
DISSERTATION

TOWARDS INTERACTIVE ANALYTICS OVER VOLUMINOUS SPATIOTEMPORAL DATA

USING A DISTRIBUTED, IN-MEMORY FRAMEWORK

Submitted by

Saptashwa Mitra

Department of Computer Science

In partial fulfillment of the requirements

For the Degree of Doctor of Philosophy

Colorado State University

Fort Collins, Colorado

Fall 2023

Doctoral Committee:

Advisor: Sangmi Lee Pallickara

Shrideep Pallickara

Francisco Ortega

Kaigang Li

Copyright by Saptashwa Mitra 2023

All Rights Reserved

ABSTRACT

TOWARDS INTERACTIVE ANALYTICS OVER VOLUMINOUS SPATIOTEMPORAL DATA

USING A DISTRIBUTED, IN-MEMORY FRAMEWORK

The proliferation of heterogeneous data sources, driven by advancements in sensor networks,

simulations, and observational devices, has reached unprecedented levels. This surge in data gener-

ation and the demand for proper storage has been met with extensive research and development in

distributed storage systems, facilitating the scalable housing of these voluminous datasets while en-

abling analytical processes. Nonetheless, the extraction of meaningful insights from these datasets,

especially in the context of low-latency/ interactive analytics, poses a formidable challenge. This

arises from the persistent gap between the processing capacity of distributed systems and their

ever-expanding storage capabilities. Moreover, the interactive querying of these datasets is hin-

dered by disk I/O, redundant network communications, recurrent hotspots, transient surges of user

interest over limited geospatial regions, particularly in systems that concurrently serve multiple

users. In environments where interactive querying is paramount, such as visualization systems,

addressing these challenges becomes imperative.

This dissertation delves into the intricacies of enabling interactive analytics over large-scale

spatiotemporal datasets. My research efforts are centered around the conceptualization and im-

plementation of a scalable storage, indexing, and caching framework tailored specifically for spa-

tiotemporal data access. The research aims to create frameworks to facilitate fast query analytics

over diverse data-types ranging from point, vector, and raster datasets. The frameworks imple-

mented are characterized by its lightweight nature, residence primarily in memory, and their ca-

pacity to support model-driven extraction of insights from raw data or dynamic reconstruction of

compressed/ partial in-memory data fragments with an acceptable level of accuracy. This approach

effectively helps reduce the memory footprint of cached data objects and also mitigates the need

ii

for frequent client-server communications. Furthermore, we investigate the potential of leverag-

ing various transfer learning techniques to improve the turn-around times of our memory-resident

deep learning models, given the voluminous nature of our datasets, while maintaining good overall

accuracy over its entire spatiotemporal domain. Additionally, our research explores the extraction

of insights from high-dimensional datasets, such as satellite imagery, within this framework.

The dissertation is also accompanied by empirical evaluations of our frameworks as well as

the future directions and anticipated contributions in the domain of interactive analytics over large-

scale spatiotemporal datasets, acknowledging the evolving landscape of data analytics where ana-

lytics frameworks increasingly rely on compute-intensive machine learning models.

iii

ACKNOWLEDGEMENTS

I would like to express my heartfelt gratitude to my advisor, Dr. Sangmi Lee Pallickara, for

her unwavering support, guidance, and mentorship throughout my doctoral journey. Her expertise,

encouragement, dedication, and willingness to share her knowledge have been instrumental in

shaping my research and academic growth. I am profoundly grateful for her belief in my potential,

and for supporting me even during times of personal and professional adversity. Her faith in my

abilities have been a constant source of motivation that pushed me to excel in my research.

I would also like to extend my thanks to the entire Computer Science department staff for their

invaluable assistance, resources, and a collaborative atmosphere that fostered my intellectual devel-

opment. The encouragement and camaraderie I received from my fellow students and colleagues

in the department have been instrumental in my academic and research endeavors.

On a personal note, I want to acknowledge the natural beauty of Colorado and the vibrant city

of Fort Collins. The breathtaking landscapes, the pristine lakes, and the serene surroundings of

this region have provided the perfect respite during the most challenging times of my academic

journey. Colorado’s natural beauty has been the best stress reliever in the world, offering moments

of tranquility and inspiration, as well as ample opportunities for outdoor activities.

This journey would not have been possible without the unwavering support of parent, my fam-

ily, and my friends back home in India. Their love, understanding, patience, and encouragement

have been my pillars of strength throughout this endeavor. In closing, I extend my deepest appre-

ciation to everyone who has played a part in my academic and personal growth. Your support and

belief in me have been invaluable, and I am truly grateful for the privilege of completing this PhD

journey with your encouragement.

This research was funded in part by the National Science Foundation (OAC-1931363, ACI-

1553685, CNS-2312319), the National Institute of Food and Agriculture [COL0-FACT-2019], and

an NSF/NIFA AI Institutes Award [2023-03616].

iv

TABLE OF CONTENTS

ABSTRACT . ii

ACKNOWLEDGEMENTS . iv

LIST OF TABLES . ix

LIST OF FIGURES . x

Chapter 1 Introduction . 1

1.1 Research Challenges . 2

1.1.1 Visual Scalability . 3

1.1.2 Concurrent Evaluation of Spatiotemporal Queries At-Scale 3

1.1.3 Hotspots . 4

1.1.4 Data Consistency for Dynamic Datasets 4

1.1.5 Analytics Over High-dimensional Datasets 5

1.2 Research Questions . 5

1.3 Overview of Approach . 7

1.4 Contributions . 8

1.5 Dissertation Organization . 9

Chapter 2 Background and Related Work . 11

2.1 Need for In-memory Analytics . 11

2.2 Scalable In-memory Analytical Frameworks 13

2.3 Exploratory Visual Analytics . 14

2.4 Latency vs User Experience . 15

2.5 Locality of Access Patterns . 16

2.5.1 Spatial Locality of Access . 16

2.5.2 Temporal Locality of Access . 17

2.6 Tile layers . 17

2.7 Progressive Learning . 18

2.8 Multi-task Learning . 18

Chapter 3 Methodology . 20

3.1 In-memory Hierarchical Metadata Graph (RQ1, RQ2, RQ3) 20

3.2 Model-Driven Data Reconstruction (Glance)(RQ4) 22

3.3 Extraction of Insights from High Dimensional Data (RQ5) 22

3.4 Building Multiple Regional Models At Scale (RQ5) 23

Chapter 4 System Overview . 24

4.1 Front-end Visualization UI . 24

4.2 Distributed In-Memory Aggregation Framework 25

4.3 Deep Learning Models . 26

4.4 Back-end Distributed Storage . 27

4.5 Multi-Resolution Spatiotemporal Query 27

v

Chapter 5 Distributed In-Memory Hierarchical Metadata Graph (STASH) 29

5.0.1 Data Model and Query Evaluation . 30

5.0.2 Vertex: The STASH Cell . 32

5.0.3 Edge: The Inter-Cell Relationship . 33

5.0.4 Hierarchical Cell Organization . 34

5.0.5 Query Evaluation Strategy . 34

5.1 Leveraging Visual Navigational Patterns 35

5.1.1 Proximity Aware Data Dispersion . 35

5.1.2 Collective Caching . 35

5.1.3 Cell Replacement Strategy . 36

5.2 Autoscaling for High Throughput Query Evaluation 38

5.2.1 Dynamic Clique Replication . 38

5.2.2 Clique Handoff Process . 39

5.2.3 Query Evaluation under Hotspot . 41

5.2.4 Replication and Cleaning . 41

5.3 Empirical Benchmarks . 41

5.3.1 Experimental Setup . 42

5.3.2 Distributed Query Evaluation Statistics 43

5.3.3 Visual Exploration With Collaborative Caching 44

5.3.4 Improvement Through Autoscaling . 46

5.3.5 Comparison with ElasticSearch . 46

Chapter 6 Compressed/Low-dimensional Representation of Data 48

6.1 Hierarchical Data Cubes (RUBIKS) . 49

6.2 Low Resolution Data Representations (GLANCE) 50

6.3 Low-dimensional Representations using Encoder-Decoder Network (ARGUS) 52

6.3.1 Supervised Model Building Using Embeddings 54

6.3.2 Multi-task Learning . 54

Chapter 7 Hierarchical Data Cubes (RUBIKS) . 56

7.1 Query Evaluation . 56

7.2 Cubelets . 57

7.3 Cubelet Content . 58

7.4 Cubelet Spatiotemporal Bound . 59

7.5 Distributed Ingestion: Perennial Cubelet Generation 60

7.6 Cubelet Update . 60

7.6.1 Welford’s Algorithm for Rapid construction/Updates 60

7.6.2 Correlation estimation for misaligned time series 61

7.6.3 HashGrid for Updating Cubelets . 63

7.7 Hierarchical Aggregation of Cubelets . 65

7.8 Visualization of Cubelets . 66

Chapter 8 Model-Driven Data Reconstruction (GLANCE) 69

8.1 Overview of Framework . 69

8.1.1 GlanceNet . 69

vi

8.2 Super-Resolution of Image Tiles . 70

8.2.1 Model Overview: . 71

8.2.2 Model Input . 72

8.2.3 Generator Network(G1): . 73

8.2.4 Discriminator Network(D1) . 75

8.2.5 Objective Functions: . 75

8.3 Image Refinement . 77

8.3.1 Model Overview . 77

8.3.2 Model Input . 77

8.3.3 Generator (G2) . 77

8.3.4 Evaluating Image Quality . 78

8.3.5 Upsampling Image with Low Cache Hits 79

8.3.6 Improvement in Latency . 80

8.4 GEMM: Estimating Regional Model Accuracy 81

8.4.1 Improvement in Image Quality vs Query Latency 82

Chapter 9 Model-Driven Extraction of Insights from Embeddings (ARGUS) 84

9.1 System Components . 85

9.2 ARGUSNET . 86

9.2.1 Model Overview . 86

9.2.2 Model Input . 87

9.2.3 Selection of Training Data: . 87

9.2.4 Network Architecture: . 88

9.2.5 Loss Function: . 90

9.3 Distributed Training . 91

9.4 Hierarchical Embedding Store . 92

9.5 Data Model and Query Evaluation . 94

9.5.1 Data Preprocessing and Partitioning 94

9.5.2 Embedding Store Population . 95

9.5.3 Containerized Data Ingestion . 96

9.5.4 Query Evaluation . 97

9.5.5 Avoiding Redundant Evaluations . 97

9.5.6 Optimized Graph Evaluation . 98

9.5.7 Pruning: Node Replacement Strategy 100

Chapter 10 Building Multiple Regional Models At Scale 102

10.1 Data partitioning . 105

10.2 Partitioning of Geospatial Domain . 106

10.3 Rigorous vs Assisted Training of Models 107

10.4 The Amalgamated Transfer Learning Scheme 108

10.5 The Partitioned Transfer Learning Scheme 109

10.6 The Hybrid Transfer Learning Scheme 110

Chapter 11 Conclusions . 111

vii

Bibliography . 113

Appendix A License . 128

viii

LIST OF TABLES

5.1 STASH Cell Components . 32

7.1 Cubelet Generation: Comparison between time (seconds) taken to create Cubelets in

a cold-start scenario vs daily updates . 64

7.2 Spatiotemporal Query: Comparison between latency (seconds) for varying sizes 68

8.1 Comparing Model Performance and Image Quality (PSNR) With and Without Supple-

mental Metadata Information . 73

8.2 Comparing Model Performance and Image Quality (PSNR) With and Without Supple-

mental Metadata Information . 78

8.3 GEMM Performance Evaluation . 83

9.1 Comparison of ARGUSNET Evaluation Performance against Standalone Segmentation

Model . 92

9.2 Breakdown of Data Staging: Comparison between time taken to download and pre-

process the data against time to index and load it into ARGUS 95

ix

LIST OF FIGURES

2.1 Exploratory Browsing Model . 15

2.2 Tiles Layers . 16

3.1 Overview of hierarchical organization of Cells in STASH. 21

4.1 System Architecture . 24

4.2 Our Front-end Visualization of NAM Data . 26

5.1 STASH Data Model: Spatiotemporal Relationship Among Individual Cells - Red box

outlines the spatial and temporal extent our example Cell. Figure shows its spatiotem-

poral neighbors and parents. 31

5.2 Spatiotemporal Hierarchical Positioning of Cells . 33

5.3 STASH Freshness Dispersion Scheme . 36

5.4 Hotspotted Region Handoff . 40

5.5 Performance Evaluation of STASH: (a) and (b) show effects of query size on its la-

tency and throughput, respectively; (c) compares STASH maintenance time for differ-

ent query sizes and (d) shows the improvement in throughput for STASH’s replication

mechanism over normal execution during hotspot. 43

5.6 Query Performance Evaulation for Different Common Visual Analytics Operations . . 44

5.7 Contrasting STASH’s Latency Against ElasticSearch for Common Visual Analytics

Operations . 47

6.1 The three rows demonstrate front-end visualization results from 2x, 4x and 8x upscal-

ing scenarios, respectively. The columns represent the model inputs, the SR outputs

from the basic and partial SR models and the ground-truth high-resolution image, re-

spectively. 51

6.2 Typical Autoencoder Network . 53

6.3 Overview of Insight-Extraction Framework . 54

7.1 RUBIKS Cubelet Contruction and Fetching . 58

7.2 Breakdown of Overall Cubelet construction time . 64

7.3 Cubelet Spatiotemporal Bounds . 66

7.4 Comparison of Accuracy of Summary Statistics . 67

8.1 GlanceNet Architecture: Super-Resolution and Image Refinement layers along with

the Glance Error Mitigation Module (GEMM) . 71

8.2 Composite Input for Partial Super-Resolution . 76

8.3 Super Resolution with Image Refinement (SR+) . 78

8.4 Cold Start with SR∗ vs SR . 79

8.5 Client-side Average Image Reconstruction Time vs Cache Fetch Time 80

8.6 Glance Error Mitigation Module . 81

x

9.1 ARGUS System Overview: Hierarchical Embedding Store is our distributed in-memory

caching system. Encoder, Decoder, Classifiers and Segmentation constitute the various

components of ARGUSNET . 86

9.2 ARGUSNET Architecture: Encoder forms the backbone of the network used during

data ingestion to generated embeddings. Decoder, Classifiers, and Segmentation heads

are used during query evaluations. 87

9.3 Convergence Speed of Model: Variation of training and validation error for ARGUS-

NET over epochs. 92

9.4 Ingestion Throughput With/Without Embedding: Comparison of throughput of index-

ing the in-memory metadata graph with and without generation of embeddings through

encoder during ingestion. 93

9.5 Hierarchical Embedding Store . 96

9.6 Improvement in Query Latency with cached evaluations from historical queries. 98

9.7 Query Latency vs Query Size: Evaluation of increase in latency with the scale of the

query’s spatiotemporal extent. 99

10.1 Types of Distributed Transfer Learning Implementations 106

10.2 Model Layers For Different Transfer Learning Schemes 108

xi

Chapter 1

Introduction

Valuable insight can be gained from data through well-designed analytical techniques – this

process is called sensemaking. The more expansive the underlying data or the larger the sample

size represented by the data, the more potential it has in drawing inferences capable of driving

decision-making, extracting patterns, or modeling phenomena [1]. This assumption underpins the

current interest in research over analytics over large-scale data.

Visualization is a process that informs human perception with data analytics by mapping at-

tributes of the raw data to human-interpretable formats, such as figures, heatmaps, charts, etc. [2]

Visualization allows scientists to explore the data at “rates resonant with the pace of human

thought” [3, 4]. Visualizations can help convey complex relationships among the data attributes in

a more intuitive format, enable identification of interesting patterns, infer correlations, and causal-

ities – this makes them a powerful tool in sensemaking. Interactive visualization entails a gradual

exploration of the domain of the underlying data in sequence of exchanges between the user and

the back-end server [5]. This iterative dialogue between users’ and server is crucial in enabling

actionable observations or pattern-detection regarding the phenomena being investigated. How-

ever, in a large-scale data-analytics setting, this back-and-forth communication between a client

and server that is required to support such interactive visualization becomes a challenge due to

increased latency of the server response.

The current ever-increasing scale and availability of scientific data can be attributed to an

increase in the number of informational and communicational technologies (ICT), like sensors,

RFIDs, meters, GPSs and other observational instruments, which has been termed as data explo-

sion [6]. Majority of these data are unstructured in the form of logs, image, video, audio, and so on.

These datasets are too large and complex to be stored or processed using conventional databases

and analytics tools. At the same time, the size and span of these data resources provides ample op-

1

portunities for various scientific explorations such as machine learning, hypothecation, correlation

analysis, etc., that help influence public policies and business strategies, among others.

Traditional analytics techniques that are effective over small datasets are infeasible in case of

modern big data. Data-centric decision-making over large-scale data poses computational chal-

lenges given their volume, high dimensionality, and heterogeneity. Interactive analytics over them

often involves high-throughput data retrievals that entail frequent and intensive network commu-

nication and disk I/O over backend servers. Such operations are constrained by limitations in

available memory, computational capacity and network/disk I/O in both the servers and the clients.

All these factors combined make the problem of interactive analytics over large-scale data a chal-

lenging one. Although there have been a multitude of systems capable of efficiently storing these

datasets over a distributed cluster of nodes and providing query-based analytics over the distributed

cluster in a fault-tolerant manner, interactivity of these analytical operations continues to be a prob-

lem once the size of the dataset involved crosses a certain threshold, such as peta-scale.

A major portion of large-scale data generated nowadays consists of spatiotemporal data, i.e.,

data collected across both space and time. McKinsey Global Institute says that the pool of personal

location data was in the level of 1 PB in 2009 and is growing at a rate of 20% per year [7],

indicating the rate of generation of these kinds of datasets over time. In this study, we focus on the

computational capabilities that enable real-time visual analytics over large-scale spatiotemporal

data. Spatiotemporal datasets are generated through continuous monitoring of phenomenon using

various observational equipment. These datasets span a wide range of domains like atmospheric

science, earth science, public health, ecology, epidemiology, climatology, etc. Spatiotemporal data

can be in the form of raster data (eg., satellite imagery), vector data or graphs (eg., GPS data).

Hence our framework needs to be versatile enough to handle such heterogeneous data.

1.1 Research Challenges

Interactive visual analysis relies on human visual and cognitive system to intuitively detect pat-

terns or details that could otherwise go unnoticed. The interactive nature of the analysis can often

2

reveal more information than complex, but static visualizations [5]. Interactivity has a significant

impact on the effectiveness of visualization for exploratory analytics since it has an impact on the

attention span of end-users [8]. The primary goal of this research is to facilitate effective and rapid

query evaluation on large spatiotemporal datasets while ensuring low latencies, fidelity, and repre-

sentativeness. Our research aims to enable the end-users to explore the large-scale spatiotemporal

data without being constrained by the volume and complexity of the raw observations stored in the

back-end. The following are the challenges associated with such datasets.

1.1.1 Visual Scalability

Large-scale datasets are either infeasible or too resource intensive to be represented in a single

frame on a client. The following are a few common issues relating to large-scale visualzation.

1) Datapoints involved are too large to fit in a single frame on a client’s interface. Additionally,

representing the entire spatiotemporal domain of the underlying data at the client is not scalable

due to the large amount of server-side processing and network communication it would entail,

especially in a multi-user environment. As a result, exploratory browsing is commonly utilized

where only a fraction of the entire data-space is visualized by users at varying resolutions through

a sequence of shifting their viewport over various regions of interest.

2) A single visual representation is often not capable of representing all of the important in-

formation contained in high-dimensional data, for instance, identifying regions of interest or im-

portant features for further analysis. This is particularly true in case the underlying data is multi-

dimensional. For instance, satellite image datasets, such as Sentinel-2 satellite imagery comes in

the form of 13-band TIFF files which are not possible to be represented as they are on a client-side

2D visualization interface.

1.1.2 Concurrent Evaluation of Spatiotemporal Queries At-Scale

Our goal is to facilitate users to have concurrent access and visualize our underlying data

through analytical spatiotemporal queries. Front-end users can be a non-expert in the field of

data science and not experienced in programming and running analytical jobs over big datasets.

3

They typically interface with the raw data through exploratory analysis. Our servers should be able

to adapt to concurrent queries over varying spatiotemporal extents and must be adaptive in case of

hotspot scenarios to maintain high throughput of these query evaluations.

To ensure sustained attention from these users, we need to enable smooth and flexible visual-

izations against each user actions over the front-end UI. Additionally, queries from individual users

may be duplicates or have significant overlaps between successive requests, which is a common

characteristic for spatiotemporal data access. We need to effectively identify such duplicate/re-

dundant accesses to avoid re-computation as much as possible to alleviate stress on the distributed

server.

1.1.3 Hotspots

Access logs of GIS systems have shown that geospatial data is accessed with spatiotemporal

locality [9]. For a distributed web-based service in a cloud-based environment, we need to handle

multiple users with simultaneous data access requests to the server. This leads to majority of the

user accesses being limited to a small section of the overall spatiotemporal data-domain, which

can lead to frequent hotspots/bottleneck over a small number of nodes over our distributed server,

if not handled properly. These hotspots adversely affect query latency and hence interactivity of

the applications.

1.1.4 Data Consistency for Dynamic Datasets

In a dynamic storage system, quality of query results might degrade over time in light of new

data. This could introduce error in the query results. This loss in data consistency could be either

due to cached results becoming stale over time or accuracy of models built over old data decreasing

with newly added data. Our system needs to be able to track its accuracy over time. Additionally,

depending on the user requirement, we provide tunable data consistency guarantees for our various

query operations to maintain good perceptual quality of the visualization results by keeping the

accuracy of the results withing a desirable threshold.

4

1.1.5 Analytics Over High-dimensional Datasets

Voluminous high-dimensional datasets have become common over the years and are available

in the form of satellite imagery, or spectral imaging from biology and astronomical observations.

Hence, with data getting larger and more complex (multi-dimensional) queries over such data

to derive analytical information entails resource-intensive computational methods. Ensuring in-

teractivity for analytical processes introduces an additional challenge relating to the size of the

individual data objects. For example, in case of high-dimensional heterogeneous datasets, such

as satellite imagery, which are available in the form of multi-band rasters, processing relevant im-

ages to look for specific phenomenon, such as slope can be a compute intensive process leading

to higher response times. Schemes for efficient geoprocessing of such datasets along with extrac-

tion of compressed representations of these data objects can help achieve interactive analytics over

them. Additionally, these compressed representations must support extraction of analytical infor-

mation at multiple levels of requested spatiotemporal resolutions, further adding to the complexity

of the problem.

1.2 Research Questions

Through this research we aim to address the following research questions:

• RQ1 How can we ensure that front-end users are not overwhelmed by the scope of the

underlying data? Our distributed datasets have large spatiotemporal extent, volume and

heterogeneity. The majority of the processing tasks are to be handled by the back-end. The

front-end UI must be able to interact with the server through a sequence of actions that can

be translated into a set of simple data queries. Any related data structures on the user-side

should be lightweight and have low memory foot-print.

• RQ2 How can we leverage users’ access patterns to further improve interactivity of spa-

tiotemporal queries over voluminous datasets? To improve interactivity of analytical oper-

ations, we aim to design our in-memory data-structures to be sensitive to the behavior of

5

user groups in terms of their access patterns. Geospatial access patterns have been shown to

follow spatial and temporal locality [9], which implies that at a specific instant, queries over

the entire dataset is focused on small spatiotemporal neighborhood. Our framework aims to

effectively leverage these patterns to help improve hit-rates of our in-memory structures.

• RQ3 How can we alleviate hotspots that stem from the skewness in user access patterns

while ensuring low latency and preserving perceptual quality? The distribution of geospatial

objects’ access popularity has been shown to follow Zipf’s law [10] where a majority of data-

access at a particular instance is focused on a small section of the domain of the dataset. This

would lead to transitional hotspots over a small section of our distributed cluster. We enable

our framework to be adaptive to such erratic query volumes by implementing, among others,

ad-hoc, decentralized replication schemes.

• RQ4 How can we estimate results over fast-evolving datasets without compromising on the

fidelity of the generated visual artifacts? We implement several measures to continuously re-

evaluates the efficacy of our in-memory framework to ensure that the accuracy of the query

results stay within a desired threshold. These measures include bitmaps to constantly check

for stale in-memory data objects and periodic evaluation of deep-learning models to evaluate

their overall accuracy.

• RQ5 How can we quickly extract meaningful insights or performs processing, capable of

being rendered on a 2D visual interface, from a multi-dimensional data-store? We make

adjustments to our framework for high-dimensional distributed datasets that enables us to

house them in-memory and run high-throughput analytics over them. We avoid resource-

intensive geoprocessing of high-dimensional data by implementing model-based analytics

over low-dimensional embeddings generated out of these high-dimensional data during in-

gestion. This also enables significantly larger portion of the overall data to be housed in-

memory, thus bringing down the overall disk I/O.

6

1.3 Overview of Approach

Our approach to enabling interactive spatiotemporal analytics involves the design of 4 inter-

connected frameworks that can help alleviate unnecessary server-side disk I/O as well as reduce

network communication:

• An efficient distributed in-memory framework that is lightweight and agnostic to the under-

lying distributed data-store.

• An efficient scheme to for rapid identification of relevant cache elements and fast cache

maintenance. Additionally, we enable dynamic replication of currently popular cache seg-

ments to alleviate hotspots.

• A client-side lightweight deep neural network-based framework capable of regenerating ef-

fective data representations from partial in-memory data

• A deep neural network-based model capable of extracting low-dimensional embeddings,

followed by models trained to extract insights from such embeddings.

In order to facilitate effective data retrievals that are aligned with the needs of visual explo-

ration we design a distributed, dynamic caching scheme (STASH [11]) to alleviate I/O overheads

associated with disk accesses. We facilitate rapid data discovery minimizing query-forwarding be-

tween the cluster nodes and local traversals within the data structure. STASH employs a dynamic

data caching and query orchestration scheme that accounts for spatiotemporal locality of users’

visual navigational patterns, especially those prevalent in dominant geospatial explorations, thus

ensuring that it retains the data fragments with higher probability of access in the near future. We

also design a dynamic load balancing mechanism for our in-memory framework that scales with

hotspots stemming from increased interest over a small spatiotemporal region and simultaneous

user accesses.

