominoes (m 7  ̂n) and D  double dominoes (m =  n), where D  is the 
largest numerated number in a complete set of dominoes plus one. Case 1 
and 2 include double dominoes with vertical orientation (o =  v) and hor­
izontal orientation (0  =  h) respectively. Since a complete set of dominoes
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has D  double dominoes, the total number of possible places that the domi­
noes with vertical orientation is equal D  x (M — 1) x IV and D  x M  x (N  — 1) 

for the dominoes with horizontal orientation.
In Case 3 and 4, we have non-double dominoes with vertical orientation 
(o =  {v i ,v2}) and horizontal orientation (o =  {hi, h2}) respectively. More­
over, there are (^) non-double dominoes in a complete set of dominoes, so 
the vertical orientation dominoes have 2 x x f l x  (M — 1) x N  possible 

places in the domino-matrix and the horizontal orientation dominoes have 
2 x (^) x D  x M  x (TV — 1) possible places.

Consequently, the total number of decision variables is equal to the summa­
tion of all these cases. That is, the total number of the decision variables 
('Tdv ) needed to create an M  x N  domino portrait using s2 of complete sets 

of double (D — 1) dominoes is given by the following equation:

Tdv  =  D 2 (2M2 - M - N ) (3.1)

where M  — s(D  +  1) and N  = sD. For example, If D  =  10 and for any 

s > 1, we have an M  x N  domino-matrix where M  = 10s and N  =  11s. 
The total number of decision variables for creating a domino portrait using 
s2 of complete set of double 9 dominoes using equation 3.1 is:

Tdv  =  ( 1 0 ) 2 [ 2 ( 1 0 s ) 2 -  10s -  11s]

=  100 [200s2 -2 1 s ]

=  22000s2 -  2100s

If s =  3, the total number of decision variables is equal to 191,700 variables. 
In the next section we introduce the objective function of the domino por­

trait problem.

3.5.3 O bjective Function

The objective function of the domino portrait problem is the sum­
mation of the costs or the penalties of placing each domino (m, n) in the 
domino-matrix. The cost of placing a domino (m, n ) in domino-matrix can
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Figure 3.11: The photo-matrix P\pij\ of the Example 3.2.

be determined by computing the L2-norm between the domino (m, n) and 
each s q u a r e , , in the photo-matrix (Figure 3.3-C). This cost also depends 

on the orientation o of the domino (m, n) in the domino-matrix ( remarks
3.5.1 ). Let the variable c (m ,n ,o , i , j )  be the cost of placing domino (m , n ) 
with orientation o in position (i , j )  in the domino-matrix. We use L2-norm 
to compute the cost c(m ,n ,o , i , j ) .  Using the remarks in 3.5.1, the cost of 
placing domino (m , n ) with orientation o in position (i , j )  of the domino- 
matrix, c(m ,n ,o , i , j ) ,  is given by the equation:

1 - I f  o = v => c (m ,n ,v , i , j )  = ( m - p i j ) 2 + ( n - p i + l t j ) 2

2 - I f  o = h => c (m ,n ,h , i , j )  = ( m - p i j ) 2 + ( n - p i t j + 1 ) 2

3 -  I f  o = v1 =*• c (m ,n ,v i , i , j )  = ( r n - p i j ) 2 + ( n - p i+1j ) 2

4 -  I f  o = v2 =>• c(m,n,V2 , i , j )  = ( n - p i t j ) 2 + ( m - p i + l i j ) 2

5 -  I f  o = h\ c{m ,n ,h 1 , i , j )  = ( m - p i j ) 2 + { n - p iij+i ) 2

6 -  I f  o = v2 => c (m ,n ,h 2 , i , j )  = ( n - p i j ) 2 + ( m - p i J + 1 ) 2

where ph:j is the entry of row i and column j  of the photo-matrix P\p%J].

E xam ple  3.2. Assume that a photo-matrix has the following positions 
Pi,8 =  4, ps,8 =  5 and p7>9 =  6 , (see Figure 3.2). The costs of placing the 
following dominoes are as follows:
1. c(2,3, v\ , 7 ,8 ) =  (2 — 4)2 +  (3 — 5)2 =  8

2. c(3,6,n1,7,8) =  ( 3 - 4 )2 +  ( 6 - 5 )2 =  2
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3. c(3,6, hi, 7,8) =  (3 — 4)2 +  (6 — 6)2 =  1
From 1 and 2, the cost of placing domino (3,6) with orientation vx in position 
(7,8 ) is 2, which is less than the cost of placing domino (2,3) with the same 
orientation and position. Hence, the domino (3,6) is a candidate to be 
placed in row 7 and column 8 in the domino-matrix. That is, we let the 
decision variable x(3 ,6 , vx, 7 ,8 ) =  1 and x(2 ,3, vx, 7 ,8 ) =  0. Furthermore, 

from equation 3 and 4, we can determine the best direction of domino (3,6) 
in position (7,8). Since the cost of placing domino (3,6) with o =  hx is 1, 

which is less than the cost of placing it with orientation vx, it is a better 

candidate to be in horizontal orientation o = hx. Consequently, we let the 

decision variable x(3 ,6 , hx, 7 ,8 ) =  1 and x(3 ,6 , vx, 7 ,8 ) =  0.

The objective function of this problem is determined as follows: First 
for each decision variable x(m, n, o, i , j ), we compute its corresponding cost 
c(m, n, o, i , j ). After that, we multiply each decision variable x  by its corre­
sponding cost c. Finally, we minimize the summation of these multiplication 
terms. That is, the objective function of creating a domino portrait of di­
mensions M  x N  using s2 complete set of double D dominoes is given by 
the following linear function:

where X  is the set of all decision variables x ( m , n , o , i , j ) defined in table
3.5.1.

3.5.4 Constraints

The constraints of the domino portrait problem can be classified into 
two types. Type-one (Tj) is for the dominoes to not overlap if they are 
placed in the domino-matrix. That is, if a domino (to, n) is placed in po­
sition (i , j )  in the domino matrix, all other dominoes that cause overlap 
with this domino should be excluded from the solution. For example, if a 

domino (2,3) is placed in position (1,2) of the domino-matrix with orien­
tation v2 that is, the value of the decision variable x( 2 , 3, v2 , 1 , 2 ) =  1 , all 
other dominoes that cause overlap with this domino should be eliminated.

Minimize (3.3)
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That is, if the decision variable x(2,3, v2 , l ,2 )  =  1, the value of all other 
decision variables corresponding to those dominoes that cause overlap with 
domino (2,3) should equal zero. These variables are of the following form:

. x(m, n, o, 1, 2) =  0 : m  ^  2, n  7  ̂ 3, o =  v\, v2, hi, h2 

. x (m ,m ,o ,  1,2) =  0 :V m  and o — v ,h

. x(m, n, o, 2 , 2 ) =  0 : V m, n and o = v\, V2 , hi,  h2

. x(m, m, 0 , 2,2) =  0 :V m  and o = v ,h

That is, the summation of the decision variable rc(2,3, ^2? 1, 2) and all deci­
sion variables that satisfy the above form should equal 1 .

Therefore, the type-one constraints of creating a domino portrait of 
dimensions M  x N  from s2 complete set of double (D — 1) dominoes is 
given by the following system of linear equations:

x(m, m, v , i , j )  + Y ^  x (m > m, v , i  + 1 , j )  +  ^  x (m >m , h, h j)
m m  m

+ Y ^ x (m ,m ,v , i ,  j  +  1) +  ^  x { m ,n ,v i , i , j )  +  ^  x ( m ,n , v 2 , i , j ) +
m  m < n  m < n

+  ^ 2  x ( m ,n , v u i + l , j )  +  x ( m ,n ,v 2,i + l , j )  +  ^  x ( m ,n ,h i , i , j ) +
m < n  m < n  m < n

Y .  x ( m ,n ,h 2 , i , j ) +  Y  x ( m , n , h i , i , j  +  1) +  ^  x ( m ,n ,h 2 , i , j  +  1) =  1
m < n  m < n  m < n

(3.4)

where
0 < m  < D — 1, 1 < n <  — 1,

1 < i < M ,  i ^ M  — 1 i f  o £ { v ,v i ,v2}
1 < j < N ,  j ^ N - 1  i f  o £ { h , h u h2}

and M  — s(D  +  1), N  = s (N  +  1). Since the domino-matrix is of dimen­
sions M  x N  , we have M  x N  squares to be filled with exactly one domino. 

That is, each square of the domino-matrix has one constraint. Therefore, 
type-one constraint has M  x N  constraints.

The type-two constraint of the domino portrait is as follows. Because 
the problem requires to use s2 complete sets of domino, each domino (m, n)
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must be used exactly s2 times. That is, the type-two constraint is the 
following system of linear equations

]P x ( m , n , o , i , j )  = s2, (3.5)
o,i,j

which is one constraint for each domino (m, n) in a complete set of double 
(.D — 1) dominoes. For instance, the domino (2,3), case s = 3 , since we 

are required to use s2 — 32 complete sets of dominoes, the constraint is as 
follows:

^ 2  x (2> 3, V!,i , j)  +  x (2> 3, V2 , i , j )  + x(2 ,3, h i , i , j ) +
i , j  h j  i , j

^ ^ £ (2 ,3 , h2 , i , j )  = 9

where the indices i and j  run as follows:

for i := 1 to M  — 1

for j  := 1 to N  — 1

M  = s(D +  1) and N  = sD
Since a complete set of dominoes consists of D  +  (D2) , dominoes, we have 

(.D + (2 ) ) 6'2 type-two constraints. Consequently, the total number of con­
straints (Tc ) is the summation of type-one and type-two constraints, which 
is defined by the following equation:

Tc = M x N + [ D + ( ^ j ] s 2 (3.6)

For example, in the case where D = 10 and s =  3 , the total number of 

constraints, both type-one and type-two, is 1045.

The standard form of the domino portrait problem, which was developed 
by Robert Bosch [7], will be introduced in the next section.

3.5.5 Standard Form LP for the Dom ino Portrait Problem

We conclude from the previous section that the domino portrait prob­
lem maybe cast as a linear programming problem. This is because the ob­
jective function is a linear function of the decision variables, x ( m ,n ,o , i , j )
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Figure 3.12: A complete set of double two dominoes

, subject to a system of linear equations being satisfied by these decision 
variables. Hence, this problem is a linear programming problem and the 
standard form of this problem is as follows:

Standard Form LP

Minimize  E c ( m ,n ,o , i , j ) x ( m ,n ,o , i , j )
x£X

subject to

A xX  =  1

A 2X  = s 2 ,

where X  is the set of all decision variables defined in table 3.5.1 and X  is 
the column vector whose entries are all elements in X .  The matrices A\  and 
A 2 are the coefficient matrices of equation 3.4 and 3.5 respectively. More­
over, since the decision variables take only the values 0 or 1, that is, integer 

values, this problem becomes an integer linear programming problem.

This problem is not simple because the decision variable and the con­

straints are huge. To see that, let us consider the following example where 
D =  3 and s =  1, which is a simple example compared with a problem 
where D = 10 and 5 =  3:

E xam ple  3.3. Case D  =  3, Double two dominoes, Figure 3.12, and 5 =  1, 
we have a photo-matrix P\pij] and a domino-matrix D\diJ] of dimensions 
M  x N  where M  = s(D +  1) =  4 and N  =  sD  =  3, that is, these matrices 
are of dimensions 4 x 3  which are given by the following:
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0 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 152 h
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1
1 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1
2 0 1 0 0 0 0 0 0 0 1 0 □ 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1
3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 1
4 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 1 0 0 1
5 0 0 0 1 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 1 0 0 0 1 0 1
6 0 0 0 0 1 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 1 0 0 0 1 1
7 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 1
B 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 1
9 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 0 1
10 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 1
11 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1
12 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
13 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 1
15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
16 0 0 0 0 0 0 0 □ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
Ct 1 1 1 4 0 1 4 8 4 1 1 1 2 2 1 2 2 2 5 5 5 4 8 5 4 0 4 4 1 0 2 4 4 4 0

Figure 3.13: The simplex tableau of the domino portrait problem with D  = 3 and 

s  =  1. The first row represents the decision variables after they are relabeled. The last 

row represents the cost function. The detail of this tableau will be provided later.

Domino-Matrix

The domino portrait of dimensions 4 x 3  should be created from one 
complete set of double two dominoes. There are 153 decision variables and 
18 constraints in this problem. The first 33 columns of the simplex tableau 

of this problem is shown in Figure 3.13.

Exam ple 3.4.
If D  =  10 and s = 9, we have a domino portrait of dimensions 33 x 30. That 
is, the domino-matrix should be created from 9 complete sets of double nine 
dominoes. There are 191700 decision variables and 1045 constraints in this 
case. The simplex tableau is given by Figure 3.14.

As we have seen from the above tableaus, these kinds of problems are quite 
difficult to solve.
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0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 191699 b
0 1
1 1
2

989 1
990 9

9

9
1045 0

Figure 3.14: The simplex tableau of the domino portrait problem with D  — 10 and 

s =  3.

There are some methods that might solve such kind of problem, for exam­

ple, Branch-And-Bound method [36] or Branch-and-cut method [4], These 
kinds of algorithms need subroutines to work with such as the simplex 
method or interior point algorithms which are based on many steps that 
are appropriate to use to solve small problems, however are inadequate for 
long problems similar to the current problem. Robert Bosch [7] has used 
software, called CPLEX (version 6 .6 ), in his computation. In the following 
sections we will formulate the domino portrait problem as a combinatorial 

optimization problem and solve it using significant combinatorial optimiza­
tion algorithms. In the next section, we use a greedy algorithm to solve the 
domino portrait problem.
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3.6 G reedy Algorithm  For Solving The Dom ino Portrait Prob­
lem

The domino portrait problem is a problem of finding a good rectangular 

arrangement of dominoes such that it forms a resemblance to an ordinary 
portrait when seen from a distance. An instance of the domino portrait 
is that we are given two integers s and D  and an M  x N  photo-matrix 
(Figure 3.3-C) where M  = s(D +  1) and N  = sD. The problem is to 

create a domino portrait of dimensions M  x N  from s 2 complete sets of 
double (D  — 1) dominoes. That is, each domino (m, n) should be placed in 

the domino-matrix (Figure 3.3-D) with orientation o. A feasible solution 
of this problem can be considered as a feasible domino arrangement. The 
solution space, from which a feasible solution is created, is the set of all de­
cision variables x(m, n, o, i , j ) defined in tableau 3.5.1. Since these variables 
and therefore the solution space are finite, this problem can be formulated 
as a combinatorial optimization problem.

A greedy algorithm can be used to solve an instance of the domino 

portrait problem. A greedy algorithm (Section 2.2) is an algorithm that 

searches for a best (optimal) solution of a problem using several stages. At 
each stage, it makes its choice optimal. Some times, because of the strategy 
that greedy algorithms use, they reach a solution that is not feasible. This 
is because the constraints are not exhaustively satisfied.

In the next section we illustrate the search strategy that is used in a 
greedy algorithm to solve the domino portrait problem.

3.6.1 Search Strategy

The greedy strategy that is used for solving an instance of the domino 
portrait problem depends on several stages. Through these stages, it builds 
a best solution consisting of decision variables x(m, n, o, i , j )  which are ele­
ments of the solution space X  where

X  = {a; : x  is a decision variable defined in tableau 3.5.1,}
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and x  = x ( m , n , o , i , j ) means the domino (m , n ) has position row i and 
column j  in the domino-matrix with orientation o.
The search strategy of the greedy algorithm for solving this problem can 
be described as follows. First, we start by sorting all decision variables 

x ( m ,n ,o , i , j )  G X  in increasing order according to their corresponding 

cost c (m ,n ,o , i , j )  of the objective function (section 5.5.3). Second, we 
choose a decision variable x ( m , n, o, i , j ) that has the smallest corresponding 

cost c (m ,n ,o , i , j )  to be a part of the solution that we are trying to build. 
That is, the domino (m , n ) is placed in position (i, j )  of the domino-matrix 
with orientation o. Consequently, in the next stage, we ignore all decision 

variables that conflict with the one already chosen. After ignoring these 
variables, we create a new set that consists of all the remaining decision 

variables. This set is called the active set, which is the set of decision 
variables which do not conflict with the choice already made. After that, 

we choose the next decision variable from the active set that has the smallest 
corresponding cost and update the active set by deleting from the active 
set all decision variables that conflict with the chosen decision variable. 
We continue the same procedure until the algorithm is terminated. The 
algorithm is terminated if one of the following two condition is satisfied:

1. If the number of chosen decision variables reaches the total required 

dominoes (T rd ) which is given by the following equation

Trd = s2 [D2 +  — ~ V ], (3.7)
z

In this case, the algorithm has successfully found a feasible solution 
that satisfies the all constraints of the problem. This solution may or 

may not the best feasible solution.

