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ABSTRACT 
 
 
 

UTILIZING PLANT GENETIC RESOURCES FOR PRE-BREEDING OF WATER-

EFFICIENT SORGHUM: GENETICS OF THE LIMITED TRANSPIRATION TRAIT 

 
 
 

 Shifting precipitation patterns driven by the changing climate threaten productivity of 

dryland agricultural systems. Increasing the efficiency of water use by crops grown in dryland 

regions, such as sorghum (Sorghum bicolor), is a target for plant breeding to address this issue. c 

variants conferring efficient water use in sorghum may be found within collections of plant 

genetic resources (PGR). However, tropical sorghum PGR require adaptation to the target 

temperate environment to begin the pre-breeding trait discovery process. The landmark Sorghum 

Conversion Program unlocked diverse sorghum genetics for temperate breeding by adapting 

tropical African lines to temperate height and maturity standards. 

 In the U.S. Sorghum Belt, spanning South Dakota to central Texas, the limited 

transpiration (LT) trait could provide growers a 5% yield increase in water-limited conditions 

with high vapor pressure deficit (VPD) according to crop modeling. To transfer the LT trait into 

commercial breeding programs, an elite donor line must be developed. Characterizing the genetic 

architecture of LT informs markers and breeding strategy for development of an elite donor. To 

characterize the genetic architecture of LT, two biparental recombinant inbred line (RIL) 

mapping families were developed from crossing putative LT parents SC979 and BTx2752 by 

putative non-LT parent RTx430. For this study, the families were grown together as a mapping 

population in three locations (continental-humid eastern Kansas, semi-arid western Kansas, and 

semi-arid Colorado) in one year. The families were phenotyped for the LT trait using UAS-
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collected thermal imaging and canopy temperature as a proxy. The families were initially 

designed with the goal of controlling phenotypic covariates of canopy temperature associated 

with height and flowering time, like neighbor-shading and artifactual temperature inflation 

related to panicle imaging. 

 To test whether the family design controlled for height and flowering time covariates, the 

populations were phenotyped for both traits. High broad-sense heritability (H2) > 0.86 for all 

traits and families across locations indicates that the traits are not fixed. However, phenotypic 

distributions reveal that most lines are within an agronomically-relevant range that limits 

confounding covariates. Using DArTseq-LD genotyping data, GWAS analyses of height and 

flowering time reveal putatively significant marker-trait associations (MTA) with known loci 

underlying height and maturity in sorghum. These results collectively indicate that, while genetic 

variation for height and flowering exist in the LT mapping families, the resulting phenotypes are 

homogeneous enough to be suitable for LT genetic mapping. 

 To test hypotheses on the monogenic, oligogenic, or polygenic architecture of the LT 

trait, canopy temperature data collected by the UAS-thermal imaging missions was used. Non-

zero H2 of canopy temperature in most location-timepoints indicates genetic variation is present 

for LT in the population. Continuous phenotypic distributions imply a quantitative architecture. 

GWAS analyses revealed moderate marker-trait association peaks visible within timepoints and 

across locations, indicating oligogenic architecture of LT. Some of those peaks also colocalize 

with sorghum homologs of aquaporin genes in Arabidopsis thaliana, suggesting that aquaporin 

variation could be a molecular basis underlying the trait. These results provide a basis for 

marker-assisted selection in developing an LT donor line.  
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CHAPTER I: SORGHUM CONVERSION PROGRAM UNLOCKS SORGHUM 

GENETIC DIVERSITY FOR TEMPERATE BREEIDNG 
 
 
 

Genetic Diversity Sustains Crop Improvement 

Utilization of genetic diversity is integral to crop improvement. Domestication, 

commercial crop breeding, and genetic drift cause a loss of genetic diversity within crop species, 

which in turn results in losing agronomically relevant traits from breeding lines (Jordan et al., 

2011). Necessary genes for traits that could facilitate a higher or more stable yield, such as 

disease resistance and drought tolerance, may not be available in elite breeding lines used by 

commercial breeders (Papa et al., 2005). Additionally, this narrow genetic basis places crops at 

increased risk for total loss when faced with continually evolving and migrating stressors (Nevo 

et al., 1979). To aid in combating these issues, plant genetic resources (PGR) offer readily 

available pools of diversity that can be unlocked for use in crop improvement via pre-breeding, 

trait discovery, and knowledge of phylogenetic relationships (Zongo et al., 2005). 

Pre-Breeding Bridges Germplasm and Crop Improvement 

Development of conserved PGR is essential for their inclusion in crop improvement 

programs. Genetic resource conservation is facilitated both in situ, in the natural environment, 

and ex situ, by removal for collection at a genebank or associated facility (Gepts, 2006). PGR 

entering the genebanking system, broadly termed germplasm accessions, undergo 

characterization to classify various morphological, functional, and molecular attributes. 

Alongside the characterization data, detailed information on the collection site, origin, and 

taxonomy of the sample is cataloged (Ramanatha Rao & Hodgkin, 2002). This information is 
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integral for crop improvement next-users to identify candidate accessions that may hold the 

genetic diversity necessary to the advancement of their breeding programs (Gepts, 2006).  

Once accessions have been identified, understanding the genetic basis of the trait or 

gene(s) of interest increases the feasibility of PGR use in crop improvement. Linkage drag with 

undesirable genes, complex polygenic architecture, gene pool incompatibility, and temperate-

tropical adaptation are common roadblocks that may be overcome using pre-breeding when 

developing germplasm (Sharma et al., 2013). First, genes of interest are often found in 

unadapted, unimproved germplasm that may require adjustments to photoperiod sensitivity for 

production in the target range. Backcross introgression schemes using an adapted donor parent 

enable large-scale conversion of germplasm into usable lines (Allier et al., 2020; Cowling et al., 

2009). Next, genes desirable for crop improvement may be in linkage disequilibrium with genes 

controlling for undesirable traits. An example is grain tannins in possible linkage with early-

season chilling tolerance in Chinese sorghum germplasm, where tannins are unacceptable in U.S. 

hybrids. Using a repeated backcrossing and selection process, pre-breeders may be able to 

introgress only the desired genes into a donor breeding line (Jordan et al., 2011; Tanksley & 

Nelson, 1996). Next, while certain traits like some disease resistance may commonly be under 

qualitative control, many physiological traits are controlled quantitatively. The more complex the 

genetic architecture, the higher the likelihood that carefully constructed yield linkage groups in 

commercial breeding lines could be disrupted during recombination. This is unfavorable to 

commercial breeders, therefore qualitative traits are preferred for integration into programs 

(Allier et al., 2020). Finally, diverse genetic materials containing the genes of interest may 

belong to a secondary or tertiary gene pool of the target breeding lines. Crossing species from 

different gene pools often results in fertility issues, limited gene transfer, lethality, or complete 
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sterility (Harlan & Wet, 1971). Pre-breeding can employ radical techniques to make successful 

crosses and transfer target genes into donor lines. Together, all or some of these techniques 

bridge the gap between conserved unadapted germplasm and their feasible use in crop 

improvement. 

Sorghum Conversion Program Unlocks Untapped Genetic Materials 

The Sorghum Conversion Program (SCP) is a particularly notable example of utilizing 

PGR to develop collections of adapted germplasm readily available for crop improvement. 

Sorghum (Sorghum bicolor (L.) Moench) is the fifth most important cereal crop produced 

globally, serving as a staple to over 500 million people living in semi-arid regions (FAOSTAT, 

2021). Prominent drought tolerance characteristics in sorghum facilitate its usefulness as a staple 

cereal in those semi-arid regions like Africa’s Sahel (Mundia et al., 2019). In the United States, 

sorghum is primarily grown in the southern and central plains for animal feed, forage, and 

biofuel (Stamenković et al., 2020), in addition to the large export market primarily selling to 

China in recent years (Monk et al., 2014; Xing-Lin et al., 2017). Sorghum has a reported center 

of origin in northeastern Africa near the Sudan-Egypt border (Harlan & Stemler, 2011), but with 

evidence of other independent domestication events in West Africa and Ethiopia (Sagnard et al., 

2011). Hence, the vast diversity of African sorghum offers potential sources of allelic diversity 

useful for sorghum breeding in global regions outside of Africa.  

The SCP sought to adapt tropical African sorghums to temperate grain sorghum breeding 

specifications in the United States while retaining the wealth of allelic diversity present 

elsewhere in genomic regions not involved in the conversion (Stephens et al., 1967). First 

implemented in the 1960s as a partnership between the United States Department of Agriculture-

Agricultural Research Service (USDA-ARS) and Texas A&M University-Texas Agricultural 
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Experiment Station (TAES), the SCP is still active today and continues to release adapted lines 

(R. Klein et al., 2015a, p. 40). To adapt these sorghums, they are converted from photoperiod-

sensitive short-day, tall plants to photoperiod-insensitive, dwarfed plants able to be mechanically 

harvested in temperate latitudes (R. Klein et al., 2008; Stephens et al., 1967). Once adapted to 

these breeding standards, temperate sorghum pre-breeding programs are able to explore desirable 

alleles, genes, or traits of interest in the converted exotic germplasm and introgress them into 

elite breeding lines. From these introgressions, commercial breeders receive donor lines 

containing the target genes that are compatible with the elite commercial breeding material. 

These donor lines contain the genetic material of interest in a relevant elite background without 

undesirable linkage drag which disrupts constructed yield haplotypes. (Hao et al., 2021; K. Singh 

et al., 2019). Ultimately, adapting tropical germplasm to temperate breeding standards is 

necessary for broadening the genetic basis of grain sorghum in the US and ensuring continual 

advancement in temperate sorghum crop improvement.  

Intentions and Motivation 

Grain sorghum has been grown in the United States in some capacity since the middle of 

the 19th century. Its inception was driven by farmer selections for early and dwarf mutant plants 

in fields of tropical Standard Yellow Milo and Guinea Kafir, varieties originally brought to the 

continent from Africa through the slave trade (Quinby, 1974). A few other temperate-adapted 

African lines, such as Hegari and PI 54484, were also introduced to U.S. production over time.  

Farmer selections within the same sets of limited germplasm alone could not significantly 

expand grain sorghum genetic diversity and yield (Quinby, 1974), and beneficial spontaneous 

mutations for photoperiod insensitivity were not abundant. The discovery of cytoplasmic-genetic 

male sterility (CMS) in sorghum in the early 1950s unlocked revolutionary new opportunities for 
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efficiently producing hybrids with heterosis. Hybrids offered promising potential that 

incentivized sorghum breeders to identify suitable diverse A/B and R-line pairs with good 

combining ability to use as parents. The available temperate-adapted US germplasm was limited 

in such pairings, causing breeders to turn their search to the geographic origins of sorghum. 

Under the Sorghum Conversion Program diverse tropical African varieties were to be sourced 

and converted to temperate breeding specifications. 

The evolutionary history of sorghum in Africa produced a wealth of genetic diversity 

within tropical African landraces, crop wild relatives, and improved varieties (Ananda et al., 

2020). Valuable alleles that improve yield and quality through increased heterosis, drought 

adaptation, disease and insect resistance, nutrition, and grain quality traits may only be found in 

tropical African germplasm that is unable to flower in temperate breeding environments. 

Spontaneous mutations in sorghum for photoperiod-insensitivity occurred in temperate regions 

of Africa, Asia, and the southern US, offering some viable lines able to be cultivated in higher 

latitudes (Quinby, 1974; Thurber et al., 2013a). Prior to the development of converted lines, U.S. 

breeding programs were limited to only that small pool of available temperate-adapted 

germplasm, unable to evaluate tropical materials in target environments. 

The original Sorghum Conversion Program pursued introgression of elite haplotypes for 

early flowering and dwarf height into exotic African germplasm while leaving non-conversion 

haplotypes undisturbed (Stephens et al., 1967). The converted sorghums were then able to be 

used in trait screening and breeding in temperate latitudes based on pollen availability and 

flowering times better coinciding with that of existing US breeding lines. There was not a 

distinctly specified justification for most of the original candidate conversion lines. The 

accessions were selected with the goal of capturing an assortment of genetically diverse 
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germplasm that could potentially prove useful in sorghum improvement. Over time, the 

converted accessions could provide the necessary diversity to sorghum geneticists and breeders 

to fulfill trait exploration and elite breeding line development. 

Timeline 

The SCP began as a partnership between the USDA-ARS research station in Mayaguez, 

Puerto Rico and TAES in 1963. With plantings beginning in Mayaguez in 1963, one generation 

per year in each Puerto Rico and Lubbock, Texas was standard. The tropical Puerto Rican 

climate offered potential for two generations in some seasons. Expedited backcrossing and 

selection aided by the favorable Mayaguez environments allowed for the first partially converted 

SCP materials to be released in 1969. Distribution of the first 63 fully converted lines was 

completed the following year in 1970, (Rosenow, 1978) and the program released approximately 

30-40 lines per year afterward through 1999. More than 700 fully converted lines in total were 

delivered by the SCP. 

The SCP was reinstated in 2009, employing molecular tools to shorten conversion time 

(R. Klein et al., 2015b). Genomic selection is used to identify lines that display a higher 

proportion of the tropical African alleles after only a single backcross. Marker-assisted selection 

has also become the baseline standard to increase conversion efficiency. Many of the accessions 

chosen for conversion through the reinstated SCP are derived from the Ethiopian and Sudanese 

germplasm collections, based on the history of valuable alleles being found within them (R. 

Klein et al., 2015; R. Klein et al., 2013). The reinstated SCP, still active today, continues to 

release lines with prospective alleles for cytoplasmic male sterility and fertility restoration, 

disease and insect resistance, grain quality, and drought tolerance traits. The reinstated program 
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primarily focuses on partial conversions. Over 1500 total converted or partially-converted lines 

have been released through the programs to date. 

Technical Approach 

Facilitators of the SCP used a backcross and phenotypic selection approach in converting 

materials to early and short temperate breeding standards. Nearly all the African materials for 

conversion were crossed with U.S. breeding line BTx406 as a maturity and height donor. 

BTx406 contains the maturity genotypes ma1, Ma2, Ma3, Ma4, which produce earlier flowering 

phenotypes, and the height genotype dw2, which produces shorter stature phenotypes. Pedigree 

analysis of maturity and height in BTx406 revealed that Early White Milo was the ma1 donor and 

Double Dwarf Yellow Milo was the dw2 donor (R. Klein et al., 2008; Quinby, 1967). In the F2 

generation, plants that displayed the appropriate shorter height and early flowering time but 

otherwise retained characteristics of the exotic parent were selected and then backcrossed to the 

exotic parent. For partial conversions, lines were released at the BC1F2:3 (R. Klein et al., 2015b). 

Full conversion involved advancement to the BC4F3 where additional selections for selfing and 

inbred development were carried out (C. W. Smith & Frederiksen, 2000). 

Phenology in photoperiod-sensitive plants is related to the latitude of the growing 

environment and its influence on day length (Stinchcombe et al., 2004). The short-day nature of 

sorghum results in a critical photoperiod of approximately 13 hours or less. Outside of latitudes 

0° to 20° N or S, this critical photoperiod is exceeded during the growing season, extending the 

number of days to flowering and maturity (Abdulai et al., 2012). Lack of late-season chilling 

tolerance in sorghum necessitates conversion to early, photoperiod insensitive lines to reach 

maturity before low temperatures kill off plants (S. P. Singh, 1985). In addition to latitudinal 
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positioning, phenology is influenced by temperature, circadian rhythms, developmental stage of 

the plant, and phytohormones (Casto et al., 2019). 

The genetic control of flowering in sorghum has been studied using homologs in the 

model plant Arabidopsis thaliana. In A. thaliana, a long-day plant, the essential core flowering 

time gene FLOWERING LOCUS T (FT) is expressed as a response to light signals and circadian 

cues. FT is expressed under long-day conditions which initiates flowering (Corbesier et al., 

2007). FT homologs are present in sorghum, as flowering time pathways are conserved across 

species to varying degrees. In sorghum, SbCN8 and SbCN12 are FT-like genes that regulate 

floral transition. They are expressed once day length falls within the critical short-day 

photoperiod. SbCN8 and SbCN12 are regulated by several genetic factors, including CONSTANS 

(Casto et al., 2019) and the six maturity loci, Ma1-Ma6, of which Ma1 and Ma6 control the largest 

effects (R. Klein et al., 2008). Lateness is dominant at each of the maturity loci. 

