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S p a c e s

Combinatorial incidence structures like graphs, digraphs, and linear spaces 

are defined modulo an isomorphism relation. Typically we are interested in 

determining complete systems of representatives of the isomorphism classes, 

in order to  test conjectures or to  prove existence or non-existence of examples 

for new theorems.

In this thesis, we present classification algorithms for graphs, digraphs 

and incidence structures. We discuss both  the use of invariants and the use of 

partition backtracking for solving the isomorphism problems of {0, l}-matrices.

After tha t, we consider the inverse problem of finding all structures for a 

given invariant. This leads to  the composition principle for incidence structures 

and eventually to the computation of all 8,592,194, 823 linear spaces on 13 

points.
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Chapter 1

Introduction

In graph theory, given a collection of properties, decide whether there exist 

a graph satisfying those properties. This is called a classification problem for  

graphs in which one is asked to  list, up to  some criterion of equivalence rela­

tion, all the graphs th a t have the desired properties. In such a list, no graph 

can be obtained from the other in any way. In otherwords, the classification 

problem is a counting problem in which the task is to  count, upto equivalence 

(■isomorphism ), the number of distinct graphs satisfying the properties. How­

ever, we expand our considerations to  larger set of objects called incidence 

structures which might be described as an arrangement of finite sets of points 

and blocks so th a t some prescribed properties are satisfied.

Solving such a problem is of interest for practical and theoretical reasons. 

According to Ronald C. Read [69], examination of a classified lists may suggest 

conjectures, find a counter example to  conjectures, or indicate possible lines 

of investigation.

The isomorphism problem consists in deciding whether two given structures 

are isomorphic, i.e. whether there is a bijective mapping (permutation) such 

th a t one structure is produced from the other.

Algorithmic m ethods are widely used for solving existence and classification 

problems [11, 38, 55, 66, 71, 81]. One of the used methods is the exhaustive

1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



2

search which considers all candidates solutions and is guaranteed to  find a 

solution if one exists. This m ethod is also used for demonstrating the nonex­

istence of particular structure. The nonexistence of a finite projective planes 

of order 10 is may be the most notable such result to  date [56].

In Particular, a classification of structures of interest is not an easy task 

to achieve. In such a problem, one starts  by listing all possible structures tha t 

satisfy some given set of constriants, and then eliminate identical (isomorphic) 

objects among th a t list, keeping only one object among every isomorphism 

class. Despite many differences, this is what is called a ” classical method” .

Assuming th a t we want to enumerate all graphs on n  vertices th a t posses 

some given properties. Then, the classical m ethod starts to produce larger 

graphs from an existing list of smaller graphs. For instance, we create a list 

of graphs having i +  1 vertices which satisfy the set of properties from smaller 

graphs with i vertices. Clearly, we shall have every graph having i +  1 vertices 

in this way. However, we would get a quite large number of duplicates for 

large n. It is therefore advisable to eliminate duplicates in the new list once 

the structure is constructed. It is then necessary to  have a m ethod for such 

elimination a t each step of the construction procedure.

In fact, there are two more efficient algorithms which have been developed 

for th a t manner. Namely, generation by canonical representative or orderely 

generation due to C. Read [69] and I. A. Faradzev [23] independently in (1978), 

and the other method, which is the one used in the presented thesis, is gen­

eration by canonical augmentation due to  Brendan D. McKay [64] in (1998). 

For applications of those m ethod see [11, 12, 25, 45, 47, 49, 51, 64, 72],

Moreover, Laue and Kerber together with collaborators have used exten­

sively the m ethod of homomorphisms of group actions [7, 53, 57] in classifi­

cation problems and th a t this does not apply in many cases. In other words, 

this m ethod only applies if the object has a well defined subobject.

In this thesis, we used the framework invented in the m ethod by McKay
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[64] in classifying some structures of interests. We use the general theory 

in McKay’s paper to construct a specific theory which is then applicable to 

construct incidence structures in a row by row strategy. Moreover, our concern 

in this thesis is to  work out the details th a t are hard to  find in other works on 

generation algorithms and as a result a classification result is obtained.

In what follows, we give a brief summary on the main interests of the thesis 

and what each chapter of the thesis is about.

In algebraic setting, the isomorphism classes of structures correspond to the 

orbits of a group action. The idea of isomorph-free exhaustive generation is to 

generate, w ithout isomorph, all structures satisfying a collection of properties.

Consequently, this idea corresponds to  produce a set of structures satisfy­

ing a collection of constraints th a t contains exactly one element out of each 

isomorphism class. This set is then what we call an orbit transversal.

Algebraically, the fundamental problem to be considered in this thesis is 

th a t we have a group G th a t acts on a finite set X  of incidence structures, 

and we are asked to  produce an orbit transversal for the action of G  on X ,  

denoted by T (G , R).

The principle of homomorphisms of group actions have extensively con­

sidered, for instance by authors like Kerber and Laue [7, 53, 57], in solving 

problems related to the construction of some combinatorial structures. The 

idea is to solve an orbit transversal for a secondary action, and then use the 

produced transversal to  solve the prim ary transversal problem where both 

actions are connected in the sense of homomorphisms of group actions.

In particular, we consider projection maps as homomorphisms of group 

actions. Let G act on two finite sets X  and Y , and let R  C X  x Y  be 

a G-invariant relation with G acting on R  coordinatewise. Assuming tha t 

a transversal for G-orbits on X  is given (or trivially can be constructed), 

we consider the problem of constructing a transversal for the G-orbits on Y , 

T{G , Y ) , step by step. First, we consider the step of constructing a transversal
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T ( G , R )  by using a given transversal T ( G , X ) .  This step is called lifting 

orbits step. The second step is called the projecting orbits step which depends 

on the ideas of isomorph-rejection techniques. Those techniques are used in 

eliminating duplicate structures, and the name of such techniques was used 

first by S w i f t  [78].

The organization of the thesis follows. First, Chapter 2 on page 6 gives the 

needed background, notations, and some results th a t are used throughout the 

thesis.

Second, in Chapter 3 on page 52, we discuss the algebraic concepts of finite 

group actions. Moreover, we construct an algorithm which enables us to  con­

struct an orbit transversal T ( G , Y )  if given an orbit transversal T ( G , X ) .  Also, 

we present the isomorph-rejection theory of what so called orderly generation 

due to  Faradzev [23] and Read [69] (in the 1970’s, independently).

Third, in Chapter 4 on page 74, we define the class of incidence structures 

A  in a way th a t we can apply the considered theory of Chapter 3 on page 52. 

Moreover, the idea of generation by induction is developed in th a t chapter as 

well. Also, we consider some examples of constructing incidence structures 

like regular graphs with a collection of properties.

Fourth, in Chapter 5 on page 103, we survey isomorphism invariants, and 

the partition refinements. Moreover, we use a m ethod called TDO-method, 

developed by D. Betten and M. Braun [9], in the partition refinement proce­

dure.

In Chapter 6 on page 118, we explain the ideas of partition backtrack us­

ing the TDO language and use the so called derived TDO  to approximate the 

orbits of the automorphism group of a given incidence structure. Also, we 

concentrate more on methods for computing a canonical labeling map along 

with the automorphism group of a given incidence structure. We then recon­

sider the concepts of isomorph-rejection techniques by considering the ideas of 

canonical augmentations, due to McKay [64],
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Finally, in Chapters 7 on page 150 and 8 on page 176, we consider the 

generation algorithm, which was constructed in the thesis by using isomorph- 

rejection techniques related to  canonical augmentation, of two families of in­

cidence structures which are linear spaces on 13 points and normally regular 

digraphs, and thereby new classification results were achieved.
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Chapter 2

Preliminaries

This chapter gives a brief introduction to graphs and incidence structures. 

Moreover, we give some definitions and some notations tha t we will use through­

out the thesis.

For a general introduction to  discrete mathematics, see [34, 35]. For an 

introduction to g ra p h  th e o ry , we refer the reader to [14, 33, 41, 59, 71, 

77]. More on incidence structures like designs, co n fig u ra tio n s , and lin e a r  

sp aces  can be found [42, 52].

2.1 Graphs

A (finite) g ra p h  Q is a pair (V , E ), where V(Q) = {a, b, c , . . .  } is a finite set 

of elements called v e rtic e s  or nodes, and E{Q)  is a set of unordered pairs of 

distinct vertices in V(Q)  called edges. Notice th a t we simply write V  and E  

if Q is clear from the context.

The number of vertices in a graph is called its o rd e r , denoted by |V |, and 

the number of edges, its size denoted by \E\. If a  =  { x , y }  =  { y , x }  is an 

edge of Q, then we say th a t a  jo in s  x  and y. Also, we say th a t x  and y are 

a d ja c e n t or n e ig h b o rin g . Moreover, we say th a t the vertex x  and the edge 

a  are in c id e n t. In th a t case, we write x  ~  y to denote th a t x  and y are

6
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adjacent.

The n e ig h b o rh o o d  of a vertex x,  denoted by N(x) ,  is the set of all vertices 

adjacent to  x,  i.e. N( x )  — {y E V( Q ) | x  ~  y}.  The d eg ree  of a vertex x, 

denoted by deg(x),  is the number of vertices adjacent to  x. Thus, deg(x) = 

|JV(a?)j where ” | . |” denotes the c a rd in a lity .

A graph in which all vertices have the same degree k is said to  be re g u la r  

or &;-regular.

E x a m p le  2.1.1. A graph Q = (V,E)  with

V — { 1) 2, 3 ,4 ,5, 6},

and

£  =  {{1,2}, {1,3}, {1,4}, {2,3}, {2,5}, {3,6}, {4,5}, {4,6}, {5,6}} (2.1)

is a graph of order 6 and size 9. It can be drawn as in Figure 2.1.1.

Figure 2.1.1: A drawing of Example 2.1.1, with 6 nodes and 9 edges.

■

As each vertex in the graph in Figure 2.1.1 has precisely 3 neighbors, the 

graph is 3 -reg u lar or cub ic . Thus, the graph of Example 2.1.1 is a cubic 

graph of order 6.

For a finite set A  we denote by V{A)  (the po w er se t) the set of all subsets 

of A,  Moreover, if i is an integer, we denote by Vi{A)  the set of all Asubsets
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of A.  For sets A  and B,  we let A  \  B  be the set of elements of A  which are 

not in B.

If Q = (V , E)  is a graph, then the set of edges E  can be considered a subset 

of V 2(V).  If E  =  Vi i V) ,  then the graph Q is called co m p le te . If E  = 0, then 

the graph Q is said to be e m p ty . The complete graph on n  vertices is denoted 

K n (from the German word for complete ’’kom plett” ).

If Q is a graph, then the c o m p le m e n t of Q is the graph Q =  (V, V 2 ( V ) \ E ) .  

T hat is, Q has the same vertex set as Q and a £ E(Q)  if and only if a  $  E(Q)  

for any pair a  = {x , y } C V.  For instance, the complement of a complete 

graph is the empty graph.

A sequence th a t represents the degree of every vertex in a given graph in 

a decreasing order is called a d e g re e  sequence .

D e fin itio n  2 .1 .1 . A path is a sequence of vertices such that consecutive pairs 

are connected. We require that the vertices are pairwise distinct except possibly 

for the first and the last vertices, which may be the same. The first vertex is 

called the s ta r t  vertex, and the last vertex is called the end vertex. A cycle 

is a path such that the start vertex and the end vertex are the same. The length 

of a path (a cycle) in a graph is the number of edges in that path (cycle). We 

do not consider the path of length zero or two to be a cycle, and thus the length 

of a cycle is always greater than or equal to 3. For instance, the smallest cycle 

in our consideration is of length 3, namely a triangle (a cycle of three vertices).

D e fin itio n  2 .1 .2 . Two graphs Qi and Q2 are said to be iso m o r p h ic  i f  there 

exists a bijection f  : V(Qi) —* V(G2) such that

{ x , y }  e  EiGi)  { f ( x ) , f ( y ) }  £ E{Q2).

fo r  all x,  y £ V(Q 1 ). Such a bijection then is called an i s o m o r p h is m  of Q\ 

onto G2. A n  isomorphism f  of Q\ onto itself is called an a u to m o r p h is m . All 

such automorphisms form  a group called the a u to m o r p h is m  group, denoted 

by Aut(G i).
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If Q\ is isomorphic to Q2, then also Q2 is isomorphic to Q\. It is therefore 

common practice to say th a t two graphs are isomorphic, and write Qx = j Q 2 

to denote th a t the two graphs are isomorphic via / .  However, we simply write 

Q\ — G2 if /  is clear from the context.

In simple words, we say th a t two graphs are isomorphic if and only if apart 

from the labeling of their vertices they are the same.

A necessary condition for two graphs to be isomorphic is th a t they have 

the same number of vertices and the same number of edges. Moreover, they 

must have the same degree sequence. Example 2.1.2 shows two graphs which 

look different bu t in fact are the same.

Given two graphs on n  vertices, the naive algorithmic approach to solve 

a graph isomorphism is to  generate all n\ perm utations of the vertices and 

test if they induce an isomorphism between the graphs. Of course, this is not 

efficient as we will see later on.

E x a m p le  2.1.2. Figure 2.1.2 shows two isomorphic graphs along with an iso­

morphism /  th a t maps one onto the other.

u

3

■2

•v

Figure 2.1.2: Two isomorphic graphs.

The isomorphism is given by the following mapping / :

/(2 )  =  v,

/(5) = y,

/ ( 3) =  w,

m  =  z.
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D e fin itio n  2 .1 .3 . Let Q = (V, E ) be a graph of order n  with | V| =  {v i , v2, • • •, vn}. 

Subject to this labeling, the adjacency matrix of Q is the n  x n  {0 ,1} -matrix 

A  =  ( Oij ) defined for all 1 < i, j  < n by

0, i f  {vi ,vj} & E;

1. i f  {vi,Vj} <E E.

Note that an adjacency matrix for a graph is always symmetric, i.e. Oij = 

aji, and that the diagonal entries an are always equal to zero.

E x a m p le  2.1.3. The a d ja c e n c y  m a tr ix  of the graph of Example 2.1.1 is

A  =

V 1 2 3 4 5 6

1 X X X

2 X X X

3 X X X

4 X X X

5 X X X

6 X X X

For our convenience, we leave the zero entries in the m atrix ’’empty” and 

replace any 1 entry with an ”x” so th a t vertices i and j  are adjacent if and 

only if aij — 1 in m atrix A.

U

Notice th a t the adjacency m atrix A  has (exactly) three entries 1 in each 

row and each column. This correspond to the fact th a t Q is cubic.

A second way to  represent a graph is by means of its in c id en ce  m a tr ix .

D e fin itio n  2 .1 .4 . LetQ — (V, E)  be a graph of order n with |V j =  {v\,V 2 , .. • , vn}. 

Assume that Q is of size t with E  = {ej, . . . ,  ef}. Then, an incidence matrix
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of Q is a n n x t  {0 ,1} -matrix A  = ( a^-) defined for all 1 <  i < n and 1 <  j  < t 

by

{1, i f  Vi and ej are incident,

0 otherwise.

We remark th a t some authors define the transpose of A  to  be the incidence 

m atrix of Q.

E x a m p le  2.1.4. The incidence m atrix A  for the graph of Example 2.1.1 is

ve e i e2 e3 e4 ^5 ^6 67 eg eg

vr X X X

V2 X X X

V3 X X X

V4 X X X

^5 X X X

^ 6 X X X

where rows correspond to  vertices and columns correspond to  edges (in the 

order assign by Equation 2.1).

■
A more general class of graphs is the following:

D e fin itio n  2 .1 .5 . A d irec ted  g raph  D is a pair (V., E ) where V  = {a , b , c , . . . }  

is a finite set o f elements called vertices and E  is a set o f o rdered  p a irs  of dis­

tinct vertices in V  called d irec ted  edges. We require that E ( l E T = 0, where 

E T =  {{y,x)  | (x,y)  G E} .  Two vertices x ,y  G V( D)  are adjacent if  there is 

a directed edge from  x  to y (or from y to x), and we say that x  dominates y 

(or y dominates x )  and denoted by x  —> y (or y —> x), respectively.

Two directed graphs D\ and D2 are isomorphic i f  there exists a bijection 

f  : V( Di )  -*• V ( D 2) such that

(x,y)  G E( Di )  <=* ( f ( x ) J ( y ) )  G E ( D 2). 

for all x , y  G V{Dfij. Thus f  is an isomorphism.
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Then, the adjacency m atrix A = ( )  of a digraph D = (V, E )  with n  

vertices is an n  x n  {0, l}-m atrix  where

{1, if Vi -> Vf 

0 otherwise.

If a vertex v dominates another vertex u in a digraph D, then we say tha t 

u is an o u t-n e ig h b o r  for v. The o u t-d e g re e  of the vertex v is the number 

of all vertices in D  th a t v dominates. If v dominates u , v is an in -n e ig h b o r 

of u and the number of all vertices in D  dominating u is called in -deg ree .

E x a m p le  2.1.5. Figure 2.1.3 shows a digraph D  on 5 vertices together with 

its adjacency m atrix A.

V l V 2 V 3 V 4 V 5

V I X

V 2 X X

V 3 X

V 4 X

v 5 X

Figure 2.1.3: A digraph D  with its adjacency m atrix

■

D e fin itio n  2 .1 .6 . A graph H  is a subgraph  of a graph Q i f V ( H )  C V(Q)  

and E( H)  C E(Q ) such that fo r  all { x , y }  € E{H)  both x  and y are in V(7i).  

A subgraph is sp a n n in g  i fV( Q)  = VifH).

A s p a n n in g  cycle in a graph is called H a m ilto n ia n  cycle. The graph 

in Figure 2.1.1, has a Hamiltonian cycle as it can be seen by the cycle 1 — 2 — 

3 — 6 — 5 — 4 —1, where we s ta rt from vertex 1 and stop at the same vertex 

such th a t no vertex is visited more than  once. On the other hand, the graph 

in Figure 2.1.4 has no such cycle. It is called the P e te r s e n  g rap h .
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l

5

Figure 2.1.4: The Petersen Graph.

Recall from Definition 2.1.1 th a t a cycle consists of at least 3 vertices (and 

edges).

D e fin itio n  2 .1 .7 . The g ir th  of a graph Q is the length of the shortest cycle 

contained in Q. I f  Q does not contain any cycle, its girth is defined to be 

infinity.

The girth of the Petersen graph of Figure 2.1.4 is 5, whereas the girth of 

the graph of Figure 2.1.1 is 3.

D e fin itio n  2 .1 .8 . For a graph Q, the subgraph  in d u ced  by W  C V(Q) has 

W  as its vertices set and its edge set consists o f all edges {x, y} E E(Q) for  

which x ,y  E W  holds.

For more details about cliques, we refer the reader to [52, 67]. Algorithmic 

techniques th a t are related to cliques can be found in [50].

Two vertices in a graph Q are said to be c o n n e c te d  if there exists a path 

in Q connecting the two vertices. A graph Q is c o n n e c te d  if any two vertices 

are connected. The subgraphs of Q largest in size which are connected are the 

connected components of Q. Every graph Q is the union of its components.

D e fin itio n  2 .1.9. A tree is a connected graph without cycles. A s p a n n in g  

tree  fo r  a connected graph Q is a subgraph T  that is spanning and a tree.
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D e fin itio n  2 .1 .10 . A roo ted  tree  is a pair (T ,r ) where T  — (V, E) is a tree

with vertex set V  and edge set E , and r € V  is a root o f T .

If x  and y  are two vertices of a rooted tree (T, r), then we say th a t a; is a

d e sc e n d a n t of y if y occurs on the path  connecting x  to  the root r. We say

th a t x  is an a n c e s to r  of y if y is a descendant of x.

The p a re n t  of a non-root vertex y denoted by p(y) is the vertex th a t is 

adjacent to  y in the path  connecting y to r. In addition, if p(y) = x,  then y 

is said to  be a child for x, and we write C(x)  for the set of all children of x. 

Note th a t the root r  has no parent.

Two vertices having the same parent are called sib lings. A vertex with no 

children is called a leaf. The d e p th  or level of a vertex x  is the length of the 

path  connecting x  to the root. The h e ig h t of a rooted tree is the maximum 

depth of a vertex. The s u b tre e  rooted at a vertex x  is the rooted tree with 

root x  induced by all descendants of x.

D e fin itio n  2 .1 .11 . A n u n o rd e re d  p a r t i t io n  U of a finite set S  is a collec­

tion S i, S2 , . . . ,  S m of pairwise disjoint subsets of S , called cells o r  c lasses, 

such that each element of S  is in exactly one of these subsets:

On the other hand, an ordered  p a r ti t io n  II' of S  is a sequence Si, S2, . . . ,  Sm 

of pairwise disjoint subsets of S  that satisfies 2.2.

Note tha t, we write {Si, S 2 , . . . ,  Sm} for unordered partition II, while we 

write {Si | S 2 | . . .  | Sm} for ordered partition II'. We remark th a t for finite 

sets A  and B , partitions {A, B }  and {£?, A }  are the same while partitions 

{A  | B }  and {B  \ A }  are different.

Let IIi =  {C0, C i , . . .  ,C r } be a partition of a finite set S. The subsets 

Cj’s are called cells or classes of the partition IIi for i — 0 , 1 , . . . , r. Let 

n 2 =  { D0, D i , . . . ,  Ds} be another partition of S. If every cell of IIi is a

m

(2 .2 )
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subset of some cell of n 2, then we say th a t If! is fin e r than  U2, and th a t U2 

is c o a rse r  than  I I i . Also, we write lb  <  U2. A cell with only one element is 

called a s in g le to n . A partition with only singleton cells is called a d isc re te  

p a r t i t io n ,  while a partition with only one cell is a u n it  p a r t i t io n . We write 

|fl| for the number of cells in II, and j Vt | for number of vertices in cell Vt. For 

more readings about partitions see [52, 62, 63, 75, 76].

If II is a discrete partition of S,  then II defines a perm utation on the points 

in S.  This perm utation is denoted by cr(II).

E x a m p le  2.1.6. If V  = {a, b, c, d} is a finite set, then the following partitions 

o f V

{a, b, c, d} (coarsest)
{a, b \ c,d}
{a,b | c | d}
{a | b | c | d} (f i n e s t )

are successive refinements from the coarsest to  finest.

■
D e fin itio n  2 .1 .12. A graph B P  = (V , E) is called b ip a rtite  i f  there exists a 

partition of the vertex set V  — {Vf | V2 } so that both Vf and V2 are independent 

sets, i.e. there is no edge in the graph Q that has both end-points in the same 

set. One often writes B P  = ({Vi | V2 }, E) to denote a bipartite graph whose 

partition has the parts V\ and V2.

B ipartite graphs can be used to  represent other incidence structures. For 

instance, if Q — (V, E) is the cubic graph given in Figure 2.1.1, then its corre­

sponding bipartite graph can be defined as follows: Let BP(Q)  = ({1/ | E } , £ )  

with |V| — 6, \E\ =  9, and {v, e} E £  if and only if the vertex v and edge e 

are incident in Q. Thus, BP(Q)  can be drawn as in Figure 2.1.5. Note that, 

we denote G V  and e' E E,  by i and j '  for all 1 <  i < \V\ and 1 <  j  < \E\, 

respectively:
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Figure 2.1.5: The corresponding bipartite graph of the graph Q drawn in 

Figure 2.1.1.

2.2 Cages

In this section, we consider a proof of the theorem which says th a t correspond­

ing to  any two integers k > 2 and g > 2, there exists a ^-regular graph of girth 

g. The proof is paraphrased from [73]. See [22, 74] for further details. In 

Section 4.7 on page 93, we consider construction procedures for cubic graphs 

with a given girth. More information about constructing graphs with a given 

girth can be found in [13, 60, 65, 66].

We allow, in this section, graphs to have double edges where this is not 

allowed in any other sections. A [k, g )-cage is a /c-regular graph of girth g 

with the fewest possible number of vertices.

D e fin itio n  2 .2 .1 . A k-factor F  of a graph G is a panning subgraph such that 

every vertex of F  is of degree k.

If a and b are integers with b > 0, then the remainder upon the division of
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a by b is denoted by (a mod b).

T h e o re m  2.2 .2 . For any two integers k  >  2 and g > 2, there exists a k- 

regular graph of girth g that has a Hamiltonian cycle.

Proof. The proof is by double induction on k  and g. We first show the base 

step. Note tha t, if k = 2 then there exists a connected graph which is a cycle 

of length g.

Assume th a t g = 2. Then there exists a graph G  consisting of 2 vertices 

joined by two edges, i.e. g =  k =  2.

Let k > 3. Then a graph G satisfying the theorem can be constructed 

as follows. Let H k^ x — ({V,U},  E)  where V  =  {uj, v2, ■ ■., and U — 

{ u i , u 2, • • •, Uk~i} so th a t every vertex v £ V  is adjacent to  every vertex u E U 

by exactly one edge. Thus, H k - 1  is a (k — l)-regular graph of girth 4. Also, 

H h-i contains a Hamiltonian cycle whose edges

{ux, u j ,  { uu v2}, {u2, u 2} , . . . ,  {Wfc-i, rtfc_i}, {ufc_ 1, Ui}.

We write vertices v\, Ui, v2, u2, ■ ■ ■, Uk-i in order, for such a cycle.

Let S  =  V  U U. Then for each i =  1 , 2 , . . . ,  k — 1, Fj = (S, Ef )  is a 1-factor 

of H k- 1 where

Ej  {{To — l mod A :~ l)}  \ ^  H, — \ mod A: — l )  ^ and j  1, . . . , /u 1^

Choose one j  for 1 <  j  < k — 1, and replace each edge in Fj by a double edge. 

Then, the resulting graph is of girth g = 2 and degree k >2 .

We already have showed th a t there exists a /^-regular graph of girth g for 

g = 2 and for all k >  2.

In d u c tio n  on  g\

Assume th a t the statem ent is true for all g = 2 , 3 , . . .  ,g0 — 1 (with g0 > 3), 

and all k > 2, then we prove the statem ent for g — g0 and for all k > 2. Again, 

if k  =  2, then we are done (a cycle of length g0 exists).
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In d u c tio n  on  k:

Assuming th a t the statem ent has been proved for g — go and k  =  2 , 3 , . . . ,  A;0 — 1 

(with k0 > 3), we prove th a t the statem ent is also true for g =  g0 and k  =  ko.

By the induction on k  hypothesis, there exists a (ko — l)-regular graph A  

of girth go with a Hamiltonian cycle 7i (X) .  Let x\ ,  £ 2 , ■ ■ ■, x m in order denote 

the vertices of 7i (X) .

By the induction of g hypothesis, there exists a m-regular graph Y  of girth 

go — 1 with a Hamiltonian cycle Hi Y) .  Let y i , y 2 , • • ., yn in order denote the 

vertices of H ( Y ).

Let Xi ,  X 2, . ■., X n be n  disjoint graphs th a t are isomorphic to  X .  For 

i — 1, 2 , . . . ,  n, let V (A,) := {£i,i, £j,2 , • • •, £i,m} such th a t Xj <— > x itj for j  =  

1, 2 , . . . ,  m  is an isomorphism between X  and Xi. Therefore, x ^ i , x ii2, • • ■, 

in order are the vertices of a Hamiltonian cycle 7i(Xi)  of Xi  for i = 1, 2 , . . . ,  n.

We construct a graph G from Y  and X\ ,  X 2, ■ ■ ■, X n satisfying the state­

ment as follows. Replace each vertex j/j of Y  by A* for i =  1 , 2 , . . .  , n  such 

th a t each edge {yi ,yj}  in Y  is replaced by an edge connecting a vertex in Xi  

to  a vertex X j  so th a t these edges are distributed as follows.

First, edges th a t are in H( Y) .  Replace edge {j/i, 2/2 } of H ( Y )  by an edge 

connecting x i>m with £ 2 ,1 , replace edge {2/2 , 2/3 } by an edge connecting 2 2 ,m 

with x3)1, and so on until we replace the edge {yn,y i }  by an edge connecting 

x n,m with x \ t\. Then, G contains a Hamiltonian cycle whose vertices are in 

Order , £^2 • • • ) ^l,m> ^2,1) ■ • * I %n,m'

Second, edges th a t are not in H( Y) .  Let A ' =  (V' ,E' )  such th a t V ( X ') =  

V( Xi )  \  {{£,,i}, {£j,m}} for i =  l , 2 , . . . , n .  Each edge {yi ,yj}  of Y  th a t are 

not in 7 t(y )  is replaced by an edge connecting a vertex A ' with a vertex 

X j. These new edges are distributed so th a t each vertex of A j, X'2, . . .  ,X 'n is 

incident with exactly one of the edges. This is can be done because of the 

fact th a t vertices in Y  are incident with exactly m  — 2 edges (that are not in 

7i(Y)) ,  and each A ' contains exactly m  — 2 vertices for all i = 1, 2 , . . . ,  n.
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Therefore, Xi ,  X 2, . . . ,  X n are (ko — l)-regular graphs and each vertex of Xi  

is joined to  exactly one vertex not in Xi  for all i — 1 , 2 , . . . ,  n. Moreover, each 

Xi  is isomorphic to  X  which is of girth g0, and thus the constructed graph G 

is a fco-regular graph of girth g0 and has a Hamiltonian cycle.

□

Different examples of (k,g)-cages (no double edges allowed) will be con­

sidered throughout the thesis. The Petersen graph is one example th a t has 

been already presented in Figure 2.1.4 which is (3, 5)-cage. See [74] for some 

drawings of small (k, g)-cages.

The graph A$t\ of Figure 3.3.6 on page 71 is a (3 ,3)-cage, where the graph 

of Figure 4.7.1 on page 95 is a (3,4)-cage.

2.3 Incidence Structures

D e fin itio n  2 .3 .1 . A finite in c id e n c e  s tr u c tu r e  A  is a triple (P , B, I) , where 

P  and B are finite sets and I  C P  x B is a relation. In particular P  =  

{pi ,P2 , ■ • • ,pv} is a set of v p o in ts  and B — {B\ ,  B 2). . . ,  Bf,} is a set of  b 

blocks, sometimes called lin es , such that Bi C P  for i =  1 , 2 , . . . ,  b and 

I  C P  x B is the incidence relation. The elements of I  are called flags.

Given two incidence structures X \ — (Pi ,B\ , I \ )  and X 2 = (P2, B2, 12), 

we say that X i is isomorphic to X 2 i f  there is a bijective map f  : Pi —> P2 

which maps B\ onto B2. Here, a block B  G B\ with B  = {pi ,p2, ■ ■ ■ ,pt ]  

is mapped onto B I  = { p i f ip fl ,  ■ ■ ■ , p ^ } -  Thus isomorphisms are incidence 

preserving maps, so that pfl e  B* if and only i f  p E B . Moreover, i f  f  maps 

X \ to itself then f  is called an automorphism, and the group formed by all such 

automorphism is called the a u to m o r p h is m  group, denoted by Aut{Xfl).

It is possible th a t in an incidence structure, two blocks are incidence with
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the same set of points. In th a t case, we speak of r e p e a te d  blocks. If this is 

not the case, we can identify each block with the set of points it is incident 

with, and replace I  by the relation In this case, we usually omit the

incidence relation altogether.

The number of blocks containing a point p  e  P  is called the d eg ree , 

denoted by \p\. Similarly, the number of points th a t are contained in a block 

B  is called the length of B  denoted by \B\. A pair (p,B)  with p € B  e  B  is 

called a flag. In this case, we say th a t p  lies on B,  B  passes through p, or th a t 

p  and B  are incident.

For instance, one can define a graph Q as an incidence structure (V, E)  

where V  is a finite set of points, and E  is a finite set of blocks (edges) with E  

a set of subsets of V  of size 2. In this case we have |J5| =  2 for any block in 

E.  An example of an incidence structure (which is a graph) is given below.

E x a m p le  2.3.1. Consider the incidence structure Q — (P , B ) where

P  = {1 ,2,3,4,5,6,7,8,9,10}

B =  {{1,2}, {1,5}, {1,6}, {2,3}, {2, 7}, {3,4}, {3,8},

{4 ,5} ,{4 ,9} ,{5 ,10} ,{6 ,8} ,{6 ,9} ,{7 ,9} ,{7 ,10} , {8,10}}

Then the corresponding incidence structure can be seen as the Petersen 

graph of Figure 2.1.4 on page 13.