2. If the active set has no remaining elements. In this case, the algorithm 
has reached a solution that is not a feasible solution. This is because 
constraints have not been completely satisfied.

Usually, as we mention above, the solution that is built by the greedy 
algorithm does not satisfy all the constraints (section 5.5.4) of this problem.
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Figure 3.15: A solution, not feasible, of the instance of the D PP in Example 3.5 found 

using the greedy algorithm

Exam ple 3.5.
Figure 3.15 shows a solution y of the problem in example 3.3 which is an 
instance of domino portrait problem with D — 3 and s — 1. The solution 
y which is given by

y =  {aq(0 , 1 , V\, 1 , 1), aj2(0 , 2 , rq, 1 ,3), ®3(0 ,0 , v, 2 , 2 ),

2:4 (1 ,1, Fi, 3,1), £ 5(1 ,2, w2, 3,3)},

is found using the greedy algorithm. The algorithm built the solution y 
by choosing these decision variables x\, X2 , £3 , X4 and x 5 according to their 

corresponding costs 0 ,0 ,0,1  and 1 respectively, which are the smallest costs 
of the objective function. Since the solution y does not contain all the 
required dominoes, which are 6 using equation 3.7, this solution is not a 
feasible solution. Later, we will see how can we force the greedy algorithm 
to build a feasible solution that satisfies all the constraints of the problem. 
This can be done by analyzing mathematically the problem and finding 
a new strategy that can build a feasible solution to the domino portrait 
problem.

In the following section we will remodel the domino portrait problem 
so that we can use the computer language to apply the greedy algorithm to 

the domino portrait problem.
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3.6.2 Remodeling the Domino Portrait Problem

In this section we remodel the domino portrait problem so that we can 
apply the greedy algorithm to solve it. This will be shown in the following

1. Labeling th e D ecision Variables:
In this step we re-label the decision variable, x ( m ,n ,o , i , j )  , with a 

new variable X t where t is arranged from 0 to Tdv  — 1 , where Tdv  is 
the total number of decision variables defined by equation 3.1. The 

new decision variables are of the form:

For example, in Example 3.5, we label x (0 ,1,v\, 1,1) by X 4 and 
x( l ,  2 , V2 , 1 , 0 ) by X 79, where we denoted the orientations v, h, v4, v2, hi 
and h2 by 0, 1, 2, 3, 4, and 5 respectively. Moreover, since the decision 
variables x ( m , n , o , i , j ) take values 0 or 1, the variables X t also take 
values of 0 or 1, that is, X t e  {0,1}

2. C onstructing th e sim plex tableau:
We began by constructing a tableau, called the simplex tableau which 

is the tableau that is defined in the simplex method (section 4.2). The 
number of rows in the new matrix is the total number of constraints 
Tc defined in equation 3.6, plus one row for the objective function. 
Whereas, the number of columns is the total number of decision vari­
ables, Tdv  defined in equation 3.7, plus one column for the matrix 

b, which is defined below. Therefore, the dimensions of the simplex 
tableau is (Tc +  1) x (Tdv  +  1), and it is of the form:

steps.

X Q, X U . . .  ,Xrdv- 1

( 1 \

simplex tableau: b
s
1
,2

\ s 2 J
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where A is T e x  Tdv  matrix, representing the constraints of the domino 
portrait problem. The row d represents the coefficients of the objective 
function. The entries l ’s and s2’s in column d are the right hand side 
of the type-one and type-two constraints respectively and defined in 
equation 3.4 and 3.5 respectively.

3. Creating the Boundary Variables
In this step we create the boundary variables, X„min[t] and A_max[t], 

for each variable X t. These boundaries take values of 0 or 1 and bound 

the variable X t. That is,

X_min[t]< Xt  <  Xjmax\b]

These boundaries determine whether or not X t is a part of the solution 
of the problem. Therefore, if the value of X„min[t] and V_max[t] are 
both equal to one, then X t — 1, so X t is a solution and hence we 

place the corresponding domino in the domino-matrix (Figure 3.3- 
D). However, if AT_min[t] and X_max[t] are both equal to zero, then 

X t =  0 and we exclude the corresponding domino. At the beginning, 
we require that

X_min[t]= 0 and AT_max[t]= 1, for all t € {0,1 , . . . ,  Tdv  — 1} 

that is,

0 =  X j n i n [ t ] < X t < X_max[t] =  1, V t  € {0,1 , . . . ,  Tdv — 1}

3.6.3 The G reedy algorithm  applied to  the N ew  M odel o f D P P

After creating the simplex tableau and the boundary variables, we 
apply the greedy algorithm steps, defined in Section 3.6.1, for the new 

model of the domino portrait problem (DPP). We create a recursive function 
called choose-function. The function builds a solution for the DPP using 
the steps of the greedy algorithm. The choose_function stops when one of 
the conditions defined in Section 3.6.1 is satisfied.
Following is the procedure the greedy algorithm uses for solving the new 
model of the domino portrait problem.
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Step 1. Ordering th e Colum ns and Com posing th e A ctive Set M atrix
Before we start with the procedure of choose Junction, we sort the

columns, X t , in increasing order according to the smallest
cost c (m ,n ,o , i , j )  of the objective function defined in equation 3.2.

That is, the column i x is before i2, if the corresponding value in the 

last row of the simplex tableau of i\ is less than the corresponding 

value of 12 ■ In other words, the first column we start with must have 
the least value in the corresponding last row in the simplex tableau.
In the case where the values of the costs are equal, we sort them ac­
cording to the least index. For example, in Example 3.3, case D = 3 
and s = 1, the first row of the simplex tableau tha t is defined below 
shows the index t, which represents the decision variable X t. The last 
row represents the cost for the corresponding column t.

column 0 1 2 3 4 5 6 7 8

Last row 1 1 1 4 0 1 2 5 8
( The first and the last rows of the simplex tableau for the instance of the D PP

with D  =  3 and s  =  1.)

That is, the last row in the simplex tableau is the corresponding cost 

for each column. As we see from the above tableau, column 4 has a 
cost of 0, which is the smallest cost, so the first column in that list is

4. Moreover, columns 0, 1, 2, and 5 have the same costs value, so we 
sort them as 0, 1, 2, 5. Hence, we sort all these columns as follows:

4 , . . . ,  0 , 1 , 2 ,5 , . . . ,  6 , . . . ,  3 , . . . ,  7 , . . . ,  8 , . . . ,  and so on.

After we sort these columns, we save them in the first row of a new 
matrix, called the active set matrix (A-S), which is a matrix of or­
der Trd  x Tdv , where Trd  is the total required dominoes and Tdv 
is the total decision variables defined in equation 3.7 and 3.1 respec­
tively. The active set, A-S, is the set of columns which do not conflict 
with the choice already made. The entries of the first row of this
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matrix represent the decision variables x ( m , n , o , i , j ) in descending 

order according to the smallest cost value c(m ,n ,o , i , j ) .  The active 
set {A — S) matrix is of the following form:

depth/dv 0 1 ..............  Tdv-1
0
1

Trd

(Active set (A-S) matrix)

The columns in the A-S matrix are ordered with respect to the ob­
jective function.

Step 2. Choose_function [depth]
In this step, the choose_function starts by making a loop of several 
steps, which are as follows:

Step 2.1 Select Colum n
After sorting those columns, we select the first column in the 
A-S matrix, say tc. This column is a candidate column to be 

part of the solution tha t we want to build. Therefore, we let the 
corresponding boundary variable, Xjmin[ tc], equal to one. That 

is,

1 =  Xjmin[tc] < X tc < X jmax[tc] =  1 =>- X tc =  1

Now, the variable tc represents some decision variable 

x{mtc,n tc,otc,itc, j tc)- This means, the domino (mtc, ntc) is placed 
in position row itc and column j tc with orientation otc in the 
domino matrix.

Step 2.2 Ignoring the conflicting colum ns
In the previous step we selected the candidate solution, X t that 
customizes a position in the domino matrix for the correspond­
ing domino. Therefore, we have to ignore all the columns that 
conflict with X t .
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Step 2.3. Saving the rem aining active columns

After selecting the candidate column, tc, and ignoring the con­
flicting columns, we save the remaining active columns in the 

next row of the A-S matrix. To illustrate this, we consider the 
following example:

Exam ple 3.6.
Suppose that row i of the A-S matrix before the selecting and 

ignoring steps, steps 2.1 and 2.2 respectively, is

column 0 1 2 3 4 5 6 7 8

i 15 26 3 72 80 85 90 93 95

Also, suppose that the columns 15, 72, 85, and 93 have the same 
orientation. Then, in step 2.1 we select column 15 and ignore the 
conflicted columns in step 2.2, which are 72, 85, and 93. More­
over, in step 2.3, we save the remaining columns which are 26, 

3, 80, 90, 95 ,..., in row i +  1, of the A-S matrix. Therefore, the 
row i T  1 of A-S matrix will be as follows:

column 0 1 2 3 4 5 6

i 15 26 3 72 80 85 90

i+1 26 3 80 90 95 85

Step 2.4 Calling th e Choose_function [depth +  1]
After finding the solution X tc and saving the remaining columns 
of the A-S matrix, we are prepared to select the next solution. 
Therefore, we call the choose_function, with entry equal depth+1, 
(choose_function [depth + 1 ]) where the depth here determines 
the number of solutions that we have found so far. In this case, 

we repeat the same procedure starting from step 2.1.
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The stopping rules of the choose_function is when the one of the fol­
lowing conditions is satisfied:

1. If the depth reaches the total required dominoes Trd  which is defined 
in equation 3.7. That is, if depth = Trc.

2. If the last row of the A-S matrix has no data. This means, there are 
no remaining active columns in the last row of the A-S matrix.

Condition one of the stopping rules means the chooscJunction has 

reached a feasible solution that satisfies all the constraints of the DPP. 

This solution may be the optimal or close to the optimal.
Condition two of the stopping rules means the choose_function has reached 
a solution that is not a feasible solution. This is, because this solution did 
not satisfy all the constraints of the problem.

In the next section, we will analyze the reasons why the reasons of 
why the greedy algorithm failed to build a feasible solution of the DPP. 

Moreover, we will develop a new constraint of the DPP that forces the 
greedy algorithm to build a feasible solution that satisfies the all constraints 

of the DPP.

3.6.4 A nalyzing The Reasons Of getting  Blockage

In this section we analyze the reasons why the greedy algorithm failed 
to find a feasible solution to an instance of the DPP. When we apply the 
greedy algorithm to DPP we found that it reaches a solution that is not 
a feasible solution. This is because this solution did not satisfy some con­
straints of the problem and it was blocked as usually happens in greedy 
algorithms.
Therefore, to use the greedy algorithm we have to avoid being blocked. This 
can be done by answering the following two questions:

Q l: W hy did we get blocked?

Q2: How do we avoid being blocked?
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The answer of these questions is as follows:
For the first question, we study the domino portrait graphically and use the 
graph theory to analyze the problem of why we get blocked. We discovered 
that there were three reasons for being stuck. To understand these reasons 
lets first state the following definitions of the graph theory.

D efinition 3.1. Two columns, X tl = (rrii,ni,0 i , i i , j i )  and

X t2 =  (m2, n2, o2, i2, j f )  have the sam e p o sitio n  if  the following conditions
are satisfied:

1 . ii =  i 2

2 . j i  = j 2

3. o\ U o2 C {0,2,3} or cq U o2 C {1,4,5}, i.e., cq and o2 are both 
vertical or horizontal orientation.

Exam ple 3.7. suppose that

X tl = (2,3, 2 ,1,3), X t2 = (4 ,5 ,3 ,1 ,3), X*3 =  (0 ,1 ,4 ,1 ,3), and X u =  
(0,0,0,1,3),  then X t l , X t2 and X t4 have the same position. Whereas X tl 
and X ts have different positions.

D efinition 3.2.

1. A graph is a pair (V , E ) where V  is a set whose elements are called 

points and E  is a collection of two subsets of V, called edges.

2. A point x E V  is in c id en t with an edge e G V  if x  is in E. We say 
that a vertex x  € V  has degree d if x  is incident with exactly d edges 
in E. A vertex of degree zero is call isolated.

D efinition 3.3. The domino matrix can be considered as a graph board 
G = iV ,E) where the vertices set, V,  are the squares (i , j ) of the domino- 
matrix and the edges set, E,  are the neighbors of these squares. That is,
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Figure 3.16: The graph board of the domino portrait 

the graph board is a graph G — (V, E) where

V  = {(i , j )  : 1 < i  < m  and 1 <  j  < n}

E =  { ( i , j ) - ( i , j  + l) : i  = l , . . . , m  and j  =  1, . . .  , n  -  1,

(*> j )  -  (* +  1 J )  '■ i  =  1>- ■ ■ 1 a n d  J  =  ! ,■■■,«}

The vertices in the center have degree 2, in the sides have degree 3 and in
the middle have degree 4■ This can be shown in Figure 3.16.

We recall some definitions from Chapter 2.

D efinition 3.4. A walk from vertex a to vertex b is a sequence of edges 
ex,e2, . . . , e k such that ex = {a,a2 } ,e 2 = {a,a2} , . . .  ,ek = {ak,b}.

Definition 3.5. A path  from vertex a to vertex b is a walk from vertex 
a to vertex b whose vertices are all distinct. The length of the path is the 
number of edges.

For example, in the graph in Figure 3.17, the sequence of edges 

Ci) <22, e3 , e4, es and e§ form a walk from vertex a to vertex b. However, they 
do not form a path from vertex a to vertex b since the vertex a2 is used 

twice. On the other hand, the sequence of edges ei and e6 form a path from 
vertex a to vertex b. Moreover, the length of this path is 2.

D efinition 3.6. A graph G — (V, E ) is connected if there is a path from 
any vertex a € V  to any vertex b 6 V.

D efinition 3.7. A subgraph of a graph G = (V, E) is a graph H  =  (Vi, E\) 
such that Vi C V  and Ei C E.
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Figure 3.17: A connected weighted graph of six vertices.
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1

Figure 3.18: The subgraph on the right is an induced subgraph, while the subgraph 

on the left is not.

D efinition 3.8. An induced subgraph of a graph G = (V, E ) is a graph 

H  = (Vi,Ei) such that V\ C V  and Vx, y £ V\ : {x, y}  £ E x •$=>• {x , y}  £ 
E

For example, Figure 3.18 shows an induced subgraph on the right and a not 
induced subgraph on the left.

D efinition 3.9. A connected com ponent of a graph G is a subgraph of 
G which is connected.

D efinition 3.10. Let G = (V,E) be a graph where V  is the vertex set of 
even  s ize  and E  is the edge set. Assume \V\ is even. A one fa c to r  or a 
m atch in g is a subset E\ of the edge set E  such that for any x  £ V there 
is exactly one edge {x , y}  £ E\, y £ V . That is, if  {x , y}  £ E\, there is no 
z ^  y e V  such that {x, z}  £ E\.

Lem ma 3.6.1. A path has 1-factor i f  and only i f  its length is odd 

This can be shown in the following graph.
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(This path has length 5 and has 1-factor)

Since the length of this path is 5, which is an odd length, this path has one 

factor.

In the following graphics, the gray part stands for a subgraph D  =  
(Vq, Ed)  of G which has a one factor. It corresponds to the dominos which 
have been placed already. The white part is the subgraph H  = (Vh , E h ) of 
G, which has not yet been tiled by dominos. The vertices of the subgraphs 
D and H  satisfy the following:

1. VH =  V \ V D.

2. H  is an induced subgraph of G

3. The size of Vq always gets bigger and V# gets smaller.

As an example, consider the graph G\ shown in Figure 3.19. The gray area 
indicates a partial domino tiling. The dominoes are indicated by edges. The 
white part has not yet been tiled, and has all possible edges shown. The 
corresponding subgraphs D x and Hi of the graph G\ are shown in figures 
3.20 and 3.21 respectively. The graph G\ can be completed by dominos 

since its corresponding subgraph H\ has a one factor. Note that the bold 
lines in these figures refer to the edges that form one factor.