The genetic control of height in sorghum has been of interest to U.S. breeding programs 

since the 1950s when mechanized harvest became a breeding priority (Quinby, 1974). Height is a 

result of the genes controlling the number of internodes and their respective lengths (Hadley, 

1957). Height is primarily controlled by four additive loci in sorghum, Dw1-Dw4, with tallness 

being dominant at each (Hadley, 1957; Li et al., 2015). It is also influenced by genetic factors 

outside of the four dwarfing loci, clearly visualized with contrasting heights produced in 

different lines with the same height genotype (Quinby & Karper, 1953). Recessiveness at the loci 

causes brachytic dwarfing, where internode length is reduced independently of other stem or leaf 

traits to make the plant shorter (Hilley et al., 2017). While tall landraces in Africa are favored for 

stover in addition to grain, U.S. grain sorghum producers expect three-dwarf plants (recessive at 

three of the four height loci) no taller than approximately 150 centimeters.  
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Two large-effect maturity loci and one large-effect height locus important to temperate 

adaptation are mapped to the same linkage group (Lin et al., 1995). Ma6, Ma1, and Dw2 were 

placed on the distal end of chromosome 6, where Ma6 is mapped to a region between 0.5 and 0.8 

Mb (Murphy et al., 2014), Ma1 to ~40.3 Mb (Bowers et al., 2003; Thurber et al., 2013a), and 

Dw2 to ~42.3 Mb (Hilley et al., 2017). This proximity places ma1 and dw2 in tight linkage, 

supported by the high co-inheritance of both haplotypes (Higgins et al., 2014; Lin et al., 1995; 

Morris et al., 2013). Retrospective analyses of the conversions have revealed that chromosome 6 

is disproportionately identical-by-descent with Milo and Kafir ancestry present in the elite 

donor.  The ancestry and inbreeding practices favored in U.S. sorghum improvement have 

created large haplotypes in genomic regions with high linkage disequilibrium. In some cases of 

converted lines, nearly the entire elite chromosome 6 was introgressed into the exotic recurrent 

parent as a single haplotype, failing to retain the exotic genome outside of the necessary 

conversion haplotypes (R. Klein et al., 2008; Thurber et al., 2013a). Failure to retain the exotic 

chromosome 6 diversity in converted lines creates a gap in allelic diversity on the linkage group 

and across the genome available for temperature breeding. 

Breeding with Converted Lines Delivers Valuable Traits  

Converted lines are continually included in screening panels for traits of interest, and 

several traits of agronomic importance have been derived from them to date. Resistance traits to 

biotic stresses, such as sorghum aphid and anthracnose, as well as adaptive traits to abiotic 

stresses, such as staygreen, were discovered in converted lines and successfully integrated into 

commercial breeding programs. 
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Sorghum Aphid Resistance 

Phylogenetically, sorghum and sugarcane are closely related (Aono et al., 2021). In 2013, 

a sorghum-feeding biotype of the sugarcane aphid (Melanahpis sacchari), dubbed sorghum 

aphid (Melanaphis sorghii), moved into southeastern Texas and quickly expanded its range 

outward into the remainder of Texas, Louisiana, and Mississippi. After successfully 

overwintering in southern Texas, populations surged through much of the Sorghum Belt and had 

infested areas totaling 90 percent of U.S. sorghum acreage by 2015 (Medina et al., 2017). 

Meanwhile, sorghum aphid (SA) also appeared in Haiti in 2015 and caused catastrophic crop 

losses to the order of 80,000 metric tons. Haiti relies heavily on sorghum as a staple grain and 

forage, and the presence of SA threatened food security on a national level. 

SA infestations present a variety of challenges in sorghum production. When large 

colonies proliferate on the underside of leaves and pass threshold levels, the sap-sucking feeding 

activity severely damages the stand. This stress contributes to substantial yield losses in pre-

flowering infestations (Paudyal et al., 2020). Additionally, SA produces a sticky honeydew that 

is host to saprophytic fungi from which sooty mold arises and degrades crop quality. The 

honeydew in large quantities can also cause malfunctions in harvesting equipment (Mbulwe et 

al., 2016). These multi-modal effects of SA in Haiti and the U.S. Sorghum Belt launched plant 

breeders into action to develop SA-resistant lines. 

The Chibas breeding program at Quisqueya University in Haiti was able to make 

remarkably quick progress on development of a SA-resistant sorghum variety using globally 

admixed germplasm and rapid intercrossing. The globally-rare resistance allele was originally 

identified in the exotic Ethiopian accession PI 276837 (Muleta et al., 2021) and is found at the 

RMES1 locus between 2.6 and 2.8 Mb on chromosome 6 in a region consisting of 126kb (Wang 
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et al., 2013). Just two years after the devastation of the 2015 growing season, the Haitian 

breeding program was able to successfully select for the resistance allele in crosses using SA-

resistant West African variety IRAT204 (PI 656031) and release SA-resistant Haitan variety 

Papèpichon (Muleta et al., 2021).  

PI 276837 was converted as part of the Sorghum Conversion Program and registered as 

SC170 (PI 534157) in 1986 (Rosenow, 1986). This made it readily available for use in 

developing SA-resistant U.S. breeding lines alongside converted line SC110 (PI 533794), 

another resistance source registered in 1970. Popular U.S. resistant line RTx2783 (PI 656001) 

was developed using SC110 and remains heavily used in U.S. breeding efforts today (Armstrong 

et al., 2015). 

The efforts of the Haitian breeding program and the ability to screen exotic African 

germplasm for SA-resistance alleles were imperative in responding rapidly to devastating SA 

infestations. In part due to their immediate accessibility, the converted lines that contained the 

crucial RMES1 locus were critical in limiting further destructive infestations in U.S. sorghum 

production. While SA still exists in U.S. and Haitian sorghum fields, the development of 

resistant lines using exotic and converted material allows growers to minimize chemical 

insecticide inputs and maintain stable yields. Today, almost 90% of Haitian sorghum acreage is 

planted with the SA-resistant varieties, and the security of sorghum as a staple has returned to the 

region. 

Anthracnose Resistance 

Sorghum anthracnose, caused by the fungal pathogen Colletotrichum sublineolum, is a 

disease plaguing sorghum grown in warm, humid regions. Anthracnose is characterized by a 

variety of signs on all parts of the plant, but predominantly affects the stem and leaves. 
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Photosynthesis is inhibited by oval-shaped or circular lesions containing asexual fruiting bodies 

called acervuli on leaves (Cuevas & Prom, 2020). Infected stems supporting the panicle become 

internally discolored and blocked by the fungus, slowing or preventing the movement of water 

and nutrients through the xylem and phloem. This results in inhibited grain development, 

negatively affecting yield (Gwary et al., 2004). Yield losses due to anthracnose vary significantly 

and may exceed 60% in some cases based on factors like climate and management. Resistant 

varieties are a recommended component of integrated pest management for growers, but the 

highly variable genetic diversity of C. sublineolum populations poses a challenge for introducing 

comprehensive and lasting resistance to the pathogen (Cuevas et al., 2018). Another 

complication is the variable genetic architecture of anthracnose resistance in sorghum. Studies 

have reported single-gene resistance (Boora et al., 1998), multiple genes involved in resistance 

(Cuevas et al., 2018), and single gene resistance with multiple allelic forms. This impacts the 

feasibility of including some novel resistance sources in breeding. However, screening diverse 

sorghum germplasm, which may contain other novel anthracnose resistance alleles and genetic 

architectures, is a necessary endeavor to continue development of durably resistant varieties 

(Cruet-Burgos et al., 2020). 

Both the Ethiopian and Sudanese core sorghum collections, in addition to the sorghum 

association panel (SAP), were heavily screened for anthracnose resistance genes. The Ethiopian 

core collection of 335 lines contained a majority of resistant accessions with 169 scoring as 

resistant in one study (Cuevas et al., 2018). These accessions include converted lines like SC155 

(J Felderhoff et al., 2016; Patil et al., 2017), which have been successfully used in breeding 

anthracnose-resistant lines to the Texas and Georgia pathotypes (Erpelding, 2010). However, 
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many of the core collection accessions share the same resistance alleles and mechanism, which 

does not offer durable control of genetically diverse C. sublineolum populations.  

Many of the Ethiopian accessions with high frequency of resistance alleles are of the 

durra type and contain the candidate resistance gene Sobic.009G013300 on chromosome 9. 

Sobic.009G013300 codes for pathogen recognition as an NBD-LLR (Cuevas et al., 2018). It has 

been proposed that, evolutionarily, the durra background may have generated the high frequency 

of resistance alleles at this locus. Ultimately, the Ethiopian core collection has provided valuable 

anthracnose-resistant breeding lines to US grain sorghum via the SCP but diversifying the 

genetic background of the resistance mechanism is necessary to provide durable resistance 

(Erpelding, 2010). 

The Sudanese core collection was also screened for resistance genes. In one study, 318 

Sudanese accessions were evaluated and less than a quarter were found to be resistant (55 

accessions). In these 55 accessions, GWAS determined that resistance was primarily correlated 

with loci on chromosomes 2 and 5 (Patil et al., 2017), though each locus only explained between 

2 and 7 percent of the observed variation (Cuevas & Prom, 2020). Consistent with the findings 

from the Ethiopian core collection, the durra type accessions contained nearly double the rare 

resistance alleles as the caudatum type accessions did. Notably, the Sudanese converted line 

SC748-5 derives its resistance from a locus on the distal region of chromosome 5 that codes for 

the Cg1 gene (Perumal et al., 2009). SC748-5 is highly valued for breeding for the Texas 

pathotype (Burrell et al., 2015).  

Accessions from different national core collections and geographic localities provide 

anthracnose resistance from a multitude of loci and genetic architectures. This illustrates the need 

to conserve accessions from many regions and employ their usage in breeding programs (Cuevas 
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et al., 2018). While fully understanding the genetic architecture of anthracnose resistance and the 

formation of pathotypes will make for more efficient germplasm screening, breeders are seeking 

resistance now. Diversifying U.S. breeding materials with converted lines from distinct African 

locales is a viable defense to aid in prevention of widespread anthracnose susceptibility in 

sorghum (Erpelding, 2010). 

Stay-green 

The exceptional drought tolerance present in sorghum is attributed to its domestication in 

the sub-Saharan Sahelian regions of Africa. Even so, as climate change shifts predictability of 

precipitation patterns and water availability, sorghum is affected by post-flowering drought 

(Vadez et al., 2013). The discovery of the stay-green trait in converted lines has provided 

promising potential as a safeguard against such conditions in rainfed systems. Stay-green lines 

are characterized by delayed leaf senescence post-anthesis independent of soil water content, 

which allows the sorghum to maximize grain growth rates and yield compared to senescent lines 

(Mahalakshmi & Bidinger, 2002).  

The stay-green trait was first introduced in 1968. Most breeding for stay-green in US 

sorghum hybrids has origins from one African source, an Ethiopian durra landrace (Borrell et al., 

2014). Known in industry as BTx642 or B35, this line was developed as a partially-converted 

derivative of SC35-6 (SC35-6 later underwent full conversion and was released in 1986). As a 

partially-converted line, B35 was selected at the BC1 during the SCP height and maturity 

introgressions (Kassahun et al., 2010; Vadez et al., 2013). At this stage, the unadapted Ethiopian 

accession IS 12555 had been crossed to donor parent BTx406 and only one generation of 

backcross of selected progeny to IS 12555 had occurred. Since the introduction of B35 as a 
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breeding line, markers have been developed to aid in the selection of putative stay-green loci 

(Sukumaran et al., 2016). 

At least four independent stay-green loci have been identified, Stg1-Stg4, though their 

independent roles in trait expression have not been fully determined (Kassahun et al., 2010). 

QTL studies have placed Stg1 and Stg2 on chromosome 3, Stg3 on chromosome 2, and Stg4 on 

chromosome 5 (Sanchez et al., 2002). Additionally, analyses of the QTL effect sizes show that 

Stg2 accounts for 30% of the phenotypic variability, Stg1 accounts for 20%, Stg3 accounts for 

16%, and Stg4 accounts for 10% (Xu et al., 2000).  

There are a variety of physiological processes that contribute to delayed senescence that 

the loci may be involved in, including decreased root angle, decreased size of upper leaves, and 

prolonged chlorophyll retention (Thomas & Howarth, 2000). Only functional expressions of the 

stay green trait will ultimately contribute to stable yields in post-anthesis drought, meaning that 

photosynthetic activity must be maintained during grain fill (Borrell et al., 2014). Therefore, 

genotypes that simply remain green in post-flowering drought but do not conduct photosynthetic 

activity are non-functional stay-green and not relevant to sorghum crop improvement. 

As the predictability of groundwater and precipitation in the U.S. Sorghum Belt shifts 

with the changing climate, the interest in integrating drought adaptive traits into breeding lines 

has greatly increased. While BTx642 has remained a favored line in breeding, identifying stay-

green alleles in other converted germplasm is a necessary step to diversify the genetic basis of 

the trait in U.S. grain sorghum.  

Unresolved Needs 

While the SCP has provided valuable sources for traits that have positively-impacted US 

sorghum production, there are still gaps and issues to be addressed. The erasure of most or all of 
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the tropical background from chromosome 6 in converted lines (R. Klein et al., 2008) and the 

need to find new fertility restorers and male-sterile complements in the CMS seed production 

system (Kante et al., 2018) are both important considerations for the development and future of 

SCP lines. 

The absence of marker-assisted breeding tools in the original SCP and the linkage 

disequilibrium between large-effect maturity and dwarfing loci on chromosome 6 resulted in the 

loss of up to 10% of the exotic diversity in many converted lines (R. Klein et al., 2008; Thurber 

et al., 2013a). Crucial alleles for traits of interest may exist in the chromosome 6 exotic 

background, and their unintentional exclusion from released converted lines hinders marker 

development trait architecture characterization (Thurber et al., 2013a). Gene flow between these 

adapted converted lines and the original tropical germplasm could recover some of the lost exotic 

haplotypes on chromosome 6. While the Reinstated Sorghum Conversion Program employs 

marker-assisted or genomic selection in all new conversions, revisiting registered materials from 

the original SCP could prove useful. Recovering the chromosome 6 exotic background in those 

materials could greatly broaden the variation for known and novel traits valued in temperate 

breeding.  

In the 3-line CMS crossing scheme, heavy reliance on one cytoplasm can be costly if the 

lines developed with that cytoplasm all share susceptibility to a pathogen or abiotic stress 

(Murty, 1986). Sorghum hybrid production is heavily reliant on the A1 cytoplasm developed 

from Milo. The A2 cytoplasm, developed from Kafir, has received some attention, but the A3 

and A4 cytoplasms are generally limited in breeding applications due to lack of elite restorer 

lines and low stability of restoration (Kante et al., 2018). This risk of susceptibility is perhaps 

best illustrated in the devastation of U.S. hybrid seed corn production by the fungal disease 
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southern corn leaf blight (SCLB) in the early 1970s. At the time, between 75 and 90% of hybrid 

seed corn in the U.S. was grown in the same cms-T cytoplasmic background, which suddenly 

became susceptible to SCLB via a spontaneous mutation in the pathogen. More than $1 billion 

USD of losses were incurred from destruction of 15% of the U.S. acreage (Bruns, 2017). The 

feasible use of alternate cytoplasms in sorghum hybrids could be addressed in part by screening 

for candidate A/B and R-line pairs in converted sorghum germplasm (Moran & Rooney, 2003; 

Murty, 1986).  

Conclusions 

The Sorghum Conversion Program embarked on a goal to significantly expand the 

genetic diversity of germplasm available for use in temperate sorghum breeding (Stephens et al., 

1967). Converted germplasm has been widely adopted in breeding programs with use in the 

pedigrees of nearly all hybrids released since the 1970s (Smith et al., 2010). Converted 

germplasm has proven valuable in breeding for insect tolerance (Wang et al., 2013), disease 

resistance (Erpelding, 2010), drought tolerance (Xu et al., 2000), and other traits. The loss of 

diversity on much of chromosome 6 from conversions pre-dating marker-assisted breeding 

creates opportunity to recover those exotic haplotypes and investigate potentially adaptive loci 

(Thurber et al., 2013). As demonstrated by the SCP, target zone adaptation of PGR is imperative 

to using diverse genetic materials in crop improvement (Sharma et al., 2013). Broadening the 

genetic basis of our crops with the help of pre-breeding creates durable and productive 

agriculture systems. 

  



18 

 

REFERENCES 

 

 

 

Abdulai, A. L., Kouressy, M., Vaksmann, M., Asch, F., Giese, M., & Holger, B. (2012). Latitude 

and Date of Sowing Influences Phenology of Photoperiod-Sensitive Sorghums. Journal 

of Agronomy and Crop Science, 198(5), 340–348. https://doi.org/10.1111/j.1439-

037X.2012.00523.x 

Allier, A., Teyssèdre, S., Lehermeier, C., Moreau, L., & Charcosset, A. (2020). Optimized 

breeding strategies to harness genetic resources with different performance levels. BMC 

Genomics, 21(1), 349. https://doi.org/10.1186/s12864-020-6756-0 

Ananda, G. K. S., Myrans, H., Norton, S. L., Gleadow, R., Furtado, A., & Henry, R. J. (2020). 

Wild Sorghum as a Promising Resource for Crop Improvement. Frontiers in Plant 

Science, 11, 1108. https://doi.org/10.3389/fpls.2020.01108 

Aono, A. H., Pimenta, R. J. G., Garcia, A. L. B., Correr, F. H., Hosaka, G. K., Carrasco, M. M., 

Cardoso-Silva, C. B., Mancini, M. C., Sforça, D. A., dos Santos, L. B., Nagai, J. S., 

Pinto, L. R., Landell, M. G. de A., Carneiro, M. S., Balsalobre, T. W., Quiles, M. G., 

Pereira, W. A., Margarido, G. R. A., & de Souza, A. P. (2021). The Wild Sugarcane and 

Sorghum Kinomes: Insights Into Expansion, Diversification, and Expression Patterns. 