Such an incidence structure Q (Petersen graph) can be represented in differ­

ent ways. One particular way is an incidence matrix. The following incidence 

m atrix A is a representation for the Petersen graph where each row and column 

in A  correspond to  a point and a block in Q, respectively.
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B i b 2 Bs B* Bs B q B r b 8 b 9 Bio B n Bl2 B u B\4 ^15

Pi X X X

P2 X X X

P3 X X X

Pa X X X

P5 X X X

P6 X X X

P7 X X X

P8 X X X

P9 X X X

PlO X X X

If X  =  (P, B) is an incidence structure with \P\ — v and \B\ — b associated 

with an incidence m atrix  A  of dimension v x b with A  = (a^-) for 1 <  i < v 

and 1 <  j  < b, then we define

b
row -sum j(A ) =  ,

i =1

and

row j(A ) =  {j  | dij =  1 for 1 <  j  < b }.

And for 1 <  j  < b, we define

V

col-sunij (A) =  ^ 2  Oij.
i=i

and

colj(A) =  {i | a,ij = 1 for 1 <  i < v }.

and

The incidence m atrix A  of Example 2.3.1 has row-sunij(A) =  3, col-sumy(A) =  

2, and |row*(A) f | row^(A) | <  1, for 1 <  i, h <  10 with i ^  h, and for 

1 <  j  <  15.
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D efinition 2.3.2. Let t, v, k, and A be positive integers with v > k > t. 

Then, a t-(v, k, A) design is an incidence structure over v points such that the 

following holds:

• each block contains exactly k points;

• each t-subset o f points is contained in exactly A block.

A t-(v, k, A) with t = 2 is called a (balanced incom plete) block de­

sign. A double counting argument shows th a t every point of a block design is 

incident to  r  blocks and th a t the number of blocks is b, where

\ ( v  — 1) =  r(k  — 1), vr — bk. (2-3)

D efinition 2.3.3. Let (P ,B ) be an incidence structure without repeated blocks, 

such that

• each block contains exactly k points;

• each set of t points is contained in a unique block.

Then (P ,B ) is called a S te in e r  system , S ( t ,k ,v ) ,  where v =  |P |.

If t = 2, k = 3, we speak of a Steiner triple system  denoted by S T S (v ). 

A class of Steiner systems are the finite projective planes. A finite projec­

tive plane is a 5(2, n + 1, n 2 +  n  +  1) for an integer n >  2, called order.

E xam ple  2.3.2. The smallest example is the projective plane of order 2 which 

is shown in Figure 2.3.1, also known as the Fano plane, denoted by F  = (P , B ) 

where P  = {p i,p 2,-- ■ and B = { B 1 ,B 2, .. . , B r}.

Moreover, we construct a b ipartite graph B P (F ) =  (V, £), where V =  

{P  | B} and for v, u G V we have {u, v} £ £  only if u £ P  and v £ B  with 

u £ v in F. Figure 2.3.2 shows an incidence m atrix of B P (F ).
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l

4

Bx b 2 b 3 b 4 £ 5 B6 By

Pi X X X

P2 X X X

P3 X X X

PA X X X

P5 X X X

P6 X X X

P7 X X X

Figure 2.3.1: The Fano plane F  with its associated incidence m atrix A.

*i *2 *3 e4 *s ee e7 *8 £9 eio *11 e \i *13 <?14 *15 *16 *17 *18 *19 *20 *21

Pi X X X

V ^ X X X
p3 X X X

P4 X X X
P5 X X X

P6 X X X

P7 X X X

X X X

B i X X X

b 3 X X X

b 4 X X X

B s X X X

B e X X X
B 7 X X X

Figure 2.3.2: The incidence m atrix of the bipartite graph B P (F ).

Note th a t the automorphism group of both F  and B P (F )  is of order 

168. If we relabel the rows and columns of the incidence m atrix of Figure

2.3.2 to  be { 0 ,1 , . . . ,  6 | 7 , . . . ,  13} and { 1 4 ,1 5 ,.. . ,  34}, respectively, then the 

A u t(B P (F )) is generated by a set S , where S  is given by

{(2 5)(4 6)(8 9)(10 13)(14 16)(17 18)(20 29)(21 31)(22 30)(26 32)(27 33)(28 34), 

(2 6)(4 5)(7 12)(8 9)(17 18)(20 33)(21 32)(22 34)(23 25)(26 31)(27 29)(28 30),

(1 2)(3 6)(9 12)(11 13)(15 16)(17 20)(18 21)(19 22)(23 32)(24 34)(25 33)(29 31), 

(0 1)(2 5)(8 10)(9 13)(14 17)(15 19)(16 18)(20 30)(21 31)(22 29)(27 28)(33 34)}. 

Moreover, the automorphism group orbits are partition as follows 

{ { 0 ,1 , . . . ,  6}, { 7 ,8 , . . . ,  1 3 } ,{ 1 4 ,1 5 ,...,3 4 } } .
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Note th a t, if the partition of points and blocks of the Fano plane is left out, 

then the resulting graph has the points and the blocks of F  as vertices where 

two vertices p and B  are adjacent only if p €  B  in F. In this case one more 

automorphism is added to  the automorphism group given above which is the 

mapping pi <— > B, for all z =  1 , 2 , . . . ,  7. This resulting graph is in fact called 

the Heawood graph which is a (3,6)-cage, see Example 6.1.2 on page 125.

■

D efinition 2.3.4. An incidence geometry is an incidence structure (P ,B ,I )  

with

1. |P | >  2 for each B  €  B, and

2 . each pair of points is on at most one block.

I f  |P | >  2, then Condition 2 excludes repeated blocks. By the above, an inci­

dence geometry does not have repeated blocks, and we can identify each block 

B  6 B with a distinct subset of P . That is, we may write (P, B) instead of 

{P> B, I).

D efinition 2.3.5. A n incidence geometry (P, B) is called a configuration of 

type {vr ,bk) if:

1. Every line is incident with k points, i.e. \Bj\ = k fo r  j  = 1 , 2 , . . . ,  b,

2. Every point is incident with r lines, i.e. [pj =  r for i = 1, 2 , . . . ,  u.

3. Any two distinct points are incident with at most one line.

A configuration (P ,B ) with v = b is called sym m etr ic  (see, fo r  instance [5]) 

and thus is denoted by vr .

In a projective plane of order n, we have

, v(v — 1) ,
M F T i ) =  ”  + "  +  1 =  ” -

. v -  1 1 ,r =  X-   = n + l  = k,
k — 1
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by (2.3). This shows th a t every finite projective plane of order n  is a symmetric 

configuration (n2 +  n  + l)(n+i) and vice versa. An example of a symmetric 

configuration th a t is not a projective plane is the following IO3 configuration, 

which is called the D e sa rg u e s  c o n fig u ra tio n  and shown in Figure 2.3.3.

Figure 2.3.3: The Desargues’ Configuration, a IO3 configuration, with its as­

sociated incidence m atrix  A.

Definition 2.3.6. A linear space on  |P | po in ts  is an incidence geometry 

(P, B) in which each pair o f points is on at least one block, and hence on exactly 

one block.

An incidence geometry is a configuration if every point is on r lines and 

every line has k  points for some numbers r  and k.

A projective plane of order n  is an (n 2 + n +  l)„+i configuration and at 

the same time it is a linear space on (n2 +  n  +  1) points.

D efinition 2.3.7. Let (P ,B ) be a linear space on v points. Define 

Oi :=  i f  lines of length i in (P , B),

The vector a (a2, a3, . . . ,  av) is called the line type of the space (P, B ) . Line 

types are also called param eters o f  the f ir s t type. Often, it is convenient to 

denote line types in exponential notation, that is (2a2,3a3, . . .  ,v av). Exponents 

1 may not be explicitly written.
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Then, by the previous definition, a projective plane is also an ( n + l ) 'Tl2+n+1) 

linear space. For extensive details about linear spaces, the reader is referred 

to  [4, 5, 6].

Another example where linear spaces coincide with configurations is a 

S te in e r  t r ip le  sy s tem . A Steiner triple system of order v is a 2-(u, 3,1) 

design and also is a (vr, b3) configuration, where one can conclude from 2.3 the 

following with k = 3 and A =  1.

v — 1

and thus

Clearly, S T S (v )  is a (36) linear space on v points. For instance, an S T S (13) 

is a linear space 326 as there are 26 blocks.

For more readings about linear spaces, see [4, 5, 6]. For more about con­

figurations with existence and non-existence results and classification of con­

figuration with a t most 21 points, see [6, 8, 29, 30, 31, 32].

In order to  trea t the isomorphism problem for graphs and incidence struc­

tures more thoroughly, we need to  discuss the algebraic concept of a group ac­

tion. The theory of group actions is the theoretical framework for isomorphism 

of discrete structures. A very broad account for finite group actions and appli­

cations is the book by Kerber [53]. Here, we summarize the most fundamental 

concepts. For further facts on perm utation groups, see [1, 7, 16, 17, 20, 58, 79].

2.4 F inite Group A ctions

In general, we say th a t G is a group instead of writing (G, •). A subset H  of G 

is said to  be a s u b g ro u p  if it is closed under the operation ” •” associated with
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G, and it is a group itself. We write H  < G to  indicate th a t H  is a subgroup 

of G.

Let X  = {x i,X 2 , ■.. , x t} be a finite non-empty set. A perm utation of X  

is a bijection of X  to  itself. For a perm utation g of X ,  we write x 9 for the 

image of x  G X  under g. The set of all perm utations of X  forms a group with 

respect to  functional composition. It is called the sym m etric group on X  

and is denoted by Sympc). A perm utation group on X  is a subgroup of

Sym(X).

D efinition 2.4.1. Let G be a group and let X  be a finite non-empty set. An  

action  of G on X  is a mapping

X x G ^ X ,  ( x , g ) ^ x 9

such that

• x la =  x, for all x  G X , and

• x gh = (x9)h, fo r  all x  € X  and for all g ,h  E G.

Let G be a group th a t acts on the finite set X .  Then, for x  E X ,  the orbit 

of x  in X  under the action of G  is

G(x) =  x °  = {x 9  €  X  | g e  G}.

The stabilizer of x in G is the subgroup

Gx = S ta b o ^ )  =  {g G G \ x 9  = a:},

which is the automorphism group A ut(x), in the sense of Definition 2.1.2 for 

graphs (or Definition 2.3.1 for incidence structures).

Moreover, if Y  — , ys} Q X  then we define the setw ise stabi­

lizer as the subgroup

GY = {g e  G \ Y 9 = Y }  = {g e  G \ Vi, y9  G Y } .

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



28

The pointw ise stabilizer is the subgroup

Gn,vi,-,v. = {9 Z G  \ y f  = yt for 1 <  i <  s}.

If X  =  { x i ,x 2, . . . , x t } and GXliX2>.„>Xt — 1G, i.e. only the identity element 

1G stabilizes every element in X ,  then G is said to  act faithfully on X  or it 

is said th a t G is a group o f perm utations of X .

Given two elements x  and y in X , we say th a t x  is isomorphic to y under 

the action of a group G if there is a perm utation g G G such th a t x 9  =  y, 

denoted by x  =g y to  emphasize the group action of G on X . Simply we write 

x  = y  if the group action is clear from the context. In this case, g € G  is called 

an isom orphism  from x to  y. If x 9  = x, then g is called an autom orphism  

of x. The autom orphism  group o f x, denoted by A ut(x), consists of all 

automorphism of x. In particular,

A ut(x) — Gx = {g e  G  | x 9  = x}.

Clearly then x  and y are contained in the same G'-orbit on X  if and only if 

they are isomorphic by an element g € G.

If G  is a group and 7  6 G, then the conjugate of 7  by a  is a _ 17 a , which 

is denoted by 7 “ .

Lemma 2.4.2. For any x ,y  e  X  and g G G with x 9 — y, we have

Gy = g 1Gxg.

Lemma 2.4.3. Let a group G act on the finite set X . Then the mapping 

5 G  —> Syni(x), g g where g : x >—* x s fo r  x  € X  

is a homomorphism. G is faithful on X  precisely i f  8  is a one-to-one map.

Definition 2.4.4. A subset Y  of X  is said to be G-invariant i f  G y  =  G, i.e. 

all elements in G stabilize A setwise.
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Lemma 2.4.5. Let G be a group acting on a finite set X . Let Y  be a G- 

invariant subset of X .  Then, Y  can be partitioned into orbits of G on X .

If G has only one orbit on X ,  namely X ,  then G is said to  be transitive  

(or act transitively on X ).

D efinition 2.4.6. I fG  is a permutation group acting on a finite set X . Then, 

we call a non-empty subset Y  o f X  a block of G i f  fo r  each g G G, the image 

set Y 9  either coincides with Y  or has no points in common with Y . Obviously, 

the whole set X ,  and the set of one element {y}  C X  are blocks of every G on 

X . Such blocks are called tr iv ia l blocks.

D efinition 2.4.7. A transitive group G acting on a finite set X  is called 

im p rim itive  i f  there is at least one non-trivial block Y , i.e. |X | |y | ^  1.

Such a block is also called se t o f  im p rim itiv ity , see [58],

Definition 2.4.8. Let G be a group, and H  < G is a subgroup. For g G G, 

the set H g  =  {hg : h £ H } is called the righ t coset o f  H  in  G which 

contains g. Similarly, gH  = {gh : h G H )  is the left coset o f  H  in  G.

Lemma 2.4.9 (Orbit-Stabilizer Lemma). Let G be a group acting on a finite  

set X . Then fo r any x, y G X , i f  y G G (x), then {g G G \x 9  =  y} is a coset of 

Gx in G. In particular, |G (x)| =  |G |/ |G X|, where \ ■ ) denotes the group order.

Definition 2.4.10. I f  G is a finite group and S  =  {si, S2 , ■ ■., sr} is a set of 

elements of G which together generate G, i.e.

(S) = G,

then any element g G G can be written as a word of finite length over the 

alphabet S . In  this case, S  is said to be a se t o f  generators fo r  G.

A set B  = {bo ,b i,. . .  ,bk~i} C X  is called a base for G on X  if the 

pointw ise stabilizer Gi,0>i,1>...i6fc_1 =  1, i.e. if only the identity of G fixes all the
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points of B . An ordered base B  for G on X  is a sequence (bo, bx, . . . ,  bk~i) 

such th a t  the corresponding set {b0 , b i , . . . ,  bk-1 } is a base for G on X . An 

ordered base B  gives rise to  a chain of subgroups. Write G^  =  A u t(X ).  Let 

G (1) fix bo in G ^  and so on. In general, let G ( t + 1 '1 denote the subgroup of G (jl) 

obtained by stabilizing bi in G ^ \  for i =  0 , 1 , . . . ,  k — 1. Thus

G  =  G (0) >  G (1) >  G (2) >  • • • >  G{k) = (1), (2.4)

where G<i+1) -  G ^ \ .

D efinition 2.4.11. A strong generating se t for a finite group G relative 

to the associated base B  with \B\ = k is a set 8  o f elements of G with the 

property that

(S  n  G (i)) =  GW, for all i — 0 , 1 , . . .  ,k.

Lemma 2.4.12 (Order-Lemma). Suppose that G is a permutation group and 

B  = (bi, by, ■ ■ ■ ,bk) is a base for G on X  = { x \ , . . . ,  x n} for n >  k. Then,

igi =  n  1 hG "  1
i=1

If a group G acts on a finite set X ,  then for x, y G X ,  two orbits G(x)  and 

G(y)  are either the same or disjoint, i.e.

G(x) = G(y)  or G ( x ) n G ( y )  = 0.

Thus, if X / G  denotes the set of all orbits o f the action o f G on X ,  then 

X  f G  is a partition of X .

D efinition 2.4.13. An orb it tran sversa l for G on X  is a set of elements 

in X  denoted by T { G , X )  such that:

• fo r  any x  € X , there exists g E G with x 9  E T ( G , X ) ,  and

• for  any x , y  E T ( G , X ) ,  we have G (x ) fl G(y) — 0.
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D e fin itio n  2 .4 .14. Let G act on a finite set X .  I f  a map ip : X  —> G such 

that fo r  any x ,y  £ X , p  satisfies the following two conditions:

1 . x ^ x) = x,  and

2 . x  = y implies x vG) = y^G) ?

then ip is called the canonical labeling map. Moreover, x^G) is called the 

canonical fo rm  o f x, and denoted by p(x) .

In  particular, i fG(x)  = {x,  x \ , x 2, ■ ■ ■, x r} is the orbit of x  under the action 

of G on X ,  then p(y) = p(x) for  all y £ G(x).  Thus, such an element is also 

called a canonical orb it represen ta tive.

L e m m a  2 .4 .15 . I f  G is a group acting on a finite set X , then two objects x  

and y are isomorphic in X  under the action of G i f  and only i f  p(x) = p(y).

Now we tu rn  our attention to  the problem of computing the orbit of an 

element a; in a finite set X  under the action of the group G  given by a set of 

generators S  = { s i , . . .  , s r }. See [1, 7, 15, 17, 18] for more reading.

We define the a c tio n  g ra p h  of G  on X  with respect to  the set S  C G to 

be the directed graph Q = ( X , 5 )  whose vertices are the elements of X  with 

edges

(x, y) € X  x X  : x Sj — y  for some Sj £ S.

The orbit of x  under G is then the connected component of x  in the action- 

graph Q. We rem ark th a t the connected component does not depend on the 

choice of the generating set S  (when thought of as a subset of vertices).

D efinition 2.4.16. Let G be a group acting on a finite set X . Let G be given 

by generators S . Let x  be an element o f X .  A Schreier tree for the orbit 

G(x)  is any directed spanning tree Tx =  (G(x) ,£)  fo r the connected component 

containing x  in the action graph fo r  G on X  with respect to S.
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Examples of Schreier trees will be presented in what follows and in Chapter

3.

E x a m p le  2.4.1. Let G be the automorphism group of the cubic graph C of 

Figure 2.4.1.

Figure 2.4.1: A cubic graph C of order 6.

Then, using two generating sets S  =  {.Sj, .s2} and R  =  {V], r 2} where

51 =  ( 2 6 ) ( 3 5 ), n  =  ( 2 6 ) ( 3 5 ),

52 =  ( l  2 ) ( 3 6 ) ( 4 5 ), r 2 =  ( 1 2 3 4 5 6  ),

results in two action-graphs by using S  (left), and R  (right) as in Figure 

2.4.2.

Figure 2.4.2: Two action-graphs of G on C.
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Assume th a t for every element y E G(x),  we choose f ( y )  E G such th a t 

x f(y) — y. By the Orbit-Lemma, all such f ( y )  form a set of coset represen­

tatives for Gx in G. However, it is not efficient to  store all such elements, so 

instead we construct a Schreier tree rooted at x, denoted by Tx.

Algorithm 2.4.1, which was taken from [7], is a description of an orbit 

algorithm which computes the orbit of a given point x  E X  under the action 

of a perm utation group G generated by S  — {.Si, ,s2, . . . ,  sr\. Moreover, a 

Schreier tree rooted at x, denoted by Tx — ( 0 , £ ) ,  is constructed.

A lgorithm  2.4.1 orbit com putation
Input: A permutation group G acting on a finite set X  — {aq, . . . ,  xn}, a generating 

set S = {s i , . . . ,  sr } of G, a point x E X .

Output: Schreier tree Tx = {0,6)  for the orbit O = G(x)

(1 ) let Q be a queue holding the element x

(2) let Tx =  ({z}, 0) be the tree with only one node x

(3) while Q ^  0 do

(4) let y be the first element of Q ( remove y from Q)

(5) for i =  1, . . .  , r  do

(6) ^ := ySi

(7) if z $ O then

(8) append z  to Q, add z  to O

(9) add the edge (y , z )  labeled by s* to £

(10) end if

(11) end for

(12) end while

E x a m p le  2.4.2. Consider again Example 2.4.1. Algorithm 2.4.1 with a gen­

erating set R  and the point 1 computes a Schreier tree drawn in Figure 2.4.3.
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Figure 2.4.3: A Schreier tree corresponding to the (right) action-graph of 

Figure 2.4.2.

■
Once the orbit of an element x  in X  is computed, then we say th a t y  is 

isomorphic to  x  if and only if y E G(x).  However, it is clear th a t orbit com­

putations require difficult work. In some cases we might have some problem 

involving large orbits and thus this m ethod will not be our choice.

2.5 Som e Specific Group A ctions

In the following, we will discuss some examples of group actions. Let MVib 

denote the class of all v x b {0, l}-m atrices. For A , B e  M v b̂, we say th a t A  

is equivalent to  B , denoted by A  ~  B , if one m atrix can be obtained from 

the other by row and column perm utations. If G = S y m ^  x Syrri^ , then 

G acts on M v^  by row and column perm utations defined by [A, (a,/3)) i—> 

A(a,P\ where ( a ,{ 3 )  E G, and if A  — (a y ), then

A M  =  (a,„-v ->)

for all 1 < i < v and 1 <  j  < b. T hat is, the entry a t row i. and column j  of 

is the entry at row ia 1, and column 1 of A. Then, A  is equivalent 

to  B  in M Vib if there exists (a ,  (3) € G such th a t

A {oc,y) = B
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where a  and (3 are row and column perm utations.

Let S v denote the class of all incidence structures with v points, and let 

Syni(v) act on S v.

E x a m p le  2.5.1. Let Si = ( P , B i ) , S 2 = {P,B2) € <S5 given in Figure 2.5.1 

where

P  =  11 ,2 ,3 ,4 ,5} ,

Bi  =  {{1 ,2} ,{1 ,5} ,{2 ,3} ,{3 ,4} , {4,5}}, and 

B 2 =  {{1,3}, {1,4}, {2 ,4}, {2 ,5}, {3,5}}.

Then, Si  and S 2 can be drawn as in Figure 2.5.1.

1

55

Figure 2.5.1: Incidence structures Si (left) and S 2 (right).

Moreover, if a  =  ( 2 3 5 4 ) €  S y m (5), then a  induces an isomorphism 

from Si to  S 2 in the sense of Definition 2.3.1.

■

Let S i  denote the class of all v x b {0, l}-incidence matrices correspond 

to  incidence structures in S v. Then, the iso m o rp h ism  eq u iv a len ce  classes 

of incidence structures in S v are the orbits of the directed product group 

S y m {v) x S y m {b) on S*.

First, we observe th a t perm uting the rows of A  € S% is equivalent to 

perm uting the points in the blocks of the corresponding incidence structure 

S  G S v . Second, perm uting the columns of A  corresponds to  relabeling the 

blocks in S. Because of that, the following theorem holds.
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T h e o re m  2.5.1. A ny two incidence structures S, S ' E Sv are contained in the 

same Sym ^vyorb it on S v i f  and only i f  any two incidence matrices A, A ' E S„ 

corresponding to S  and S ', respectively, are contained in the same Sym ^v) x 

Sym(b)-orbit on S„.

Clearly, Theorem 2.5.1 holds for graphs as well.

E x a m p le  2.5.2. Let A i and A 2 given below correspond to  the two incidence 

structures of Example 2.5.1 S i and S2, respectively.

B i b 2 B z b 4 b 5

to II

Bi b 2 Bz b 4 b 5

Pi X X Pi X X

P2 X X P2 X X

P3 X X P3 X X

Pi X X Pi X X

P5 X X P5 X X

If a  =  ( 2 3 5 4 ) €  S y m (5) and /? =  ( 3 5 ) E Sym ^5), then

A[a'p) = A 2.

This corresponds to

{{1,2}, {1,5}, {2, 3}, {3,4}, {4, 5}}“ -  {{1,3}, {1,4}, {3,5}, {2,5}, {2,4}}.

■

D efinition 2.5.2. Let D  =  (V,E)  be a directed graph of order v with V  = 

{p i , . . .  ,pv}. Assume that D  is of size b with E  =  {e i , . . . ,  et}. Then an 

in c id e n c e  m a tr ix  fo r the digraph D is an m  x n  { 0 ,1 } -matrix A  where 

to =  2v and n = v + b. This matrix is partitioned in four smaller blocks which 

are denoted by IV, I V, B ,  and B ' as follows:

4 B

. Iv B '
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where Iv is the v x v identity matrix. Block B  is an v x b {0, l}-m a trix  with 

B  — (bij) defined for all 1 <  i < v and 1 <  j  < b by

{!> */ ej  =  ( f t .Pk) e  E  for some pk e V ]

0, otherwise

while block B ' is an v x b  {0 ,1} -matrix with B ' =  (£>b) defined fo r  all 1 <  i < v 

and 1 < j  < b  by

f1. */ ej  =  (Pfe.ft) € E  for some pk € V;

0, otherwise

In  particular, blocks B  and B ' indicate the out- and in-neighbors fo r  vertices 

in V , respectively. Moreover, the two identity blocks indicate which vertex 

dominates which.

E x a m p le  2.5.3. The incidence m atrix A  for the directed graph of Exam­

ple 2.1.5 on page 12 is is given in Figure 2.5.2.

e\ ei &3 e5 es S7 eg eio e\\

1 X X

2 X X X

3 X X

4 X X

5 X X

6 X X

7 X X

8 X X

9 X X

10 X X X

Figure 2.5.2: Incidence m atrix corresponding to  the digraph of Figure 2.1.3.

Two rows in A  (one in B  and one in B ') represent the out- and in-neighbors 

for a vertex in V. For instance, one can get the out neighbors for vertex 2 as 

follows: S tart from row 2 in the m atrix and look a t incidences in the block
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B  then look a t incidences in B ' th a t are in the same column as those in B  

contained in row 2 to  see th a t row 6 and row 10 are. By the identity m atrix 

I 2 we conclude th a t vertex 2 dominates vertices 1 and 5.

■
In what follows we prove an analogous version of Theorem 2.5.1 for di­

graphs. First, we introduce some notations.

Let D i =  (V,Ei )  and D 2 =  ( V , E2) be two digraphs of order v and size b 

w ith V  — {P 1 , P2, . . . ,  Pv} and

for k = 1,2, corresponding to  D i and D 2, respectively, where A i  and B i are 

(v x b) {0, l}-m atrices defined for A i = (a^J) and B i = (bfj)  for 1 < i < v 

and 1 <  j  < b by

for i = 1, 2 where

where Pxp Pyj, PSj, and Ptj are in V,  1 <  Xj, yy <  v and Xj ^  yj,  1 <  Sj , t j  < v 

and Sj ^  t j , and j  — 1 , 2 , . . .  ,b. Let

(l) ^  ^ xo Pi’ , and
aJ  =

0, otherwise . otherwise .

Similarly, A 2 and B 2 are (v x b) {0, l}-m atrices defined for A 2 = ( ° \ j )  and 

B 2 = (b\2j ) for 1 < i < v and 1 <  j  <  b by

0, otherwise .

, and

otherwise
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Then, consider the projection maps tti and 7r2 defined by

tti : Et > V  , (PXj,P Vj) i-> PXj, and

7T2 : El —> V  , {Px^Py-j) Pyj,

for I = 1,2. If A i and A2 are two finite disjoint sets of cardinalities v and 

b, respectively, then we write Gv;b for the group acting on A i and A 2 with 

respecting the partitions, i.e. there is no element g in Gv;h maps G A i  to 

8 2  S A 2.

If A  is a (y x b) m atrix with A  =  (a y )  for 1 <  i < v and 1 <  j  < b, then 

for (a, (3) G S y m v x Symj,

A {a’0) =  ( a .a- 1 ^ - 1  ).

More general, for a block m atrix N  =  [ iVy ] with 1 <  i < I and 1 <  j  < k, 

we have

jy(ai,a2,...,ai;0i,02,--;0k) _ \jg G u 0 j)j

Note th a t, if Di is isomorphic to  D2 via the isomorphism (a , /3) G S y m v x 

Syrrib, i.e. D[a’̂  — D 2, then

ej ? -  =  ( V - pv - ) =  ( V ’ -f k - ) '

« e f  =  =  ( r ,  V ’ V ) -

T h e o re m  2 .5 .3 . Let D j and D 2  be two digraphs of order v and size b. Let 

N i and N 2 be two (m  x n) (0, l}-mcidence matrices corresponding to D \ and 

D 2, respectively, where m  = 2v and n — v + b. Then, D\ is isomorphic to D 2 

under the action of S y m v x Symj, i f  and only i f  N i is equivalent to N 2 under 

the action of S y m VtV x S y m v<b-
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Proof. First, assume th a t D\ is isomorphic to  D i via an isomorphism (a,/3) G 

S y m v x Syrrib, i.e. D ^1’̂  — D2. Then, we want to  show th a t N \ is equivalent 

to  N 2 under the action of S y m V:V x S y m Vib, i.e. ^ ( “>“>“>0) =  jv2.

Claim 2.5.4. Clearly, =  /„.

Claim 2.5.5. =  A 2.

Proof.

a{2) -  1

*4 7T!( e J L ) =  Ki{Ps.^ , P i . , . , ) =  Pv _, =  Pio- i ,

^  ^ x f - 1 = Pi01" 1 ’

<=> PXj = Pi,

** a<$  =  x> 

a 2 =  a (T'0).

□

Claim 2.5.6. B [ a'p) =  P 2.

Proof.

b(2) =  1

^  ) =  ̂ ( P . ^ , Pt̂ _x) -  Pt =  Pia-x,

^  Putt-1 =  Pjc-l,yj
p  =  p.

^  6S  =  l »

^  B 2 =  B [a'’0).

□
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By Claims 2.5.4, 2.5.5, and 2.5.6, N i is equivalent to JV2.

Next, assume th a t =  N 2 for a, (3,7  G  S y m v and <5 G  Symt,. Then,

I v A x
(a,/3;7,c5)

a 2

. B i _ _ 4 B 2 .

if and only if l i a'^  =  Iv, and = Iv if and only if a

a  = f3 =  7 . Therefore,

Ax ’
(a,a;a,<5)

^ 2

_ I v B l . . P 2 _

Let t  — a  G  S y m v and a  == 6 G  Syrrib■ Then,

e® x =P 3a 3 ) G e 2.

Then, by projections 77 and 7r2, we get

=3 a
P . T - 1 and =  P 2

(2aK
i T

=  1 and *,T j 7~ 1

« s - 1 and 6 -,1]  =  1 ,

77 p Xj =  P i and P y :j  = P i ’ ,

77 = ( P x V P V j )  e  Ex

Therefore, (r, a) G  S y m v x Syrri), is an isomorphism between D\ and D2, and 

the proof is finished. □

2.6 P osets and Lattices

D e fin itio n  2 .6 .1 . A p artia l ordering on a finite set P  is a relation on 

P  which is:
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1 . re fle x iv e :  x < x ,

2. a n t is y m m e tr ic :  x  < y  and y  - < x  impl ies that x  — y,

3. tra n s itiv e :  x < y  and y  ■< z  implies that  x  ^ z.

f o r  all x , y , z  & P .  Then, the pa ir  (P, is called a p a r tia l ly  o rdered  se t  

or  s imply a pose t.

If (P,  d )  is a finite poset, then it can be represented by a H asse diagram, 

which is a graph whose vertices are elements of P  and the edges correspond 

to  the covering relations. More precisely, an edge from x  to  y  in P  is present

•  x  -< y, and

•  there is no z  € P  such th a t x  -< z  and z  -< y.

In general, if x  -< y,  then we draw y  lower than  x.  Because of th a t, the 

direction of the edges is never indicated in a Hasse diagram.

E x a m p le  2.6.1. If P  =  P ({1 ,2 ,3} ), and ^  is the subset relation C, then 

Figure 2.6.1 displays the Hasse diagram of the power set poset (P, P).

if

a

{•

{1-2} {1-3} {2.3}

{1,2,3}

Figure 2.6.1: A Hasse diagram representing (P, P).
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Even though {3} -< {1,2,3} for instance, there is no edge directly between 

them  because there are in between elements in P , namely {2,3} and {1,3}. 

However, there still remains an indirect path  from {3} to {1,2,3}. The reason 

th a t we do not draw such direct edge is th a t the graph then will get too busy, 

especially for large poset.

■
We say th a t a group G  acts on the poset (P , ^ ) ,  if

x  A y  = >  x 9 A y9,

for all x ,y  €  P  and all g € G.

Now, let (P, A )  be a poset and let Q be a subset of P. An upper (lower) 

bound of Q is an element w  with q A  w  ( w  A  q) for all q 6 Q- The least 

upper bound o f Q (the supremum of Q) is an upper bound w  such th a t 

w  A w 1 for any other upper bound w'.  On the other hand, the greatest lower 

bound of Q (the infimum of Q) is a lower bound w  such th a t w'  A  w  for 

any other lower bound w ' .

If the supremum (or the infimum) of a set exists, then it is unique. We 

write x  V y  for the supremum of x , y  6  P ,  and x  / \  y  for the infimum.

D efinition 2.6.2. A finite set £  is called a lattice, if

1 . (£ , A) is a poset,

2. A ny two elements x  and y o f C have an infimum and a supremum.

Let (£ , A )  be a lattice. A rank function for £  is a mapping r k  : £  —> N,

x  i—> r k ( x )  satisfying

x  A y  r k ( x ) <  r k ( y ) ,  

for all x ,  y  G £ . In this case, the lattice (£ , A )  is called a ranked lattice.