Our in-memory framework is lightweight and can also be installed on a single Client-side node

to help identify and avoid duplicate or overlapping queries and precludes excessive data retrievals

7

and transfers from frequent view changes triggered by a user. Additionally, we couple client-

side Stash with additional trained progressively trained [12] deep GAN-based networks (called

Glance [13]), allowing it to further re-purpose low-resolution data fragments for accurate high-

resolution representations, bypassing queries to the server. We ensure that GlanceNet models are

space-efficient and include a Glance Error Mitigation Module (GEMM) that informs STASH of

potential errors involved with a requested spatiotemporal region. At each level, GlanceNet models

quadruples the resolution of the image.

We plan to further adapt our in-memory data structure for voluminous high-dimensional datasets,

such as satellite imagery, where each data object is a multi-spectral image. In such cases, opera-

tions such as identifying regions of interest or determining composition of the geospatial region,

would require additional image transformations and processing for each relevant image tile in the

distributed cluster. To reduce the disk and processing time involved for these operations, we plan

on implementing a model to extract low-dimensional memory-resident embeddings that are ver-

satile and can be used to extract relevant information relating to the multi-spectral tile that they

represent.

1.4 Contributions

This research presents the following novel contributions aimed at scalable exploratory analyt-

ics over spatiotemporal data, with an supplementary focus on high-dimensional spatiotemporal

datasets:

1. A distributed, in-memory cache for hierarchical aggregation and query evaluations [11, 14].

This graph-based cache acts as a middleware over a distributed file system. Its contextual

caching mechanism is tailored to leverage spatiotemporal query patterns for fast exploratory

analytics by caching high-priority data objects from past query results based on their fre-

quency and freshness. This helps avoid expensive disk I/O, redundant computations, and

network usage at the server.

8

2. An adaptive and decentralized load balancing replication scheme to handle any hotspot that

might result from erratic distribution in user requests due to the spatial and temporal locality

of their access patterns. This scheme helps to further improve the throughput of our in-

memory cache in hotspot scenarios [11].

3. A set of frameworks [13, 15] for the extraction of latent or summarized representations for

voluminous spatiotemporal datasets with high-dimensional data objects. These representa-

tions can act as surrogates for real data, to be used during query evaluations without any

need for disk I/O, thus facilitating rapid analytics.

4. Building of deep neural networks for extraction of relevant information from these partial/la-

tent representations with high accuracy, reducing the need for exhaustive geoprocessing. Our

training leverages various concepts such as transfer learning and multi-task learning to sup-

port more stability and fast turn-around times for our model training [16, 17].

5. A set of error handling/ mitigation schemes to address the challenge of regional characteris-

tics of deep learning models over large spatiotemporal data domain [18–20]. These schemes

aim to mitigate model inaccuracies resulting from regional variations, ensuring more robust

and reliable data analytics. Additionally they include schemes for rapid and stable simulta-

neous training of multiple deep learning models in a distributed setting in a resource-efficient

fashion [21–23].

1.5 Dissertation Organization

The rest of this dissertation is organized as follows: Chapter 2 explores the background and

related literature, contrasts with our approach, and analyzes the areas that are not addressed or

considered by the current state of the art. Next, we provide an in-depth overview of our method-

ology in Chapter 3, followed by an overview of our frameworks and brief discussion on various

components of our framework targeted at interactive analytics in Chapter 4. Next we describe

the individual components of our framework starting with our distributed in-memory framework,

9

STASH and its various components in Chapter 5. Following this, we go into detailed description

of our various approaches to generate compressed/ latent representations of high-dimensional data

objects for voluminous datastores - in Chapter 6 we describe the extraction of low-resolution/ la-

tent embeddings of satellite images, and in Chapter 7, we discuss our methodology of maintaining

multi-resolution online summarized representation of the data in a hierarchy of non-overlapping

spatiotemporal extents. We then discuss our model-driven extraction of insights from these com-

pressed representations with Chapter 8 outlining the framework GLANCE that uses in-memory

low-resolution data to generate high-resolution counterparts in-situ, and Chapter 9 discussing the

use of multi-task learning in our framework ARGUS to leverage in-memory latent representations

for extraction of insights instead of the actual data objects with high fidelity. Chapter 10 discusses

our various approaches to implementing transfer learning for training of multiple models paral-

lely in a distributed setting while minimizing the amount of network I/O and computational load,

followed by Chapter 11 with our conclusions.

10

Chapter 2

Background and Related Work

With data being collected at an unprecedented rate, the number of big data available for analysis

has seen a drastic increase in the past few years. The recent popularity in the area of Big Spatial

Data has seen an increase in the number of such spatiotemporal datasets, along with technologies

designed specifically for spatiotemporal data management, data processing, and spatial analysis

(such as spatial query, visualization etc) [24]. Distributed analytics over large-scale datasets has

been handled thorough parallel processing over a cluster of commodity nodes by a variety of

frameworks such as Hadoop [25] and Spark [26]. However, interactivity over such voluminous

datasets has proven to be a challenge.

An exemplar of a DHT-based system that is aligned with the spatiotemporal characteristics

of the data is Galileo [27, 28]. The Galileo system includes support for geometry constrained

queries [29, 30], ad hoc query [31], and analytic queries [32, 33] with support cloud bursting [34].

The crux in Galileo is on-disk storage of spatiotemporal data and while the system has been used

for visualization, it has not been used in the context of high-dimensional visualizations as envisaged

in this work. Scaling is such systems are based on leveraging virtual machines on the server

side [35, 36]; this will targets the effective use of caches both at the client-side and server-side to

distribute workloads and ensure interactive visualizations.

2.1 Need for In-memory Analytics

Apache Hadoop is one of the most widely-known distributed cluster-computing framework.

Hadoop’s MapReduce framework enables the distribution of large data into smaller partitions

called chunks and parallel execution of analytics over those chunks, followed by accumulation

of the results. One of the main advantages of using the MapReduce framework is its ease of use

and can be considered a good solution if the speed of processing is not critical. However, Hadoop

does not fare so well in case there is a sequence of operations involved or an iterative algorithm

11

due to the storing and then reloading of intermediate results between iterations to and from disk,

respectively. This leads to large disk I/O and brings down the query speed by a considerable

amount.

Apache Spark counters the issue of Hadoop MapReduce’s high disk I/O by allowing the data

partitions, known as Resilient Distributed Datasets (RDD) [37] to be loaded in-memory. RDDs are

fault-tolerant, read-only partitioned collection of records that can be persisted in both in-memory

and on disk, based on the available memory and user specification. One of the main features of

an RDD is its coarse grained fault tolerance scheme where a lineage graph is associated with each

RDD, that helps in the regeneration of an RDD partition from any checkpoint in case of a loss

or failure. RDDs allow users the option to specify their partitioning scheme and the persistence

scheme. The partitioning scheme determines how the data will get partitioned around the cluster

and persistence scheme helps users specify a suitable storage strategy for the RDD. A well-defined

partitioning scheme helps in optimizing the parallelism of the RDDs over the cluster and hence

helps reduce latency. Spark’s in-memory computation and persistence schemes allow direct fetch

of data-elements between successive operations leading to a 100 fold improvement in latency for

queries compared to that of Hadoop. Thus, in-memory staging of data-elements is key to ensure

fast and interactive analytics.

Although Spark provides an important feature of in-memory loading of data partitions, there

is no way to identify relative importance of the data partitions that are in-memory. This is why, in

case of an overflow, Spark automatically monitors cache usage and drops old data partitions in a

least-recently-used (LRU) fashion. This is not an efficient partition removal scheme, especially in

case of iterative analytics, where we have seen that either the working set, i.e. candidate partitions

that are more likely to be accessed can be deduced from the previous partial solution itself, or in

the case of exploratory analytics, where the partitions’ relative importance can be gauged by the

frequency and recency of access, along with clients’ pattern of actions.

12

2.2 Scalable In-memory Analytical Frameworks

Several frameworks have been designed to support scalable visual analytics with their own ad-

justments to support efficient evaluations. Forecache [38] proposes a prefetching scheme that pre-

dicts the data-tiles to be queried in the future based on user’s past behavior and recent movements

to improve latency. Similar work involving pre-computations have been suggested in [39–43]. In

imMens [39], multivariate data tiles are precomputed to provide scalable panning and zooming as

done in Google Maps [43]. [40] uses a data cube structure which stores all possible precomputed

aggregations at multiple levels of resolutions over the database. However, the system does not

scale with dataset size as it requires the entire cube structure in-memory. HashedCubes [41] is

built on a pivot/array scheme that maintains a partial ordering scheme for all possible dimensions.

This system becomes more memory efficient than Nanocubes [40] by avoiding precomputations of

aggregations and using the sorted arrays to compute aggregations on-the-fly. However, this results

in longer query evaluation time. Also, the system is not compatible with streaming data, requiring

the generation of pivot arrays every time as new data arrives. Kyrix [42] provides a generic visual

data explorations system. Another system used for fast data visualization is Tableau [44], which

can connect to a variety of underlying databases and support spatiotemporal queries over tabular

data [45].

There are several existing data storage systems that can support analytics. SciDB [46] is a

column-oriented DBMS designed for multidimensional data management and analytics and pro-

vides support for complex analytics over multidimensional data. Storing geospatial data is also

supported by PostGIS [47] by adding support to PostgreSQL, an object-relational database. Sys-

tems such as Spark [26] and Shark [48] load datasets in memory in a distributed fashion and then

allow further analytics. BlinkDB [49] is built on top of Spark is a parallel, approximate query

engine which provides interactive SQL queries on stratified samples of large volumes of data.

Load-balancing and cache replacement problems have been explored in papers [50–54]. Paul

et al. [52] describe a centralized control architecture for distributed coordinated caches to provide

better web access times. Other work has proposed a load-balancing method that considers both

13

localized access control and balanced load allocation [50]. This leverages a static caching ap-

proach that assigns hot-spotted data to the server with higher processing power. The system also

includes queuing theory and cache distribution strategy to achieve optimum processing time for

data requests. However, it doesn’t incorporate a cache replacement scheme to deal with changing

hotspots. In [51], a replication strategy based on access characteristics of geospatial data is sug-

gested to provide a high-speed caching system. They propose the use of classic Q-value scheme

to allocate cache by replicating hotspot tiles to multiple servers resulting in more replicas for more

popular tiles. The paper aims at balancing the utilization rate of each caching server by assigning

replicas according to the processing abilities of each server. Although, this can result in the fast

depletion of the cache and may cause more delays due to frequent cache replacements.

Since disk I/O is significantly more time-consuming than in-memory operations, loading data

objects in-memory is a common strategy to reduce latency. Loading pre-computed aggregations of

tiles into memory has been suggested in [39–41]. However, this is not a feasible strategy if mem-

ory space is limited. Additionally, these systems are not compatible with fast-evolving datasets,

requiring re-computation every time as new data arrives.

2.3 Exploratory Visual Analytics

Visual scalability in voluminous datasets precludes visualization over a large section over the

overall data-domain. Exploratory browsing is used as an alternative mode of visualization in such

cases. Here, since the users view the entire dataset through a limited viewport, initially, they are not

sure of exactly the data-segment they are looking for. Rather, they form an opinion or hypothesis

about the data or uncover patterns of interest through traversing a given dataset over varying extent

and resolutions through a visualization interface. This kind of analytics is common in visualization

systems (e.g., Tableau [55], QlikView [56], etc.), where users access different views of the dataset

through a visualization interface allowing scientists to explore the data at "rates resonant with the

pace of human thought" [3,4]. Through this kind of repetitive movement around the data-space, the

user, which can be a data-scientist or a naive user (navigating a visualization interface like Google

14

Map [43]), performs actions, such as panning, zooming, drill-down, roll-up (OLAP actions [57]),

which get converted by the interface to a query understandable by the back-end analytics engine.

Commonly, such browsing involves exploring different portions of the data-space at a coarser level

(through actions like panning), identifying regions of interest and then zooming in for further

details [58].

At the end of each action, the user investigates the output on the interface, gains more knowl-

edge and insight of the data and based on that knowledge, performs the next action. The entire

cyclical process of query and knowledge gain is shown in figure Fig.2.1. Also, there may be

multiple users accessing similar regions, as part of a collaborative effort, which leaves scope for

specialized strategies for avoiding overlapping queries.

Figure (2.1) Exploratory Browsing Model

2.4 Latency vs User Experience

In exploratory browsing, slow response times at the front-end can limit the range and depth of

the investigation from the user. Lack of fluidity in between successive actions can be detrimental

to the attention span of a user in these cases. User experience in exploratory systems deteriorates

with latency at orders of 10 [8]. At latencies below 0.1 seconds, users feel like their actions are

directly causing change at the interface, whereas, for sub-second latencies, i.e. latency below 1

15

second and above 0.1 seconds, although users notice the short delay, they can “stay focused on

their current train of thought”. Beyond that limit, the attention span of a user gets hampered and

continued delay will lead to disengagement.

Figure (2.2) Tiles Layers

2.5 Locality of Access Patterns

Users’ access patterns for geospatial data has the tendency to follow the principles of spatial

and temporal locality [51].

2.5.1 Spatial Locality of Access

This refers to the property that at any instant, user requests are highly concentrated over small

clusters of the entire spatiotemporal extent of the data. This means that if a spatiotemporal data

region was accessed by a user request at time t, the adjacent spatiotemporal regions, too, have a

high probability of being accessed at that instance of time and that probability reduces as we move

away from that region.

16

2.5.2 Temporal Locality of Access

Temporal locality is the property that if a spatiotemporal region was accessed by a user request,

there is a high probability for it to be accessed again in the near future. This kind of user access

pattern is in line with Zipf’s Law [59], which can be expressed as:

pi = θ/iα

where pi represents the probability that a spatiotemporal region of ith popularity will be accessed

again and θ is a constant and α is the Zipf parameter. The equation above implies that the more

frequently a region is accessed, the higher is its probability of being accessed in the near future.

2.6 Tile layers

Tile layers [60](Fig. 2.2), a widely used data-structure in visual analytics, comprise a set of

pre-computed, partitioned, and rasterized data tiles, stored on a server, that are fetched in groups

through user queries [61]. Visual analytics applications often rely on data aggregation and sam-

pling techniques over in-memory caches to improve interactivity - organizing data in the form of

tile layers can help in fast query evaluations for aggregate queries.

Sketching algorithms have been used in the context of spatiotemporal data and streaming envi-

ronments [?, 62] to reduce their memory footprint for in-memory storage. Similarly compact data

representations have been explored in the context of grid computing environments [63, 64]. Often

such systems are backed by streaming infrastructure [65–67] to ingest data effectively. However,

these approaches have not targeted real-time visualizations of spatiotemporally evolving phenom-

ena.

Model building using deep neural networks for multiple upscale factors using low-resolution/

compressed in-memory counterparts is also an option. Howver, if done in an isolated manner,

training such models can lead to deeper layers and larger convergence time. To circumvent this,

17

we harness progressive training of GANs [12, 68, 69] where we train models for incrementally

higher upscale factors by repurposing a trained lower-scale model.

2.7 Progressive Learning

Adversarial learning using Generative Adversarial Networks(GAN) [70] have produced realistic-

looking images for Single Image Super Resolution (SISR) [68, 71, 72] problems. GAN learns

through a minimax game between a generative and a discriminator network [73]. Achieving HR

image with higher upscaling factor is challenging because a significantly down-sampled image

cannot preserve the crucial high-frequency information [74], resulting in blurry images. There are

several approaches to improve the perceptual quality of the super-resolved satellite images [74–76].

Performing SISR for tiles over multiple resolutions, requires training models to should support

multiple upscaling factors regardless of the zoom level used for the input. Most existing SISR

implementations target only a single upscaling factor. This increases the complexity of model

training; each model with different upscaling factors should be trained separately from scratch and

results in prolonged training times. Incremental training of GANs [69] provides an alternative

approach by leveraging progressive GANs [12, 77] that can achieve upscaling factors of up to x8.

The process trains models in a nested fashion by training simpler models and upon convergence

appending an extra set of dense layers to the trained a more complex model. We leverage this

incremental curriculum learning approach – leveraging knowledge gained from a lower-level SR

network to train for higher SR in our models to simplify the higher upscaling problems and speed-

up the learning process.

2.8 Multi-task Learning

Multi-task learning (MTL) [78] is an effective modeling technique where multiple models

learn related tasks jointly to support a mutual exchange of knowledge that facilitates generaliza-

tion. MTL allows the model to learn shared representations between tasks, which can lead to more

efficient and effective learning [79]. Feature-based multi-task learning aims at learning common

18

features through generalization among related tasks as a way to exchange common knowledge.

Multi-task learning involves training of machine learning models with data from multiple tasks si-

multaneously, using shared representations. This enables the models to acquire shared knowledge

between a set of related tasks and also improve its robustness by assimilating knowledge across

multiple domains. These shared representations increase data efficiency and can potentially yield

faster learning speed for related or downstream tasks, helping to alleviate the well-known weak-

nesses of deep learning: large-scale data requirements and computational demand. Additionally,

MTL can also reduce the amount of data needed to train a model, as the model can use data from

one task to improve performance on another task [80].

MTL has been successfully applied to the problem of object detection and semantic segmenta-

tion through models such as Faster R-CNN [81] and Masked R-CNN [82], where related tasks like

object boundary detection and image segmentation are trained collaboratively through a shared

trunk (backbone) followed by branched heads for downstream individual tasks. A potential pitfall

of this approach is that training multiple models jointly can be both compute and resource-intensive

since all the model layers combined have to be optimized simultaneously. This is especially true

for deep learning models.

19

Chapter 3

Methodology

In this section, we describe the various components of our framework that help enable inter-

active query evaluations over spatiotemporal data. The central component of this framework is

a distributed in-memory data-structure, STASH, that uses a maintenance and replication scheme

that is influenced by users’ access patterns. We couple this with additional deep neural-network

modules to help - 1) bypass unnecessary disk I/O and/or client-server communications by utilizing

partial in-memory data fragments to generate requested ones and 2) to generate low-dimensional

representations of the underlying data-objects capable of being analyzed or processed in case the

underlying dataset consists of large data objects, such as multi-spectral imagery. This adjustment

can help increase the capacity of our in-memory to house relevant data segments and evaluate them

faster during queries.

3.1 In-memory Hierarchical Metadata Graph (RQ1, RQ2, RQ3)

STASH’s data model is designed to efficiently store previously generated summary results in-

memory from past queries and reuse them in case similar queries are performed by users in the

future. The goal is to ensure the most relevant data segments that are likely to be accessed in the

near future are retained in-memory as the in-memory storage filled over time.

STASH [11] is logically organized as a multi-relational property graph with data that is aggre-

gated at multiple levels of spatiotemporal resolutions. The data in STASH is stored in the form

of a collection of identifiable blocks or chunks with specific spatiotemporal bounds (we call them

Cells) that can be rummaged and reused from the in-memory store. Organizing data based on

the spatio-temporal resolution at which they are accessed allows us to support fast evaluation of

aggregate queries at multiple combinations of spatial and temporal resolutions over our datasets.

STASH can work in conjunction with any distributed hash-table(DHT) [83] storage system and

adopts its partitioning scheme to facilitate data locality between in-memory fragments and their

20

(a) (b)

Figure (3.1) Overview of hierarchical organization of Cells in STASH.

actual on-disk counterpart. Each node in this graph (called Cell) represents results of data aggre-

gation for a fixed, non-overlapping spatiotemporal bound and resolution and are labeled by their

spatial and temporal information as attributes. Vertices are organized in a hierarchical fashion

based on their resolution and those with the same spatiotemporal resolution are grouped at the

same depth/level. Fig.3.1 shows a 2-dimensional representation of the hierarchical relationship

between STASH Cells and the nested spatiotemporal bounds between hierarchically related Cells.

Identification of neighboring and hierarchical (parent or children) Cells in STASH is straightfor-

ward and can be directly evaluated using the properties of the spatial and temporal partitioning

scheme.

STASH employs maintenance scheme influenced by the spatial and temporal locality of access

patterns, when spatiotemporal region gets requested to ensure data Cells most relevant to future

interest are retained in case of memory overflow. Additionally individual nodes in STASH adapt

to potential hotspots in a dynamic and decentralized fashion. Nodes continuously monitor the

pending requests queue size on a cluster node and on crossing a threshold, initiate a Clique Handoff

for the most active spatiotemporal regions on it, which are grouped in terms of Cliques. Cliques get

replicated at antipode nodes, which are nodes whose spatiotemporal domain is diagonally opposite

to the current node, since it is the least likely to become hotspotted anytime soon.

21

3.2 Model-Driven Data Reconstruction (Glance)(RQ4)

On clients, STASH can help further reduce unnecessary communication with the server, using a

set of model based on progressively trained Generative Adversarial Networks, called Glance [13],

that dynamically reconstructs high-resolution data during zoom-in operations using in-memory

historical low-resolution rasters and is space-efficient to facilitate memory-residency at the clients.

These modules are trained in a distributed manner at the server and downloaded by the clients.

Glance’s GAN-based image reconstruction modules (GlanceNet) adopt progressive growing

of GANs [75] to train in an incremental manner in a bid to build more stable models with rela-

tively simpler layers and to converge faster. GlanceNet models’ architecture is a combination of

single image super-resolution networks and image inpainting networks. The image inpainting por-

tion of the network can help further refine images for which sufficient partial high-resolution data

fragments are available.

Additionally, Glance includes the GEMM module which is evaluated simultaneously with

GlanceNet training. The GEMM module serves a dual purpose. At the server, it is used to con-

tinually keep track of the viability of the GlanceNet modules in light of continuously evolving

data-store. On clients, it is used to gauge the model’s accuracy over a specific spatiotemporal re-

gion, which can be used at the client to determine whether to opt for image super-resolution at the

client or perform physical fetch from the server.

3.3 Extraction of Insights from High Dimensional Data (RQ5)

Distributed datasets of high-dimensional data introduce a new set of challenges to interactive

visualization. First, the size of each individual data object makes it difficult to house sufficient

amount of data fragments in our in-memory data structure (STASH). Second, processing these

high-dimensional data to extract suitable insights is time-consuming and resource intensive. One

such example is the computation of Normalized Difference Vegetation Index (NDVI) from differ-

ent frequency bands in multispectral image TIFFs.

22

Our approach to handling this issue is to perform model-driven generation of a unified low-

dimensional representation for these large data-objects. We leverage these low-dimensional em-

beddings (for each dataset) and train multiple neural network models designed for extraction spe-

cific type of insights. Our goal is to demonstrate that the latency for model-based processing of

these low-dimensional representations will be significantly lower than actual processing of spa-

tiotemporal objects, which if trained properly, should be achievable.

We plan to train these multiple machine learning models in a collaborative fashion through a

multi-task module. This would enable us to fine-tune the same set of embeddings to be optimized

for each multiple models. The main challenge of this architecture is that efficient training of

multiple model branches jointly through multi-task learning can be compute and resource-intensive

since model layers for each of these models combined have to be optimized simultaneously.

3.4 Building Multiple Regional Models At Scale (RQ5)

Models designed over large spatiotemporal extents tents to have regional characteristics in

terms of their performance. This research outlines methodology aimed at reducing the computa-

tional resource requirements of training deep learning models on spatial data. The methodology

is based on transfer learning [80], which involves exhaustively training a small subset of the re-

gional models as a starting point for training the majority of the remainder regional models. These

regional models are then fine-tuned using transfer learning to account for regional variations.

Instead of training each constituent model instance from scratch (cold-start), our methodology

ensures that model instances have a superior starting point (warm-start) for their weight vectors

and coefficients for faster convergence. We have devised three different transfer learning schemes,

amalgamated, partitioned, and hybrid to choose from based on the spatiotemporal correlations in

the overall dataset. Our methodology has been shown to reduce the completion times for training

deep learning models over spatial data at scale by up to 5.3x without sacrificing on the accuracy of

the models.

23

Chapter 4

System Overview

This dissertation explores various supplementary frameworks designed on top of a DHT-based

storage system, which when deployed in tandem can help significantly alleviate computational,

disk I/O, and network costs over the system. We provide an overview of each of these supplemen-

tary components of our system as demonstrated in Fig.4.1 and individually explain how they assist

in query analytics in their own specific way.

Figure (4.1) System Architecture

4.1 Front-end Visualization UI

In order to facilitate exploratory browsing, the front-end user interface is usually kept light-

weight with two key tasks: (1) translate a user action (e.g. panning, dicing, etc.) into a spa-

tiotemporal query over the data storage system and (2) processing the server response to extract

a visual representation of the returned summary statistics (e.g., a heatmap or histogram) over the

visualization interface.

24

Our framework can act in conjunction with any visualization engine that is capable of parsing

and displaying summarization responses in JSON. In our system, the front-end visualization (as

in Fig.4.2) is performed using Grafana [84]. Grafana is an open-source visualization and metric-

analysis tool and we have used its WorldMap panel to display spatiotemporal results. Additionally,

we have also explored browser-based front-ends designed using React [85] or Flask [86].

4.2 Distributed In-Memory Aggregation Framework

A lightweight front-end means offloading the majority of the processing workload to the back-

end servers. In a multi-user system, this would lead to a large number of potentially simultaneous

requests from a multitude of users. For each such request, the system has to identify the spatiotem-

poral subdomain of the dataset relevant to the query parameters, summarise over that segment at

the desired resolution, and return a summary report over the spatiotemporal query region.

Our in-memory data storage framework (STASH) acts as an intermediary between the users in-

teracting with a lightweight front-end UI and a back-end distributed storage and analytics engine.

Each request over our back-end storage, gets first intercepted by STASH to look for already present

in-memory data fragments and the query is modified to search for only the missing spatiotempo-

ral domain. STASH’s maintenance scheme improves hit-rate by ensuring that the most relevant

data segments stay in-memory. This helps reduce redundant disk I/O, processing and network

communication and helps release a significant amount of computational load at the server.

A stand-alone version of STASH can be optionally housed on individual clients that can help

reduce making redundant spatiotemporal queries to the server in cases of duplicate/ overlapping

requests over spatiotemporal regions. This optional improvement can provide significant boost to

interactivity, since clients tend to browse over a small spatiotemporal region at a time.

25

4.3 Deep Learning Models

We have explored two sets of deep learning models that can work in conjunction with STASH

to further improve the interactivity of our analytics applications. The models are trained in a

distributed manner over our servers and can be downloaded by clients.