Whereas, graph G2 in Figure 3.22 cannot be completed by dominos since 
its corresponding subgraph H2, Figure 3.23 has no one factor.
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Figure 3.19: The graph G i that can be completed by dominoes

Figure 3.20: The corresponding subgraph H i  of the graph G \  and has one factor

Figure 3.21: The corresponding subgraph D \  of the graph G i

Figure 3.22: The graph G 2 cannot be completed by dominoes

Figure 3.23: The corresponding subgraph H i  of the graph G 2 has no one factor
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Figure 3.24: isolated square

Figure 3.25: Connected components of odd size 

Now we go back to those reasons of getting blocked which are the following:

1. An isolated square: an isolated square  is a square in the domino- 
matrix that has no empty neighbor. For example, in Figure 3.24, 

squares 1 and 2 are isolated squares where the gray area indicates a 
partial domino tiling and the dominoes are indicated by edges. The 

white part indicates to the squares that have not yet been tiled.

2. Connected components of an odd size. (See Definition 7). For exam­
ple, Figure 3.25 has two connected components of size 3, i.e., of odd 
size.
Note: Case 1 is a special cases of case 2.

3. There is at least one subgraph H  C G tha t has no one factor. Note: 
Case 1 and 2 are special case of case 3.

From these cases we observe the following: For the domino tiling to 
be complete, it is necessary and sufficient that the induced subgraph of the 
empty squares has 1 -factor.
That is, the greedy algorithm has reached a solution tha t is not a feasible
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solution. This is because at the end of this solution, the A-S matrix will 

be out of data with no remaining active columns. Therefore, to solve this 
problem we need to check first, after we choose a column in step 2.1, whether 
that column causes the one-factor property or not and then decide either 
to choose or ignore it. Furthermore, we not only ignore that column but 

also ignore all other columns that have the same position, Definition 3.1, 
as that column. Otherwise, they will cause the same problem which is 
the one-factor property problem. That is, we need to find a quick search 
algorithm for one-factor property in a given graph, which will be provided 
in the following section.

3.6.5 G reedy algorithm  th at avoids blockage

After we study these reasons, we found a technique to avoid being 
blocked. This technique is called a one-factor/matching technique, where 
we start with an initial one factor and then we modify it.

Before we start with the idea of this technique, lets consider the sequence 
of vertex complementary graphs (D ^ \  H ^ ) , i  =  0 , 1 , . . . ,  (Trd  — 1), where 
Trd  is defined in equation 3.7. These graphs satisfy the following:

• £)(0) =  (0,0) the empty graph and = (Vh , Eh ) = (1/, E) = G the 
whole graph board (see Fig 3.16).

• lA'-+1) results from D (T  by addition of 2 vertices connected by one 
edge. ZZ6+1) results from by removing those two vertices and all 
incident edges.

• V r '1 ~  V \ V d \ -  (v£> and are vertex complementary).

The idea is to only consider such domino tiles for which the new empty 
places subgraph //b+i) have a matching (1-factor).

To illustrate this method in detail we recall Example 3.3, which is an 
instance of the DPP with D  =  3 and s = 1. The subgraphs D and iZ® 
are in the following figures
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One-factor search method starts with labeling the squares of the domino- 
matrix from 0 to (M  x i V - 1 ) .  The new matrix is called matching tableau. 

In this case the matching tableau will be of the form

/O /i /2

/3 /4 /5
/6 A /8
/9 /10 /H

Mate ring tableau'

Before we start, let us describe the following notation. In matching tableau 
we give the square (i, j )  a sign to tell us the location of its neighbor in the 
one-factor. This sign is the letter S, N, E or W according to the location of 

its neighbor in one factor, where S, N, E and W stand for the South, North, 

East and West respectively. For example, if we have chosen the square 
(i , j  +  1) to be the neighbor, in one factor, of the square (i , j),  then we give 
the square (i , j )  the letter E, since its neighbor’s location is on the right. 
Also,we give the square (i , j  +1) letter W, since its neighbor’s location is on 
the left (see Figure 3.26-A). Whereas, if we have chosen the square (i + l , j )  
to be the neighbor of the square we assign the squares (i +  1 , j )  and 
( hi )  by S and N respectively (see Figure 3.26-B). We use the same manner 
for the other squares.

Now, let us start by choosing the following initial one factor:
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N

E W

A B

Figure 3.26: The matching tableaus where their squares are assigned by the letters 

S,N,E, or W  according to the location of their neighbors

S/o S/1 S/2

N / 3 N / 4 N / 5

S/6 S/r S/8

N / 9 N /io N /ii

(Matching tableau)

We let AfW to be a graph that refers to the one factor in the subgraph H^K 

In this example, the one factor in is given by the following:

Af<°> =
I

We want to be able to modify the one factor so that we can put the dominos 
anywhere we wish in the domino matrix. Assume that in step 3 we have 
chosen a column, X t l , in which we must place in position squares 4 and 7. 
Now, we are in the process of producing the H ^  and D ^ \  So, we need to 
change the neighbor, in the 1-factor, of the square 4 to be the square 7 and
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to know whether this column will give us a one-factor or not. To see that, 

we have to modify the neighbor of all squares other then the squares 4, 7 
and the non empty squares. The matching tableau starts with the following 
form:

S/o ?/l S/2

N /3 1/4 N /5

S/6 1/7 S/8

N /9 ?/10 N /i i

(Matching tableau)

The idea here is that we find a path in H ^ +1̂  connecting square 10 with 
square 1. Such a path necessarily has odd length and hence, by lemma

3.6.1, it can be tiled by dominoes. That is, we start with square 10 and end 
with square 1. If we could not reach square 1, in this case we conclude that 
there is no one factor. Now, square 10 can choose square 11 or 9. We choose 
first square 9 to be its neighbor. If we could not reach square 1, we choose 
square 11 instead of square 9 and continue the procedure. Consequently, 

we modify the sign of square 10 to be W and square 9 to be E. Square 6 
can choose only square 3 to be its neighbor. That is, we give squares 6 and 
3 the letters N and S respectively. Finally, square 0 has only one choice, 
which is square 1 and we give square 0 letter E and 1 letter W. Since we 
have reached square 1 and found a neighbor of each square in the matching 
tableau, we conclude that this column, X t l , gives a one-factor. Hence, this 
column is good to be part of the solution of our main problem. Therefore, 

we give squares 4 and 7 the letters S and N respectively. After this step, 
the matching tableau and figure will be as follows:
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E/o W/1 S/2

S /3 S /4 N /5

N /6 N /7 S/8

E /9 W/io N /11

(Matching tableau) 

the subgraph D ^  is

and the subgraph H 1' 1 '1 and the corresponding M^> are given by the follow­
ing

=

Therefore, we continue the procedure of choose_function with depth = i +  1 
to search for the next solution. That is, the greedy algorithm continues 
searching for the solution without being blocked.
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Now we want to see the other case. That is, when we could not find 

a one-factor in the subgraph for some i. Consider the following case
of the matching tableau

S/o E /i W/2

N /3 T / 4 T /5

S/6 T / 7 T/8

N /9 E/io W/11

<==>

(Matching tableau)

where T means a taken ( non empty ) square. Assume, for some i, we want 
to choose a column, X ti, that has to be placed in the positions of squares 
3 and 6. In this case the subgraph £)W and are given by the following 
figures

D® =

We apply the same procedure and start with the matching tableau:

? /o E /i W /2

!/3 T / 4 T /5

!/6 T / 7 T/8

? /9 E/io W/11

(Matching tableau)
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Figure 3.27: A domino portrait of Einstein which was constructed from 16 complete 

sets of double six dominoes using the greedy algorithm

We need to know whether this column returns a one-factor or not. We 
are in the process of composing the subgraph H ^ +1\  One-factor match­
ing starts with square 9 and ends with square 0. Square 9 has only one 
choice, which is square 10, so we give square 9 letter E and 10 letter W. 
At this time, square 11 has only one choice, which is square 8; however, it 

is a non empty square, that is, we cannot choose it. As a result, square 
11 has no neighbor and we cannot reach square 0, which is the end point. 

Consequently, there is no one-factor in this case and we need to ignore this 
column and all other columns that have the same position. That is, the 
choose_function continues to search for the next candidate column.

By this technique, we have our greedy algorithm which proceeds with­
out being blocked and we find a feasible solution that satisfies all constraints 
of the domino portrait problem. For example, we found a feasible solution 
for an instance of the domino portrait of Einstein which was constructed 

from 16 complete sets of double six dominoes, that is, D = 3 and s =  4 
(see Figure 3.27).
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In this section we used the greedy algorithm strategy to solve the 
domino portrait problem. Moreover, we developed a one-factor technique 
to apply the greedy algorithm without being blocked and found a feasible 

solution to an instance of the domino portrait problem.
In the next section we will use the local search algorithm ( chapter 3 ) to 

solve the domino portrait problem.
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3.7 A Local Search Algorithm for the Domino Portrait Problem

In this section we will use local search algorithm to find the best so­
lution of an instance of the domino portrait problem. The local search 
algorithm, which already was described in Section 2.3, is one of the power­

ful algorithms that can solve difficult combinatorial optimization problems. 
For example, it can be applied to solve the traveling salesman problem ( 

Section 2.3.2). It searches for the best solution in the neighborhood of fea­
sible solutions of an instance of an optimization problem. An instance of an 

optimization problem is the pair (F, c), where F  is the set of feasible solu­
tions and c is the cost function over the solutions. Solving the optimization 
problem means finding an /  G F  such that

c(f) < c(g) V g e F

f  is called a globally op tim al  solution to the given instance.
An instance of the domino portrait problem is tha t we are given an 
sD  x s(D  +  1) photo-matrix (Figure 3.3-C) that represents a target image 
(Figure 3.3-B) where s and D  are integers. The problem is we want to 

create a domino portrait consisting of s2 complete sets of double (D  — 1) 
dominoes. That is, we need to compose a domino-matrix (Figure 3.3-D) of 
dimensions sD  x s(D  +  1). Each feasible domino arrangement is a feasible 
solution. This means, we can take the set of feasible solutions F  as

F  =  {all feasible domino arrangements in the domino-matrix}.

That is,

F  =  {y '■ V is a feasible solution that satisfies the constraits of the domino

portrait defined in equations 3.4 and 3.5}.

A feasible solution y G F  consists of the decision variables x (m ,n ,o , i , j ) .  
The decision variable x(m, n, o, i , j ) is the domino (m, n) has position row i 
and column j  in the domino-matrix with orientation o. The cost function c
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is considered as the penalty of placing these dominoes in the domino-matrix. 

That is, if a feasible solution y e  F  such that

y = {xi : Xi is the decision variable n?;, o.(,

the cost of the solution y is

c(y) =  c(XJ  (3-8)
xi £y

where c(x,) =  n*, o,, ij, jj), defined in equation 3.2, is the cost of plac­

ing the domino in the row i and column j  of the domino-matrix
with orientation o*. Later in this section we will describe in detail the set 

of feasible solutions F  of an instance of the domino portrait problem.

Recall from Section 2.3 that the neighborhood of a feasible solution 
y € F  of an instance (F, n) is denoted as N(y)  and defined by

N(y) = {g : g £ F, g is ” close ” in some sense to the point /} .

In the domino portrait problem, we can define four neighborhoods of a 

given feasible point /  € F  which are called the rotation, shift, flip and swap 

neighborhoods. These neighborhoods will be defined in the next section.
Usually the global optimal solution of an optimization problem is hard 

to find. However, sometimes we can find the best solution in the neighbor­
hood of some feasible point /  € F. This solution is called a local optimal 
solution. The goal of the domino portrait problem is tha t we are given an 
instance (F, c) of the DPP and we want to find a feasible solution y € F  
such that y is the optimal or close to the optimal solution. We will use the 
local search algorithm to find the local optimal solution y G F  such that

c(y) < c(g) Vg e  N(y)

Given an instance (F, c) of the domino portrait problem and the neighbor­
hood N ,  the idea of the local search algorithm for finding a local optimal 

solution in the neighborhood of y G F  is as follows. First, we start with an 
arbitrary initial solution y €E F. We search for a better solution g € N(y)
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such that c(g) <  c(y). We let the solution g be the starting point and 
search for a better solution in the neighborhood of g. That is, we search 
for a solution g E  N(g) such that c(g) < c(g). We keep the solution g as a 
starting point and repeat the same procedure until we reach a solution that 

cannot be improved. This solution is called the locally optimal solution. 

The following pseudo code provides a template for local search:

Let the subroutine

If the local optimal is reached, the while loop will be terminated.

Before we start with the local search algorithm, we need to specify 
some important issues. The first issue is the selection of the neighborhood. 

In the domino portrait problem, we use rotating, shifting, flipping, and 
swapping as neighborhoods. Second, what is the feasible solution y that 
the algorithm starts with? Here we should start with a completely random 
initial starting point. The details of choosing the starting point randomly 
and the neighborhoods of the DPP will be in the next sections. Finally, we 

should specify the search strategy for the local optima. First-improvement 
and steepest-descent are the two greatest strategies for this search [6]. In 

the first-improvement strategy ( see Figure 2.22 ), the first better solution 
is found and considered as the new starting point. On the other hand, 
the strategy of steepest-descent is to examine the entire neighborhood and 
the neighbor that has greatest improvement becomes the new starting point.

i m p r o v e ( y )
g  : for any g  e  N ( y ) ,  c ( g)  <  c(y) ;

F a l s e  : if no such g exists.

begin
y  =  an arbitrary initial solution in F \

W h ile  ( i m p r o v e ( y )  ^  F a l s e  ) do 

y  =  i m p r o v e { y ) \

return  y

end
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I

A: x(m, n, , i, j ) , a  domino (m,n) in position QJ) and 
orientation h, in the domino-matrix.

. / + !

I I

B: A domino x(m,n,vui,j) 
resulting from rotating the 
domino in figure A

C: A domino x(m,n,hl,i,j + l) 
resulting from shifting to the 
right the domino in figure A

D: A domino x(m,n,h2,i,j) 
resulting from flipping the 
domino in figure A

Figure 3.28: A domino (m , n ) in position row i  and column j  of the domino-matrix 

with orientation o =  h i  shown in figure A. The rotation, shift, and flip neighborhood of 

the domino in figure A, x ( m , n , h i , i ,  j ) ,  are shown in figure B,C, and D respectively.

Before applying the local search algorithm to the domino portrait prob­

lem, lets describe the neighborhoods and the set of feasible solution F  of 
the DPP. This will be in the following section.

3.7.1 T h e  N eig hborhoods o f th e  D P P

In the domino portrait problem, we can define four neighborhoods of 

a given feasible point /  6 F, which are called the rotation, shift, flip, 

and swap neighborhoods. These neighborhoods are defined in the following 
definition:

D efin ition  3.11. Assuming that we have a domino-matrix of dimensions 
M  x N  and we let the ho — h and vo = v overall,

1. R o ta tio n  neighborhood : Which is defined as
Nr( f ) =  {g : g G F  and g can be obtained from f  by rotating a
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domino in f  90° counterclockwise, if  it is in vertical orientation, and 
clockwise if  it is in horizontal orientation.}
The rotation depends on the orientation o. That is, the rotation 

of a domino represented by x (m ,n ,V t , i , j )  is x (m ,n ,h t , i , j )  for t G 

{0,1,2}, (see Figure 3.29-B); and vice versa, the rotation of the domino 

x (m ,n ,h t , i , j ) is x (m ,n ,v t , i , j ) ,  (see Figure 3.28-B.)

2. Shift neighborhood: This neighborhood is defined as
Nt ( f)  = {g : g G F  and g can be obtained from f  by shifting a domino 
in f  one step down if it is in vertical orientation, and one step to the 
right if  it is in horizontal orientation.}
That is, the vertical shift of the domino x (m ,n ,o , i , j )  is x (m ,n ,o , i  +

1 >j) f or 1 < i < M  — 2 or x (m ,n ,o , i  — 1 , j )  for i = M  — 1 for 
all j  and o G { t ’o, f i ,  v2} (see Figure 3.29-C.) The horizontal shift of 
a domino x ( m ,n ,o , i , j )  is x ( m ,n ,o , i , j  +  1) for 1 <  j  < N  — 2 or 

x ( m ,n ,o , i , j  — 1) for j  = N  — 1 for all i and o G { ^ 0 , ^ 1 , ^ 2 }  (see 
Figure 3.28-C.)

3. Flip neighborhood:
N f ( f ) = {g : g G F  and g can be obtained from f  by flipping a domino 
in / .}

This m eans, the flip  o f the dom ino x ( m , n , V \ , i ,  j )  is x ( m , n , V 2 , i , j )

(see Figure 3.29-D) whereas, the flip of the domino x ( m , n , h \ , i , j ) is 

x (m ,n ,h 2 , i , j ) ,  (see Figure 3.28-D.) Note that, in vertical or hori­
zontal flip we change the orientation o from v2 to v\ and h2 to h\ re­
spectively. Moreover, i f  the orientation 0  = v0 or ho, that is , m  =  n, 
we do not apply the flip neighborhood, otherwise, it would be the same 
domino.