Frontiers in Plant Science, 12. 

https://www.frontiersin.org/articles/10.3389/fpls.2021.668623 

Armstrong, J. S., Rooney, W. L., Peterson, G. C., Villenueva, R. T., Brewer, M. J., & Sekula-

Ortiz, D. (2015). Sugarcane Aphid (Hemiptera: Aphididae): Host Range and Sorghum 

Resistance Including Cross-Resistance From Greenbug Sources. Journal of Economic 

Entomology, 108(2), 576–582. https://doi.org/10.1093/jee/tou065 



19 

 

Boora, K. S., Frederiksen, R., & Magill, C. (1998). DNA-Based Markers for a Recessive Gene 

Conferring Anthracnose Resistance in Sorghum. Crop Science, 38(6), 

cropsci1998.0011183X003800060048x. 

https://doi.org/10.2135/cropsci1998.0011183X003800060048x 

Borrell, A. K., Mullet, J. E., George-Jaeggli, B., van Oosterom, E. J., Hammer, G. L., Klein, P. 

E., & Jordan, D. R. (2014). Drought adaptation of stay-green sorghum is associated with 

canopy development, leaf anatomy, root growth, and water uptake. Journal of 

Experimental Botany, 65(21), 6251–6263. https://doi.org/10.1093/jxb/eru232 

Bowers, J. E., Abbey, C., Anderson, S., Chang, C., Draye, X., Hoppe, A. H., Jessup, R., Lemke, 

C., Lennington, J., Li, Z., Lin, Y.-R., Liu, S.-C., Luo, L., Marler, B. S., Ming, R., 

Mitchell, S. E., Qiang, D., Reischmann, K., Schulze, S. R., … Paterson, A. H. (2003). A 

high-density genetic recombination map of sequence-tagged sites for sorghum, as a 

framework for comparative structural and evolutionary genomics of tropical grains and 

grasses. Genetics, 165(1), 367–386. 

Bruns, H. A. (2017). Southern Corn Leaf Blight: A Story Worth Retelling. Agronomy Journal, 

109(4), 1218–1224. https://doi.org/10.2134/agronj2017.01.0006 

Burrell, A. M., Sharma, A., Patil, N. Y., Collins, S. D., Anderson, W. F., Rooney, W. L., & 

Klein, P. E. (2015). Sequencing of an Anthracnose-Resistant Sorghum Genotype and 

Mapping of a Major QTL Reveal Strong Candidate Genes for Anthracnose Resistance. 

Crop Science, 55(2), 790–799. https://doi.org/10.2135/cropsci2014.06.0430 

Casto, A. L., Mattison, A. J., Olson, S. N., Thakran, M., Rooney, W. L., & Mullet, J. E. (2019). 

Maturity2, a novel regulator of flowering time in Sorghum bicolor, increases expression 

of SbPRR37 and SbCO in long days delaying flowering. PLoS ONE, 14(4), e0212154. 



20 

 

https://doi.org/10.1371/journal.pone.0212154 

Corbesier, L., Vincent, C., Jang, S., Fornara, F., Fan, Q., Searle, I., Giakountis, A., Farrona, S., 

Gissot, L., Turnbull, C., & Coupland, G. (2007). FT protein movement contributes to 

long-distance signaling in floral induction of Arabidopsis. Science (New York, N.Y.), 

316(5827), 1030–1033. https://doi.org/10.1126/science.1141752 

Cowling, W. A., Buirchell, B. J., Falk, D. E., Cowling, W. A., Buirchell, B. J., & Falk, D. E. 

(2009). A model for incorporating novel alleles from the primary gene pool into elite 

crop breeding programs while reselecting major genes for domestication or adaptation. 

Crop and Pasture Science, 60(10), 1009–1015. https://doi.org/10.1071/CP08223 

Cruet-Burgos, C. M., Cuevas, H. E., Prom, L. K., Knoll, J. E., Stutts, L. R., & Vermerris, W. 

(2020). Genomic Dissection of Anthracnose (Colletotrichum sublineolum) Resistance 

Response in Sorghum Differential Line SC112-14. G3: Genes|Genomes|Genetics, 10(4), 

1403–1412. https://doi.org/10.1534/g3.120.401121 

Cuevas, H. E., & Prom, L. K. (2020). Evaluation of genetic diversity, agronomic traits, and 

anthracnose resistance in the NPGS Sudan Sorghum Core collection. BMC Genomics, 

21(1), 88. https://doi.org/10.1186/s12864-020-6489-0 

Cuevas, H. E., Prom, L. K., Cooper, E. A., Knoll, J. E., & Ni, X. (2018). Genome-Wide 

Association Mapping of Anthracnose (Colletotrichum sublineolum) Resistance in the 

U.S. Sorghum Association Panel. The Plant Genome, 11(2), 170099. 

https://doi.org/10.3835/plantgenome2017.11.0099 

Erpelding, J. E. (2010). Anthracnose Resistance in Sorghum Breeding Lines Developed from 

Ethiopian Germplasm. Plant Health Progress, 11(1), 3. https://doi.org/10.1094/PHP-

2010-1123-02-RS 



21 

 

FAOSTAT. (n.d.). Retrieved December 11, 2021, from https://www.fao.org/faostat/en/#data 

Gepts, P. (2006). Plant Genetic Resources Conservation and Utilization: The Accomplishments 

and Future of a Societal Insurance Policy. Crop Science, 46(5), 2278–2292. 

https://doi.org/10.2135/cropsci2006.03.0169gas 

Gwary, D. M., Rabo, T. D., & Anaso, A. B. (2004). The development of anthracnose symptoms 

on sorghum genotypes in the Nigerian savanna / Die Entwicklung von 

Anthraknosesymptomen an Hirse-Genotypen in der nigerianischen Savanne. Zeitschrift 

Für Pflanzenkrankheiten Und Pflanzenschutz / Journal of Plant Diseases and Protection, 

111(1), 96–103. 

Hadley, H. H. (1957). An Analysis of Variation in Height in Sorghum1. Agronomy Journal, 

49(3), 144–147. https://doi.org/10.2134/agronj1957.00021962004900030010x 

Hao, H., Li, Z., Leng, C., Lu, C., Luo, H., Liu, Y., Wu, X., Liu, Z., Shang, L., & Jing, H.-C. 

(2021). Sorghum breeding in the genomic era: Opportunities and challenges. TAG. 

Theoretical and Applied Genetics. Theoretische Und Angewandte Genetik, 1–26. 

https://doi.org/10.1007/s00122-021-03789-z 

Harlan, J. R., & Stemler, A. (2011). The Races of Sorghum in Africa. In The Races of Sorghum 

in Africa (pp. 465–478). De Gruyter Mouton. 

https://doi.org/10.1515/9783110806373.465 

Harlan, J. R., & Wet, J. M. J. de. (1971). Toward a Rational Classification of Cultivated Plants. 

TAXON, 20(4), 509–517. https://doi.org/10.2307/1218252 

Higgins, R. H., Thurber, C. S., Assaranurak, I., & Brown, P. J. (2014). Multiparental mapping of 

plant height and flowering time QTL in partially isogenic sorghum families. G3 

(Bethesda, Md.), 4(9), 1593–1602. https://doi.org/10.1534/g3.114.013318 



22 

 

Hilley, J. L., Weers, B. D., Truong, S. K., McCormick, R. F., Mattison, A. J., McKinley, B. A., 

Morishige, D. T., & Mullet, J. E. (2017). Sorghum Dw2 Encodes a Protein Kinase 

Regulator of Stem Internode Length. Scientific Reports, 7(1), 4616. 

https://doi.org/10.1038/s41598-017-04609-5 

J Felderhoff, T., M McIntyre, L., Saballos, A., & Vermerris, W. (2016). Using Genotyping by 

Sequencing to Map Two Novel Anthracnose Resistance Loci in Sorghum bicolor. G3 

(Bethesda, Md.), 6(7), 1935–1946. https://doi.org/10.1534/g3.116.030510 

Jordan, D. R., Mace, E. S., Cruickshank, A. W., Hunt, C. H., & Henzell, R. G. (2011). Exploring 

and Exploiting Genetic Variation from Unadapted Sorghum Germplasm in a Breeding 

Program. Crop Science, 51(4), 1444–1457. https://doi.org/10.2135/cropsci2010.06.0326 

Kante, M., Rattunde, H. F. W., Nébié, B., Weltzien, E., Haussmann, B. I. G., & Leiser, W. L. 

(2018). QTL mapping and validation of fertility restoration in West African sorghum A1 

cytoplasm and identification of a potential causative mutation for Rf2. Theoretical and 

Applied Genetics, 131(11), 2397–2412. https://doi.org/10.1007/s00122-018-3161-z 

Kassahun, B., Bidinger, F. R., Hash, C. T., & Kuruvinashetti, M. S. (2010). Stay-green 

expression in early generation sorghum [Sorghum bicolor (L.) Moench] QTL 

introgression lines. Euphytica, 172(3), 351–362. https://doi.org/10.1007/s10681-009-

0108-0 

Klein, R., Miller, F., Bean, S., & Klein, P. (2015a). Registration of 40 Converted Germplasm 

Sources from the Reinstated Sorghum Conversion Program. Journal of Plant 

Registrations, 10. https://doi.org/10.3198/jpr2015.05.0034crg 

Klein, R., Miller, F., Bean, S., & Klein, P. (2015b). Registration of 40 Converted Germplasm 

Sources from the Reinstated Sorghum Conversion Program. Journal of Plant 



23 

 

Registrations, 10. https://doi.org/10.3198/jpr2015.05.0034crg 

Klein, R., Mullet, J., Jordan, D., Miller, F., Rooney, W., Menz, M., Franks, C. D., & Klein, P. 

(2008). The Effect of Tropical Sorghum Conversion and Inbred Development on Genome 

Diversity as Revealed by High-Resolution Genotyping. Crop Science, 48. 

https://doi.org/10.2135/cropsci2007.06.0319tpg 

Klein, R. R., Miller, F. R., Klein, P. E., & Burke, J. J. (2013). Registration of Partially Converted 

Germplasm from 44 Accessions of the USDA-ARS Ethiopian and Sudanese Sorghum 

Collections. Journal of Plant Registrations, 7(3), 368–372. 

https://doi.org/10.3198/jpr2012.08.0025crgs 

Li, X., Li, X., Fridman, E., Tesso, T. T., & Yu, J. (2015). Dissecting repulsion linkage in the 

dwarfing gene Dw3 region for sorghum plant height provides insights into heterosis. 

Proceedings of the National Academy of Sciences, 112(38), 11823–11828. 

https://doi.org/10.1073/pnas.1509229112 

Lin, Y. R., Schertz, K. F., & Paterson, A. H. (1995). Comparative analysis of QTLs affecting 

plant height and maturity across the Poaceae, in reference to an interspecific sorghum 

population. Genetics, 141(1), 391–411. https://doi.org/10.1093/genetics/141.1.391 

Mahalakshmi, V., & Bidinger, F. R. (2002). Evaluation of stay-green sorghum germplasm lines 

at ICRISAT. Crop Science, 42(3), 965–974. 

Mbulwe, L., Peterson, G. C., Scott-Armstrong, J., & Rooney, W. L. (2016). Registration of 

Sorghum Germplasm Tx3408 and Tx3409 with Tolerance to Sugarcane Aphid 

[Melanaphis sacchari (Zehntner)]. Journal of Plant Registrations, 10(1), 51–56. 

https://doi.org/10.3198/jpr2015.04.0025crg 

Medina, R. F., Armstrong, S. J., & Harrison, K. (2017). Genetic population structure of 



24 

 

sugarcane aphid, Melanaphis sacchari, in sorghum, sugarcane, and Johnsongrass in the 

continental USA. Entomologia Experimentalis et Applicata, 162(3), 358–365. 

https://doi.org/10.1111/eea.12547 

Monk, R., Franks, C., & Dahlberg, J. (2014). Sorghum. In Yield Gains in Major U.S. Field Crops 

(pp. 293–310). John Wiley & Sons, Ltd. https://doi.org/10.2135/cssaspecpub33.c11 

Moran, J., & Rooney, W. (2003). Effect of Cytoplasm on the Agronomic Performance of Grain 

Sorghum Hybrids. Crop Science - CROP SCI, 43. 

https://doi.org/10.2135/cropsci2003.0777 

Morris, G. P., Ramu, P., Deshpande, S. P., Hash, C. T., Shah, T., Upadhyaya, H. D., Riera-

Lizarazu, O., Brown, P. J., Acharya, C. B., Mitchell, S. E., Harriman, J., Glaubitz, J. C., 

Buckler, E. S., & Kresovich, S. (2013). Population genomic and genome-wide 

association studies of agroclimatic traits in sorghum. Proceedings of the National 

Academy of Sciences, 110(2), 453–458. https://doi.org/10.1073/pnas.1215985110 

Muleta, K. T., Felderhoff, T., Winans, N., Walstead, R., Charles, J. R., Armstrong, J. S., Mamidi, 

S., Plott, C., Vogel, J. P., Lemaux, P. G., Mockler, T. C., Grimwood, J., Schmutz, J., 

Pressoir, G., & Morris, G. P. (2021). The recent evolutionary rescue of a staple crop 

depended on over half a century of global germplasm exchange (p. 2021.05.11.443651). 

https://doi.org/10.1101/2021.05.11.443651 

Mundia, C. W., Secchi, S., Akamani, K., & Wang, G. (2019). A Regional Comparison of Factors 

Affecting Global Sorghum Production: The Case of North America, Asia and Africa’s 

Sahel. Sustainability, 11(7), 2135. https://doi.org/10.3390/su11072135 

Murphy, R. L., Morishige, D. T., Brady, J. A., Rooney, W. L., Yang, S., Klein, P. E., & Mullet, 

J. E. (2014). Ghd7 (Ma6) Represses Sorghum Flowering in Long Days: Ghd7 Alleles 



25 

 

Enhance Biomass Accumulation and Grain Production. The Plant Genome, 7(2), 

plantgenome2013.11.0040. https://doi.org/10.3835/plantgenome2013.11.0040 

Murty, U. R. (1986). MILO AND NON-MILO SOURCES OF CYTOPLASMS IN SORGHUM 

BICOLOR (L) MOENCH. II. FERTILITY RESTORERS AND STERILITY 

MAINTAINERS ON NON-MILO CYTOPLASMS. Cereal Research Communications, 

14(2), 191–196. 

Nevo, E., Zohary, D., Brown, A. H. D., & Haber, M. (1979). Genetic Diversity and 

Environmental Associations of Wild Barley, Hordeum spontaneum, in Israel. Evolution, 

33(3), 815–833. https://doi.org/10.2307/2407648 

Papa, R., Acosta, J., Delgado-Salinas, A., & Gepts, P. (2005). A genome-wide analysis of 

differentiation between wild and domesticated Phaseolus vulgaris from Mesoamerica. 

Theoretical and Applied Genetics, 111(6), 1147–1158. https://doi.org/10.1007/s00122-

005-0045-9 

Patil, N. Y., Klein, R. R., Williams, C. L., Collins, S. D., Knoll, J. E., Burrell, A. M., Anderson, 

W. F., Rooney, W. L., & Klein, P. E. (2017). Quantitative Trait Loci Associated with 

Anthracnose Resistance in Sorghum. Crop Science, 57(2), 877–890. 

https://doi.org/10.2135/cropsci2016.09.0793 

Paudyal, S., Armstrong, J. S., Giles, K. L., Hoback, W., Aiken, R., & Payton, M. E. (2020). 

Differential responses of sorghum genotypes to sugarcane aphid feeding. Planta, 252(1), 

14. https://doi.org/10.1007/s00425-020-03419-w 

Perumal, R., Menz, M., Mehta, P., Katilé, S., Gutierrez-Rojas, L., Klein, R., Klein, P., Prom, L., 

Schlueter, J., Rooney, W., & Magill, C. (2009). Molecular mapping of Cg1, a gene for 

resistance to anthracnose (Colletotrichum sublineolum) in sorghum. Euphytica, 165. 



26 

 

https://doi.org/10.1007/s10681-008-9791-5 

Quinby, J. R. (1967). The Maturity Genes of Sorghum. In A. G. Norman (Ed.), Advances in 

Agronomy (Vol. 19, pp. 267–305). Academic Press. https://doi.org/10.1016/S0065-

2113(08)60737-3 

Quinby, J. R. (1974). Sorghum improvement and the genetics of growth. Texas A&M University 

Press. 

Quinby, J. R., & Karper, R. E. (1953). Inheritance of height in sorghum. Inheritance of Height in 

Sorghum. http://www.cabdirect.org/cabdirect/abstract/19541603750 

Ramanatha Rao, V., & Hodgkin, T. (2002). Genetic diversity and conservation and utilization of 

plant genetic resources. Plant Cell, Tissue and Organ Culture, 68(1), 1–19. 

https://doi.org/10.1023/A:1013359015812 

Rosenow, D. T. (1978). Stalk rot resistance breeding in Texas. Sorghum Diseases: A World 

Review-Proc. International Workshop on Sorghum Diseases, Hyderabad, India, 306–

314. 

Rosenow, D. T. (1986). Released converted lines: Release of 240 converted exotic lines from the 

world sorghum collection. Sorghum Newsletter, 29, 97. 

Sagnard, F., Deu, M., Dembélé, D., Leblois, R., Touré, L., Diakité, M., Calatayud, C., 

Vaksmann, M., Bouchet, S., Mallé, Y., Togola, S., & Traoré, P. C. S. (2011). Genetic 

diversity, structure, gene flow and evolutionary relationships within the Sorghum bicolor 

wild–weedy–crop complex in a western African region. Theoretical and Applied 

Genetics, 123(7), 1231. https://doi.org/10.1007/s00122-011-1662-0 

Sanchez, A. C., Subudhi, P. K., Rosenow, D. T., & Nguyen, H. T. (2002). Mapping QTLs 

associated with drought resistance in sorghum (Sorghum bicolor L. Moench). Plant 



27 

 

Molecular Biology, 48(5), 713–726. https://doi.org/10.1023/A:1014894130270 

Sharma, S., Upadhyaya, H. D., Varshney, R. K., & Gowda, C. L. L. (2013). Pre-breeding for 

diversification of primary gene pool and genetic enhancement of grain legumes. 