The first set of the models, codenamed Glance, aims to repurpose low-resolution data available

in-memory to generate requested high-resolution data through multiple levels of super-resolution

using a set of neural networks trained using the approach of progressive training of GANs [12].

The models are light-weight and can be housed on clients’ memory to help circumvent unnecessary

client-server communications.

The second set of models is aimed for speeding up queries over datasets with large data objects,

such as multi-spectral imagery. The complexity and size of these data objects makes it difficult to

house a decent number of them in-memory. Additionally, processing them also takes time and

requires additional resources in cases the queries require us to do so, for instance, computing

the slope from a raster tif file containing elevation data. In order to reduce the latency of such

operation, we aim to design models to create low-dimensional embeddings from the actual data

objects from which desired insights can be extracted using deep learning models.

Figure (4.2) Our Front-end Visualization of NAM Data

26

4.4 Back-end Distributed Storage

Our framework is compatible with any Distributed Hash Table(DHT) [87]. In our implementa-

tion, for the back-end storage and analytics engine, we use Galileo [88], a distributed storage and

analytics framework for large multidimensional, spatiotemporal datasets. Galileo is a zero-hop

Distributed Hash Table(DHT) based storage system that can use various spatial hashing schemes,

such as Geohash [89], to generate data partitions that store and colocate geospatially proximate

data points. The granularity of the coverage of a data block is determined by the length of hash

code managed by the nodes. STASH builds on Galileo’s distributed query evaluation capability

to efficiently query and then summarize over data points that match a user query at varying spa-

tiotemporal resolutions.

4.5 Multi-Resolution Spatiotemporal Query

Queries for visual applications generate a set of pixel-level aggregations that matches the user’s

query. For example, the following SQL query shows an aggregation query for rendering max-

imum temperature values at a given spatial and temporal resolution (spatial_resolution, tempo-

ral_resolution) over an area and during a period specified in the Query_Polygon and Query_Time,

respectively.

s e l e c t avg (t e m p e r a t u r e) , . . .

from G e o s p a t i a l _ D a t a s e t

where c o o r n i d a t e s in Query_Polygon

and t ime_s t amp in Query_Time

group by s p a t i a l _ r e s o l u t i o n , t e m p o r a l _ r e s o l u t i o n

The data objects within a minimum bounding box will be filtered based on the spatial and

temporal range and then processed and aggregated on the requested temporal_resolution and spa-

tial_resolution. These post-query processing or aggregations will be performed only over the data

records matching the query. If a user tries to investigate an area with different resolutions, the

27

query and resolutions should be modified. Therefore, the back-end data system has to evaluate

different aggregation queries for almost every user interaction.

28

Chapter 5

Distributed In-Memory Hierarchical Metadata

Graph (STASH)

Here explore the component that forms the back-bone of our high-speed analytics framework,

STASH [11]. It is a designed as a distributed in-memory cache that supports hierarchical aggrega-

tion queries for the large-scale spatiotemporal visual exploration. Unlike existing backend storage

systems, STASH works in tandem with underlying distributed file systems and provides an in-

memory data storage layer that can flexibly scale based on available resources. STASH supports

aggregation queries based on the user’s navigation patterns such as slicing, dicing, zooming, pan-

ning, rolling-up and drilling-down and caches the aggregated results in main memory to provide

reusability of the query outputs. STASH also alleviates data retrieval hotspots caused by popular

areas-of-interest through a dynamic load-balancing scheme.

In providing exploratory visual analytics to the users over large datasets, computational latency

of the back-end server is quite high, especially in multi-user environments. Voluminous datasets,

housed over a cluster of nodes, are hard to process interactively, leading to high response time at

the front-end UI. While performing analytics over the datasets at varying resolutions reduces the

amount of data movement between the server and the user side, it does not reduce the number of

records that need to be processed to generate that summary. Through our in-memory distributed

framework, we attempt to combat the issue of high query latencies over voluminous spatiotemporal

data by saving the most relevant results in-memory and fetching those saved summaries in case a

similar query comes in. An efficiently curated in-memory summary storage framework will greatly

help reduce the disk I/O and hence the number of records processed for a particular spatiotemporal

query in case another query with similar spatiotemporal constraints has already been processed by

the system.

29

Although storing previously queried analytics in-memory will greatly reduce the latency of

similar queries in the future, the size of the main memory is limited and hence, the number of

summary entries must be limited as well. In order to account for the limitation of memory, STASH

is a sparse graph and populated dynamically as new data domains get requested by users. Also,

cases of memory overflow, an effective eviction scheme for the entries must be devised to ensure

that the entries in-memory are the ones that are most likely to be subject to query in the near future.

Spatiotemporal datasets are available in a multitude of formats, such as vector (shapefiles, geo-

JSONs), raster (GeoTIFFs), point data, etc. STASH is amenable to storing aggregate statistics over

any of these data formats over a disjoint set of spatiotemporal bounds organized in a hierarchical

fashion for efficient storage and query retrieval.

5.0.1 Data Model and Query Evaluation

This section outlines the different components of the STASH distributed graph and how they

interact with each other. STASH’s data model is designed to efficiently store previously generated

summary results in-memory from past queries and reuse them in case similar queries are performed

by users in the future. For that, we organize the results’ data to be stored in the form of a set of

identifiable blocks or chunks with specific spatiotemporal bounds (Cells) that can be rummaged

and reused from the in-memory store.

STASH is logically organized as a sparse multi-relational property graph with data aggregated

at multiple levels of spatiotemporal resolutions. This graph is defined as GSTASH = (V,E), where

V is a set of vertices and E = {EH , EL} is a family of edge-sets. Vertices are labeled by their

spatial and temporal information and have a set of properties represented as attributes. EH rep-

resents the set of hierarchical edges which exists between vertices that are one level apart in the

spatiotemporal hierarchy. Edge e ∈ EH with a source vertex VS and a destination vertex VD indi-

cates that VS’s resolution is one spatial and/or temporal resolution greater than VD. We can see that

the vertices are grouped hierarchically based on their spatiotemporal resolutions. Vertices with the

same spatiotemporal resolution will be at the same depth/level in the hierarchy. Therefore, since

30

VS has higher precision data segments than VD, the bounds of VD fully encloses that of VS . The set

of lateral edges, EL, maintains the proximity of geospatial locations and temporal ranges between

vertices in the same level. If there is an edge e ∈ EL between two vertices Vi and Vj , these vertices

contain data for the two adjacent areas, i.e., their spatiotemporal bounds share boundaries. Each

edge-set provides a distinctive traversal function and helps in the spatiotemporal neighborhood

discovery for any region of Cells over GSTASH .

(a) Spatial (b) Temporal

Figure (5.1) STASH Data Model: Spatiotemporal Relationship Among Individual Cells - Red box outlines

the spatial and temporal extent our example Cell. Figure shows its spatiotemporal neighbors and parents.

Physically, each Level is maintained in the form of a hashmap of Cells, whose key is a com-

bination of their spatial and temporal bounds. The Cell object’s SRI can be used to identify the

spatiotemporal neighbors (if present) in the Level. The entire STASH graph is essentially a list

of such Cell groups where index of a particular Cell-group is the same as its the level id (resolu-

tion). Hence, although logically, the STASH Cells are structured in the form of a graph, they are

physically stored in the form of a list of Cells, with each Cell not storing actual edges/pointers

to its spatiotemporal relatives, but rather their information/clues that can be used to quickly track

them down. The reason for not storing actual pointers to other Cell objects is because of the large

number of spatiotemporal neighbors and children that each Cell can possibly have. To get an un-

derstanding, each Cell can spatially have 32 immediate spatial children (in case of Geohash-based

spatial partitioning) and temporally up to 365, which combined would result in a large number of

pointers in-memory.

31

Table (5.1) STASH Cell Components

Content Description

Summary Data
Summary Statistics over datapoints

lying in the spatiotemporal bounds of this cell

Spatiotemporal Bounds
Spatiotemporal bounds

of given cell

Geohash

Time interval (eg. ’2015-03’)

Spatiotemporal

Relationship

Information (SRI)

Information identifying

spatiotemporal parents, neighbors

and children of current cell

Spatial Parent(s),

Temporal Parent(s)

∈ EH

Spatial Neighbors,

Temporal Neighbors

∈ EL

Spatial Children,

Temporal Children

∈ EH

5.0.2 Vertex: The STASH Cell

Requesting data at specified resolution involves grouping data points into bins of equal spa-

tiotemporal extents and generating aggregated values for each attribute for all the points that fall

within a certain bin. The array of aggregated attribute values for each bin is referred to as a Cell.

A Cell is the minimum unit of data storage in STASH and represents a vertex of GSTASH .

Properties of a Cell

Each STASH Cell, Ci, contains three main properties: (a) spatiotemporal labels, (b) aggregated

summary statistics and (c) edge information({EHi
, ELi

}|EHi
∈ EH and ELi

∈ EL), as shown in

Table 5.1. The summary statistics are the main content of a Cell and is the information returned to

a client program in response to a spatiotemporal request. The spatiotemporal labels describe the

scope including the spatial bounding box encoded as Geohash value and the chronological range

for the observations. The edge information keeps the Cell aware of its immediate spatiotemporal

neighborhood.

Nested Coverage

STASH Cells can be thought of as 3-dimensional cubes in the spatiotemporal space, with a

fixed bounds marked by their spatiotemporal labels. Cells connected by a hierarchical edge have

32

nested spatiotemporal bounds, i.e., the bounds of the lower resolution Cell fully encloses the higher

resolution Cell. Fig.5.2b shows a 2-dimensional representation of the nested bounds of Cells in the

hierarchy. A Cell’s spatiotemporal extent is inversely proportional to its spatiotemporal resolution.

With every increase in spatial or temporal resolution, a single parent Cell gets broken into a fixed

number of child Cells. For instance, Geohashes represent a hierarchy of successively higher-

resolution spatial bounding boxes using a string of Base32 characters. So one spatial resolution

increase splits each lower-resolution Cell into 32 equally-sized smaller Cells.

(a) (b)

Figure (5.2) Spatiotemporal Hierarchical Positioning of Cells

5.0.3 Edge: The Inter-Cell Relationship

STASH maintains two edge sets to represent distinctive relations between Cells. The hierar-

chical edges represent the spatiotemporal parent(s)/children of each Cell (see Table 5.1). Each

Cell can have 3 different parent precisions (one step lower spatial precision, one step lower tem-

poral precision and one step lower spatiotemporal precision). This refinement is applicable to the

children nodes as well. The lateral edges help identify the spatiotemporal neighborhood of a Cell.

As shown in Fig.5.1 and Fig.5.2a, a Cell covering a geohash 9q8y7 and time 2015-03 has a

spatial resolution of 5 (length of the Geohash) and temporal resolution ‘Month’. The Cell has 8

adjacent spatial neighbors - 9q8yd, 9q8ye, 9q8ys, 9q8yk, 9q8yh, 9q8y5, 9q8y4, 9q8y6 (see Fig.5.1a)

and 2 temporal neighbors 2015-02 and 2015-04, which represent its lateral edge. Similarly parent-

33

age and children can be deduced from the Cells spatiotemporal information. For instance, the

spatial parent of Geohash region 9q8y7 is 9q8y (spatial resolution of 4) and each Geohash box

encloses 32 nested Geohashes, which would represent the spatial children.

5.0.4 Hierarchical Cell Organization

To exploit the lineage and inter-relationship among the Cells, the STASH framework is orga-

nized in a hierarchical graph structure to support fast population and updates to the in-memory

data. The graph level for a given spatiotemporal resolution is calculated as (nj ∗ nt + ni) where

ns and nt are the total possible spatial and temporal levels, respectively and ni and nj are the spa-

tial and temporal resolution of the current level, respectively. Fig.5.2a gives a view of the relative

positioning of two levels with varying resolutions.

5.0.5 Query Evaluation Strategy

STASH’s dispersion scheme attempts to maximize data locality by deploying an instance of

STASH graph at each node holding data related to that node. Although STASH is organized as a

graph, the query evaluation does not rely on traditional graph traversal algorithms that often result

in excessive network communications and iterations. STASH provides a set of composable vertex

discovery schemes (through the hierarchical and linear edge relationships) that reduce the network

communications and iterations significantly. Since the zero-hop DHT maintains the hosting infor-

mation of the entire key ranges in each node, within a single precision level, the query evaluation

requires up to one query forwarding to locate the data. For a STASH cluster with N nodes, the com-

putational cost to locate a Cell within a given precision level is O(1). A Stash graph is maintained

on each node of the distributed cluster to help avoid disk access on that particular node.

Across multiple precision levels, STASH relies on precision-level map (PLM) to check for

completeness of the in-memory data. The PLM is a bitmap that associates the Cells contained

in-memory for a given level to the actual data blocks in the distributed storage. The PLM is

memory-resident and helps identify whether all Cells contained in a given data-block exists in-

34

memory. Otherwise STASH will consult the PLM to retrieve missing chunks from the data blocks

and complete the query evaluation.

Each node, that receives a user query over the subset of data it contains, first checks the STASH

hierarchical graph at the query’s specified resolution to look for Cells that match the criteria. A

data block to Stash Cells bitmap lets the system know which data blocks are fully contained in the

Cells and which need processing. All missing Cells(if any) are queried from the disk, like it would

in case of normal query evaluation and then populated into the graph. Hence, the response would

be a combination of the summaries extracted from STASH and the remainder from the file-system.

The missing Cells once processed from the file-system have their SRI information calculated

and then populated in the proper spatiotemporal level to which they belong. One thing to note is

that, during query evaluation, once the missing Cells have been fetched from the actual file-system,

they are combined and sent back as response immediately. The population of these new Cells into

STASH happens in a separate background thread.

5.1 Leveraging Visual Navigational Patterns

5.1.1 Proximity Aware Data Dispersion

To preserve Cell relationships, we leverage the strong spatial and temporal locality of access [9]

which is characteristic of spatiotemporal user requests. Spatial locality implies that if a spatiotem-

poral region is accessed, its neighborhood also has high chance of future access, while temporal

locality implies that a region’s popularity is directly proportional to its probability of being ac-

cessed in the near future, which is in line with Zipf’s Law [51].

5.1.2 Collective Caching

STASH provides a query optimization scheme tailored for explorative analytics through OLAP

operations [57] for multi-dimensional data. A sequence of such operations often involves partially

overlapping or nested queries (e.g., a series of panning operators may involve overlapping areas

and zooming or rolling-up results in nested queries). Although existing scalable databases support

35

Figure (5.3) STASH Freshness Dispersion Scheme

sophisticated aggregation schemes with caching mechanisms [90], the query output is not reusable

by other partially similar queries. STASH’s in-memory cache is collectively built through query

evaluations from multiple users. Any subsequent query will be evaluated over the cached values

first. Disk access is required only if, (a) there are missing values for completing query evaluation,

and (b) those missing values are not available by computing from the existing cached values.

5.1.3 Cell Replacement Strategy

We ensure that the spatiotemporal scope of an incoming request has higher probability of over-

lap with the current cached entries. The total number of possible Cells is much larger than the

number of cells that can be persisted in-memory. So for our Cell replacement strategy, rather than

focus on the demand of Cells individually by only calculating their frequency of access, we focus

more on the spatiotemporal regions of interest, i.e. the regions that are experiencing the most user

queries at a particular instant, keeping in line with the concepts of spatial and temporal locality of

access.

36

Cell Freshness

The effectiveness of STASH lies in its ability to maintain the most relevant regions in the mem-

ory, and to efficiently detect stale Cells and swap them out for more requested regions, in case we

reach a threshold due to overpopulation of Cells. In case of a threshold breach, we use the metric

of freshness to evaluate the importance of a Cell in the STASH Graph. Freshness is calculated as

the product of the number of accesses to a Cell (updated every time it gets accessed), and a time

decay function. Hence, both frequency and recency of access are contributors to the freshness of a

Cell. Cells in STASH are replaced based on this freshness score.

Freshness Dispersion Scheme

In accordance with the spatial and temporal locality of access patterns, when a request for a

spatiotemporal region comes in, we mark both the set of Cells in that region and its immediate spa-

tiotemporal neighborhood as being of future interest, to prepare for possible overlapping requests

in the immediate future and update their freshness.

Fig.5.3 gives a two-dimensional view of our freshness dispersion scheme at a particular spa-

tiotemporal resolution. Let us say that spatiotemporal regions R1 and R2, highlighted by light-

colored cells, have been accessed by one or more end-users recently. Temporal locality of access

dictates that Cells accessed recently have a higher probability of access in the near future. There-

fore, in our freshness dispersion scheme, when regions R1 and R2 get accessed, we increase their

freshness (by, say, finc, which is configurable). Also, spatial locality of access suggests that if re-

gions R1 and R2 are currently of interest, their spatiotemporal neighborhood will also be a region

of interest. To reflect this property, we also disperse a fraction of finc to the Cells in the immediate

neighborhood of R1 and R2 (grey cells). This scheme prevents the spatiotemporalneighborhood

from being deemed stale, even though they might not have been accessed recently(eg. R3).

The freshness dispersion scheme described above boosts entire regions that are heavily ac-

cessed to be persisted in memory during replacement, instead of disconnected patches that would

reflect the actual query areas that were fetched but might hamper the performance and latency

37

of future queries. STASH Cell replacement occurs in a decentralized fashion on each node and

involves evicting the Cells with the lowest freshness score till the capacity goes below a safe limit.

Advantage of the Hierarchical Graph Organization

Updating the freshness of a set of Cells that belong to a user-requested region out of a large

collection of in-memory Cells and also to their spatiotemporal neighborhood is a time-consuming

operation that can potentially slow down the query evaluation if not done efficiently. The hierarchi-

cal organization of STASH Cells allows us to perform the aforementioned functionalities fast and

effectively. First, it allows us to isolate the set of Cells that belong to the current spatiotemporal

resolution, as well as their parent and child-level resolutions, thus narrowing down the scope of

the Cells we have to work with. Second, once the relevant Cells have been identified as part of a

queried region, we can easily use their lateral and hierarchical relationship(edges) to find the Cells

in their immediate spatiotemporal neighborhood and update their freshness values in a fast manner.

5.2 Autoscaling for High Throughput Query Evaluation

The spatial and temporal locality of user access patterns makes it highly likely for hotspots to

emerge over the distributed data storage system [91]. A large number of queries focused over a

small spatiotemporal portion of the entire data space would lead to only a few nodes servicing a

large chunk of queries, leading to a bottleneck. Also, these hotspots are dynamic [92]. In STASH,

individual nodes adapt to potential hotspots in a dynamic and decentralized fashion.

5.2.1 Dynamic Clique Replication

Whenever the workload (determined by the pending requests queue size) on a node in the

cluster crosses a configurable threshold, that node initiates a Clique Handoff for the most active

spatiotemporal regions on it. Hotspotted regions in STASH are demarcated in terms of Cliques,

which represent the most active set of Cells in STASH and acts as the unit of data replication and

transfer in STASH. Clique Handoff is the decentralized process of the hotspotted node finding

the most suitable candidate node (called the helper node) to house replicas of its hottest Cliques.

38

A helper node maintains two STASH graphs - one local and one guest (containing replicated Cells

from other hotspotted node(s)).

Similar to the case of Cell replacement, in replication too, our goal is to ensure that heavily

accessed regions are replicated, instead of a disjoint patchwork of Cells so that during hotspots,

most incoming requests would request fully replicated regions and hence be siphoned off to helper

node(s), thus alleviating some of the processing load.

5.2.2 Clique Handoff Process

The Clique Handoff process involves the following steps, as depicted in Fig.5.4:

Top Cliques Calculation

The hotspotted node attempts to find the spatiotemporal regions responsible for majority of its

workload in the form of Cliques in its STASH graph with the highest cumulative freshness. We

define cliques, here, as a subgraph of Cells from the STASH graph of a pre-configured size (depth).

For example a clique of depth 2 would consist of a Cell Ci and all its children Cells and their

children Cells to calculate their cumulative freshness. Cliques are identified by the spatiotemporal

label of their topmost parent Cell. The reason for selecting multiple resolutions through a Clique

is to brace for future queries at varying resolutions over the same region.

We set the maximum number of replicable Cells at a time to a preset amount, say N . The

hotspotted node searches its STASH graph to find the top K cliques whose cumulative size is ≤ N .

The hierarchical structure of STASH graph makes it efficient to identify the Cells that would be in

a given clique. These top K cliques are subject to replication from a hotspotted to helper node(s).

Antipode Node Selection

The candidate for a helper node is calculated separately for each clique. Since hotspots tend

to be concentrated in small pockets in the spatiotemporal space, our goal is for clique replicas

to be housed on nodes whose domain is the most isolated from the current hotspotted region. In

our implementation, we look for a spatiotemporal region that is diametrically on the other side of

39

Figure (5.4) Hotspotted Region Handoff

the total spatial scope of the storage cluster. The idea is similar to the concept of antipode of a

coordinate which is another coordinate on the diametrically opposite side of the globe. We call the

node handling this diametrically opposite region the antipode node.

We use a Clique’s Geohash to find its geohash antipode and then use the DHT’s partitioning

scheme to identify the antipode node and send it a Distress Request. If it is not itself hotspotted

and its guest tree can accommodate the incoming Cells, the antipode node sends a positive ac-

knowledgement. In case of a negative acknowledgement, the hotspotted node looks for a region in

a random direction around the antipode region and repeats the distress request.

Replication Request/Response

Upon receiving a positive acknowledgement from a helper node, the hotspotted node sends

back a Replication Request containing the Clique(s) to replicate. On inserting the Clique into its

guest STASH graph, the helper sends back a successful Replication Response to the hotspotted

node.

Routing Table Population

The hotspotted node maintains a routing table of Cliques that are replicated at helper nodes,

along with a bitmap of the actual Cells contained in the clique. This routing table is populated

upon receiving a successful Replication Response from a helper node.

40

5.2.3 Query Evaluation under Hotspot

In a hotspot situation, a user query is first checked against entries in the routing table and if

the spatiotemporal region of the user query is found to be fully replicated at another helper node,

the user request is probabilistically rerouted to the helper node, thus reducing the load on the

hotspotted node. At the helper node, the relevant Cells are fetched from its guest STASH graph,

just as it would be from a local STASH graph.

5.2.4 Replication and Cleaning

Each node has a pre-configured cooldown time after hotspot handling. If the hotspot persists

after this cooldown time, the Clique Handoff process is repeated and another set of replicas of

active Cliques are created on candidate helper nodes.

The guest STASH graph entries also get purged if they are not requested to be persisted within a

configurable amount of time. Stale routing-table entries also get purged from the hotspotted node

after a pre-configured period signyfying the retreat of hotspot.

Fig.5.5d contrasts the performance of STASH’s replication scheme against STASH without dy-

namic replication under skewed traffic. We simultaneously executed 1000 random county-level

requests, centered around a starting region to emulate the hotspot scenario of sudden interest over

a single region from multiple users. Our system was configured to initiate Clique handoff with

pending requests of over 100. To compare improvement caused by a replication operation, the

cooldown time was set high. Fig.5.5d shows the number of responses received each second from

the start. We can see that STASH with a dynamic replication scheme processes all tasks ∼ 20

seconds before STASH without dynamic replication.

5.3 Empirical Benchmarks

We explore the effectiveness of maintaining of the STASH framework for exploratory analysis

over large spatiotemporal data. For that purpose, we profile various types of common OLAP

41

operations that are characteristic to exploratory browsing and tested the resilience of the framework

against high volume of irregular user requests.

5.3.1 Experimental Setup

To evaluate compute-intensive operations with high-density observations, we profiled STASH

while performing OLAP operations with spatiotemporal data on a cluster of 120 nodes. Each node

in our distributed cluster is an HP Z420 with the configuration: 8-core Xeon E5-2560V2, 16 GB

RAM and 1 TB disk. The data is partitioned throughout the cluster uniformly based on the first 2

characters of their Geohash.

To contrast performance with other geospatial caching systems, we have used Elasticsearch

[90] on a cluster with 3 master nodes and 120 data nodes. To achieve horizontal scalability and

parallelization, the index was split into 600 shards. Three types of caches that were maintained

stored the query results, aggregations, and field values on a node.

We contrast our query latency with 4 groups of spatiotemporal queries as country, state, county

or city level. These represent 4 query sizes that vary in their spatial extent (Query_Polygon) but

have a fixed temporal extent which is 2015-02-02 (Query_Time). The spatial extent of the 4 query

groups is set using a random rectangle over the data’s entire spatial coverage with latitudinal and

longitudinal extent of (16◦,32◦), (4◦,8◦), (0.6◦,1.2◦) and (0.2◦,0.5◦), respectively. The requested

spatial and temporal resolutions are 6 and ’Day of the Month’, respectively, unless otherwise spec-

ified.

The dataset is sourced from the NOAA North American Mesoscale (NAM) Forecast System

[93]. The NAM dataset (∼1.1 TB unprocessed) contains atmospheric data collected several times

per day for 2013, globally including features like surface temperature, relative humidity, snow and

precipitation.

42

5.3.2 Distributed Query Evaluation Statistics

Query Evaluation Latency

We tested the latency improvement with the STASH framework by evaluating the average laten-

cies of queries of varying sizes for 3 scenarios - the simple Galileo storage system, empty STASH

graph with no Cells (worst-case) and STASH graph with all necessary Cells in-memory (best-case

- duplicate query). This kind of querying for a subset of the total spatiotemporal extent of the data

reflects the dicing operation on our system.

(a) Latency vs Query Size (b) Throughput Improvement

(c) Maintenance Overhead vs Query Size (d) Autoscaling

Figure (5.5) Performance Evaluation of STASH: (a) and (b) show effects of query size on its latency and

throughput, respectively; (c) compares STASH maintenance time for different query sizes and (d) shows the

improvement in throughput for STASH’s replication mechanism over normal execution during hotspot.

Fig.5.5a shows that STASH with all necessary Cells in-memory outperforms the other two

scenarios with ∼5x improvement over no STASH scenarios for large query sizes such as country

and state. Hence, a fully populated STASH graph helps transform even large queries to interactive

operations.

