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2—Logistic Regression

* Logistic regression 1s another technique borrowed by
machine learning from the field of statistics. It is the go-to
method for binary classification problems (problems with
two class values).

* Logistic regression is like linear regression in that the goal
1s to find the values for the coefficients that weight each
input variable. Unlike linear regression, the prediction for
the output 1s transformed using a non-linear function called
the logistic function.

* The logistic function looks like a big S and will transform
any value into the range 0 to 1. This 1s useful because we
can apply a rule to the output of the logistic function to snap
values to 0 and 1 (e.g. IF less than 0.5 then output 1) and
predict a class value.
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2—Logistic Regression

Logistic Regression Example

= Boundary
» False samples

= True samples
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2—Logistic Regression

* Because of the way that the model 1s learned, the
predictions made by logistic regression can also be used
as the probability of a given data instance belonging to
class 0 or class 1. This can be useful for problems
where you need to give more rationale for a prediction.

* Like linear regression, logistic regression does work
better when you remove attributes that are unrelated to
the output variable as well as attributes that are very
similar (correlated) to each other. It’s a fast model to
learn and effective on binary classification problems.
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Logistic Regression
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* Logistic regression 1s a variation of ! sse Dot
ordinary regression which is used when =« =
the dependent (response) variable 1s a 6| s
dichotomous variable (i. e. it takes only - =
two values, which usually represent the o =
occurrence or non-occurrence of some u

15 30

outcome event, usually codedasOor 1) £ 2
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and the independent (input) variables are = =
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continuous, categorical, or both. = o
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* For instance, in credit card company, the 3 3

client default or not.
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The Linear Probability Model

Binary logistic regression is a type of regression
analysis where the dependent variable 1s a dummy
variable: coded 0 (did not vote) or 1(did vote)

In the OLS regression:
Y=yv+ oX+e;whereY=(0,1)
A The error terms are heteroskedastic

e is not normally distributed because Y takes on only
two values

The predicted probabilities can be greater than 1 or
less than 0
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The Logistic Regression Model

Unlike ordinary linear regression, logistic regression does not
assume that the relationship between the independent variables
and the dependent variable 1s a linear one. Nor does 1t assume

that the dependent variable or the error terms are distributed
normally.

The "logit" model solves these problems:
Infp/(1-p)]= a+ X +e

= p is the probability that the event Y occurs, p(Y=1)

= p/(1-p) 1s the "odds ratio"
* In[p/(1-p)] 1s the log odds ratio, or "logit"
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Logistic Regression

» Response - Presence/Absence of characteristic
e Predictor - Numeric variable observed for each case

* Model - p(x) = Probability of presence at predictor level x

o+ [Px

e

X )=
p( ) l_l_ea+,3x

/=0 = P(Presence) is the same at each level of x
« />0 = P(Presence) increases as x increases

* /<0 = P(Presence) decreases as x increases
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Logistic Regression Example
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_ _ Colorado State University
Comparing LR and Logit Models

V

LR Model

Logit Model
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Maximum Likelihood Estimation

L MLE is a statistical method for estimating the coefficients
of a model.

 The likelihood function (L) measures the probability of
observing the particular set of dependent variable values
(pl, p2, ..., pn) that occur in the sample:
L = Prob (p1* p2* * * pn)
U The higher the L, the higher the probability of observing
the ps 1n the sample.

 MLE involves finding the coefficients (o, ) that makes
the log of the likelihood function (LL < 0) as large as
possible
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Example: Credit Card Default
B c | o | & : e H |

A
1 Age Default p(x) 1-p(x) Wx) In V(x) b0 b1
2 20 0 0.685347058 0.314652942 0.314652942 -1.15629 | 1.66314B| -0.04423
3 23 1 0.656052371 0.343947629 0.656052371 -0.42151
4 24 1 0.646003201 0.353996799 0.646003201 -0.43695 obj -65.2721
EI 25 0 0.635823405| 0.364176595] 0.364176595 -1.01012
6 25 0 0.635823405 0.364176595 0.364176595 -1.01012
7 26 1 0.625520567 0.374479433 0.625520567 -0.46917
3 26 0 0.625520567 0.374479433 0.374479433 -0.98222
9 28 1 0.604578221 0.395421779 0.604578221 -0.50322
10 28 0 0.604578221 0.395421779 0.395421779 -0.9278
11 29 0 0.593955934 0.406044066 0.406044066 -0.90129
12 30 1 0.583244999 0.416755001 0.583244999 -0.53915
13 30 1 0.583244999 (0.416755001 0.583244999 -0.53915
14 30 1 0.583244999 0.416755001 0.583244999 -0.53915
15 30 1 0.583244999 0.416755001 0.583244999 -0.53915
16 30 0 0.583244999 (0.416755001 0.416755001 -0.87526
17 30 1 0.583244999 0.416755001 0.583244999 -0.53915
18 32 1 0.56159543 0.43840457 0.56159543 -0.57697
19 32 1 0.56159543 0.43840457 0.56159543 -0.57697
20 33 1 0.550676629 0.449323371 0.550676629 -0.59661
21 33 1 0.550676629 0.449323371 0.550676629 -0.59661
22 34 0 0.539708774 0.460291226 0.460291226 -0.7759
23 34 0 0.539708774 0.460291226 0.460291226 -0.7759
24 34 1 0.539708774 0.460291226 0.539708774 -0.61673
25 34 1 0.539708774 0.460291226 0.539708774 -0.61673 ng Wang CSU




Multiple Logistic Regression

* Extension to more than one predictor variable (either
numeric or dummy variables).

* With p predictors, the model 1s written:

a+pfix;+-+p0,x,

p y l-l— ea+ﬂ1x1+---+,8pxp

log(ﬁ):a+ﬁ1xl+---+ﬁpxp
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Normal (Probit) Regression
* gisdistributed as a standard normal |

— Mean zero
— Variance 1

» Evaluate probability (y=1) R
— Pr(y=1) = Pr(g;> - x; ) = 1 — O(-x; B)
— Given symmetry: 1 — O(-x; ) = O(x, B)
* Evaluate probability (y=0)
— Pr(y;=0) = Pr(g; < - x; B) = O(-x; B)
— Given symmetry: O(-x; ) =1 - O(x, B)

Tianyang Wang CSU



	Financial Risk Management
	2 — Logistic Regression
	2 — Logistic Regression
	2 — Logistic Regression
	2 — Logistic Regression
	Logistic Regression
	The Linear Probability Model
	The Logistic Regression Model
	Logistic Regression
	Slide Number 10
	Comparing LR and Logit Models
	Maximum Likelihood Estimation
	Example: Credit Card Default
	Multiple Logistic Regression
	Normal (Probit) Regression