4. Swap neighborhood: Which is defined as,
N s( f ) = {g : g G F  and g can be obtained from f  by swapping two 
dominoes in / .}
The swap of the two dominoes x \ ( m i ,n \ , 0 \t ,i\ ,  j i)  and x 2 (m 2 ,n 2 ,o2t2 , i 2 , j 2)
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I

A: x(m, n, v ,, i, j ) ,  a  domino (m,n) in position (i,j) and 
orientation v, in the domino-matrix,

j  j  j

i i

B: A domino x{mtn,hL,i,j) C: A domino x ( in n v , , i+ l ,y )  D: A domino x(m,n,v2,i,j)
resulting from rotating the resulting from shifting down resulting from flipping the
domino in figure A the domino in figure A domino in figure A

Figure 3.29: A domino (m , n ) in position r o w 't and column j  of the domino-matrix

with orientation o  =  v i shown in figure A. The rotation, shift, and flip neighborhood of 

the domino in figure A, x ( m , n , v i , i , j ) ,  are shown in figure B,C, and D respectively.

is as follows:

x i (m i ,n i ,o i t i , i i , j i )  x 1 (m 2 ,n 2 ,olt2 , i 1 , j 1),

and

x 2 {m2 ,n 2 , 0 2 t2 , i 2 , J2) x 2 (mu n u o2t i , i 2, j 2),

where the 01 and o2 take the vertical or horizontal orientation. For 
example, if  we swap the domino x \ (m \ ,n \ ,h i , i i ,  j \ )  with the domino 
x 2 (m 2 ,n 2 ,v 2 , i 2 , j 2), these dominoes will be Xi(m 2 ,n 2 ,h 2 , i i , j i )  and 
x 2 (m i,n i ,v± ,i 2 , j 2) (see Figure 3.30.)

The rotation and shift neighborhoods cause changes to the positions of two 
or more dominoes. This is because the new domino in the instance g is mak­
ing an overlapped problem. In other words, two dominoes are overlapping.
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Figure 3.30: The two dominoes x ( m i , n i , h i , i i , j i )  and x ( m 2 , r i2 , V2 , i 2 , j 2 ) are on the 

left and the swapping of these dominoes is on the right.

Therefore, we need to repair this problem by using the one-factor/matching 
algorithm which was described in Section 3.6.5. This algorithm will solve 
the problems caused by these neighborhoods.

3.7.2 C onstructing the Set of Feasible Solutions F  of the D P P

According to the constraints of the domino portrait problem, we con­
struct the set of feasible solutions F. The constructing strategy of this set 

depends on the one-factor property (see Definition 3.10) in the domino ma­

trix and all possible flipping and swapping of the dominoes in this matrix. 

Recall that the domino matrix can be represented as a graph board (see 

Figure 3.16. The graph board has several variations of the one-factor prop­
erty. Each one-factor can be considered as a feasible solution. Moreover, 
each possible flip and swap of the dominoes in this one-factor can also be a 
feasible solution.
Let F  = { / o ,  f i , ...} be the set of the feasible solutions of an instance of the 
DPP. The construction of this set is described in the following steps:

Step 1 We start by letting / 0 be a feasible solution so that each domino 
in the domino matrix has a vertical orientation. For example, in 
Example 3.3, which is an instance of the DPP when D = 3 and s = 1, 

the feasible solution / 0 is shown in Figure 3.31.
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Figure 3.31: /o case D  =  3, s = 1

S tep  2 A set of feasible solutions Fix Q F  is obtained from / 0 by flipping 

every non-double domino. That is, for each single flip of a domino in 

/o creates an element /j £ Fix.

S tep  3 From each element in Fn , we can obtain a set Fi2 C F  by swap­

ping two non-similar dominoes.

At this time we have considered all possible solutions derived from 
the one-factor in the feasible solution / 0. Next, we obtain a new one- 
factor in the domino matrix by using the rotation neighborhood or 

shift neighborhood.

S tep  4 In this step we rotate a domino in the feasible solution / 0. This 
rotation obtains a new one-factor different from the one in /o. The 
new one-factor can be considered as a feasible solution.

S tep  5 The new subsets can be obtained from the feasible solution con­
structed in step 4 by repeating steps 2 and 3.

Therefore, every time we rotate or shift a domino in the feasible so­

lution obtained from step 1, a new one factor is generated. Hence, new 
subsets of F  follow by repeating steps 2 and 3 to the generated one-factor.

Consequently, the set of feasible solutions F  is the union of all subsets 
obtained from the previous steps.

From the way that we construct the set of feasible solutions F, we con­
clude tha t the probability of choosing any feasible solution in F  is equally
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likely. For example, starting with the feasible solution / 0, we can choose a 
random feasible solution /  E F  by choosing randomly the numbers Ay, k'2l kA 
and Aq. These values refer to the number of times that we do a rotation, 

shift, flip and swap neighborhood respectively. Moreover, each time we do 
the rotation, shift, flip, and swap neighborhood, we also choose randomly 

which domino this neighborhood applies to.

Now, we describe the steps of the local search algorithm for solving the 

domino portrait problem. Given an instance (F, c) of the domino portrait 
problem

Step 1 Select the starting point y  & F: We start with a completely random 
feasible solution y  E F. As mentioned above, starting with the solu­

tion /o defined in Figure 3.31, the solution y  can be chosen randomly 
by selecting randomly the number of times that we do the rotation, 
shift, flip, and swap neighborhoods, defined in Definition 3.11, to the 

feasible solution / 0.

Step 2 Compute the cost of the solution y .  Assume that the solution 

y  =  {Xi, . . .  ,XTrd} where Xi is a decision variable X i ( m , n , o , i , j )  and 
Trd  is the total required dominoes defined in 3.7. The cost of the 
solution y ,  c ( y ) ,  is given by the equation 3.8, which is

where c(xi) =  defined in equation 3.2.

Step 3 Search for a feasible solution g  E  F  such that it is in the neighbor­
hood of y ,  that is, g  E  N(y). The solution g  is determined using the 
rotation, shift, flip or swap neighborhood defined in Definition 3.11.

Step 4 Compute the cost of the solution g,  c ( g ) ,  found in step 3. To com­
pute the cost of the solution g ,  we will use the following: Assume that 
the solution g  is obtained from solution y by replacing the decision

xi£y
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variables x i , . . .  , x r with x i , . . .  , x r. The cost of g can be computed 
easily without using the formula in equation 3.8, by using the equation

r
c(g) =  c(y) +  [c(®t) -  c(xT)}

T— 1

Step 5 Decide whether we choose or ignore the solution g. The solution 

g G N(y)  must be chosen so that the it is better than the solution y. 

That is, we choose the solution g if

c(g) < c(c)

Otherwise, we ignore it. In the case of choosing the solution g, the 
algorithm considers the solution g as the starting point and contin­
ues searching for a better solution by repeating the same procedure 
starting from step 3. If the solution g is not better than the solution 
y, the algorithm searches for a different solution g G N(y)  such that 

9 < V-

Step 6 Stop until there is no more improvement of the current solution. 
The algorithm is terminated when all possible neighbors of the cur­
rent solution is examen and no more improvement is found. In this 
case, the current solution is called the locally optimal solution.

Applying the local search algorithm to the domino portrait problem, 

we can construct a domino portrait of dimensions sD  x s(D  +  1) from s2 

complete sets of double D — 1 dominoes. For instance, we construct two 
domino portraits, Marilyn Monroe and George W Bosh, the president of 
the USA, each of which were constructed from 32 complete sets of double 

nine dominoes (Figure 3.32).

For example, when we apply the local search algorithm for the instance of 
Marilyn Monroe, we start with a completely random initial feasible solution 
y0  as a starting point, (see Figure 3.33-A). Figure 3.33-B shows the first of 
500 improvement solutions. Since this solution has less cost, we keep it
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Figure 3.32: A domino portrait of Marilyn Monroe on the left and George W. Bush on 
the right, each of which were constructed from 3 2 complete sets of double nine dominoes 

using the local search algorithm

and search for a better solution that is in the neighborhood of the previous 

solution. Some of these improvements that we have found are shown in 
Figures 3.33-C-E. Finally, we have reached a solution that cannot be im­
proved, which is shown in Figure 3.33-F.

The local optimal solution can be reached when we first search for all pos­
sible improvements of the rotation-neighborhood and then all possible im­

provements of the shift-neighborhood. This result is obtained when we run 
the local search algorithm 300 times of the instance of Marilyn Monroe with 
different random starting points. The table in Figure 3.34 shows the differ­
ent outcomes of the cost function (the second column) and the number of 
times tha t these outcomes are repeated (the third column).

This table shows 30 different outcomes. Comparing between these outcomes 
we found that they are approximately close to each others. The maximum 
different between two outcomes is equal 68. The largest cost function is 
equal 4865 which appears one time; whereas, the smallest (the best) cost 
function is equal 4797 and appears one time. The most repeated outcome 
has value 4825 which appears 28 times.
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E: After 2000 improvements F: The local optimal solution

Figure 3.33: A sequence of feasible solutions of the instance of Marilyn Monroe that 

was found using the local search algorithm. Figure A shows the starting point yo.  Figures 

B through E show the first 500 to 2000 improvement solutions. Figure F shows the local 

optimal solution.

120

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Cost Function Repetitions
1 4865 1
2 4857 2
3 4853 2
4 4849 3
5 4847 2
6 4845 1
7 4843 2
8 4841 2
9 4839 7
10 4837 2
11 4835 14
12 4833 11
13 4831 17
14 4829 17
15 4827 16

Cost Function Repetitions
16 4825 28
17 4823 21
18 4821 20
19 4819 25
20 4817 21
21 4815 14
22 4813 20
23 4811 16
24 4809 10
25 4807 8
26 4805 6
27 4803 5
28 4801 3
29 4799 2
30 4797 1

Figure 3.34: 30 different outcomes of applying the local search algorithm 300 tim es to  

the instance of Marilyn Monroe with different random starting points.

IS 5
IO O O lo CO o ffiOJONK) (Mi ooD(or - -ai oT co a> rs r r r r r r N N N N O W

Running Time

Figure 3.35: A plot of the decreasing cost function of the instance of Marilyn Monroe 
when the local search algorithm is applied.
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The average outcomes is equal 4822. Since all outcomes are close to this 
average, we conclude that these outcomes are approximately equal and the 

maximum error is equal

the maximum error =  the largest outcome — the average outcome 

=  4865 -  4822 

=  43.

Therefore, to search for the local optimal solution of an instance of the DPP 
using the local search algorithm we first search for all possible improvements 
of the rotation-neighborhood followed by all possible improvements of the 
flipping and swapping neighborhoods; and then search for all possible im­
provements of the shift-neighborhood followed by all possible improvements 
of the flipping and swapping neighborhoods.

For example, applying the local search algorithm for the instance of 

Marilyn Monroe (see Figure 3.33) with random starting point, we have the 

following. The cost function of the starting point is equal 15,285. This solu­

tion is improved step by step using first the all possible shift-neighborhood 
and then all possible rotation-neighborhood. This improvement of this solu­
tion can be reached faster in the beginning of the search and then it becomes 
more difficult. For instance, the value of the cost function decreases to 5433 
in the first second and then it decrease slowly until it reaches the local opti­
mal solution. The local optimal solution of this instance is equal 4809 with 

running time equal 411 seconds on an 800 M z  Pentium 3 PC (see Figure 
3.35).

Figure 3.36 shows the decreasing cost function, with running times, for 

the various runs of the instance of Marilyn Monroe.

Although, some of the local optimal solutions of the DPP are repeated 
more than once, the domino constructions of the portraits corresponding 
to these solutions are different. That is, two local optimal solutions having 

the same value of the cost function need not have same domino construc­
tions in their portraits. For example, Figure 3.37- A and B, shows two local
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Figure 3.36: Plots of the decreasing cost function for the various runs of the instance 

of Marilyn Monroe using the local search algorithm.
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optimal solutions of the instance of Marilyn Monroe, each of which were 
constructed from nine complete sets of double nine dominoes using the local 
search algorithm. These solutions have the same value of the cost function 

which is equal 4833. These images have two different domino constructions. 
This can be shown by determining the intersection of all dominoes in both 

images. That is, we consider only the dominoes that have the same position 
in both images. These dominoes are shown in Figure 3.37-C. Therefore, the 

domino portrait problem has several local optimal solutions.

As we have seen the local search algorithm can find a local optimal 
solution of an instance of the domino portrait problem. This solution can 

be improved by modifying the cost function. The current cost function does 

not care about the important data in the photo-matrix (see Figure 3.3-C) 
for example, eyes, mouth and nose. In the next section we will modify 
the cost function so that the algorithm starts filling the dominoes in the 
important positions. This can be done by constructing a matrix called the 
support matrix that tells us the important data in the photo-matrix. The 
support matrix is constructed using a significant method called the singular 
value decomposition.

3.8 Im proving The Cost Function

In this section we modify the cost function so that we can get a better 
solution for the domino portrait. The current cost function does not care 
about the important data in the photo-matrix (see Figure 3.3-C) like eyes, 

nose, and mouth, and insignificant data like background. The function is 
improved using a matrix called the support matrix. The purpose of the 
support matrix is to help in determining facial features and to weigh the 
entries of the photo matrix. That is, the entries in the support matrix that 
have higher numbers are referred to the position of important data in the 
photo matrix. The support matrix can be constructed using the significant 
method called the singular value decomposition. In the following, we show 

how can we modify the current function.
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A: A local optimal solution of 
cost function equal 45*33

B: A second local optimal solution of 
cost function equal 4833,
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C; The intersections of the dominoes in Figure A and B.

Figure 3.37: Two local optimal solutions of the instance of Marilyn Monroe (A and 

B) and the intersection between these solutions (in C).
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3.8.1 New Cost Function

According to the information that we will get from the support matrix, 
we modify the old cost formula of the objective function and construct a 

new one. This formula can tell us which important data we have to start 
with. This can be done by increasing or decreasing the cost of the decision 

variables x ( m ,n ,o , i , j )  according to whether this variable is important or 

not. This means, the penalty of placing a domino in an important position 
is more than the penalty of placing it in an insignificant position like the 

background.
The steps of developing the new cost function are as follows: Let A(aij) be 
the M  x N  photo-matrix (Figure 3.3-C) and B(bij) be the M  x N  support 
matrix where the entry 6^ is the measure of the entry a,;7- in the photo­
matrix A. That is, if bi1j 1 > h 2 j 2, the entry is more important than 
the entry ai2 j 2 .
Now, we modify the cost c (m ,n ,o , i , j )  of placing the domino (m ,n ) with 
orientation o in the position ( i ,j)  of domino-matrix (Figure 3.3-D). W ithout 

loss of generality, we let o = v\. For the other orientations v ,h ,v 2,hi  and 
h2 the procedure is the same.

S tep  1 : We start with the old cost c (m ,n ,v i , i , j )  = ci(m, n, v\, i, j )  which 
is defined as

ci(m, n, v \ , i , j )  = { m -  ai y j ) 2 +  (n -  ai+1J)2,

The cost ci take the values between 0 and 2(D — l ) 2, where (D — 1) 

is the kind of the complete set tha t we are using. For example if we 
are using a complete set of double 9 dominoes, then D — 10. That is,

0 <  Ci <  2(D — l ) 2.

The best value of the cost Ci is 0 and the worst (bad) value is 2(D—l ) 2. 
The real line presentation of the cost Ci is as follows

Good Bad
 1 1 >

0 2(D-1)2
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S tep  2 : We shift the cost c\ to the left with the amount of

D\ =  j , where |_-J is the greatest integer function. The cost c4

becomes c2 which is defined as

c2 (m ,n ,v 1 , i , j )  = [(m -  ai t j ) 2 -  D j  +  [{n -  ai + l t j ) 2 -  D^\ 

that is,
— (D — l )2 <  c2 <  ( D -  l )2 

The real line presentation of the cost c2 is

G o o d  Bad
H—>

- ( D - l ) 2 0 (Z )- l)2

S tep  3 : Now, we use the support matrix B(bij) to weigh the entries of 
the photo matrix A. That is, we multiply each term of the cost c2 by 

(1 +  bij) and rename it as C3. The cost c3 is given by

c3(m, n, vu i, j ) =  (1+bitj) [ { m - a ^ f - D i ]  +(l+bi+1>j) [ ( n -a i+i j ) 2-£»i

and bounded by

D(D — l )2 D ( D - l ) 2
 S  c3 < ------   ,

G o o d  Bad
 1--------------------+----------------- 1— >
D ( D - l ) 2 0 D ( D - t f

S tep  4 :

Finally, we shift c3 back by D 2 = D(D — l )2 so that c3 >  0. The cost 
c3 becomes C4 which is defined as

c4(m, n, vu i , j )  = (1 + k j )  [ (m -a ^ j f -D x ]  +(l+bi+1>j) [ (n -a i+i j ) 2- D i  

and so, it is bounded by 0 and 2D2, that is,

0 < c 4 < 2 D2.