Frontiers in Plant Science, 4. https://doi.org/10.3389/fpls.2013.00309 

Singh, K., Kumar, S., Subramani, R., Singh, M., & Gupta, K. (2019). Plant genetic resources 

management and pre-breeding in genomics era. Indian Journal of Genetics and Plant 

Breeding (The), 79. https://doi.org/10.31742/IJGPB.79S.1.1 

Singh, S. P. (1985). Sources of cold tolerance in grain sorghum. Canadian Journal of Plant 

Science = Revue Canadienne de Phytotechnie. 

https://scholar.google.com/scholar_lookup?title=Sources+of+cold+tolerance+in+grain+s

orghum&author=Singh%2C+S.P.&publication_year=1985 

Smith, C. W., & Frederiksen, R. A. (2000). Sorghum: Origin, History, Technology, and 

Production. John Wiley & Sons. 

Smith, S., Primomo, V., Monk, R., Nelson, B., Jones, E., & Porter, K. (2010). Genetic Diversity 

of Widely Used U.S. Sorghum Hybrids 1980–2008. Crop Science, 50(5), 1664–1673. 

https://doi.org/10.2135/cropsci2009.10.0619 

Stamenković, O. S., Siliveru, K., Veljković, V. B., Banković-Ilić, I. B., Tasić, M. B., Ciampitti, 

I. A., Đalović, I. G., Mitrović, P. M., Sikora, V. Š., & Prasad, P. V. V. (2020). Production 

of biofuels from sorghum. Renewable and Sustainable Energy Reviews, 124, 109769. 

https://doi.org/10.1016/j.rser.2020.109769 

Stephens, J. C., Miller, F. R., & Rosenow, D. T. (1967). Conversion of Alien Sorghums to Early 

Combine Genotypes1. Crop Science, 7(4), cropsci1967.0011183X000700040036x. 

https://doi.org/10.2135/cropsci1967.0011183X000700040036x 



28 

 

Stinchcombe, J. R., Weinig, C., Ungerer, M., Olsen, K. M., Mays, C., Halldorsdottir, S. S., 

Purugganan, M. D., & Schmitt, J. (2004). A latitudinal cline in flowering time in 

Arabidopsis thaliana modulated by the flowering time gene FRIGIDA. Proceedings of 

the National Academy of Sciences, 101(13), 4712–4717. 

https://doi.org/10.1073/pnas.0306401101 

Sukumaran, S., Li, X., Li, X., Zhu, C., Bai, G., Perumal, R., Tuinstra, M. R., Prasad, P. V. V., 

Mitchell, S. E., Tesso, T. T., & Yu, J. (2016). QTL Mapping for Grain Yield, Flowering 

Time, and Stay-Green Traits in Sorghum with Genotyping-by-Sequencing Markers. Crop 

Science, 56(4), 1429–1442. https://doi.org/10.2135/cropsci2015.02.0097 

Tanksley, S. D., & Nelson, J. C. (1996). Advanced backcross QTL analysis: A method for the 

simultaneous discovery and transfer of valuable QTLs from unadapted germplasm into 

elite breeding lines. TAG. Theoretical and Applied Genetics. Theoretische Und 

Angewandte Genetik, 92(2), 191–203. https://doi.org/10.1007/BF00223376 

Thomas, H., & Howarth, C. J. (2000). Five ways to stay green. Journal of Experimental Botany, 

51 Spec No, 329–337. https://doi.org/10.1093/jexbot/51.suppl_1.329 

Thurber, C. S., Ma, J. M., Higgins, R. H., & Brown, P. J. (2013a). Retrospective genomic 

analysis of sorghum adaptation to temperate-zone grain production. Genome Biology, 

14(6), R68. https://doi.org/10.1186/gb-2013-14-6-r68 

Thurber, C. S., Ma, J. M., Higgins, R. H., & Brown, P. J. (2013b). Retrospective genomic 

analysis of sorghum adaptation to temperate-zone grain production. Genome Biology, 

14(6), R68. https://doi.org/10.1186/gb-2013-14-6-r68 

Vadez, V., Deshpande, S., Kholova, J., Ramu, P., & Hash, C. T. (2013). Molecular Breeding for 

Stay-Green: Progress and Challenges in Sorghum. 125–141. 



29 

 

https://doi.org/10.1002/9781118728482.ch8 

Wang, F., Zhao, S., Han, Y., Yutao, S., Dong, Z., Gao, Y., Zhang, K., Liu, X., Li, D., Chang, J., 

& Wang, D. (2013). Efficient and fine mapping of RMES1 conferring resistance to 

sorghum aphid Melanaphis sacchari. Molecular Breeding, 31. 

https://doi.org/10.1007/s11032-012-9832-6 

Xing-Lin, H., De-Liang, W., Wu-Jiu, Z., & Shi-Ru, J. (2017). The production of the Chinese 

baijiu from sorghum and other cereals. Journal of the Institute of Brewing, 123. 

https://doi.org/10.1002/jib.450 

Xu, W., Subudhi, P. K., Crasta, O. R., Rosenow, D. T., Mullet, J. E., & Nguyen, H. T. (2000). 

Molecular mapping of QTLs conferring stay-green in grain sorghum (Sorghum bicolor L. 

Moench). Genome, 43(3), 461–469. 

Zongo, J., Gouyon, P.-H., Sarr, A., & Sandmeier, M. (2005). Genetic Diversity and Phylogenic 

Relations Among Sahelian Sorghum Accessions. Genetic Resources and Crop Evolution, 

52, 869–878. https://doi.org/10.1007/s10722-003-6091-8 

  



30 

 

CHAPTER II: DEVELOPMENT AND CHARACTERIZATION OF TWO BIPARENTAL 

MAPPING FAMILIES FOR GENETIC ANALYSES OF WATER-USE DYNAMICS IN 

SORGHUM 
 

 

 

INTRODUCTION 

Precipitation patterns are shifting due to climate change, placing dryland cropping 

systems at risk of drought timing (Dai et al., 2018). Rainfed systems are reliant on precipitation 

only for water inputs, placing breeding for drought-resilient crops at the forefront of managing 

drought stresses. Sorghum (Sorghum bicolor (L.) Moench) is a drought-resilient African crop 

valued for animal feed and bioenergy in the United States (Stamenković et al., 2020), with 

genetic diversity untapped for drought tolerance traits. Plant genetic resources (PGR) offer 

potential sources of allelic diversity for traits that influence characteristics of plant water-use, 

and in turn facilitate more stable yields under water-limited conditions (Maxted et al., 2016). 

Diverse genetic materials, however, present unique considerations for drought adaptive trait 

discovery. 

Feasibility of using diverse PGR for trait discovery is impacted by differences in target 

zone adaptation, potential gene pool incompatibilities, undesirable linkage disequilibrium, and 

phenotypic covariates of trait mapping (Sharma et al., 2013). Pre-breeding is used to overcome 

some of these challenges. The Sorghum Conversion Program (SCP) was a pre-breeding program 

that delivered hundreds of diverse tropical African lines adapted to U.S. height and maturity 

breeding specifications while retaining the exotic genome outside of the conversion regions 

(Klein et al., 2008; Stephens et al., 1967). The semi-dwarf, photoperiod-insensitive lines 

produced by the SCP allow diverse sorghum genetic resources to be evaluated in temperate 

target environments for novel and existing traits of interest. 

https://www.zotero.org/google-docs/?c7pNGc
https://www.zotero.org/google-docs/?t1KZd3
https://www.zotero.org/google-docs/?YS9ETX
https://www.zotero.org/google-docs/?Sco2x5
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Limited transpiration (LT) is a water-use trait in sorghum being explored for trait 

technology development (Sadok et al., 2021). As observed in other crops like maize (Gholipoor 

et al., 2013) and peanuts (Devi et al., 2010), sorghum lines with the LT trait are expected to limit 

their transpiration rate when vapor pressure deficit (VPD) is high in the environment, reducing 

plant water demand during very dry conditions (Sinclair et al., 2005) (Figure 2.1). This response 

is modeled to produce a potential five percent yield increase in water-limited environments by 

conserving soil water during the vegetative growth stage to be available during grain fill 

(Raymundo et al., in preparation). A breakpoint in transpiration rate of sorghum genotypes was 

first observed in growth chamber experiments (Gholipoor et al., 2010; Shekoofa et al., 2014), but 

the trait requires genetic characterization under relevant field conditions to develop molecular 

markers and establish a trait introgression strategy for pre-breeding. 

This field-based trait mapping study in a well-watered environment uses canopy 

temperature as an LT phenotype such that differences in canopy temperature reflect differences 

in transpiration rate (Inoue et al., 1990; G. J. Rebetzke et al., 2012). Lines with the LT trait are 

predicted to produce a hotter canopy temperature due to the reduction in transpiration cooling 

effect than those without the trait. The temporal variability in canopy temperature prompts the 

need for a fast, high-throughput approach to collect thermal data (Turner et al., 2012). 

Unoccupied aircraft system (UAS)-based aerial thermal imaging at the canopy closure stage (but 

prior to anthesis) during the seasonal and daily periods of highest VPD provides the capacity to 

collect whole-field data in minutes, reducing temporal variability (Hou et al., 2021; Pignon et al., 

2021; G. J. Rebetzke et al., 2012). However, aerial thermal imaging for water-use trait studies is 

easily confounded by phenotypic covariates of agronomic background. 

https://www.zotero.org/google-docs/?ECKIdb
https://www.zotero.org/google-docs/?ECKIdb
https://www.zotero.org/google-docs/?EQyvbs
https://www.zotero.org/google-docs/?85Va6V
https://www.zotero.org/google-docs/?BrLJNx
https://www.zotero.org/google-docs/?IiO1y2
https://www.zotero.org/google-docs/?bTHTzY
https://www.zotero.org/google-docs/?iocY7D
https://www.zotero.org/google-docs/?iocY7D
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Trait mapping combines genotype data and phenotype data to elucidate regions of the 

genome that may be underlying the trait of interest (Otto & Jones, 2000). To map water-use 

traits, single nucleotide polymorphism (SNP) genotype data can be combined with phenotype 

data such as stomatal conductance or canopy temperature. Agronomic traits like plant height and 

flowering time are critical to assess when selecting parental germplasm for water-use trait 

mapping. Height and flowering time can affect how the study plants experience managed 

drought stress, claim environmental resources, and produce phenotypic covariates (G. Rebetzke 

et al., 2008; G. J. Rebetzke et al., 2008). A water-use trait mapping population composed of 

germplasm with substantially different heights can result in plots of genetically-taller plants 

dominating the light and soil water resources while genetically-shorter plants are shaded and 

outcompeted for available soil water (G. J. Rebetzke et al., 2008) (Figure 2.2A). Substantial 

differences in flowering time can result in plots of early-flowering plants experiencing less 

drought stress than late-flowering plants, given stored soil water diminishes throughout the 

season (Faye et al., 2022; Raymundo et al., 2021). Additionally, differences in flowering time 

create covariates that confound phenotyping using physiological proxies. For example, canopy 

temperatures are falsely inflated in flowering plots as the panicle does not contribute 

significantly to gas exchange and the transpiration cooling effect of the canopy is masked (Chang 

et al., 2020; Girma & Krieg, 1992) (Figure 2.2B). Therefore, establishing uniform height and 

flowering time across a mapping population is  important for water-use trait mapping (Deery et 

al., 2016). 

In U.S. sorghum, height variation is controlled by four main additive loci, Dw1-Dw4, with 

tallness dominant and maturity variation is controlled by six main loci, Ma1-Ma6, with lateness 

dominant (Murphy et al., 2014; Quinby, 1974). Lines dominant at all four major height loci will 

https://www.zotero.org/google-docs/?TD0opD
https://www.zotero.org/google-docs/?O0XDc6
https://www.zotero.org/google-docs/?O0XDc6
https://www.zotero.org/google-docs/?dYrRbT
https://www.zotero.org/google-docs/?pbtcg5
https://www.zotero.org/google-docs/?th4QgR
https://www.zotero.org/google-docs/?th4QgR
https://www.zotero.org/google-docs/?i2C9O5
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typically grow upwards of 16 feet. Lines dominant at all major maturity loci will typically flower 

later than 90 days after emergence (Quinby, 1974). In the SCP, height and maturity haplotypes 

from elite US breeding line BTx406 were targeted for introgression into nearly all exotic lines 

(Quinby, 1967). Theoretically, this approach using a common donor parent should result in 

isogenic height and flowering time adaptation across converted germplasm. However, the 

original SCP predates development of marker-assisted selection tools, and instead used 

phenotypic selection in backcross generations. Phenotypic selection is unreliable in ensuring that 

the same genetic haplotypes are selected in each line or generation, or that those haplotypes are 

identical by descent (Klein et al., 2008; Thurber et al., 2013). Selecting parental germplasm for a 

water-use trait mapping study therefore requires careful consideration of height and flowering 

time of candidate lines. 

Previously-developed sorghum mapping populations did not account for these specific 

agronomic trait covariates, and are therefore less suitable for LT and other water-use trait 

mapping (Bouchet et al., 2017; Boyles et al., 2017; Perumal et al., 2021). Testing the hypotheses 

that the mapping families are (1) ideal, (2) acceptable, or (3) unacceptable for UAS-based 

thermal imaging across the mapping families allows us to establish the degree to which the 

mapping families control for associated phenotypic covariates. In addition to characterizing the 

influence of potential covariates on the thermal data obtained from LT mapping populations, this 

furthers our knowledge on the power and utility of the families in LT and other water-use genetic 

studies.  

https://www.zotero.org/google-docs/?0xwqWr
https://www.zotero.org/google-docs/?r9fkDa
https://www.zotero.org/google-docs/?w5QEbG
https://www.zotero.org/google-docs/?XI13iM
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Figure 2.1. Conceptual illustration of a snapshot of the limited transpiration trait in sorghum. While 
experiencing high vapor pressure deficit during the vegetative stage, LT genotypes will reduce 
transpiration rate (water drops above plants) and conserve soil water. Non-LT genotypes will continue to 
transpire and deplete soil water resources at a constant rate. Note, the illustration of water availability 
differences represents the expected expression of the trait in a production environment. In the 
experimental LT phenotyping system, all genotypes are well-watered to circumvent confounding effect of 
earlier water use differences. 
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Figure 2.2. Conceptual illustration of phenotypic covariates produced by non-uniform height and 
flowering time in a genetic mapping population phenotype using UAS thermal imaging. (A) Plots with 
genetically-taller plant height will shade neighboring plots, artifactually reducing canopy temperatures. 
(B) Plots with genetically-early flowering (yellow ovals) will show inflated canopy temperatures. The 
thermal imaging will capture the panicle foremost over the canopy, where the lack of gas exchange raises 
the captured temperature. 

 

MATERIALS AND METHODS 

Design of Mapping Families 

The limited transpiration sorghum mapping population includes two families developed 

from parental lines BTx2752 (PI 656018), SC979 (PI 576428), and RTx430 (PI 655996). The 

two families were created from RTx430 ✕ SC979 and RTx430 ✕ BTx2752 crosses. SC979 and 

BTx2752 were selected as putative LT parents based on their agronomic characteristics being 

uniform, meeting U.S. breeding standards, performance in previous LT growth chamber studies 

(Gholipoor et al., 2010; Shekoofa et al., 2014), and preliminary stomatal conductance 

evaluations. RTx430 was selected as a putative non-LT parent for its agronomic background 

uniform with the putative LT parents and its widespread industry usage as a pollinator parent 

within the cytoplasmic male sterility (CMS) hybrid breeding system (Sahoo et al., 2010). The 

timeline and development of the families is detailed below. 

https://www.zotero.org/google-docs/?FfojDG
https://www.zotero.org/google-docs/?ddSPCp
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Parent lines for LT mapping families were aiming to capture genetic variation for LT 

while establishing a uniform, agronomically relevant background suitable for water use 

phenotyping and commercial sorghum breeding. Evaluation of candidate parent lines began in 

2018, where approximately 40 lines were grown and measured for agronomic characteristics like 

plant height, days to flowering, and tillering (Raymundo et al. in prep). These candidate lines 

were chosen based on inclusion in prior LT studies assessing transpiration rate breakpoints in 

growth chambers or field conditions (Choudhary et al., 2013; Gholipoor et al., 2010; Riar et al., 

2015; Shekoofa et al., 2014). Any lines not close to target U.S. specifications for these 

agronomic characteristics were removed from further consideration. Twelve lines were advanced 

to preliminary studies in 2019 and 2020. Those studies continued evaluating relevance of 

agronomic background while also testing stomatal conductance and canopy temperature of the 

lines as proxies of transpiration rate under well-watered conditions.  

Analyses of the preliminary studies showed consistency with a lower stomatal 

conductance and higher canopy temperature responses as well as suitable agronomic background 

in lines SC979 and BTx2752. Therefore, these lines were chosen as putative LT parents for 

mapping family development. SC979 is a fully-converted Ethiopian durra-type inbred line 

delivered by the SCP. BTx2752 is a male inbred line released by the Texas A&M University 

sorghum breeding program. The putative non-LT parent RTx430 was selected for its consistent 

higher stomatal conductance and lower canopy temperature in addition to widespread adoption 

as an excellent fertility restorer in industry. 