A rank function induces layers on the lattice £ . The ith layer consists of 

the elements of rank i:

L ^ \ £ )  — {x  G £  | rk{x)  =  i}.
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E xam ple  2.6.2. The power set poset (P, X) of Example 2.6.1 is a ranked 

lattice if we consider rk  : P  —> N, x  |x'| (cardinality). Then the layers of 

this ranked lattice are as follows:

layer elements of layers

0 0

1 {1},{2},{3}

2 {1 ,2},{1 ,3},{2 ,3}

3 {1,2,3}

If C is a ranked lattice, then

£  =  | j L (i)(£).
«eN

2.7 The Lexicographical Order

If x  and y are two elements of a poset (P, X), with x  ^  y or y -< then we say 

th a t x  and y  are comparable, and we say th a t x  and y are incomparable 

otherwise.

If (P) is a poset with every pair of distinct elements in P  are comparable, 

then the order is called a total order, and P  is called a totally  ordered set. 

T hat is, given a poset (P, -<), we embed into a to ta l order (P, < ) such th a t

x  -< y = >  x  < y,

for all x , y  € P .

Let (X, < ) (or simply X<)  be a totally ordered set. The to ta l order on X  

induces a to ta l order on V ( X ) .  This is the Lexicographical order, denoted 

by See [7] for more discussion on such ordering.
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D efinition 2.7.1 (The Lexicographic Order). For subsets A  =  {ai, a2, . . .  ,a m} 

and B  = {bi, &2, • • •, bn} of  the totally ordered set X  with ai <  a2 <  ■ • • <  am 

and b\ < &2 <  • • • <  bn, we have

{3 r < m in (m , n) : a* =  6* V 1 <  i < r and ar < br , or 

m  < n  and a* =  b, V 1 <  i < m, 

and we say that A  is lexicographically less than B , denoted by ”A  A B  ”.

Let (X , < ) be a totally  ordered finite set. The lexicographical order on 

V ( X )  can be represented by a tree, the order tree T(x,±) or simply Tb. The 

nodes of T-< are the subsets of X .  Two subsets A  and B  of X  are connected 

by an edge if A  C J3 and B  = A  U {max B }, i.e. |£?| =  |A| +  1.

E x a m p le  2.7.1. Consider the four elements set X  =  { 1 ,2 ,3 ,4}<. Figure 2.7.1 

displays the order tree TL<. Here, we label the nodes by the largest element of 

the set which they represent.

Figure 2.7.1: Order tree of V ( X )  with respect to  the lexicographical ordering.

■
There are two different ways of traversing the nodes of a tree.

D e fin itio n  2 .7 .2  (Depth-first search). The d e p th - f ir s t  sea rch  (D F S )  visits 

all the vertices o f a graph as follows. Initially, all vertices are marked ’’new ”.
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When a vertex is visited, it is marked ’’old”. DFS works by selecting a new 

vertex v, marking it old, and then calling itself recursively on each of the 

vertices adjacent to v.

D e fin itio n  2 .7 .3  (Breadth-first search). The b re a d th -fir s t sea rch  ( B F S )

starts from a specified source vertex s from which it visits all nodes adjacent

to s. In  this strategy, every level in the tree is visited from left to right, where

we start from  the top.

So the BFS proceeds as follows:

-< 12 -< 13 -< 14 -C 23 -< 24 -< 34
-C 123 -C 124 -< 134 -« 234 
-< 1234

while DFS goes as follows:

4>< 1 ^  12 123 ^  1234 -< 124
13 -< 134 -< 14 

-C 2 -< 23 -< 234 -< 24 
-< 3 -< 34 -< 4.

More discussion on such techniques can be found in [1, 33, 38, 41, 55].

Now, if X ^ and are two finite totally ordered sets by the meaning of 

lexicographical order, then for ( x i , y i ) ,  ( x 2, y 2) E X  x Y ,  we have

0D,2/l) ^  (X2 ,V2 ) <
X\ Y  x 2 , or

X\ =  x 2 and y x -< y 2.

2.8 Tactical D ecom positions

Let X  =  (P, B) be an incidence structure with P  = {pi ,p2, .. ■ ,pm} and 

B — {B\ ,  B 2, . . . ,  B n}. A d e c o m p o s itio n  of A  is a pair of partitions of
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points and blocks. Let II(P ) and 11(5) be the set of all partitions of P  and 

5 , respectively. Let (P ,C ) € II(P ) x 11(5) be a decomposition of X  where 

P  =  {P i | P 2 | • • • | Pm} and C = {C\ \ C2 | . . .  | CV}.

For 1 <  i < M  and 1 <  j  < N , define

ri,j = { { B e C j  \ P e B } \

with p  e  R i  fixed. In addition, define

Cij = \ { p  e  Ri \ p  £ B }\

for fixed B  6 Cj. The decomposition (P , C) is called row  ta c t ic a l  if for any 

i < M  and j  <  N,  the number rhJ is independent of the choice p  e  P*. It 

is called c o lu m n  ta c t ic a l  if for any i < M  and j  < N,  the number c(J is 

independent of the choice B  G Cj.  The decomposition (1Z,C) is called ta c tic a l  

if it is both  row and column tactical. See [4, 5] for more reading.

If A  is an incidence m atrix corresponding to  X ,  then the decomposition 

concepts defined above can be applied to  rows and columns of A. Any de­

composition allows us to  reorder rows and columns of the incidence m atrix 

in order to group together rows and columns according to  the classes of the 

decompositions. Thus, any decomposition gives rise to a block decomposi­

tion of the incidence m atrix A. The submatrices of size |P j| x |C) \ are the 

d e c o m p o s itio n  m a tr ic e s .

The matrices containing r^j and chj  extended by one row and column 

indicating the order of the point and block classes are the row  and co lu m n  

d e c o m p o s itio n  schem es. Let (P , C) be a decomposition and put |P | =  M  

a n d  \C\ =  N.  T h e n  th e  row  a n d  co lum n decom p o sitio n  schem es have th e  form  

as in Figure 2.8.1.
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\Ci \ m  • • \cN\ \Ci\ ICal • . \cN\

\R i \ n , i r* 1,2 • ■ n tN \R i \ Cl,l Cl,2 ■ Cl,N

\R 2 1 r 2,l r 2,2 ■ f2 ,N  i a n d m c2,i C2,2 C2,N

\R m \ r u , i I'M,2 • rM ,N \R m \ c m , i CM,2 ■ CM,N

Figure 2.8.1: The row and column decomposition schemes forms.

Consider a graph of order and size 5 with the incidence m atrix of Figure

2 .8 . 2  where u* and e, represents vertices and edges of the graph for 1 <  i < 

5. The bolded lines in the m atrix indicate the row and column classes. 

The associated row “(—»)” and column “( j ) ” decomposition schemes are given 

below:

e\ ei £3 e4 es

V\ X X X

V2 X X

V3 X X

V4 X

v 5 X X

Figure 2 .8 .2 : Partitioned incidence m atrix of a given graph.

- > 2 1 2 1 2 1 2

1 2 1 0 1 1 1 0

2 1 0 1 , 2 1 0 1

1 0 1 0 1 0 1 0

1 0 0 2 1 0 0 1

Such decompositions can be useful in the problem of isomorphism as we 

will see in Chapter 5 on page 103.
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2.9 Hashing Functions

A hash function or a hash algorithm  is a function for summarizing data. 

Such a summary is known as a hash value or simply a hash, and the process 

of computing such a value is known as hashing.

In some cases it is useful to  use a suitable hashing function so th a t it can 

store some combined data  in one number in N, for instance.

Let NN denote sequences of numbers in N of arbitrary length with the 

convention th a t

(x0 ,x i ,  . . . , x s) = (xo ,xu . . .  , x 3 , 0 , 0 , . . .).

Then h : Nn —> N is a hash function th a t stores information about (x0, x \ , . . . ,  x s) 

into one number h((xo ,x \ , . . .  , x s)).

2.10 {0, 1}-M atrices

In this section, we introduce some of the notations on {0, l}-matrices. Recall 

th a t M m>n denotes the class of all m  x n  {0, l}-matrices.

D e fin itio n  2 .10 .1 . The K ron ecker product is a binary operator on matri­

ces. Given a m x  n matrix A mxn and the p x q matrix BpXq

< H ,1  • & l , n O i j  . ^ l , m

1
x n

1 0*71,m

then their Kronecker product, denoted A ®  B,  is the mp  x nq block matrix
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A ®  B  =

a i ^ B  . . .  d\^nB

0771,1 -6  • • ■ 0771,71-6
m p x n q

For A  G Mm^n ,  le t  Rowsupp(A) =  { ! < ? ' <  rn \ row-sum* (A) >  1 }. Also, 

for 0 <  I <  m ,  le t

Therefore,

For instance,

M m , n  =  { a  G Mm>n | |Rowsupp(A)| = /J (2.5)

■^m,n —
1=0

A  =

1 0  1 0  

0 0 0 0 

1 1 0  0 

0 0 0 0

G M l(2)
4,4-

Let A  — (ciij) where 0 <  i < m  — 1 and 0 <  j  < n -  1 be in Mm>n. Then, 

we write

R 0W j(A ) . [Oj}05 Oj}j ,  ■ . . , di^n— i],

for the entries of A  th a t are in row i. Let Ei G Mm>i for 0 <  i < m  — 1 such 

th a t

1 , if i — j ;
Rowj(E j) =

0 , otherwise.

We write v = [v0, Vi , . . ., f n-i] for a vector of length n, i.e. v G M 1>ra.

D efinition 2.10.2. I f  v G M i itl and Ei G Mmji for  some 0 < i <  m  — 1, then 

their Kronecker product B  = Ei ® v is in Mm]n with RoWi(B) =  v.
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Ei 0  v =

" 0 ’ ’ 0 0 . . 0

0 r 0 0 . . 0
1 0 Vo, V\ ,  . . . , Vn—i — Vo Vl ■ Vji—1
0 0 0 . . 0

- 0 - - 0 0 . . 0 -

Therefore, if A  €  m S|„, then A  + {Ei® v) =: B,  where

RoWj(i?) -

\ajto +  v0, . . . ,  ajtn- i  +  vn_j], if * — J ;

[djfl, • • ■, o,j,n- i]j otherwise.

Note th a t A  — {Ei <g> v) is defined in a similar way.
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Chapter 3 

The Theory of Isomorph 

Rejection

Let G be a group th a t acts on two finite sets X  and Y .  Let R  be a G-invariant 

relation on the product X  x Y.

The problem to solve in this chapter is th a t we are given an orbit transversal 

T (G, X )  and we are asked to  construct an orbit transversal T(G ,  Y ) .  This can 

be done by considering a construction of a transversal for a secondary action on 

the relation R,  and then use th a t transversal in solving our prim ary transversal 

problem.

This problem is fundamental for the construction and classification of dis­

crete structures. One can see Higman’s work [36, 37] on coherent config­

urations with the assumption of finite group actions, and the fundamental 

book of finite group actions and applications by Kerber [53]. We also refer to 

Laue [57] and McKay [64] for further details.

In the following, we will summarize the known facts regarding the solution 

of this problem in our own language. The results are not new. McKay’s paper 

[64] contains most of these ideas. However, we find tha t his paper is very 

condensed and therefore hard to  read. For this reason, we find it necessary to

52
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present the theory here once again and in some more detail.

We follow McKay’s ideas by first providing the framework for a classi­

fication algorithm. This framework involves a //-function, which is used to 

eliminate isomorphic copies. Finding and realizing such a /i-function seems 

to  be the hardest issue. It is possible to  rephrase orderly generation in the 

language of this /i-function, and we will do so in Theorem 3.2.1. Probably 

McKay’s m ajor contribution is the idea of using partition backtrack to pro­

vide another realization of a /i-function. This will be our Theorem 6.3.1 on 

page 143. In order to  get to  this result, it is necessary to present a range 

of algorithms which facilitate partition backtrack for incidence structures (or 

{0, l}-m atrices in general). This m aterial is covered in Chapters 5 on page 103 

and 6  on page 118. The reason why McKay’s /i-function is interesting is tha t 

it can be computed faster than  the /i-function based on the lexicographical 

ordering from Theorem 3.2.1. The ideas for partition backtrack and for the 

invariants we use are drawn from a variety of different sources. Leon [75, 76] 

has a series of papers on partition backtrack. The invariant for {0, l}-m atrices 

we are going to  discuss in Chapter 5 on page 103 is from D. Betten and M. 

Braun [9]. Last bu t not least, Chapter 4 on page 74 is about the search space. 

In there, we present some more specific m aterial which addresses the construc­

tion of regular graphs with given girth.

3.1 Orbits on Ordered Pairs

Let G be a group th a t acts on two finite sets X  and Y . Recall th a t a subset 

A C  X  is called G-invariant if GA =  {g G G | A 9  = A} =  G. Moreover, let 

G act coordinate-w ise on the product I x F ,  i.e. for (x ,y)  e X  x Y  and 

g e  G, we have

(.x , y )9 =  ( x 9 , y 9).
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Prom Lemma 2.4.5 it follows th a t R  is a union of G-orbits on pairs from X  x  Y .

Any G-orbit on pairs from X  x Y  which is contained in R  is called flag orbit.

For x  £ X  and y G Y ,  define the following projection maps:

7Ti : R  —> X ,  defined by (x ,y )  x, (3.1)

and,

7T2 : R  —> Y, defined by (x, y ) i-y y, (3.2)

Note th a t for any g E G, we have

n i{ (x ,y )g) =  ni((x 9 , y 9)) =  x 9 =  7Ti((x,y))9,

and thus

^ i( (^ ,y )9) = TTi{{x,y))9. (3.3)

Similarly, we have n 2 ( (x ,y )9) = iv2 ( (x ,y ))9.

D efinition 3.1.1. Let G be a group act on two finite sets X  and Y , and let

R  C  X  x Y  be a G-invariant relation. Let ni and n 2 be defined as in (3.1)

and (3.2), respectively. Then, for  any (x ,y)  G R, the s h a d o w  orb i ts

tti (0*5 y)° )  =  x G, and tt2 ((x, y)G) =  y G.

We also consider the following two sets

7rr 1(®) =  { (x >z ) G R  }, (3.4)

and,

^ 2 l {y) = { (z ,y)  g R }. (3-5)

which we call the ’’extension set” and the ’’pre-image set”, respectively.

Suppose th a t G acts transitively on a finite set X , and let R  C  A  x  X  be a 

G-invariant relation. The diagonal I  — {(x, x)  €E R  \ x  G X }  is a G-invariant 

relation.

A flag orbit determines two shadow orbits, bu t the converse is not true as 

the following example shows.
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E x a m p l e  3.1.1. Consider a transitive action of a group G on a finite set X ,  

and let R  C X  x X  be a G-invariant relation.

X

Figure 3.1.1: Orbits of a transitive group G  on X  x X .

Since G  is a transitive, G  has one orbit on X .  However, for all (x , x ) € R  

and for all g € G, we have (x , x ) 9  — (y, y) for some y E X ,  and thus (x , x )G — I,  

where I  is represented in Figure 3.1.1 by »’s. Therefore, G has a t least 2 flag 

orbits on X  x X  with the same shadow orbits.

■

T h e o re m  3.1 .2 . Let G be a group acting on two finite sets X  and Y  as above 

and let R  be a G-invariant relation between X  and Y .  Moreover, let ni and 

7r2 be projection maps as defined in (3.1) and (3.2), respectively. Then, the 

following three sets are in canonical one-to-one correspondence.

1. The set of flag orbits R / G ,

2 .

U  n f 1 ( x ) / G x,
xeT(G,X)

which is called ”Gx-orbits of the x-extensions for  all x  g T  (G, X )  ”, and
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U  K 2 l ( y ) / G y ,

ye r(G,Y)

which is called ”Gy-orbits of the y-preimages for  all y 6  T (G ,  Y )  ”,

The canonical correspondence between the objects in 1 and in 2 and between 

the objects in 1 and in 3 is characterized by the fact that objects correspond 

whenever they intersect nontrivially.

Proof. Let T (G, X )  be any given orbit transversal for G on X .  Then, define 

a function

f  '• R —> [ J  i r f \ x ) / G x
xeT(G,X)

defined by (a, b) ( (a9, b9) )Gx where g € G is such th a t a3 = x  G T ( G , X )  

(such an element g € G exists). We first show th a t /  is well defined. Assume 

th a t

(a, b) t-> ( (a9' ,W') )Gx 

for some other element g' G G. Then,

a = x a =  x* ==> x  = x-

i—i

3 9

h — g g €  Gx.

Therefore,

( {a9',IP') )Gx -  ( ( x M )  )Gx 

=  ( {x,W')h )Gx 

= { { x , V )  )Gx — ( (a9 , b3) )Gx.

Hence, /  is a well defined mapping.

Next, we show th a t /  is a G-invariant, i.e. we want to show th a t

/ (  (a, b) ) — f (  (a, b)a ) for all s € G.
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Then, it suffices to  show th a t

(a, 6 ) i—> ( (a9 , 6s) )Gx and (a, b) ( (a3 9 ' ,b39') )Gx

for a9  = a39' = x  € T (G , X ) ,  are the same.

Note th a t for any a G X ,  we have aG =  (as)G =  x G since a9  = x  G T (G , X ). 

Then, there exist g,g'  € G such th a t a9  =  aSfl/ =  x, then

a9  = x  — a39'

a =  x 3-1 -  sff'-1*-1 =#> x =  x 9 ' ^ 3 ^ 9  

h = g'~ls~lg G Gx.

Now,

/ (  (as, 6 s) )  =  ( ( a ^ > 9' ) ) G*

=  ( (a39\ b 39')h f  x 

=  ( (aS9>9'~la~l9,bS9'9'~ls~l9) )Gx 

=  ( (a9, ft9) ) =  / (  (a, b) )Gx.

Therefore, /  is well a defined and G-invariant mapping. Therefore, /  descends 

to  a map

f  : R / G  —> | J  7ri \ x ) / G x
xeT(G,X)

Then, what we want to  show is th a t /  is onto and a one-to-one map.

First, we show th a t /  is onto. Choose any O = {{x,y))Gx € 7x^1 ( x ) / G x 

with x  G T (G , X) .

f ( ( x , y ) )  = (xid, y id)Gx = 0 ,

by definition because x'"' =  x. Since in addition /  is G-invariant, then /  is 

onto.

Next, we show th a t /  is a one-to-one function. Assume th a t 

/ ( (* i ,  3/i)) =  /( (Z 2 , 2fc)) =  0  =  ( (x ,y ))Gx,
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then X\ = G x  = G x 2. Let g\ ,g 2  €  G such th a t

Then,

f ( ( x i , y i ) )  = { ( x ^ f 1))0* = O,  

f ( ( x  2 ,y 2)) =  ( ( x , y322))Gx = O,

thus, there exists h € Gx such th a t y9lfl = yf2, and hence y 9 l h 9 2  = y2 and 

9ihg2 1 G G.

x f 1*92 — x h 9 2 1 =  x 9 2 1 =  x 2.

Thus, (x l , y i ) 9 l h 9 * 1 =  (x2 , y 2), and therefore (x i ,y i )  =G (x2 , y 2). Since /  is 

G-invariant, then /  is one to  one.

Thus, there is a one-to-one correspondence between (1 ) and (2). Similarly, 

we can show by analogous arguments th a t there is a one-to-one correspondence 

between (1) and (3), and thus the proof is complete. □

Note th a t, if G was transitive on both X  and Y ,  then the previous theorem 

is called M a ck e y ’s T h e o rem , see Theorem 1.2.16 of Kerber [53].

D e fin itio n  3 .1 .3 . Let G act on sets X  and Y  and let R  be a G-invariant  

relation between X  and Y  with n 2 (R) — Y .  A p-function is a function from  

Y  to V (R )  such that the following properties hold:

1 . p(y)  is an orbit of Gy on irj'1 (y), and

hid9) =  h ( y )9 for  all g €  G.

In other words, p  associates to every y G Y  a non-empty (single) Gy-orbit 

p(y )  Q ^ 2 1(y) such that p{y9) — p (y ) 9  for  all g G G.
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These requirement on p are saying th a t p  must identify (or select) one of 

the orbits of Gv on n2 l (y) in a way th a t is independent of y in such a way th a t 

it depends only on the G-orbit of y, bu t not on y itself. T hat is, if y were to  be 

replaced by z G G(y), then the orbit selected for z  would be the image of the 

orbit selected for y under any isomorphism from y to  z .  Formally, li z  — y 9  

for g  G G, then the orbit selected for z  is the ,9 -image of the orbit selected 

for y. Such a G^-orbit is called the can o n ica l o rb it . Such p function can be 

realized by considering a canonical labeling map p,  see Definition 2.4.14.

T h e o re m  3 .1 .4 . Let G act on two finite sets X  and Y , and let R  be a G- 

invariant relation between X  and Y  with n2 (R) =  Y. Assume that T ( G , X ) ,  

a transversal for  the G-orbits on X ,  is known. Suppose that a p-function as 

defined in Definition 3.1.3 is known. Then,

T ( G , Y ) =  ( J  ({  (x, y) G T ( G X, Trf1^ ) )  | (x, y) G p(y) } )  (3.6)
xeT(G,X)

is a transversal for  the G-orbits on Y .

Proof. We need to  show th a t T (G, Y )  is a transversal for G-orbits on Y . This 

can be done by showing th a t each G-orbit on Y  is represented at least once 

and at most once, and hence each G-orbit on Y  is represented exactly once.

First, we show th a t each G-orbit on Y  is represented at least once. Given 

y G T , 7Ta 1 (j/) /  0, by assumption. Let (x \ ,y ) ,  (x2, y ) , . . . ,  (a:r ,y)  be represen­

tatives for the Gy-orbits on ^ ( y ) .  We may assume th a t (oq , y )Gy =  p(y). 

Note th a t, ( x i , y ) Gy is the G^-orbit of (xi ,y) .

By Theorem 3.1.2, there exists x  G T ( G , X ) ,  and there exists (x,y' )  G 

vrf C  R  such th a t (xi, y)G" corresponds to  (x, y')Gj:. This means th a t 

( x i , y ) G =  (x ,y ' )G (as flag orbits). Therefore, there exists a g  G G such th a t

{x \ , y9) = (x,y').
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Thus, y 9 = y'. We claim th a t ( x , y r) G p(t/)-

My') =  My9) =  M y)9 = [(x u  y ) Gy]g =  [Mi, y)]Gyg 

= [(xi,I/)r"lG*9=[(x1>y)*]G- = (x>y')^,
=  [(x ,y ' ) ]Gy' e  7r^ M O /G y ,

by Definition 3.1.3 and Lemma 2.4.2.

Let (x,y")  e  T ( G X, 7rj“1 (x)) with (x ,y")Gx = (x ,y ' )Gx (such a (x,y")  ex­

ists). Then there exists a h G Gx such th a t y'h = y", and

My") =  My"1) =  My')" =  [M ,y')c v ] /l =  [(x,y' )]Gygh

=  [(a:, =  =  ( z ,y " ) G»9\

Therefore, we have found an element x  G T ( G , X )  and a pair (x,y")  G 

T ( G x, 7r^1 (x)) such th a t (x,y")  G My")- This means th a t the union in (3.6) 

contains the element y", and since y" =  ygh, th is means th a t every G-orbit on 

Y  is represented at least once in (3.6).

Second, assume th a t x i , x 2 G T ( G , X ) ,  (xi,yi)  G T { G Xi, ^ 1 {xi)), and 

{xiiVi) £ My*), f°r * =  1 , 2 . Assume further th a t y G =  y G. We have to  show 

th a t Xi = x 2 and yx = y2.

Let g G G with j/f — j/2, then

0xuVi)9 € p(yi)9 =  M )  = p(?/2)-

Therefore, there exists h G G V2 such th a t (xi, yi)gh — (x2 , y2). Thus, ( x f \  y2) — 

M2,y2), and x f h = x 2. But both X\ and x 2 are contained in T ( G , X ) .  There­

fore, X\ =  x 2.

Note th a t h €  GV2 and x gh =  x 2 =  x i, and thus gh E GX1. Then,

[(x i , y i ) ] Gxi = [(xi ,y i )9h]Gxi = [(xi ,y2)]Gxi.

But both (x i ,y i )  and (x i,y 2) are in T ( G X1, 7r f  J(xi)). Therefore, (xj ,yi )  — 

( x i , y 2), and hence ya =  y2-
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Therefore, the union in (3.6) contains each G-orbit on Y  a t most once, and 

hence exactly once. □

By the previous Theorem, we can solve the problem of constructing a 

transversal for G-orbits on Y  from a transversal for G-orbits on X  by consider­

ing the following two steps. First, consider the action of Gx for all x  G T (G , X ) 

on the set 7rf1(a;) which results in a transversal T ( G ,R ) .  Second, we project 

by 7r2 on elements (x ,y)  6 T (G ,R ) th a t are contained in the Gy-orbit on 

n 2 1 (y)- These two steps are called lif tin g  o rb its  and p ro je c tin g  o rb its  

steps, respectively. In practice, these two steps can be described by Algorithm 

3.1.1. Moreover, Figure 3.1.2 shows the steps from an element x  € T ( G , X )  

to  an element y  e  T(G ,  Y )  passing through a pair (x, y) G T { G X, 7rj'1(a:)) such 

th a t (x ,y)  E y,(y).

A lg o r ith m  3.1.1 Two-Steps(T(G, X):  an orbit transversal)
l let T(G, Y)  =  0

2 for each x £ T(G, X)  do

3 compute 7rj”1(x )

4 compute T(Gx,7rj”1(x))

5 for each (x , y ) £ T(GX,7rf x(x)) (lifting) do

6 if (x, y ) £ y(y) (projecting) th en

7 Add y to T(G,Y) .

8 end if

9 end for

10 end for

For our convenience, given an element (x, y) G R  C X  x Y , we say th a t 

the node (x ,y)  is a c c e p te d  if it passes the test in line (6) in Algorithm 3.1.1, 

and is re je c te d  otherwise.
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x e  T (G ,X )

R C X x Y

-only if (x,y) e  y(y)

Figure 3.1.2: The steps of Algorithm 3.1.1.

3.2 Orderly G eneration

Isomorph-rejection techniques are widely used in classification algorithms. One 

goal of such techniques is to  produce a list of objects with no isomorphs. 

Another is to avoid redundant work in the search for objects of interests. See

[78].

In this section, we construct a //-function satisfying the properties of Def­

inition 3.1.3 by employing the ideas of Faradzev [23] and Read [69] in the 

1970’s, independently. This isomorph-rejection technique is called o rd e r ly  

g e n e ra tio n .

Let a group G act on two finite to tally  ordered sets X  and Y ,  and let 

R C X x Y  be a G-invariant relation. Recall from Definition 2.4.14 th a t 

a canonical labeling map ip : Y  —> G  maps an element y e  Y  to  its orbit 

representative under the action of G,  denoted by According to  Faradzev

[23] and Read [69], an element y 6  Y  is called a canonical orbit representative 

if y satisfies the following condition:

U ^  y9, for all g G G. (3.7)
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In other words, the canonical orbit representative y ^ v> is the least element 

in the orbit G(y)  under the given to ta l ordering of Y.

T h e o re m  3.2 .1 . Let a group G act on two finite totally ordered sets X  and 

Y , and let R  be a G-invariant relation between X  and Y  with ^ ( R )  =  Y.  

Then, for  any given y E Y ,  let

M  = mm7r, y v>(v) v>(y)

where the minimum is taken with respect to order on Y .  Then, n  satisfies the 

conditions of Definition 3.1.3. In particular, given T ( G , X ) ,  T ( G , Y )  can be 

constructed by using (3.6).

Proof. All th a t we need to  show here is th a t property 1 and 2 are satisfied 

with this definition of p. Then the proof is completed by Theorem 3.1.4.

Let us first show th a t p(y)  is a G^-orbits on 7rf l {y). Clearly R  is a G- 

invariant relation and Gy < G, then Gv acts on R  and R  is a Gv-invariant 

relation. Because n f 1 (y) C R  and Gy acts on R , we obtain th a t Gy acts also 

on 7r f 1 (y). Now, let min Trf1 (y'p^ )  =  (x0 ,y'p v̂'>). Then by applying <p{y)~l 

on (xq, y ^ yl) we would get ( x ^  , y) E n ^ i y ) .  Hence the first property of fi 

holds.

Next we show th a t p.(y9) = p(y)9. Note th a t since y^G) =  — yaRv9);

we have ip(y)ip(y9 ) ~ 1 maps y to  y9. Moreover, G ys = g~xGyg. Then

i Vi V9) " 1 G yg

mm

mm 7To

9 1Gyg

g.(y9) = (  min n 2 \  y9ip{yg) ) )

2 i(  yrtv) )

=  (  (  min yv{y) ) )

G y  9

r ( y )  1 - \ g v \ 9  , ,

)  =  p{ y ) g-

Note th a t ip(y) 1<p(y) = id and th a t (p(y)(p(y9) lg 1 E Gy. Thus fi satisfies

the second property as well. □
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Therefore, Algorithm 3.1.1 constructs a transversal for the G-orbits on Y,  

given a transversal for the G-orbits on X .

3.3 Example: Orderly G eneration of Graphs

This section presents a first example for the techniques of Orderly Generation. 

Namely, we will discuss a very basic algorithm to  generate graphs on a given 

number of vertices. The methods presented are very general, and therefore 

not optimized.

In practical applications, one would want to  consider refinements of this 

algorithms which are then faster. The purpose of this section however is to 

show the basic framework of an orderly algorithm.

E x a m p l e  3.3.1. Let X  denote the class of all finite graphs of order 4 with the 

vertex set V  =  {1,2 ,3 ,4}. Let Hi — ( V,, Ei) £ X  be a graph where

Ei  C V2(V) = {{1,2}, {1,3}, {1,4}, {2,3}, {2,4}, {3,4}},

thus \V2{V) =  6 |.

If H 2 (V ,E 2) is another graph in Q4) then H\  is isomorphic to  H 2 if and 

only if there exists /  €  S y m (4) such th a t

{ i , j } e E i ^ { f ( i ) J { j ) } £ E 2 V i , j  £ {1 ,2 ,3 ,4} and i + j.

For instance, if /  =  ( 1 3 4 ) £ S y m (4), then /  permutes the set of all edges 

as follows:

({1 ,2}  {1,3} {1,4} {2,3} {2,4} {3 ,4} \
\{ 2 ,3} {3,4} {1,3} {2,4} {1,2} {1 ,4 } )

fo]
Let S y m ^  be the group of perm utation of V2(V)  obtained in this way

from S y m ^ ) .  Since S y m (4) is a group of perm utations, it follows th a t S y m ^

is also a group of perm utations.
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f2lIn particular, Sym\^  acts on V2{V)  by the meaning of unordered pairs 

action, i.e.

V2{V)  x Sym®  -  V 2(V),  ~

for all { i , j }  € V2(V)  and for all g E Sym®y Therefore, the orbits of S y m ^  

on Vi(V2{V))  are in one-to-one correspondence with the orbits of S y m (4) on 

graphs on 4 vertices with i  edges.

For i  =  0 , 1 , . . . ,  6  let X* = Vi{V2{V)) E X  be of size % (i.e. with i 

edges). Then, we always consider the action of S y m ^  on X.L and X ,+1 , and the 

elementwise action of Sym®)  on the Syra^-invarian t relation R t C X t x X i+i 

such th a t

(.A , B ) e R i <=>■ {a,b} E A  implies {a,b} E B.

In other words, (A , B)  E  Rt  if and only if A  C  B.  Therefore, starting from 

X 0, these group actions give rise to a sequence of the following form:

x„ X  Xix  x2 - X  _ ? L Xs. (3,8)

In this way, the relation R  can be represented by a (|Xj| x |Xj+1|) {0, l}-m atrix  

M  with M  =  (mxy) (for 1 <  x < |X*| and 1 <  y < |Xj+i|) such tha t

Wlxy — <
1 if ( x , y )  E R i ,  

0  otherwise.

Figures 3.3.1, 3.3.2, and 3.3.3 show all graphs in X 2, all graphs in X 3, and 

a m atrix M  corresponding to  R 2, respectively.
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Figure 3.3.1: All elements in X 2
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Figure 3.3.2: All elements in X 3
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X X X X

71 X X X

F\ X X X

x X X X

71 X X X

z X X X

X X X X

X X X X

X X X X

K X X X

X X X X

X X X X

X X X X

X X X X

z X X X

N X X X

U X X X

Z X X X

n X X X

c X X X

N  C  •  •
•  •

—i ^ 11* • XXr. n XXXz XXz z N
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For the sake of simplicity, we write G for the group SyrnJ^y 

1st problem: Starting from X 0, we only have the empty graph, which is the 

graph of order 4 and has no edges. Then, computing the extension set of this 

graph, we get 6  different graphs all of which are contained in the same G-orbit, 

see Figure 3.3.4.