The corresponding real line representation of the cost c4 is given by
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Good Bad
— i----------------------------- 1 

o 2 D 2

Hence, the new cost of placing the domino (m, n) with orientation v\ in po­
sition row i and column j  in the domino-matrix is denoted as c(m, n, v \,i ,  j ) 

and defined by the following equation

c (m ,n ,vu i , j )  = (1 +  6<j)[(m -  ai d ) 2 -  A ]  +  (1 +  bi+1J) [{n -  ai+i j ) 2 -  A ]  +
(3.9)

where
A  =  | ^  1)2 j and A  =  D(D -  l ) 2

E xam ple  3.8. Assume that the following data are taken from a photo ma­
trix A, and the corresponding support matrix B , case D = 7 and s =  1:

®iiji ^ 2j 2 0'ii+iji ®*2+iij2 ^hji 3, Ẑ2).?2 ® and ^ ,+ 1  ai2jr\ j 2

The ph o to -m atrix  and the support m atrix  are as follow

 Ji_______ .h___   J\_______ h___

3
1

6
1

2
4

2
4

(photo matrix A )  (Support matrix B )

Since, s = 1, we have only one complete set of dominos. Namely, each 
domino (m , n) must be used exactly one time. Therefore, we need to use 
them in places that have important data. Here we use the support matrix 
B  to determine that. Assume that we need to use the domino (2,4) in 
the domino matrix and want to know which place is important so that this 
domino is placed in

128

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



A k

I-* ?
■lid

•
m ?

■m m
V  *

(The domino-matrix)

Now, by formula (3), The cost of placing domino (2,4) with orientation v\ 
in position { i\,ji)  of the domino-matrix can be computed as follows:
Note:
D 1 =  = 18 and D 2 = D(D -  i f  = 252, so

c(2,4,-o1,z1, j 1) =  (1 + biltjl)\{2 -  ailyjlf  -  £>J +

(1 +  bh+lijl) [(4 -  ah+i j xf  -  D f  +  D2 

=  (1 +  3)[(2 -  2f  -  18] +  (1 +  1)[(4 -  4f  -  18] +  252 

=  144

whereas, the cost i f  it placed in position (i2 , j 2) with the same orientation is 
equal to

c(2,4, v i , i2, j 2) =  (1 4- bi2 j 2)[(2 — ai2 j 2f  — -Di] +

(1 +  K + iji)  [(4 -  ai2+i,h)2 _  Di] +  D2 

=  (1 +  6) [(2 -  2 f  -  18] +  (1 +  1)[(4 -  4 f  -  18] +  252 

=  90

Hence, we place the domino, (2,4) in position (*2,^2) of the domino ma­
trix ( see Figure ). That is, we let the corresponding decision variables 
x (2 ,4 ,v i , i 2 , j 2) = 1 and x (2 ,4, v\, i\, j f )  =  0. The domino matrix will be of 
the form
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( D o m i n o  m a t r i x )

Therefore, once the support matrix determines the important data, like 
eyes, nose and mouth in the photo-matrix we use the new cost function to 

tell us which important position we should start with. By this modifica­
tion we will find a better solution of the domino portrait problem when 

we apply the greedy algorithm and the local search algorithm. For exam­

ple, Figure 3.38 shows the domino portrait of Marilyn Monroe which was 
constructed from 32 complete set of double nine dominoes. The portrait 
is constructed using the local search algorithm with the new cost function 
defined in equation 3.9 and the support matrix. The matrix is determined 
using the singular value decomposition.

In the next section, we will use the singular value decomposition to 
construct the support matrix so that we can use the new cost function 

defined above.
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F igure 3.38: A domino portrait of Marilyn Monroe that was constructed using the 

local search algorithm with the new cost function and the support matrix which was 

determined using the SVD.

3.9 Singular Value D ecom position (SV D )

A singular value decomposition is a factorization of a given m x n  ma­
trix. It has a lot of important applications in many areas. Specifically in 
our area it can help us to determine the important data in the photo ma­
trix. In the following sections we will state the algorithm of the singular 
value decomposition and related theorems and definitions. Moreover, we 
will show how it determines the important data in the photo matrix.

3.9.1 D efinitions and Theorem s 

D efinition 3.12.
An n x n  matrix Q is said to be an orthogonal matrix if the column vectors 
of Q form an orthogonal set in !Rn.

D efinition 3.13.
Let A  be an m  x  n matrix with (m>n). The factorization UT,Vt  is called 
a singular value decom position of A  where: U is an m x m  orthogonal
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matrix, V  is an n x n  orthogonal matrix and X is an m x n  matrix of the 
form

(

E = <r\ > <?2 > ■ ■ ■ > <rn >  0
0  on

\ 0

and Gi’s are called the singular values of A

R em ark  3.9.1.

The rank of A  = the number of non zero singular values.

D efin ition  3.14.
An n x n  matrix A is said to be diagonalizable i f  there exists a nonsingular 
matrix X  and a diagonal matrix D such that X _1A X  — D. We say that X
diagonalizes A.

T h eo rem  3.9.1. (Singular Value Decomposition)

If A is a real m x n  matrix, then A has a singular value decomposition. 
That is, A  =  LTEVr  where U is an m x m  orthogonal matrix, V  is an n x n  
orthogonal matrix and E is an m x n  matrix of the form

Proof.
Since A TA  is an n x n  symmetric matrix, its eigenvalues are real and it has 
an orthogonalizing matrix V. Moreover, the eigenvalues are non-negative.

/

E = 01 >  02 >  • • • > On >  0
0  Gn

To see that let A be an eigenvalue of A TA  and X be the eigenvector corre-
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sponding to A. We have the following:

{ATA ) X  = XX  

X TA TA X  = X X TX  

(A X )T(A X )  =  \ X T X

II AX

Hence, A > 0.
We can order the columns of Matrix V so that the corresponding eigenvalues 
of A TA  satisfy

Ax > A2 >  • • • > An > 0 

The singular values, cr* , of A  are given by

Rem ark 3.9.2.
The rank of A  equals the rank of A TA, say r, which is equal to the number 

of non-zero eigenvalues A j, i.e., the rank of A  = r.

Now let

Ax ^  A2 ^  ^ Ar > 0 and Ar+x — >V+ 2 — ■ ■ ■ — — 0?

also

(Ti > cr2 > • ■ ■ > (7 r > 0  and oy+x =  crr+2 — ■ ■ • = an = 0

Let

£1  =

V  0 /
so
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is the m x n  diagonal matrix. Let V\ = (v\, - • • , vr) and V2 =  {vr+\, • • ■ , vn) 
where Vi is the eigenvector of A T A  corresponding to the eigenvalue A j, 

i = 1, • • • , n. We have V  =  V\ +  V2. Since vj =  0, j  = r +  1, • ■ ■ , n, then

Ar Avj =  Aw, =  Ot’j =  0

Hence the column vectors of V2 form an orthogonal basis for 
N {A TA) = N{A)
That is,

AV:2 =  0

Now, since V  is Orthogonal matrix, I  = V V T and hence

i  = v v T = v xv '{  + v 2v:[

also,

A = A I  = AiVrV? + V2 V f )  =  AVXV?  +  AV2 V2r = AVXV ? , 

the matrix A  can be written as

A  -  AV{V?

We can Construct the m x m  matrix U of the singular value decomposition
UT,Vt  by the following:
since U is orthogonal matrix we have

UTU =  I,

so

A  = U Z V T <=* A V  = UZ.

By comparing the first r  columns of each side of equation 1, we get

A v j  =  crj U j , j  =  1 ,  - ■ • ,r

which is equivalent to

Uj = — Avj, j  = l , - - - , r .  (3.10)
° 3
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If we let

Ui = (ui, ■ ■ ■ ,u r),

then

AVX = U1Y 1.

Moreover, the column vectors of U\ form an orthogonal set. This is because

u ju j  =  (—v j A T)(— Avj) 1 < i < r, 1 < j  < r (by equation 3.10)
<jj a j

= - L v f ( A TA Vj) 
cricrj 1 v

=  —:—:v f(\jV j)  (since Vj is an eigenvector of A T A  corresponding to A j)

•\/Aj A j   G j

-y/Aj CTiyfXj &i
T ^7 T1

= ►  u i u 3 =  - r v i v 3

Because V  is an orthogonal matrix and its column vectors form an orthog­
onal set, i.e.,

T  f 1, fori =  j;
Vi Vj = 1 n - -L-\ 0, i ^ j

therefore
T T? T f l  > * =  J ) r

“ i  =  — A  V3 =  {  n  . ,  . =  f?Pi ( 0, j .

=  Si3-

Furthermore, from equation 1, we have Uj, 1 < j  <  r, in the column space
of A  and the dimension of the column space is r, so u i , . . .  ,u r form an
orthogonal basis for R(A).

D efinition 3.15.
Let Y  be a subspace o /R ". The set of all vectors in R" that are orthogonal 
to every vector in Y  is denoted by Y -L, i.e.,

y x =  { X  E R" : X Ty =  0 V y € Y }

The vector space =  N (A T) has dimension m  — r.
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Now since u\, u^, . . . ,  ur form an orthogonal basis for R(A) and ttr+ i , . . . ,  urn 
form an orthogonal basis for R (A ) , then U i , , um form an orthogonal basis 
for Rm.
Hence U is an orthogonal matrix.
Because

u ju j  = Sij 1 <  i < r, 1 < j  < r,

and

=  U & V ?  

=  AViV?

= A

Hence

A  = UHVT.

□

In the following we will explain how the singular value decomposition 

can be used to construct the support matrix that is described in Section 
3.8. Let the M  x N  matrix A  be the matrix of the target image, after we 
rescale it. Theorem 3.9.1, guarantees that the singular value decomposition 
is defined for matrix A. Now, let r > 0 be the rank of matrix A, the singular 
value decomposing can be used to determine an M  x iV matrix A  of rank 
k and 0 < k < r that is close to A  with respect to Frobenius norm || . \\F 
[33], where

m  n

II a  ||F=  ( <  A , A > y  =
i= 1 j = 1
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That is, if

rp rri m  m
A  =  t/E V  =  critiif! +  a 2 U2 V2 +  . . .  +  arurvr

then

A = U T , V t  =  ( T i U i v J  + cr2 U 2 V 2 + ... + + < J k U k V k

where 0 < k < r. After that, we find the M  x N  different matrix (AA)  
which is defined by

AA =  \ A -  A\

and rescale it from 0 to D — 1. Finally, the entries of the different matrix, 
A  A, that have higher scale are reflected to the positions of the important 
data in the photo matrix, which is the support matrix. That is, the different 
matrix, A  A, is the support matrix described in Section 3.8.

E xam ple  3.9. Figure 3.39 shows an original image of Marilyn Monroe of 
size 195 x 250. Applying the singular value decomposition to this image we 

have the following low rank images A i, . . .  , A5, A10 and A^o- These images 
getting better when the rank is is increasing. Moreover, Figure S.fO show

the different between the original image and every images with low rank,
i.e., |A  — A i | , . . . ,  |A — A5I, |A — Ai0| and |A  — A50|.

Consequently, we compose the support matrix so that we can use the new 
cost function, defined in equation 3.9, that forces the algorithms, the greedy 
and local search algorithms, to start with the important positions in the 
image.

3.9.2 A lg o rith m  for C o m p u tin g  th e  SVD

As we have seen, the singular value decomposition can be used in our 
main problem to determine the important data in the photo matrix. Be­
cause we are using C + +  language, we need, as well, to use it for the singular 
value decomposition. There are some programs, for example, CLAPACK ,
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Rank-1  a p p r o x i m a t i o n R a n k  ? .i| t|>ioxim.iTi-vn

R ank -3  a p p r o x i m a t i o n Rank-4 ap p ro x im a tio n

Rank-5 a p p ro x im a tio n Rank-10 ap p ro x im a tio n

Rank-50 ap p ro x im a tio n Original Im age

F igure 3.39: An original image of Marilyn Monroe and the low rank approximations 

when the SVD is applied. The details of this image is described in Example 3.9
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M •*
The original image A

Truncated image A  — 4a

Thmeated image A  -  A t

Truncated image A  -  At

Truneated image .4 — A3

Thiraated image A  -  As

Truncated image A -  Aia Truncated image A  — .Ass

Figure 3.40: The differences between the original image of Marilyn Monroe (top left) 

and the low rank approximations images defined in Figure 3.39
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that compute the SVD. In this thesis, we developed a C + +  program that 
computes the SVD. Determining the approximate eigenvalues of A TA  is a 

complicated step in computing the singular value decomposition. There­
fore, we need an efficient method to do that. Such methods are called 

Householder’s and the QR methods [9].

Given m x n  matrix A, (m  > n), The singular value decomposition, 

UJ2Vt of the matrix A, can be computed by the following steps:

S tep  1 Compute the A TA.

S tep  2 Evaluate the eigenvalues \  and the eigenvectors vt of A TA.

S tep  3 Let V\ =  (wi , . . . , iv) and V\ = (ur+i , . . . ,  vn) such that,

Vi =  where vt are the eigenvectors of A TA  corresponding to
the eigenvalues Aj,

Ai +  A2 ■ • • Ar >  0, and Ar_|_i =  • • ■ — Xn =  0.

S tep  4 Let U = ^ U\ U2 )  •

Ui = (ui ,u2, . . .  , ur ); Ui = — Avi, i = l , . . . , r  

U2 =  (ur+1 ,u r+2 , . . . , u m); A Tuj = 0, j  = r + 1 , . . .  ,m.

i.e., ur+1, ur+2, . . . ,  urn must form an orthogonal basis for N (A T).

H o u seh o ld er’s M eth o d

Householder’s method [9] has a large application in mathematical areas. 
One of the famous areas is called an eigenvalue approximation. We will 
use this method to help us approximate the eigenvalues of A TA  in order 
to determine the singular values of a given matrix A. In this section we 
discuss Householder’s method briefly. The idea of Householder’s method 
is to determine a symmetric tridiagonal matrix that is similar to a given
symmetric matrix. The new similar matrix has the same eigenvalues that
the original matrix does. To approximate the eigenvalues of the similar
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matrix, we use one of the proficient methods called the QR method which 

we will talk about in the following section.

D efin ition  3.16. Let w E R" with wTw — 1. The n x n  matrix

P  =  I  — 2 wwT

is called a Householder’s transformation.

There are some properties of the householder’s transformation. Two 
important properties are the symmetry and the orthogonality which are 

stated in the following theorem:

T h eo rem  3.9.2. A Householder’s transformation, P  = I  — 2wwT, is sym­
metric and orthogonal, i.e., P -1 =  P.

Proof.
For the symmetry we need to show that P 1  = P. we have

P T =  (J -  2wwT)T = I T -  2(wwJ )J  =  I  -  2wr T wJ =  I  -  2wwT = P.

And for the orthogonality we need to proof that P P T = I, which can be 
proved as follow: since P is symmetric we have P T =  P, i.e.,

(.I  — 2 wwT)T =  (I  — 2 wwT)

moreover, by the definition of the Householder’s transformation, we have

wTw = 1

and hence

P P T = (J -  2wwT)(I -  2wwT)T = ( /  -  2wwT)(I -  2wwT)

= I  — 2 wwT — 2 wwT +  4 w(wTw)wT = I  — 4 wwT +  4 wwT 

=  1 ,

consequently,
P T = P - 1 =  P.