Mapping Family Development 

The goal of the LT mapping families was recombinant inbred lines (RILs) at a generation 

suitable for trait mapping with uniform plant height and flowering time across the families. The 

https://www.zotero.org/google-docs/?hAwsn1
https://www.zotero.org/google-docs/?hAwsn1
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initial crosses and summer generation advancements were carried out at Kansas State University 

in Manhattan, KS and winter nursery advancements were carried out in Puerto Vallarta, Jalisco, 

Mexico. All generations were advanced by selfing. 

Initial crossing of RTx430 ✕ SC979 was completed in 2014 using plastic bag 

sterilization for the female parent. This cross, done prior to LT parent evaluation, was made as a 

preliminary interest from the prior LT literature. In 2015, the lines were advanced from F1 to F2. 

Lines were advanced to F3 in the 2017-2018 winter nursery, to F4 in summer 2018, to F5 in 

summer 2020, and to F6 in 2020-2021 winter nursery. Initial crossing of RTx430 ✕ BTx2752 

was completed in 2018 for inclusion in a separate diversity panel under development. Lines were 

advanced to the F2 in 2018-2019 winter nursery, to F3 in summer 2019, to F4 in summer 2020, and 

to F5 in 2020-2021 winter nursery. The crosses were officially chosen for use in LT mapping 

after evaluation of the 2020 preliminary studies. 

While mapping family development aims to reduce biased selection and optimize 

recombinant diversity, some selection pressures were imposed during line advancement to 

address concerns with water-use trait mapping. First, any lines not within the target height and 

flowering time specifications were dropped from the families. The goal was to unify the canopies 

and control for associated phenotypic covariates to increase the quality of thermal image data. 

Next, some progeny of the RTx430 ✕ SC979 cross produce an unusual “lazy” plant phenotype 

that do not grow upright (Dong et al., 2013). Any “lazy” lines were dropped from the family. 

Next, the original RTx430 ✕ BTx2752 cross was made using nuclear male-sterile BTx2752. The 

progeny segregated for sterility, and sterility was selected against on the basis of being unable to 

self and advance those lines. Partial sterility was also selected against due to poor seed set, 

making it difficult to advance those lines without sufficient bulk seed. Finally, there was 

https://www.zotero.org/google-docs/?kU4YHk
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selection in each generation to advance plants flowering 1-2 days later than others within a line. 

This later flowering could offer a slightly extended window for data collection in the targeted 

period of hot, dry conditions before flowering would confound canopy temperatures.  

RIL generations powerful for QTL mapping include F4 to F7 (Takuno et al., 2012). The 

generation of the RILs grown in the mapping population varies from F4 to F6  in 2021. 

Generations are spread due to timing of initial crosses, or poor germination or seed set requiring 

a line to be left out from a season’s generation advancement. The sterility in some RTx430 ✕ 

BTx2752 progeny ultimately resulted in some unrecoverable lines and therefore fewer total RILs 

in that family than RILs in the RTx430 ✕ SC979 family. The mapping populations grown in 

2021 and 2022 do not include all RILs developed from either family.  

Field Design and Management 

The mapping population was phenotyped in three locations for one growing season 

(Figure 2.3). The locations include east-central Colorado (Fort Collins, CO, 104.9948993°W 

40.6468871°N; semi-arid climate), western Kansas (Colby, KS, 101.0668376°W 39.3914063°N; 

semi-arid climate), and eastern Kansas (Manhattan, KS, 96.6366494°W 39.1386254°N; humid-

continental climate). The field designs and management for each location are described below. 

North-Central Colorado 

The LT mapping population grown in Colorado in 2021 contained the three inbred 

parental lines (SC979, BTx2752, RTx430), four commercial checks (ADV G2275, DKS54-00, 

84G62, 86Y89), and 160 RILs as entries. Of the RILs, 84 were entries advanced from the 

RTx430 ✕ SC979 crosses and 76 were entries advanced from the RTx430 ✕ BTx2752 crosses. 

The entries were grown in a randomized complete block design (RCBD) containing four 

randomized complete blocks. Within each randomized complete block, each RIL was replicated 

https://www.zotero.org/google-docs/?ldhlEl
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once (4 reps total), each inbred parental line was replicated four times (16 reps total), and each 

commercial check was replicated between 1 and 6 times. 

The entire field area of the mapping population covered 2.6 acres, composed of 25 ranges 

across 136 rows. Each entry was grown in a four-row plot approximately 3 meters long with 0.75 

meter-wide rows. Seed was sown at a density of 80 seeds per row per plot based on the well-

watered irrigation of the study. A border of commercial hybrid Pioneer 86Y89 surrounded the 

entire mapping population in rows 1-4 and 133-136, and in ranges 1 and 25.  

Field preparation for the study site began with subsoiling and tilling three months prior to 

planting the study in mid-June. Mulching and cultivation were completed two months prior to 

planting. Inputs included an application of 46-0-0 urea applied at a rate of 325 lbs/acre two 

months prior to planting, followed by herbicide applications for weed control (Medal II EC at 1 

pint/A, Roundup PowerMAX at 18 oz/A, Induce at 2.5 fl oz/A) at one month before planting. 

The full study was planted on June 13th using a SRES Standard Research Planter (Seed Research 

Equipment Solutions; South Hutchinson, KS). Low soil moisture caused initial poor germination, 

and thereafter the field was irrigated using a linear move irrigation system every four days for 

two weeks and germination improved. The study was designated as well-watered, therefore the 

field was irrigated between 1.00” and 1.50” on the same morning each week depending on 

temperature, VPD, and soil moisture. Irrigation ceased in late September as environmental 

stresses lessened and plants began to senescence. The field was harvested by individual plots in 

early December to obtain yield data.  

Western Kansas 

The LT mapping population grown in western Kansas in 2021 contained the three inbred 

parental lines (SC979, BTx2752, RTx430), three commercial checks (ADV G2275, DKS54-00, 
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84G62), and 160 RILs as entries. Of the RILs, 84 were entries advanced from the RTx430 ✕ 

SC979 crosses and 76 were entries advanced from the RTx430 ✕ BTx2752 crosses. The entries 

were grown in a RCBD containing four randomized complete blocks. Within each randomized 

complete block, each RIL was replicated four times (16 reps total), each inbred parental line was 

replicated at least eight times (at least 24 reps total), and each commercial check was replicated 

at least four times (at least 16 reps total). 

Due to field space and irrigation availability, the mapping population was grown in one 

3.5-acre quadrant of a center-pivot irrigated field. The curved wedge-shape of the quadrant led 

the randomized complete blocks to be grown across ten rectangular sections (3 sections each 

containing 60 plots, 7 sections each containing 72 plots) within the quadrant. Each entry was 

grown in a four-row plot approximately 3 meters long with 0.75-meter-wide rows. Seed was 

sown at a density of 80 seeds per row based on the well-watered irrigation of the study. A border 

of commercial hybrid Pioneer 86Y89 was used to fill any remaining space in the quadrant 

around the 10 field sections. 

Field preparation for the study site began with disking two months prior to planting, and 

completing field sweeps one week prior to planting. Inputs included an application of 200 lbs 32-

0-0 nitrogen applied at a rate of 65 gal/Acre a week prior to planting, followed by herbicide 

applications for weed control (Atrazine 4L at 32 oz/Acre, Brawl II at 32 oz/Acre, Detonate at 

8oz/Acre, Buccaneer 5 Extra at 27 oz/Acre) 3 days prior to planting. The full study was planted 

on June 17th and irrigated with 0.75” the following day using a center-pivot irrigation system. 

Irrigation resumed the following month on July 29th with applications of 1.25” every 3-4 days 

until the final application on August 17th. The field was combined in mid-November to obtain 

yield data on a per-plot basis.  
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Eastern Kansas 

The LT mapping population grown in eastern Kansas in 2021 contained the three inbred 

parental lines (SC979, BTx2752, RTx430), three commercial checks (ADV G2275, DKS54-00, 

84G62), and 131 RILs as entries. Of the RILs, 66 were entries advanced from the RTx430 ✕ 

SC979 crosses and 65 were entries advanced from the RTx430 ✕ BTx2752 crosses. The entries 

were grown in a RCBD containing three randomized complete blocks. Within each randomized 

complete block, each RIL was replicated four times (12 reps total), each inbred parental line was 

replicated eight times (24 reps total), and each commercial check was replicated four times (12 

reps total).  

The entire field area of the mapping population covered 1.6 acres, composed of 24 ranges 

across 84 rows (including border). Each entry was grown in a four-row plot approximately 3 

meters long with 0.75-meter-wide rows. Seed was sown at a density of 80 seeds per row per plot 

based on the well-watered irrigation of the study. A border of commercial hybrid Pioneer 86Y89 

surrounded the entire mapping population in rows 1-4 and 81-84, and in ranges 1 and 24. 

Field preparation for the study site began with disking three weeks prior to planting. 

Inputs included a broadcast fertilizer application of UAN (120-0-0) at a rate of 40 gal/Acre 

applied directly after disking, followed by field cultivation. Pre-emergent herbicide applications 

for weed control (Explorer at 3 oz/Acre, Brawl II at 22 oz/Acre, Atrazine 4L at 20 oz/Acre) were 

completed two weeks prior to planting. The full study was planted on June 23rd and 

supplemented with regular irrigation to ensure no drought stress to the population. The field was 

combined in November to obtain yield data on a per-plot basis. 
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Figure 2.3. Field phenotyping locations for 2021 mapping populations with 30-year average maximum 
vapor pressure deficit (VPD) data for the LT mapping data collection window (the month of August): 
Colorado (Fort Collins, CO), western Kansas (Colby, KS), and eastern Kansas (Manhattan, KS). 
 
 
Height and Flowering Time Phenotyping 

The height of each plot was measured at least two weeks after all plots in the study 

completed anthesis. In this study, height was measured as the distance from the soil surface to 

the top of the panicle. Each measurement was taken as an approximate average (centimeters) of 

the center two rows of the four-row plot. Two individuals each independently measured each 

plot in each location. The height measurements were recorded using a wireless QR code scanner 

(REALINN) and 240 cm measuring stick with individual 1 cm QR codes corresponding to the 

height. For each plot, the QR code on the plot ID hang tag was scanned first, then the height of 

the plot was determined and the corresponding QR code on the measuring stick was scanned.  

The flowering time of each plot was determined based on the number of days after 

emergence to flowering. A plot was marked flowering when fifty percent of the plants in the 

center two rows of the four-row plot had at least fifty percent of the panicle flowering. The field 

was surveyed twice a week during the boot stage to identify plots approaching flowering. Once 
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plots began flowering, the entire field was evaluated every other day and each plot was assessed 

independently. Flowering time measurements were collected on the Colorado and eastern Kansas 

field sites. 

Phenotypic Analysis 

Height and flowering time distributions were used to evaluate phenotypic ranges within 

and across the mapping families. For plant height, the two independent measurements for each 

plot were averaged in each location and used in analysis. Height and flowering time data were 

normalized using standard scaling in each location. Each entry was characterized into a ‘Family’ 

group: RTx430 ✕ SC979 RILs and parents (SC979 and RTx430), RTx430 ✕ BTx2752 RILs and 

parents (BTx2752 and RTx430), and checks. 

The family groups for height and flowering time in each location were independently 

checked for normality using the Shapiro-Wilk test. The nonparametric Kruskal-Wallis H and 

pairwise Wilcoxon rank sum tests were used to evaluate if the groups were significantly 

different. Phenotype values were plotted in violin plots to visualize the distribution of 

phenotypes. Phenotype values were plotted alongside guidelines of industry standards for 

hybrids in the target environment to assess agronomic relevance of the mapping germplasm. 

Estimation of Broad-Sense Heritability 

Broad-sense heritability (H2) for height and flowering time were estimated for both 

families using variance components (σ2). The H2 formula divides total genetic variance (σ2
G) by 

phenotypic variance (σ2
P), producing a proportion from 0 to 1. The lmer() function from the lme4 

package (Bates et al., 2015) in R (R Core Development Team, 2020) was used to estimate 

variance components. Height variance component calculation included multi-location replicated 

data. Terms in the lmer() model included genotype and location. Flowering time variance 

https://www.zotero.org/google-docs/?MTiOaB
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components were calculated using multi-location replicated data. Terms in the lmer() model 

included genotype and location. All effects were treated as random.  

H2 = σ2
G/σ2

P 

The H2 for height and flowering time in each family was estimated using the calculated 

variance components and the Cullis method due to the unbalanced number of genotypes included 

in each location (Schmidt et al., 2019). The Cullis method leverages the mean variance of 

pairwise differences of genotypic best linear unbiased predictors (BLUPs) to account for 

unbalanced data using the formula: 

 

Where σ2
g is the genotypic variance and  is the mean variance of the difference of two 

genotypic best linear unbiased predictions (BLUPs). 

Genotyping and GWAS Analysis 

Tissue samples for DNA extractions were collected from seed increase plots in 2021-

2022 winter nursery. Extraction samples were sent to Diversity Arrays Technology (DArT; 

Canberra, Australia) for genotyping with DArTseq-LD (low density) SNP calling. Marker data 

were filtered to remove monomorphic SNPs, duplicate SNPs, non-biallelic SNPs, SNPs with a 

call rate < 0.5, individuals with a call rate < 0.5, and SNPs with a RepAvg < 0.9 (index of 

reproducibility) to produce a set of 2,738 SNPs for 366 lines. Imputation was completed using 

BEAGLE (Browning et al., 2021).  

BLUPs for the average height and flowering times for each line across all locations were 

calculated for use as phenotype inputs in a genome-wide association study (GWAS). Location 

and genotype were included in the model, and all effects were treated as random. The genotype 

https://www.zotero.org/google-docs/?12Gq6B
https://www.zotero.org/google-docs/?8yw2od
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data was filtered to only include lines with phenotypes. The Genome Association and Prediction 

Integrated Tool (GAPIT) package (Lipka et al., 2012) for R was used to conduct GWAS. A 

general linear model (GLM) model was used (Price et al., 2006), with no principal components 

due to limited population structure resulting from high relatedness of the lines. The GLM model 

treats all individuals as a single group, increasing detection power without population structure in 

a population of RILs. A minor allele frequency (MAF) filter of 5% was set to help reduce false 

positives. A nominal threshold for significant SNPs was determined using the formula “-

log10(0.01/effective number of SNPs)” according to the Bonferroni method (Duggal et al., 

2008). 

 

RESULTS 

H2 Elucidates Fixation of Genes Underlying Height and Maturity 

To test the hypothesis that the mapping families control for phenotypic covariates caused 

by heterogeneity in height and flowering time when grown in a mapping population, the genetic 

architecture of height and maturity variation in the families was characterized (Table 2.1). Under 

the hypothesis that the parental germplasm used in family development is isogenic for major-

effect height and maturity QTL, it is predicted that the broad-sense heritability (H2) of these traits 

would be close to zero. Conversely, the hypothesis that the germplasm contains genetic variation 

for those major effect height and maturity loci would be supported by moderate to high H2.  

Using one year of height data with three locations, the H2 of height was calculated to be 

0.86 for the RTx430 ✕ BTx2752 family and 0.93 for the RTx430 ✕ SC979 family. The H2 in 

both families is relatively high, indicating genetic variation explains most of the variance in 

height phenotypes (Table 2.2). 

https://www.zotero.org/google-docs/?atuf9m
https://www.zotero.org/google-docs/?FKUNyy
https://www.zotero.org/google-docs/?Plo8Hs
https://www.zotero.org/google-docs/?Plo8Hs
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Using one year of flowering time data in two locations, the H2 of maturity was calculated 

to be 0.93 for the RTx430 ✕ BTx2752 family and 0.89 for the RTx430 ✕ SC979 family. The 

relatively high H2 in both families represents a substantial genetic contribution to the phenotypic 

variance for flowering time (Table 2.1). 

Table 2.1. Broad-sense heritability (H2) estimated using the Cullis method of height and 
flowering time in each family across all locations in 2021. Genotype and location used as model 
terms when extracting variance components, all effects treated as random. 

Family H2 

 
Flowering Time Height 

RTx430 ✕ SC979 0.89 0.93 

RTx430 ✕ BTx2752 0.93 0.86 

H2 = Broad-sense heritability 
 

Genotypic Analysis of Height and Flowering Time 

To further test the hypotheses on the genetic architecture of height and flowering time 

variation in the LT mapping population, a genome-wide association study (GWAS) was 

performed for each trait. DArTseq-LD SNP data was called by DArT for low density coverage of 

the genome. For sorghum chromosomes 1-10, 334, 321, 343, 306, 302, 204, 198, 247, 195, and 

289 SNP markers were called respectively (Figure 2.4). Genotype (allele) frequencies (Figure 

2.5) are 83.9% homozygous reference, 12.1% homozygous alternative, and 4.0% heterozygous.   

Fifty-two putatively significant marker-trait associations (MTA) for height were 

identified. Putatively significant SNPs were detected near known height loci on chromosomes 6, 

7, and 9 (Figure 2.6). For flowering time, 158 putatively significant MTAs were identified. 

Significant SNPs were detected near several known maturity loci on chromosomes 1, 6, and 10 

(Figure 2.7).  
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Figure 2.4. Per-chromosome single-nucleotide polymorphism (SNP) density of the LT mapping families 
using SNPs called with DArTseq-LD from 2021-2022 genotyping. 
 