\  .2

4 *  *3

11 2 1 22 1 12 2

Figure 3.3.4: Extensions of the empty graph.

For th a t we consider the lifting step in our algorithm as in lines (2 — 5) in 

Algorithm 3.1.1. Thus when we start from node A0j  given in Figure 3.3.6, we 

compute first the stabilizer of A0)i which is G a0,i =  G with order |GA011 =  24 

and by the Orbit-Stabilizer Theorem we have six graphs contained in the same 

orbit, but we only consider one graph as in Figure 3.3.6.

Another non-trivial example is by considering the lifting orbits step for the 

node A.2,1 of Figure 3.3.6. Figure 3.3.5 displays the extension set of A 2 y.

A\ A2 A3 A4
1 2  1 2  1 2  1 2

Figure 3.3.5: Extensions of node A 2,i of Figure 3.3.6.

Clearly, A u t (A 2y) = ((2 3)). Thus, we skip A 4 because of the fact th a t
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A 3 and A 4 are contained in the same 2 htt(A 2)1)-orbit.

2nd problem: In level 2 in the poset of Figure 3.3.6, we have two graphs, namely 

j42)i and 2l2,2, which both can be extended to the same G-orbit in level 3 of the 

poset, represented by the node T 3,3. To make sure th a t every orbit is visited 

exactly once in each level of the search tree, we use the p  function given in 

Lemma 3.2.1 so th a t we associate with every orbit in level 3 one orbit which 

it must be constructed from. Thus, we need to  compute /r(2 l3,3) first and then 

check if we can accept either node 2 l2,i or node A 2)2 from level 2 .

To make things easier, we assume th a t the canonical labeling map maps a 

node to  its lexicographic least form in its orbit. T hat is, given node A-ys of 

Figure 3.3.6, we compute its orbit under the action of G as in table 3.1. Then, 

the orbit representative is the lexicographical least element in the G-orbit of

213.3. Table 3.1 has 4 columns. First, ordering represents the lexicographical 

ordering of the corresponding graph in the orbit. Second, an element g G G 

which maps 2 l3 ,3 to  the corresponding graph. Third, A9a 3 is the 5 -image of

213 .3 . Fourth, we write the edges set of the corresponding graph so th a t it is 

easy to  see the lexicographical ordering on the graphs in the G-orbit of A ^ .  

Note tha t, the entries in the table are ordered from least to  greatest graphs in 

the orbit with respect to the lexicographical ordering.

Thus, <p(A3,3) =  {id) is the canonical labeling map, and p(A3,3) 2 l 3 ,3 is

the canonical orbit representative.

Next we compute

n 2 1(^3,3) — {(-^3! ^ 3,3 ) ) (-E?io,2l3,3) , ( 5 l l , 2 l 3,3)}

where B 3. B m , and B n  are drawn in Figure 3.3.1. Clearly, then

min ?rj1 (2 l 3 ,3 ) =  (J3 n , 2 l3i3).

Now we compute (mi n tt^-1 (-<4 .3 ,3 ) )vc’̂j4s’3̂  which is going to  be (B n , A 3t3). 

Therefore,

^ ( ^ 3,3 ) — {Bn ,  A 3>3) G a 3 -3 = { (B u , 2 l3,3), (5io, 2l3,3)},
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1 2

'Vi

4 3

1 2

•̂ 1,1

2

^ 2,2

4 3

Figure 3.3.6: Search poset for cubic 4. Note th a t bolded lines mean tha t 

{x, y)  G l j X  Xi+i, with (x, y) 6  /x(y), for * =  0 , . . . ,  6 .
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Table 3.1: The G-orbit of node A 3t3

ordering g e G X ? ,3 the edges set

1 ( ^ 3^3 canonical) (id) X4 3 {{IX }, 1,3}, {2,4}}

2 (2 3)

1 2 

X {{1 , 2 }, 1,3}, {3,4}}

3 (3 4)

1 2 

4 3 {{ 1 , 2 }, 1,4}, {2,3}}

4 (2 4 3)

1 2 

4 3 {{ 1 , 2 }, 1,4}, {3,4}}

5 (1 2 3)

1 2 

4* 3 {{1 , 2 }, 2,3} {3,4}}

6 (1 2 4 3) X4 3 {{ 1 , 2 }, 2,4}, {3,4}}

7 (1 3 2)

1 2 

N4 3 {{1,3}, 1,4}, {2,3}}

8 (2 4)

1 2 

K {{1,3}, 1,4} {2,4}}

9 (1 3)

1 2 

X, {{1,3}, 2,3}, {2,4}}

1 0 (1 4) (2 3)

1 2 

X4 3 {{1,3}, 2,4}, {3,4}}

1 1 (1 4 3)

1 2 

X4 3 {{1,4}, 2,3} {2,4}}

1 2 (1 4 2 3)

K -2

4 3 {{1,4}, 2,3}, {3,4}}
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where ^ 3,3 =  ((1 2) (3 4)). Clearly then we accept the extension (A2 ii, A3>3) £ 

^ ( ^ 3 ,3 ) and reject the other extension, which is ( ^ 2 ,2 - ^ 3 ,3 )•

Let G  be generated by a generating set S  =  {si, a 2 }, where

Sl  = ( 1 2 ) ,  

s2 = (  1 2 3 4 ).

A Schreier tree for the orbit A®3, see Table 3.1, is displayed in Figure 3.3.7.

4 3  4 3

Figure 3.3.7: A Schreier tree for the G-orbit on A3)1.
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Chapter 4

Generation of Incidence 

Structures

In this chapter, we consider the problem of finding suitable group actions and 

relations between the respective sets so th a t the theory introduced in Chapter 

3 can be applied.

Thus our goal is to  apply the techniques discussed in Chapter 3 to  any 

class of incidence structures for which an inductive construction process exists. 

Suppose th a t one is interested in constructing fc-regular graphs on m  vertices. 

Simply, it is not easy to  do so since the class of fc-regular graphs has no good 

inductive properties. Instead, the same goal can be achieved by considering 

an induction on larger classes th a t will be discussed in this chapter.

The construction procedure then gives rise to  a backtrack search in a larger 

class. A backtrack search or simply backtracking is an algorithmic princi­

ple th a t emphasizes ” step-by-step try  out all the possibilities” in order 

to  find all possible solutions to  a given finite problem. For more reading about 

such a strategy, read [11, 24, 52, 55, 78].

74

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



75

4.1 The R elation, and Search Lattice, Search 

P oset, and Search Tree

Let X  be a finite set and let X 0, X \ , . . . ,  X,m be disjoint subsets of X  such th a t
m

x  = (J x t.
i- 0

Let G  be a group th a t acts on X  and on Xi  for all i = 0 , 1 , . . . ,  m.  Let Ri 

be a G'-invariant relation with Ri  C Xi  x X l+i. In particular, we say th a t 

(A, B)  e  Ri  if A  e  X i  and B  € X i+i and th a t there exists a relation between 

A  and B  in some sense, for i — 0 , 1 , . . . ,  m  — 1. We always require th a t 

7T2 {Ri) =  X i+i, where 7r2 : Ri —» X i+i, defined by (A, B) B.

In general, we consider the construction of the relation i ? 0 x Ri  x ■ • • x R m- i  

step by step over X 0 x X \  x . . .  X m.

The idea is to  apply the techniques of Chapter 3 to  the sequence of group 

actions of G on X t for i =  0 , 1 , . . . ,  m, and compute orbit transversal % =  

(G, Xi)  for =  0 , 1 , . . . ,  m.

Recall th a t if (A, B)  E Ri Q X i  x  X i+1, then we say th a t B  is in the 

extension set of A, 7r f 1 (A), and th a t A is in the pre-image set of B,  tt2' 1 (A?).

For our convenience, we write A -< B  for A € Xi  and B  G X i+\ instead of 

(A, B)  e  Ri.

Consider a ranked lattice (X,  -<) and a group G which acts on a finite set 

X ,  i.e.

(a V b) 9  = a9 V b9, and 

(a A  b) 3  = a9  A  b9,

for all a,b  G X .

The set X / G  of G-orbits on X  is a poset with respect to  the relation ” ,

i.e.

G(A) ^  G(B) <=> B g e G  such th a t A 9 < B ,
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where A , B  € X ,  and G (A ) ,G (B )  E X / G .

A spanning tree for the search poset (X,  -<) can be established by using the 

p-function described in Chapter 3. T ha t is, each node in the tree has a unique 

ancestor. As a result some of the paths in Figure 3.3.6 would be accepted and 

some would be rejected depending on passing the p  test.

Let Xi  be the ith layer of X  for some suitable i. The search tree T  has as 

its nodes the G-orbits on X .  The orbit {0} =  X 0 is the root of T.  There is an 

edge between two nodes G(A) and G(B)  if A € A,, and B  E  X i+ 1  and

there exists a g & G  such th a t (A9, B)  E g (B)  E n f 1 (B ) / G b ■ (4.1)

Theorem  4.1.1. Let G be a group acting on a ranked lattice (X , -<). The tree 

T  whose nodes are the elements of the set X  j G  of G-orbits on X  with root 

{0} such that two elements G(A) and G(B)  are connected by an edge only if  

Condition f . l  satisfied is a spanning tree.

Proof. To show th a t T  is a spanning tree, we need to show th a t every node in 

T  has an ancestor, and th a t every node in T  has a unique ancestor.

First, consider G(B)  for B e l ,  Assume th a t B  E X l+1. Choose A  E X t 

such th a t (A, B)  E  p(B ) E rrf1 (B)/GB-  Then G(A) is connected to  G(B)  in 

the tree. By induction on i, we see th a t there is a path  for the root of T  to  B. 

Thus, every node in T  has an ancestor.

Next, assume th a t A i , A 2 <E X,; such th a t (Af, B)  E g(B)  and (A!], B)  E  

p(-B). Since g(B)  is a G ^-orbit on R,_ (where Ri  C Xi  x A ,:+1 is a G-invariant 

relation as usual), there is an element u e G b  such that

(Afu, B u) =  ( A f \ 5 )  = ( A * , B ) .

Thus, Af“ =  A j, and Ai is in the same G-orbit as A2. Therefore, there is a 

unique ancestor for every node in T, and the proof is completed. □
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4.2 A  Class of k -Regular Graphs Cm,k

In this section, we consider the problem of constructing ^-regular graphs on 

m  vertices. Note th a t this class has no good inductive properties and thus a 

larger class is considered in the following section.

Let V  be a finite set of vertices. Denote by Cm'k the class of all fc-regular 

graphs on m  vertices.

D e fin itio n  4 .2 .1 . Let C  be a k-regular graph. Then,

supp(C) =  {u € V  | deg(v) > 0}.

Each vertex in C  has exactly k  neighbors, i.e. every v £ V  is adjacent to 

k  other distinct vertices in V.  Thus, the number of edges is

A fc-regular graph C  <E Cm’k is a pair (V, E )  with vertex set

V  = {vo,ui , . . . , iw_i} ,

and an edge set

E  — { E 0, E i ,  . . . ,  E n~ i } C V 2 {V).

The class of graphs Cm'k does not has good inductive properties. For instance, 

it is not easy to  create C8,3 from C6,3. This is because the induced subgraph 

on 6  vertices of a graph in C8,3 is never in C6,3, for instance. See Figures 4.2.1 

and 4.2.2.

y x

r e m o v i n g  x  a n d  y

Figure 4.2.1: A graph 

in C8’3.

Figure 4.2.2: An in­

duced subgraph on 6  

vertices.
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Let us consider the following procedure. Let C  be a graph in Cm,k. Pick 

a vertex x \  €  V(C)  and delete the incident edges X\ ~  y for y e  N(x i ) .  For 

each vertex y  € V (C)\{a:i}, keep a counter th a t remembers how every edges 

incident to  y  have been removed. Repeat the procedure by picking another 

vertex x 2 7  ̂x \  and remove all incident edges x 2 ~  y for y G N ( x 2). For each 

vertex y £ V ( C ) \ { x 1, x 2}, have the counter reflect how many edges have been 

removed altogether. We represent such a counter between parentheses ” ( )” 

as in the following example.

E x a m p l e  4.2.1. Consider the (right) cubic (3-regular) graph of Figure 2.1.2 

on page 9. Picking the vertices y, w, x, v, z, u in order, we arrive a t the sequence 

of graphs of Figure 4.2.3.

w(0 )

z(0 )

w(0 )

z(l)y

x(l)

«(3)

.2(3)

W

•  Z

w w

•z

Figure 4.2.3: A sequence of resulting graphs by removing edges as in the above 

procedure.
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Note th a t the idea of the prevoius procedure gives rise to  a vertex by vertex 

generation strategy which corresponds to  row by row generation strategy with 

respect to  incidence matrices.

For our convenience, we distinguish the counter va lues (the number of 

removed edges) by drawing flags instead as in Figure 4.2.4

«(0) u

z(3)

w( 1)

x (2 )

y

IV

X

Figure 4.2.4: Representing the number of removed edges in different ways.

4.3 A Class of Flag Graphs T m

As mentioned before, the class Cm,k has no good inductive properties. There­

fore, there is no an easy way to  construct regular graphs by considering the

class Cm'k.

Consider the following more general class of graphs on m  vertices, which 

we call flag -g rap h s, denoted by T m.

D e fin itio n  4 .3 .1 . A f lag -graph  C  is a triple (V , E, F ) where V  = {u0, Vi, ■ ■ ■, vm~i} 

with m  vertices, E  =  {E 0 , E i , . . .  , E n- 1 } C V 2 (V) with n  edges, and a func­

tion F  : V  —» N. The function F  indicates the number of flags (the counter of  

removed edges) for every vertex v €  V.

D e fin itio n  4 .3 .2 . Let C  =  (V, E, F ) € T m. Then, for  v e  V, we have

deg(v) = degE{v) +  F(v),  and 

supp(C) =  {v 6  V  | deg(v) > 0}.

where degB(v) =  \{Ej  € E  | v 6  Ej for  all 0 <  j  < n  — 1}| .
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E x a m p l e  4.3.1. Let C  € P  such th a t C = ( {0 , 1 , . . . ,  5}, { {0 ,1 }}, (2 , 2 ,3, 0,0,0) ) .  

Then the flag graph C  is displayed in Figure 4.3.1.

Figure 4.3.1: A flag-graph C.

■

In particular, we are interested in the following subclass of flag graphs on 

m vertices. If

P ^ ' k — { C  G P 1 |supp(C)| =  I, deg(w) =  k  for all v  G supp(C )}, 

then the class m
P k = (J  P^'k 

1=0

is the class (with good inductive properties) th a t we are interested in. For 

instance, the flag graph C  of Example 4.3.1 is in G -F6,3.

Note th a t, the class F™,k is the class of fc-regular graphs Cm'k. Therefore, 

a construction of graphs in Cm,k can be done via an induction on I in the 

class P m,k = IX o  P'C'k which is clearly has good inductive properties. In 

particular, we consider T m'k the se a rc h  space  in our backtrack search where 

P™,k is the ta r g e t  space.

D e fin itio n  4 .3 .3 . Let S y m (m) act on I f  C  =  ( V ,E ,F )  G P m,k and for  

any g G Sym^m), then we have

C 9  =  (V , E , F ) 9  = ( V ,E 9 , F 9),

with E 9  =  { E 90 , E { , . . .  , E 3n_1}, where {vh Vj} 3  =  {v9 , v 9} for  vu Vj G V,  0 <  

h j  ^  m  ~  1; and i 4̂ j .  Moreover, F 9  = F  o g^ 1 , i.e. for v, u G V  i f  v 9  = u, 

then we have F 9 (u) = F 9 (v9) = F ( (v 9 ) 9  x) =  F(v).
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E x a m p l e  4.3.2. Following Example 4.3.1, consider the flag graph C 9  = (V , E 9, F 9) 

of Figure 4.3.2 with g = ( 1 2 ) ( 3 4 ) e  Syrn^),  then we have

( {0 ,1 , . . .  ,5}, {{0,1}}, (2,2,3,0,0,0)  )® =

( {0,1 , . . .  ,5}, {{0,2}}, (2, 3 , 2 , 0 , 0 , 0 ) )

Figure 4.3.2: A drawing for the flag-graph C 9.

4.4 The Ordering on T m'k

In this section, we discuss the ordering in the class F m,k. Note th a t this 

ordering is different from the totally  ordering discussed in Chapter 3.

D e fin itio n  4 .4 .1 . Let C\ =  (V , E i ,F i )  and C2 =  (V, E 2 ,F2) be two flag graphs 

in F m’k. Then, we say that Ci -< C2 i f  and only i f

1. supp{C\ ) C supp(C2), and

2. the induced subgraph of ( V ,E 2) on supp(C\) is equal to (V,Ei) .

If C\ — (V ,E i ,F i )  and C2 = (V , E 2 ,F 2 ) are in E m,k, then clearly an edge 

{ a : , y }  € Ei  im plies th a t {x , y } € su p p (C 1), and hence th e  edge {x, y}  € 

{V, Ei).  But, (V, Ei)  is the induced subgraph of (V ,E2) on supp(C i). There­

fore, the edge {x, y}  €  induced subgraph of (V ,E2) on supp(C'i), and hence 

{ x , y }  €  E 2. Therefore, Condition 2 of the above definition implies th a t 

Fi  C E 2.
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E x a m p l e  4.4.1. Figure 4.4.1 displays two flag graphs A  and B  th a t are in 

•F®’3 and J 7®’3, respectively, with A  -< B,  where Figure 4.4.2 displays two flag 

graphs C  and D  th a t are in E %’3 and E%’3, respectively, such th a t C  -f D. 

Clearly, the induced subgraph of (V(D),  E (D))  on supp(C') =  {0,1} is not 

equal to  (V{C) ,E{C)) .

Figure 4.4.1: Graphs A  G F ®’3 and B  G F f ’3 such th a t A  -< B.

C

5

4•

5*

4*

D

0

•2 4* -^>2
• •
3 3

Figure 4.4.2: Graphs C  G F ®’3 and D  G F ®’3 such th a t C -ft D.

A more general concepts of extensions with respect to  G action over the 

class E \a'k for I = 0 , 1 , . . . ,  m  follows.

D e fin itio n  4 .4 .2 . Let G be a group acting on Eff1̂  and E f f f ,  for  I — 0 , 1 , . . . ,  m-  

1. Then, G(A) ~< G(B)  for  G(A)  G EP 'k/ G ,  and G(B)  g F ^ f / G ,  i f  there 

exists a g G G such that A 3 -< B.

In general, we consider the construction of the relation R 0 x  R x x • • • x f?m_j 

step by step over E™'k x E f lk x . . .  E™,k. This can be done by applying the 

techniques of Chapter 3 to  the sequence of group actions of G = S y m m on
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T \ a'k for I =  0 , 1 , . . . ,  m,  and compute orbit transversal % = (G, T \ n'k) for 

I =  0 , 1 , . . . ,  m.

E x a m p l e  4.4.2. Consider the problem of constructing (cubic graphs of 

order 6 ) with the group action of G — S y m 6. We s ta rt with % = T(G ,  J-q 3) = 

{A0)i} as given in Figure 4.4.3.

Because, G  is transitive on vertices, 7} =  {Api}. Now, the point stabilizer 

of G is still transitive on the remaining points, therefore there are two orbits 

of graphs in f 2 3, namely % = {A 2 <i, A 2<2}.

The automorphism group of A 2fi and A 2>2, denoted by A u t (A 2ii) and 

A u t ( A 2t2), respectively, is S y m 2 x  Sym,\ . Then, for we distinguish the

cases of adding one more vertex to  A  G T2 as follows.

The th ird  vertex might be joined to both, only one, or none of the vertices 

in the graphs in T2. Therefore, we get 4 orbits of G  on J'®’3, namely

%  — {^3,1) ^3,21 ^3,3)-43,4}-

Here, we note th a t A :i 2 is an extension of both  A 2t 1 and A 2>2. Namely, we can 

think of A 3>2 as an extension of A 2<\ on vertices {0,2} by vertex {1 }, and at 

the same tim e A 3y2 is an extension of A 2>2 on {0,1} by vertex {2}. Similarly, 

A 3>3 is an extension of both elements in T2.

In order to  reduce the isomorphic duplicates, Theorem 3.1.4 on page 59 is 

applied. However, Theorem 3.1.4 relies on the existence of a p, function which 

can be realized using the algorithms described in Chapter 6 . Nevertheless, we 

show the resulting search poset in Figure 4.4.3, where the layers correspond 

to  the G-orbits on J^ ' 3 for a l i i  =  0 , . . . ,  6 .
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A0,l o
5 *

4 *

5 *  *1

4 *

5 *

4 «

0 0 0 0 0

1 5

2 4

3 3

Figure 4.4.3: The search poset for JF6’'
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4.5 A Class o f {0, l}-m atrices Vm,k

This section considers a calss of {0, l}-m atrices th a t corresponds to  the class 

of flag graphs. Recall th a t M m>n denote the class of m  x n  {0,1} matrices.

In this section, we consider a class of incidence matrices denoted by T>™’k 

th a t correspond to  the class of flag graphs T m'k = (J™ 0 T " l'k ■ For th a t we 

consider the following three classes of {0,1} matrices in M rn,n where n =

For I = 0 , 1 , . . . ,  m,  let

jm ,k  _  |  A  g row-sunij(yl) =  k  for i E R ow supp(A )|,

B m,k = |  A  G M m<n col-sumj (^4) <  2 for 0 <  j  < n  — 1 j ,

gm,k _  |  g M m n̂ |roWj(A) D roWj(yl)| <  1 for all 0  < i, j  < m  — 1 and i ^  j  j,

where A  € Mm!n — {A e  Mm>„ | |Rowsupp(v4)| =  I}, as defined in 2.5 on

page 50.

Therefore, we consider the following class of {0, l}-m atrices contained in 

all of the previous three classes. For I =  0 , 1 , . . . ,  m, let

v m,k = | i l e  A e  A m,k n Bm,k R £  m,k j  _

In particular we consider the search space V m,k — (J™ 0 V™’k y where the 

search target is . We say th a t A  -< B  for A  = (atj )  G V\n'k and B  —

(ibij) G V ^ k, for 0 <  i < rn — 1 and 0 <  j  < n, if al;J = 1 implies btiJ — 1.

Let G =  S ym (m) x Syrri(n) act on T>m’k, and H  = Sym^m) act on J:m'k. If 

A  e  V m’k is any incidence m atrix corresponding to C  G T rn'k ̂ then permuting 

rows of A  is equivalent to perm uting vertices of C, and permuting columns of 

A  is equivalent to  reordering edges and flags in C. Thus, C\ and C2 in B rn,k 

are contained in the same H -orbit if and only if A t is equivalent to  A 2 under 

the action of G, for any two incidence matrices Aj  and A 2 corresponding to C\ 

and C2, respectively. Therefore, the following theorem arises. See [48, 52, 61].
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T h e o re m  4 .5 .1 . Let G — S y m (m) x S y m („) be a group that acts on T)m,k, 

and let H  = S y m (m) act on . Then, there is a one-to-one correspondence 

between the following sets of orbits:

• tFm,k/ H ,  the set of H-orbits on T m'k,

• T>m’k/ G ,  the set of G-orbits on T>m,k.

E x a m p l e  4.5.1. Given an incidence m atrix A 1 E P ®’3 as below

e 0 e i V-2 e 3 e4 e 5 e 6 e 7 e 8

Vo X X X

Vl X X X

V2 X X X

v 3 X X X

V4

V5

One can describe A x in term s of the flag-graph C i  E of Figure 4.5.1.

Figure 4.5.1: A flag-graph corresponds to  A i  E P®’3. 

Another example could be the incidence m atrix A 2 E Pg’3, where
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Vo ei e2 03 e4 e5 ee e7 e8

Vo X X X

V l X X X

V2 X X X

V3 X X X

V 4 X X X

v5 X X X

which can be represented by the flag-graph C2 E J -®’3 of Figure 4.5.2.

*>0

Figure 4.5.2: A flag-graph corresponds to  A 2 £ Vg6,3\

In this case we see th a t A 2 is an incidence m atrix describing a cubic graph 

of order 6 , and thus C2 is a cubic graph.

■

Incidence matrices th a t are in U™,k are called feasible solution, while 

incidence matrices in are called partial solution for I — 0 , 1 , . . . ,  m  — 1 .

A search poset in terms of incidence matrices in V m,k th a t corresponds to 

the search poset of Figure 4.4.3 is displayed in Figure 4.5.3.
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0

b \
111000000

c
111000000
100110000

w
111000000
100110000
010101000

D
111000000
000111000

111000000
000111000
100100100

y
111000000
000111000
100000110

z
111000000
000111000
000000111

111000000
100110000
010101000
001011000

111000000
000111000
100100100
010010100

111000000
000111000
100100100
010010010

111000000
000111000
100000110
010100100

111000000
000111000
100000110
010100001

111000000
000111000
100000110
010000101

111000000
000111000
000000111
100100100

„  'T ' ^

/
s

/ 1
/  1

1

s  1 >
y  -  •" \

'  1 X
~

1 1 1 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0

0 0 0 1 1 1 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 1 1 1 0 0 0

1 0 0 1 0 0 1 0 0 1 0 0 0 0 0 1 1 0 1 0 0 0 0 0 1 1 0 1 0 0 0 0 0 1 1 0 0 0 0 0 0 0 1 1 1

0 1 0 0 1 0 1 0 0 0 1 0 1 0 0 0 0 1 0 1 0 0 0 0 1 0 1 0 1 0 0 0 0 1 0 1 1 0 0 1 0 0 1 0 0

0 0 1 0 0 1 0 1 0 0 0 1 0 1 0 1 0 0 0 0 1 1 0 0 0 1 0 0 0 1 0 0 0 0 1 1 0 1 0 0 1 0 0 1 0

111000000
000111000
100000110
010100001
001010100
000001011

111000000
000111000
000000111
100100100
010010010
001001001

Figure 4.5.3: The search poset of Figure 4.4.3 in term s of incidence matrices.
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4.6 Example: G eneration of ^-Regular Graphs

In this section, we discuss an example of the generation strategy applied to 

the class of fc-regular graphs by considering an induction on I in the

class of incidence matrices P (m,fe for I = 0 , 1 . . .  ,m .  Then with the help of 

the techniques discussed in Chapter 3, we can construct orbits transversal 

T (G , P (m,fc) where G  is a group acting on V m,k and for all I =  0 , 1 , . . . , m. 

Note th a t our target is T{G,V™'k).

Let n  := Let G — Sym^m) x S y m („) act on T>\n'k and P ;™f and let G 

act coordinatewise on P " l,fe x P™ f . Let Ri C £>pfc x P™ f be a G-invariant 

relation such th a t Ri — { (A , B)  G X)pfc x P™ f | A  -< B }  for / =  0 , 1 , . . . ,  m  — 1.

The lifting orbits step says th a t for A  G T (G , V p fc), for I =  0 , 1 , . . . ,  m  — 1, 

we compute the correspondence extension set 7r f 1 (yl) and an automorphism 

group Aut (A )  which is needed to  compute a transversal T ( A u t ( A ) , (A))

for every A  G T (G, V™’k). Thus a transversal for the G on Ri is constructed 

for I = 0 , 1 , . . . ,  to — 1 .

Then, by the projecting orbits step, we add B  to T{G,T>1̂ k) only if 

(A, B)  G T ( A u t ( A ) , 7T} 1 (A)) fl p(-B), where A  G T>™'k and the y. function 

must satisfies the conditions in Definition 3.1.3.

The following example illustrates the two steps between two adjacent layers 

(levels) in the search poset (P, given above in Figure 4.5.3. T hat is, m =

6 , k  =  3, and ^  =  9.

E x a m p l e  4.6.1. Consider the poset (P ,A )  of Figure 4.5.3. Given a group 

G = Sym(§) x Syniy)  acting on P 6,3. assume th a t we have an orbit transversal 

in level 2 with 2 nodes in the transversal. We write T(G,  P®’3) =  {G, D}  with 

C  and D  are two matrices given in the search poset P.

The first step in the algorithm is to  extend each node in the transversal in 

every possible way. So we s ta rt with the m atrix  C  G P ®’3 and first compute

^ \ C )  = {(C , C+(Ei®v))  e  R 2 \v e  M ljn and i G S  C {0 , . . . ,  5} with |5j =  3}
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Then using Gc -rejection in 7rt 1 (C), we can compute

T ( G c , ^ 1 (C)) = { ( C , C + ( E i l®v 1 ) ) , (C,C + (Ei2 ®v 2 ) ) , ( C , C+( Ei3 ®v 3 ) )  } ,

where i i , i 2, € S,  and

Vi  =  010101000

v2 = 0 1 0 0 0 1 1 0 0

t>3 =  0 0 0 0 0 1 1 1 0

Doing the same thing for D  G D®’3, we get 

r (GD, Ki \ d )) -  {{D, D + i E j ^ W i ) ) ,  (D, D+{Eh ®w2)), (D, D + (E h ®wz))} , 

where j i , j 2 , j 3 € S', and

rui =  100100100  

w 2 =  100000110  

w 3 =  000000111

Thus, we can form an orbit transversal for the action of G on R 2  as described 

above by computing the following set:

T(G,Ri )  = T ( G c , ^ \ C ) )  U T ( GD, t t i 1 (D))

Thus, the following set

|  {G, C  +  0  f i ) ) ,  (C,C + (Eh ® v 2)),  (G, C  +  (Ei3  <8 * U 3 )),

(D, D  +  (Eh  0  Wi)), (D, D  +  (Eh  0  w2)), (D, D + (Ej3 0  W 3 ) )}

is an orbit transversal for the action of G  on R 2, denoted by T (G , R2).
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Next, with the help of a given jj, function, we construct a transversal

)  =  { C * +  ( - E j j  0 ^ 1 ) ,  D + (E^  ® u > i ) ,  Z )  +  (Ej 2 ®u>2 ), D + (Ej 3  0 ^ 3 ) }

Note th a t if ( a i , a 2), ( A i A )  G G  where

( a i , a 2) =  ( (  0 2 ) , ( 0  3 5 1 ) ( 2  6 ) )

(/3i,ft) =  (  ( 1 2 ) ,  ( 3 6 ) ( 4 7 ) )

where au and /3i are row perm utations and a 2 and fi2 are column perm utations, 

then

(C +  (E i2 ® u2))(ai,“2) =  -D +  (JSjj 0  uq), and

(C +  ( ^ 3 ® u3 ))(fc.fc> =  D +  ( £ , 2 ® u>2)-

Thus, C  +  (Ei2 0  ?;2) and C  +  (Et:i ® v3) will not be added to  T (G , P 3 ’3). It

can be seen in Figure 4.5.3, th a t the poset P  has four different orbits in level

3 represented by four nodes, namely nodes W , X ,  Y ,  and Z.

By considering only accepted nodes in the p test, a spanning tree is resulted 

and displayed in Figure4.6.1.

■

Note th a t even though the defined /j  function in Lemma 3.2.1 works, it 

is not efficient since then one need to  do expensive computations involving 

orbit computations and testing minimality. Chapter 6.2 discuss in detail the 

implementation techniques for a suitable defined /./ function so th a t we can 

avoid such expensive computations.
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111000000

111000000
100110000

111000000
100110000
010101000

111000000
000111000
100100100

111000000
000111000

111000000
000111000
100000110

111000000
000111000
000000111

111000000
100110000
010101000
001011000

111000000
000111000
100100100
010010100

111000000
000111000
100100100
010010010

111000000
000111000
100000110
010100100

111000000
000111000
100000110
010100001

111000000
000111000
100000110
010000101

111000000
000111000
000000111
100100100

111000000
000111000
100100100
010010100
001001010

111000000
000111000
100000110
010100001
001010100

111000000
000111000
100000110
010000101
001100010

111000000
000111000
100000110
010000101
001000011

111000000
000111000
000000111
100100100
010010010

111000000
000111000
100000110
010100001
001010100
000001011

111000000
000111000
000000111
100100100
010010010
001001001

Figure 4.6.1: The spanning tree for the poset of Figure 4.5.3.
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4.7 Regular Graphs W ith  Given G irth

In this section, we discuss the generation of a given L-regular graph with a 

given girth g. Let X  =  (V, E)  G Cm,k be a /c-regular graph of order m  and size 

n  such th a t V  =  {u0 ,Wi,. . .  , vm_i} and E  = {e0, ex, . . .  , en_j}. Let A  G T>™’k 

be an incidence m atrix th a t corresponds to  X.