□
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The tridiagonal symmetric matrix A n 1 that we want to be similar to 
the symmetric n  x n  matrix A  is defined by the following:

_  p(n-2)p(n-3) _ _ _ p{l) j^pW ■ ■ ■ p("~3)p(n“2)_

where pW are the Householder’s transformation matrices. The House­

holder’s method starts by finding the first transformation P ^  such that 
the entries of A ® =  pd)^4 p (1) satisfy the following properties:

a,jf = a f)  = 0, fo r  each j  = 3 , 4 , . . . ,  n  (3-11)

Now our aim is to determine P ^  which is equal to P ^  = I  — 2wwT. 
That is to determine the vector w =  (w i,w2, . ■ ■, wn)T € M". We chose to; 
according to two conditions given by the following:

1. wr w = 1

2. The entries in the matrix

A {2) =  p (i)^p (i) = ( I -  2wwt )A (I  -  2wwT) 

have the property that

an  = an  and afi — a i2j — 0) f or each j  =  3 , 4 ,n

by this choice we have n  conditions on the n  unknown wl , i =  0 , 1 , . . . ,  n. 
To satisfy =  an  we let w\ — 0 and hence the transformation P ^  
becomes

1  \ 0 ••• 0 N

P (1) =  °
: p

\ °  )
where P  =  I  — 2wwT is (n — 1) x (n — 1) Householder’s transformation and

w = (w2, • • •, wn)T €
To determine the remaining Wi we multiply P ^  by the first column of A  
and equating the result by the following
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P (1)(au , . . . ,a„i)T =  ( a n ,a ,0 , . . ■ ,0) (3 .1 2 )

where a  will be determined later.
now if we let y  =  (021, . . . ,  ani)T G then equation 3.12 becomes

p i 1)

U P
&21

 ̂ ®nl J

(

=  p i 1)

1 0 

0

0 \ (  a n  \

y
V /

/ a u \
a  

0

V 0
Now

P y  =  (/(n_i) -  2 w w r ) y  =  y -  2 w w T) y  

= y  — 2h)(rt)Ty), (uiTy =  r  s c a l e r )

=  y  -  2r w  =  ( a , 0 , . . .  ,0 )T (3.13)

That is

(a2i -  2 r w 2 , o3i -  2 r w 3 , . . . ,  anl -  2ru;ri)T =  ( a ,  0, . . . ,  o )
T

and by equating the component of each side we get

a  =  a 21 — 2 r w 2 

0 =  a 31 -  2r w 3

0 =  a n 1 — 2 r w n

that is,

w2 =
a 21 — a

2  r
CLj 1

Wj ^ ~ 2 r ’ =  3>4>--->n -

(3.14)

(3.15)

consequently, once we determine a  and r  we know W j , j  = 2 ,3, . . .  ,0. We 
observe from equations 3.14 and 3.15 that Wj is defined for r  7  ̂ 0. That
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means we need to choose a  so that 0.
Now to find a  we rewrite equations 3.14 and 3.15 as follows

2rw2 =  a2i — a  (3.16)

2 rwj = an, j  =  3,4, . . . , n .  (3.17)

and then we square both sides of the equations and add them togethers
n

4r2 (w% +  w\ +  • • • +  w2n) = (a2i -  a ) 2 +  ^  a2x (3.18)
j = 3

Now since

Wi = 0 and 1 =  wTw — ŵ , + w\ +  . . .  +

= > w 22 +  . . .  +  w2n = 1 

and hence, equation 3.18 becomes as follows
n

4 r 2 = X ^ a2± — 2aa2\ +  a 2 (3.19)
3=2

From equation 3.13 we have

P y  =  ( cq0 , . . . , 0 )T

so

a 2 = (a, 0 , . . . ,  0)(a, 0 , . . . ,  0)T =  (P y)T (Py)  =

=  y T(PT P )y  — y Ty
n

=  a 21 +  a 31 +  • • • +  a nl =  “ i 1'
3=2

Note: P TP  =  1, by the orthogonality of P. 
thus

n  n

ap  = > a  =  ( 5 Z a^ ) 5 (3 -20)
3=2 3=2

Hence equation 3.19 will be
n  n  n

4 r2 =  aji — 2aa2i +  X^ a]\ =  2 XZ aP  — 2aa2i
j=2 j=2 j = 2
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By dividing both sides by 2, we get

n
2r 2 =  a*! -  aa 21

3=2

As we mentioned earlier, wj is defined as whenever r ^  0.

Now, r =  0 when
n

y ;  -  a«2 i =  o
3=2

from equation 3.20 we have

n  n

E “t - ( E A ) b 2 i  =  0 (3.21)
j=2 j=2

Let x = '^2 "=2aji> the solution of equation 3.21 will be as follows 

a; — a;1//2a2i =  0 =>■ x 1̂ 2( x 1̂ 2 — a2i) =  0

by solving this equation we get

n
x l / 2  = 0 =>- y  a2i =  0 <=> 0 2 1  = a31 = . . .  = anl =  0

i= 2

or n
x 1! 2 — a2i =  0 =>  a2! =  a2x =  +  a31 +  • • • +  a2x

3=2
031 =  . . .  =  Oral =  0

So, for any number of a2i and a31 =  . . .  =  anl =  0, we have r =  0. That is,
for j  = 2 , 3 , , n,  we have Wj,  is defined whenever aj\ ^  0.
To define more efficiently, we add the following condition a2i =  0 to the
above condition, i.e. a2i =  a3i =  . . .  =  ani =  0, and change the a  to be 
equals n

a  =  -5071(02!) ( J ] ]  4 0  ̂
3=2

This can be shown in claim 3.9.1. Before we state the claim, let us put 

forth the following definition,
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Definition 3.17. (Signum of x, sgn{x))

{1 i f  x  > 0 
0 i f  x  =  0 
— 1 i f  x  < 0

C laim  3.9.1.

Let n
2r 2 =  ^  a2x -  a a 2i (3.22)

j =2

and, a  =  — sgn(a2 i ) ( S " =2aj i ) ^ 2; ^ en

r  =  0 i /  and only i f  a2i =  a3i =  . . .  =  ani =  0.

Proof.

( 4 = )  Let a2i =  a3i =  . . .  =  o-ni =  0, so we have

n
2 r 2 =  — a a 2i =  0 — a(0) =  0.

J'=2

hence, r  =  0

(=£■) Let r  =  0 and a  =  — sgn(a2 i)(Y2 = 2 we need to show that

0,21 =  0-31 =  ■■■ —  U n l  =  0 .

We have
n n

0  = 2 r 2 = ^ 2  a |j -  a2i [ -  s#n(a21) ( afi )1/2] 
i=2 i=2

n  n

=  a^l +  a21Sffn (a2l) ( J ]  a^ )  V2
j=2 j=2

now, applying Definition 3.17 to o,2i we get the following three cases.

Case 1, when a2i > 0, 
we have n n

sgn(a2 i) =  1, an^ ^ l ) ^ 2 > 0
i=2 j=2
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which implies that

2r2 =  5 Z aii +  a2 i ( E s 2i) > 0
3 = 2  3 = 2

= >  2r 2 > 0 =► r  =  0

=>  contradiction since r =  0 and so a2i ^  0

Case 2, when a2i < 0 , in this case

sgn(a2 1) =  —1 , and 031 =  . . .  =  an 1 =  0

so

2 r  =  a21 — q2i(o2i)  ̂ =  o2i — ®2i ( a2\ ) — 2a21 7  ̂ 0 

=>- r = 0

which is also a contradiction.

Hence, a21 should be zero, moreover,

«2i =  &31 =  . . .  =  an 1 =  0

□

Prom claim 3.9.1 and choice of a  and r we have Wj, j  = 1 ,2 ,3 , . . . ,  n 
is obtained and the construct of P^2) js as follows: 

let
n

2 \ 1/2

and

a  =  - s g n ( a 2 i ) ( ^ 2 a 2j l )

3 = 2

_  , 0 ?  -  a 2 i a ,  i/ 2
r - I  2 '  ’

=  0, 
a 21 — a

u>j = for each j  =  3 , . . . ,  n.
Zr
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Thus
/  (2) / a -

^ (2) _  p W j^p W  =

11
(2 )
21

a (2)a 12

a (2)22

a (2)u 32

0
a (2)23

(2)
33

0 \

a

a (2)
(2 )O3 n

V n  (2) (2) (2) .
\  0  a n2 a n3 ' ' '  a ^ n  /

After computing + 1) and + +  we do the same process for fc =  2,3,. 

which is as follows:

., n —1

a: (fc)l2\l/2
=  -^w (4 + i,fc )( ] C  («S})2)

j = k + 1
2 (0 a  ~ o ia k+l k l /2

r = ( ------- 5 ) ’
(fc) (fc) W \ '= W \

M

(fc)
=  0 ,

u>(fc)
fc+i

‘fc+i.fc — a
2 r

, (fc)
(fc) _  _ j k _  £o r  eaĉ  j =  ̂ 2, fc + 3 ,
J 2 r

pik) = I  -  2 w {k).(w{k))T

,n,

and
(̂fc+l) _ p ( k ) j ^ ( k ) p { k )

The tridiagonal and symmetric matrix + n ^ is computed when fc reaches 

n — 2, i.e.,

1) _  p { n - 2)p ( n - 3) _ _ _ p W ^ p t 1) _ _ _ p ( « - 3)p ( n ~ 2)

Remark 3.9.3.

J/ aK + 1 =  aS +2 =  ■ ■ • =  a£  =  0 where k = l , 2 , . . . , n - 2 , in this 
let A =  + fc) and continue the process for the rest.

case we

Householder’s algorithm in C + +
In this program we obtain a symmetric tridiagonal n x n  matrix A t"-1) 
similar to a given n  x n  matrix A  = + +  where A ^  =  (a + )  for fc =
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1, 2 , . . . ,  n — 1 [33]

INPUT Dimension n; matrix A.

OUTPUT

S tep  1 For k =  1 ,2 , . . . ,  n — 2 do steps 2 - 14.

S tep  2 Recall: ” Remark 3.9.3
Tf „(fc) _  „(fe) _  . . .  _  Afc) _  n pnr u — i o  r? — 211 afc,fc+l ~  kyk+2 — — k,n ~  U rUI — r, Z, . . . , 7i
Set
A(fc+1) =  A a n d  continue (i.e., start from step 1 with k =  &+1). 

S tep  3 Set

7 =  ±  ( 4 t ’) 2-
j=k+1

S tep  4

I f  o,^_lk  = 0 then set a  =  —q*
i  (k)

92afc+i,fcCISC SCt (X —----- 7T\-----
lafc+i,fcl

S tep  5 Set RSQ  =  a 2 — ac4+i,fc (here RAQ =  2r 2)

S tep  6
For i =  1 , . . . ,  k set Vi =  0

(k)
Vk+1 =  4+l,fe -  a
For j  = k + 2 , . . .  7n set vj = a^k
(Note:w =  T-v)

S tep  7 For j  = k , . . . ,  n  set uj = (RSQ) Y^=k+i af i vi 
(Note: u  =  ^A ^w )
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S tep  8 Set P R O D  = Yli=k+ 1 viui (Note: P R O D  = v Tu)

S tep  9 For j  = k , . . . ,  n  set Zj = Uj — ( ^rs 'q' ) 1̂
(Note: z =  u  — w w Tu)

S tep  10 For I =  k +  1 , . . . ,  n  — 1 do step 11 and 12

(Note: computed A^k+V> =  (I  — 2wwT)A(fe)(/ — 2wwT)

S tep  11 For j  — I +  1, . . .  , n  set

1) (k)
a)l aH VlZ0 -  V3Zl

„(fc+l) _  (k+1) 
alj -  ajl

Step 12 Set =  aj^ — 2vizi.

Step 13 Set ait+1) =  a™ -  2vnzn

Step 14 For j  =  k +  2 , . . . ,  n  set =  a ife+1  ̂ =  0

Step 15 set

(fc+i) (k) 
ak+lk ~  ak+l,k vk+lzk
„(fc+l) _  „(*+!)uk,k+1 — uk+l,k-

(Note: The other elements of A^k+1̂  are the same as A ^ )  

Step 16 Print A^n~^  which is symmetric, tridiagonal and similar to A.

After applying the Householder’s Method for A TA, we have produced the

150

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



matrix A ^ 1̂ . This matrix is symmetric, tridiagonal and similar to A TA. 
In the next step we will use the QR method to determine the eigenvalues 
of A ('n~1'> which are approximately the same as those of the matrix A TA. 
This will be in the following section.

QR M ethod

As we have seen, the Householder’s method was used first to determine 
the symmetric tridiagonal A^n~^ matrix. In this section we continue the 

procedure and use the QR method [33] to convert the matrix A ^n ~ 1'1 to a 
diagonal matrix that has approximately the same eigenvalues as the original 
matrix A TA.

The idea of the QR method is to obtain a sequence of symmetric tridi­

agonal matrices
A (n-1) =  ^ ( 1 ) 4 (2 ) ^ (3 )

such that the matrix A^+1) has the same eigenvalues as A ^ \  Moreover, it 
tends to a diagonal matrix and its diagonal entries are approximately the 
eigenvalues of A^n~^  as well as A TA.

QR starts with the matrix

=  A =

(

\

ax

b2

0

0

b2

a2

\

0 /
If 62 =  0 or bn = 0, a2 or an is the eigenvalue of the matrix A. If bj =  0 for 
some 2 <  j  < n, we split the matrix A  into two small matrices and repeat 

the procedure for both of them individually. The small matrices are of the
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following form:

(

\

o-i

b2

0

0

b2

0 2

and

a,- fy+i

V

aj+i

0

0 0 br, /
If there is no bj — 0, we continue the procedure by producing the matrices 

A(2\  , . . .  as follows:

1. The matrix A (n_1) =  is factored as a product A ^  =  Q ^ R ^ ,
where is an orthogonal matrix and is an upper triangular 
matrix.

2. The matrix A ^  is defined as

A ®  = i?(1)g (1).

3. The rest of the matrices are defined as follows: A ^  is factored as 
A 1-1'1 =  gb)_R(») and yjb+1) =  R ^ Q b f  where is an orthogonal ma­

trix and is an upper triangular matrix.

The construction of the factors and R ^  use the rotation matrix which 
is defined by this definition:

D efinition 3.18.
A rotation matrix P differs from the identity in at most four elements. 
These four elements are of the form

P ( i i ) =  P ( j j )  =  cos 9 and p ^  =  ~ P ( j i )  =  sin 6

for some 6  and i ^  j

The angle 9  can be chosen so that the product P A  has zero entries 
at ( P A ) i j .  The factorization R ^  ia a product of n — 1 rotation matrices 
P 2 , P 3 , . . . , P n  and A ^ f  i.e.,

RW = Pn,Pn_1 , . . . , P 2 A<‘1\
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QR starts by choosing the rotation matrix P2 such that 

P{ 11) =  P{22) =  cos 02 and 12) = - p (21) =  sin02.

Where
■ a  b2 j  a a lsm02 =  —. and cos U2 =  —.

s /W T a f  y l T o }

The entries in the positions (2,1) and (1,4) , . . . ,  (1, n) in the matrix A ^  = 

p 2a w  are zeros since

• n , u n —h a i  aib2- a x sin02 +  b2 cos 02 =  ■■■ •  T.  +  =  0.
^ / ^  + a?1 y/b\ +  af

and the only entry in position (1,3) may not equal to zero.
In general

4 °  =  T u (fc_1)

where the matrix Pk is chosen so that the entry in position (k, k —1) are zero, 
and therefore, the {k — 1, k +  1) entry becomes non zero. The construction 

of the matrices 4 ^  and Pk+i are of the following form

ri 0 .................................... 0 \

0 z k - 1  qk - 1  r fc_ i :

0 xk yk 0 :

h+i Ofe+i h + 2 ' ■ 0

0 

bn
0 bn an J

and
I fc - l 0 0

Qc+1 $ k -\-1

0 0

•Sfc+l Qc+1

0 I n —fc—1
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where

and

£fc+i
frfc+i

bl+1 +  4
a n d  c k + 1

Xk

blfc+i X I

( z\ qi n  o ....................
o ••• •••

a (1) _A k+1 —

0 \

0

0 Zk q k r k

0 xk+1 yk+i 0

bk + 2  ak + 2  bk+3 0

0

V  o 0 bn a a J

By continuing this construction for the rotation matrices P \ , . . . ,  Pn we get 
the matrix

/  „ „ „  n . . .  n  \zi qi n o
0 •••

: ' • • z

V o ......................

which is an upper triangular matrix.

0

0

'  ’  • r n_2

Zn —1 Qn—1
0 xn

The construction of the other factor, which is Q ^ \  is defined by the 
following:

q W = p ? p ? . . . p J .

where the matrix P  is the rotation matrix that is defined in the factor R ^ \  
Since the rotation matrices are orthogonal, then

Q W r W  =  ( P 2T p T  _ _ _ P^).(P 2 P3 . . .  Pn) A ^  = A™.
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and so, the matrix is equal + 1) =  R ^ Q i 1) which is closer to being a 

diagonal matrix than is + +  This because the magnitude of the entries off 
diagonal of the matrix A ^  are, in general, smaller than the corresponding 
entries of the matrix + +  We do the same procedure for other matrices 
+ 3\ + 4), . . . .