43

STASH Maintenance Overhead

In Fig.5.5a, the average latency in the worst case scenario is slightly more than in the no STASH

case, which can be explained by the overhead in the unsuccessful look-up for matching Cells in

the graph and then looking into the disk. The population of the Cells fetched from disk to memory

is done at the back-end in a separate thread. Fig.5.5c shows the cold-start scenario where all the

Cells from a query have to be inserted in-memory and the time taken population that goes down

considerably with query size, since lesser Cells are to be inserted in STASH.

(a) Iterative Dicing - Descending (b) Iterative Dicing - Ascending (c) Panning

(d) Drill-Down (e) Roll-Up

Figure (5.6) Query Performance Evaulation for Different Common Visual Analytics Operations

5.3.3 Visual Exploration With Collaborative Caching

In practical scenarios, fragments of the query’s spatiotemporal extent will be contained in

STASH graph while the remainder needs to be fetched from disk as follows:

Iterative Dicing

To simulate the user action of sequentially increasing and decreasing the query area, we have

implemented ascending and descending iterative dicing respectively, as shown in Fig.5.6b and

Fig.5.6a respectively. It shows a sequence of 5 queries that, keeping the spatiotemporal resolution

fixed, varies the Query_Polygon size in either ascending order or descending order. We can see

44

that descending iterative dicing performs much better for a STASH enabled system since a larger

area (country level) is fetched in the first query and then, iteratively, a subset of the first query

(20% spatial area reduction) gets queried (final query having size ∼(5.2◦,10.4◦)) - leading to all

necessary Cells existing in memory from the second query onwards. The ascending version is the

previous set of queries executed in reverse order. Here, as the spatial extent increases, a fraction of

the relevant Cells are found in-memory, which does lead to improved performance over the basic

system, but not to the extent of the descending version.

Zooming

We replicate the scenario of a user sequentially increasing or decreasing the resolution of a

view area by two sets of experiments - drill-down (zoom-in), where a user starts with a lower

spatial resolution of 2 of a state-level area and then recursively increases the resolution to 6 that

incurs ∼32 fold increase in the number of possible Cells at each step. Roll-up (zoom-out) is the

reverse of the drill-down operation. To compare the performance of our system in scenarios with

varying amount of relevant cells in-memory, we have randomly stacked the STASH graph with

regions covering 50%, 75% and 100% of all the relevant Cells.

Fig.5.6d and Fig.5.6e contrasts the latency of the drill-down and roll-up scenarios, respectively,

for a STASH enabled system against the basic system. As expected, more the amount of relevant

Cells in-memory, the better the latency. However, in all scenarios with partial information, we see

at least 40% improvement in latency over a system without STASH.

Panning

We replicate panning in our experiments by starting with a state-level query and moving the

rectangle by a certain amount(10%, 20%, 25%) in 8 possible directions around the starting rect-

angle. So, the first query encounters an empty STASH graph and then, from the second query

onwards, a fraction of the necessary Cells should exist in-memory. The results in Fig.5.6c support

our assumption. We see that the basic analytics system has uniformly high latency, whereas, that

in STASH enabled system is considerably low. The lower the amount of pan, the larger is the over-

45

lapping area between two consecutive queries, which would benefit a STASH enabled system, as

validated by Fig.5.6c. Also, the comparison of 25% pan scenario between a basic and a STASH

enabled system shows considerable improvement - ranging from ∼ 73%-60% reduction in latency.

Throughput

Fig.5.5b shows the throughput of a STASH-enabled system vs that of a basic system. This

experiment involves firing 10,000 county-level requests over the cluster which are created by se-

lecting 100 random rectangles (of sizes state, county and city) over the globe and then randomly

panning around each by 10% in any random direction 100 times, to replicate spatiotemporal local-

ity of requests. The throughput is calculated based on the total time taken for the last request to be

executed successfully. A STASH-enabled system shows ∼5.7x, ∼4x and ∼3.7x improvement in

throughput for state, county and city-level queries, respectively.

5.3.4 Improvement Through Autoscaling

Fig.5.5d contrasts the performance of STASH’s replication scheme against STASH without dy-

namic replication under skewed traffic. We simultaneously executed 1000 county-level requests,

by randomly panning around a random starting point, to emulate the hotspot scenario of sudden

interest over a single region from multiple users. Our system was configured to initiate Clique

handoff with pending requests of over 100. To compare improvement caused by a replication op-

eration, the cooldown time was set high. Fig.5.5d shows the number of responses received each

second from the start. We can see that STASH with a dynamic replication scheme processes larger

number of queries per second and finishes all tasks ∼ 20 seconds before STASH without dynamic

replication.

5.3.5 Comparison with ElasticSearch

We contrasted STASH’s performance against ElasticSearch, which has its own caching system,

with some of the previously OLAP scenarios with consecutive overlapping requests.

46

Panning

The panning scenario when replicated on ElasticSearch gives results as shown in Fig.5.7a. We

can see that STASH shows better improvement in performance, whereas ElasticSearch’s latency

improves slightly. At each step with the latency-reduction with respect to the latency of the first re-

quest with STASH ranges between ∼ 70% and 49.7%, whereas that of ElasticSearch stays between

∼ 2% and 0.6%. Also, the second query onwards, STASH’s latency is significantly lower which

demonstrates better management of in-memory data in case of overlapping queries.

(a) Panning (b) Iterative Dicing - Ascending (c) Iterative Dicing - Descending

Figure (5.7) Contrasting STASH’s Latency Against ElasticSearch for Common Visual Analytics Opera-

tions

Dicing

Fig.5.7b and Fig.5.7c compares the results of the ascending and descending iterative dicing ex-

periments, as mentioned above, between STASH and ElasticSearch. Here also, we see that STASH

shows a much steeper drop in latency from the second query onwards by effciently utilizing the

common Cells stored in-memory for the subsequent queries.

47

Chapter 6

Compressed/Low-dimensional Representation of

Data

Spatiotemporal queries over voluminous datasets with high data density are compute-intensive

and require processing of a huge amount of records for extraction of information such as aggregate

statistics or patterns over a given sub-domain. Voluminous datasets with high-dimensional data

collections, like in the case of remotely-sensed hyper-spectral satellite imagery, offer a wide scope

to identify phenomena or underlying patterns and inform decision-making. Apart from their vol-

umes, the nature of the data objects contained in these collections introduces challenges stemming

from their complexity and spatiotemporal resolutions.

In such cases, compressed data representations reduce the storage footprint of these datasets,

thereby allowing a more significant portion of the data to be cached within limited memory re-

sources. These compressed representations are used in place of actual data (in the STASH graph)

for query analytics. This, in turn, mitigates the need for frequent disk I/O operations, resulting in

improved query performance and overall system efficiency. We explore 3 different strategies for

handling these kinds of scenarios:

1. Hierarchical Data Cubes

2. Low-resolution Data Representations for Model-Driven Reconstruction

3. Extracting low-dimensional representation (embeddings)

The efficacy of each of these modes of compressing raw data depends on the specific problem

requirements. The choice of which strategy to use depends on the nature of the underlying dataset

and is influenced by the degree of compression desired as well as the amount of accuracy or

perceptual quality of the visualization results that is desired.

48

6.1 Hierarchical Data Cubes (RUBIKS)

Data cubes [94] are considered an effective mechanism to facilitate such summarizations [40,

94, 95]: we extend this concept of data cubes to spatiotemporal data spaces where the number of

observations may be very large. Crucially, we support these aggregations at scale, with low latency,

alongside the ability to perform these operations along diverse spatial hierarchies (administrative,

watersheds, quadtiles, etc.). We explore these ideas in the context of our research prototype, RU-

BIKS [96].

We leverage a novel mix of algorithmic, statistical and systems approaches to facilitate real

time data summarization at scale across user-specified spatiotemporal scopes. Our methodology

places no constraints on the size of these spatiotemporal scopes. Data from moderately sized

spatial extents (e.g., tracts, counties, or watershed boundaries) are collated and stored in-memory

for faster evaluations at runtime.

Summarizations allow a researcher to spot patterns that arise at diverse spatiotemporal scopes.

Summarizations provided by our data cubes include min, max, mean, median, variance, standard

deviations, and distributional skew and kurtosis associated with individual features (or variables).

We also supplement these measures by tracking the covariance across a set of user-specified fea-

tures. RUBIKS data cubes support pivot, aggregation, and disaggregation operations. Pivots allow

the data cube to be probed across a specific dimension e.g., spatial, temporal, or any of the fea-

tures encapsulated within the cube. The roll-up and drilldown operations relate to aggregation and

disaggregation operations across spatiotemporal scopes. For example, a user may be interested in

exploring the data space at coarse scales (roll-up) or at finer scales (drilldowns). These operations

allow a user to specify interest over the dataspace at progressively larger or smaller spatial extents,

time ranges, or combinations thereof.

Rather than compute these data cubes exhaustively every time a query is issued, we perform

a limited number of one-time precomputations that we then leverage to support data cube opera-

tions. The smallest unit of data summarization in the system is a cubelet representing the smallest,

indivisible spatiotemporal scope at which summarizations are performed. In our methodology, the

49

scope associated with the cubelet is configurable. Data cubes are constructed from cubelets. Data

cubes may either be constructed from cublets or hierarchically constructed from other cubes. We

leverage Welford’s algorithm to compute the cubelets in an online, single-pass fashion, and also

acount for irregular timeseries observations. Information maintained within the data cubes are also

amenable to leveraging the same online method to compute data cubes at ever coarser scales. Our

methodology also allows data cubes to be constructed from non-contiguous spatiotemporal cubes.

In RUBIKS, cubelets are space-efficient and can be persistently stored in since they are used in

the computation of data cubes that may span diverse spatiotemporal scopes. Persistent storage of

the cubelets also precludes duplicate computations alongside repeated sweeps of the data involving

I/O. The data cubes, on the other hand, are ephemeral meaning they are garbage collected after a

period of time.

The STASH cache is used to store data cubes that have been calculated based on user-specified

queries. We also store cubelets that were used to construct these data cubes; the rationale for this is

that it is often the case that users are incrementally refining queries to customize the spatiotemporal

scopes of interest. As such, cubelets that are part of a query have a higher likelihood of inclusion

in the refinement queries. Second, the cache can reduce duplicate processing alongside any I/O

that such refinements entail.

RUBIKS also supplements the summarization feature with the ability to visualize these summa-

rizations using a Choropleth map to render spatial variations of measures of interest. As such, the

queries may be composed visually, and the roll-ups and drilldowns can be performed using slider

bars. We allow dynamically constructed data cubes to be visualized using our Choropleth map

service.

6.2 Low Resolution Data Representations (GLANCE)

This strategy focuses on populating the in-memory graph with low-resolution representations

of large data objects and reconstructing them through super-resolution at runtime. For interactive

visual analytics applications, data retrieval and processing are driven by users’ actions. Drilling

50

2
x

4
x

8
x

(a) Input (Bicubic) (b) Basic SR (c) Partial SR (d) HR Target

Figure (6.1) The three rows demonstrate front-end visualization results from 2x, 4x and 8x upscaling

scenarios, respectively. The columns represent the model inputs, the SR outputs from the basic and partial

SR models and the ground-truth high-resolution image, respectively.

down of the current view allows isolation of finer-grained details, while telescoping of a view

allows users to contrast surrounding values. Frequent and flexible visual analytics operations result

in a very large number of data retrievals from the remote data storage. Though it might be possible

for certain user operations to be performed locally (e.g. aggregations for zoom-out) with data

stored in a local cache, enhancing resolution (e.g. zoom-in) of the current view cannot avoid

accesses to the backend storage service.

The GLANCE framework delivers images at diverse resolutions, through in-situ reconstruc-

tion, while significantly reducing data communications between the user and the backend storage

system. As shown in Fig.6.1, GLANCE constructs a model that captures non-linear relationship

between images with different resolutions to generate super-resolution (SR) image from lower res-

olution images. Our models, GlanceNet, comprises two Generative Adversarial Networks (GANs)

to address the basic upscaling scenario along with a partial upscaling scenario.

51

The GlanceNet models are a variation of progressive GAN that infers higher resolution images

from aggregated (low-resolution) images. The primary benefit of using a progressive GAN is

generating a consolidated model that captures interactions that exist between arbitrary pairs of

levels across the entire spectrum of resolutions. For instance, in the case of satellite observations,

the details and interactions for drill-down operations from a city-to-block are different from those

needed for a drill-down from a metropolitan area to the city. The enhancement GAN targets the

case that the high resolution image is partially available in the memory.

GLANCE also provides a refinement to maintain sufficient accuracy of inferred images while

balancing data transfer from the backend storage server. The models may output images with un-

satisfactory accuracy due to an insufficient number of input tiles or unexpected image complexity

due to spatial variations. For example, the model may work well for three successive drill-down

operations for regions in Nevada but may meet our accuracy thresholds only for two successive

drill-downs for regions in Florida. To detect and avoid potential error-prone images, the system

tracks the regional model accuracy and identifies users’ requests that will benefit from data re-

trievals from backend servers.

6.3 Low-dimensional Representations using Encoder-Decoder

Network (ARGUS)

This aspect of our framework deals with in-memory computing over low-dimensional sketches

of high-dimensional data objects, guided by model-assisted insight extraction. We attempt to create

a versatile low-dimensional latent representation out of underlying data objects (eg. multi-spectral

satellite imagery) that can help - 1) reduce memory footprint of the in-memory data objects and

2) facilitate faster data processing and reduce response time. Next we introduce the different

components of this framework (see Fig. 6.3). In order to extract intuitive and meaningful insights

from such data objects and maintain low latency for our queries, we implement our model-driven

extraction of insights.

52

The first part of this framework for rapid processing of high-dimensional data is a trained

encoder-decoder network which can be used during data ingestion to reduce the dimensionality

of the incoming multi-spectral data, while sufficiently preserving its contents. The network is

aimed at generating embeddings that represent a higher-order latent representation of the actual

data object. We plan on implementing convolutional autoencoders for this purpose since they have

shown promising results over satellite image data [97], especially in feature extraction.

Figure (6.2) Typical Autoencoder Network

Autoencoders [98] based on deep neural networks are commonly used for a number of different

applications, including feature extraction and dimensionality reduction. The driving principle be-

hind an autoencoder is that the high dimensional data has a significantly smaller lower-dimensional

embedding in a latent space that is sufficient to represent the content of the original data. Autoen-

coders are an unsupervised model that work by reducing a given input down to a small vector (the

embedding), then optimizing the network to reconstruct the input or a version of the input, from

that embedding.

A simple Autoencoder network consists of 3 parts (Fig. 6.2) - an encoder made from a sequence

of convolutional layers, which help reduce the size of the input through a set of filters, the generated

latent embeddings and a decoder that reconstructs the input from the latent embeddings. The

decoder layers are a mirror image of the encoder and are trained to reconstruct the input from the

embedding generated from the encoder. These two modules together help optimize the quality

of the embeddings generated. A convolutional autoencoder is a modified version of a simple

autoencoder, where the encoder and decoder layers, instead of being composed of fully-connected

layers now consist of a sequence of convolution layers (and pooling layers). The structure of the

encoder and decoder still mirror each other.

53

6.3.1 Supervised Model Building Using Embeddings

The embeddings generated from the previous component are expected to have significantly

low memory-footprint compared to the original data-object. This helps improve the number of

elements in our cache and increases the hit-rate. However, performing post-processing on these

embeddings requires us to build models capable of extracting insights from such latent representa-

tions. Additionally, making these embeddings need to be versatile enough to serve multiple types

of analytics/ geoprocessing introduces a new set of challenges. To ensure that the training of these

models needs to be collaborative.

We use this second set of models during actual query-evaluations that involve post-processing

(for example, calculating slope from an elevation raster file) using in-memory of on-disk embed-

dings of the actual data. While extracting insights from embeddings, instead of actual input, can

be challenging, one advantage to training these modules out of embeddings is that it enables us to

train over much smaller inputs which would make training faster. This also could potentially help

us build models that are lightweight. As a result, they should also have faster convergence rates.

Figure (6.3) Overview of Insight-Extraction Framework

6.3.2 Multi-task Learning

Since our embeddings need to be multi-purpose and serve extraction of different types of an-

alytics, their training needs to support a mutual exchange of knowledge. This would enable our

embeddings to be truly versatile and also help in its robustness by assimilating knowledge across

54

multiple domains. In this context, Multi-task learning (MTL) [78] is an effective solution (Fig.

6.3), where we aim to train multiple models that learn related tasks jointly to leverage exchange

of knowledge that facilitates generalization of the individual models. Feature-based multi-task

learning aims at learning common features among related tasks as a way to exchange common

knowledge. Multi-task learning involves training of machine learning models with data from mul-

tiple tasks simultaneously, using shared representations. This enables the models to acquire shared

knowledge between a set of related tasks. These shared representations increase data efficiency

and can potentially yield faster learning speed for related or downstream tasks, helping to allevi-

ate the well-known weaknesses of deep learning: large-scale data requirements and computational

demand.

Next, we individually discuss each of these compression strategies and the approach of recon-

structing/ generating aggregate statistics from them. We also discuss their improvement in terms

of interactivity as well as the accuracy of their results.

55

Chapter 7

Hierarchical Data Cubes (RUBIKS)

RUBIKS facilitates construction of hierarchical datacubes which may be constructed from

cubelets (smallest, indivisible unit of aggregation in the system) or from other data cubes. Data

cubes generate aggregated summarization of measurements over a spatiotemporal scope at vary-

ing levels of coarseness, based on their resolution. Here, we demonstrate our methodology for

computing and analyzing data cubes over disjoint spatiotemporal extents.

7.1 Query Evaluation

The following is a sample spatiotemporal query that we support at client-side. RUBIKS supports

spatiotemporal queries at varying levels of resolution (spatial_resolution, temporal_resolution)

over any given viewport (Polygon) and timerange(Query_Time).

s e l e c t p e a r s o n (i r o n , mercury) , . . .

from Aqua_Datase t

where c o o r n i d a t e s in Polygon

and t ime_s t amp in Query_Time

group by s p a t i a l _ r e s o l u t i o n , t e m p o r a l _ r e s o l u t i o n

Fig. 7.1b provides an insight into the query evaluation process orchestrated by RUBIKS. The

system handles analytical queries over spatiotemporal data through the utilization of datacubes. We

elaborate on the overall query evaluation mechanism of RUBIKS in a distributed context. When

a client query is initiated, it is initially directed towards the relevant cluster nodes (as explained

further in the subsequent section). At each node, a search is conducted within the in-memory cache

for cubes that either precisely match or can be repurposed to meet the requirements of the current

query. Subsequently, the query is enhanced to retrieve any unfulfilled spatiotemporal extents from

the backend storage.

56

In the backend storage, RUBIKS engages in a search for ephemeral cubes that can be effectively

employed or repurposed to furnish accurate responses for the ongoing query. For any cubes that

are found missing, they are dynamically constructed from the collection of perennial cubelets

and subsequently dispatched to the requesting node. In addition to addressing the query at hand,

these newly formed data cubes are added to the roster of ephemeral cubes for future potential

use. Data cubes created using this dynamic and targeted process are cached. By orchestrating this

interplay of cache utilization, dynamic data cube construction, and query enhancements, RUBIKS

realizes a robust and responsive query evaluation mechanism that ensures efficient utilization of

available data and computational resources. Crucially, correctness is preserved while ensuring

efficient analysis of spatiotemporal datasets.

7.2 Cubelets

In the RUBIKS framework, a cubelet serves as the fundamental unit of aggregation and analysis.

These cubelets play a pivotal role in encapsulating aggregated values across a diverse spectrum of

measurements within a well-defined spatiotemporal scope. With these Cubelets, we develop a

dynamic analytical framework that facilitates iteratively identifying regions of interest that satisfy

desired properties or covariences.

Our cubelets encapsulate statistical summaries such as counts, means, minimums, maximums,

and standard deviations, alongside distributional skew and kurtosis, for all observations for a par-

ticular variable within the specified spatiotemporal extent. The data encapsulated within a cubelet

is space-efficient and is amenable to aggregations i.e., cubelets can combined to produce a new

data cube that encapsulates the aggregated measures of interest.

The ability to hierarchically aggregate cubelets (and cubes) facilitate a comprehensive explo-

ration of spatiotemporal patterns, trends, and relationships across the entirety of the dataset’s geo-

graphic and temporal domain. By orchestrating queries that target data cubes, we aim to pinpoint

regions of interest that align with specific criteria or exhibit correlated behaviors with a predefined

57

set of features, enabling targeted analysis of intricate spatial and temporal phenomena and extrac-

tion of nuanced insights, contributing to informed decision-making in a wide array of applications.

Cubelets are created over a configurable spatiotemporal scope. The cubelets can be aggregated

hierarchically into data cubes at varying spatiotemporal resolutions. We describe the hierarchical

organization of cubelets in section 7.7.

In RUBIKS, cubelets are perennial while the data cubes are ephemeral. Cubelets are created

and persisted on stable storage (and thus are perennial) along with actual data points during inges-

tion. These cubelets have a predetermined resolution and constitute the lowest level of the cube

hierarchy. Cubes are coarser in the sense that they are computed on an on-demand basis from

cubelets or other cubes in a hierarchical fashion and are ephemeral (i.e., they may or may not be

persisted to disk).

(a) Cubelet Construction During Ingestion (b) Cubelet Fetching/ Dynamic Evaluation During

Queries

Figure (7.1) RUBIKS Cubelet Contruction and Fetching

7.3 Cubelet Content

Cubelets summarize data from a particular spatial extent and are constructed from persistent

data stored on disk (we place no constraints on the storage framework used to store such data).

Each cubelet summarizes data for a configurable but system-wide spatiotemporal scope. The

cubelet comprises a set of metadata attributes recorded within that region. The supported metadata

58

includes essential statistical measures such as count, mean, minimum, maximum, and standard

deviation for each attribute.

To enhance the analytical capabilities of cubelets, for a predefined set of attribute pairs, we

also maintain running covariances within each cubelet. These covariances facilitate the evalua-

tion of Pearson correlation coefficients at runtime, enabling researchers to gain insights into the

relationships between different attributes within the cubelet.

7.4 Cubelet Spatiotemporal Bound

RUBIKS offers the flexibility to construct data cubes at different spatiotemporal extents, tai-

lored to the specific dataset, creating non-overlapping regions as the foundation for construction of

data cubes. In RUBIKS, we allow data cubes to be created over varying types of disjoint geospatial

bounds, such as quadtiles, Hydrologic Unit Codes (HUC) [99], and Federal Information Process-

ing Standards (FIPS) codes that are used by the U.S. Census Bureau. This feature enables the

analysis of data with diverse spatial characteristics, accommodating datasets that might have ir-

regular or complex geographical boundaries. By supporting multiple geospatial bounds, RUBIKS

allows researchers to perform detailed analyses on localized regions while also gaining insights

into broader geographic trends, fostering a more comprehensive exploration of spatiotemporal pat-

terns and relationships within the data.

Perennial cubelets represent the finest level of aggregation and are persisted both on-disk over

our distributed storage, as well as in-memory cache that we construct over the cluster nodes. These

can be hierarchically combined to create coarser aggregates – the ephemeral cubes – facilitat-

ing a multi-resolution analysis of spatiotemporal patterns and trends. This provides a powerful

tool for efficient and flexible exploration of large-scale point datasets with varying granularities.

Ephemeral cubes are constructed as client-queries get evaluated server-side to enable collaborative

query evaluation. At the finest level, perennial cubelets are constructed and updated during data

ingestion by aggregating and summarizing point data that fall within a predefined spatiotemporal

59

extent – for instance, over a spatial bound of a HUC12 boundary and temporal bound of a single

day.

7.5 Distributed Ingestion: Perennial Cubelet Generation

Perennial Cubelets are generated during data ingestion. In Fig. 7.1a, we illustrate the process

of generating these cubelets. Preprocessing of incoming voluminous data in a standalone fashion

can be time-consuming and compute-intensive. Rubiks relies on a distributed cluster of nodes for

handling data ingestion, cubelet creation and query evaluation.

During ingestion, incoming data-points are partitioned into chunks and ingested in a distributed

manner across our cluster nodes. Each node independently computes its local set of cubelets, con-

tributing updates to a temporary set of cubelets in the distributed storage backend. Subsequently, a

coordinator node initiates an aggregation query to combine local cubelets with overlapping keys,

if any, into usable perennial cubelets. Only cubelets are constructed and persisted; data cubes

themselves are constructed hierarchically on an on-demand basis.

7.6 Cubelet Update

To adapt to the continuous updates to the underlying storage, we ensure concurrent data inges-

tion and the update of cubelets in persistent memory.

7.6.1 Welford’s Algorithm for Rapid construction/Updates

To ensure efficiency and scalability within RUBIKS, we employ dynamic merging and updates

of cubelets using Welford’s algorithm, which provides a computationally efficient (single-pass)

approach for incrementally calculating the mean and variance as new data are added or cubelets

are merged. This method allows for real-time updates and analysis without the need to recompute

the entire dataset, reducing both computational complexity and memory requirements.

Leveraging Welford’s algorithm and associated metadata mean that our cubelets can efficiently

accommodate data updates and adapt to changing input without sacrificing analytical accuracy.

60

The algorithm’s incremental, online nature makes it particularly well-suited for handling continu-

ous data ingestion and maintaining up-to-date statistics within cubelets and across data cubes that

are hierarchically constructed using cubelets and other data cubes. As a result, both cubelets and

data cubes can dynamically adjust to new data points, supporting real-time analyses and ensuring

a robust and scalable solution for data management and analysis. Utilizing Welford statistics for

aggregation over cubelets allows us to 1) rapidly identify cubelets that require change/creation, and

2) perform rapid, decentralized updates over our cluster.

Due to the disjoint nature of measurements of attributes at a monitoring station, recorded mea-

surements of any pair of desired attributes at the same location is never guaranteed to be concurrent.

This complicates the process of measuring correlation between such attributes. To account for this

situation, we aim to estimate the correlation measures in these cases by interpolating the recorded

values based on how distant their measurements are in time. We explain the process of correlation

computation for such misaligned measurements next.

7.6.2 Correlation estimation for misaligned time series

If two time series x and y are observed at irregular time points {si}nx

i=1 ̸= {tj}ny

j=1, the empirical

means µ̂x, µ̂y and empirical standard deviations σ̂x, σ̂y for the two series can be computed directly.