Simply, the girth of any graph is computed by counting edges in the shortest 

cycle in th a t graph. On the other hand, we consider the com putation of girth 

g in the graph X  with respect to  the incidence m atrix A.

Let D = (ditj) be an n  x n  {0, l}-adjacency m atrix whose rows and columns 

correspond to  edges in LI in a way th a t dig — 1 only if there exists a vertex 

in V  th a t is incident with both e., and ej for all 0 <  i . j  < n  — 1 with i ^  j .  

In other words, if A  =  {(kg) for all 0 <  * <  m  — 1 and 0 <  j  < n  — 1 and 

D  =  {dig) for all 0 <  i, j  < n  — 1, then

{1 if i 7  ̂j  and dig = 1 and a; j = 1 where 0  < I < m  — 1 ,
’

0  otherwise.

Such a m atrix is called th e  edge  re la tio n  m a tr ix . Let X D — (V d , E d ) 

denotes the graph which corresponds to  D  with Vp = {po,Pi, ■ ■ ■ ,pn- 1 } where 

Pi = ei for all i = 0 , 1 , . . . ,  n  — 1 , and we have {pi,p3} € E d only if there exists 

a vertex v G V  such th a t v is incident to  both p, and p:!, for all 0  < i , j  < n  — 1 

and i ^  j • Similarly, {pi,Pj}  G E p  only if there exists I G {0 , 1 , . . . ,  m  — 1} 

such th a t aig =  1  and dig = 1 , for all 0  <  i , j  < n  — 1  and i ^  j .

Also, we define an n X n  m atrix S  = (Sig) for all 0  < i , j  < n — 1 whose 

rows and columns correspond to  edges in E.  The entry (i , j ) in S  represents

the s h o r te s t  p a th  from edge cp to  edge e.j in X .  If there is no path  from et

to  ej, then the length of the shortest path  from et to  ej is defined to  be oo.

Therefore, S  is the all pairs (edges) shortest paths, and can be computed 

by different methods. One particular m ethod is by using Floyd’s algorithm 

with inputs the m atrix D  and the size of X ,  namely n, see Algorithm 4.7.1.
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A lgorithm  4.7.1 All-Shortest-Paths(Z?,n)
1: for i =  0 —> n  — 1 do  

2: for j  =  0 —> n — 1 do

3: if  ditj — 0 th en

4: if  i = j  th en

5: Si j  — 0

6: e lse

7.

8: end  if

9: else

10: Sjj =  1

11: end  if

12: end  for

13: en d  for

14: for fc =  0 —> n  — 1 do  

15: for i =  0 —> n — 1 do

16: for j  = 0 —> n  — 1 do

17: if  Sitk + Sk,j < Si j  th en

18- Si j  — “I" $k,j

19: end  if

20: end  for

21: end for

22: en d  for

In particular, if D = (di,j) and S  =  (s jj)  for all 0 <  i, j  <  n  — 1, then

0  if i = j,

1 if there exists a path  of length I from e* to  e j , 

oo otherwise,

E x a m p l e  4.7.1. Let X  € C6,3 be the cubic graph of Figure 4.7.1 along with 

an incidence m atrix A  corresponding to  X .
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eo

w4

eo ei «2 e 3 64 65 66 67 es
VO X X X

VI X X X

v2 X X X

V3 X X X

V4 X X X

V5 X X X

Figure 4.7.1: A cubic graph X  with an incidence m atrix A  th a t corresponds 

to  X.

Then, the corresponding edge relations m atrix D  and all pairs shortest 

paths m atrix S  are displayed in Figure 4.7.2.

eo 61 e2 63 e4 e 5 66 67 es eo ei e2 63 64 65 ee e 7 es

eo X X X X eo 0 1 1 1 2 2 1 2 2

61 X X X X Cl 1 0 1 2 1 2 2 1 2

62 X X X X e2 1 1 0 2 2 3 2 2 3

63 X X X X e 3 1 2 2 0 1 1 1 2 2

64 X X X X e4 2 1 2 1 0 1 2 1 2

es X X X X es 2 2 3 1 1 0 2 2 3

66 X X X X ee 1 2 2 1 2 2 0 1 1

67 X X X X e7 2 1 2 2 1 2 1 0 1

es X X X X es 2 2 3 2 2 3 1 1 0

Figure 4.7.2: Matrices D  and S  which are corresponding to  graph X  and 

incidence m atrix  A  of Figure 4.7.1.

■

The idea of testing the girth property follows. During the row by row 

generation of A,  assume th a t r  — 1 rows have been already constructed without 

violating the girth property, and th a t we are constructing the r th-row for some 

r =  0 , 1 , . . . ,  m  — 1. If vertex vr E V  is to  be incident to  both e, and e3 for all 

0  <  i, j  < n  — 1 , and i ^  j ,  then the girth condition to  be satisfied is:

Sij +  1 >  girth ( g ), (4.2)
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In fact, this test can be applied to every 1-entry we are trying to  add in 

A  during the generation. Consider the following example where we test every 

1 -entry in A  during the construction of a new row.

E x a m p l e  4.7.2. Let X  be a cubic graph of order 6  th a t we desire to  construct 

of girth 4. Let A  £ V 6 ’3 be an incidence m atrix th a t corresponds to  X .  Assume 

th a t 2  rows in A  have been constructed and th a t we are trying to  construct a 

th ird  row as follows:

eo e i e 2 e 3 e 4 e s eo 67 e s

Vo X X X

Vi X X X

V2 X ?

V3

V4

Vh

where ” ?” says th a t we are trying to  add a ” 1” in entry a2>3 in A. However, 

the shortest path  from e4 to e3, denoted by s 1)3, is 2 , namely e2 — ex — e4, see 

Figure 4.7.3.

eo

• • • •es e$ e2 eg

Figure 4.7.3: A graph Xu  which can be constructed as described above.

So testing girth condition, Condition (4.2), we have 2  +  1 ^ 4 .  Therefore,

entry (2,3) in A  can not be 1.
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The girth condition testing can be added to  Algorithm 3.1.1 to  produce

a new version where we take into account the girth condition, see Algorithm

4.7.2.

A lgorithm  4.7.2 Generate(Nf: a transversal for S y m (m) x S t/m ^ -o r b its  on

v m,k)

1: for A  £ Xi  do

2: compute (A),

3: compute a transversal F(T) := T ( A u t  (A),  7f i l (A)),

4: for ( A , B)  £ F(d) do

5: if  B  satisfies the girth condition and (A , B ) £ y{B)  then

6: add B  to -Xf+i

7: end  if

8: end  for

9: end  for

For example, Figure 4.7.4 displays a spanning tree with nodes correspond­

ing to  transversal for S y m (6) x S y m ^ y orbits on P 6,3 with girth 4.

Moreover, Algorithm 4.7.2 can be applied in the construction of flag graphs 

in JF10’3 =  (J^q  •T' / 0,3 with girth 5 to  produce the spanning tree T  of Figure 

4.7.5. The nodes (flag graphs) of the tree T  are not shown because of the space 

limitation. Instead, we only show the flag graphs th a t are in the path  from 0 

to  node 34 of Figure 4.7.5. Namely, the nodes 0,1,3,9,14,22,25,31,32,33,34 

are shown in order in Figure 4.7.6.

Table 4.1 displays the number of orbits in each level of the search tree 

resulting of the generation procedure of the Petersen graph with employing 

the girth condition with girth 5.

In Table 4.2 we present some results of small cases of regular graphs (not 

necessarily connected) with a given girth. Note tha t, these results are not 

new, see [6 6 ]. The entries in the table gives the exact girth. For instance,
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111000000
100110000

F ig u re  4.7.4:

0
I

111000000

111000000
000111000

111000000
000111000
100100100

111000000
000111000
100000110

111000000
000111000
000000111

111000000
000111000
100100100
010010010

111000000
000111000
100000110
010100001

111000000
000111000
000000111
100100100

111000000
000111000
000000111
100100100
010010010

111000000
000111000
000000111
100100100
010010010
001001001

*0

A sp an n in g  tre e  of cubic g ra p h  of o rder 6 w ith  g ir th  4.
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00• A A
07

05 03 0705 03 0806 04

01• 08• 01 08 •  •

•
02

•
04

•  •
02 04

•  •
03 05

09*
•

06
•  9

09 06
• •

010 07
a g o  = 1 0 ! a g o  =  9! a g o  =  2! • 8 !

a g o  =  3! ■ 7! a g o  =  6! ■ 2  • 2

05

a g o  =  5 !  • 2  • 2 ! • 2!

00

i •  A .  i . A  V7 A .
05 L A  A J 0 3

1 *  N . j
05 1 /  V? vs\s^

\ 0 1  08 ^ \  01 08 /

h \ ' lX XA ^ \  0 4 \ A ’k  A y
• •

09 06 0 9 *  06
•  »

09 06

a g o  — 4 ! ■ 2 a g o  =  3 !  - 1 2 a g o  =  2 ! ■ 4

00 0o

05 L a " ^  j \ 05 ̂ A  A  ^ ^ 0 3

\  Pi /  \  08 / \ VN®1 /  \  / /

/ P 2 \  / ^ 2 /
0 9 *  06 09 06

a g o  =  1 2 a g o  =  1 2 0

F i g u r e  4 . 7 . 6 :  F l a g  g r a p h s  w h i c h  c o r r e s p o n d  t o  c o n s t r u c t i n g  t h e  P e t e r s e n  g r a p h  

v e r t e x  b y  v e r t e x ,  s t a r t i n g  f r o m  t o p  l e f t  a n d  e n d i n g  a t  b o t t o m  r i g h t .  N o t e  t h a t ,  

w e  w r i t e  ago f o r  t h e  a u t o m o r p h i s m  g r o u p  o r d e r  o f  t h e  c o r r e s p o n d i n g  g r a p h .
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Table 4.1: Number of orbits per level.

level number of orbits

0 1
1 1
2 2
3 3
4 6
5 10
6 16
7 15
8 6
9 1
10 1

there are exactly 220 4-regular graphs on 14 vertices with girth 4, written as 

4220 in Table 4.2.

Table 4.2 contains some entries with a . Those graphs are in order, the 

Petersen graph which is a (3 ,5)-cage with automorphism group 120 presented 

in Figure 2.1.4 on page 13. Then, the H eaw o o d  graph of order 14 which is a 

(3,6)-cage and automorphism group of order 336, presented in Example 6.1.2 

on page 125. This graph is also the incidence graph whose vertices are the 

points and the blocks of the Fano plane.

The M cG ee  graph [60] is the graph of order 24 which is a (3, 7)-cage 

presented by its incidence m atrix in Example 6.1.3 on page 126. The auto­

morphism group of this graph is of order 32. Finally, The T u t t e ’s graph [80] 

is a (3 ,8 )-cage with automorphism group order 1440. See [74, 80] for more 

about the T u tte ’s graph.
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Table 4.2: Regular graphs with given girth.

n \k 3 4 5

1 0 6 ° * 51 45 5° 42 5° 41 359

1 1 5° 42

1 2 6 ° 52 421 5° 412 5° 41 37,848

13 5° 431

14 7° * 6 1 58 4103 5o 4220 5° 47

15 0 0  41 ,606

16 7° 6 1 548 4752 0 0  416,829 5 0  488 8

17 0 0  4193,900

18 7 O g 5  045 0  ^7 ,3 8 5

19 6 ° 51

2 0 jO  0 3 2  05 ,752  ^91 ,939

2 1 6 ° 58

2 2 jO  0385

24 8 ° * 71 6 7 ’573

26 8 ° 73

28 8 ° 721

30 * 8 1
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C hapter 5 

Isom orphism  Invariants

In this and the following chapter, we will address the problem of isomorphism 

testing algorithmically. We are primely interested in solving the isomorphism 

problem for incidence structures. In this chapter, our focus is on computing 

invariants, which may allow a pre-classification.

The remaining case is when the invariants are not sufficient to  tell different 

objects apart. This problem will be addressed in the following chapter.

The invariant for incidence structures th a t we have in mind is based on 

the idea th a t every incidence structure admits a tactical decomposition in the 

sense of Section 2.8 on page 46. Amongst all those decompositions we will 

single out one particular decomposition, which is canonical in the sense th a t 

there is an algorithm th a t computes the same decomposition for isomorphic 

incidence structures. This decomposition is called the tactical decom posi­

tion obtained by ordering, or TDO for short. It has been described by D. 

Betten and M. Braun [9].

103

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



104

5.1 Isom orphism  Invariants

Isomorphism computations often require long and hard work for incidence 

structures because of their regular structures. Suitable ( iso m o rp h ism ) in ­

v a r ia n ts  can be used in this m anner to  expedite the computations in many 

different cases. Simply, a property associated with all structures of interest is 

an isomorphism invariant if it has the same value (or is the same) for any two 

isomorphic structures.

D e fin itio n  5 .1 .1 . Let G be a group acting on a finite set X .  A n  i s o m o r ­

p h is m  in v a r ia n t  is a function I  such that fo r  all elements x  and y in X ,  it 

holds that x  y implies I{x)  =  / (y).

For instance, if G is a group acting on a finite set X  of incidence structures 

with m points, then the number of blocks, and the automorphism group order 

are isomorphism invariants in X .

An obvious immediate application for an invariant is to  show th a t two 

incidence structures having different values of I  are non-isomorphic, i.e. I ( x ) 

I (y)  implies x f £ y .

E x a m p le  5.1.1. Consider the following two cubic graphs of order 6 .

y

w

2 4

0

Figure 5.1.1: Two non-isomorphic cubic graphs with 6  vertices.

Both graphs have the same number of points (vertices) and the same num­

ber of blocks (edges) and yet they are not isomorphic. It can be seen th a t the
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graph on the left-hand side has two triangles, namely {x, y , z }  and {u, v, wj ,  

where the other has none. Thus, the number of triangles in graphs is consid­

ered as an isomorphism invariant.

■
One particular kind of isomorphism invariant which has the power to  per­

fectly distinguish between different isomorphism classes in a given class of 

incidence structures is called a c e rtif ic a te , see [33].

D e fin itio n  5 .1 .2 . Let G be a group acting on a finite set of incidence struc­

tures X . A c e r tifica te  fo r  an isomorphism is an invariant I  such that for  

any two objects x  and y in X ,

I{x)  =  I (y)  i f  and only i f  x  y. (5.1)

A certificate is particularly desirable in the context of isomorphism com­

putations because it suffices to  test certificate values for equality to test for 

isomorphism.

E x a m p le  5.1.2. Let A b e a ( m x n )  incidence m atrix  of an incidence structure 

X  =  (P, B ) with to points and n  blocks. Define

I ( X )  = min{As : g G S y m {m) X S y m {n)},

where the minimum here is taken with respect to  lexicographical ordering on 

the set of all t o  x  n  incidence matrices. In other words, 1(G) is the (lexico­

graphical) least incidence m atrix associated with X.  In this case, I ( X)  is a 

certificate by the meaning th a t I ( X)  /  I ( y )  if and only if X  ^  y  for some 

other incidence structure y.
■

In general, a good invariant is both fast to  compute and can distinguish well 

between different isomorphism classes in a given class of incidence structures. 

A general strategy for increasing the distinguishing power of invariants is to  

compound multiple invariants into one, see [19].
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Lemma 5.1.3. Let / 1; be invariants fo r a class of incidence struc­

tures X .  The following function I ,  defined fo r all elements x  G X  by

l { x )  =  (h(x ) ,  / 2 (x), • • •, Im(x)),  (5.2)

is an invariant fo r X .

There are different m ethod of storing such isomorphism invariants for iso­

morphism testings. One particular m ethod is be defining a hash algorithm  

as follows. Note th a t this algorithm is given in a C /C + -1- code.

A lgorithm  5.1.1 H ashing Function  
define HASH PRIME 174962718
int hashing(int old-hash, int add-to-old-hash)
{

int h = old-hash, a = add-to-old-hash; 
do {

h « =  1;
if (ODD(a)) h++; 
h */„= HASH PRIME; 
a » =  1;

} while (a); 
return h;

>

Lemma 5.1.3 says th a t isomorphism invariants can be combined in an ar­

ray. Using Algorithm 5.1.1, we can store all of the information in an integer.
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5.2 Partition  Refinem ent And The T D O -M ethod

In this section, we describe a m ethod to  compute an isomorphism invariant 

for incidence structures or {0, l}-m atrices. This is the above-mentioned TDO- 

m ethod of D. Betten and M. Braun [9].

This m ethod is based on the idea th a t every incidence structure can be 

decomposed tactically. T hat is, for every incidence structure one can find a 

partition of the point and block sets such th a t the resulting decomposition 

becomes tactical in the sense of Section 2.8 on page 46. T hat is, for any pair 

(C, D), where C  is a class of the point partition and D  is a class of the block 

partition, the following holds.

a) For p  £ C, the number of incident pairs (p ,B ), where B  G D, is inde­

pendent of the choice of p E C .

b) For B  € D, the number of incident pairs (p ,B ), where p E C, is inde­

pendent of the choice of B  6  D.

Once a tactical decomposition has been obtained, we wish to  consider the 

resulting decomposition schemes (as introduced in Section 2.8 on page 46) 

as an isomorphism invariant, in the sense of Definition 5.1.1 on page 104, of 

the incidence structure. We remark th a t this can only be done for certain 

decompositions. For instance, the discrete partition of points and blocks is 

always tactical, but it is unsuitable for an invariant since there are many ways 

in which the points and blocks can be arranged (recall tha t we are concerned 

with ordered partitions, th a t is, the ordering of point classes and block classes 

m atters), see Example 5.2.1.

E xam ple  5.2.1. Consider the two incidence structures (graphs) of Figure

5.2.1, say Si (left) and S 2 (right).
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1

55

Figure 5.2.1: Incidence structures S\ (left) and S 2 (right).

Applying discrete partition of the points and blocks, the decompositions 

schemes are different, whereas the incidence structures (which are graphs) are 

clearly isomorphic. Figure 5.2.2 displays the corresponding incidence matrices 

for Si and S 2, respectively, after applying a discrete partitioning of the points 

and blocks.

t?5 f?7 es e9

1 X X

2 X X

3 X X

4 X X

5 X X

e5 e& e i e8 e9

1 X X

2 X X

3 X X

4 X X

5 X X

Figure 5.2.2: Incidence matrices with applying discrete partitions for the points 

and blocks of S\ (left) and S 2 (right).

■
The algorithm we are going to  describe computes a tactical decomposition 

whose decomposition scheme is an isomorphism invariant. It is based on an 

alternating sequence of refinements of the partitions of points and blocks, 

respectively .

Let X  = (P , B) be a finite incidence structure with P  = {po,Pi, ■ ■ ■ ,pm- 1 } 

and B  =  {B 0, . . . ,  L?n_i}. Let A  be an m x n  incidence m atrix th a t corresponds 

to  X . T hat is, if A  — for all 0 <  i < m  — 1 and for all 0 <  j  < n — 1, 

then dij  — 1 if f t  G B j and 0  otherwise.
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Let 1Z =  { 0 ,1 , . . . ,  m  — 1} and C = { m , . . . ,  m  +  n  — 1} be the sets of row 

and column indices, respectively. Let S  = 1Z\J C = { 0 ,1 , . . . ,  m +  n — 1} be 

the set of all indices. Define a relation X  such th a t

(i, j )  G X  for all i , j  € S  only if aid .̂m =  1. (5.3)

In the following, we will not distinguish between a row and its index 

(likewise, between a column and its index). T hat is, we may as well as­

sume th a t the incidence structure is (P, 13), with P  =  { 0 ,1 , . . . ,  m  — 1} and 

B = {m , . . . ,  m  +  n  — 1 }.

Let TL-R.fi =  ( P  | C} be the partition of S  which distinguishes rows and 

columns. Any refinement E of IT^c has the form

{Po I P i  I • • • | P m -i I Co | Ci | . . .  | Cn - i },

where {Po | . . .  | P m -i}  is a refinement of the row partition 1Z and {Co | • • • | Cjv-i} 

is a refinement of the column partition C. We also say th a t S  is a  p a r t i t io n  o f 

th e  in c id en ce  s t r u c tu r e  X  with M  row parts, and N  column parts. We also 

say th a t S  is row  ta c t ic a l  (column tactical, respectively) if the decomposition 

of X  induced by S  is row tactical (column tactical, respectively).

In the following, we will present a refinement procedure for partitions of 

incidence structures. Before we do this, we need to  introduce the following 

notation.

If G < Au t ( X) ,  and if n  =  {P 0 | . . .  | P M- i  | C0 | . . .  | Cjv-i} is a 

partition of the incidence structure, then

Gn — {g £ G \ R? — Ri,  Cj  =  Cj, for all* =  0 , . . . ,  M  — 1, j  = 0 , . . .  N  — 1},

is the s ta b iliz e r  o f  th e  p a r t i t io n  in  G. Clearly, Gunfi =  G.

Given a partition II of the incidence structure X ,  we are looking for a 

refined partition E of II such th a t E is row tactical or column tactical (or

both). In addition, we require th a t G’>; =  Gn, th a t is, the refinement from II
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to  E preserves all automorphisms th a t II adm itted. It is desirable to  compute 

a refinement E which is as fine as possible, since this gives more information 

about the orbits of the original stabilizer Gn . There are many different ways 

in which such a partition E can be defined.

The procedure th a t we apply to  refine the partition computes the coarsest 

tactical decomposition which is a refinement of the given partition n0. Since 

the refinements are obtained using an ordering of certain invariants, this coars­

est tactical refinement partition is unique (with respect to  the algorithm by 

which it is computed). The process is known as tactical decom position by 

ordering, or TDO for short. It has been developed by D. Betten and M. 

Braun, see [9].

D efinition 5.2.1. Let S  be a finite set, and let II =  {Co | C\ | . . .  | Cmi} 

be an ordered partition o f S . I f  f  : S  —> NN is a function, then refine(U, f )  = 

{Do | A  | • • • |D m2} is the unique partition E with:

• E <  II, and

• I f  x  € Di and y 6  Dj with D i, Dj C Ck for  0 < i , j  <  m 2 and 0 <  k < 

m i, then

~ /(®) = f ( y)  *=*• * = j ,  and

-  f ( y)  -< f {x)  «=► i < j .

Definition 5.2.2. Let ng be a given partition of an incidence structure X , and

let A  be an m  x n incidence matrix associated with X . For our convenience,

we write

IIg =  I • • • I R q ,M - 1 I C q t0 | | C^jV-l}- (5.4)

For k  =  0 , 1 , . . . ,  N  — 1, let

| # ( * , j ) e J  i f i e n , j e c n c q<k,
n ,i  = < (5.5)

1̂ 0 i f  i € C.
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be the row-surrii(A) res tr ic ted  to  the colum n p a r t k, and f o r k  = 0 , 1 , . . . ,  M -

1 , let

i f  j  eC, i e n n R g tk,
ck,j — < (5.6)

0 i f f  E Ji­

be the c o l-su m j(A ) r e s tr ic te d  to  th e  row  p a r t  k.

Assume th a t n 0 =  {-Ro,o I ^ 0 ,0 } *s a partition  (of the Form 5.4) of an 

incidence structure X  = (P ,B ) with P  =  { 0 , 1 , . . . ,  m  — 1} =: i?o,o and B = 

{ m , . . . ,  m  +  n  — 1 } =: Co,o- Moreover, let S  = { 0 ,1 , . . . ,  m  +  n  — 1 }. Let A  

be an (to x n) incidence m atrix associated with X . We refine n 0 as follows:

We compute rk,i for i =  0 , . . . ,  m —1 and set rk>i =  0 for i =  m , . . . ,  m + n —1. 

Here, k = 0 since we only have one column part, namely Co,o- We define a 

function /  : S  —► N 1 such th a t f ( i )  — To,* for i 6  S.  Since f ( i )  = 0 for all 

i € Co,o, the column part will not be refined in this step. Then,

n i  :=  re f in e (n o ,/)  :=  {i?i,o I ■ • ■ I R i ,m - i  \ Cpo},

is the refinement for the partition n 0.

Note th a t Ci,o =  Co,o and th a t i?i , i , . . . ,  Q Rofl■ In this case,

we say th a t cell i ? 0 ,0 is split into subcells i?i,o,. . . ,  Such split is oc­

curred if the points in i?o,o are distinguishable by using the corresponding row 

sums. In particular, {-Rgo | • • • I -Ri ,m - i } is a refinement of the row partition 

-Ro,o-

Also, we can refine Hi as follows: We compute for row parts k — 

0 , 1 , . . . ,  M  — 1, for j  =  m, to +  1 , . . . ,  to +  n  — 1, and we set ck^ =  0 for 

all j  €  i?o,o- Again, we define a function f  : S  —> NM such th a t f ( j )  =  

(coj, c i j , . . . ,  c m -ij)  for j  e  S.  Note th a t we omit / ( j )  for all j  € Ro,o in 

practice. Then, n 2 := refine(n1, / )  is the refinement for the partition Hi.

In general, if l l f/ is a partition of X ,  then we have two cases for I iq. Namely, 

if n ,  is row tactical, then we would have n r/+1 column tactical. While if n g is
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column tactical, then we get II9+i row tactical. Then we consider the following 

two procedures for each case.

Case 1: n 9 is column tactical with N  column parts.

s te p  1 : Compute rk,i for i = 0 , . . . ,  m  — 1 and for k  = 0 , 1 , . . . ,  fV — 1 , and set 

fk,i — 0  for all i =  m , . . . ,  m  +  n  — 1 .

step  2: Define a function /  : S  —> such th a t f ( i )  — (ro,i, D,i> ■ ■ ■, Dv-i,«) 

for % € S.

step  3: n 9 + 1  := refine(Ilg, / )  (n 9 + 1  is row tactical now).

Case 2: IIg is row tactical with M  row parts.

step  1 : Compute Ckj for j  — m , . . .  , m  + n — 1 and for k  =  0 , 1 , . . . , M  — 1, 

and set Ckj =  0  for all j  = 0 , ,  rn — 1 .

step 2: Define a function /  : S  —» N M such th a t f ( i )  = (coj, Ci j , . . . ,  Cm-i j )  

for j  e  S.

step  3: n ,+ i := refine(IIr/, / )  (IIg+i is column tactical now).

Clearly, if IIf/ is a discrete partition, then the previous procedure will make 

no refinements to  fig. Assume th a t n 9 + 1  =  IIg. Then, we say th a t 11 fy is an 

equitable (or T D O ) partition with respect to  n0. Also, we say th a t II9 

does not split, and we write TDO(IIo,A?) =  II9. We write T D O S (IIg,A’) to  

denote the decomposition schemes of X  with respect to  the partition II9.

It can be shown th a t the TDO partition £  =  TDO(II, X )  is the coarsest 

equitable partition refining II of the graph Q — (S', T),  where 1  is as in 5.3, in 

the sense of Godsil [27].

E x a m p le  5.2.2. Let Q be the graph of Figure 5.2.3 of order 5 and size 5.

Let 7Z = {0 ,1,2,3,4} and C = {5 ,6 , 7 , 8 ,9} be the set of vertices and edges 

(alternatively, rows and columns), respectively. Assume th a t IIo =  {77 | C} is
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5 6 7 8 9

0 X

1 X X X

2 X X

3 X X

4 X X

Figure 5.2.3: A graph Q with its incidence m atrix A

a partition of Q, and th a t we want to  compute TDO(n0, G). The partitioned  

incidence m atrices corresponds to  Q with partition n 0 is

5 6 7 8 9

0 X

l X X X

2 X X

3 X X

4 X X

n 0 =  {O,l,2,3,4|5,6,7,8,9}

We first compute r0ii for rows i = 4, and set r0>, — 0 for all 5 <  i < 9.

Therefore, we get

ro,o =  1) 

ro,i =  3,

ro,2 = r0<3 = r 0i4 =  2.

We then define a function /  : U C —> N such th a t /(?') =  r0]i for all

0 <  * <  4 and we can ignore /  for i > 5 since /(?') is always zero for i > 5. 

Therefore,

nL := refine(nQ, /) =  {1 | 2 ,3 ,4 | 0 | 5 , 6 , 7 , 8 ,9},

is a refinement for n 0 and th a t IT is row tactical decomposition. Note th a t 

no refinements have been made in the column part since we only focusing on 

row indices and ignoring column indices in C.
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r ij =  {1 I 2,3,4 |0  15,6,7,8,9}

Now th a t we have 3 row parts in ITi =  {1 j 2 ,3 ,4  | 0 | 5 , 6 ,7 , 8 ,9}, we 

refine ITi with ignoring row indices in this step as follows. We compute ckj  

for A; =  0,1,2 as follows.

Cfc,5 ( 1  > 0 ,  1 ) ,

Ck,6 (1) 1) 9),

Cfc,7 =  (1 , 0 ), 

Cfc, 8 =  (0 , 2 , 0 ),

Cfc, 9 =  (0 , 2 , 0 ).

Then, we let f ( j ) =  (co,j, Cij, c2j )  for all 5 <  j  <  9. Therefore, 

n 2 :=  refine(II1, / )  =  {1 | 2 ,3 ,4  | 0 | 6,7 | 5 | 8,9}, 

is a refinement for III and th a t n 2 is column tactical decomposition.

6 7 5 8 9

X X X

2 X X

3 X X

4 X X

0 X

1 2 1 2
1 1 1 0
3 1 0 2
1 0 1 0n 2 =  {1 | 2 ,3 ,4  | 0 | 6 ,7  | 5 | 8,9}

Now, we refine II2 =  {1 | 2 ,3 ,4  | 0 | 6 , 7 | 5 | 8 ,9} to  get a refined partition 

n 3 which is row tactical. Computing rk,i for k — 0,1, 2 , we get
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rk,0 =  (0 ,1,0) ,  

rk, i =  (2,1,0) ,  

r ka =  (1,0,1) ,

rk, s =  (0,0,2),

rk,4 =  (1 ,0 ,1).

Let f ( i )  =  (ro,i, r i ;i, r 2 ,j) for all 0 <  i < 4, and therefore

n 3 := refine(n2, / )  =  {1 | 2 ,4  | 3 | 0 | 6 ,7  | 5 |8 ,9}.

6 7 5 8 9

1 X X X

2 X X

4 X X

3 X

0 X X

— > 2 1 2 i 2 1 2
1 2 1 0 1 1 1 0
2 1 0 1 2 1 0 1
1 0 1 0 1 0 1 0
1 0 0 2 1 0 0 1n 3 =  {l I 2,4 I 3 I 0 I 6,7 I 5 |8,9}

To refine n 3 we compute ck<j for k = 0 ,1 ,2 ,3 ,  as follows.

cfc,5 =  (1 , 0 , 1 , 0 ),

Cfc,6 =  (1,1, 0,0),

Ck ,7 = (1,1, 0,0),

cfc,8 =  (0, 1 ,0 ,1 ),

C*,9 =  (0, 1,0 ,1).

Let f ( j )  — (c0J, ch j , c2>j, c3>J-) for all 5 <  j  < 9. Therefore,

n 4 :=  refine(II3, / )  =  {1 | 2 ,4 | 3 | 0 | 6 ,7  | 5 |8 , 9} =  II3.
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Thus, we stop here and we say th a t TDO(n0, Q) — II3 , and th a t II3  is tactical 

(equitable partition).

■

L e m m a  5.2 .3 . Let X  =  (P , B ) be an incidence structure, and let G < Au t ( X )  

be a subgroup of the automorphism group of X . Let II be a partition of X , and 

£  :=  TDO(H, X) .  Then, Gn =  G s (up to conjugacy).

Proof. It is clear th a t £  is obtained from II by a sequence of splittings. T hat 

is, there is a chain of partitions

n  = £ 0 > £1 > ...  > £ n = £,

and £*+i is obtained from £,; by splitting one non-singleton class of £ , into 

two classes of £*+i.

We prove the statem ent by induction on i, the index of £*, for i = 0 , 1 , . . . ,  n. 

For i — 0, the statem ent is trivial. Assume th a t G si — G s0 has already be 

proven. Then, £ i+ 1  is obtained by splitting a class G of £ , with |C | >  1 into 

classes A, B  €  £*+i-

Let pix E A  and pV2 E B. Consider first the case th a t G is a row class. 

Then, there is a column class D k such th a t rk .n A  rk,i2 where rk/ s  are as 

in 5.5. But since the rk,i’s are isomorphism invariants with respect to  £*, no 

element g E G^t can map pn to p i 2 . T hat is, every element in G ^  preserves the 

partition £ ,+i, and hence G s 4 <  G si+1. Moreover, it is clear th a t G s i+1 <  G s4.