 

Figure 2.5. Genotype frequencies of imputed DArTseq-LT genotyping data from 2021-2022 genotyping. 
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Figure 2.6. Manhattan plot for GWAS results showing associations of genetic markers and height BLUPs 
averaged across all locations. Red points indicate significant marker-trait associations. The black 
horizontal line indicates significance threshold for markers. The red to green scale indicates marker 
density.  
 

 
Figure 2.7. Manhattan plot for GWAS results showing associations of genetic markers and flowering 
time BLUPs averaged across all locations. Red points indicate significant marker-trait associations. The 
black horizontal line indicates significance threshold for markers. The red to green scale indicates marker 
density.  
 

Agronomic Suitability is Comparable Between RIL Families 

To test the hypotheses that the mapping families control or do not control for phenotypic 

covariates caused by heterogeneity in height when grown in a mapping population, the 

phenotype ranges were evaluated between RIL families in each location. The height of most 
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RILs is concentrated within a 60 cm window within all locations and a small proportion of 

outliers are responsible for the larger absolute ranges (Figure 2.8). In Colorado, 90% of the 

RTx430 ✕ SC979 family and 93% of the RTx430 ✕ BTx2752 family heights were within the 90 

to 150 cm range. In western Kansas, 92% of the RTx430 ✕ SC979 family and 93% of the 

RTx430 ✕ BTx2752 family heights were within the 110 to 170 cm range. In eastern Kansas, 

94% of the RTx430 ✕ SC979 family and 91% of the RTx430 ✕ BTx2752 were within the 105 

to 165 cm range. The difference of the total range was 120 cm in Colorado, 128 cm in western 

Kansas, and 111 cm in eastern Kansas (Table 2.2).  The height ranges between the families in the 

location were significantly different in Colorado (p  < 10-15) and western Kansas (p < 10-15), but 

not in eastern Kansas (p = 0.98). 

To test the hypotheses that the mapping families control or do not control for phenotypic 

covariates caused by heterogeneity in flowering time when grown in a mapping population, the 

phenotype ranges were evaluated between RIL families in both locations. Within each location, 

flowering is initiated at nearly the same number of days after emergence in both families. Both 

families in Colorado began flowering around 71 days after emergence and both families in 

eastern Kansas began flowering 58 days after emergence (Table 2.2, Figure 2.9). In Colorado, 

RILs in the RTx430 ✕ BTx2752 family flowered over a range of 34 days and 31 days in the 

RTx430 ✕ SC979 family. In eastern Kansas, the plots in the RTx430 ✕ BTx2752 family 

flowered over the course of 34 days and 25 days in the RTx430 ✕ SC979 family. The flowering 

time ranges of the families were significantly different in both Colorado (p < 10-8) and eastern 

Kansas (p < 10-15). 
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Table 2.2. Summary statistics (minimum, maximum, mean, median) for height and flowering 
time in mapping families by location in 2021. 

Family Height (cm)  
 

Days to Flowering 

 
 

Min Max Mean Median   
 

Min Max  Mean Median 

Colorado 

RTx430 ✕ BTx2752 70 148 109 107  
 

76 110 90 89 

RTx430 ✕ SC979 78 190 121 119  
 

71 102 83 82 

Western Kansas 

RTx430 ✕ BTx2752 82 185 130 131  
 

- - - - 

RTx430 ✕ SC979 103 210 142 141  
 

- - - - 

Eastern Kansas 

RTx430 ✕ BTx2752 97 232 136 134  
 

58 92 71 70 

RTx430 ✕ SC979 88 181 135 135  
 

58 83 68 70 

 
 

 
Figure 2.8. Height distributions by RIL family in each location. Asterisks indicate the families in that 
location are significantly different. Gray horizontal lines separate locations for visual clarity. Black dots 
indicate mean. 
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Figure 2.9. Flowering time distributions by RIL family in each 2021 location. Asterisks indicate the 
families in that location are significantly different. Gray horizontal lines separate locations for visual 
clarity. Black dots indicate mean. 
 

DISCUSSION 

Water-use traits, like limited transpiration, possess unique considerations for genetic 

mapping that sorghum mapping families developed previously do not address. Homogeneity 

within a mapping population for agronomic traits like height and flowering time is essential to 

increase power of the water-use trait phenotyping.  

Haplotypes from Converted Germplasm Are Not Identical-by-State  

Non-zero H2 in our families supports the hypothesis that the LT mapping families contain 

genetic variation at large effect height and maturity QTL (Table 2.1) (Smith et al., 1998). 

Retrospective analyses of converted germplasm, which is present in the pedigrees of all parent 

lines in the LT mapping families, found that height and maturity haplotypes introgressed from 

elite donor BTx406 during the SCP were not identical-by-descent (Klein et al., 2008; Thurber et 

al., 2013). Therefore, genetic variation for large-effect height and maturity loci in the LT families 

may be residual from the conversions, potentially produced by haplotypes not identical-by-state 

https://www.zotero.org/google-docs/?9wOw3m
https://www.zotero.org/google-docs/?bnJkco
https://www.zotero.org/google-docs/?bnJkco


52 

 

among the parental germplasm. High H2 reflects that genetic variation is contributing a very large 

proportion of variance to the phenotypic distributions, attributed to a small number of moderate-

effect loci consistent with the known architecture of height and maturity (Table 2.1, Figure 2.6, 

Figure 2.7) (Higgins et al., 2014). Potential heterogeneity of additive loci (Forsberg et al., 2015) 

or pervasive epistasis occurring in the background (Shao et al., 2008) may also contribute to 

putatively significant marker-trait associations. The presence of genetic variation for height and 

maturity requires evaluation of phenotype homogeneity to control for covariates. 

Genetics and Genomics Reinforce Known Marker-Trait Associations 

The unexpected segregation patterns of allele frequencies (Figure 2.5) in the outsourced 

genotyping data prompts concern for the reliability of the SNP calls (Lu et al., 2010). Patterns 

within markers across individuals indicate more effective recombinations than biologically 

expected for the generations of RILs (Bouchet et al., 2017). Communication has been ongoing to 

identify and resolve the concerns. Marker data was used as-is but all analyses will be repeated 

with corrected data, or genotype data from another service provider. 

The GWAS for height and flowering time (Figure 2.6, Figure 2.7) provide insight into the 

genomic basis of variation explained by H2. Colocalizations of significant MTA and known 

height and maturity loci (Dw1 at ~57 Mb on chr 9, Dw3 at ~58.557 Mb on chr 7, and Ma1 at 

~40.27 Mb on chr 6) (Brown et al., 2008; Casto et al., 2019; Li et al., 2015; Lopez et al., 2017; 

Quinby, 1966; Sukumaran et al., 2016) indicate there is variation among the mapping families 

for major-effect height and maturity genes. This also generates hypotheses on potentially novel 

smaller effect genes, or epistatic interactions contributing to phenotypic variance (Figure 2.8, 

Figure 2.9). Knowledge of height and flowering genetic variation in the RILs can be useful in 

https://www.zotero.org/google-docs/?Ct6aJw
https://www.zotero.org/google-docs/?rN6IF1
https://www.zotero.org/google-docs/?F3PtYh
https://www.zotero.org/google-docs/?4eojHf
https://www.zotero.org/google-docs/?a6cUKs
https://www.zotero.org/google-docs/?a6cUKs
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donor line development to understand how additive variation for those traits will combine with 

an elite background. 

Height and Flowering Ranges Limit Phenotypic Covariates 

A population perfectly homogeneous for height and flowering time would exist when, 

regardless of the underlying genotypes, the lines growing in the population all grow to the same 

height and all flower synchronously (Kammholz et al., 2001). The ranges of height and 

flowering time phenotypes collected on the LT mapping families show that there is not perfect 

homogeneity (Table 2.2). However, previous studies of UAS phenotyping suggest that the ranges 

will not substantially confound UAS-based thermal imaging. For instance, the height range of 

~60 cm across most lines in the LT studies (Figure 2.8) leads us to conclude that it is insufficient 

height variation to shade neighbors in the thermal data extraction rows (Wang et al., 2018), and 

that the randomized complete block replication scheme prevents bias. While height alleles are 

not fixed within the families (Table 2.2), the combination of alleles at the four major-effect 

sorghum height loci and background interactions are producing comparable phenotypes between 

the RILs. 

The flowering time range of ~30 days across the locations (Figure 2.9) has biological 

implications on the stage of canopy architecture between the early and late lines. We must 

consider the hypothesis that the differences in flowering time affect the timing of canopy closure 

and vegetative-to-reproductive transition, and therefore canopy temperature. Studies on growth 

stage dynamics and canopy traits (Liedtke et al., 2020; Umesh et al., 2022; Varela et al., 2021) 

have found that the horizontal and vertical canopy cover increases linearly pre-anthesis, with rate 

of gain highest in growth stages 30-50 days after planting. In both of our locations with 

flowering data, the largest concentration of plots flowered within a 12-day range after the 

https://www.zotero.org/google-docs/?vBL6zY
https://www.zotero.org/google-docs/?VyZ3SX
https://www.zotero.org/google-docs/?Ysm5bx
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significant canopy growth period (Table 2.2). Biologically, this indicates that the LT mapping 

population plots are at a comparable canopy cover and architecture during the pre-anthesis 

thermal imaging window. The earlier flowering in the Kansas experiment (Figure 2.9) only 

restricts the thermal imaging data collection window. The LT canopy temperature data collection 

window is limited to the period of the growing season with high daily VPD (PRISM Climate 

Group, Oregon State University, https://prism.oregonstate.edu) after canopy closure and prior to 

anthesis. Ultimately, the mapping families are not precisely homogeneous for height and 

flowering time but appear to be acceptable to limit associated phenotypic covariates in LT 

phenotyping (Cockram & Mackay, 2018).  

Replication Increases Power of Genetic Mapping 

The power of this study is strengthened by multiple location data but limited by single 

year data. The acceptable (but not ideal) height and flowering background of the RIL families 

supports the need for replication (Singh et al., 2021; Thorp et al., 2018). Data from the 2022 field 

season are currently in collection, consolidation, and processing and will be included in analyses 

of this study when available. Outsourced genotype data obtained from DArT presents patterns of 

allele frequency segregation abnormal for RILs. When corrected SNP data is obtained, all 

analyses will be reassessed and completed again. With sufficient replication, the mapping 

families potentially provide utility for other water-use trait mapping studies, such as root traits, 

or differential irrigation studies to test physiology of water-use responses.  

 

CONCLUSION 

    To contribute to the need for more water-efficient dryland cropping systems, two biparental 

RIL families were developed for the purpose of genetically characterizing a water-use trait, 
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limited transpiration, in sorghum. The use of canopy temperature captured using UAS thermal 

imaging as a high-throughput proxy necessitated selecting parents with similar agronomic 

characteristics like height and flowering time to control for associated phenotypic covariates. In 

this study, we attempt to validate the suitability of the LT mapping families in controlling for 

those covariates. The presence of germplasm developed through Sorghum Conversion Program 

in pedigrees of the parent lines would suggest an isogenic background for height and flowering, 

reducing heterogeneity of the field. When testing the hypothesis that the families are isogenic for 

these traits, we calculated high H2 for both traits in both families, indicating that genetic variance 

is contributing to observed phenotypic distributions and therefore not isogenic. Variation at 

known large-effect height and maturity loci was observed from GWAS. However, the 

phenotypic ranges indicate that the populations in all locations are relatively homogeneous for 

height and maturity, and therefore acceptable in controlling for phenotypic covariates. These 

results suggest that, with adequate replication, the mapping families are suitable and powerful for 

genetic mapping of the limited transpiration trait and other water-use trait mapping studies. 
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CHAPTER III: CHARACTERIZING GENETIC ARCHITECTURE AND MOLECULAR 

BASIS OF THE LIMITED TRANSPIRATION TRAIT IN SORGHUM 
 

 

 

INTRODUCTION 

Precipitation patterns are shifting because of climate change, spurring an increasing 

interest in breeding water-efficient crops for dryland agriculture (Dai et al., 2018). Trait 

discovery for the ecophysiological water-use ‘limited transpiration (LT)’ trait in sorghum 

(Sorghum bicolor (L.) Moench) offers potential for breeding more water-optimized varieties 

(Shekoofa et al., 2014). Plants with the LT genotype will reduce their transpiration rate in 

periods of annual and daily high vapor pressure deficit (VPD) (Gholipoor et al., 2010; Shekoofa 

et al., 2014) to conserve soil water for later use during grain fill. Hypotheses on the molecular 

basis of LT include influence of stomate density or stomatal regulation via aquaporins among 

other mechanisms (Heinen et al., 2009; Sinclair et al., 2017). Mapping populations with 

relatively homogeneous agronomic background can be phenotyped for LT using unoccupied 

aircraft system (UAS)-based canopy temperature as a high-throughput proxy (Belko et al., 2013; 

Deery et al., 2016). The lack of transpiration cooling effect in putative LT lines produces warmer 

canopy temperatures relative to putative non-LT lines (Gates, 1964). Understanding the 

architecture of genetic variation underlying the LT trait contributes to and development of 

selectable markers and an elite trait donor line as part of trait discovery. 

Defined here as the number, location, and effect sizes of genomic regions conferring a 

specific phenotype (Holland, 2007), genetic architecture informs the strategy for donor line pre-

breeding (Huynh et al., 2013). Genetic architectures can be divided broadly into two classes, 

qualitative and quantitative. Qualitative, or monogenic, variation is controlled by only one locus 

in the genome (or a very small number) with a large effect on the resulting phenotype (Rajon & 
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Plotkin, 2013). Quantitative traits are controlled complexly by a few genomic loci up to hundreds 

of loci, with effect sizes potentially ranging from large to miniscule. Knowledge of these 

genomic regions, called quantitative trait loci (QTL), is useful when making selections during 

breeding for ecophysiological traits that are difficult to phenotype (Zeng, 1994).  

Quantitative architecture can be further subdivided into oligogenic or polygenic. 

Oligogenic traits are those controlled by a limited number of QTL of moderate effect size (Van 

Der Plank, 1966). The designation is subjective, and here we will use the range of 2-9 loci to 

indicate oligogenic architecture, reflecting the number of loci that can easily be tracked via 

outsourced marker genotyping (Thomson, 2014). Conversely, polygenic traits are those 

controlled by many loci of small effect size (Van Der Plank, 1966). Here, an architecture 

consisting of 10 or more loci would be considered polygenic. Highly polygenic architectures 

present difficulties for inclusion in targeted trait introgression and pre-breeding. Small effect 

sizes inhibit marker development due to the inability to statistically detect and map significant 

marker-trait associations (Kumar et al., 2019). Pre-breeders or trait introgression scientists must 

ensure that many necessary QTL are successfully transferred, and those introgressions are not 

disrupting other important haplotypes (Smith et al., 2010).  

Linkage mapping and genome-wide association studies (GWAS) are the primary methods 

for evaluating trait genetic architecture. Linkage mapping most commonly uses biparental 

recombinant inbred line (RIL) families to leverage meiotic recombination, allowing pre-breeders 

to examine inheritance and identify haplotypes conserved across lines exhibiting the target 

phenotype (Liu et al., 2012). RIL mapping families provide sets of germplasm lines which 

inherit haplotypes from either parent in varying sizes and arrangements and are advanced to 

homozygosity at nearly all loci in the genome (Broman, 2005). These lines are closely related, 
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therefore constructing genetic linkage maps offers insight into regions of high recombination 

(Aguilar-Benitez et al., 2021; Bali et al., 2015). GWAS combines genotypes at various molecular 

markers in the genome with measured observations of a phenotype to find significant 

associations. GWAS leverages genetic diversity of lines in the sampling population (Gyawali et 

al., 2019). Additionally, estimating trait heritability provides insight into the influence of genetic 

variance on the phenotype. If trait mapping is not yielding significant associations due to many 

loci of small effect sizes, a non-zero heritability can validate that genetics are contributing to a 

phenotype and it is likely under polygenic control (Schmidt et al., 2019). After generating 

knowledge on the architecture of a trait, pre-breeders can then identify a breeding strategy for 

development of an elite donor line and trait transfer into varieties. 

Many ecophysiological traits have quantitative variation due to environmental fluctuation 

and the integration of many physiological pathways within a plant (Casper et al., 2005; Edwards 

et al., 2011; Geber & Dawson, 1997). However, some physiological traits in crop plants are 

successfully conferred with CRISPR/Cas9 or targeted gene editing for a single gene, indicating 

qualitative control of LT may be possible (Zsögön et al., 2017). In quantitative traits, oligogenic 

architecture is more favorable than polygenic architecture for use in pre-breeding because fewer 

loci must be accounted for during targeted introgressions (Smith et al., 2010). Additionally, those 

loci will typically have effect sizes large enough to find significant QTL and develop markers for 

use in marker-assisted selection (Van Der Plank, 1966). Furthermore, detectable loci are useful 

in understanding the molecular basis of a trait. If an annotated reference genome is available, 

putative QTL detected in monogenic or oligogenic architectures allow pre-breeders to search 

associated regions for known genes. The goal of this study was to identify QTL associated with 

variation for the LT trait and understand the implications of their architecture on pre-breeding. 
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This knowledge will then be used to develop a donor line breeding strategy, including 

developing selectable markers if applicable. 