Now, let Aj, i =  1 ,2 , . . . ,  n be the eigenvalues of the matrix + " ~ +  If 

I Ai| > | A21 >  . . .  > |An|, the rate of convergence of determines the rate 
of convergence of the entry hl̂ \  to 0 in the matrix + t+1A In addition, the 

rate of convergence of the entry to the eigenvalue Xt is determined by 

the rate of convergence of bl̂ \  to 0. That is, if

bljW  —> 0, then —> A;

Usually this convergence is slow. We use a shift technique to make this 
convergence faster. A shift technique uses a constant s, which is called a 
shift constant s. This constant, Si is determined at each step, say step i, by 
the eigenvalue of the matrix

+) 1,(0 \
a n - 1 bn
6(0Vn (0an

that is close to the entry a„\ After that, we use this constat, s* to modify 
the factorization matrices Q (0 and i?(0 so that

A(i) -  SiI  = Q (i)R {i) and A(i+1) =  +  s j .

QR algorithm in C + +
In this program we obtain the eigenvalues of a symmetric, tridiagonal n x n

A  = A X

(

, where

a ? 0 . . .  o

0 2 ]

0 ••• 0

b{l)Vn
0 0 fe(1) a (1)vn Usn

\
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IN P U T  : Dimension n; a ^ , . . . , c in \b ^ \  . . . ,  5 ^ ;
tolerance TOL] maximum number of iterations M

O U T P U T  : Eigenvalues of A.

S tep  1 Set k — 1; S H I F T  =  0. (Accumulated shift)

S tep  2 While fc <  M  do steps 3 - 1 9

S tep  3 if (n = =  1)

• A =  a f '1 +  S H I F T

• Print out (A)

• return (return from where you came)

S tep  4 if (\b{n }\ < TOL)

• A =  a(n ] + S H I F T

• Print out (A)

• n — n — 1

• continue (repeat steps starting from step 2)

S tep  5 if (Ib^l < T O L )

• A =  a f ] + S H I F T

• Print out (A)

• n =  n — 1
(fc) (fc)• a) =  a\

• for j  =  2, /dots, n 
set

(fc) (fc)
-  ai =  at+i
_  fe(*0 =  &(*0 

S+i
• continue (repeat steps starting from step 2)

S tep  6 for j  = 2 , . . . ,  n  — 1

if (|& f| < TOL) (Splitting case) in this case we split the ma­
trix A  into two small matrices {af^\ . . . ,  a k̂}1, , . . . ,  b̂ }l }

and { a f  \  . . . ,  a ^ j b ^ i ,  • ■ •, ^  S H IF T }  and we apply QR 
method for the first matrix and then for the second one.
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S tep  7 (Computing the Shift) 
set

t> =  - ( “ i - i + « ! ? )

C =  <.<M A  -  P f ] 2

d =  (b2 -  4c)1/2

S tep  8 If (b > 0) then set

-2 c
*  = b T d

—(6 -F c?)
^ 2 =  2

else set

d - b

2c
^ - J d ^ b )

S tep  9 If (n = =  2) then

• set

Xi =f i i  + S H I F T  

X2 = /jl2 + S H I F T

• Print out (Ai, A2)

• return (return from where you came)

S tep  10 Choose s  so that s = min{|//i — a ^ \ ,  |/x2 — |

S tep  11 Set S H I F T  = S H I F T  +  s

S tep  12 (Perform shift)
For j  = 1 , . . . ,  n  set dj = — s
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Step 13 (Steps 14 and 15 compute RW)

Xi = dx 
u ( k )

V\ = &2

Step 14 For j  — 2,.

•  set

in

Z j - x  —

Ci =

* u + ( b f r
X3- 1 
* 3 - 1

1/2

<,()*

Z j - l

Qj—i = cj V j -1 F S j d j

X j  =  — S j D j - x  +  Cj d j

If j  ^  n then set

ri-i = S j b
(fc) 

'•Fj+i)
, (fc)

Vi = ci&i+i)

=  PjA^}^  has just been computed and 

Step 15 (Steps 16 - 18 compute A^k+l  ̂ =  R W Q W )  set

Zn  %n

(fc+1) .aj =  s2gi +  c2zi
Ak+!)fej =  S2Z2

Step 16 For j  = 2 , . . . ,  n — 1 set

a (*-U _
•j ^ j + i ^ Q j  F Cj C j+ x Zi

6
( fc+i)
j+i — s j + i z j + i
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S tep  17 Set aifc+1̂ =  cnzn 

S tep  18 Set k = k +  1
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Chapter 4

MAXIMUM CLIQUE PROBLEM (MCP)

The maximum clique problem is one of the most important problems in 
combinatorial optimization. In this chapter we briefly discuss the maximum 

clique problem including its applications and the algorithms that can solve 
the problem. Moreover, we will present an important application of the 

(MCP) called finding ovoids in finite polar spaces. In addition, we develop 

a new technique based on the local search algorithm to find cliques of a 
given size in agiven graph. To understand clearly the problem let us start 

with the following definitions.

4.1 D efin itions

In this section we provide the definitions that help us understand the 

maximum clique and independent set problems and how they are related. 
Also, we recall some definitions from previous chapters.

D efin ition  4.1. Let G — (V ,E) be an undirected graph where V  is the 
set of vertices and E  C  V  x V  is the set of edges. The graph G is co m p le te  

if for every two distinct vertices aiy a,j there is an edge (a.j, aj) G E. A graph 

G =  (V, E) is called a subgraph  of the graph G if V  C V  and E  C  E  such 

that if (a i,a j) G E, then ai taj G V.

D efin ition  4.2. A subgraph C = (VC,E C) of a graph G = (V, E) is called 
a clique if it is complete. That is, for every two vertices a, b G Vc, there is 
an edge (a, b) G E c. The size of a clique C  is denoted as ui(c) or \C\ and 
defined by the number of vertices contained in Vc.
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F igure 4.1: Graph G\  =  (V,E), V  =  {1 ,.. .  ,5}, of example 4.1

The maximum clique problem involves finding a clique C  in a given 
graph such that it has the maximum size. In other words, given a graph G, 

we want to find a clique C  such that \C\ > \C\ for any clique C  in G.

E xam ple  4.1. In figure 4.1, we have a graph G\ =  (V ,E ) where V  = 
{ 1 , . . . ,  5}. Graph G\ is not complete since there are at least two vertices 
not connected with an edge; for instance, vertex 2 and 3, are not adjacent. 

In the following subgraphs

1 . Cx = (VC1 ,E C1), where VC1 = {1,3,5} and E Cl =  {(1 ,3), (1,5)}.

2. C2 = (VC2 ,E C2), where K 2 =  {1,3,4} and E C2 = {(1,3), (1,4), (3,4)}.

3. C3 =  (VC3 ,E C3), where VC3 = {1,2,4,5} and 
E C3 = {(1,2), (1,4), (1,5), (2,4), (2,5), (4,5)}.

we have the following: the subgraph Ci is not a clique since not all its 

vertices are pairwise adjacent, i.e., the edge (1,5) ECl. The subgraphs C2 

and C3 are cliques of size 3 and 4 respectively. The maximum clique of this 
graph is C3 since it has the maximum size.

D efin ition  4.3. A set S  in a graph G = (V, E) is called an in d ep en d en t 

s e t , if it is a subset of V  such that every two vertices in S  are nonadjacent. 

In other words, if S  C V  such that V a,b £ S, the edge e =  (a, b) E. 
The size of an independent set S  is the number of vertices contained in S  
and is denoted as co(S) or IS1}
Finding the maximum independent set in a given graph is called the max­
imum independent set problem. That is, we need to find an independent 
set S  C V  in a graph G =  (V ,E ) such that |Sj < |S| for all independent 
sets S  in G.
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F igu re 4.2: Graph G2 =  (V, E ) ,  V  =  { 1 , . . . ,  5}, of example 4.2

E xam ple  4.2. In figure 4.2, we have a graph G2 — (V, E) where V  = 

{ 1 ,. . . ,  5}. The set Si =  {1,3,5} is not an independent set since there are 
two vertices 3,5 £ S\ which are connected in G2, i.e., the edge e = (3,5) £ 
E. The sets S 2 =  {1,3,4} and S 3 =  {1,2,4,5} are independent sets and 
have size 3 and 4 respectively. The set S 3 is the maximum independent set 

of this example since it has the largest size.

D efin ition  4.4. Given a graph G = (V, E) where V  is the set of vertices 
and E  is the set of edges, the complement of a graph G is a graph G = (V, E) 
such that the two following conditions are satisfied:

1. The set of vertices V  of G is the same as the set of vertices V  of graph 

G, i .e .,V  = V

2. Two vertices in G are connected if and only if they are not connected 

in G.

For example, graph G2 in figure 4.2 is the complement of graph G in figure 
4.1.

It is not hard to see that the set C  is an independent set of a graph G 
if and only if C  is a clique of its complement [40].

Therefore, finding the maximum independent set in a graph G corre­
sponds to finding the maximum clique in its complement. For example, the 
maximum independent set S 3 of graph G2 in example 4.2, is the maximum 
clique of the graph G\ in example 4.1, which is the complement of the graph 
G2.

4.2 A pplications
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The maximum clique problem arises in various areas including com­

puter vision, cluster analysis, and coding theory [27, 22, 12].
For example, in coding theory, one question which arises is to compute 
A(n, d) which is the maximum number of binary vectors of size n with 
Hamming distance d. The Hamming distance between two codewords 
u (u i , . . . ,  un) and v(v \ , . . . ,  vn) is the number of coordinates where they dif­

fer, and is denoted by d(u, v). The idea is to determine the graph G — (V, E) 
where the set of vertices V  has size 2” and corresponds to all possible code­

words, while E  is all possible edges such that two vertices are connected 
with an edge e € E  if their Hamming distance is at least d. The value of 

A(n, d) can be computed by determining the maximum clique of the graph 

G.
Another problem in coding theory involves finding a weighted binary 

code A (n ,w ,d ). This value is determined by finding the maximum clique 
corresponding to the graph G =  (V ,E ) where the size of the set V  is (”). 
For more details regarding these applications see [22, 2],

Yet another interesting application of the maximum clique problem is 
finding ovoids in finite polar spaces. This will be described in the following 
section.

4.2.1 Finding ovoids in finite polar space

One important application for the maximum clique problem is search­

ing for ovoids in finite polar spaces, which is equivalent to finding an in­
dependent set with a specific size in a specific graph. To understand this 
application, the following definitions are necessary.

D efin ition  4.5. The n-dimensional projective space over a finite field 
GF(q), denoted PG (n,q) is defined by means of an (n +  1)—dimensional 
vector space V (n  +  1 ,GF(q)). The 1-dimensional subspaces of V are the 
points, the 2-dimensional subspaces are the lines and the 3-dimensional 
subspaces of V are the planes [11].

There are three important properties of projective space, which are 
given as follows:
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1. Two points lie on at most one line.

2. Two intersecting lines lie in a unique plane.

3. Two lines in the same plane must intersect.

D efinition 4.6. A quadratic form  in indeterminates Xq, . . . , x „ over a fi­

nite field F is a homogeneous polynomial of degree two in those indetermi­
nates,.i.e.,

n
Q i .^0  Q { % 0) • ■ ■ j ®n) ^  ] (S' i jXiXj )

i , j= 0

Where the coefficients Cy are in F [48].

For x £ GF(q), we write P(x) to denote the projective point which is the 
one-dimensional subspace spanned by x. From now on, q will always be a 
prime power (i.e., q £ {2 ,3 ,22, 5 ,7 ,...} ).

D efinition 4.7. Let Q be a quadratic form in (n + 1) variables. A quadric 
Q in PG(n, q) is the zero set of Q. That is,

Q =  {P(x) : Q(x) =  0}

Let /  and g be two quadratic forms. We say that /  and g are pro- 
jectively equivalent if g can be obtained from /  using an invertible linear 

substitution of the variables. That is, in matrix form, /  and g are projec- 
tively equivalent if there is a nonsingular n  x n  matrix A  such that

g(X ) = f(X A ) .

Given a quadratic form Q in n  variables x0, , xn over a field F, then Q 
has rank r if r  is the least number of variables that occur in any projective 
equivalent quadratic form [48].

D efinition 4.8. Let Q be a quadratic form in r  variables. A quadric Q is 

call nondegenerate if Q has degree r. That is, if Q cannot be transformed 
into a homogeneous polynomial with fewer degrees.
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The nondegenerate quadrics in PG(n, q) can be put into three types 
up to projective equivalence. These types are as follows ( we let n  be the 

dimension of the projective space):

1. Parabolic quadrics: The formula of this type is given by

Q { n i Q) =  X0X \  +  X2X 3 +  • • • +  %2m—2x 2m—l  +  a x 2m'  

where n = 2 m  is even and a is a non-zero scalar.

2. Hyperbolic quadrics: This is presented by

Q+(n, q) =  X 0 X 1 +  X 2 X 3  +  . . . +  X 2 m —2 x 2 m —l-  

where n  =  2 m  — 1 is odd.

3. Elliptic quadrics: The formula of this type is given by

Q ~ ( n , q )  =  X0x 1+ x 2x 3 +  . . . + X 2 m - 2 X 2 m - l + a x l m  +  b X 2 m X 2 m + l + C x l m + 1 .

with ax2 + bx + c irreducible over the field F9. The number n  in this 
type is odd and equals 2 m  +  1, i.e., n — 2 m  +  1.

where m  is an integer called the witt-index, which is the largest di­
mension of a vector subspace in which the quadratic form vanishes 
completely.

For example, Figure 4.3 shows the hyperbolic quadric Q+(3,q) with equa­

tion £020 +  ^ 2^3 =  0, Cameron [10].

A line of a quadric Q is a projective line (i.e., a 2-dimensional subspace) 

which is completely contained in the quadric. Let Qi denote the lines of Q.
There are formulas of the number of projective points and the number 

of projective lines for each type of nondegenerate quadric Q in PG(n,q). 
These formulas are as follows:

1. The parabolic quadric Q (n,q), where n = 2m and is even:
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Figure 4.3: The hyperbolic quadric Q+(3, q) with equation XqX\ +  X2 X3 =  0, which is 

called ’’ruled quadric” , Cameron [10].

•  The number of projective points:
qn — 1

I <31 = p —p  (41)

•  The number of projective lines:

i<3ii = tofa~ \))faT -n1)'(<;m + + 4)- (42)

2. The hyperbolic quadric Q+(n,q), where n  =  2m — 1 and is odd:

• The number of projective points:

t /J(«+1)/2 _  p [ 0 M ) /2 4 . ij
\Q+\ = ^ ^ (4.3)

• The number of projective lines:

l4?'l =  + 1)(l,m' 2 +1} ' (44)

3. The elliptic quadric Q~(n, q), where n = 2m +  1 and is odd:

• The number of projective points:
(g(n+l)/2 , j W  ( n - l ) / 2  _  I)

\Q~\ = ^  t l  (4.5)

D efin ition  4.9. An ovoid O of a quadric Q(n, q) in PG(n, q) is a set of s 
points such that there are no two collinear in a line of the quadric, where

qm + 1, i fQ
s =  < qm~l +  1, if  Q

qm+i +  1? i fQ
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For example, the size of an ovoid of a hyperbolic quadric Q+(3,q) is q + 1 
(since in this case 3 =  n =  2m  — 1, we have m  =  2 and s = q('2~1') +  1).

In order to describe the search for ovoids as an instance of the maximum 
clique problem, we define the collinearity graph of a polar space.

D efin ition  4.10. Let Q = Q(n, q) be a nondegenerate quadric in PG(n, q). 

Let Qi be the set of lines of Q. The collinearity graph of Q has as vertices 

the points of Q. Two vertices are adjacent if the corresponding points are 
collinear in a line of Qi.

T heo rem  4.2.1. The following are equivalent:

1. O is an ovoid in Q(n,q).

2. O is an independent set of size s in the collinearity graph of Q.

3. O is a clique of size s in the complement of the collinearity graph of

Q .

where s is as in formula f . 6 .

Therefore, the search for ovoids in polar spaces is an instance of the 
maximum clique problem.

E xam ple  4.3. Figure 4.3 shows the hyperbolic quadric Q+(3, q), Cameron 

[10]. An ovoid of this quadric has q +  1 points. For instance, if q = 2,
i.e., Q+(3,2), then we have an ovoid of size 3. The number of points 
and lines of the quadric Q+(3,2) are 9 and 6 respectively (see Figure 4.4- 
A). Therefore, the corresponding collinearity graph has 9 vertices and is 
shown in Figure 4.4-B. In this graph, two vertices are adjacent if they 

are connected by a line in Q+(3,2). For instance, since vertex 1 is con­
nected with vertex 2 and vertex 3 by a line in Q+(3,2), these points are 
connected by edges in the collinearity graph. The complement of the 
collinearity graph is shown in Figure 4.4-C. All possible cliques of size 3 
of this graph are C i { l ,  5,9}, C2 {1 ,6 , 8 }, 6 3 ( 2 ,4,9}, C±{2 , 7 ,6 }, 6 5 ( 3 , 4 , 8 } 
and Cej{3, 5, 7}. By theorem 4.2.1, these cliques are independent sets in the 
collinearity graph and are ovoids in the quadric C)+(3,2).
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1 2 3

5 6

8 9

A: The hyperbolic quadric Q+(3 ,2)

G: The complement graph B: The collineari ty graph

Figure 4.4: The hyperbolic quadric Q+ (3 ,2) and its collinearity graph and the com­
plement of the collinearity. The details of this figure is described in example 4.3.