The other case where the class G is a column class can be proved by 

the same arguments with using ck</ s where ckj ’s are as in 5.6. Therefore, 

Ge, =  G si+1. □

C o ro lla ry  5 .2 .4 . Let X  — (P , B) be an incidence structure, and let G <  

A u t{X ) be a subgroup of the automorphism group of X . Let II be a partition 

of X . I f  TDO(Tl, X )  is discrete, then Gn =  1.
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Let Q and n 0 be the graph and the partition of Example 5.2.2. If G < 

A ut(Q ), then Gn0 =  Gn3 by Lemma 5.2.3.
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C hapter 6

Isom orph R ejection  w ith  

P artition  Backtrack

Let G  be a group acting on a finite set X  of incidence structures. Let X  ~  

(P , B) 6  X  be an incidence structure on m  points and n  columns. This chapter 

discuss problems related to  computing the automorphism group of X ,  namely 

Aut ( X) ,  by considering an induction of a chain of group stabilizers. This 

procedure is called p a r t i t io n  b a c k tra c k  algorithm.

Moreover, we present the McKay’s /i-function [64] which relies on a canon­

ical labeling function <p which can be realized by a partition backtrack algo­

rithm , see Leon [75, 76] for more readings.

Let X  — (P , B)  be an incidence structure on m  points and n  blocks associ­

ated with an initial partition n 0 =  {TZ | C}, where 1Z =  {f?o | i?i | . . .  | R m - i} 

is a partition of P,  and C = {C 0 \ . . .  \ Cjv_i} is a partition of B.

6.1 The D erived TDO

In this section, we describe a method, called the d e riv e d  T D O , to  approxi­

m ate the orbits of the automorphism group by an ordered partition II. T hat

118
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is, if £  is the (unordered) partition of orbits of Aut (X) ,  then E is a refinement 

of II. We remark th a t the derived TDO m ethod was first used by D. Betten 

and U. Schumacher [10] in 1990 to  study the configurations IO3 .

The partition refinement procedure in Chapter 5 simply refines a given 

partition to  some tactical partition. However, in many interesting cases, for 

instance Steiner systems, cubic graphs, etc, the incidence m atrix is already 

tactical, i.e. TDO(n0; X )  :=  n 0. In other words, we are already stuck. In 

order to  gain some information even in these cases, a refinement of the TDO- 

m ethod can be used. This m ethod is called the refined TDO and we will 

present it in this section.

D e fin itio n  6 .1 .1 . Let S  be a finite set. I f  x ,y  € S , then define a function

If S  — P  U B  and G < Au t ( X )  fixes n  and x  6  S,  then Gx stabilizes 

n x :=  T D O (refine(n ,ex), X )  by Lemma 5.2.3.

Given an incidence structure X  — (P , B ), we employ the ex function for 

x  € P,  and consider the set of TDOs, TDO(refine(II0, ex), X )  where x  G P.  

The resulting TDO-scheme of the point x  is an invariant. The refinement with 

respect to  this invariant is called the d e riv e d  T D O . Note th a t the TDO- 

schemes are an invariant, while the partitioned incidence matrices are not. The 

reason is th a t the partitioned incidence m atrix may still allow isomorphisms 

in case it is not discrete.

Let Ti / s  be defined as in Figure 2.8.1 on page 48 for all 0 <  i < s — 1 and for 

all 0 <  j  < t — 1. Let T D O S(n x, X )  be the scheme

ex : S  -> N5

0  otherwise.

Let n x :=  TD O (refm e(n0, ex) , X )  := { R x>0 \ ■ ■ ■ \ R x,s-1 I Cxfi | . . .  | Cx,t_ J .
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|Cx,o| IC^il .

AXio| r-o.o ro, l r’o.t-i

|7?x,i| rpo r 1,1 n ,t -1

|AX)5_ i | ra-i,o ra- \ , i  ■ ■ ra- i it- i

We define the invariant of x  G P  to  be T(x)  := TDOS(IIx, A ), and we think 

of I ( x )  as a sequence of integers

(s, t, \Rxfi\, . . . , |Ca:,0 1j • • • i 1 1j

ro,o,r0>i, ■ ■ ■, D,o> • • • D,t-i> rs-i,o, ■ ■ ■

Then, d e r(n 0, X )  :=  TD 0  (refine ( n 0 ,Z), X )  is the derived TDO. We also 

define

derP (n 0 ,df) := TD O (refine(n0 ,X), X ), 

where l ( x )  =  0 if x  EC,  and

derB(n 0, X )  :=  TD O (refine(n0 , 1), X) ,

where J (x )  =  0 if x  G TZ. Also, we write der(A ) :=  d e r(n 0 ,A’) with n 0 — 

{TZ | C}. Moreover, derp(A ) and derjg(A) are defined similarly.

E x a m p le  6.1.1. Let Q — (V, E )  be the cubic graph on 8  vertices of Figure

6.1.1, with V  =  { 0 ,1 , . . . ,  7}.

Let TZ — { 0 ,1 , . . . ,  7} and C = {8 , . . . ,  19} be the set of row and column 

indices. Let n 0 =  {TZ \ C} be the initial partition of points and blocks of Q. 

Clearly, TDO(IIo, Q) := n 0. Therefore, we consider the employment of the 

ex function for x  e  TZ as described above. Figure 6.1.2 displays the  resulting 

TDOS after computing TD O (refm e(n0, ex), Q) where x  G TZ.

Moreover, Figure 6.1.3 represents the multiset of the resulting TDO-schemes 

of Figure 6.1.2. In the first column of Figure 6.1.3, we show the set of points
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5

8 9 10 11 12 13 14 15 16 17 18 19

0 X X X

1 X X X

2 X X X

3 X X X

4 X X X

5 X X X

6 X X X

7 X X X

Figure 6.1.1: A cubic graph Q of order 8  with its incidence m atrix A.
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2 (0 ) - 2 1 1 2 2 4

1 2 1 0 0 0 0

2 1 0 1 1 0 0

1 0 1 0 0 2 0

2 0 0 0 1 0 2

2 0 0 0 0 1 2

2 (1 ) - 2 1 4 2 2 1

1 2 1 0 0 0 0

2 1 0 2 0 0 0

1 0 1 0 2 0 0

2 0 0 2 0 1 0

2 0 0 0 1 1 1

2 (2 ) - 2 1 4 2 2 1

1 2 1 0 0 0 0

2 1 0 2 0 0 0

1 0 1 0 2 0 0

2 0 0 2 0 1 0

2 0 0 0 1 1 1

2 ( 3 ) - 2 1 4 2 2 1

1 2 1 0 0 0 0

2 1 0 2 0 0 0

1 0 1 0 2 0 0

2 0 0 2 0 1 0

2 0 0 0 1 1 1

2 ( 4 ) - 2 1 1 2 2 4

1 2 1 0 0 0 0

2 1 0 1 1 0 0

1 0 1 0 0 2 0

2 0 0 0 1 0 2

2 0 0 0 0 1 2

2 ( 5 ) - 2 1 1 2 2 4

1 2 1 0 0 0 0

2 1 0 1 1 0 0

1 0 1 0 0 2 0

2 0 0 0 1 0 2

2 0 0 0 0 1 2

2 (6 ) — 3 3 3 3 2 ( 7 ) - 3 3 3 3

1 3 0 0 0 1 3 0 0 0

3 1 1 1 0 3 1 1 1 0

1 0 3 0 0 1 0 3 0 0

3 0 0 1 2 3 0 0 1 2

Figure 6.1.2: The invariants X( x ) for x  — 0 , 1 , . . . ,  7.
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points TDO-schemes

2 1 1 2 2 4

1 2 1 0 0 0 0
{0,4,5} 3x 2 1 0 1 1 0 0

1 0 1 0 0 2 0

2 0 0 0 1 0 2

2 0 0 0 0 1 2

2 1 4 2 2 1

1 2 1 0 0 0 0
{1,2,3} 3x 2 1 0 2 0 0 0

1 0 1 0 2 0 0

2 0 0 2 0 1 0

2 0 0 0 1 1 1

_> 3 3 3 3

{6,7} 2 x 1 3 0 0 0

3 1 1 1 0

1 0 3 0 0

3 0 0 1 2

Figure 6.1.3: The multiset of invariants from Figure 6.1.2.

in TZ th a t have the same such TDO-schemes, where in the second column we 

present the corresponding TDO-schemes.

Therefore, if TZX :=  {1,2,3 | 0 ,4 ,5  | 6,7}, and IIe :=  {TZi | C}, then

U d  := derp(n0, (?) := TDO(refine(n0, I ) ,  6 ) ,

:= {1,2,3 | 0,4, 5 | 6 , 7 | 8 ,11,14 | 12,13,15,16,17,18 | 9,10,19}.

The partitioned incidence m atrix A  (dcrP(Q)) and the TDO-scheme with 

respect to  IId are displayed in Figure 6.1.4.

The partition IT  of Figure 6.1.4 is preserved under G = Aut(Q) in the
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8 11 14 12 13 15 16 17 18 9 10 19

1 X X X

2 X X X

3 X X X

0 X X X

4 X X X

5 X X X

6 X X X

7 X X X

— ► 3 6 3

3 1 2 0

3 1 0 2

2 0 3 0

Figure 6.1.4: The derj?(G) and its TDO-scheme.

sense th a t Gnd — G. In fact, the automorphism group of Q of Example 6.1.1 

is as follows.

Aut{Q) =( ( 6  7) ( 1 2  13) (15 16) (17 18),

(0 5) (2 3) ( 8  14) (9 19) (15 17) (16 18), •

(1 2) (4 5) (9 10) (11 14) (12 15) (13 16) ).

Moreover, the partition of orbits of G  on Q is

{{1 ,2 ,3}, {0,4,5}, {6 ,7},

{8,11,14}, {12,13,15,16,17,18}, {9,10,19}},

as they appear in derp(Q) of Figure 6.1.4.

Some of the following examples are taken from Table 4.2 on page 102. We 

show the graph Q ~  (P , B ) and its incidence m atrix A  along with its dciP(Q) 

and its TDO-scheme.

It is not always true th a t the derived TDO gain more information about 

the orbits of the automorphism group. Example 6.1.2 shows the Heawood 

graph whose automorphism group is transitive on the vertices and thus no 

approximations to  the automorphism group orbits are done.

On the other hand, there are some example where the derived TDO is 

different from the automorphism group orbits partition. Example 6.1.4 shows 

such an example.
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E x a m p le  6.1.2. Let H  be the Heawood graph (a (3,6)-cage) shown along 

with its incidence m atrix, denoted by A, in Figure 6.1.5.

3 12

14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34
0 X X X

1 X X X

2 X X X

3 X X X

4 X X X

5 X X X
6 X X X
7 X X X
8 X X X
9 X X X
10 X X X
11 X X X

12 X X X
13 X X X

Figure 6.1.5: The Heawood Graph 7i  and its incidence m atrix A.

Then, the derived TDO is going to  be identical to the m atrix A  of Figure 

6.1.5, where the TDO-scheme is

- 2 1

14 3

Note th a t, the bipartite graph B P ( F ) =  {{P  | H },£} of Example 2.3.2 

whose vertices are the points and the blocks of the Fano plane shown in Figure

2.3.1 is the Heawood graph if we replace the ordered partition { P  \ B } by the 

unordered partition {P, B}.  In otherwords, the incidence m atrix  of Figure
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2.3.1 with removing the partition in the rows is identical to  the incidence 

m atrix  of Figure 6.1.5. Therefore, the Heawood graph 7i  is ( {P , B} , £ )  where 

{ p , B }  € £  only if p <E B  in the Fano plane of Figure 2.3.1.

As a result, the automorphism group of H  is generated by the set { S U ja}}  

where S  is the generating set of Example 2.3.2, and

a  =(0,7)  (1 ,8 ) (2,9) (3 ,10)(4,11)(5,12)(6,13)(14,23)(15,26)

(16,32) (18,20) (19,27)(21,29)(22,33)(24,28)(25,30).

Therefore, Aut (H)  is of order 2 x 168 =  336. This is because of the fact 

th a t the points and blocks of the Fano plane can be m apped to  each other via 

a.

The partition of orbits of G  on H  is

{ { 0 , 1 , . . . ,  13}, {14,15 , . . . ,35}} .

■
E xam ple  6.1.3. Let Q = (P ,B ) be the cubic graph of order 24 with girth 7 

whose incidence m atrix given in Figure 6.1.6. Note that, this graph is called 

the McGee graph [60] which is a (3 ,7)-cage.

Let n 0 =  {TZ | C} where TZ and C are partitions of the vertices and edges 

of the graph Q, respectively.

Therefore, applying the same idea of the derived TDO as in Example 6.1.1 

on graph Q, we compute TD O (refine(n0, ex), Q) for all x  € TZ. Therefore, we 

get the following TDO-scheme
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24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59
0 X X X
1 X X X
2 X X X
3 X X X
4 X X X
5 X X X
6 X X X
7 X X X
8 X X X
9 X X X
10 X X X
11 X X X
12 X X X
13 X X X
14 X X X
15 X X X
16 X X X
17 X X X
18 X X X
19 X X X
20 X X X
21 X X X
22 X X X
23 X X X

Figure 6.1.6: An incidence m atrix of the graph Q of Example 6.1.3.

— * 1 2 1 2 2 1  1 1 2 2 2 2 2 2 2 2 2 1 2 2 2

1 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  
1 1 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  
2 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  
1 0 0 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0  
2 0 0 0 1 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0  
2 0 0 0 0 1 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0  
1 0 0 0 0 0 1 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0  
1 0 0 0 0 0 0 1 0 0 0 0 0 0 2 0 0 0 0 0 0 0  
2 0 0 0 0 0 0 0 0 1 0 0 0 0 1 1 0 0 0 0 0 0  
2 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 1 0 0 0 0 0  
1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 2 0 0 0 0  
2 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 1 0 0  
2 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 1 0  
2 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 1  
2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1

for points {0,1,2,3,5,7,9,10,12,13,14,16,17,19,21,22}. While we get the 

following TDO-scheme
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24 25 27 29 31 32 33 34 39 40 45 47 52 53 57 59 26 28 30 35 36 37 41 42 43 46 48 49 51 54 56 58 38 44 50 55
0 X X X
1 X X X
2 X X X
3 X X X
5 X X X
7 X X X
9 X X X
10 X X X
12 X X X
13 X X X
14 X X X
16 X X X
17 X X X
19 X X X
21 X X X
22 X X X
4 X X X
6 X X X
8 X X X
11 X X X
15 X X X
18 X X X
20 X X X
23 X X X

Figure 6.1.7: The derP(Q) of the graph Q of Example 6.1.3.

- 1 2 2 4 4 4 4 2 4 4 4 1

1 1 2 0 0 0 0 0 0 0 0 0 0
1 1 0 2 0 0 0 0 0 0 0 0 0

to 0 1 0 2 0 0 0 0 0 0 0 0
2 0 0 1 0 2 0 0 0 0 0 0 0
4 0 0 0 1 0 1 1 0 0 0 0 0
4 0 0 0 0 0 1 0 1 1 0 0 0
4 0 0 0 0 1 0 0 0 1 1 0 0
4 0 0 0 0 0 0 1 0 0 1 1 0
2 0 0 0 0 0 0 0 0 0 0 2 1

for points {4 ,6 ,8 ,11 ,15 ,18 ,20 ,23}. Therefore, we get the derp(Q) shown in 

Figure 6.1.7. Moreover, it has the following TDO-scheme.

-> 16 16 4

16 2 1 0

8 0 2  1

Note th a t the automorphism group Aut{Q) of the graph Q has order 32
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and is generated by

{(0 14)(1 6 )(2 13)(3 12)(4 15)(5 9)(7 11)(8 10)(17 22)(18 23)

(24 29)(25 47)(26 48)(27 52)(28 51)(30 56)(31 53)(32 40)(33 59)

(34 45)(35 43)(36 37)(39 57)(41 49)(42 54)(46 58),

(0 11)(2 9)(3 15)(4 12)(5 13)(7 14)(17 23)(18 22)(19 21)

(24 52)(25 31)(26 42)(27 29)(30 58)(32 34)(33 57)(35 49)(39 59)

(40 45)(41 43)(44 50)(46 56)(47 53)(48 54),

(0 9)(1 7)(2 15)(3 6)(4 5)(8 11)(10 12)(13 14)(16 17)(18 19)(20 22)(21 23)

(24 34)(26 58)(28 54)(29 53)(30 49)(31 57)(33 52)(35 51)(36 42)

(37 43) (38 44) (39 45) (40 47) (41 46) (48 56) (50 55)}.

where the partition of orbits of Aut(Q) on Q is 

{ { 0 ,1 ,2 ,3 ,5 , 7, 9 ,10,12,13 ,14 ,16 ,17 ,19 , 21, 22), {4 ,6 ,8 ,11 ,15 ,18 ,20 , 23} 

{24 ,25 ,27 ,29,31,32,33,34,39,40,45,47,52,53,57,59},

{26,28,30, 35,36,37,41,42,43,46,48,49, 51,54,56,58}, {38,44,50,55}},

■
Example  6.1.4. Let C  =  (P, B) be the Steiner triple system S T S (13) of 

order 13 and of automorphism group order 6 . Let IIo =  {TZ \ C} where 

T Z  =  { 0 ,1 , . . . ,  12} and C =  { 1 3 ,. . . ,  38} are partitions of the points and 

blocks of C, respectively.

As in the previous examples, here We split the points x  in P  th a t have 

identical TDO-schemes in TD O (refm e(n0, ex), C). After th a t, we compute 

d e rp (n 0 ,C ). However, in this example we always get the same TDO-scheme 

as follows

- 6 2 0

1 6 0

1 2 1 5
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13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38

0 X X X X X X

1 X X X X X X

2 X X X X X X

3 X X X X X X

4 X X X X X X

5 X X X X X X

6 X X X X X X

7 X X X X X X

8 X X X X X X

9 X X X X X X

10 X X X X X X

11 X X X X X X

12 X X X X X X

Figure 6.1.8: An incidence m atrix corresponding to  the Steiner triple system 

C.

for each point x  € 77 induced by the partition TDO(refine(IIo, ex) ,C )  for each 

x  € 77. Therefore,

derp(n0, C) = n 0.

Note th a t the automorphism group is of order 6  and is generated by

{(0 12)(2 11)(3 4)(5 8)(7 10)(13 23)(14 38)(15 31)

(16 30)(18 27)(20 21)(24 32)(25 29)(26 36)(34 37),

(0 6  12)(1 2 11)(3 10 5)(4 8  7)(13 24 38)(14 32 23)(15 35 31)

(16 33 30)(18 22 27)(20 26 29)(21 25 36)(28 37 34)}.

The partitions of orbits of the automorphism group on (the points of) C  is

{{0, 6 ,12}, {1, 2,11}, {3,4, 5, 7, 8 ,10}, {9}}
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6.2 C om puting Canonical Forms and A uto­

m orphism  Groups

In this section, we consider some techniques th a t might be used in order to 

compute a canonical labeling map ip as defined in Definition 2.4.14 and an 

automorphism group of a given incidence structure X .

If X  =  (P, B) is an incidence structure with an initial partition n 0 =  

{TZ | C}, then in the case of Example 6.1.1 there are a number of techniques 

th a t can be employed to  get a discrete partition with respect to  fld. All these 

techniques “destroy” automorphisms in the sense th a t the stabilizer of the 

refined incidence structure might be smaller than  A ut(X ).

One particular technique is called p o in t  s ta b iliz in g  p ro c e d u re . The 

idea is th a t there exists a class C  E ID with \C\ >  1, say C — {x 0, a q ,. . . ,  a^}. 

Then, there is some i such th a t Xi is supposed to  be fixed in the first place of 

the class C, i.e. C  is splitted to  {x t | C\{a;j}}. We do this for every x t G C  

in tu rn , and then do the same idea recursively. This idea is explained in more 

details for graphs in Kocay [54],

Let &o, h , . . . ,  br be the set of points th a t have been stabilized in the pro­

cedure described above to  reach a discrete partition. Then, the idea of con­

structing the automorphism group G = A u t(X )  can be done by induction on 

a chain of point stabilizing subgroups. T hat is,

G > Gb0 > Gb0,bi ^  Gbofafo >  • • ■ >  Gbofii,...,^ — 1)

where ~  Gnbo h b for some k < r, by Lemma 5.2.3.

Note th a t one can construct G ^  from G('k+l> by finding representatives for 

the coset in G(k\  See [38, 28] for further details.

L e m m a  6.2 .1 . Let X  = (P ,B ) be an incidence structure with a partition II 

and G = A u t(X ) .  Let S  = P  U B and let x 0, x i , . . . ,  x s and yQ, y 1, . . . ,  yt be in

S . I f  TDOS{nx0 t„"Xs,X )  = TDOS(Hy0 t...ty3 ,X ) ,  and UXOt...tXs and IIl 0  j,, are
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discrete partitions, then cr(IIXOi...,xs)cr(n 3;0)...iyi, ) ~ 1 €  Gn where cr(IIXOi...)Xs) and 

cr(II!/0j..,iys) are two permutations induced by the defined ordering of  n x0v..jXs 

and ^[yQ,...,ys! respectively.

Consider Algorithm 6.2.1 denoted by PARTITION BACKTRACK1 with inputs 

X  — P  U B  an incidence structure on p  points and b blocks, II =  {TZ \ C} is 

an initial partition of points and blocks of X ,  and A  is an incidence m atrix 

corresponding to  X .  We say th a t r  € G is best ordering if A T is in greatest 

form of A  with respect to  lexicographical ordering. In the algorithm, we store 

such element in r  so th a t when the algorithm term inates, g>{A) := r  is the 

canonical labeling map and p(A) :=  /p b ')  is the canonical form of A.

Note tha t, if g and h are two elements of a group G acting on X  such th a t 

A 9 — A h, then g h r 1 e  A u t(X ) .

A lg o r ith m  6.2 .1  PARTITIONBACKTRACK^IIj, X )

Let S  = P U B  and IIi+i := TDO(II*,X).

1 . if IIj+i is discrete, then

• Ilj+i defines an ordering, say g = er(Il1+i), on the points in S.

• compare A 9  with A T where r  is the best ordering found so far (if any).

• If A 9  -< AT, A 9  = A T, or A T -< A9, then ignore g, an automorphism gr" 1 

has been found, or replace r  by g, respectively.

2 . else IIj+i is not discrete. Let C be the first non-singleton class (or any other 

desirable class) of 13*-)-1 .

3. for every y £ C  in turn

• compute Lli+\ty := TDO(refine(IX(+ \ , e y ) ,  X).

• call PA RTITIO N B A CK TRA C K ^nj-)-!^, X)
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L em m a  6 .2 .2 . Let X  — (P ,B ) be an incidence structure with a partition II 

(which may be tactical). Let G < A u t(X )  and let S  — P U B  and x, y € S. I f  

x , y  E C  where C  is a non-singleton class of II, and x  and y are in the same 

orbit of Gn, then

TD O S(nx ,X )  = TDOS(Uy, X ).

Proof. Let g € Gn such th a t x 9  — y. If z  is incident to  k points of cell D  € II, 

then z 9  will be also incident to k  points in D 9 =  D  € IIs , and so on. Thus, 

cells of n x can be m apped by g to  those of IIy a t every refinement step. Thus, 

n „  =  ng. Therefore, TDOS(IIx, X )  =  TDOS(ni/, X ).  □

By Lemmas 5.2.3, 6.2.2, and 6.2.1, Algorithm 6.2.1 can be modified so th a t 

discovered automorphisms can be employed during the algorithm.

We first introduce some notations. Let X  =  (P, B) be an incidence struc­

ture with a partition IR and a group acting on X .  Let fou n d  first le a f  be 

a boolean variable with possible values “TRUE” or “FALSE” which indicates 

th a t we already found an ordering g so th a t we compare it with every other 

ordering we found later on in the algorithm. Let r  € G denote the b e st or­

d er in g  found so far. T hat is, A a P  A T for all previously orderings a  found 

in the algorithm. If r  =  cr(IIq), then IIg is called the ca n o n ica l n o d e  in the 

search. Moreover, B  is a tuple th a t stores the stabilized points in the search 

when we reached the canonical node.

Let H  be the group generated by all automorphisms discovered during the 

search. Initially, H  =  ( 1 ).

If x  €  IIj, we say th a t x  is in lev e l i and we store a hash value for each 

x  a t th a t level by using Algorithm 5.1.1 which computes hi(x) h ( l ( x ) )  

(see Section 2.9 on page 49), for instance. If I\itX and 11^ are two partitions 

resulting by stabilizing x  and y  in the same level i, then we say th a t IIiiX is 

better than IIi>y, if h,(y) <  hi(x).
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A lg o r ith m  6 .2 .2  PARTiTlONBACKTRACK2(IIi, A )_________

1. Ili+ i :=  T D O (Ib , A ).

2. If Ilj+ i is discrete, go to  step (3). Otherwise, go to  step (4).

3. If found first leaf =  FALSE, then  go to  step (6). O therwise, let g :=  cr(ILi+1) 

and com pare A 9 w ith A T where r  is the  best ordering found so far, and go to  

step (7).

4. IL+ i is not discrete. Let C  be th e  first non-singleton class of H ,+ i. For every 

x  E C  in tu rn , com pute Lh+ i iX :=  TD O (refine(IIj+ i, ex), X).  If hi+ i(x)  >  

hi+i{y)  for previously fixed y  in H + i ,  then  go to  step (5). O therwise, dispose 

(delete) IIj+ i iX and continue the for loop to  consider another point z  E C \{a:}.

5. If x  can be  m apped by a g G II to a previously chosen y  in I lj+ i, then  dispose 

Ili+i,a; and re tu rn  to  step (4). O therwise, set IIj+ 2 :=  rh + i )X and recurse by 

calling P a r t i t i o n B a c k t r a c k 2(IL+2, X).

6. Set found first leaf =  TRU E. Let r  :=  er(IL+ i). T h a t is r  is the best ordering 

of A.  Store the  stabilized points in the  base B.

7. Cases of com paring th e  m atrices A T and A 9:

•  (equal:) an autom orphism  g~lr  has been discovered.

• (better:) then  we have found a  b e tte r ordering. Set found first leaf =  

FALSE, and go to  step (6).

• (worse:) ignore it.

A lg o rith m  6.2.2 c learly  te rm in a te s  since th e  n u m b er of i te ra tio n s  is b o u n d ed
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by the number of points and blocks which is finite. Once the algorithm ter­

minates, we have the canonical labeling map stored in r ,  and an autom or­

phism group is stored in H  (which is generated by all discovered autom or­

phisms during the search). Moreover, the base is stored in B. T hat is, if 

r  := cr(II()0 )61]...i()r_1), where I l60)61)...)br _ 1 is a discrete partition, then we have 

B  — (b0, . . . ,  6 r_i) for b0 , b i , . . . ,  6 r_i E S  = P  U B.

We apply Algorithm 6.2.2 on the graph Q of Example 6 .1 . 1  to  demonstrate 

some of the main steps in Algorithm 6.2.2.

E x a m p le  6.2.1. Following what we had in Example 6.1.1, let

n 0 :=  {1 , 2 ,3  I 0 ,4 ,5  I 6 ,7  I 8,11,14 | 12 ,13,15,16,17,18 | 9,10,19},

be the initial partition of Q and th a t A  an incidence m atrix of Q is given in 

Figure 6.1.4. Clearly, n 0 is already tactical, and hence we follow the steps in 

Algorithm 6 .2 . 2  and show some of the steps in what follows.

b eg in

Initial set of orbits =  j{0} , { 1 } ,. . . ,  {7}, {8 } , . . . ,  {19} j

n 0 :=  { 1 ,2 ,3 |0 ,4 ,5 |6 ,7 |8 ,11 ,14|12,13 ,15 ,16 ,17 ,18 |9 ,10,19}, is equitable.

level 0 : fix 1 : compute TD O (refm e(n0, ei), Q). See Figure 6 .2 .1 . 

n x :=  { 1 1 2,3 14 | 0 ,5  | 6 , 7 11 1 1 8 ,1 4 112,13 115 ,16 ,17 ,181 9,19 110}.

level 1 : fix 2  : compute TDO(refine(II1, e2), Q). See Figure 6.2.2. 

n 2 :=  { 1 1 2 13 | 4 | 5 | 0 | 6 , 7 11 1 1141 8  112,13 115,16 117,18 119 | 9 110}.

level 2 : fix 6  : compute TDO (refine (n 2, e6), Q). See Figure 6.2.3. 

n 3 :=  { 1  I 2  I 3 I 4 I 5 I 0  I 6  I 7 11 1 114 I 8  1 1 2  113 115 116 117 118 119 I 9 1 1 0 }.

Here we have found the first leaf node (i.e. found first leaf =  TRUE). So 

a base B  =  (1,2, 6 ) would be stored and r  cr(n3) is also stored as the best 

ordering. Here we show r  as a list of elements, as they appear in n 3, as follows

r  :=  [1, 2 ,3 ,4 , 5 ,0 ,6 , 7,11,14, 8 ,12,13,15,16,17,18,19,9 ,10].
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11 8 14 12 13 15 16 17 18 9 19 10

1 X X X

2 X X X

3 X X X

4 X X X

0 X X X

5 X X X

6 X X X

7 X X X

Figure 6 .2 .1 : III :=  TDO (refine(n0, ei), Q ) .

11 14 8 12 13 15 16 17 18 19 9 10

1 X X X

2 X X X

3 X X X

4 X X X

5 X X X

0 X X X

6 X X X

7 X X X

Figure 6.2.2: n 2 :=  TDO(refine(IIi, e2), G)-

11 14 8 12 13 15 16 17 18 19 9 10

1 X X X

2 X X X

3 X X X

4 X X X

5 X X X

0 X X X

6 X X X

7 X X X

Figure 6.2.3: n 3 :=  TD O (refm e(n2, eg), Q).
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11 14 8 13 12 16 15 18 17 19 9 10

1 X X X

2 X X X

3 X X X

4 X X X

5 X X X

0 X X X

7 X X X

6 X X X

Figure 6.2.4: n 3 :=  TD O (refine(n2, er), G)-

Now, we backtrack II2 to  fix 7 instead of 6  in II2 at level 2. Therefore, we 

compute II3 := TD O (refine(n2, e^), Q). See Figure 6.2.4

n 3 :=  { 1 1 2 | 3 14 | 5 10 | 7 16  11 1 114 18  113 112 116 115 118 11 7 119 | 9 110}.

Another discrete partition results. If

g :=  [1 ,2 ,3 ,4 ,5 ,0 ,7 ,6 ,11 ,14 ,8 ,13 ,12 ,16 ,15 ,18 ,17 ,19 ,9 ,10 ],

then we compare A 9  and A T to  get identical matrices, and thus an autom or­

phism q 0 :=  g ~ XT  has been discovered.

a 0 :=  ( 6  7 ) ( 12 13 ) ( 15 16 ) ( 17 18 ).

One also can compute a 0 by comparing the orderings of the points 0 ,1 , . . . ,  19

in g and r .

All choices in cell {6,7} € n 2 have been made, and thus we backtrack in

{2,3} G IIi. This time we fix 3 instead of 2.

n x :=  {1 | 2, 3 | 4 | 0 ,5 | 6 , 7 11 1 1 8,14 112,13 115,16,17,18 | 9,19 110}.

level 1: fix 3 : compute TDO(refine(IIi, e3), Q). See Figure 6.2.5. 

n 2 :=  { 1 13 12 14 10 15 16 , 7 11 1 18  11 4 112,13 117,18 115,16 19 119 110}. 

level 2: fix 6  : compute TD O (refine(n2, e6), G). See Figure 6.2.6.
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11 8 14 12 13 17 18 15 16 9 19 10

1 X X X

3 X X X

2 X X X

4 X X X

0 X X X

5 X X X

6 X X X

7 X X X

Figure 6.2.5: U2 := TDO (refine (IIi, e3), G)-

11 8 14 12 13 17 18 15 16 9 19 10

1 X X X

3 X X X

2 X X X

4 X X X

0 X X X

5 X X X

6 X X X

7 X X X

Figure 6.2.6: n 3 :=  TD O (refine(n2, e6), Q). 

n 3 :=  { 1 1 3 | 2 | 4 | 0 | 5 | 6  | 7 11118  11 4 112 113 11 7 118 115 116 | 9 119 110}.

Let g := [1,3, 2 ,4 ,0 ,5 , 6 , 7 ,11 ,8 ,14 ,12 ,13 ,17 ,18 ,15 ,16 ,9 ,19 ,10]. We com­

pare again A 9  and A T to get the same matrices. Thus, an automorphism 

a i := g~lr  has been found.