The empirical correlation, however, can only be computed directly if the observation times are

aligned (n = nx = ny, s1 = t1, s2 = t2, . . . , sn = tn):

ρ̂xy =
1

n− 1

n∑

j=1

{
x(tj)− µ̂x

σ̂x

}{
y(tj)− µ̂y

σ̂y

}
.

If observation times for the two series are misaligned, we use the non-rectangular kernel ap-

proach described in [100] to approximate the correlation. Let

Kh(s, t) =
1

h
√
2π

exp

{−(s− t)2

2h2

}

61

denote the Gaussian kernel function with bandwidth parameter h. This kernel function is used to

determine which time points between the x and y series are close enough to be used in estimating

the correlation, via

ρ̃xy =
1∑nx

i=1

∑ny

j=1 Kh(si − tj)

×
[

nx∑

i=1

ny∑

j=1

x(si)

σ̂x

y(tj)

σ̂y

Kh(si − tj)

− µ̂y

σ̂y

nx∑

i=1

ny∑

j=1

x(si)

σ̂x

Kh(si − tj)

− µ̂x

σ̂x

nx∑

i=1

ny∑

j=1

y(tj)

σ̂y

Kh(si − tj)

+
µ̂x

σ̂x

µ̂y

σ̂y

nx∑

i=1

ny∑

j=1

Kh(si − tj)

]
. (7.1)

We compute the average distances ∆s,∆t between consecutive time points in {si}nx

i=1, {tj}ny

j=1,

respectively, and choose h = 0.25×max {∆s,∆t}, following [100]. As noted in [100], ρ̃xy is not

guaranteed to lie within [−1, 1]; we set it equal to the closest boundary value if it falls outside.

If information from two cubelets is to be combined, let {s(k)i }n
(k)
x

i=1 and {t(k)j }n
(k)
y

j=1 denote the

observation time points for cubelets k = 1, 2. Assume that from pilot analysis a single value of h

can be determined across cubelets. Further, assume that

Kh

(
s
(1)
i , t

(2)
j

)
≃ 0, Kh

(
s
(2)
i , t

(1)
j

)
≃ 0;

that is, a misaligned pair in two different cubelets has time points sufficiently far apart to contribute

nothing to the correlation computation. Then replace each cubelet mean and standard deviation in

equation (7.1) by the combined mean and standard deviation; and replace each double sum in (7.1)

by adding the two corresponding double sums (one for each cubelet); e.g., replace the first double

62

sum in the numerator by

2∑

k=1

n
(k)
x∑

i=1

n
(k)
y∑

j=1

x(s
(k)
i)

σ̂x

y(t
(k)
j)

σ̂y

Kh(s
(k)
i − t

(k)
j).

In addition to the information already required for updating the mean and standard deviation when

combining cubelets, this correlation computation requires storing for each cubelet the four distinct

double sums in (7.1).

7.6.3 HashGrid for Updating Cubelets

In RUBIKS, the need for continuous cubelet updates to ensure query accuracy stems from

the dynamic nature of the underlying data store. To effectively accommodate this evolving data

landscape, concurrent data ingestion and cubelet updates within persistent memory are pivotal.

This process is orchestrated through a hashgrid-driven approach, aimed at ensuring accuracy of

constructed data cubes with the evolving dataset through the following steps:

Binary Hierarchical Hashgrid: RUBIKS maintains a binary hierarchical hashgrid, wherein each

element corresponds to a specific cube. This hashgrid serves as a reference to indicate whether a

cube is up-to-date or requires updating due to changes in the underlying data.

Coordinator-Initiated Updates: During execution of the aggregation, the coordinator node also

monitors and tracks cubes that have undergone modifications since the last update. The coordinator

node updates the hashgrid based on the modifications detected. Each corresponding element in the

hashgrid is updated to reflect the current status of its respective cube – indicating whether it is

up-to-date or not.

Hierarchical Update Propagation: The hierarchical structure of the hashgrid streamlines the

propagation of updates. The coordinator node can efficiently update higher-level hashgrid elements

based on changes in the lower levels. This hierarchical mechanism ensures a streamlined and

efficient update process.

Cluster-Wide Synchronization: Once the hashgrid is updated by the coordinator, this updated

63

Table (7.1) Cubelet Generation: Comparison between time (seconds) taken to create Cubelets in a cold-

start scenario vs daily updates

County Quadtiles HUC-12

Cold-Start 187.53 219.90 363.77

Daily Updates 4.91 5.84 17.74

hashgrid is disseminated to all the cluster nodes. This push informs each node about the cube that

are currently out-of-sync and cannot be used for query evaluation due to outdated information.

By leveraging this hashgrid-driven approach, RUBIKS seamlessly incorporates continuous data

updates into its cubes. This process ensures that the cubes remain relevant and accurate, enabling

accurate and up-to-date query evaluations even over dynamic, continually-evolving datasets.

Figure (7.2) Breakdown of Overall Cubelet construction time

We evaluate the time taken to construct the perennial cubelets over RUBIKS in a cold-start

scenario, where we have to ingest ∼ 226M entries into our distrubuted storage. Table 7.1 compares

the time taken to construct cubelets constructed over varying non-overlapping geospatial bounds.

We can see compared to the total number of records being ingested, the overall time to construct

cubelets is quite low, in the order of a few minutes. Additionally, we note that the overall time taken

to construct the cubelets is directly proportional to the total number of cubelets being constructed.

For instance, for the total geospatial extent of the CONUS, the number of unique counties is 3163,

the total number of quadtiles within the bounds is ∼ 15,000, whereas the total number of HUC-12

regions is ∼87,000, which directly impacts the total number of cubelets required to be created and

64

saved into our framework. As expected, the overall cubelet construction time is proof of that and

it is to be noted that ideally, cubelet construction would occur alongside data ingestion.

We can also see that the update time for cubelets for incoming daily measurements is signifi-

cantly low compared to a cold-start scenario, as expected. The difference in times taken for various

geospatial cubelet bounds is also reflected here, as in the case of the cold-start scenario. We also

profile a break-down of the overall operation of cubelet construction during ingestion. During a

cold-start generation of perennial cubelets, we need to fetch the relevant distributed data to each

computing node, perform pre-processing to load shapefiles to identify specific geospatial cubelet

boundaries and perform aggregation and computation of cubelets, followed by persisting them.

Fig. 7.2 demonstrates the percentage of overall cubelet generation time for a cold-start scenario

where we create county-wise cubelets for each month over records starting from 1970 till current

day. We note that data movement, which constitutes both moving ingested data to the cluster nodes

and computed cubelets back to the persistent storage takes up a majority of the overall time.

7.7 Hierarchical Aggregation of Cubelets

The computed cubelets, which represent fine-grained spatiotemporal aggregates, are system-

atically organized into a hierarchical structure. This hierarchical organization is achieved through

the aggregation of lower-level cubelets that lie within the bounds of a given parent cubelet, en-

suring efficient representation and management of the cubelets. Additionally, specific hierarchical

structures such as quadtiles, Hydrologic Unit Codes (HUC) and Federal Information Processing

Standards (FIPS) codes are employed to cater to diverse geospatial bounds. Temporally, we allow

aggregation to be in units of days, weeks, months, or years.

To form coarser aggregates at higher levels of the hierarchy, cubelets are combined. This merg-

ing process allows the creation of larger aggregations, providing a multi-resolution perspective of

the data. Moreover, higher-level spatiotemporal extents are applied to encompass multiple cubes of

varying types, further enhancing the versatility of the hierarchical framework. By employing these

65

methods, the hierarchical organization enables more insightful analysis of spatiotemporal patterns

and trends within the datacubes.

The cube hierarchy (with cubelets at the lowest level and dynamically, recursively constructed

data cubes) is maintained in the form of a metadata graph. However, since we can deterministically

and hierarchically aggregate based on spatiotemporal bounds, there is no need to maintain actual

links between the cubes themselves. We maintain these cubes as a set of hashmaps, grouped by

their spatial and temporal keys, allowing targeted, efficient O(1) retrievals.

Figure (7.3) Cubelet Spatiotemporal Bounds

7.8 Visualization of Cubelets

Cubelets allow Exploratory Data Analysis over backend data such as heatmaps, time series

plots, and interactive visualizations to identify patterns and trends across different levels of the

Cubelet hierarchy. We have used cubelets to generate heatmaps of water contaminant proliferation

at the county, watershed boundary, and individual water body level across the continental United

States. We used a JavaScript front-end leveraging the DeckGL mapping framework to visualize

heatmaps.

Since the RUBIKS cubelets form the backbone of its query evaluations, we compare the accu-

racy of RUBIKS’ aggregate statistics against those computed through brute force. Since we use

Welford’s online algorithm to compute and update our cubelets, we expect them to accurately rep-

66

(a) Brute Force Computation for

1990s

(b) Brute Force Computation for

2000s

(c) Brute Force Computation for

2010s

(d) Cubelet-based Computation for

1990s

(e) Cubelet-based Computation for

2000s

(f) Cubelet-based Computation for

2010s

Figure (7.4) Comparison of Accuracy of Summary Statistics

resent independent statistical measures such as mean, standard deviations, skewness and kurtosis,

which are derived from the first four order of moments.

Fig. 7.4 shows choropleth maps computed using both brute-force and through aggregation of

RUBIKS’ perennial cubelets. The geospatial bounds used here are US counties. We compare the

mean for the decades 1990s, 2000s, and 2010s for the water temperature in Celsius. We can see

that along with significantly improved fetch latency (as shown later), we get high accuracy with

our cubelets constructed in an online fashion.

We profile the improvement in latency through our RUBIKS framework, compared to that of

a spatiotemporal query over raw data. Here, we profile the latency over queries of varying size.

We evaluate the time taken to compute county-wise aggregate statistics per month. By keeping the

spatial bounds of the query fixed to the entire CONUS, we vary the temporal extent of the query

to a month, a year and a decade. Table 7.2 profiles the average time taken for each of these 3 types

of queries with and without the use of RUBIKS cubelets. We can see significant improvement in

query times compared to fetching of raw data, with improvement ranging from ∼3800-2000x.

67

Table (7.2) Spatiotemporal Query: Comparison between latency (seconds) for varying sizes

1 Month 1 Year 10 Years

RUBIKS 3.3 3.32 6.51

Brute Force 12556.6 12606.2 12686.9

68

Chapter 8

Model-Driven Data Reconstruction (GLANCE)

Frequent and flexible visual analytics operations result in a very large number of data retrievals

from the remote data storage. To further enable interactive visual analytics over high-dimensional

data at scale, we complement the STASH framework with a set of data reconstruction modules.

These additional modules enable model-driven rendering of multi-resolution phenomena leverag-

ing partial in-memory data structures to alleviate both network and disk I/O. We call these modules

Glance and train them for multi-spectral satellite imagery. Glance’s novel approach reduces data

transfers significantly by leveraging (1) model-based enhancement of image resolutions, and (2)

dynamic mitigation of model error. Glance, a hybrid generative model, combines the concepts

of progressive Generative Adversarial Networks(GAN) [12] along with image inpainting [101] to

cope with unique characteristics of satellite imagery.

8.1 Overview of Framework

Glance comprises two key components -

1. GlanceNet

2. Glance Error Mitigation Module (GEMM)

8.1.1 GlanceNet

GlanceNet are a set of GAN-based deep neural network models that are trained to gener-

ate high-resolution data on-the-fly with high fidelity by using information available in the local

STASH populated based on historical queries. Particularly, GlanceNet is designed for reconstruc-

tion of multi-spectral satellite imagery. GlanceNet inputs can be in a combination of both low-

resolution and partial high-resolution tiles (if any). Our framework supports multiple levels of

super-resolution (zoom) over multiple starting zoom-levels with high fidelity. For a requested im-

69

age at zoom-level (n + u), i.e., 2u times higher the resolution of an available cached image, all

relevant tiles (resolution (n+ u)) cached as a result of previous browsing, may also be leveraged.

GlanceNet comprises two sets of GAN-based components, each fine-tuned for a different sce-

nario: the Super-Resolution and the Image Refinement models as depicted in Fig. 8.1. The

Super-Resolution module is the core component of GlanceNet that handles the hierarchical geospa-

tial super-resolution based on input images that may be available at different lower resolutions. The

Image Refinement is an additional module that can enhance the output of the Super-Resolution

module in case sufficient amount of partial high-dimensional data is also available.

The super resolution and image enhancement components work in tandem to generate imagery

with high fidelity by enhancing the perceptual quality of super-resolution image. These compo-

nents are leveraged selectively based on the number of image tiles that are available at the desired

resolution in cache. GlanceNet is trained by independently modeling the Super-Resolution and

Image Refinement components in parallel over our distributed storage system in a distributed data

parallel mode to leverage data locality. Next, we chain these pre-trained modules and optimize the

complete network. The trained network(s) is made available to the clients for download. They can

be used in conjunction with a stand-alone STASH for use during interactive visualization.

Due to the large spatiotemporal extent of our data, we anticipate the trained GlanceNet models

to have uneven performance over different regions of the overall data domain. To ensure sufficient

accuracy for our reconstructed image, we propose GEMM, that underpins the dynamic decision-

making process that informs the system’s decisions regarding whether to retrieve the actual data

from the back-end server.

8.2 Super-Resolution of Image Tiles

To ensure faster convergence and low memory footprint for our models, we harness incremen-

tal curriculum learning approach – leveraging knowledge gained from a lower-level SR network to

train for higher SR to simplify the subsequent upscaling inference and speed-up the learning pro-

70

Figure (8.1) GlanceNet Architecture: Super-Resolution and Image Refinement layers along with the

Glance Error Mitigation Module (GEMM)

cess. GlanceNet models also incorporate geospatial metadata into their input to provide conditional

information to account for spatial variations in satellite imagery.

8.2.1 Model Overview:

The super-resolution (SR) component facilitates a hierarchical geospatial multi-level super-

resolution operation by learning an upsampling function that transforms a low-resolution image tile

(ILR) to generate a high-resolution synthetic rendition (ISR) that is contrasted against the ground

truth (IHR). The SR component handles the primary scenario where a visualization client requests

an image tile, which is not present in the in-memory cache, but a lower resolution parent of that

tile is available in the tile pyramid. Additionally, the SR component accounts for scenarios where

a fraction of the tiles comprising the target high-resolution image (i.e. Partial Super-Resolution

Mode) is available in-memory, which is a common phenomenon due to the observed tendency of

users to focus on a certain spatiotemporal region during a single visualization sequence [9] leading

to persistent areas of interests through OLAP actions such as panning or drill-down.

In order to enable GlanceNet models to perform multi-level super-resolutions/ upscaling over

a wide range of geospatial resolutions (zoom-levels), we have to take care of complications arising

from the following challenges:

71

• Avoid building individual models for each specific super-resolution scenario that would over-

whelm the combined memory footprint of the trained GlanceNet modules at the clients.

• Ensure relatively simpler model architecture for easier storage and evaluation.

• Handle diverse topographical characteristics in satellite imagery at different zoom levels.

To resolve these issue, we propose a conditional adversarial network that utilizes progressive

growing of GANs with additional metadata extracted from ILR as conditioning information. Us-

ing this approach, the sequential training of all the sub-models (x2,x4 and so on) captures the

relations between all levels of cascading resolutions without going through disjoint, prolonged

training phases.

8.2.2 Model Input

The input to our model is a composite image comprising of the low-resolution data for the

missing regions and high-resolution data for the partial available regions. Given a low-resolution

RGB image (ILR), the input to the super-resolution network is constructed by super-imposing the

available high-resolution image tiles, if any, with the bicubic interpolation of ILR for the missing

regions (this is the super-imposed image ILR+), as shown in Fig. 8.2.

Every raw satellite image tile-set has additional metadata associated with their domain. We

extract the following tile properties to condition the inputs to both our generator (G1) and

discriminator (D1) –

1. zoom level(z) of ILR, and

2. dominant land cover type (based on the National Land Cover Database (NLCD) codes [102])

in terms of ILR pixels (e.g. urban, forest, barren etc.).

The extracted conditional information g = (z, nlcd_code) is embedded and then passed through

a fully connected linear activation layer to resize the embedding to an extra 4th metadata channel

that gets appended to the 3-channel RGB image (ILR+). This helps condition the GAN’s training

72

Model Type Upscale Factor x2 x4 x8

SR∗

Using Supplemental

Metadata Info
36.95 33.85 32.17

Using only RGB Image 35.65 32.77 31.56

SR+

Using Supplemental

Metadata Info
40.52 37.46 35.22

Using only RGB Image 39.55 36.08 34.99

Table (8.1) Comparing Model Performance and Image Quality (PSNR) With and Without Supplemental

Metadata Information

using specific geospatial information regarding the region ILR+ represents. This metadata chan-

nel gets appended to the discriminator (D1) inputs. Having the GAN network trained conditioned

on the geospatial metadata associated with each input image tile helps the model learn location-

specific topographical patterns that are uniquely associated with different spatial resolutions. We

To help the model focus on the missing regions, along with the metadata channel, an additional

channel to the input is included (5-channel input) which denotes a mask that identifies the low-

resolution segments of the input image. During training, we randomly vary the fraction of missing

high-resolution tiles between 0-1 to cover all possible scenarios.

8.2.3 Generator Network(G1):

The generator output for our model with upscale factor u is:

IRes = Gu
1(ILR+|g) (8.1)

Instead of learning the complex mapping between ILR and IHR for any given upscaling factor,

the super-resolution problem is simplified to learning the residual, IRes that needs to be applied to a

bicubic interpolation (upscaled) of ILR (eq.8.2). This helps the model utilize standard upsampling

operations (eg. bicubic interpolation) and specialize in learning the difference between it and a

high-resolution image [69].

ISR = IRes + bic(ILR+) (8.2)

73

The mapping between (ILR+, g) to the true residual for ISR becomes increasingly more compli-

cated as the upscale factor increases. The progressive training of the models is a form of curriculum

learning [103], where more complex upscaling models are built on top of trained models that han-

dle relatively simpler task of a lower upscaling factor. Our model building starts from the smallest

upscaling factor(x2) and adds more layers to the previous, trained layers and builds on them as we

train for higher upscaling factors. This nested training approach, where we learn complex map-

pings in a nested manner through smaller, incremental steps helps reduce the overall training time

for models of all possible upscale functions and has been known to improve the numerical stability

of the model [12].

In order to maintain efficiency in a deep network and to facilitate the flow of weights between

its layers, we adapt the concept of a densely connected network as introduced in DenseNet [104].

The principal element of our nested architecture is a Dense Block, organized in a sequence with

a downsampling layer between each, to keep the output feature size between the layers in check.

Each Dense Block consists of a sequence of layers which have direct connection from the output of

the all its previous layers. This organization of the layers facilitates information flow over a deep

network and facilitates in transmission of collective knowledge over the layers. We use a variation

of the Dense Blocks, the Dense Connected Units [69] (see Fig. 8.1), that removes the BatchNorm

component from the Dense Blocks’ layers, when that component ceases to show improvements

over a large number of training epochs.

We adopt an asymmetric pyramid (Fig. 8.1) structure for our generator layers. This means

that the number of dense layers used in modeling is higher for lower level upscaling problems

and are progressively less complex as we upscale further. Consequently, the model for a lower

level super-resolution contains a higher number of cascading Dense Blocks, allowing for quicker

computations and reduced memory-utilization (Fig. 8.1), since the lower-level SR models have to

deal with a smaller input size. For our implementation with multispectral images, we have limited

the maximum achievable super-resolution to x8 – beyond that, the generated satellite images cease

to maintain their desired perceptual quality.

74

To achieve high accuracy in our super-resolution output, we target improving the receptive

field of our model, which captures relationships between distant regions in the image. Although

increased sub-sampling (downsampling) between layers (e.g., through max-pooling) is known to

improve the receptive field, it also introduces blurriness in the image output, especially for higher

upsampling factors. To help improve super-resolution operations for x4 and x8, we introduce

dilated convolutions [105] between the Dense Blocks. This reduces the complexity of the model

while improving the receptive field through the newly added layers (see Fig. 8.1).

Transfer of information from a lower upscaking model to the next upscaling model is performed

through the process of gradual blending (Fig. 8.1). With blending, the output of the network is

a weighted sum of the upsampled output from the previous (trained) model’s layers (α) and the

output from the current model (1 − α), with α(influence of the previously-trained model in the

pyramid) exponentially decaying and approaching 0 with each iteration.

8.2.4 Discriminator Network(D1)

The discriminator layers (D1) follow a similar, but significantly simpler, incremental structure

as the generator layers, with more layers added with increasing upscaling factor. The organization

of the layers on the discriminator mirrors that on the generator side. Instead of evaluating the entire

output image, the discriminator(s) are designed to evaluate local topographical features for smaller

geospatial areas. Similar to a PatchGAN [106] the discriminator produces an array as output,

where each element evaluates a segment of the input image instead of the entire image; this helps

model high-frequency details in the generated image. In our case, we have kept the receptive fields

to 5x5, 11x11 and 23x23 for upscaling factors of x2,x4, and x8 respectively.

8.2.5 Objective Functions:

For our training, we have used two loss functions, optimized using an Adam optimizer [107].

The reconstruction loss in our case is the average pixel-wise difference between the generated and

the real high-resolution image, normalized by the fraction of the masked area. Given a sample

(of size N), for the ith input for our model - (xi, gi, yi), where the individual elements represent

75

the low-resolution input (of dimension CxWxH), its geospatial metadata and the corresponding

high-resolution target, respectively, the reconstruction loss can be represented as:

Lrec =
1

N × C ×W ×H
[yi − (bic(xi) +Gu

1(xi, gi))]
2

The adversarial loss is computed as:

Ladv = E[log(Du
1 (yi, gi))] + E[log(1−Du

1 ((bic(xi) +Gu
1(xi, gi)))]

Both Gu
1 and Du

1 are optimized using the adversarial loss of solving:

arg minGu
1
maxDu

1
Lrec

.

The joint loss is computed as

L = λ1(Lrec) + λ2(Ladv)

The generator is trained on this joint loss (with λ1=1 and λ2=1000), while the discriminator is

trained to minimize the adversarial loss.

Figure (8.2) Composite Input for Partial Super-Resolution

76

8.3 Image Refinement

The Image Refinement network is an additional module that can help further refine the output

of the Super-Resolution layers by utilizing high-resolution partial data tiles.

8.3.1 Model Overview

This model acts as a refinement layer for cases where a significant fraction of the high-resolution

image tiles is available in cache - this fraction is configurable and we set it at at-least 50% for our

study. This scenario is analogous to a simplified inpainting problem, where, given the composite

image with blurry regions, ILR+ (Fig. 8.2), we have to deblur these regions for high-resolution

information.

8.3.2 Model Input

The input to the network is the composite image (ILR+) which is constructed by superimpos-

ing the available high-resolution image tiles (50-100% randomly selected) over either the bicubic

interpolation of ILR for the missing regions during the pre-training and with ISR (output of the

Super Resolution Network) during the chained model training phase.

8.3.3 Generator (G2)

The generator layers (Fig. 8.1) comprise deep fully-convolutional encoder-decoder network

with an equal number of convolution and deconvolution layers with symmetric skip connection

between corresponding convolution and deconvolution layers every third layer, as introduced in

[108]. The convolution layers enable abstraction through feature extraction from the image, while

the deconvolution layers perform image regeneration, thus eliminating/ reducing noise. The skip

connections facilitate effective information flow over all the layers, particularly in the higher up-

scaling layers.

We further enhance this encoder-decoder network for our curriculum learning approach intro-

duced in Sec. 8.2 by introducing additional convolutional and deconvolutional layers incrementally

as we train higher upscale factors along with blending of the new model layers to ensure smooth

77

Model Type Upscale Factor x2 x4 x8

SR
Using Supplemental

Metadata Info
36.95 33.85 32.17

Using only RGB Image 35.65 32.77 31.56

SR+

(SR + Image Refinement)

Using Supplemental

Metadata Info
40.52 37.46 35.22

Using only RGB Image 39.55 36.08 34.99

Table (8.2) Comparing Model Performance and Image Quality (PSNR) With and Without Supplemental

Metadata Information

transition between successive models and faster convergence. All other components of the Image

Refinement Network have the same configuration as the Super Resolution Network.

Figure (8.3) Super Resolution with Image Refinement (SR+)

8.3.4 Evaluating Image Quality

Table. 8.2 demonstrates that including of geospatial metadata as conditional information to

our models has a positive effect on the generated output of the super-resolution models across

various upscale factors. Additionally, we also see that including the Image Refinement layers also

increases the PSNR of the generated outputs.

78

Fig. 8.3 demonstrates the fidelity of the generated images using the Super Resolution along

with the Image Refinement module for different levels of super-resolution. We also see that an

increase in number of training data helps in the quality of the generated outputs.

8.3.5 Upsampling Image with Low Cache Hits

For a cold-start scenario, where a client cache has no previously fetched tiles, the generalized

scenario of interpolating the input to ILR+ along with a channel denoting the partial high-resolution

information mask becomes redundant.

Figure (8.4) Cold Start with SR∗ vs SR

We have designed an optional Basic Super-Resolution Model dedicated to such cold-start sce-

narios that use a 4-channel input of (ILR, g) instead (let us call this the basicSR-GlanceNet mode).

This lower input-size of the model allows us to increase the complexity of its layers to improve

the modeling of the upscaling function in light of no partial high-resolution data. Although the

structure of the layers is still the same, the values of K and L for G1 in Fig. 8.1 are increased to

5 and 2, respectively. We expect this specialized model to generate images with higher perceptual

quality for such cold-start scenarios. Thus, for systems that demand higher-quality images at the

front-end, clients can choose to download optional component of GlanceNet.

79

Fig. 8.4 shows that using the cold-start model(SR∗) instead of the general-purpose GlanceNet

(SR+) has a positive effect in the image quality in cold-start scenarios where no partial HR image

tiles are available in-memory. However, due to the more complicated architecture of the cold-start

model, it would have an effect on the image-reconstruction latency, as we show below.