In the following section, we will present algorithms which are used in 
combinatorial optimization to solve this problem.

4.3 Algorithm s

Much research has been done on the maximum clique problem and var­

ious algorithms have been developed to solve it. For example,( Johnson, D. 
S. [29, 22] used the greedy algorithm to solve the maximum clique problem. 
This algorithm is based on several iterations. It starts by choosing a vertex 

that has the maximum degree and adds at each iteration a new vertex to 
the current clique so tha t the result is also a clique. This algorithm contin­
ues adding vertices until no more vertices can be added.
Other examples of algorithms used for solving MCP are the enumerative 

algorithms including Harary and Ross [21], Maghout [35], and Pauli and 
Unger [41]. The details regarding the enumerative algorithm can be found 
in [2],
One of the more interesting algorithms used for MCP is the one based on the 
local search algorithm e.g. the reactive local search for the maximum clique
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problem by Roberto Battiti and Marco Protasi [3]. This algorithm solves 
the maximum clique problem based on the local search. Another example 
of an algorithm that is based on the local search algorithm is the k-opt 
local search for solving MCP by Kengo, Kihiro, and Hiroyuki [30]. This al­
gorithm searches for a k-opt neighborhood using several 1-opt moves. The 
1-opt move is either an add or a drop move. The add move is when a pos­
sible vertex is added to the current clique, whereas the drop move is when 

one vertex is dropped from the current clique. The details of this algorithm 

can be found in [30].

In the next section we develop a new technique for solving the maxi­
mum clique problem. This technique is based on the local search algorithm.

4.3.1 N ew  Technique for Solving M C P Based on Local Search 
A lgorithm

In this section we develop a new technique for solving the maximum 

clique problem. The technique is based on the local search algorithm (see 
Section 2.3). Before discussing our technique, let us state the following. 

Given a graph G =  (V ,E ) ,V  = {1 , . . . ,  n}  is the set of vertices and E  is the 
set of edges represented by a {0 ,1} n x n  matrix Afe^], called the adjacency 

matrix. That is, if E E, then we let the entry =  1 and 0 otherwise. 

An instance of the maximum clique problem is a pair (F, c), where F  is the 
set of feasible solutions. This set considers all subgraphs which are cliques 
in the graph G. That is,

F  — {the set of all clique in the graph G}

=  {y : y is a clique in G}.

Whereas, c represents the cost function, which is defined by the size of the 
clique y G F. That is, cost of a feasible solution y E F  given by

c(y) — 12/1 =  {the number of vertices contained in the clique y}.

The problem is to find a clique y E F  such that this clique has the maxi­
mum (or close to the maximum) size. In other words, we are looking for a
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Figure 4.5: Graph G  =  (V, E ) ,  where V  =  {1 , . . .  ,4}, of example 4.4. 

feasible solution y £ F  such that c(y) > c{g) for all cliques g £ F.

Exam ple 4.4. In the graph in Figure 4.5, the set of feasible solutions F  
is as follows:

F  = {0, {1}, {2}, {3},{4},{1,2},{2,3},{2 ,4},{3,4},{2,3,4}}

The cost of the clique y\ =  {3} and y2 = {2,4} is c(yi) =  1 and c(y2) =  2 
respectively, while the cost of y3 =  {2,3,4} is c(y3) =  3. Clearly, the 
maximum clique of this graph is given by the feasible solution y3 since it 
has the maximum cost.

In the following section we introduce a definition of the neighborhood of 

the maximum clique problem.

4.3.2 The N eighborhoods of M CP

In the maximum clique problem we may develop three neighborhoods of 
a given feasible clique y £ F. These neighborhood are called add, exchange, 
and remove neighborhoods and are given by the following definition.

D efinition 4.11. Given a graph G =  (V ,E ) with n vertices where V  is 

the set of vertices and E  is the set of edges, the neighborhoods of a feasible 
solution y £ F  are

1. yWd-neighborhood: This neighborhood is defined as

N a(y) — {g : g £ F  and g can be obtained from y by adding one 
vertex to y.}
This neighborhood can be determined by the set of all vertices in 
V \y  that connect to all vertices of y. That is, g £ N a(y) if there is a
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vertex u G V \y  such that u ~  6, V b G y where u ~  b means vertex 
u is adjacent to vertex b. Therefore, g = y U  {u}. For example, in 
the graph in Figure 4.5, the clique g =  {1,3,4} belongs to the add- 

neighborhood of y, N a(y), where y = {1,3}. This is because vertex 4 
connects to vertex 1 and 3.

2. Exchange-neighborhood: This neighborhood is defined as
N e(y) =  {<7 : g G F  and g can be obtained from y by exchanging one 
vertex in y with one vertex in V \y .}
This neighborhood can be determined by the set of all vertices in 
V \y  that are adjacent to all vertices in y \{u }  for some u G y. In 
other words, g G N e(y) if g = y \ { w }  U  { a }  where a G V \y  and 
a ~  b, V b G y\{u}. For instance, in the graph in Figure 4.5, 
let y G F  be a clique y =  {1,3,4}. Since vertex 2 is adjacent to all 
vertices except 3, we can exchange vertex 3 with 2 to obtain the clique 

g =  {1,2,4} which belongs to the exchange-neighborhood of y, N e(y).

3. .Remove-neighborhood: This neighborhood is given by
N r(y) =  {g : g G F  and g can be obtained from y by removing one 
vertex from y.}

Now we discuss our technique for solving the maximum clique problem.

Given a graph G — (V, E) of size n, assume that we need to find all 
possible cliques of size s. The steps for finding these cliques are as follows:

S tep  1: Select a starting point y G F. We select a completely random 
clique y as the starting point. The starting point can be chosen by 
randomly selecting any vertex v G V. This is because any vertex in 
V  is a clique of size 1.

S tep  2: Add a new vertex, if possible, to the current clique y. In this step, 
we search for any feasible solution g G N a(y). That is, we search 
randomly for a vertex v G V \y  such that v ~  b, V6 G y.
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S tep  3: Repeat step 2 until no more vertices can be added to the current 
clique. In this step, we continue adding a new vertex to the current 

clique y until one of the following conditions is satisfied:

1. The size of the current clique reaches the value s, which is the 
size of the maximum clique.

2. No more vertices can be added to the current clique and the 
size of the current clique is less then s. That is, the set of the 
add-neighbor hood of y, N a(y), is empty.

S tep  4-i: If condition 1 is satisfied, remove one vertex from the current 
clique and go to step 2. This step follows step 3 if condition 1 (|y| — s) 
holds. This means that the maximum clique has been found and 

therefore we search for another clique that has the maximum size s. 
In this case, we remove one vertex from the current clique y and go 
to step 2 to search for another clique.

S tep  4-ii: If condition 2 is satisfied, exchange one vertex, if possible, from 
the current clique with a new vertex in the set V \y  so that the result 

is a clique, and go to step 2. This step follows step 3 if it is impossible 
to add a vertex in the current clique. In this case, we randomly choose 

a vertex v G V \y  such that v ~  b for all b G y\{a} for some a G y. 
Therefore, we exchange vertex v with vertex a. The result must be 
a clique and belong to the exchange-neighborhood of y, N e(y). After 

that, we go to step 2 to add a new vertex to the resulting clique.

S tep  5: Remove one vertex from the current clique and go to step 2. If 
it is impossible to add or exchange a vertex to the current clique, we 
remove one vertex from the current clique and go to step 2 to add 
vertices to the resulting clique.

S tep  6: Stop when all possible maximum cliques are found. The stopping 
rule of the algorithm is when all possible maximum cliques are found 
or the current clique cannot be improved.
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The pseudo code of the algorithm for finding the cliques of a size in a 
given graph is as follows:

Algorithm: Local search algorithm for finding all possible cliques of a

In p u t:

1. The set of vertices v = { 1 ,. . .  ,n }

2. The n  x n  adjacency matrix Adj [e,:j]

3. The size, s, of the cliques that we are looking for

O u tp u t: All possible cliques yi, y2, . . . ,  yt of size s.

Definition of the following sets:

•  y := the current clique.

•  A  := {a : a <= V \y  and a b, V b e  y}.

•  E  := {e : e G V \y  and e ~  b, V b € y, for some v G y}.

• R  := {r : r E y  and y is the current clique},

beg in
1. y := {u} where v € V  is chosen randomly as a starting point;
2. t := 0; (The number of cliques of size s that have been found so far.)
3. re p e a t

given size in a given graph.

4.

5.
6 . 

7.

if  ( A ^ 0 )  do
a := a E A  and a is chosen randomly; 

y := y U {a}; 
if  (|y| =  s) do

8 if (y is new ) do
9. yt = y\
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10. t = t + 1;
11. en d if
12. r  := r E R  and r is chosen randomly;

13. y := y \{r};
14. go to  line 4.

15. else ” (if \y\ ^  s  ) ” go to  line 4

16. else ” ( if A = 0  ) ”
17. if (E  ^  0 )  do
18. e := e E E  and e is chosen randomly;

19. v := v E y and e ~  b, V b E 2/\{^};
20. y := y U {a};
21. go to  line 4.
22. else ” ( if E  = 0  )

23. r := r E R  and r is chosen randomly;
24. y := y \{ r };
25. goto  line 4.
26. u n til No more cliques of size s can be found;
27.end

4.4 R esults

Since we are interested in finding ovoids in quadrics Q in PG (n , q) 
with prime power q, we use these quadrics as instances to evaluate the 
performance of our new algorithm for finding cliques of a given size in 
a given graph. These include graphs which are the complement of the 
collinearity graphs corresponding to both the hyperbolic quadrics Q+(n, q) 
with n  =  2m  and parabolic quadrics Q(n, q) with n = 2 m  — 1, where m  > 2.

The graphs are constructed using a program called ovoid.cpp which 
was developed by Dr. Anton Betten. This program takes parameters e, n, q 
as the input where the e =  0,1 or —1 represents the parabolic quadrics 
Q(n, q), hyperbolic quadrics Q+(n, q), and elliptic quadrics Q~(n, q) respec-
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tively, where the parameters n and q are described as above. The output of 
this program has a lot of information related to the ovoid, the quadric Q, 
and the complement of its corresponding collinearity graph including the 
number of vertices and the adjacency matrix of this graph. Moreover, this 
program provides the size of cliques, which is the size of the ovoids of the 

quadric..

Table [4.1], shows comparative results of our algorithm applied to various 

graphs which are the complement of collinearity graphs which correspond 
to quadrics. The algorithm is applied to the instances of the hyperbolic 
quadrics Q+(n, q) and the parabolic quadrics Q(n, q). For each instance we 
indicate the name of the quadric Q (the second column), the number of 
vertices |Q| of the complement of the collinearity graph corresponding to 
the quadric Q (the third column), the size of the clique s that we need to 
find (the fourth column), and the running time (Time), in seconds, till the 

first clique is found (the last column).

Instance 101 s Time

1 0(4 ,7) 400 50 0
2 0(4 ,8) 585 65 1

3 0(4 ,9) 820 82 15

4 Q+(5,4) 357 17 0

5 Q+(5,5) 806 26 0

6 0 +(5 ,7) 2850 50 20

7 Q+( 7,2) 139 9 0.00

8 0 +(7,3) 1120 28 5
9 0 +(7,4) 5525 65 138

Table 4.1: Computational results of the new technique, which is based on the local 

search algorithm, for finding cliques of a size s,  where s  is as in formula 4.6, in the 

collinearity graph corresponding to quadrics Q.  (Times in seconds).

From Table [4.1], we can see the algorithm found ovoids of small instances 
of quadrics Q in PG(n, q). For example, the algorithm found ovoids of the
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parabolic quadrics Q(4, q) for 2 < q < 9 (rows 1-3). The largest number of 
q of this quadric tha t the algorithm solved is 9, i.e., <5(4,9) with a running 

time of 15 seconds (row 3). The number of points of this quadric is 820 
and the size of the ovoid is 82. The algorithm also found ovoids for the 
hyperbolic quadrics Q+(h,q) for 2 <  q < 7 (rows 4-6). The running time 

needed for the algorithm to solve the instance of this quadric where q =  7, 

i.e. <5+(5 ,7) (row 6), which is the largest number of q in this quadric, is 20 
seconds. This instance has has 2850 points and the size of ovoid is 50. In 
addition, the algorithm found ovoids for the hyperbolic quadrics Q+(7,q) 
for 2 <  q < 4 (rows 7-4). The largest number of q of this quadric that the 
algorithm solved is 4, i.e., <5+(7,4) with a running time of 138 seconds (row 
6). The number of points of this quadric is 5525 and the size of the ovoid 
is 65.

From these computational results, we conclude tha t our algorithm, 
which is based on the local search algorithm can find ovoids in small polar 

spaces.
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Chapter 5

CONCLUSIONS

Combinatorial optimization consists of operations that search for one 
or more solutions to an optimization problem. We have discussed briefly 
a number of combinatorial optimization problems and the algorithms for 
solving these problems. Examples of these problems are the traveling sales­
man problem, minimal spanning tree, shortest path problem and maximum 
network flow. In addition, we provided discussion about some significant 
combinatorial optimization algorithms including greedy algorithms and lo­

cal search algorithms. The properties and the characters of each algorithm 
are also provided. Example of the greedy algorithms are Kruskal’s, Prim ’s, 
Dijkstra’s, Floyd’s, and Ford-Fulkerson’s.

We have introduced the domino portrait problem and converted it to a 
combinatorial optimization problem. A domino portrait is an image which 

is constructed from complete sets of dominoes. These dominoes are ar­
ranged in a matrix, creating an approximation image when seen from a 
distance. The problem is to create a domino portrait of dimensions M  x N  

from s2 complete sets of double (D  — 1) dominoes where M  =  s(D  +  1) 

and N  =  sD. In this, we have used one of the powerful methods of image 
processing called two-dimensional wavelet transform.

In addition, we have solved the domino portrait problem using the 
greedy algorithm and the local search algorithm. Because of the search 
strategy that the greedy algorithms use, they usually usually get blocked 
and cannot find complete solutions to problems. To avoid such blocks in
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the DPP, we have developed a technique called the one-factor search tech­
nique. This technique allows us to apply the greedy algorithm without its 
being blocked and to solve the domino portrait problem. Moreover, we have 
used the local search algorithm to solve one instance of the domino portrait 

problem. Using these algorithms, we can create an M  x iV domino portrait 

constructed from s2 complete sets of double (D  — 1) dominies. For example, 
we created domino portraits of Marilyn Monroe and George W. Bush, each 

of which was constructed from 9 complete sets of double nine dominoes (see 
Figure 3.32).

Since we are restricted to using a specific number of dominoes, we need 
to place them in important positions in the image, such as eyes, nose, and 

mouth. In this, we have developed a new cost function by modifying the 
old cost. This function forces our methods, the greedy algorithm and local 

search algorithm, to start filling the dominoes in the important positions in 
the image first. The new cost function is obtained by developing a matrix 
called the support matrix. This matrix is determined using a method called 

the singular value decomposition. Finally, we have discussed briefly about 
the Householder’s and QR methods and used them to compute the singular 
value decomposition.

The C + +  language is used in all our computations. We developed a 

C + +  program that solved the domino portrait problem using the greedy 
algorithm and the local search algorithm.

By successfully applying the greedy algorithm and the local search 

algorithm to solve the DPP we have illustrated the usefulness of these al­
gorithms in new arenas. In particular, by solving the problem of blockage 
faced by the greedy algorithm, we have proved that this algorithm has good 

potential. It is possible that further research will yield more uses for these 
algorithms.

The second combinatorial optimization problem addressed in this paper 
is the Maximum Clique Problem. The local search algorithm was used to 
find cliques of a given size in a graph. We used the relation between the
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maximum clique problem and the independent set problem to find ovoids 
of quadrics in PG(n, q) with prime power q.

The successful solution of several instances of this problem by the local 

search algorithm has shown the versatility of this tool. Although we were 

able to find ovoids in small polar spaces, perhaps the lessons learned in this 
research will enable other researchers to improve the results in graphs of 

larger size.
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