  

MATERIALS AND METHODS 

Field Design and Management 

Field design and management is described in full detail in chapter 2. Briefly, two 

recombinant inbred line (RIL) mapping families RTx430 ✕ SC979 and RTx430 ✕ BTx2752 for 

the limited transpiration trait in sorghum were grown in three locations–northern Colorado, 

western Kansas, and eastern Kansas–in a single year. RTx430 is the putative non-LT parent 

while SC979 and BTx2752 are putative LT parents. The Colorado and western Kansas 

populations contained 161 RILs total from the two families while the eastern Kansas population 

contained 131 RILs. In each location, fields were planted according to a randomized complete-

block design in early June following tilling, soil amending, and application of pre-emergent 

herbicide. The mapping populations were well-watered using supplemental irrigation to prevent 

drought stress. 

UAS Data Collection 

Weather stations were mounted at each mapping population location (eastern Kansas, 

western Kansas, northern Colorado). All flights in locations were completed between July 27th 

and September 1st, 2021, with the goal of at least 1 flight per week at each location. Flights were 

performed between the hours of 1200 and 1600 (the daily period of highest vapor pressure deficit 

based on 30-year PRISM data) (PRISM Climate Group, Oregon State University, 

https://prism.oregonstate.edu). Target temperature for flight days was >30°C and target relative 

humidity was <50%.  Flights were only performed at timepoints with no cloud cover over the 
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field or casting shadows on the field. All field sites were equipped with ground control points 

(GCPs) at corners of the field and approximately evenly spaced within the field. No less than 

five GCPs were placed per location, typically with four at field corners and one or more 

distributed within the field. For western Kansas, the center-pivot quadrant necessitated placing 

GCPs apart in 100 m increments throughout the field, avoiding placing them in a straight line. 

GCPs allowed for high spatial accuracy and precise georeferencing within 2 cm (Martínez-

Carricondo et al., 2018).  

Equipment used in the Colorado data collection included the multi-rotor DJI Mavic Pro 2 

with a 1” CMOS sensor for RGB, the FLIR Duo Pro R 13mm 640/512 sensor for thermal, and 

the MicaSense RedEdge-M sensor for multispectral imaging. Equipment used in the eastern and 

Western Kansas data collection included a multi-rotor DJI Mavic Pro 2, the FLIR Vue Pro R 

13mm 640/512 sensor for thermal, and the MicaSense RedEdge3 sensor for multispectral 

imaging. Flights were completed at a speed of 3-4 m/s and altitude of 33-34 m. Forward overlap 

percentages were 75% and side overlap percentages were 75%. Flight missions in Colorado were 

completed by a different organization (Colorado State University Drone Center, Fort Collins, 

Colorado) than the flight missions in eastern and western Kansas (Kairos Geospatial, Abilene, 

Kansas). 

Thermal calibration was completed using metal panels and a handheld infrared 

thermometer. At least 30 minutes before the flight mission, three rectangular metal panels 

painted white, gray, and black respectively were placed directly next to the field, unobstructed 

and unshaded, where they would be visible in the UAS imagery. A FLIR TG54 Spot IR 

Thermometer with default settings (emissivity = 0.95) was used to measure the metal panels 

directly before and after flights. Holding the handheld thermometer 2 ft from the panel, the 
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trigger was held down for 5 seconds to collect a single reading. Four readings were collected on 

each panel, one in each quadrant. The readings were recorded and used in thermal data 

calibration. MicaSense calibration was completed using the same metal panels as thermal 

calibration. The downwelling light sensor was used to measure irradiance before and after the 

flight mission in the same quadrant sampling method described for thermal calibration.  

Imagery Data Processing 

Agisoft Metashape Professional (version 1.7.4 build 13028 (64 bit)) was used to stitch the 

photos captured by the sensors into workable orthomosaics for data filtering and extraction. The 

orthomosaic processing described here was completed for each flight in each location. For both 

MicaSense RedEdge-M sensor and FLIR sensor data, photos were loaded as a multi-camera 

system and photos from ascending and descending were removed so that only calibration and 

grid-mission photos remained. Reflectance was calibrated using reflectance panels and sun 

sensor activated for the MicaSense data. Next, photos were aligned with settings active for high 

accuracy, generic preselection, reference preselection (source), key point limit set to 40,000, tie 

point limit set to 4,000, and no masks applied.  

For the MicaSense sensor data, WGS 84 (EPSG::4326) coordinate system was used. 

Markers were detected using auto-detection and false detections were deleted. Georeferenced 

markers from the GPS file were imported and accuracy changed to 2 cm, where any markers 

missed in the auto-detection were manually marked. The bounding box was set for the field and 

the point cloud was trimmed, optimization was completed, and the error of control points was 

validated to be <10 cm before progressing. Next, the digital elevation model (DEM) was built 

with settings for a dense cloud and extrapolation. The orthomosaic was then built using the DEM 

and average values during blending to reduce temporal variability. This means that the values 
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from all photos that contribute to a particular pixel are used to calculate the average for that pixel 

in the resulting orthomosaic. Finally, the MicaSense orthomosaic was exported. 

For the FLIR sensor data, any photos that did not initially align were reset and re-aligned. 

Using the WGS 84 (EPSG::4326) coordinate system, georeferenced markers were imported and 

accuracy changed to 5 cm for eastern and western Kansas maps and 7 cm for Colorado maps. 

While the GPS accuracy is 2 cm, the ground sample distance is calculated to be ~5 cm and ~7 

cm respectively for Kansas and Colorado locations hence the adjustment. Next, the photos were 

filtered by tie points and markers were placed on aerial targets in a minimum of five images per 

flight. The bounding box was set for the field and the point cloud was trimmed, optimization was 

completed, and the error of control points was validated to be <10 cm before progressing. The 

DEM was built with settings for a sparse cloud and extrapolation, as dense cloud settings often 

produce large gaps when processing FLIR data. The orthomosaic was then built using the DEM 

and average values during blending to reduce temporal variability. Finally, the FLIR orthomosaic 

was exported. 

Imagery-Based Trait Extraction 

To reduce noise caused by edge effects of the plots, canopy temperature data was only 

extracted from the center two rows of each four-row plot in the mapping populations. The use of 

GCPs in the field sites provided high spatial accuracy (within 2 cm) to georeference the center 

two rows of each plot, ensuring the same sample area is extracted from each plot. Using ArcGIS 

Pro, a layer was created where an equal-sized rectangular polygon was fit to the center two rows 

with ~2 feet buffered from each side of every four-row plot using the MicaSense/RGB images as 

reference. Each plot polygon was named with a unique ID corresponding to the range and row 
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location of the plot in the field. The layer was then exported as a shapefile for use in data 

extraction.  

ArcGIS Pro (version 2.9.3, Esri Inc., Redlands, United States) was used to extract canopy 

temperature data from mapping population orthomosaics. The MicaSense orthomosaic raster, 

thermal orthomosaic raster, and shapefile of plot polygons were loaded into the map interface. 

First, the MicaSense orthomosaic was used to generate a Normalized Difference Vegetation 

Index (NDVI) layer with a scientific output using the analysis raster functions. Next, in the 

Symbology tab, the NDVI layer was classified into five classes using the ‘Natural Breaks 

(Jenks)’ setting. After generating the histogram of values, the value of the lower boundary of the 

fifth bin of classified values was noted as the threshold between plant and soil pixels. Next, the 

‘Raster Calculator (Spatial Analyst Tools)’ function was used to classify soil versus plant pixels. 

The NDVI layer was used as the raster calculator input and all pixels greater than or equal to the 

lower boundary of the fifth bin were sorted into one class and all pixels less than the threshold 

were sorted into a second class in the resulting new layer. The pixels above the threshold value 

(class 1) were recognized as plant material in the orthomosaic. Once the two classes (soil, plant) 

were classified, the soil pixels (class 0) were removed in the Symbology tab. This created a layer 

of only pixels assigned to plant material from the MicaSense raster. 

The thermal orthomosaic raster was then clipped with the ‘Clip’ imagery raster functions 

tool using the plant material layer to remove all temperature pixels outside of the plant material. 

This generated a raster layer with temperature values for only plant pixels. Finally, this clipped 

temperature raster layer was used to pull zonal statistics. The ‘Zonal Statistics as Table (Spatial 

Analyst Tools)’ function was used with the plot polygon shapefile as the input feature zone data, 

the zone field as the plot name from the shapefile, and the plant pixel-clipped temperature raster 
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as the input value raster. All statistic types were generated, including count, area, minimum, 

maximum, range, mean, standard deviation, sum, median, and 90th percentile. Missing data was 

ignored in the statistics calculation. The final table containing all statistics for each plot was 

exported. The general thermal data extraction workflow is shown in Figure 3.1. 

 
Figure 3.1. ArcGIS Pro thermal data extraction workflow using MicaSense and thermal calibrated 
orthomosaic raster images. The workflow is shown on the western Kansas field site. 
 

Phenotype Extraction and Analysis 

The canopy temperature data extracted from a mapping population flight is treated as an 

independent location-timepoint (Figure 3.2). The Colorado flights produced 4 datasets (08/11/21, 

08/13/21, 08/18/21, 08/20/21), the western Kansas flights produced 1 dataset (08/08/21), and the 

eastern Kansas flights produced 4 datasets (08/06/21, 08/09/21, 08/25/21, 09/01/21) from the 

2021 season. Each location-timepoint dataset was assessed and filtered to eliminate plots with 

poor stand using the ‘COUNT’ value extracted with the zonal statistics. Plots in Colorado were 

filtered to remove those with less than 350 pixels and plots in western and eastern Kansas were 
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filtered to remove those with less than 400 pixels. The 90th percentile temperature value 

(‘PCT90’ from the extracted zonal statistics) was used as the limited transpiration phenotype. 

Temperature values were standardized by centering around the mean with a unit standard 

deviation for each location-timepoint. Standardized temperature values were plotted for each 

location-timepoint to visualize distributions. Pearson’s product-moment correlation coefficient 

was calculated for both canopy temperature and plant height, and canopy temperature and 

flowering time to assess spatial artifacts associated with heigh and flowering. 

 
Figure 3.2. Example of spatial visualization of raw 90th percentile canopy temperature values extracted 
from zonal statistics in the ArcGIS Pro thermal data extraction pipeline for all plots in the 08/25/2021 
eastern Kansas location-timepoint. The spatial distribution of canopy temperatures offers visual quality 
control assessments, such as noting that the hottest plots are those with poor stand and therefore greater 
soil temperature captured. Plots with low stand were filtered out before use in analysis to limit associated 
artifacts of falsely inflated canopy temperatures. All other location-timepoint visualizations are located in 
the Chapter 3 Supplementary Figures. 
 
Estimation of Broad-Sense Heritability 

Broad-sense heritability (H2) was calculated for canopy temperature in each location-

timepoint as well as across all locations. Variance components (σ2) for the canopy temperature 

were estimated using the lmer() function from the lme4 package (Bates et al., 2015) in R (R Core 
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Development Team, 2020). For H2 of individual location-timepoints, terms in the lmer() model 

included genotype and replication (block). For H2 across location-timepoints, terms in the model 

included genotype and location-timepoint.  

H2 = σ2
G/σ2

P 

    The H2 for canopy temperature in each location-timepoint (total and within-family) was 

estimated using the calculated variance components and the Cullis method. This method 

accounts for the unbalanced number of genotypes included across locations and unbalanced 

number of reps within locations after filtering for stand (Schmidt et al., 2019). The Cullis method 

uses the mean variance of pairwise differences of genotypic best linear unbiased predictors 

(BLUPs) using the formula: 

 

Where σ2
g is the genotypic variance and  is the mean variance of the difference of two 

genotypic best linear unbiased predictions (BLUPs). 

Genome-Wide Association Study and Candidate Gene Analysis  

The DArTseq-LD genotype data processing described in chapter 2 was used for mapping 

marker-trait associations between maximum canopy temperature and SNPs. Briefly, a set of 

2,738 SNPs across 366 lines were generated after filtering to remove individuals with a call rate 

< 0.5 and SNPs that were monomorphic or non-biallelic, had a call rate < 0.5, a reproducibility 

index of < 0.9. 

BLUPs for canopy temperature were calculated for all lines in each location-timepoint 

and used as phenotypes. Genotype and block were used as terms in the model and all effects 

were treated as random. The genotype input file was filtered to only include lines with 
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phenotypes for each analysis. The Genome Association and Prediction Integrated Tool (GAPIT) 

package for R (Lipka et al., 2012) was used to conduct a GWAS for each location-timepoint. A 

general linear model (GLM) was fit (Price et al., 2006) with zero principal components minimal 

population structure present in highly-related RILs. In the GLM model, all individuals are treated 

as a single group. A minor allele frequency filter was set to 5%. A nominal threshold for 

significant SNPs was calculated using the Bonferroni method and effective number of SNPs 

(Duggal et al., 2008). 

Known aquaporins were identified in the model plant Arabidposis thaliana using The 

Arabidopsis Information Resource (Berardini et al., 2015). Using Phytozome (Goodstein et al., 

2012), the Arabidopsis thaliana TAIR10 genome was used to search the identified aquaporins 

and find sorghum protein homologs (orthologs and paralogs) in the Sorghum bicolor v3.1.1 

genome (McCormick et al., 2018). Sorghum homologs were recorded with name, position, and 

similarity and plotted on the GWAS Manhattan plots to visualize putative LT and aquaporin 

colocalizations.  

 

RESULTS 

Non-Zero H2 Indicates Genetic Contribution to Canopy Temperature Variance 

To test the hypothesis that there is a genetic contribution to the observed phenotypic 

variance for maximum canopy temperature, broad-sense heritability (H2) was calculated in each 

location-timepoint. A non-zero H2 was calculated in all location-timepoints except one (Table 

3.1, Figure 3.4), indicating there is genetic variance underlying canopy temperature across nearly 

all location-timepoints. 
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The hypothesis that the LT trait is environmentally dependent can be tested by plotting 

H2 with annual VPD weather data. Under the hypothesis that the trait is environmentally 

dependent on high VPD, we would predict days with higher VPD to produce higher H2 

(attributing more genetic variance to the phenotypic variance on those days). In Colorado, H2 is 

relatively high in two location-timepoints (08/13/2021 and 08/18/2021) with a ~2 kPa difference 

of maximum VPD between those location-timepoints (Figure 3.5). Of the remaining two lower 

H2 Colorado location-timepoints, the 08/11/2021 VPD is comparable to the 08/18/2021 VPD 

while the 08/20/2021 VPD is comparable to the 08/13/2021 VPD. In eastern Kansas, VPD is 

relatively low in all location-timepoints compared to Colorado and western Kansas. The eastern 

Kansas location-timepoints with higher H2 (08/09/2021 and 08/25/2021) occur on days with 

lower VPDs compared to the lower H2 location-timepoints (Figure 3.5). Weather station data was 

not available past 08/31/2021 in the eastern Kansas location, therefore the 09/01/2021 location 

timepoint cannot be compared with daily VPD. 

Continuous Phenotype Distributions Inform Qualitative vs. Quantitative Architecture 

To evaluate the hypotheses that the LT trait is qualitative (monogenic) versus 

quantitative, the distributions of phenotypic observations were assessed. Under a qualitative 

model, we would predict a bimodal distribution in each location-timepoint. The observations 

(Figure 3.3) instead form a continuous distribution in each location-timepoint. Standardized 

phenotype values range from < -2 to > 2 across the data.  

Additionally, the Pearson correlation test was run for height and flowering time each 

against canopy temperature to evaluate the influence of agronomic background on temperature. 

Only height in two location-timepoints was significantly correlated (p < 0.05) with canopy 
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temperature (Table 3.2). All other height and flowering time correlations were not statistically 

significant. 

Marker-Trait Associations Reveal Regions of Interest 

To test hypotheses on oligogenic versus polygenic architecture, GWAS was used to 

associate regions of the genome with the LT phenotype. No significant marker-trait associations 

(MTA) were observed across all location-timepoints when using the Bonferroni-adjusted 

threshold. While not significant, regions of MTA were consistent within and across locations 

(Table 3.3). A repeated pattern of a small peak on the end of chromosome 1 is present in the 

Colorado GWAS data (Figure 3.8). In three of four eastern Kansas datasets, there is an 

association peak near the end of chromosome 6 (Figure 3.6). The end of chromosome 8 in the 

08/08/2021 western Kansas location-timepoint shows a small peak (Figure 3.7) present also in 

the 08/25/2021 eastern Kansas location-timepoint. Across all locations, a small peak on the end 

of chromosome 4 is observed. 

To begin testing the hypothesis that aquaporins are underlying variation for LT, the 

regions of interest were plotted with locations of known aquaporin homologs in sorghum (Table 

3.4). The MTA peak on the end of chromosome 1 visible in the Colorado data is colocalized with 

SIP2;1 aquaporin (Sobic.001G389900.1) (Figure 3.11). The peak on the end of chromosome 6 is 

colocalized with PIP2;3 (Sobic.006G150100.1) (Figure 3.9). The peak on the end of 

chromosome 4 is colocalized with PIP3 (Sobic.004G222000.1) (Figure 3.9, Figure 3.10, Figure 

3.11). The peak on the end of chromosome 8 is not colocalized with known Arabidopsis 

aquaporin homologs in sorghum (Figure 3.10) identified for this study. 
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Table 3.1. Broad-sense heritability (H2) of maximum temperature estimated using the Cullis 
method at a population level and family level in each location-timepoint in the 2021 season.  