Figure (8.5) Client-side Average Image Reconstruction Time vs Cache Fetch Time

8.3.6 Improvement in Latency

Fig. 8.5 demonstrates the average client-side latency to generate a high resolution image in-

house and compares it to the time taken to fetch from a cache-enabled distributed server (Mon-

goDB). We see that in-situ image reconstruction is significantly faster than a fetch from server,

which is expected due to the additional network communication and cache-lookup involved. We

have also compared the average time taken by the GlanceNet models to reconstruct (with GPU

acceleration) a set of 100 images with a batch-size of 16 for varying upscale factors. We can

see latency in the order of milliseconds for all upscale factors for both GlanceNet super-resolution

modes basic-SR and SR+ (partial SR). SR+’s latency are relatively lower than SR∗ due to simpler

model layers.

80

8.4 GEMM: Estimating Regional Model Accuracy

The large spatiotemporal extent of our datasets introduces high variability in the input images

that are exacerbated by variable cloud cover, image noise and other natural phenomena that might

adversely impact the quality of images from a spatiotemporal region. Additionally, single im-

age super-resolution GANs do not guarantee accurate results, especially for satellite imagery with

higher upscaling factors. The loss of high-frequency details such as architectural details in dense

urban areas or regional cloud coverage leads to blurry/noisy outputs. Although maintaining indi-

vidual regional models might help improve the quality of the results, it is infeasible to maintain

such a high number of models at the client.

Figure (8.6) Glance Error Mitigation Module

To mitigate this variability in model performance, Glance’s GEMM module tracks regional

accuracy variations based on the geospatial characteristics. GEMM can be fetched and stored

in the clients’ memory. This regional model accuracy is a key element to be considered when an

application determines whether to download the original image or to use the model inferred output.

Additionally, GEMM helps monitor the overall model accuracy that can trigger retraining of the

GlanceNet modules on crossing a threshold.

GEMM is created server-side, after the training of the global GlanceNet in an evaluation phase

where the samples are generated initially (first iteration) in a uniformly spatiotemporally parti-

81

tioned manner. Glance estimates the regional model accuracy as the average of errors across

sampled images for that region. These accuracy estimates are stored in a server-side hierarchi-

cal in-memory spatiotemporal tree structure (Fig. 8.6). Each node represents a geospatial region

and stores the corresponding estimate. The geospatial hierarchy of this data structure is aligned

with the structure of underlying distributed cache so that the data and regional accuracy can be

mapped directly during query evaluation.

Given the large spatiotemporal coverage and the number of resolution levels, maintaining a

fully populated data structure is not effective. To address this, Glance dynamically refines the

geospatial domain for sampling to focus on regions with higher variation in errors iteratively.

The geospatial coverage of the sampled partition starts from a large area (with a coarse resolution)

and is incrementally refined as the error variation metrics of the given partition exceeds thresholds.

Each incremental refinement adds child nodes to the current node in the data structure depicted

in Fig. 8.6. The final data structure may not be a fully-balanced tree, but this strategy effectively

reduces the memory-footprint for the large dataset.

Our system continues to refine the geospatial coverage until the average accuracy is sufficiently

close to the individual accuracies from the samples without higher variations. Finally, the error

variance, ev is calculated as the disparity of errors using the Normalized Root Mean Squared

Deviation.

ev =
1

Q1 −Q3

√∑n

i=1(ei −)2

n
(8.3)

,where Q1 − Q3 is the inter-quartile range and the rest of eq.8.3 corresponds to the sample’s

root-mean squared error (RMSE)

8.4.1 Improvement in Image Quality vs Query Latency

As explained in previous evaluations, although the identification of low-performing geospatial

domains and performing physical fetches for them is beneficial to the overall output quality, it also

increases the query latency. GEMM’s error threshold has an effect on the overall fraction of image

82

x2 x4 x8

Thresh
%

Fetch
PSNR

Look-

up

Thresh

%

Fetch

PSNR

Look-

up

Thresh

%

Fetch

PSNR

Look-

up

SR

0.02 1.2 38.18

0.13

0.02 0 33.55

0.06

0.02 0 32.33

0.02
0.018 12.5 40.87 0.015 0 33.48 0.015 0 32.78

0.015 36.25 41.82 0.01 35.93 36.75 0.01 14.5 32.98

0.01 76.75 47.95 0.008 52.08 37.55 0.008 37.5 34.32

0.04 8.41 45.71 0.03 10.5 38.67 0.025 2.08 36.52

0.035 12.33 46.63 0.01 22.91 40.04 0.005 12.5 38.87

0.03 31.25 48.16 0.006 42.08 47.38 0.003 41.25 46.34
SR+

0.025 57.91 50.43

0.11

0.004 58.33 51.41

0.09

0.002 81.25 53.84

0.02

Table (8.3) GEMM Performance Evaluation

tiles fetched from the server and thus an adverse effect on its latency, as shown in Table 8.3. This

demonstrates the need for setting a balanced threshold for the system.

83

Chapter 9

Model-Driven Extraction of Insights from

Embeddings (ARGUS)

The ARGUS framework is designed to address rapid analytical keyword query evaluation over

voluminous multi-spectral satellite imagery. Each of these data-objects have high spatial resolu-

tions and multiple data bands, making them large in size. Caching them in their original form

would significantly strain cache capacity and negatively impact the hit-rate and the interactivity

of spatiotemporal query analytics. Our goal is to ensure high fidelity for model-driven analytical

information compared to geoprocessing over actual data objects. Scalable management of volumi-

nous data collections [109, 110] underpins effective training of deep networks [18]; data accesses

are also predicated on effective queries [111] and federation [112]. Several systems also rely on

outlier detection [113] to preferentially identify training data of interest.

Useful analytical information can be extracted from these multi-spectral images using geopro-

cessing algorithms such as the computation of slopes, and curvatures from raster images using

spatial tools provided in frameworks like ArcGIS [114]. However, these algorithms are often not

optimized for parallel or GPU-driven execution, making them significantly slow, especially when

the number of candidate tiles required to be processed is large. This is particularly true in cases of

sparse events like wildfires.

For instance, the following SQL query provides a sample of the type of spatiotemporal queries

that the ARGUS framework aims to evaluate for multiple simultaneous users. In particular, we show

a wildfire segmentation query for identifying and demarcating potential wildfire regions (has_fire)

from multi-spectral satellite imagery dataset (VIIRS) over a given spatial and temporal range spec-

ified through the Query_Polygon and Query_Time_Range, respectively.

s e l e c t h a s _ f i r e (band_1 , band_2 , . . . , band_n)

from VIIRS_Data

84

where c o o r d i n a t e s in Query_Polygon

and t ime_s t amp in Query_Time_Range

The evaluation of the above query over a distributed storage system would involve identifying

image tiles with intersecting spatiotemporal bounds, evaluating their wildfire-affected regions, if

any, and returning the compiled results back to the users. ARGUS attempts to speed up the above

process by implementing the following - (1) the creation of embeddings out of image tiles for

easier storage in a distributed cache for rapid identification, (2) training deep-learning analytical

models that use embeddings as input, circumventing the need for on-disk data access as well

as geoprocessing algorithms, (3) using a combination of classification models for identification

of potential tiles with wildfires and running segmentation model on those only, and (4) using

efficient in-memory caching and indexing schemes to avoid both disk access and re-evaluation

of embeddings. Since events like wildfires are sparse, running a simpler classification model to

weed-out unnecessary tiles can significantly improve interactivity.

9.1 System Components

ARGUS is designed to work in conjunction with any distributed hash table (DHT)-based spa-

tiotemporal storage system [83]. The overall ARGUS framework can be partitioned down into two

main components -

1) ARGUSNET: A collection of deep learning models trained to perform encoding and keyword-

based evaluation from the unlabeled satellite data collections, and

2) Hierarchical Embedding Store: A graph-based in-memory caching framework built to house

latent representations generated by the ARGUSNET module.

Fig.9.1 shows the various components of our framework. The ARGUSNET models utilize data

from the underlying DHT storage for their training through distributed modeling. Once trained, the

ingestion module utilizes the encoder portion of the network to intercept data ingestion requests

and house them in the hierarchical embedding store. The classification and segmentation models

are used during query evaluations over the cached latent representations in the embedding store.

85

Figure (9.1) ARGUS System Overview: Hierarchical Embedding Store is our distributed in-memory

caching system. Encoder, Decoder, Classifiers and Segmentation constitute the various components of

ARGUSNET

9.2 ARGUSNET

9.2.1 Model Overview

Ideally, the latent representations of our image tiles must be versatile enough to support multi-

ple keywords (e.g., occurrence of wildfire and the level of severity) without maintaining multiple

embeddings for each problem. To accomplish this, we train the models in a conjoined manner

through multi-task learning and generate a single embedding for each tile that is used for multiple

analytical models later on. Related tasks trained through multi-task learning have been shown to

have better accuracy and convergence speed and as evidenced by our benchmarks. Our models

demonstrate improved accuracy as well. Fig.9.2 depicts the overall model architecture. We can

see that it consists of the following main components – an autoencoder network, classification

networks, and a segmentation network. Additional models for the extraction of related analyt-

ical information from the embeddings can be added to our network as needed. Apart from the

autoencoder network, all other networks (heads) use embeddings as their input.

86

Figure (9.2) ARGUSNET Architecture: Encoder forms the backbone of the network used during data

ingestion to generated embeddings. Decoder, Classifiers, and Segmentation heads are used during query

evaluations.

9.2.2 Model Input

Let us denote our multi-spectral image input as IRaw - this is the input to our ARGUSNET

network, which gets converted to its corresponding latent representation, denoted by Ie, which

is significantly smaller in size. In our case, IRaw is complied by integrating various distributed

spatiotemporal datasets and extracting relevant bands from them that are relevant to wildfire pre-

diction. The target band, along with the classification labels is extracted by combining the fire-band

available in the VIIRS dataset [115] along with historical wildfire perimeter (and duration) infor-

mation to create a single-channel target mask for each image tile (ITarget).

9.2.3 Selection of Training Data:

Our input is created through a combination of multiple remote-sensing data sources and in-

cludes bands relating to emissivity, soil moisture, vegetation index, and land cover type, all of

87

which are known to be contributing factors that influence wildfire. In total, our input, IRaw, con-

sists of 15 bands/channels.

Class imbalance is common in case of wildfires since the majority of the image tiles will not

contain fire-pixels. In order to circumvent models prioritizing the majority class, we oversample

the wildfire-containing tiles. We use the California Fire Perimeter Database [116] for historical

information on wildfire perimeters and dates to identify tiles that have fire pixels in them. Addi-

tionally, to reduce the uncertainty in the training data, we ignore tiles that contain wildfires with an

overall perimeter area of more than 10 km2. Finally, we use a 1:1 distribution of fire and non-fire

tiles in our training.

9.2.4 Network Architecture:

Our goal is to perform semantic segmentation through convolutional networks for the detec-

tion of wildfires from multi-spectral imagery. ARGUSNET consists of two main stages: a set of

convolutional layers for feature extraction and a set of heads for performing reconstruction, classi-

fication, and segmentation. We explain each section of the overall deep learning model below.

Encoder: The encoder constitues the backbone of the ARGUSNET architecture. In the first stage,

this encoder portion of our autoencoder, comprising a set of convolutional layers, generates a dense

representation of a multi-spectral image tile. We expect these convolutional layers to take a multi-

spectral image vector as input and encapsulate complex and abstract features from the input image

for analytics. This extracted feature map serves as an input to the three heads of the ARGUSNET

network.

The encoder network comprises a series of convolutional layers followed by a downsampling

through max-pooling that incrementally reduces the spatial dimension while increasing the number

of channels leading to bottleneck. We introduce batch normalization between the two layers to sta-

bilize the training process to avoid bias during training by normalizing the input to each layer and

accelerating the convergence speed of the training. The output of the encoder network produces

our embeddings (Ie), a compressed representation of the abstract features of the input image (as

88

shown in Fig.9.2).

The main goal is to be able to utilize the generated Ie for the extraction of multiple analytical

observations. In order to make it versatile enough, we have to ensure that the training process takes

into consideration the loss of each of these model-driven analytical tasks during the construction

of the embedding and not just the reconstruction loss. Multi-task learning (MTL) is an effective

approach to training and optimizing a combined model to perform multiple tasks simultaneously.

This conjoined training methodology, where a cumulative loss from all the related tasks affects

the weights of the network, enables the model to leverage shared information between tasks. This

has been shown to produce better representation learning, regularization, transfer learning, and

improved data efficiency. Multi-task learning can improve the accuracy of all models in several

ways, including the ability to learn more general representations of the data, prevent overfitting,

and facilitate the reuse of learned features for related tasks. Overall, training our models through

the combined architecture, as shown in Fig. 9.2, can significantly improve the accuracy and gen-

eralization of machine learning models.

Decoder: The compressed latent representation is passed on to the decoder network, which uses

upsampling of feature maps through a series of transposed convolutional layers (deconvolution)

and increases the spatial dimensions of the data to eventually reconstruct the input (IRec). Main-

taining a decoder head trained for image reconstruction serves two purposes. First, it allows us to

use the embedding to recreate the bands of the original image in case of queries over the actual

bands. Secondly, it allows us to introduce new heads into the network while ensuring faster re-

training convergence speed.

Classifier: The classifier heads are responsible for generating a probability distribution over either

a binary flag that predicts whether an image tile has wildfire, or over the possible wildfire intensity

classes. The classifier head takes the latent representation, Ie, as input and flattens it into a 1D vec-

tor. This vector then passes through a set of fully connected layers to produce a vector of scores,

one for each object class. A softmax activation is applied to these scores to generate a probability

89

distribution over the classes.

Semantic Segmentation: We implement a SegCaps [117] architecture as the deep semantic seg-

mentation head for our network. We leverage capsules, which are a variation of a neuron or in-

stantiations that represent a specific aspect of the object and can encapsulate various properties of

an object, including, its spatial orientation, and scale. This feature of capsule network helps us

adapt to wildfires of different geospatial scales and additionally leverages the capsule’s ability to

understand relative positions and orientations of objects in an image to train on wildfires which

also have regional characteristics. Similar to [117], our network also contains a set of 8 primary

capsules, followed by digit capsules as the output layer that generates the segmentation output.

Another important benefit of using capsule networks for wildfire segmentation is their ability to

reduce the number of labeled datapoints for training, which is useful for wildfire events, that tend

to be pretty sparse.

9.2.5 Loss Function:

Our multi-task loss function is a combination of losses from the heads of the ARGUSNET

network. We explain each of these components below.

Reconstruction Loss: This is the loss component from the decoder head. Since we mainly want

Ie to be useful in extraction of model-driven analytical information, we prioritize minimizing the

reconstruction loss (Mean Squared Error) of bands that are more closely correlated to wildfires,

such as NDVI, land-cover type, and soil-moisture. We update reconstruction loss and give more

weight(W1) to the bands with more correlation(B1) to wildfire than the remaining bands(B2), i.e.,

W1 > W2:

Lrec = W1 ∗ Lrec(IRec[B1]) +W2 ∗ Lrec(IRec[BRem])

Classification Loss: Our classification loss (Lclass) is computed as Cross Entropy loss. For pre-

dicting the presence of a wildfire in a tile, we train using Binary Cross Entropy Loss (BCE) and for

the multi-label prediction of fire-severity, we use BCE with Logits loss (combination of a Sigmoid

layer and BCE Loss).

90

Segmentation Loss: Wildfire-affected regions can comprise varying portions of the pixels in an

image. In case of smaller fire perimeters, we ensure that we avoid a biased segmentation model

that prioritizes classifying the background pixels. Dice loss has been shown to be suitable for such

class-imbalance problems [118]. So we make our overall segmentation loss (Lseg) a combination

of the BCE loss and the Dice Loss.

The overall loss of the network is computed as follows:

Lrec = WR ∗ Lrec +WC ∗ Lclass +WS ∗ Lseg

The weights of each loss, i.e. WR,WC ,WS are hyperparameters that we optimize during the

training process.

9.3 Distributed Training

Our ARGUSNET module is trained over a distributed spatiotemporal filesystem. The server-

side cluster tracks the freshness of the trained models with respect to new, incoming data and

triggers a fresh round of training iterations to further fine-tune old models.

The training of the models is agnostic of the underlying distributed file system. Our training

leverages the spatiotemporal partitioning scheme of the storage system by collocating the training

modules with the partitioned data to avoid data movements during training. The distributed training

utilizes a parameter server to aggregate the weights asynchronously at certain intervals. We have

used Pytorch Lightning [119] in the Distributed Data Parallel (DDP) mode for our distributed

learning. Once trained, we use the encoder part of the network for our ingestion processes, while

the classification and segmentation branches are used during query evaluations.

Fig.9.3 shows the rate of convergence of our MTL setup with encoder output connected to

the decoder, segmentation, and classification heads. We profile the segmentation loss, which is a

combination of Binary Cross Entropy and Dice Loss for our predicted wildfire-affected area (mask)

for both our training and validation data.

91

Figure (9.3) Convergence Speed of Model: Variation of training and validation error for ARGUSNET over

epochs.

Table (9.1) Comparison of ARGUSNET Evaluation Performance against Standalone Segmentation Model

Convergence Time(minutes) Epochs

ARGUSNET 6.31 31

SegCaps 155.8 164

We compare the performance of our multi-task learning setup with a Classifier, Decoder, and

Segmentation head against that of the dedicated SegCaps modeled after [117]. We can see, from

Table 9.1 that the model stabilizes at around 31 iterations. The convergence of the SegCaps model

is significantly slower, around 155 minutes and 164 epochs, which can be attributed to both the

larger input size and the number of model parameters involved – the total number of optimiz-

able parameters for our MTL setup was 47.35% that of a standalone SegCaps model for image

segmentation.

9.4 Hierarchical Embedding Store

The Hierarchical Embedding Store is a lightweight indexing scheme to better organize the

in-memory latent representation of the on-disk images tile on each node in the distributed cluster.

The embedding store is a decentralized in-memory metadata graph that holds the embedding ob-

92

ject, Ie, in its leaf nodes, along with other information that gets populated with subsequent query

evaluations, such as, predicted fire-masks and flags marking the presence of wildfire pixels in the

corresponding tile. The graph is organized based on the spatiotemporal metadata of the underlying

tile, as shown in Fig.9.5 to facilitate fast query evaluation and identification of relevant in-memory

embeddings for each node.

In addition to the Hierarchical Embedding Store, ARGUS maintains the trained modules, men-

tioned in the previous section, in-memory on each node for fast generation of embeddings (during

ingestion) and for model-based query evaluation (during runtime).

Figure (9.4) Ingestion Throughput With/Without Embedding: Comparison of throughput of indexing the

in-memory metadata graph with and without generation of embeddings through encoder during ingestion.

Fig. 9.4 shows a further breakdown of the indexing process. Here we index and load a total

of 5000 image tiles into our distributed in-memory graph and evaluate the overall throughput on

each node. Here, we show the overhead of the encoding process that creates embeddings for each

incoming image tile and stores a reference of the embedding object on the in-memory graph. Our

encoder is simple enough and combined with the batched computation of embeddings, we can see

that the indexing throughput is only reduced by 16.7%.

93

9.5 Data Model and Query Evaluation

Here, we explain the various stages of data ingestion into our embedding store and the subse-

quent process of querying analytical information out of it.

9.5.1 Data Preprocessing and Partitioning

Our input data is curated to incorporate attributes that are known to influence the likelihood

and impact of wildfires in a region. In doing so, our approach leverages science-guided machine

learning in our modeling for wildfire detection and segmentation. Science-guided machine learning

[120] combines domain knowledge and scientific principles to enhance interpretability, reliability,

and generalization of the trained models. In order to incorporate prior scientific knowledge into

our model building, we integrate multiple data sources containing remote-sensing satellite data

that provide global, near real-time information that includes active fires, thermal anomalies, and

the Normalized Difference Vegetation Index (NDVI), which is computed from the red and near-

infrared (NIR) bands of the VIIRS sensor [115]. Additionally, we incorporate relevant attributes

such as land-cover type, soil moisture, and water retention, which are scientifically correlated with

wildfires. By integrating these attributes, our model improves the accuracy of wildfire detection.

The target segmentation mask is created by intersecting the active fire band from the remote-

sensing data with historical wildfire perimeter information. For this study, we use the wildfires in

California during 2019 [116] as our use-case.

The raw data once downloaded and merged needs to be partitioned for efficient storage, dis-

tribution, and querying over a cluster. We split each multispectral image swath in terms of its

geospatial hash (9-character quadtile key) for efficient indexing. These image tiles are then parti-

tioned over the cluster based on their temporal metadata and quadtile key.

Quadtiles [121] is a hierarchical grid system that can recursively partition the overall geospatial

coordinate space, incrementally, into a set of squares, each divided into four sub-squares of equal

size. Each sub-square is assigned a unique code, which is appended to the unique code of the

cumulative square, forming a unique hash string that represents the geospatial region contained

94

Table (9.2) Breakdown of Data Staging: Comparison between time taken to download and pre-process

the data against time to index and load it into ARGUS

Fetch Processing Staging Indexing

Time (Seconds) 132.07 539.53 303 2.04

Percentage 13.52% 55.24% 31.02% 0.2%

within it. This quadtile key can be easily manipulated to identify both neighboring geospatial

quadtiles/regions, along with encapsulated sub-regions.

In this work, we use the entire coordinate space of California as the overall geospatial region,

represented by a single square with a key of “0", and recursively partition them into incrementally

smaller quadtile boxes, each divided into four sub-squares, and appending each with either “0",

“1", “2", or “3". The generated tiles are distributed among the cluster nodes based on their quadtile

key and within each node, are organized based on their date and time of recording. This distribution

scheme helps the zero-hop DHT efficiently identify relevant tiles both during training and query

evaluation.

9.5.2 Embedding Store Population

The lightweight indexing scheme of the Hierarchical Embedding Store enables fast population

of entries. During data ingestion, each incoming image tile, before being stored on disk, gets

converted into its low-dimensional latent representation, Ie, through the encoder module (E), and

stored in-memory. The spatiotemporal information of the tile is used to add it to Hierarchical

Embedding Store, with the reference to the in-memory Ie object being added to the leaf-node.

This ensures co-location between the on-disk data objects and their latent counterparts and the

embeddings follow the partitioning scheme of the underlying distributed system.

The creation of latent embeddings using the encoder, along with its population into the hi-

erarchical embedding store constitutes the computation overhead during data ingestion. ARGUS

ensures that this computational overhead is insignificant compared to the actual ingestion process

by (1) ensuring that the tree-based structure of the embedding store facilitates fast indexing, (2) the

95

encoder-decoder network is kept relatively shallow, and (3) the multiple incoming tiles are ingested

as batched inputs to the encoder network for faster computation.

Figure (9.5) Hierarchical Embedding Store

9.5.3 Containerized Data Ingestion

Since our query analytics framework relies on the effectiveness of in-memory embedding

cache, along with the trained deep-learning models, we need to ensure that a sufficient amount

of memory and computational resources is available at all times. We ensure that our data ingestion

process, which also requires GPU for the encoder network, does not adversely affect the query

analytics.

In order to ensure a scalable ingestion throughput, while maintaining an upper bound on re-

source utilization, we parallelize and containerize our data ingestion processes. Ingestion requests

for each node in the distributed system are inserted into a job queue from which they are handled

by one of our available ingestion processes. We use Kubernetes [122] replica sets to ensure par-

allelization. We set a limit on resource utilization by configuring maximum resource limits on the

96

overall utilization of our data ingestion containers. The threshold is set at 10% of the overall CPU,

memory, and GPU cores.

9.5.4 Query Evaluation

The Hierarchical Embedding Store enables fast identification of relevant embeddings for each

spatiotemporal query on each node of the distributed cluster. In a cold start scenario, the graph is

evaluated against the spatiotemporal bounds of the query in a top-down fashion to identify the latent

embeddings that satisfy the specified predicate. These embeddings are meant to be probed for

potential wildfire regions using our trained models. However, exhaustively evaluating all candidate

tile embeddings against our segmentation mode, which has the most complicated architecture,

for a sparse event such as wildfire might lead to prolonged response times. Rather, ARGUSNET

maintains a simpler binary classification model for the identification of wildfires, which is first run

to identify potential embeddings (containing wildfire) that get evaluated against the segmentation

model. As we show in our benchmarks, this strategy leads to significantly reduced response times

with comparable accuracy. Additionally, similar to the case of the encoder, the evaluation of

embeddings for both classification and segmentation models is done in batches.

9.5.5 Avoiding Redundant Evaluations

Geospatial access patterns have been shown to follow spatial and temporal locality [9], i.e.,

at a given instant, users’ queries over the entire dataset are focused on a small spatiotemporal

neighborhood. While effective caching can leverage these patterns and greatly improve the hit-

rates of our in-memory structures, this does not avoid redundant evaluation of our embeddings

against the classification and the segmentation model, which require GPU resources.

The structure of our Hierarchical Embedding Store makes it conducive to support simultaneous

query evaluations and collaborative analytics. Since it is structurally a feature graph, it can easily

be traversed in a top-down manner while evaluating a spatiotemporal query. Fig.9.5 demonstrates

our hierarchical strategy of tagging potential wildfire nodes in the Hierarchical Embedding Store.

97

Figure (9.6) Improvement in Query Latency with cached evaluations from historical queries.

Upon evaluation of a tile against a spatiotemporal query, if a non-zero fire-mask is returned

by our segmentation model, we store a compressed representation of the 2d array along with the

embedding object in the leaf node. When no wildfire is detected, it will have a blank object and all

unevaluated tiles have a null object attached to their leaf. This helps our framework avoid redun-

dant computations of the same image tile against our trained models when there are subsequent

overlapping requests. Additionally, it is to be noted that the memory overhead of having this fire-

mask info is quite low - given the sparsity of the event, very few nodes will actually require the

fire-mask object to be stored.

9.5.6 Optimized Graph Evaluation

Due to the large number of tiles (leaf nodes) that might be involved in queries over large

spatiotemporal extents, we attempt to identify parent nodes that do not have any tiles of interest

in their sub-tree. We keep track of these nodes through successive query evaluations over our

emdedding store by maintaining an additional attribute (node importance) on each node of the

Hierarchical Embedding Graph. This attribute signifies the combined number of unevaluated and

wildfire tiles under each parent node in the graph - a non-zero importance value means that during

98

evaluation, a parent node may contain a tile of interest in one of the leaves in its subtree. Over

time, with a meaningful number of queries being evaluated over our system, a majority of these

tags should amount to 0 (since wildfire is a sparse spatiotemporal event), which would help us

avoid unnecessary traversals down the graph for irrelevant spatiotemporal extents.