<*! :=  ( 0 5 ) ( 2 3 ) ( 8  14 ) ( 9 19 ) ( 15 17 ) ( 16 18 ).

Note th a t we do not fix 7 in n 2 again. This is because 6  can be m apped to 

7 by Oq and by Lemma 6.2.2, fixing 7 is equivalent to  fixing 6  in the same 

partition. So, we backtrack in n 0 to  fix 2 instead of 1 as follows.

n 0 :=  {1, 2 ,3 10,4, 5|6, 7 |8 ,11 ,14|12,13 ,15 ,16 ,17 ,18 |9 ,10,19}.
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14 8 11 15 16 12 13 17 18 10 19 9

2 X X X

1 X X X

3 X X X

5 X X X

0 X X X

4 X X X

6 X X X

7 X X X

Figure 6.2.7: nx :=  TDO (refine (n0, e2), Q).

14 11 8 15 16 12 13 17 18 19 10 9

2 X X X

1 X X X

3 X X X

5 X X X

4 X X X

0 X X X

6 X X X

7 X X X

Figure 6.2.8: II2 :=  TD O (refine(IIi,ei),(?).

level 0: fix 2  : compute TD O (refm e(n0, e2), Q). See Figure 6.2.7. 

n : :=  {2 11,3 I 5 I 0 ,4  I 6 , 7 114 I 8 ,1 1 115,16 112 ,13 ,17 ,18110,19 | 9}.

level 1: fix 1 : compute TDO(refine(II1, ei), Q). See Figure 6.2.8. 

n 2 :=  {2 11 1 3 | 5 | 4 10 1 6 , 7 114 11 1 1 8  115,16 112,13 117,18 119 110 | 9}.

level 2: fix 6  : compute TD O (refine(n2, e6), Q). See Figure 6.2.9. 

n 3 :=  {2 11 1 3 | 5 | 4 10 | 6  | 7 11 4 11 1 1 8 115 116 112 113 11 7 118 119 110 | 9}.

Let g := [2 ,1 ,3 ,5 ,4 ,0 ,6 ,7 ,14 ,11 ,8 ,15 ,16 ,12 ,13 ,17 ,18 ,19 ,10 ,9 ], Then, 

A 3  = A T, and thus an automorphism a 2 :=  g~lT has been found.

a 2 :=  ( 1 2 ) ( 4 5 ) ( 9 10 ) ( 11 14 ) ( 12 15 ) ( 13 16 ).

Note th a t 3 and 2 can be mapped to  each other by a\.  Therefore, the algorithm
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14 11 8 15 16 12 13 17 18 19 10 9

2 X X X

1 X X X

3 X X X

5 X X X

4 X X X

0 X X X

6 X X X

7 X X X

Figure 6.2.9: II3 :=  TD O (refine(n2, e6), Q).

term inates here. The best ordering r  is the canonical labeling map such th a t 

QT is the canonical form of Q. The base is stored in B,  namely (1 ,2 ,6). That 

is, = Gi,2,6 =  1- Moreover, 6Gl’2 =  {6,7}, where =  G ij2 =  ( a 0 )■ 

After all, we have

G (3) =  G 1)2i6 =  1,

G (2) =  Gli2 =  { a  0 ),

G ^  =  G\  =  ( OK},ot\ ),

G (°) — G = ( Q!o, cti, a 2 ).

Moreover, 6g(2) =  (6 ,7 ), 2 °w =  {2,3}, and 1G<0) =  {1,2,3}. Therefore, 

By the Order-Lemma 2.4.12 on page 30, we have automorphism group order 

|G| — 2 - 2 • 3 — 12.

■
The search in Algorithm 6.2.2 gives rise a backtrack search as seen in 

Example 6.2.1 equipped with a rooted tree whose root is the initial partition 

n 0, and its nodes are all equitable (TDO) partitions in the search. Two nodes 

II and E are related by a labeled edge if E =  TDO(refine(n, ex),Q) with label 

x  for some x  G II. Figure 6.2.10 displays a rooted tree corresponding to  the 

search of Example 6.2.1.
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Figure 6.2.10: A rooted tree of the backtrack search of Example 6 .2 .1 .

6.3 M cK ay’s / i-Function

In this section, we consider a definition of the //-function introduced by B. 

McKay [64]. Note th a t the ideas introduced in this section is paraphrasing of 

those in [64] in different language. The //-function developed in this section is 

concerning our interests which are incidence structures. Also th a t this func­

tion relies on the concepts of partition backtracking described in the previous 

section.

Recall th a t a //-function has been defined earlier in the sense of orderly 

generation techniques due to  Faradzev [23] and Read [69], see Section 3.2.

Let G be a group acting on a finite set X  of incidence structures on m  

points and n  blocks. Then, the //-function presented in this section does not 

depends on the lexicographical ordering as in orderly generation does. It relies 

on a function ip : X  —» G, which is the canonical labeling map as in Definition 

2.4.14, such th a t for all x , y  € X  we have p(x) = p(y) if and only if x  and y  are 

contained in the same G-orbit on X ,  where p(x) — x v<x>. Such a function can 

be realized by the techniques of the partition backtrack discussed in Section 

6 . 2 .

In what follows, we may use x  and y for incidence structures and at the 

same tim e to  denote the corresponding incidence matrices. Let X q, X i , . . . ,  X m
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be disjoint subsets of X  such th a t X  = Ui=o-^- Let R t C  Xi  x  X l+i be a 

G-invariant relation. If x  is an incidence m atrix with m  rows and n columns, 

then we write TZ = {0 , 1 , . . . ,  m  — 1} and C — {m, m  +  1 , . . . ,  m  +  n  — 1} for 

the set of row and column indices. For x  =  (xhJ) e Xi  and y  = € X i+l

for all i € TZ and j  € C, we say th a t (x, y)  € Ri if x tJ =  1 implies y,Jtj = 1, and 

we write x  < y .  In particular, the set of pre-images of y  € X i + 1 follows

^2 l (y) {(y  -  (Ei ® Rowi ( y ) ) , y )  € Ri \ i E  Rowsupp(y)},

where E t € M m>\ and y — E i®  Row i(y) € X t.

Let

t := min(Rowsupp(2/v>̂ ) ) ,  (6.1)

and let

s-.= t ^ v)~ \  (6 .2 )

Figure 6.3.1 describes finding t  and s. However, in the figure we assume

th a t t  is min(Rowsupp(p(y))) which is not in general true. This depends on

how the refinements in the partition backtrack are done. We call the row index 

s the ca n o n ica l row.

<?(y)

p(y)y

t
-1

Figure 6.3.1: Finding t and s.
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Then, the ^-function is

K v )  :=  { (y  -  (E i ® Rowj(j/)),i/) e Ri \ e { e  Mm>i, and % e sGs}. (6.3)

We call the G,y-orbit of s the ca n o n ica l orb it. Thus (x, y)  6  g(y)  if y  is an 

extension of x  and th a t the last added row in y  must contained in the canonical 

orbit.

T h e o rem  6 .3 .1 . Let a group G act on two finite sets of incidence structures 

Xi and X t+i for  I =  0 , 1 , . . . ,  m  and Xi, Xi+i 6  X  = (J^ 0 Xi, and let Ri be a 

G-invariant relation between Xi and X i+x with ^ ( R i )  =  X i+x. Then, for  any 

given y e  X i+x, let

' Gy
K y )  =  [ ( y  -  ( E i  ®  R o W i ( y ) ) , y )

where i €  sGy where s is as defined in 6.2, and Et e  Mm> x. Then, g  satisfies 

the conditions of Definition 3.1.3. In particular, given T (G ,X i ) ,  T (G , X i+x) 

can be constructed by using (3.6).

Proof. It is clear th a t g(y)  is a Gy-orbit on Tdfx(y). So, we only show that 

g ( y 9) = g ( y ) 9 for all g € G. Let (Ei ® Rowf iy) )9 =  Ej ® Rowj(y9). Then,

M(y9) =  [ (y9 -  (Ej ® Rowj ( y 9) ) , y 9)

(y9 -  (Ej  ® Rowj ( y9) ) , y 9)

(y -  (Ej  ® Rowj (y9))9~1 , y)

= { [ ( y - ( E i ® Rowi ( y ) ) , y )  ] ° » ) 9 =  g ( y ) 9.

9 1Gyg 

Gyg

Thus 3.6 on page 59 can employed in terms of the p-function (6.3) to  construct 

a transversal T (G , Xj+i), given a transversal T (G , X{). □

Applications of McKay’s ^-function have been discussed earlier in Exam­

ple 4.4.2 on page 83 in term s of flag graphs, and its corresponding search poset 

in term s of incidence matrices as in Figure 4.5.3 on page 8 8 .
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In Example 6.3.1, we reconsider Example 3.3.1 on page 64 again with ap­

plying the McKay’s //-function given in 6.3 instead of the orderly generation’s 

//-function.

E x a m p le  6.3.1. Following Example 3.3.1, recall th a t X  denotes the class of 

all finite graphs of order 4 with V  = {1 , 2 ,3,4}.  Let G = S y m ^  act on X  

as described in Example 3.3.1. Also, let Xi  denote the subclass of X  which 

contains all graphs of order 4 and size i for i = 0 , 1, . . . , 6 . Thus X  = (J®= 0  X t. 

Let R4  C X i  x X i+i be a G-invariant relation such th a t

(.x , y) € Ri <=$■ edge e in x  implies e in y.

The construction procedure is applied on an induction on the number of edges 

and thus we s ta rt from the empty graph A0,i of Figure 3.3.6 on page 71 of order 

4 and size 0. Then, we consider the extension set 7rj"1 (Ao,i) as in Figure 3.3.4 on 

page 69 by choosing only one representative out of each G  orbit on 7r f 1 (Ao,i). 

This is can be done by considering GU01 -rejection in 7r f 1 (^40,i) as in the liftin g  

o rb its  s te p  discussed in Section 3.1 on page 53.

For the p r o je c tin g  o rb its  s te p , we use the McKay’s //-function defined 

in this section. The search poset 6.3.2 has two nodes in level 2, namely nodes 

A  and B, which both can be extended to  node G. Also, nodes C, D, and E  

in level 3 can all be extended to  node F  in level 4. Note th a t a node in the 

search poset is representing a G-orbit on X .

In the sense of incidence matrix, a construction procedure can consider 

the incidence m atrix transposed whose rows and columns correspond to  edges 

and vertices of a graph, respectively. To make things easier, we consider the 

McKay’s //-function as follows. If (x , y) 6  Ri for i =  0 , 1 , . . . ,  5, then

M y) '■= {{y \  E y )  e  y ) I e is in Gy-orbit of e*},

where e is any edge in y and e* is the ca n o n ica l ed g e  in y. To compute 

the canonical edge, we first compute t and s as described in 6 . 1  and 6 .2 ,
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Figure 6.3.2: Search poset for cubic 4 with applying McKay’s p-function.
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respectively, and then e* is the edge corresponds to  row s in the transposed 

incidence m atrix of y.

We sta rt now computing p(C)  to  see whether we accept node A  or node 

B  in the search poset. First, we compute the preimage set of C  as follows

7r2- 1(C) =  { ( C \ { 3 , 4 } , C ' ) , ( C \ { l , 3 } , C ) , ( C \ { l , 2 } , C ' ) } ,

where A  =  C  \  {3,4} and B  = C \  {1,3}. Applying a partition backtrack 

algorithm on C  as discussed in Section 6 .2 , we get <p{C) := ( 2  3) and G c '■= 

( (1 3) ( 2  4) ) of order 2 . Therefore, p(C) := {{ 1 , 2 }, {1 ,3}, {2 ,4}}, and the 

transposed incidence m atrix of p(C) is shown in Figure 6.3.3.

1 2 3 4

X X

X X

X X

Figure 6.3.3: The canonical form of C  and finding t.

Therefore, row index t corresponds to  the edge {1 , 2 }. So the canonical 

edge is {1,3} :=  { 1 ,2 } ^ C)“\  Therefore,

p(C)  :=  (C \  {1,3}, C f c  =  { (C \  {1 ,3}, C)}.

Thus, we accept the extension of node B  and reject the extension of node A. 

For level 3, we do the same thing. Then,

tG \ F )  = { ( F \  {3,4}, F ) , ( F \  {1,4}, F),  (F \  {1,3}, F),  (F \  {1,2}, F)} .

Computing ip{F), we get <p(F) :=  (2 4) and p(F)  =  {{1 , 2}, {1,3}, {1,4}, {2,3}}, 

with {1,2} is the minimum element in the canonical orbit. Therefore, the 

canonical edge is {1,4} :=  {1, 2}¥’(-F)-1. Moreover, Gp — { (3 4) ). Thus,

p(F)  : = { ( F \  {1,4}, F) }  = { ( F \  {1 ,4}, F),  ( F \  {1,3}, F)} .
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Therefore, nodes D  and E  are rejected where node C  is accepted.

■

6.4 M cK ay’s A lgorithm

In this section, we present McKay’s algorithm in the language of [64], We do 

this so th a t it becomes clear th a t our presentation is roughly a paraphrase of 

McKay’s m ethod with a little change of notation. Mainly, the difference is 

th a t we prefer to  emphasize the relation between two levels and think of the 

elements as pairs (x,y). McKay introduces two objects which he calls lower 

and upper object, respectively. In more detail, the abstract model for McKay’s 

algorithm is as follows.

Let G  be a group th a t acts on a nonempty set X .  Elements th a t are in 

X  are called labelled objects, where elements contained in X / G  are called 

unlabeled objects. For our convenience, we write U  instead of X / G .

For each labelled object x  E  X ,  associate a finite set L{x)  of lower objects 

and a finite set U(x)  of upper objects. We require th a t for all distinct 

x l t x 2 E  X  the following six sets are pairwise disjoint.

{® i} ,{ £(a; i )} , {£/ (x i )} ,

{ x 2} , { L { x 2) } , { U { x 2)} .

Let

X  = L(x),  and X  — U  t 'M .
x e x  x e x

for the sets of all lower and upper objects, respectively. Here, the lower and 

upper objects are connected in the sense of a binary relation R  C X  x X ,  

which is accessed using functions / i  : X  ~ ^ V ( X )  and f 2 ' - X —> V { X )  defined 

by

/ i  : y {x  e  X  : (y, x ) € R},  f 2 - x ^ { y e X :  (y, x)  E  R}.
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We assume th a t the group G acts o n l U l U l  such th a t the following 

axioms satisfied.

Cl G fixes each of X,  X,  and X  setwise,

C2 For each x E X  and g E G, L(x9) =  L(x ) 9  and U(x9) = U(x)9,

C3 For each y E X,  f i(y)  7  ̂0,

C4 For any y E X,  g E G, x\  E f i(y),  and x<i E f \ (y 9), 3 h E G  such that x J =  X2 ,

C5 For any x E X ,  g E G, yi E / 2 (i), and 2/2 € f 2 (x9), 3h e G  such that yf =  y2-

Moreover, every x  € X  is associated with an o rd er o(x) E N shared by 

the elements of L(x)  and U(x)  so th a t the following conditions are satisfied.

01 For each x E X  and g E G, we have o(x9) = o(x),

02 For each x E X  and y E f i{x),  we have o(y) < o(x).

An orbit S  E U is called irred u cib le  if L(x)  = 0 for each x  E X .  O ther­

wise, S  is called red u cib le . Note th a t  the consition L(x)  =  0 is G-invariant, 

by condition C2. Let Uo and U\ denote the set of all irreducible and reducible 

objects, respectively. Thus, U  =  Uq U U\ .

The final requirement is a function m  : X  —> V { X )  satisfying the following 

conditions.

Ml If L(x) = 0, then m(x) = 0,

M2 If L(x) /  0, then m(x)  C L(x) /Gx,

M3 For each x  E X  and g E G, we have m{x9) = m(x)9.

L em m a  6 .4 .1 . There is a unique mapping p :U\ —*U  satisfying:

PI For each S  E U\, x E S, and x E m(x),  we have f i (x)  C U(y),  for some

y E p ( S ) .

T h e o rem  6 .4 .2 . Suppose that xq E S q E U with o(x0) < n. Then, call­

ing scan{xo,ri) outputs exactly one labelled object belonging to each unlabeled 

object of order at most n, which descendant from So-
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A lg o r ith m  6.4.1 scan(x: labe lled  o b jec t, n: in teger)
1 if o(x) < n  th en

2 o u tp u t X

3 for each orbit A 6  U{x) /Gx do

4 select any x  G A

5 if h{x)  ^  0  th en

6 select any y G / 2 (f)) and suppose th a t  y G L(y)

7 if o(y) < n and y G m(y)  th en

8 scan (y,n)

9 end  if

1 0 end if

11 end for

12 end if

A modified version of McKay’s algorithm which replaces an orbit com­

putations by explicit isomorph testing can be found in [64] along with some 

examples illustrating the application of scan .

In practical applications, providing a suitable p-function is often the hard­

est part. Two possible definitions have been already introduced in Lemma 3.2.1 

on page 63 and Equation 6.3 on page 143. We also refer to  McKay [64] for 

another definition of the function m.
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C hapter 7

T he C om position  P rincip le for 

Linear Spaces

In this chapter we simply consider a class of incidence structures, namely 

lin e a r  sp aces  o n  13 p o in ts , th a t have been considered by many authors 

[2, 4, 9, 21, 6 8 ],

The enumeration of linear spaces has been started  by Doyen [21] when he 

constructed all of the linear spaces up to  9 points in 1967. More than  twenty 

years later, D. Betten and D. Glynn [26] have constructed (independently) the 

5,250 linear spaces on 10 points. The com putation of linear spaces on 11 points 

was considered by D. Betten and M. Braun [9] when they have developed the 

TDO method. They found a lower bound for the number of such geometries, 

w ithout the use of isomorphism tests. In fact, there were only six spaces more. 

The exact number of linear spaces on 11 points was computed by Ch. Pietsch 

[6 8 ] and (independently) D. Betten together with C. Kuhse: There are 232,929 

linear spaces on 11 points. Finally, the 28,872,973 linear spaces on 12 points 

have been constructed by A. Betten and D. Betten [4] in 1999. In this thesis, 

we consider the construction of linear spaces on 13 points, and thereby a new 

classification results obtained.

150
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In our algorithm for construction of finite geometries, we make extensive 

use of ta c t ic a l d e c o m p o s it io n  (TD) of an incidence m atrix  representing 

a given linear space. We use tactical decomposition which is defined by a 

successive ordering process called T D O , introduced by D. Betten and Braun 

[9], which is essentially an algorithm for computing a good invariant useful for 

p re -c la ss if ica tio n  of the geometries, see [2 ] for further details.

In order to  construct geometries on m  points, we go in the opposite di­

rection. T hat is, given an initial param eter set, we refine these param eters 

(distribution of lines in the geometry, for instance) step by step. Such re­

finements eventually stop when a TDO-scheme (or a set of TDO-schemes) is 

reached. This is because of the fact th a t TDO-schemes are tactical.

Once a set of TDO-schemes is available, we start trying to  construct the 

related geometries. Note th a t, a TDO-scheme may be realized, be not realized, 

or produce several geometries. This m ethod is what we call the co m p o s it io n  

m e th o d . Such a m ethod has been considered earlier in constructing linear 

spaces on 1 2  points by A. Betten and D. Betten [4], In [5] the same authors 

construct the p ro p er  linear spaces (linear spaces with no lines of length 2 ) on 

17 points.

We rem ark th a t the composition priciple was first considered by D. Betten 

and his student Kaempfer in around 1990. However, Kaempfer never finished 

his Ph.D. and therefore it was never published. Also, the same m ethod was 

considered by Volker W idor [82] in his M aster’s thesis in 2003.

The implementation th a t was used for our search is due to A. Betten and 

is different from th a t used in [4],

7.1 Param eters Refinem ents

In our construction procedure, we always start with param eters of type 1 (or at 

depth 1) which describe the d is tr ib u tio n  o f  lin es  o f  d ifferen t len g th s . The
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generation process is done by taking into account several constraints. Usually 

the row and column sums for linear space matrices are prescribed. Sometimes, 

there may be a finer partitioning of rows and columns and the number of 

incidences is known within the areas of this decomposition. This will allow us 

to  reduce the number of possible matrices considered in the search in many 

cases. Moreover, incidence matrices with finer partitioning of rows (points) 

and columns (blocks) are much easier to  handle in the process of computing 

automorphisms and in the isomorphism tests.

Recall Definition 2.3.6 for linear spaces. For a linear space S  =  (P ,B ), we 

write {po, • • • ,pm- 1 } f°r the point set P  and {B 0, , £?„_ 1 } for the blocks (or 

lines) set B  where n  is a positive integer.

If a point p €  P  is in a line B  6  B, then we say th a t p lies on B,  th a t B  

passes through p, or th a t p and B  are incident, and we write p € B.

The number of lines incident with a fixed point p is called the degree, 

denoted by [p], where the number of lines of length j  passing through p is 

called the j-degree, denoted by [p\j. Also, we write \B\ for the number of 

points in P  lie on B.  We say th a t B  is a j-line if \B\ = j .

In what follows, we consider the refinement procedure for a  linear space 

S  =  (P, B) with an initial partition  IIo =  {TZ | C}, where TZ and C are partitions 

of the point set P  and the block set B, respectively.

Then, the vector 1 :=  (m lm, . . . ,  3*3, 2h ) is called the lin e  ty p e  or p a ra m eter  

o f  ty p e  1.

Each pair of points in P  determines one unique line in B. Thus, counting 

pairs of points in P , we get

Let a0, a i , . . . ,  o /^ - i denote the L\  lines distributions of non-zero size.

Let

li := #  of i-lines in B.

(7.1)
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Thus, n 0 =  {11,C} is refined to  IIx := {1Z \ C0 \ Cx | . . .  | CLl^i} .  Let fy  

denote the length of a line th a t are contained in C3 for all j  = 0 , 1 , . . . ,  L x -  1. 

Therefore, Co, . . . ,  CLl- i  Q C and

|Co| +  |C i| +  . . .  +  \CLl~i\ =  ao +  ai +  . . .  +  a ^ - i  = \C\.

The partition III can be described by

C0 Ci CLl- 1

T T T
TZ A) A A i - i

1 1 1

Let ctj denote the number of /3,-lines in Cj th a t are incident with a fixed 

point p 6  P,  for j  — 0 , . . . ,  Li — 1 . Then, clearly

aj  — aj • (7.2)

As each point in P  is joined to  each other point, and as each (3j-line joins 

a fixed point to 0 3 — 1 points, we get

i i - i
~  X) ' a i =  m  -  1 .

3=0
(7.3)

Let S  be a linear space of line type (or line case) , d"1, . . . ,  . Then,

the p o in t  ty p e s  a ^ ° \ a ^ , . . .  are an solutions to  Equations 7.2 and

7.3, where for any point p  € P  of type aW, we have

=  («0)>--->Q!l1)- i ))

for all 0 <  i < L 2 — 1. Moreover, let th e  p o in t ty p e  d is tr ib u tio n  denoted 

by bi be the number of points of type for all* — 0 , . . . ,  L 2 — 1. The line case
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together with the point type and point type distribution form the p a ra m eters  

o f  th e  ty p e  2 of the geometry.

Therefore, II is refined to

n 2 := {Ro | -Ri | • • • | R l2- i | Co I • • • I C x j-i} ,

with |I?j| =  bi for all i =  0 , 1 , . . . ,  L 2 — 1. Clearly,

m. (7.4)
L /2  —  1

Z  bi
i= 0

Let ctij denote the number of (3j lines in Cj th a t are incident with a point 

of type ab), i.e, a point in Ri, for all 0  <  i < L 2 — 1 and for all 0 <  j  < L\ — 1. 

Then, n 2 can be described by

C o ^ Ci c Ll-i
Rq <— a 0,o —» <— o o ,i  —>

Ri <— alj0 —> < -  a i , i  ->

RL'-l 1,0 —> <— oll2-  1,1 —> <— Q l2-  1,Li-1 —>
Y  — Po • 0-0 Y  = Pi ■ ai Y  — PLx- 1  ■ fflij-l

Counting incidences in the class Cj  of /Jj-lines in two different ways, the

following equation hold for each 0  <  j  < L i  — 1

L/2 —  1

^  y a i,j ' bi =  Pj ' Clj. (7-5)
i= 0

We next refine n 2 into a finer partition n 3 which is called the refined  lin e  

ty p e .

For each class C j  G II2 , where J  — 0 , 1 , . . . ,  L\ — 1, let 

l j ,i  = #  of points of type a®  on a /3j-line, 

for a l i i  =  0 , 1 , . . . ,  L 2 — 1. Then, clearly

1 j,i < k  for a l i i  =  0 , . . . ,  L 2 -  1. (7.6)
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Also, for each class C j  where J  = 0 , 1 , . . . ,  L 1 — 1 we have

1/2 —  1

E (7'7)
i =0

We want to  solve Equation 7.7 restricted to  Equation 7.6. Assume that 

7 j° \  Tj1̂ ) • • • 1 are all the solutions of class Cj, for J  =  0 , 1 , . . . ,  Li  — 1 . 

This is called the re fin ed  line  ty p e  of block J . Also, let ajj  denote the 

nonzero number of dj-lines th a t are in class C j  G U2. Thus aji0, . . . ,  a j ^ - i  is 

called the re fin ed  line  d is tr ib u tio n .

For i =  0 , 1 , . . . ,  L 2 — 1, let 7 jJ  denote the number of points of type 

th a t are incident with dj-lincs in Cj.

Therefore, the partition II2 is refined to  the following partition

II3 :=  {i? 0 | . . .  | i? i2- 1 | £>o,o | ■ I £>0 ,10- 1 1 £>i,o I • • ■ I 0L i-i,o  | • I

where D jt0 , . .  •, 1 Q C j  for all J  =  0 , 1 , . . . ,  Li — 1. II3 can be described

by

4 =  Cj  = >

D j ,  0 D j ,i

Ri

T

(0)
Tj.l

I

T

'7 (1)7j,i

i

T
AO-i) 7 j j

I

Given a class C j  for J  = 0 , 1 , . . . ,  Li — 1 , it is clear tha t

O — l
E  a J,j =  a J- (7-8)
3 = 0

In other words,
h - 1

I C J  I = E 1 1-
3 =0
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Moreover, for i — 0 , 1 , . . . ,  L 2 — 1, we count incidences in two different ways 

to  get

/ j - 1

E ■ a j j =  a i ’ j  • b i • ( 7 - 9 )

3=0

Now, we consider the connections between two fixed points in P  in two 

cases. Namely, for x  £ R x and y £ R 2 there are two cases for when i\ = i2 

and ii ^  i2 for all 0  <  *1 , 1 2  <  L 2 — 1. First, assume th a t x, y £ R lt i.e. both

points x  and y  are of type a ^ .  Then, for each i = 0 , 1 , . . . ,  L 2 — 1 we have

E  E  ( 7 S  -  1 )a j j  = k -  1, (7.10)
j = 0  j = 0

while if x  and y are in different classes R,n and R ,l 2 , we have

E E • a j j  = b h  ■ b i 2 ' (7-11)
j = 0  j = 0

7.2 G eneration of Linear Spaces

In this section, we aim our attention to two tasks. First, we give an example of 

linear spaces generation. We assume th a t a TDO-scheme has been constructed 

using the techniques discussed in Section 7.1 and th a t our goal is to  construct 

all possible incidence matrices which have such scheme. Second, we apply the 

algorithm presented in this thesis on the construction of designs, namely we try  

to  construct 2-designs given param eters 2 - (v ,k , \ ) .  Note th a t this algorithm 

can also applied to  the construction of t-(v, k, A) designs in general.

For the first part, assume th a t we want to  construct linear spaces on 13 

points with a given line type (53 316). Assume furthermore th a t we used the 

techniques for param eters refinement presented in Section 7.1 to  produce the 

following row and column tactical decompositions.
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- 3 16 1 3 16

1 3 0 1 1 0

1 2 1 4 1 2 4 3

Note th a t in the param eters refinement, we use some techniques which are 

able to  reduce the number of candidates of TDO-schemes th a t might be not 

realizable. We refer to  A.Betten and D .Betten [4] for more details. The initial 

partition which corresponds to  7.12 is given by II :=  {R 0 | R x \ C0 | Ci}, where 

Ro = {0}, R x = { 1 , . . . ,  1 2 }, C0 = {13,14,15}, and Cx = {16 , . . . ,  31}. Also, 

let TZ = Rq U R x and C = C'o U C \ . Here, if A  G M i3)19 is an incidence m atrix 

corresponds to  an incidence structure which satisfies the decomposition given 

in 7.12, then for * G TZ and j  G C, A  must satisfies the following conditions.

1. |rowj(A) fl Co| equals 3 if i G R 0 and equals 1 if i G R x.

2. |roWj(A) fl C i| equals 0 if i E R,0 and equals 4 if i £ R x.

3. |rowj(A) n  rowj(A)| =  1 for all i ^  j  and i , j  G TZ.

4. |colj(A) ft i?o| equals 1 if j  G C0 and equals 0 if j  £ C\.

5. |colj(A) fl R \ | equals 4 if j  € C0 and equals 3 if j  € Cl.

Let Xi  denote the set of all incidence matrices in corresponding to

the class of linear spaces on 13 points, and let X  =  | J ^ 0 X t. Let G =  S y m (13) x 

Sym^io) act on X  and let Ri C Xi  x X / + 1  be a G-invariant relation for all 

0 <  I < 12 such th a t (A , B) £ Ri only if A  = (chj) 6  Xi  and B  = (bitj) € X i + 1  

for all i €  TZ and for all j  6  C such th a t ahl — 1 implies th a t btJ =  1 .

Starting the construction of incidence matrices satisfying 7.12, we start 

with Ao G X 0 where we write A { to  denote th a t |Rowsupp(Aj)| =  i, namely 

A 0 is the incidence m atrix whose entries are all zeros. Here, we follow Algo­

rithm  3.1.1 on page 61 in a depth-first search strategy. Thus, we first compute

1*1 1 (Aq) :=  {(Ao, Aq + (£ } 0 <8 >Uj0)) € Ro\Eio G M i 3 iX,Vi0 G M x<Xq, and io € TZ).
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Also, we compute Ga0 to  construct a transversal T(A0) :=  T {G a0,^ i  1 (^o))- 

Then, we test each element in T(A0) for the following test.

Is (A0, Ao +  (Eio <S> Vi0)) E /r(A0 +  E io ® f j0)? (7-13)

where (i is defined in 6.3 on page 143. If yes then we accept such extension, and 

we reject it otherwise. Assume th a t rows ?'0, A , . . . ,  ir have been constructed 

to  get incidence m atrix A r. Then, A r must satisfies the following conditions.

1. |roWjr (Ar ) fl Col equals 3 if ir E Ro and equals 1 if ir E Ri-

2. |row,;r (Ar ) n  Ci | equals 0 if ir E Ro and equals 4 if ir E R i .

3. Irow^A,.) Drowir(Ar )| =  1 for all 0 <  j  < r and i j , i r E Rowsupp(Ar ).

4. |colj(Ar ) H R q\ < 1 if j  G C0 and <  0 if j  € Ci.

5. |colj(Ar ) n i ? i |  <  4 if j  e  Co and <  3 if j  £  C*.

Then, we extend A r as follows. We compute

n i 1 (J4f) :=  { (A r , A r +  (Eir ®Vir)) E R r\Eir E M i3;i, n,r E Mi^g, and ir E R ) .

Again we compute the automorphism group G at to  construct a transversal 

T(A-) :=  E{GAr-, ^ \ A r)), and do the Test 7.13 for every element in T(Ar). 

We then consider elements accepted in the test, and ignore them  otherwise.

W hen the algorithm is term inated, two incidence matrices are constructed 

corresponding to  two nonisomorphic incidence structures. Figure 7.2.1 displays 

the constructed linear spaces, say Si  and S 2, along with their automorphism 

group generators (perm utations are shown only for rows and not for columns).