Location-Timepoint H2 

 
Population-Level 
(Both Families) 

Eastern KS  

08/06/21 0 

08/09/21 0.25 

08/25/21 0.28 

09/01/21 0.14 

Western KS 
 

08/08/21 0.25 

Colorado 
 

08/11/21 0.19 

08/13/21 0.40 

08/18/21 0.48 

08/20/21 0.12 

H2= Broad-sense heritability 
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Table 3.2. Pearson correlation between height and canopy temperature, and between flowering 
time and canopy temperature in mapping population in each 2021 location-timepoint. 
Location-Timepoint Correlation 

 Height &  
Canopy Temp. 

 
P-value 

Flowering Time & 
Canopy Temp. 

 
P-value 

Eastern KS 

08/06/21 -0.31 0.0004 * 0.06 0.07 

08/09/21 -0.17 0.05 -0.04 0.7 

08/25/21 -0.16 0.06 0.06 0.6 

09/01/21 -0.04 0.7 -0.12 0.5 

Western KS 

08/08/21 -0.09 0.3 - - 

Colorado 

08/11/21 -0.24 0.002 * -0.07 0.4 

08/13/21 -0.11 0.2 -0.13 0.2 

08/18/21 -0.09 0.26 0.08 0.3 

08/20/21 -0.0015 0.99 0.02 0.8 
* = significant 
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Table 3.3. LT marker-trait associations of interest in each 2021 location-timepoint. MTAs of 
interest are based on the most highly significant associations and visible peaks in Manhattan 
plots. 

Location-
Timepoint 

SNP ID Location MAF P-value 

East Kansas 08/09/2021 

 SNP_1947303 6:60851889 0.47 < 10-4 

 SNP_34775236 5:19861937 0.27 0.0026 

 SNP_2050839 9:5019093 0.31 0.0088 

 SNP_28193619 1:29603323 0.14 0.0093 

East Kansas 08/25/2021 

 SNP_34779343 8:21106018 0.19 < 10-4 

 SNP_15054236 8:46780288 0.3 0.00050 

 SNP_2186040 6:61114540 0.48 0.00083 

 SNP_15048023 4:57209399 0.22 0.0012 

 SNP_15039125 3:74059839 0.5 0.0015 

 SNP_2218023 10:55572007 0.06 0.0017 

East Kansas 09/01/2021  

 SNP_2218023 10:55572007 0.07 0.0018 

 SNP_15055950 3:69573801 0.05 0.0046 

 SNP_1938396 4:68341693 0.3 0.0056 

 SNP_24775441 6:44628662 0.4 0.0058 

West Kansas 08/08/2021  

 SNP_34779136 10:1484372 0.3 0.00014 

 SNP_1936229 8:58972170 0.25 0.00035 

 SNP_15039196 6:1657119 0.26 0.00078 

 SNP_15048023 4:57209399 0.22 0.0012 

 SNP_2706658 1:78412303 0.42 0.0036 

Colorado 08/11/2021   

 SNP_34779357 5:8898517 0.22 0.0060 

Colorado 08/13/2021   

 SNP_1941743 1:75827323 0.31 0.0015 
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 SNP_34778082 3:43166453 0.2 0.0029 

 SNP_15038396 5:4180764 0.2 0.0035 

 SNP_1960273 5:64657564 0.15 0.0042 

Colorado 08/18/2021   

 SNP_1918643 4:7916572 0.12 0.00067 

 SNP_1887698 9:47977415 0.35 0.0025 

 SNP_34779086 3:1479177 0.22 0.0032 

 SNP_34779191 1:65279181 0.21 0.0046 

Colorado 08/20/2021   

 SNP_15048868 1:66413583 0.23 0.00014 

 SNP_34778986 4:62731172 0.26 0.00030 

 SNP_28192827 2:64314914 0.24 0.0020 

MAF = minor allele frequency  
Location = chromosome #: bp location on chromosome 
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Table 3.4. Known sorghum homologs of Arabidopsis thaliana aquaporin loci, including 
sorghum gene name, physical position, and similarity to the Arabidopsis gene. 

Arabidopsis 
Reference ID 

Arabidopsis 
Name 

Sorghum Gene Sorghum 
Position 

Similarity (%) 

AT1G52180 - Sobic.001G505100.1 1:77324937- 

77327995 

78.8 

 - Sobic.004G295100.1 4:63501043- 

63502618 

76 

 - Sobic.006G170600.1 6:52722391- 

52723580 

77.1 

 - Sobic.010G146100.1 10:41392270- 

41394011 

77.5 

AT2G29870 - Sobic.004G102200.1 4:9450178- 

9453286 

73.5 

AT2G37180 PIP2;3 Sobic.002G124700.1 2:16844699- 

16848362 

90.5 

 PIP2;3 Sobic.002G125200.1 2:16897835- 

16899264 

86.9 

 PIP2;3 Sobic.004G222000.1 4:57220819- 

57224296 

90.5 

AT3G04090 SIP1;1 Sobic.005G091600.1 5:13565973- 

13569467 

74.2 

 SIP1;1 Sobic.009G131500.1 9:48499290- 

48503602 

79.1 

AT3G06100 NIP7;1 Sobic.001G195800.1 1:17588587- 

17593923 

60.9 

AT3G56950 SIP2;1 Sobic.001G389900.1 1:67642856- 

67645670 

69.4 

AT4G18910 - Sobic.003G026400.1 3:2231971- 

2234369 

84.2 

 - Sobic.009G075900.1 9:9904508- 

9909435 

78.5 
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AT4G35100 PIP3 Sobic.002G125000.1 2:16883368- 

16884816 

85.3 

 PIP3 Sobic.006G150100.1 6:51145122- 

51147729 

90.1 

AT4G38220 AQI Sobic.007G208300.1 7:63740857- 

63745071 

81.1 

 AQI Sobic.010G080300.1 10:6840554- 

6846224 

74.9 
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Figure 3.3. Phenotypic distributions of average 90th percentile canopy temperature (standardized) for 
each RIL in the population (after filtering for stand count) in each location-timepoint from the 2021 
season. White dots indicate mean, centered at zero due to the standardization. Population size is denoted 
by “n =”. 
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Figure 3.4. Broad-sense heritability (H2) of 90th percentile canopy temperature estimated using the Cullis 
method across location-timepoints from the 2021 season. 
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Figure 3.5. Broad-sense heritability (H2) (right y-axis) of 90th percentile canopy temperature for each 
2021 location-timepoint overlaid on weather station vapor pressure deficit (VPD) data (left y-axis, light 
gray line) collected every five minutes for each field site. Comparing the H2 to the maximum daily VPD 
(light gray peaks) can reveal a VPD threshold for the environmental dependence of the LT trait. 
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Figure 3.6. Manhattan plots for GWAS results showing associations of genetic markers and 90th 
percentile canopy temperature BLUPs in the eastern Kansas 2021 location-timepoints. The black 
horizontal line indicates Bonferroni-adjusted significance threshold for markers. The red to green scale 
indicates marker density. 
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Figure 3.7. Manhattan plot for GWAS results showing associations of genetic markers and 90th percentile 
canopy temperature BLUPs in the western Kansas 2021 location-timepoint (08/08/2021). The black 
horizontal line indicates Bonferroni-adjusted significance threshold for markers. The red to green scale 
indicates marker density. 
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Figure 3.8. Manhattan plots for GWAS results showing associations of genetic markers and 90th 
percentile canopy temperature BLUPs in the Colorado 2021 location-timepoints. The black horizontal 
line indicates Bonferroni-adjusted significance threshold for markers. The red to green scale indicates 
marker density. 
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Figure 3.9. Manhattan plots for GWAS results showing associations of genetic markers and 90th 
percentile canopy temperature BLUPs in the Eastern Kansas 2021 location-timepoints with loci 
corresponding to known Arabidopsis thaliana aquaporin homologs in sorghum marked (blue vertical 
lines). Horizontal dashed gray line indicates Bonferroni adjusted significance threshold. 
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Figure 3.10. Manhattan plots for GWAS results showing associations of genetic markers and 90th 
percentile canopy temperature BLUPs in the Western Kansas 2021 location-timepoint with loci 
corresponding to known Arabidopsis thaliana aquaporin homologs in sorghum marked (blue vertical 
lines). Horizontal dashed gray line indicates Bonferroni adjusted significance threshold. 
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Figure 3.11. Manhattan plots for GWAS results showing associations of genetic markers and 90th 
percentile canopy temperature BLUPs in the Colorado 2021 location-timepoints with loci corresponding 
to known Arabidopsis thaliana aquaporin homologs in sorghum marked (blue vertical lines). Horizontal 
dashed gray line indicates Bonferroni adjusted significance threshold. 

 
 

DISCUSSION 

Knowledge of genetic variation underlying a trait of interest is integral to developing a 

pre-breeding strategy (Bernardo, 2008). A structured hypothesis testing framework allows us to 

exclude certain architectures and generate knowledge on trait molecular basis that can best 

inform breeding decisions for a trait of interest. 
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H2  and Phenotypic Distribution of Canopy Temperature Establishes the Presence of 

Quantitative Genetic Variation for LT 

Characterizing LT genetic architecture begins by confirming there is genetic variation for 

the trait in the mapping population. The temporal variability of canopy temperature may result in 

a large environmental effect on the phenotype (Figure 3.3) when using UAS-based phenotype 

data. One study evaluating the use of UAS to capture thermal data in wheat found that the H2 of 

canopy temperature ranges between 0.36 to 0.74 (Perich et al., 2020), while another study 

comparing canopy temperature and stomatal conductance in wheat using similar UAS 

methodology found H2 up to 0.75 (Rebetzke et al., 2012). The LT mapping populations in this 

study produced ranges of non-zero H2 across all but one location-timepoint (Table 3.1, Figure 

3.4), supporting the hypothesis that there is a genetic contribution to the phenotypic variance. 

However, it is important to note that genetic variation for traits other than LT may be 

contributing to the canopy temperature phenotype, in this study and previous studies (Ries et al., 

2012; Saint Pierre et al., 2010). The LT mapping families specifically sought to account for 

covariates associated with morphological traits like height, flowering time, and general canopy 

architecture (Raymundo et al., in preparation). Pearson tests found that these traits were not 

correlated with canopy temperature in most location-timepoints, indicating sufficient control of 

covariates. However, leaf size and leaf angle were not measured and may affect soil irradiance 

and canopy temperature interference captured by the UAS sensing to produce artifacts (Ferguson 

et al., 1973; Fuchs et al., 1967). 

Understanding the dependence of the LT trait on high VPD conditions could elucidate a 

hypothetical VPD threshold and narrow target environments for the trait. H2 across timepoints in 

each location did not show the predicted trend when compared with VPD data under the 
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hypothesis that expression of the LT trait is triggered by high VPD (Gholipoor et al., 2013). 

Days with high VPD relative to days with lower VPD did not show consistently higher H2 

(Figure 3.5). Certain location-timepoints followed the predicted trend, but half did not. Further 

work to characterize the VPD-dependence of the LT trait using daily flight data could provide 

further insight into this environment-gene relationship. 

Traits controlled by a single Mendelian factor will produce bimodal distributions of 

phenotypes (Sameri et al., 2009; Zhang et al., 2012). The opposite is true of quantitative traits, 

which produce continuous distributions as the result of the contribution of more genetic factors 

with smaller additive effects (Lande, 1982). Studies across a multitude of plant species have 

shown that ecophysiological water-use traits are typically quantitative (Brendel et al., 2008; 

Chen et al., 2011; Tharanya et al., 2018). The phenotypes for canopy temperature of the LT 

mapping populations (Figure 3.3) display a continuous range and suggest quantitative control. 

 Moderate Effect QTL May Be Conferring LT 

Oligogenic architecture, characterized by a modest number of moderate-effect loci, is 

more favorable for targeted introgressions using marker-assisted selection (MAS) than polygenic 

architecture (DeWitt et al., 2021). Again, the quantitative control of many physiological and 

water-use traits is polygenic (Faralli et al., 2019). The LT mapping families produced no putative 

significant MTA across all location-timepoints (Figure 3.6, Figure 3.7, Figure 3.8). However, 

GWAS revealed smaller association peaks, some of which were consistent across timepoints 

within location or across locations. Notable MTA on chromosome 6 near SNP_1947303 (MAF = 

0.47), chromosome 8 near SNP_ 34779343 (MAF = 0.19), chromosome 1 near SNP_15048868 

(MAF = 0.23), and chromosome 4 near SNP_1918643 (MAF = 0.12) demonstrated such patterns 

(Table 3.3). We therefore infer that the LT trait is under oligogenic control, and that those 
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regions with consistent MTA are probable for at least partial control of LT variation. Further 

GWAS studies using denser marker coverage and more effective recombinations may be 

advantageous to further elucidate LT trait architecture. Additional data from the 2022 season is 

under collection and consolidation and will be used for additional analyses of genetic 

architecture of the LT trait in sorghum. 

The hypothesis that aquaporins are underlying the LT trait is generated by the rich body 

of work describing the relationship of aquaporins and transpiration rate (Heinen et al., 2009; 

Maurel et al., 2016). Aquaporins facilitate water, CO2, and uncharged solute transfer across 

membranes. In turn, the turgor pressure of guard cells that regulate stomata opening and closing 

are partially a function of aquaporins (Mosehlion et al., 2015). While the findings on the 

molecular basis of LT are preliminary, the colocalizations of association peaks with known 

aquaporin loci (Figure 3.9, Figure 3.10, Figure 3.11) generate new hypotheses on the 

contribution of particular aquaporin genes to LT variation. Notably, SIP2;1 

(Sobic.001G389900.1) and SNP_15048868 on chromosome 1 are approximately 500 kb apart. 

Sobic.006G170600.1 and SNP_1947303 are in close proximity on chromosome 6, and PIP2;3 

(Sobic.004G222000.1) and SNP_1918643 are within 12,000 basepairs of one another (Table 3.2, 

Table 3.3). Colocalizations are observed at aquaporin loci representing several subgroups 

including small basic intrinsic proteins and plasma membrane intrinsic proteins. These findings 

suggest variation of LT may be attributed to a variety of water transport functions related to 

aquaporins within the plant. 

Implications for LT Donor Line Development 

Pre-breeding with oligogenic traits is facilitated through marker-assisted selection. 

Developing selectable markers is possible due to statistically detectable variation present in 
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oligogenic traits. Breeding for polygenic traits is complicated by the large number of 

undetectable loci contributing to the phenotype (Scott et al., 2021). Breeding programs build elite 

yield haplotypes that can span most of a linkage group. Transferring a trait with tens or hundreds 

of underlying genes may break up those haplotypes, lowering the performance of the progeny or 

reduced heterosis (Smith et al., 2010). LT growth chamber studies originally found 17 genotypes 

with transpiration rate breakpoint responses (Gholipoor et al., 2013), indicating genetic variation 

for LT may already be present in elite breeding materials. Therefore, a more complex polygenic 

architecture would suggest using genomic selection (GS) to identify and advance lines with high 

LT performance in target environment breeding trials (Meuwissen et al., 2001). The oligogenic 

architecture of LT proposed by this study guides development of selectable markers for use in 

pre-breeding a trait donor line. 

CONCLUSION 

The limited transpiration trait holds promise for increasing water-use efficiency in 

dryland sorghum cropping systems. Development of an elite donor line for use in plant breeding 

is stalled by the need for effective molecular markers to select on. Multi-environment trials of an 

LT mapping population using canopy temperature as a phenotype proxy found that genetic 

variation for LT is present in the mapping families, and small but repeated peaks across 

timepoints and locations indicate oligogenic architecture. Known Arabidopsis thaliana aquaporin 

homologs in sorghum colocalize with several of the peaks, providing some insights into the 

potential molecular basis underlying LT. The implications of oligogenic architecture for donor 

line development support identifying selectable markers for marker-assisted selection. Further 

repetition across years and environments will increase power and resolution of the putative QTL 

for the LT trait in sorghum. 
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Chapter III Supplemental 

 
Supplementary Figure 1. Spatial visualization of 90th percentile canopy temperature (degrees C) for 
each plot extracted using zonal statistics from eastern Kansas 08/06/2021 flight data. 
 

 
Supplementary Figure 2. Spatial visualization of 90th percentile canopy temperature (degrees C) for 
each plot extracted using zonal statistics from eastern Kansas 08/09/2021 flight data. 
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Supplementary Figure 3. Spatial visualization of 90th percentile canopy temperature (degrees C) for 
each plot extracted using zonal statistics from eastern Kansas 09/01/2021 flight data. 
 

 
Supplementary Figure 4. Spatial visualization of 90th percentile canopy temperature (degrees C) for 
each plot extracted using zonal statistics from western Kansas 08/08/2021 flight data. 
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Supplementary Figure 5. Spatial visualization of 90th percentile canopy temperature (degrees C) for 
each plot extracted using zonal statistics from Colorado 08/11/2021 flight data. 
 



112 

 

 
Supplementary Figure 6. Spatial visualization of 90th percentile canopy temperature (degrees C) for 
each plot extracted using zonal statistics from Colorado 08/13/2021 flight data. 
 

 
Supplementary Figure 7. Spatial visualization of 90th percentile canopy temperature (degrees C) for 
each plot extracted using zonal statistics from Colorado 08/18/2021 flight data. 
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Supplementary Figure 8. Spatial visualization of 90th percentile canopy temperature (degrees C) for 
each plot extracted using zonal statistics from Colorado 08/20/2021 flight data. 