Fig.9.5 demonstrates the update strategy of node importance during the evaluation of queries

over ARGUS. When the segmentation output on a tile embedding is found to have no fire pixels,

the node importance of its immediate parent is decremented. If the count of the parent is 0, we

decrement the count of its immediate parent, and so on, up the graph. In general cases, this upward

traversal of a tree would require bidirectional links or extra computation. Since our Hierarchical

Embedding Store is a metadata graph, actual upward traversal up the tree can be avoided, since,

given the spatiotemporal metadata of a node, we can easily deduce the exact parent node. In

successive query evaluations, any node with importance of 0 will not need to be traversed further

since it signifies non-fire tiles underneath.

Figure (9.7) Query Latency vs Query Size: Evaluation of increase in latency with the scale of the query’s

spatiotemporal extent.

99

We demonstrate the scalability of our model-driven query evaluation in Fig.9.7. We profiled the

average query latency for state and county-level spatiotemporal queries for 2 scenarios - one over

spatiotemporal regions where we know had wildfires and second over random spans and regions.

We execute 1000 different queries over our cluster and evaluated the average response time at a

client node. As expected, state-level queries take longer to evaluate than county-level queries, but

the average query time is reasonable. Additionally, we can see that in fire-prone scenarios, the

query latency is higher than in average case scenarios, since the number of tiles that are actually

subjected to the segmentation model is significantly low, due to the classifier model filtering them

out. The box-plots in Fig.9.7 show that a majority of the queries have significantly lower query

latency in the average case since the majority of the spatiotemporal queries have no wildfire in

them and most of the server-side overhead is simply from evaluation and classification over the

in-memory metadata graph.

9.5.7 Pruning: Node Replacement Strategy

Due to the limited size of the cache, we need an efficient strategy to maintain frequently ac-

cessed and relevant information in the cache in case of overflow. In order to facilitate interactivity

in evaluations over the metadata graph, we need to maintain the most relevant regions in memory,

and to efficiently detect stale nodes and swap them out for more requested regions, in case we

breach the threshold due to overpopulation.

In case of an overflow, we utilize the importance attribute of a node in conjunction with the

product of the number of accesses to a node (updated every time it gets accessed), and a time decay

function that takes into consideration the last time the node was accessed. Using this metric, which

we call adjusted node imporance, our cache pruning strategy takes into consideration

both the relevance of a node at a particular instant alongside the contents of the sub-tree. Sub-

trees in ARGUS are replaced based on this adjusted importance score. To leverage the spatial and

temporal locality of access patterns, when a request for a spatiotemporal region comes in, we mark

100

both the set of Cells in that region and the immediate spatiotemporal neighborhood of that region

as being of future interest as prescribed in [11].

101

Chapter 10

Building Multiple Regional Models At Scale

Building an all-encompassing singular model for a large spatial extent (we consider the conti-

nental US or CONUS in this study) is infeasible due to the accompanying resource requirements.

Such a model would entail an exceptionally large number of parameters; the resource overheads

for training would be prohibitive. Distributed training is feasible; however, these tend to incur

high network costs as the parameter weight vectors are reconciled. Complex phenomena, such as

climate, captured in these geospatial datasets are typically subject to variability at the local scales

, which affect the accuracy of a singular global model. In such cases, training models for smaller

spatial extents (or local learning [123]) may be a more reasonable approach.

Our framework, RELAY, attempts to combine the effectiveness of both global and localized

models. To preserve accuracy, we build a multiplicity of models, each tuned to its particular

spatial extent, that capture subtle regional variations. To facilitate this, we partition the CONUS

into N smaller spatial extents that are contiguous and non-overlapping. Our partitioning scheme

is deterministic, and the size of the spatial extent for which the models are built is based on the

complexity of the network and resolution of the data. During model training, we need to account

for the residency of not just the input feature values but also the intermediate tensors that are created

within the network. Our objective is to effectively train N models each tuned to the particular

spatial extent.

The key enabling idea in our methodology is the novel use of transfer learning schemes to train,

refine, and ensure effective starting weights for deep networks. Rather than train each constituent

model instance from scratch (cold-start), we ensure that model instances have a superior starting

point (warm-start) for their weight vectors and coefficients for faster convergence.

We design and explore three different transfer learning schemes: amalgamated, partitioned,

and hybrid. Transfer learning has been used primarily in cases where layers/network trained over a

given dataset are reused within networks trained over a different dataset. We transfer learn across

102

models built for different spatial locations of the same dataset. This is different from traditional

transfer learning which occurs across models purpose-built for different objectives over different

datasets. We use transfer learning to calibrate the layers that can be used as is and those that need

to be retrained but with effective starting points. The earlier parts of network are tagged as fixed

and subsequent layers trained from the specified starting points.

We first partition the geographical area under consideration (CONUS for this study) into fixed

sized spatial extents. Our methodology relies on rigorous and extensive training of a minimal num-

ber of models and then preforming a targeted diffusion of those model characteristics to relevant

spatial extents. We designed three different transfer learning schemes: amalgamated, partitioned,

and hybrid transfer learning schemes. In our transfer learning schemes we train one or more anchor

model instances rigorously. Once trained, several characteristics of these anchor models including

weight vectors, coefficients, and model hyperparameters are diffused in a targeted fashion to other

spatial extents as part of the transfer learning process. During rigorous training of the anchor mod-

els, we also allow users to experiment with the accuracy measures such as RMSE, MAE, or SSIM

that are most suited for the task at hand. Once the desired accuracy measure has been settled on,

it is used to enforce stopping criteria for model instances being constructed for the spatial extent.

The stopping criteria for the individual model instances is based on achieving 95% of accuracy of

the rigorously trained anchor models whose characteristics are being diffused as part of the transfer

learning process.

To conserve resources, each of the transfer learned models are trained with data locality (avoids

network I/O), with data grouped into batches (to reduce memory residency requirements), and

leverages progressive sampling to gradually increase the amount of data fed to the model until the

desired accuracy is achieved. More importantly, because we use transfer learning, earlier parts

of the network are fixed (i.e., they are non-trainable) while the latter parts are trained and tuned

to account for subtle regional variations. Cumulatively, the use of transfer learning alleviates the

vanishing gradients problem and avoids duplicate processing costs that are incurred if each model

has a cold-start and must be trained from scratch.

103

In the amalgamated transfer learning scheme, we construct a global anchor model for the com-

plete hypothetical spatial extent. The training data for this phase is drawn from the entire CONUS

and we uniformly sample n% (n << 100) of data from all spatial extents. This facilitates spatial

coverage by ensuring that data from all spatial extents are represented in the training datasets. This

also allows the anchor model to capture broad variations in the feature space that occur across the

CONUS. This anchor model is rigorously trained and includes hyperparameter tuning. The weight

vectors, coefficients, and hyperparameters are then diffused to the N spatial extents as the starting

points and the models trained with progressive sampling and the relevant stopping criteria (95% of

the anchor model accuracy). Since the anchor model is trained with data from all spatial extents,

individual model instances (that warm start using the anchor model) are robust to data outliers.

In the partitioned transfer learning scheme, the N spatial extents are partitioned into K disjoint

subsets based on spatial similarity. For each disjoint subset we train one anchor model rigorously.

The anchor models are chosen based on their proximity to the cluster centroid. We posit that the

weights diffused from the anchor model to other spatially similar extents are superior because the

data distribution characteristics within spatially similar regions are likely to be similar.

The hybrid transfer learning scheme combines amalgamated and partitioned learning. Rather

than train the anchor models within each cluster from scratch, we use weight vectors from a global

anchor model (like in amalgamated mode) as the starting point - this allows the centroid models

to converge faster. The weights diffused from the centroid model include those from the anchor

models (initial layers) and the centroid model (intermediate and final layers). When training model

instances the weights for the initial and intermediate layers are held fixed, while the final layer

weights are trainable and use the anchor model weights as the starting point.

Our methodology facilitates training a collection of deep learning models, each tuned to their

particular spatial extent. To ensure efficient training of these models while reducing the resource

requirements, we include data partitioning schemes to ensure dispersion and data locality during

model training. Next, we describe the design of our transfer learning schemes to reduce cold-

start overheads for model training. By facilitating effective reuse of layers of the deep network,

104

we minimize duplicate processing overheads and reduce resource requirements. We describe our

transfer learning schemes (amalgamated, partitioned, and hybrid) and the rationale for their design.

We leverage these schemes to inform the degree of transfer learning to calibrate the degree and

layers of the network to be reused.

10.1 Data partitioning

We ensure that the unit of spatial data-partitioning can also be used to express the spatial bounds

for each regional model. Our spatial data partitioning scheme relies on quadkeys generated from

quadtiles [121]. The advantages of using quadkeys are three-fold. First, the quadkey’s length

allows us to control the size of the spatial extent. Second, the scheme is deterministic in the sense

that a given quadkey uniquely and unambiguously identifies a particular spatial extent. Finally,

both the identification of the spatial extent from a quadkey and the partitioning a much larger

spatial extent into smaller extents can be performed in a hierarchical and decentralized fashion.

Once the precision of a quadtile is finalized, we use it to partition data along the hash bound-

aries. Our server pool is organized as a DHT (distributed hash table). DHTs organize data as

<key,value> pairs. Typically, the key is generated by computing the hash value of the content. The

hash space is partitioned among the server nodes and each node is responsible for a contiguous

portion of the hash space. RELAY uses quadkey as the input to the hashing function, which then

disperses content to the relevant server node. Using the quadkey allows us to ensure that all data

for a particular spatial extent will be stored on the same server node. Each server node is also

responsible for multiple quadkey codes. This co-location ensures data locality during training and

minimizes the network I/O during training. Finally, identifying the server node where data is stored

is performed in a deterministic and decentralized fashion.

We use the zero-hop DHT refinement that allows maintaining hash space partitioning infor-

mation, i.e., for a collection of servers the system maintains the key ranges. With a server pool

of N nodes, the computational cost to locate a data-region is O(1). Distribution properties of the

105

hashing function ensures that data from different spatial extents are load-balanced and that there

are no skews in data storage within the cluster.

(a) Amalgamated Approach (b) Partitioned Approach (c) Hybrid Approach

Figure (10.1) Types of Distributed Transfer Learning Implementations

10.2 Partitioning of Geospatial Domain

The crux of the RELAY framework is to train a small number of regional models exhaustively

via cold-start and reuse the learned weights of these models to train the remainder regional models

through transfer learning. Spatiotemporal datasets, such as satellite imagery data, often have re-

gional variations. We aim to group regions with similar characteristics to identify a representative

(anchor) region and the remaining dependent regions for each group.

Our transfer learning approach utilizes two possible grouping schemes for spatiotemporal re-

gions: one based on geospatial proximity and the other based on metadata. The proximity-based

scheme builds on the hypothesis that in geospatial datasets, data in proximate spatiotemporal

bounds have similar characteristics. This also dovetails with the rationale that models built over

proximate spatiotemporal regions can be trained via transfer learning from one another (i.e. faster

convergence with similar accuracy). The metadata-based grouping scheme is a refinement of our

methodology that utilizes auxiliary metadata associated with spatial extents, if available, for clus-

tering similar regions. We utilize the National Land Cover Database (NLCD) codes [102] to help

group regions with similar land/ topographical characteristics. In this scheme, we use the land type

106

of each pixel within a quadtile bound to form a 21-dimensional vector (one for each NLCD land

type) that represents the fraction of each land-cover type in the quadhash region. The representative

vector (one for each quadtile bound) is used to cluster these regions using k-means++ [124].

The proximity-based grouping ensures co-location between the dependent and the anchor mod-

els, since our underlying dataset is partitioned based on quadtile strings. Metadata-based cluster-

ing, along with cluster optimization is a one-time process that needs to happen before actual train-

ing can begin. Metadata-based clustering can result in more accurate clustering of regions leading

to a significantly smaller number of clusters. This would lead to fewer exhaustively-trained anchor

models and potentially higher throughput. When auxiliary metadata is unavailable a generalized

proximity-based approach is more suitable.

10.3 Rigorous vs Assisted Training of Models

Our methodology allows users to experiment with the structure of the network layers, loss func-

tions, regularization schemes etc. Additionally, users can tune hyperparameters such as learning

rates that are deeply aligned with the network structure and the data characteristics for better model

optimization. However, hyper-parameter optimization can be an expensive operation, especially

given the number of regional models involved. We perform extensive modeling on a much smaller

subset of models, which we call anchor models, and use these rigorously-trained models as the

basis to train their corresponding dependent models built over similar spatiotemporal regions.

In our transfer learning schemes, we also experiment with the Degree of Transfer Learning. We

explore how many layers weights need to be transferred, i.e., we freeze the weights of a (initial)

portion of the deep layers of the anchor models and re-train a small fraction of the latter layers

over regional data to generate the dependent models. By controlling the degree of transfer learning

within a spatially similar cluster, we aim to reduce both resource utilization for training large

models as well as increase their convergence rate.

Degree Of Transfer Learning: This signifies the amount of network layers for a dependent model

that we keep frozen during the transfer learning phase. In our approach, this degree of transfer

107

(a) Amalgamated/ Partitioned (b) Hybrid

Figure (10.2) Model Layers For Different Transfer Learning Schemes

learning is directly proportional to the similarity between the spatiotemporal extents represented

by the anchor and dependent models, as shown in Fig. 10.2.

The portion of anchor model layers that are frozen during the training of dependent models

depends on the problem at hand. We explain the degrees of transfer learning for each of our

individual approaches below.

Transfer Learning Phases: In the first phase of transfer learning, we implement feature extraction

by freezing all the layers of an anchor model except the final few fully-connected layers of a model

and training over a portion (s%) of the overall regional data. The remaining portion of the anchor

model is integrated directly into the new neural network model and not updated while training the

dependent model.

Upon convergence of this phase or if the model accuracy is within 95% of the corresponding

anchor model, in an optional phase, we subsequently unfreeze the entire dependent model and train

it using regional data over a smaller number of epochs over a smaller learning rate to fine-tune the

internal neural network layers to the new domain.

10.4 The Amalgamated Transfer Learning Scheme

In the amalgamated transfer learning scheme (Fig.10.1a), we train a single anchor model and

use it to bootstrap training all other regional models over our data space. This is suitable in cases

where the data has relatively low regional variations. Consequently, a single global anchor model

should be able to learn the overall characteristics of the feature space including non-linear inter-

108

actions; this can be re-purposed to fine-tune the dependent models with regional information. The

global anchor model is trained rigorously over n%(n << 100) of the overall data in a distributed

manner. For this, we leverage Pytorch Lightning [119] in Distributed Data Parallel (DDP) mode.

Using this global anchor model over the entire CONUS, we partially retrain the weights learned

and reuse structure of the network, to transfer learn across the N regional spatial extents. In our

implementation, N is determined by the number of data regions of quadkey length 11 that com-

prise our data space.

Degree of Transfer Learning: Since we use a single global model as an anchor to train all other

regional models, we assume the spatiotemporal domains represented by the global and the de-

pendent models might be subject to variations. We allow for a lesser degree of transfer learning

between the global anchor model and dependent regional models.

Fig. 10.2a depicts the degree of transfer learning for both amalgamated and partitioned transfer

learning modes. In case of amalgamated, due to transfer learning between a global and regional

domains, we reduce the number of layers of the anchor/parent model frozen during training of

the dependent/child models. This leads to relatively slower convergence rate, but better model

accuracy.

10.5 The Partitioned Transfer Learning Scheme

Our partitioned transfer learning scheme is more suited for datasets where data domains have

strong spatiotemporal correlations, i.e., data from similar regions have similar characteristics. We

cluster similar spatial extents into K groups and perform transfer learning within each such group

(partition). We train K exhaustive anchor models, one for each group, and train other models

within a cluster based on their anchors.

Our segmentation groups spatially similar regions to form K non-overlapping partitions. For

each such partition, we identify a spatiotemporal region as a centroid. We identify the centroid

region as one that is equidistant from the other regions in this group. Since we deal with spa-

tiotemporal datasets and create partition based on quadkeys, we select the quadtile in the group

109

that is closest to the central quadtile as the region for which the anchor model is to be built.

Degree of Transfer Learning: Since anchor regions in the same spatiotemporal partition are rel-

atively similar to their dependent regions, dependent models in partitioned scheme have a higher

degree of transfer learning, i.e., fewer peripheral neural network layers are unfrozen during transfer

learning (Fig. 10.2a). This should lead to faster convergence rate for the dependent models and rel-

atively good accuracy in cases where the variance in data domain have the desired characteristics

mentioned above.

10.6 The Hybrid Transfer Learning Scheme

The hybrid transfer learning scheme (Fig. 10.2b) combines aspects of both Amalgamated and

Partitioned transfer learning schemes and is suitable for scenarios where the overall data domain

has characteristics that are a mix between the two scenarios mentioned before. In this imple-

mentation, we have 2 sets of anchor models. The primary anchor model is a global model built

similar to the amalgamated phase utilizing n% of the data. Secondary anchor models are built for

the K partition centroids through transfer learning using the primary anchor model in a rigorous

fashion. The spatial partitioning scheme and centroid assignment is similar to the description in

Section 10.5. The remainder of the dependent models are trained similar to the partitioned transfer

learning scheme using their corresponding secondary anchor model as the base.

In our hybrid scheme, we expect the overall throughput to be lower than the previous imple-

mentations due to the 2 stages of exhaustive modelling before the training of the dependent models,

but the hybrid scheme can have potentially higher accuracy in cases where data characteristics do

not fully fit the mould of the previous two implementations.

110

Chapter 11

Conclusions

Through our research, we aim to facilitate interactive spatiotemporal data visualizations and

analytics. We address challenges affecting latency of such evaluations over large scale datasets re-

lating to excessive/unnecessary disk and network I/O between the clients and the distributed server,

excessive record processing and analytics over high-dimensional data objects.

RQ1: How can we ensure that front-end users are not overwhelmed by the scope of the

underlying data?

We implement a unified query scheme understandable by both the in-memory distributed cache

framework as well as the distributed data indexing/partitioning scheme. This ensures that the

front-end interfaces are kept simple, with their only major task being translation of user actions

into spatiotemporal queries and vice-versa.

RQ2: How can we ensure interactivity of spatiotemporal query evaluation over voluminous

datasets?

Our distributed, dynamic caching scheme (STASH) alleviates I/O overheads associated with disk

accesses. We also facilitate rapid data discovery that minimizes query-forwarding between the

cluster nodes and local traversals within the data structure. STASH’s maintenance scheme is sen-

sitive to spatial and temporal locality of users’ access patterns that help increase its hit-rate. We

also utilize a client-side, stand-alone version on STASH that precludes excessive data retrievals

and transfers from frequent view changes triggered by a user and a space-efficient super-resolution

model (Glance), that works in conjunction and accurately upscales low-dimensional data through

multiple upscale factors over multiple levels of resolution.

RQ3: How can our system cope with skews in access patterns (that may lead to hotspots)

111

while preserving latencies and good perceptual quality?

We enable STASH with a dynamic, decentralized replication scheme that helps alleviate frequent

hotspots that is common in dominant geospatial explorations by replicating highly accessed data

fragments in nodes whose data domain is diagonally opposite to the hotspotted regions.

RQ4: How can we preserve accuracy of our query results and make them adaptive to a

fast-evolving data-store?

We couple the both GLANCE and ARGUS models with an error-mitigation module that can identify

potential error-prone regions in the data-space to help inform regions of low-fidelity. This mod-

ule can also trigger re-training if errors go below a pre-defined threshold. Additionally in case of

RUBIKS, we implement a Welford’s online algorithm for maintaining running aggregate statistics

which are fully accurate. In case of correlation measures, we implement a weighted kernel ap-

proach for computing covariance between non-concurrent measurements.

RQ5: How can we extract meaningful insights, capable of being rendered on a 2D visual

interface, from a multi-dimensional data-store?

Finally, we design a set of memory-resident deep neural network-based models (GLANCENET and

ARGUSNET) for extraction of insights from high-dimensional data (multi-spectral imagery) ob-

jects during query evaluation over a distributed cluster. We ensure collaborative transfer of knowl-

edge between these models and robust training through generalization by training these models

through Multi-Task Learning.

112

Bibliography

[1] Elena Geanina Ularu, Florina Camelia Puican, Anca Apostu, Manole Velicanu, et al. Per-

spectives on big data and big data analytics. Database Systems Journal, 3(4):3–14, 2012.

[2] Mackinlay Card. Readings in information visualization: using vision to think. Morgan

Kaufmann, 1999.

[3] Pat Hanrahan. Analytic database technologies for a new kind of user: the data enthusiast. In

Proceedings of the 2012 ACM SIGMOD International Conference on Management of Data,

pages 577–578, 2012.

[4] Jeffrey Heer and Ben Shneiderman. Interactive dynamics for visual analysis: A taxonomy

of tools that support the fluent and flexible use of visualizations. Queue, 10(2):30–55, 2012.

[5] Zoltán Konyha, Krešimir Matkovic, and Helwig Hauser. Interactive visual analysis in engi-

neering: A survey. Posters at SCCG, 2009:31–38, 2009.

[6] Min Chen, Shiwen Mao, and Yunhao Liu. Big data: A survey. Mobile networks and

applications, 19(2):171–209, 2014.

[7] Jae-Gil Lee and Minseo Kang. Geospatial big data: challenges and opportunities. Big Data

Research, 2(2):74–81, 2015.

[8] Powers of 10: Time Scales in User Experience, 2019.

https://www.nngroup.com/articles/powers-of-10-time-scales-in-ux/.

[9] Danyel Fisher. Hotmap: Looking at geographic attention. IEEE transactions on visualiza-

tion and computer graphics, 13(6):1184–1191, 2007.

[10] Lei Shi, Zhimin Gu, Lin Wei, and Yun Shi. Quantitative analysis of zipf’s law on web cache.

In International Symposium on Parallel and Distributed Processing and Applications, pages

845–852. Springer, 2005.

113

[11] Saptashwa Mitra, Paahuni Khandelwal, Shrideep Pallickara, and Sangmi Lee Pallickara.

Stash: Fast hierarchical aggregation queries for effective visual spatiotemporal explorations.

In 2019 IEEE International Conference on Cluster Computing (CLUSTER), pages 1–11.

IEEE, 2019.

[12] Tero Karras, Timo Aila, Samuli Laine, and Jaakko Lehtinen. Progressive growing of gans

for improved quality, stability, and variation. arXiv preprint arXiv:1710.10196, 2017.

[13] Saptashwa Mitra, Daniel Rammer, Shrideep Pallickara, and Sangmi Lee Pallickara. Glance:

A generative approach to interactive visualization of voluminous satellite imagery. In 2021

IEEE International Conference on Big Data (Big Data), pages 359–367. IEEE, 2021.

[14] Saptashwa Mitra, Maxwell Roselius, Pedro Andrade-Sanchez, John K McKay, and

Sangmi Lee Pallickara. Radix+: High-throughput georeferencing and data ingestion over

voluminous and fast-evolving phenotyping sensor data. Concurrency and Computation:

Practice and Experience, 35(8):e7484, 2023.

[15] Saptashwa Mitra, Daniel Rammer, Shrideep Pallickara, and Sangmi Lee Pallickara. A gen-

erative approach to visualizing satellite data. In 2021 IEEE International Conference on

Cluster Computing (CLUSTER), pages 815–816. IEEE, 2021.

[16] Saptashwa Mitra, Paahuni Khandelwal, Shrideep Pallickara, and Sangmi Pallickara. Argus:

Rapid tracking of wildfires from unlabeled satellite images. In International Conference on

Cloud Computing (CLOUD), 2023.

[17] Abdul Matin, Samuel Armstrong, Saptashwa Mitra, Shrideep Pallickara, and Sangmi Lee

Pallickara. Rapid betweenness centrality estimates for transportation networks using cap-

sule networks. In 2022 Fourth International Conference on Transdisciplinary AI (TransAI),

pages 89–96. IEEE, 2022.

[18] Saptashwa Mitra, Menuka Warushavithana, Mazdak Arabi, Jay Breidt, Sangmi Pallickara,

and Shrideep Pallickara. Alleviating resource requirements for spatial deep learning work-

114

loads. In 2022 22nd IEEE International Symposium on Cluster, Cloud and Internet Com-

puting (CCGrid), pages 452–462. IEEE, 2022.

[19] Caleb Carlson, Menuka Warushavithana, Saptashwa Mitra, Kassidy Barram, Sudipto

Ghosh, Jay Breidt, Sangmi Lee Pallickara, and Shrideep Pallickara. Resource efficient pro-

filing of spatial variability in performance of regression models. In 2022 IEEE International

Conference on Big Data (Big Data), pages 437–444. IEEE, 2022.

[20] Menuka Warushavithana, Kassidy Barram, Caleb Carlson, Saptashwa Mitra, Sudipto

Ghosh, Jay Breidt, Sangmi Lee Pallickara, and Shrideep Pallickara. A framework for pro-

filing spatial variability in the performance of classification models. Under Review.

[21] Menuka Warushavithana, Saptashwa Mitra, Mazdak Arabi, Jay Breidt, Sangmi Lee Pal-

lickara, and Shrideep Pallickara. Containerization of model fitting workloads over spatial

datasets. In 2021 IEEE International Conference on Big Data (Big Data), pages 3770–3779.

IEEE, 2021.

[22] Menuka Warushavithana, Caleb Carlson, Saptashwa Mitra, Daniel Rammer, Mazdak Arabi,

Jay Breidt, Sangmi Lee Pallickara, and Shrideep Pallickara. Distributed orchestration of

regression models over administrative boundaries. In 2021 IEEE/ACM 8th International

Conference on Big Data Computing, Applications and Technologies (BDCAT’21), pages

80–90, 2021.

[23] Menuka Warushavithana, Saptashwa Mitra, Mazdak Arabi, Jay Breidt, Sangmi Lee Pal-

lickara, and Shrideep Pallickara. A transfer learning scheme for time series forecasting

using facebook prophet. In 2021 IEEE International Conference on Cluster Computing

(CLUSTER), pages 809–810. IEEE, 2021.

[24] Xiaochuang Yao and Guoqing Li. Big spatial vector data management: a review. Big Earth

Data, 2(1):108–129, 2018.

115

[25] The hadoop distributed file system. In 2010 IEEE 26th symposium on mass storage systems

and technologies (MSST), pages 1–10. Ieee, 2010.

[26] Matei Zaharia, Mosharaf Chowdhury, Michael J Franklin, Scott Shenker, and Ion Stoica.

Spark: Cluster computing with working sets. HotCloud, 10(10-10):95, 2010.

[27] Matthew Malensek, Sangmi Lee Pallickara, and Shrideep Pallickara. Galileo: A framework

for distributed storage of high-throughput data streams. In 2011 Fourth IEEE International

Conference on Utility and Cloud Computing, pages 17–24. IEEE, 2011.

[28] Matthew Malensek, Sangmi Pallickara, and Shrideep Pallickara. Exploiting geospatial and

chronological characteristics in data streams to enable efficient storage and retrievals. Future

Generation Computer Systems. Elsevier., 29(4):1049–1061, 2013.

[29] Matthew Malensek, Sangmi Lee Pallickara, and Shrideep Pallickara. Polygon-based query

evaluation over geospatial data using distributed hash tables. In IEEE/ACM Conference on

Utility and Cloud Computing.

[30] Matthew Malensek, Sangmi Lee Pallickara, and Shrideep Pallickara. Geometry and prox-

imity constrained query evaluations over large geospatial datasets using distributed hash ta-

bles. IEEE Computing in Science and Engineering (CiSE). Special Issue on Extreme Data,

16(4):53–60, 2014.

[31] Matthew Malensek, Sangmi Lee Pallickara, and Shrideep Pallickara. Fast, ad hoc query

evaluations over multidimensional geospatial datasets. IEEE Transactions on Cloud Com-

puting, 5(1):28–42, 2017.

[32] Matthew Malensek, Sangmi Lee Pallickara, and Shrideep Pallickara. Analytic queries over

geospatial time-series data using distributed hash tables. IEEE Transactions on Knowledge

and Data Engineering, 28(6):1408–1422, 2016.

116

[33] Matthew Malensek, Sangmi Lee Pallickara, and Shrideep Pallickara. Expressive query sup-

port for multidimensional data in distributed hash tables. In Proceedings of the IEEE/ACM

Conference on Utility and Cloud Computing.

[34] Matthew Malensek, Sangmi Lee Pallickara, and Shrideep Pallickara. Hermes: Federating

fog and cloud nodes to support query evaluations in continuous sensing environments. IEEE

Cloud Computing. Special Issue on Autonomic Clouds., 4(2):54–62, 2017.

[35] Wes Lloyd, Shrideep Pallickara, Olaf David, Mazdak Arabi, Tyler Wible, Jeffrey Ditty,

and Ken Rojas. Demystifying the clouds: Harnessing resource utilization models for cost

effective infrastructure alternatives. IEEE Transactions on Cloud Computing., 5(4):667–

680, 2017.

[36] Wes Lloyd, Shrideep Pallickara, Olaf David, Jim Lyon, Mazdak Arabi, and Ken Rojas.

Migration of multi-tier applications to infrastructure-as-a-service clouds: An investigation

using kernel-based virtual machines. In 12th IEEE/ACM International Conference on Grid

Computing, pages 137–144.

[37] Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave, Justin Ma, Murphy Mc-

Cauly, Michael J Franklin, Scott Shenker, and Ion Stoica. Resilient distributed datasets: A

fault-tolerant abstraction for in-memory cluster computing. In 9th {USENIX} Symposium

on Networked Systems Design and Implementation ({NSDI} 12), pages 15–28, 2012.

[38] Leilani Battle, Remco Chang, and Michael Stonebraker. Dynamic prefetching of data tiles

for interactive visualization. In Proceedings of the 2016 International Conference on Man-

agement of Data, pages 1363–1375. ACM, 2016.

[39] Zhicheng Liu, Biye Jiang, and Jeffrey Heer. immens: Real-time visual querying of big data.

In Computer Graphics Forum, volume 32, pages 421–430. Wiley Online Library, 2013.

117

[40] Lauro Lins, James T Klosowski, and Carlos Scheidegger. Nanocubes for real-time ex-

ploration of spatiotemporal datasets. IEEE Transactions on Visualization and Computer

Graphics, 19(12):2456–2465, 2013.

[41] Cicero AL Pahins, Sean A Stephens, Carlos Scheidegger, and Joao LD Comba. Hashed-

cubes: Simple, low memory, real-time visual exploration of big data. IEEE transactions on

visualization and computer graphics, 23(1):671–680, 2017.

[42] Wenbo Tao, Xiaoyu Liu, Çagatay Demiralp, Remco Chang, and Michael Stonebraker.

Kyrix: Interactive visual data exploration at scale. CIDR, 2019.

[43] Luís Santos, João Coutinho-Rodrigues, and Carlos Henggeler Antunes. A web spatial de-

cision support system for vehicle routing using google maps. Decision Support Systems,

51(1):1–9, 2011.

[44] Richard Wesley, Matthew Eldridge, and Pawel T Terlecki. An analytic data engine for vi-

sualization in tableau. In Proceedings of the 2011 ACM SIGMOD International Conference

on Management of data, pages 1185–1194. ACM, 2011.

[45] Nivan Ferreira, Jorge Poco, Huy T Vo, Juliana Freire, and Cláudio T Silva. Visual ex-

ploration of big spatio-temporal urban data: A study of new york city taxi trips. IEEE

Transactions on Visualization and Computer Graphics, 19(12):2149–2158, 2013.

[46] Michael Stonebraker, Paul Brown, Donghui Zhang, and Jacek Becla. Scidb: A database

management system for applications with complex analytics. Computing in Science & En-

gineering, 15(3):54, 2013.

[47] Paul Ramsey et al. Postgis manual. Refractions Research Inc, 17, 2005.

[48] Cliff Engle, Antonio Lupher, Reynold Xin, Matei Zaharia, Michael J Franklin, Scott

Shenker, and Ion Stoica. Shark: fast data analysis using coarse-grained distributed memory.

In Proceedings of the 2012 ACM SIGMOD International Conference on Management of

Data, pages 689–692. ACM, 2012.

118

[49] Sameer Agarwal, Barzan Mozafari, Aurojit Panda, Henry Milner, Samuel Madden, and Ion

Stoica. Blinkdb: queries with bounded errors and bounded response times on very large

data. In Proceedings of the 8th ACM European Conference on Computer Systems, pages

29–42. ACM, 2013.

[50] Rui Li, Yinfeng Zhang, Zhengquan Xu, and Huayi Wu. A load-balancing method for net-

work giss in a heterogeneous cluster-based system using access density. Future Generation

Computer Systems, 29(2):528–535, 2013.

[51] Rui Li, Wei Feng, Huayi Wu, and Qunying Huang. A replication strategy for a distributed

high-speed caching system based on spatiotemporal access patterns of geospatial data. Com-

puters, Environment and Urban Systems, 61:163–171, 2017.

[52] Sanjoy Paul and Zongming Fei. Distributed caching with centralized control. Computer

Communications, 24(2):256–268, 2001.

[53] Rui Li, Jiapei Fan, Xinxing Wang, Zhen Zhou, and Huayi Wu. Distributed cache replace-

ment method for geospatial data using spatiotemporal locality-based sequence. Geo-spatial

Information Science, 18(4):171–182, 2015.

[54] Shaoming Pan, Lian Xiong, Zhengquan Xu, Yanwen Chong, and Qingxiang Meng. A dy-

namic replication management strategy in distributed gis. Computers & geosciences, 112:1–

8, 2018.

[55] Tableau Desktop, 2019. https://www.tableau.com/products/desktop.

[56] Miguel García and Barry Harmsen. Qlikview 11 for developers. Packt Publishing Ltd, 2012.

[57] Alex Berson and Stephen J Smith. Data warehousing, data mining, and OLAP. McGraw-

Hill, Inc., 1997.

[58] Ben Shneiderman. The eyes have it: A task by data type taxonomy for information visual-

izations. In The craft of information visualization, pages 364–371. Elsevier, 2003.

119

[59] Mark EJ Newman. Power laws, pareto distributions and zipf’s law. Contemporary physics,

46(5):323–351, 2005.

[60] Tile layers, April 2020.

[61] Tiled web map, December 2019.

[62] Thilina Buddhika, Matthew Malensek, Sangmi Lee Pallickara, and Shrideep Pallickara.

Synopsis: A distributed sketch over voluminous spatiotemporal observational streams. IEEE

Transactions on Knowledge and Data Engineering, 29(11):2552–2566, 2017.

[63] GC Fox, Hasan Bulut, Kangseok Kim, Sung-Hoon Ko, Sangmi Lee, Sangyoon Oh, Shrideep

Pallickara, Xiaohong Qiu, Ahmet Uyar, and Minjun Wang. Collaborative web services and

peer-to-peer grids. SIMULATION SERIES, 35(1):3–12, 2003.

[64] Sangmi Lee, Geoffrey Fox, Sunghoon Ko, Minjun Wang, and Xiaohong Qiu. Ubiquitous ac-

cess for collaborative information system using svg. In Proceedings of SVGopen conference

July.

[65] Shrideep Pallickara and Geoffrey C Fox. On the matching of events in distributed brokering

systems. In ITCC (2), pages 68–76.

[66] Shrideep Pallickara and Geoffrey Fox. Naradabrokering: a distributed middleware frame-

work and architecture for enabling durable peer-to-peer grids. In ACM/IFIP/USENIX Inter-

national Conference on Distributed Systems Platforms and Open Distributed Processing,

pages 41–61. Springer.

[67] Geoffrey Fox, Galip Aydin, Hasan Bulut, Harshawardhan Gadgil, Shrideep Pallickara, Mar-

lon Pierce, and Wenjun Wu. Management of real-time streaming data grid services. Con-

currency and Computation: Practice and Experience, 19(7):983–998, 2007.

120

[68] Chao Dong, Chen Change Loy, Kaiming He, and Xiaoou Tang. Image super-resolution

using deep convolutional networks. IEEE transactions on pattern analysis and machine

intelligence, 38(2):295–307, 2015.

[69] Yifan Wang, Federico Perazzi, Brian McWilliams, Alexander Sorkine-Hornung, Olga

Sorkine-Hornung, and Christopher Schroers. A fully progressive approach to single-image

super-resolution. In Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition Workshops, pages 864–873, 2018.

[70] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil

Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial nets. In Advances in

neural information processing systems, pages 2672–2680, 2014.

[71] Christian Ledig, Lucas Theis, Ferenc Huszár, Jose Caballero, Andrew Cunningham, Ale-

jandro Acosta, Andrew Aitken, Alykhan Tejani, Johannes Totz, Zehan Wang, et al. Photo-

realistic single image super-resolution using a generative adversarial network. In Proceed-

ings of the IEEE conference on computer vision and pattern recognition, pages 4681–4690,

2017.

[72] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for

image recognition. In Proceedings of the IEEE conference on computer vision and pattern

recognition, pages 770–778, 2016.

[73] Kui Jiang, Zhongyuan Wang, Peng Yi, Junjun Jiang, Jing Xiao, and Yuan Yao. Deep dis-

tillation recursive network for remote sensing imagery super-resolution. Remote Sensing,

10(11):1700, 2018.

[74] Mehdi SM Sajjadi, Bernhard Scholkopf, and Michael Hirsch. Enhancenet: Single image

super-resolution through automated texture synthesis. In Proceedings of the IEEE Interna-

tional Conference on Computer Vision, pages 4491–4500, 2017.

121

[75] Kui Jiang, Zhongyuan Wang, Peng Yi, and Junjun Jiang. A progressively enhanced network

for video satellite imagery superresolution. IEEE Signal Processing Letters, 25(11):1630–

1634, 2018.

[76] Jinshan Pan, Sifei Liu, Deqing Sun, Jiawei Zhang, Yang Liu, Jimmy Ren, Zechao Li, Jinhui

Tang, Huchuan Lu, Yu-Wing Tai, et al. Learning dual convolutional neural networks for

low-level vision. In Proceedings of the IEEE conference on computer vision and pattern

recognition, pages 3070–3079, 2018.

[77] Bee Lim, Sanghyun Son, Heewon Kim, Seungjun Nah, and Kyoung Mu Lee. Enhanced deep

residual networks for single image super-resolution. In Proceedings of the IEEE conference

on computer vision and pattern recognition workshops, pages 136–144, 2017.

[78] Rich Caruana. Multitask learning. Machine learning, 28(1):41–75, 1997.

[79] Marcin Andrychowicz, Misha Denil, Sergio Gomez, Matthew W Hoffman, David Pfau,

Tom Schaul, Brendan Shillingford, and Nando De Freitas. Learning to learn by gradient

descent by gradient descent. Advances in neural information processing systems, 29, 2016.

[80] Barret Zoph, Deniz Yuret, Jonathan May, and Kevin Knight. Transfer learning for low-

resource neural machine translation. arXiv preprint arXiv:1604.02201, 2016.

[81] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster r-cnn: Towards real-time

object detection with region proposal networks. Advances in neural information processing

systems, 28, 2015.

[82] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Girshick. Mask r-cnn. In Proceedings

of the IEEE international conference on computer vision, pages 2961–2969, 2017.

[83] Ion Stoica, Robert Morris, David Karger, M Frans Kaashoek, and Hari Balakrishnan. Chord:

A scalable peer-to-peer lookup service for internet applications. ACM SIGCOMM Computer

Communication Review, 31(4):149–160, 2001.

122

[84] Grafana Labs, 2019. https://grafana.com/grafana.

[85] React, 2023. https://react.dev/.

[86] Welcome to Flask — Flask Documentation (2.3.x), 2023.

https://flask.palletsprojects.com/en/2.3.x/.

[87] Ion Stoica, Robert Morris, David Liben-Nowell, David R Karger, M Frans Kaashoek, Frank

Dabek, and Hari Balakrishnan. Chord: a scalable peer-to-peer lookup protocol for internet

applications. IEEE/ACM Transactions on networking, 11(1):17–32, 2003.

[88] Matthew Malensek, Sangmi Lee Pallickara, and Shrideep Pallickara. Galileo: A framework

for distributed storage of high-throughput data streams. In Utility and Cloud Computing

(UCC), 2011 Fourth IEEE International Conference on, pages 17–24. IEEE, 2011.

[89] G. Niemeyer. Geohash, 1999. http://www.geohash.org/.

[90] Elastic Search, 2019. https://www.elastic.co/guide/en/elasticsearch/

reference/6.2/index.html.

[91] Chaowei Yang, Michael Goodchild, Qunying Huang, Doug Nebert, Robert Raskin, Yan Xu,

Myra Bambacus, and Daniel Fay. Spatial cloud computing: how can the geospatial sciences

use and help shape cloud computing? International Journal of Digital Earth, 4(4):305–329,

2011.

[92] Quannan Li, Yu Zheng, Xing Xie, Yukun Chen, Wenyu Liu, and Wei-Ying Ma. Mining

user similarity based on location history. In Proceedings of the 16th ACM SIGSPATIAL

international conference on Advances in geographic information systems, page 34. ACM,

2008.

[93] National Oceanic and Atmospheric Administration, The North American Mesoscale Fore-

cast System, 2019. http://www.emc.ncep.noaa.gov/index.php?branch=NAM.

123

[94] Jim Gray, Surajit Chaudhuri, Adam Bosworth, Andrew Layman, Don Reichart, Murali

Venkatrao, Frank Pellow, and Hamid Pirahesh. Data cube: A relational aggregation opera-

tor generalizing group-by, cross-tab, and sub-totals. Data mining and knowledge discovery,

1:29–53, 1997.

[95] Guoren Wang, Yue Zeng, Rong-Hua Li, Hongchao Qin, Xuanhua Shi, Yubin Xia, Xuequn

Shang, and Liang Hong. Temporal graph cube. IEEE Transactions on Knowledge and Data

Engineering, 2023.

[96] Saptashwa Mitra, Matt Young, Sangmi Lee Pallickara, and Shrideep Pallickara. Rubiks:

Rapid explorations and summarization over high dimensional spatiotemporal datasets. Un-

der Review.

[97] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep

convolutional neural networks. Advances in neural information processing systems, 25,

2012.

[98] Walter Hugo Lopez Pinaya, Sandra Vieira, Rafael Garcia-Dias, and Andrea Mechelli. Au-

toencoders. In Machine learning, pages 193–208. Elsevier, 2020.

[99] Paul R Seaber, F Paul Kapinos, and George L Knapp. Hydrologic unit maps, volume 2294.

US Government Printing Office Washington, DC, USA, 1987.

[100] Kira Rehfeld, Norbert Marwan, Jobst Heitzig, and Jürgen Kurths. Comparison of correlation

analysis techniques for irregularly sampled time series. Nonlinear Processes in Geophysics,

18(3):389–404, 2011.

[101] Ugur Demir and Gozde Unal. Patch-based image inpainting with generative adversarial

networks. arXiv preprint arXiv:1803.07422, 2018.

[102] Collin Homer, Jon Dewitz, Limin Yang, Suming Jin, Patrick Danielson, George Xian,

John Coulston, Nathaniel Herold, James Wickham, and Kevin Megown. Completion of

124

the 2011 national land cover database for the conterminous united states–representing a

decade of land cover change information. Photogrammetric Engineering & Remote Sens-

ing, 81(5):345–354, 2015.

[103] Yoshua Bengio, Jérôme Louradour, Ronan Collobert, and Jason Weston. Curriculum learn-

ing. In Proceedings of the 26th annual international conference on machine learning, pages

41–48, 2009.

[104] Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q Weinberger. Densely

connected convolutional networks. In Proceedings of the IEEE conference on computer

vision and pattern recognition, pages 4700–4708, 2017.

[105] Fisher Yu and Vladlen Koltun. Multi-scale context aggregation by dilated convolutions.

arXiv preprint arXiv:1511.07122, 2015.

[106] Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A Efros. Image-to-image translation

with conditional adversarial networks. In Proceedings of the IEEE conference on computer

vision and pattern recognition, pages 1125–1134, 2017.

[107] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv

preprint arXiv:1412.6980, 2014.

[108] Xiaojiao Mao, Chunhua Shen, and Yu-Bin Yang. Image restoration using very deep con-

volutional encoder-decoder networks with symmetric skip connections. Advances in neural

information processing systems, 29:2802–2810, 2016.

[109] Sangmi Lee Pallickara, Shrideep Pallickara, and Marlon Pierce. Scientific data management

in the cloud: A survey of technologies, approaches and challenges. Handbook of Cloud

Computing, pages 517–533, 2010.

[110] Saptashwa Mitra, Yu Qiu, Haley Moss, Kaigang Li, and Sangmi Lee Pallickara. Effective

integration of geotagged, ancilliary longitudinal survey datasets to improve adulthood obe-

sity predictive models. In 2018 17th IEEE International Conference On Trust, Security And

125

Privacy In Computing And Communications/12th IEEE International Conference On Big

Data Science And Engineering (TrustCom/BigDataSE), pages 1738–1746. IEEE, 2018.

[111] Matthew Malensek, Sangmi Pallickara, and Shrideep Pallickara. Fast, ad hoc query evalu-

ations over multidimensional geospatial datasets. IEEE Transactions on Cloud Computing,

5(1):28–42, 2015.

[112] Matthew Malensek, Sangmi Lee Pallickara, and Shrideep Pallickara. Hermes: Federating

fog and cloud domains to support query evaluations in continuous sensing environments.

IEEE Cloud Computing, 4(2):54–62, 2017.

[113] Walid Budgaga, Matthew Malensek, Sangmi Lee Pallickara, and Shrideep Pallickara.

A framework for scalable real-time anomaly detection over voluminous, geospatial data

streams. Concurrency and Computation: Practice and Experience, 29(12):e4106, 2017.

[114] Esri. An overview of the Spatial Analyst toolbox. https://pro.arcgis.com/en/pro-

app/latest/tool-reference/spatial-analyst/an-overview-of-the-spatial-analyst-toolbox.htm.

[115] Wilfrid Schroeder, Patricia Oliva, Louis Giglio, and Ivan A Csiszar. The new viirs 375 m

active fire detection data product: Algorithm description and initial assessment. Remote

Sensing of Environment, 143:85–96, 2014.

[116] Fire perimeters, March 2023.

[117] Sara Sabour, Nicholas Frosst, and Geoffrey E Hinton. Dynamic routing between capsules.

Advances in neural information processing systems, 30, 2017.

[118] Fausto Milletari, Nassir Navab, and Seyed-Ahmad Ahmadi. V-net: Fully convolutional

neural networks for volumetric medical image segmentation. In 2016 fourth international

conference on 3D vision (3DV), pages 565–571. Ieee, 2016.

[119] WA Falcon. Pytorch lightning. GitHub. Note:

https://github.com/PyTorchLightning/pytorch-lightning, 3, 2019.

126

[120] Anuj Karpatne, Gowtham Atluri, James H Faghmous, Michael Steinbach, Arindam Baner-

jee, Auroop Ganguly, Shashi Shekhar, Nagiza Samatova, and Vipin Kumar. Theory-guided

data science: A new paradigm for scientific discovery from data. IEEE Transactions on

knowledge and data engineering, 29(10):2318–2331, 2017.

[121] Quadtiles, November 2018.

[122] Marko Luksa. Kubernetes in action. Simon and Schuster, 2017.

[123] Christopher G Atkeson, Andrew W Moore, and Stefan Schaal. Locally weighted learning.

Lazy learning, pages 11–73, 1997.

[124] David Arthur and Sergei Vassilvitskii. k-means++: The advantages of careful seeding.

Technical report, Stanford, 2006.

127

Appendix A

License

Colorado State University LaTeX Thesis Template

by Saptashwa Mitra – 2023

This is free and unencumbered software released into the public domain.

Anyone is free to copy, modify, publish, use, compile, sell, or distribute this software, either in

source code form or as a compiled binary, for any purpose, commercial or non-commercial, and

by any means.

In jurisdictions that recognize copyright laws, the author or authors of this software dedicate any

and all copyright interest in the software to the public domain. We make this dedication for the

benefit of the public at large and to the detriment of our heirs and successors. We intend this

dedication to be an overt act of relinquishment in perpetuity of all present and future rights to this

software under copyright law.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EX-

PRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MER-

CHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.

IN NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY CLAIM, DAMAGES OR

OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,

ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR

OTHER DEALINGS IN THE SOFTWARE.

128

	Abstract
	Acknowledgements
	List of Tables
	List of Figures
	Introduction
	Research Challenges
	Visual Scalability
	Concurrent Evaluation of Spatiotemporal Queries At-Scale
	Hotspots
	Data Consistency for Dynamic Datasets
	Analytics Over High-dimensional Datasets

	Research Questions
	Overview of Approach
	Contributions
	Dissertation Organization

	Background and Related Work
	Need for In-memory Analytics
	Scalable In-memory Analytical Frameworks
	Exploratory Visual Analytics
	Latency vs User Experience
	Locality of Access Patterns
	Spatial Locality of Access
	Temporal Locality of Access

	Tile layers
	Progressive Learning
	Multi-task Learning

	Methodology
	In-memory Hierarchical Metadata Graph (RQ1, RQ2, RQ3)
	Model-Driven Data Reconstruction (Glance)(RQ4)
	Extraction of Insights from High Dimensional Data (RQ5)
	Building Multiple Regional Models At Scale (RQ5)

	System Overview
	Front-end Visualization UI
	Distributed In-Memory Aggregation Framework
	Deep Learning Models
	Back-end Distributed Storage
	Multi-Resolution Spatiotemporal Query

	Distributed In-Memory Hierarchical Metadata Graph (Stash)
	Data Model and Query Evaluation
	Vertex: The Stash Cell
	Edge: The Inter-Cell Relationship
	Hierarchical Cell Organization
	Query Evaluation Strategy

	Leveraging Visual Navigational Patterns
	Proximity Aware Data Dispersion
	Collective Caching
	Cell Replacement Strategy

	Autoscaling for High Throughput Query Evaluation
	Dynamic Clique Replication
	Clique Handoff Process
	Query Evaluation under Hotspot
	Replication and Cleaning

	Empirical Benchmarks
	Experimental Setup
	Distributed Query Evaluation Statistics
	Visual Exploration With Collaborative Caching
	Improvement Through Autoscaling
	Comparison with ElasticSearch

	Compressed/Low-dimensional Representation of Data
	Hierarchical Data Cubes (Rubiks)
	Low Resolution Data Representations (Glance)
	Low-dimensional Representations using Encoder-Decoder Network (Argus)
	Supervised Model Building Using Embeddings
	Multi-task Learning

	Hierarchical Data Cubes (Rubiks)
	Query Evaluation
	Cubelets
	Cubelet Content
	Cubelet Spatiotemporal Bound
	Distributed Ingestion: Perennial Cubelet Generation
	Cubelet Update
	Welford's Algorithm for Rapid construction/Updates
	Correlation estimation for misaligned time series
	HashGrid for Updating Cubelets

	Hierarchical Aggregation of Cubelets
	Visualization of Cubelets

	Model-Driven Data Reconstruction (Glance)
	Overview of Framework
	GlanceNet

	Super-Resolution of Image Tiles
	Model Overview:
	Model Input
	Generator Network(G1):
	Discriminator Network(D1)
	Objective Functions:

	Image Refinement
	Model Overview
	Model Input
	Generator (G2)
	Evaluating Image Quality
	Upsampling Image with Low Cache Hits
	Improvement in Latency

	GEMM: Estimating Regional Model Accuracy
	Improvement in Image Quality vs Query Latency

	Model-Driven Extraction of Insights from Embeddings (Argus)
	System Components
	ArgusNet
	Model Overview
	Model Input
	Selection of Training Data:
	Network Architecture:
	Loss Function:

	Distributed Training
	Hierarchical Embedding Store
	Data Model and Query Evaluation
	Data Preprocessing and Partitioning
	Embedding Store Population
	Containerized Data Ingestion
	Query Evaluation
	Avoiding Redundant Evaluations
	Optimized Graph Evaluation
	Pruning: Node Replacement Strategy

	Building Multiple Regional Models At Scale
	Data partitioning
	Partitioning of Geospatial Domain
	Rigorous vs Assisted Training of Models
	The Amalgamated Transfer Learning Scheme
	The Partitioned Transfer Learning Scheme
	The Hybrid Transfer Learning Scheme

	Conclusions
	Bibliography
	License