In fact those two linear spaces correspond to  the L a tin  s q u a re  of order 

n = 4 (with the three 4-lines intersecting in an additional point namely, point 

0 in the m atrix) in a way described as follows: Skipping the first point, we 

take the n  rows of the Latin square as the first n  rows of the incidence m atrix 

of Si,  say. Next, we take the n  columns of the Latin square as the next n  rows 

in the incidence m atrix and the n  digits as the last n  rows in the incidence
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* * *
0

1

X X X

X X X X X
2 X X X X X
3 X X X X X
4 X X X X X
5 X X X X X
6 X X X X X
7 X X X X X
8 X X X X X
9 X X X X X
10 X X X X X
11 X X X X X
12 X X X X X

A u t(S i)  =  { (5 , 7)(6 , 8 ) ( 11, 12)

,(3 ,  5) (4, 6) (10, 11)

,(2 ,  4)(6 , 8)(9 , 10)(11, 12) 

,(2 ,  9)(4 , 10)(6, 11)(8, 12) 

,(1 ,  2)(3 , 4)(5 , 6)(7, 8 )}  

|i4 u t(5 i) | =  576

* * *

0 X X X
X X X X X

2 X X X X X
3 X X X X X
4 X X X X X
5 X X X X X
6 X X X X X
7 X X X X X
8 X X X X X
9 X X X X X

10 X X X X X
11 X X X X X
12 X X X X X

A u t(S 2 ) =  {(3 , 5)(4 , 6)(10, 11)

,(2 ,  4, 8 , 6)(9 , 10, 12, 11)

,(2 ,  9)(4 , 11)(6, 10)(8, 12)

,(1 ,  2)(3 , 4)(5 , 6 )(7 , 8 )(10 , 11)} 

|i4u t(S 2 )| =  192

Figure 7.2.1: Two incidence matrices corresponding to  linear spaces Si (top) 

and <S2 (bottom ) along with their automorphism group generators.
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m atrix. Now, each of the n 2 elements of the Latin square defines three points, 

namely the number of its row, the number of its column, and the digit of this 

element. Hence, we get n 2 3-blocks. The following figure illustrates the two 

Latin squares corresponding to  the linear spaces above, namely S\ (top) and 

S 2 (bottom ), respectively. Note th a t we skip the first point. Moreover, the row 

and column indices correspond to the point indices in the above two incidence 

matrices, see [3] for more explanation.

5 6 7 00

1 1 2 3 4

2 2 1 4 3

CO 4 3 1 2

4 C
O 4 2 1

5 6 7

00
1 1 2 3 4

2 2 1 4 3

3 3 4 1 2

4 4

C
O 2 1

Figure 7.2.2: The two Latin squares correspond to  the above linear spaces Si 

and S 2 in Figure 7.2.1 with the same automorphism group orders, respectively.

Now, we tu rn  our attention to  the construction of 2-(v, k, A) designs. The 

procedure is similar in some sense. Assume th a t we want to  construct the 

unique 2 -(13 ,4 ,1) design, then by using Equation 2.3 on page 22, one can 

conclude th a t b =  13 and r — 4. Therefore, we do the same as we have 

done previously with a slight differences. First, if A  is an incidence m atrix 

corresponding to  some 2-(v, k, A) design in general, then A  must satisfies the 

following conditions.

1 . every row contains exactly r l ’s.

2 . every column contains exactly k  l ’s.

3. |roWj(A) n rowj(A)| =  A for all 0 <  i, j  < v — 1 and i ^  j .
In the row by row generation, we start with a m atrix M0 whose all entries

are zeros, and step by step we add one row at a time. Assuming th a t rows 

*o, i i , . . . , ir have been constructed in A r , A r must satisfy the following condi­

tions.
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1. every row in Rowsupp(Ar) contains exactly r l ’s.

2 . every column contains at most k  l ’s.

3. |row^(Ar) fl rowjr (Ar )| =  A for all 0 <  j  < r  and ir , i j  6  Rowsupp(Ar).

Here, also we compute an extension set 7T^1 (Ar ) and construct a transver­

sal r(A-) := T ( G a t , 7rf  1(Ar)) to  test which elements pass the test 7.13 as 

discussed in he generation of linear spaces above. Once the algorithm is ter­

m inated, only one design is constructed. Figure 7.2.3 shows the constructed 

2-(13,4,1) design.

13 14 15 16 17 18 19 20 21 22 23 24 25

0 X X X X

X X X X

2 X X X X

3 X X X X

4 X X X X

5 X X X X

6 X X X X

7 X X X X

8 X X X X

9 X X X X

10 X X X X

11 X X X X

12 X X X X

Figure 7.2.3: The 2-(13,4,1) design.

The automorphism group of the design of Figure 7.2.3 has order 5616, and 

is generated by

{(3 5)(6 10)(7 12) ( 8  11)(15 16)(18 19)(22 23)(24 25),

(3 7)(4 9)(5 12) ( 6  10)(18 19)(20 21)(22 24)(23 25),

(2 3) ( 6  11)(7 10) ( 8  12)(14 15)(17 18)(21 22)(24 25),

(1 2)(4 10)(5 12) ( 6  9)(13 14)(18 20)(19 21)(23 25),

(0 1)(6 11)(7 12)(8 10)(14 17)(15 18)(16 19)(24 25)}.
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7.3 R esults o f Linear Spaces w ith 13 points

The results displayed in this section are the classification of linear spaces on 

13 points. F irst of all we would like to  note th a t linear spaces with up to 

1 1  points were tested by the algorithm described in this thesis and the same 

results were found in [4] where one can view the results on linear spaces on up 

to  12 points. Linear spaces with 12 points were also partially tested with the 

same results found in [4].

The search for linear spaces with 13 points took around 45 to  60 days 

yielding 8,592,194,823 linear spaces up to  isomorphism. The work was divided 

among 4 machines with two 3.0 GHZ machines, one 2.6 GHZ, and one 2.0 GHZ 

processor. Such a division in the search is valid using the techniques described 

in Chapter 3. The amount of storage needed for some line cases with over 

100,000,000 spaces was between 5 and 19 G B  (!!). We note th a t the usage of 

the TDO-algorithm described in Section 7.1 was really of great help in term s of 

speed. Also, om itting of the 2-lines in the line type during the construction was 

very useful. In particular, param eters of different kinds were used in the search 

mostly with depth 2 and 3 and sometimes at depths 4, 5, and 6 . The most 

desirable depth being sought is the depth where the decomposition coincides 

with its TDO. However, in some cases it was not possible to  reach th a t depth 

because of the memory problems mentioned in Section 7. In the table below, 

we indicate some of the cases which were constructed either in depth 4 and 5 

or with tactical decomposition with an in the  ’’tim e” column. Later on, 

we present another table which shows a comparison between the search time 

used to  construct the same line case with param eters of different depths.

In the tables below, we do not show the number of 2-lines in the line case 

because of the space and since their numbers can be easily recomputed by 

using 7.1. Em pty parentheses represent the complete graph with v vertices, 

i.e. K v.
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In the following table we display some comparisons between the times 

needed for constructing the same line or point cases a t different depths. The 

results presented in the following table may lead to future work on param eters 

refinement as we believe th a t  using such a technique (parameters refinement) 

helps to  reduce the tim e needed for constructing incidence structures.

The first column in the table below represents the case a t a given depth 

between parentheses, the second column indicates the number of refined cases, 

the th ird  column indicates the time needed for the refinement, the fourth 

column presents the number of constructed spaces, and the tim e needed for 

construction is displayed in the fifth column. Finally, we add up all the time 

needed for the construction starting from the line case up to  the final result. 

We always s ta rt from a line case and refine to get the point case and so on. The 

to ta l tim e presented in the sixth column is the summation of the construction 

time (fifth column) and the refinement time (third column). In the following 

table, we use an to  repeat the same entry above the current entry. The last 

column on the right shows the number of spaces constructed in one second,

1.e. the number of solutions divided by the to tal time.

The following table shows some comparisons between point types in depth

2, 4, and some point types in depth 6 . We also show the line types in depth 

1 which were used to  obtain those point types. For instance, the first row 

entry in the table may viewed as follows: We s tart from the line case (315 ,2 33) 

in depth 1 and in the first refinement several point cases will be produced in 

depth 2. One of these point cases is the following point case, which is a t depth 

2 : /

1 x (35 ,22)

< 4 x (34 ,24)

8  x (33 ,26)

Then, we refine it twice to  get to  depth 4. The needed tim e for refinements
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Table 7.1: Linear Spaces on 13 points (Part I)

line case # s o l tim e line case # s o l tim e line case # s o l tim e

(13) 1 (8 , 32) 6 ( 7 ,4 ,312) 65
(12) 1 (8 ,3 ) 2 ( 7 ,4 ,3 U ) 459
(1 1 ,3 ) 1 (8 ) 1 ( 7 ,4 ,310) 1567

( 11) 1 (72) 1 ( 7 ,4 ,39) 2805
(1 0 ,4 ) 1 (7 ,6 ,3 s ) 1 (7 ,4 ,3 s ) 3157
( 10, 33) 1 (7 ,6 ,3 4 ) 1 ( 7 ,4 ,37) 2433
(10, 32) 1 ( 7 ,6 , 33 ) 1 ( 7 ,4 ,3 s ) 1428
(1 0 ,3 ) ( 7 ,6 , 32 ) 1 ( 7 ,4 ,3 s ) 658
( 10) 1 (7 ,6 ,3 ) 1 ( 7 ,4 ,34) 252
(9 ,5 ) 1 (7 ,6 ) 2 (7 ,4 , 33) 84
(9 ,4 , 33) 1 (7 ,5 ,4 ,3 ® ) 4 (7 ,4 , 32) 24
(9 ,4 ,3 2) 1 ( 7 ,5 ,4 ,3 s ) 5 (7 ,4 ,3 ) 8
(9 ,4 ,3 ) 1 (7 ,5 ,4 ,  34 ) 9 (7 ,4 ) 2
(9 ,4 ) 2 (7, 5, 4, 33) 5 (7 ,31S) 34
( 9 ,3s ) 4 (7 ,5 ,4 ,  32) 4 (7, 314) 171
( 9 ,3s ) 3 (7 ,5 ,4 ,  3) 1 (7 ,3 13) 803
(9 ,3 4 ) 6 (7 ,5 ,4 ) 1 (7 ,312) 2197
(9 ,3 s ) 5 (7, 5, 39) 13 (7 ,3 U ) 3911
(9 ,3 2 ) 4 (7 ,5 ,3 s ) 24 ( 7 ,310) 4470
(9 ,3 ) 2 (7, 5, 37 ) 55 ( 7 ,39) 3645

(9) 1 (7 ,5 ,3 s ) 53 ( 7 ,3s ) 2296
(8 , 6 ) 1 (7 ,5 ,3 s ) 53 ( 7 ,37) 1202
(8 ,5 ,3 4 ) 1 ( 7 ,5 ,34 ) 31 ( 7 ,36 ) 523
(8 , 5, 33) 1 (7, 5, 33) 18 (7, 3s ) 195
(8 , 5 ,32) 1 (7, 5 ,3 2) 8 (7, 34) 68
(8 ,5 ,3 ) 1 (7 ,5 ,3 ) 5 ( 7 ,33) 22
(8 ,5 ) 2 (7 ,5 ) 2 ( 7 ,32) 7
(8 , 4 2 ,3 4) 4 ( 7 ,44 ,3 3) 3 (7 ,3 ) 2
(8 ,4 2 ,3 3) 2 (7 ,4 4 ,3 2) 2 (7) 1
(8 , 42 ,3 2) 3 ( 7 ,44 , 3) 1 (62, 4, 3s ) 2
(8 , 42, 3) 1 (7 ,44 ) 1 (62, 4, 37) 3
(8 ,4 2 ) 1 ( 7 ,43 , 3s ) 19 (62, 4 ,36 ) 10
(8 ,4 ,3 7) 10 ( 7 ,43 ,3 s ) 43 (62 , 4, 3s ) 8
(8 ,4 ,3 s ) 15 ( 7 ,43 ,3 4 ) 41 (62 , 4, 34) 11
(8 ,4 ,3 s ) 26 ( 7 ,43 ,3 3 ) 27 (62 , 4, 33) 4
(8 , 4 ,34 ) 22 ( 7 ,43 , 32) 11 (62 , 4, 32) 3
(8 ,4 , 33 ) 18 (7 ,43 , 3) 4 (62 , 4, 3) 1
(8 ,4 ,3 2) 8 (7 ,43 ) 1 (62 , 4) 1
(8 ,4 ,3 ) 5 (7, 42 , 39) 90 (62 ,3 u ) 2
(8 ,4 ) 2 ( 7 ,42 , 38) 318 (62 ,3 10) 7
(8 , 310) 9 ( 7 ,42 ,3 7) 619 (62 , 39) 26
(8 ,3 9 ) 18 ( 7 ,42 , 36) 669 (62 , 38) 40
(8 ,3 8) 40 (7, 42 , 3s ) 486 (62 , 37) 58
(S ,3 7) 49 (7, 42 ,3 4 ) 257 (62 ,3 6 ) 50
(8 , 36 ) 54 (7, 42,3 3) 100 (62 , 3s ) 41
(8 ,3 s ) 38 ( 7 ,42, 32) 33 (62 , 34) 21
(8 , 34 ) 26 (7 ,42 , 3) 8 (62 , 33) 12
(8 , 33 ) 12 (7, 42) 4 (62 , 32) 6
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Table 7.2: Linear Spaces on 13 points (Part II)

line case # s o l tim e line case # s o l tim e line case # s o l tim e

(62 ,3 ) 4 (6 ,5 ,3 s ) 945 (6 , 42 ,3 6) 62316
(62) 2 (6 , 5 , 34 ) 282 (6 , 42 ,3 s ) 17990
(6 , 52,3 9) 4 (6 , 5 ,33 ) 84 (6 , 4 2 , 34 ) 4058
(6 , 52 , 38) 9 (6 , 5 , 32 ) 24 (6 , 42 ,3 3) 784
(6 , 52 ,3 7) 23 (6 ,5 ,3 ) 8 (6 , 42 , 32) 135
(6 , 52,3 6) 34 (6 ,5 2 (6 , 42 , 3) 24
(6 , 52,3 s ) 28 (6 , 4s ,3 3 ) 2 (6 , 42 ) 6
(6 ,5 2 ,3 4 ) 18 (6 , 46 , 32) 1 ( 6 ,4 ,317) 13
(6, 52 , 33) 8 (6 , 4 6 , 3) 2 (6 , 4 , 316) 361
(6, 52 , 32) 3 (6 , 4 6) 1 ( 6 ,4 ,3 15) 5042
(6 , 52, 3) 1 (6 , 4 s ,3 s ) 68 (6 , 4 , 314) 38881
(6 ,5 2) 1 (6 , 4s ,3 4 ) 115 (6 , 4 ,3 13) 168123
(6, 5, 4 3, 36) 6 (6 ,4 s ,3 3) 81 ( 6 ,4 ,312) 434617
( 6 ,5 ,4 3,3 B) 18 (6 , 4 5 , 32) 41 (6 ,4 ,  311) 695055
(6 , 5, 43 , 34) 39 (6 , 4 5, 3) 9 (6 , 4, 310) 715749
(6 , 5, 43 , 33) 0 (6 , 4s ) 3 (6 , 4, 39) 489801
(6, 5, 43 , 32) 10 (6 ,4 4 ,3 9 ) 80 (6 ,4 ,3 s ) 232819
(6, 5 , 4 3, 3) 3 (6 ,4 4 ,3 s ) 635 (6 , 4, 37 ) 81085
(6 , 5 ,43) 1 (6 , 44 , 37 ) 2261 (6 ,4 ,3 s ) 22330
(6 , 5 ,42 ,3 9) 25 (6 , 44 ,3 6 ) 3812 (6 ,4 ,3 s ) 5140
(6 , 5 , 42 ,3 8) 180 (6 , 4 4 ,3 5) 3716 (6 ,4 ,3 4 ) 1079
(6 , 5 , 4 2,3 7) 576 (6 , 4 4 , 34 ) 2069 (6 , 4 , 33 ) 215
(6, 5 , 4 2,3 6) 925 (6 ,4 4 ,3 3 ) 749 (6 , 4 , 32 ) 44
(6 , 5 ,42 ,3 4) 450 (6 , 44 ,3 2 ) 164 (6 ,4 ) 2
(6 ,5 ,4 2 ,3 3) 156 (6 , 44 , 3) 29 (6 , 319) 2
(6, 5 , 4 2 ,3 2) 38 (6 , 4 4) 5 (6 ,3 18) 128
(6 , 5, 4 2, 3) 7 (6 , 4 3 , 312) 56 (6 ,3 17) 2167
(6 , 5 , 4 2) 1 (6 , 43 ,3 11) 832 (6 , 316) 19335
(6 , 5, 4 ,3 12) 21 (6 , 43 ,3 10) 6457 (6 ,3 1S) 94896
(6 , 5, 4, 311) 228 (6 , 43 , 39) 23669 (6 ,3 14) 275878
(6, 5 , 4 , 3 10) 1383 (6 , 4 3 ,3 s ) 47894 ( 6 ,3 13) 501678
(6 ,5 ,4 ,3 d) 4285 (6 , 4 3 , 37) 56020 (6 , 312) 592632
(6 , 5 ,4 ,3 s ) 7563 (6 , 4 3,3 6 ) 40455 (6 , 3 11) 471723
(6 , 5 ,4 ,3 s ) 5255 (6 , 43 ,3 5 ) 18496 (6 , 310) 262376
(6, 5 , 4 , 35) 2331 (6 , 4 3 , 34 ) 5750 (6 ,3 d) 107077
(6 , 5 , 4 , 34 ) 786 (6 , 4 3 ,3 3 ) 1260 (6 , 38) 34124
(6 , 5 ,4 ,33 ) 209 (6 , 43 ,3 2 ) 218 (6 ,3 7 ) 9114
(6 , 5, 4 ,32 ) 53 (6 , 4 3 , 3) 30 (6 ,3 s ) 2169
(6, 5, 4, 3) 11 (6 , 4 3) 5 (6 ,3 s ) 487
(6 ,5 ,4 ) 5 (6 , 4 2 ,3 15) 9 (6 , 34 ) 112
(6 , 5, 3 14) 16 (6 , 42 ,3 14) 224 (6 , 33 ) 28
(6 , 5, 3 13) 239 (6 , 4 2 ,3 13) 3385 (6 , 32 ) 7
( 6 ,5 ,312) 1726 (6 ,4 2 ,3 12) 24627 (6 ,3 ) 2
(6, 5, 3 11) 6293 (6 , 4 2 ,3 11) 98713 (6 1
(6 , 5, 3 10) 12876 (6 , 42 , 3 10) 226880 (53 ,4 3 ,3 6 ) 2
(6 ,5 , 38) 12569 (6 , 42 ,3 9 ) 316203 (53 ,4 3 , 3s ) 1
(6 , 5, 37 ) 6843 (6 , 42 ,3 s ) 276681 (53 ,4 3 ,3 4 ) 2
(6 , 5, 36) 2796 (6 , 4 2 ,3 7) 158766 (53 ,4 3 ,3 3) 2
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Table 7.3: Linear Spaces on 13 points (Part III)

line case # s o l tim e line case # s o l tim e line case # s o l tim e

(53,4 3 ,3 2) 2 (52 ,4 5 , 32) 15 (52 , 4 ,3 10) 776876
(53,4 3 , 3) 1 (S2, 45 , 3) 5 (52 , 4 ,3 9) 916348
(53 ,4 3 ) 1 (52 ,4 5 ) 1 (52 , 4 , 3s ) 690691
(53 ,4 2 ,3 10) 1 (52 ,4 4 ,3 10) 3 (52 ,4 ,3 7 ) 341918
(53 ,4 2 ,3 9) 3 (52 ,4 4 , 39) 10 (52 , 4 , 36 ) 114700
(53 j 4 2, 38 ) 12 (52 ,4 4 ,3 8) 88 (52 , 4 , 35) 27476
(53 ,4 2 ,3 7) 35 (52 ,4 4 ,3 7) 440 (52 ,4 ,3 4 ) 5141
(53,4 2 ,3 6) 76 (52 ,4 4 ,3 6) 1209 (52 , 4 , 33 ) 839
(53, 42 ,3 5 ) 104 (52 ,4 4 ,3 5) 1810 (52 , 4 , 32 ) 135
(53 ,4 2 ,3 4 ) 93 (52 ,4 4 , 34 ) 1587 (52 ,4 ,3 ) 24
(53, 42 , 33) 54 (52 ,4 4 ,3 3) 795 (52 ,4 ) 6
(53,4 2,3 2) 18 (52 ,4 4 ,3 2) 242 (52 ,3 18) 8
(5s , 42 , 3) 5 (52 ,4 4 ,3 ) 39 (52 ,3 17) 51
(53,4 2 ) 1 (52 ,4 4 ) 8 (52 ,3 16) 953
(53, 4 ,311) 5 (52 ,4 3 ,3 12) 1 (52 ,3 15) 11211
(53 , 4 , 310) 45 (52 ,4 3 ,3 u ) 34 (52 ,3 14) 77119
(53 , 4 , 39) 265 (52 ,4 3, 3 10) 539 (52 ,3 13) 295371
(53, 4 ,38) 782 (52 ,4 3 ,3 9) 3892 (52 ,3 12) 670948
(53, 4 ,3 7) 1393 (52 ,4 3 ,3 8) 14612 (52 ,3 11) 944874
(53 , 4 , 36) 1486 (52,4 3,3 7) 30264 (52 ,3 10) 860918
(53 , 4 ,3 5) 983 (52,4 3,3 6) 36504 (52 ,3 9 ) 522868
(53, 4 ,3 4) 414 (52 ,4 3 ,3 5) 26428 (52 ,3 8) 219024
(53, 4, 33) 113 (52 ,4 3 ,3 4) 11649 (52 j 37 ) 66226
(53 , 4 ,3 2) 23 (52 ,4 3 ,3 3) 3147 (52 ,3 6 ) 15609
(53,4 , 3) 4 (52, 43 , 32) 528 (52 ,3 5 ) 3148
(53, 4) 1 (52 ,4 3 , 3) 63 (52 ,3 4 ) 617
(53 ,3 16) 2 (52 ,4 3) 7 (52 ,3 3) 124
(53 ,3 16) 2 (52,4 2, 3 14) 3 (52 ,3 2 ) 29
(53, 3 14) 8 (52 ,4 2 ,3 13) 75 (52 ,3 ) 7
(5s ,3 13) 27 (52 ,4 2 ,3 12) 1498 (52 ) 2
(53, 312) 141 (52,4 2, 3 11) 14128 (5 ,4 s , 34 ) 6

568 (52 , 42 ,3 10) 68219 ( 5 ,48 ,3 3 ) 6
(53 ,3 10) 1944 (52 ,4 2,3 9) 180822 (5, 48 ,3 2) 5
(53, 3 9) 3980 (52, 42 , 3s ) 281095 (5 ,4 s , 3) 4
(53, 38) 5194 (52 , 42 , 37) 266804 (5 ,4 8) 2
(53 ,3 7) 4256 (52,4 2,3 6) 159171 ( 5 ,47 ,3 7) 1
(53 ,3 6) 2304 (52,4 2, 35) 60729 (5 ,4 7 ,3 6 ) 12
(53,3 5) 846 (52 ,4 2 ,3 4) 15264 (5 ,4 7 ,3 5 ) 77
(53 i3 4 ) 251 (52 ,4 2,3 3) 2649 ( 5 ,4 7 ,3 4 ) 147
(53 ,3 3 ) 63 (52,4 2,3 2 ) 362 (5, 47 ,3 3) 138
(53,3 2) 16 (52 ,4 2 , 3) 41 ( 5 ,47 ,3 2 ) 76
(53 , 3) 5 (52 ,4 2) 6 (5, 4 7 , 3) 21
(53) 3 (52 , 4 ,3 16) 4 (5, 46 , 310) 1
(52 ,4 5 ,3 7) 1 (52 , 4, 315) 74 (5, 46 , 39) 6
(52 ,4 5,3 6) 4 (52 , 4 ,3 14) 1754 (5, 46 ,3 8 ) 125
(52 , 45, 35) 15 (52j 4, 3 13) 20869 (5, 46 , 37 ) 1023
(52 , 45 , 34 ) 26 (52 , 4 ,3 12) 124429 (5, 46 , 36 ) 3770
(52 , 45,3 3) 28 (52 , 4 ,3 U ) 406144 (5, 46 ,3 5 ) 6567
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Table 7.4: Linear Spaces on 13 points (Part IV)

line case # s o l tim e line case # s o l tim e line case # s o l tim e

(5 ,4 6 ,3 4 ) 6139 ( 5 ,4 2 ,3 13) 6230354 20:47:33 ( 5 ,34 ) 148
(5 ,4 e ,3 3) 3250 (5 ,4 2 ,3 12) 18440779 Id  3:57:00 (5 ,3 3 ) 30
(5 ,4 6 ,3 ) 151 (5 ,4 2 ,3 11) 32581541 22:4:29 (5 ,3 2) 7
( 5 ,46 ) 14 (5 ,4 2 ,3 9) 26052596 8:2:27 (5 ,3 ) 2
( 5 ,45 ,3 11) 20 ( 5 ,4 2 ,3 s ) 12536329 2:45:25 (5 1
( 5 ,4 5,3 10) 622 ( 5 ,4 2 , 37) 4119894 1:12:20 (413) 1
(5, 4 5, 3 9) 7608 (5, 42 , 36) 952882 15:48 (412, 3) 1
( 5 ,4s ,3 s ) 40590 (5, 42 ,3 5 ) 163150 3:41 (412) 1
(5 ,4 5 ,3 7) 108087 (5 ,4 2 ,3 4) 22369 (4n ,3 2) 3
(5 ,4 5,3 6 ) 155977 (5, 4 2 , 33) 2726 (4U ,3 ) 2
(5, 4 5, 3 s ) 129455 (5, 42 , 32) 325 Mu ) 1
(5 ,4 6 ,3 3) 18568 (5, 42 , 3) 44 (410,3 4) 3
(5 ,4 s ,3 2) 3193 ( 5 ,4 2) 7 (410,3 3) 21
(5 ,4 5,3 ) 312 (5 ,4 , 319) 45 (410,3 2) 14
(5,4®) 28 ( 5 ,4 ,318) 3051 (410, 3) 8
( 5 ,44 , 314) 1 ( 5 ,4 ,3 17) 81820 (410) 4
(5 ,4 4 , 3 13) 42 (5 ,4 , 316) 988429 (49 ,3 7 ) 1
(5, 44 , 312) 2077 ( 5 ,4 ,3 15) 6079254 12:8:11 (49 ,3 6) 6
(5 ,4 4 ,3 u ) 32598 ( 5 ,4 ,3 14) 20912406 19:44:50 (49 , 36) 46
(5 ,4 4, 3 10) 229293 (5 ,4 ,3 13) 43243192 Id 5:02:47 (49 ,3 4 ) 210
(5 ,4 4,3 9) 812612 ( S .4 ,3 11) 48781730 10:14:44 (49 ,3 3) 209
( 5 ,44 ,3 8) 1590488 ( 5 ,4 ,3 10) 28462372 4:55:35 (49 ,3 2) 119
( 5 ,44 ,3 7) 1823744 (5 ,4 , 39) 11527765 2:10:05 (49 ,3 ) 43
(5 ,4 4 ,3 5) 554163 ( 5 ,4 ,3 s ) 3331705 39:59 (49 ) 10
(5 ,4 4 ,3 4 ) 151674 (5 ,4 ,3 7 ) 715712 11:11 (4s ,3 9) 1
(5 ,4 4 ,3 3) 26324 (5 ,4 ,3 6 ) 121723 (4s ,3 s ) 13
( 5 ,44 ,3 2) 2983 (5 ,4 ,3 s ) 17818 (4s ,3 7 ) 248
(5 ,4 4 ,3 ) 247 (5, 4, 34 ) 2489 (4s ,3 6) 1698
( 5 ,44 ) 18 ( 5 ,4 ,33) 354 (4s , 36) 4665
(5 ,4 3 ,3 15) 58 ( 5 ,4 ,3 2) 56 (4s ,3 4 ) 5421
(5 ,4 3 ,3 14) 3584 (5 ,4 ,3 ) 9 (4s ,3 3 ) 3344
(5 ,4 3, 3 13) 78065 (5 ,4 ) 2 (4s ,3 2) 1128
(5 ,4 3, 3 12) 700220 (5 ,3 21) 36 (4s , 3) 200
(5 ,4 3 , 3 n ) 3118079 1:11:24 (5, 320) 1358 (4s ) 22
( 5 ,43 ,3 10) 7681795 10:57:34 ( 5 ,319) 28267 (47 ,3 12) 1
(5 ,4 3,3 9) 11215598 14:17:19 (5, 318) 342618 (47 ,3 U ) 2
(5 ,4 3 ,3 7 ) 5876320 (5 ,3 17) 2294103 (47 ,3 10) 58
(5 ,4 3 ,3 6) 2238339 2:28:28 ( 5 ,316) 8878833 14:47:45 (47 ,3 9 ) 1346
(5 ,4 3,3 5) 557764 ( 5 ,3 15) 20922319 23:15:55 (47 ,3 s ) 14056
(5, 43 , 34 ) 96119 (5 ,3 13) 31532897 10:29:26 (47 ,3 7 ) 59820 28:41
(5, 43 , 33) 12008 ( 5 ,312) 21602330 6:14:25 (47 ,3 6 ) 120206 28:35
( 5 ,4 3 ,3 2) 1218 (5, 311) 10395553 1:57:10 (47 , 36) 125392 22:49
( 5 ,4 3 ,3 ) 106 ( 5 ,3 10) 3604843 31:46 (47 ,3 4 ) 73803
(5 ,4 3) 12 (5 ,3 9 ) 931053 (47 ,3 3 ) 24917
( 5 ,4 2, 3 17) 64 (5 ,3 s ) 188444 (47 ,3 2 ) 4782
(5 ,4 2,3 16) 4352 (5, 37) 32142 (47 , 3) 501
(5 ,4 2 ,3 15) 108396 (5 ,3 s ) 5078 (47) 35
(5 ,4 2, 3 14) 1167237 (S .S 5 ) 814 (46, 314) 1
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Table 7.5: Linear Spaces on 13 points (Part V)

line case # s o l tim e line case # s o l tim e

(46 ,3 13) 9 (43 ,3 19) 3
(46 ,3 12) 248 5:36 (43 ,3 18) 1148
(46 ,3 n ) 6837 (43 ,3 17) 74707
(4e ,3 10) 86035 1:14:9 (43 ,3 16) 1583018 7:7:12
(4®,39 ) 487381 2:49:28 (43 ,3 15) 14754548 16:38:20
(46 , 3 s ) 1356861 4:7:9 (43 ,3 14) 72988666 Id  4:54:24
(46 ,3 7 ) 2040477 1:54:52 (43 ,3 13) 196113022 *21:34:19
(46 ,3 6 ) 1767684 50:53 (43, 3 12) 328821551 * ld  14:34:19
(46 ,3 5) 919914 16:24 (43 ,3 11) 351828103 * ld  10:34:19
(46 , 34 ) 292231 4:8 (43 ,3 10) 248473404 2d 2:1:30
(46 ,3 3 ) 56576 (43 ,3 9) 118799099 20:15:52
(46 ,3 2) 6602 (43 ,3 8) 39203496 3:38:8
(46 ,3 ) 482 (43 ,3 7 ) 9094590 1:20:51
(46 ) 30 (43 ,3 6 ) 1524680 8:51
(45 ,3 15) 4 (43 ,3 5) 193998 1:21
(45 ,3 14) 654 26:22 (43 , 34 ) 20461
(4s ,3 13) 24084 2:23:10 (43 ,3 3 ) 2007
(45 ,3 12) 360474 5:17:57 (43 ,3 2) 213
(45 ,3 11) 2475063 22:47:31 (43 , 3) 28
(46 ,3 10) 8672320 Id 10:8:41 (43) 5
(45 ,3 9 ) 16829846 22:24:57 (42 ,3 21) 4
(45 ,3 8 ) 19277783 9:20:30 (42 ,3 20) 987
(45 ,3 7) 13614375 4:38:30 (42 ,3 19) 65021
(45 ,3 6) 6098046 2:2:42 (42 ,3 1S) 1538893 30:25
(45 ,3 5) 1757334 28:7 (42 ,3 17) 16225498 2:26:10
(45 ,3 4 ) 328430 3:42 (42 ,3 16) 88852151 8:07:22
(45 ,3 3) 40215 (42 ,3 15) 278442891 * ld  8:34:45
(45 ,3 2) 3421 (42 ,3 14) 540120259 *2d 9:42:19
(45 ,3 ) 230 (42 ,3 13) 673351261 *2d 14:54:23
(4s ) 18 (42 ,3 12) 561113925 *2d 6:23:17
(44 , 317) 9 (42 ,3 n ) 321129676 3d 2:19:00
(44 ,3 16) 1080 (42 ,3 10) 128917244 22:41:41
(44 , 315) 53865 17:30 (42 ,3 9) 36987720 5:12:14
(44 ,3 14) 964011 14:25:31 (42 ,3 8 ) 7757524 1:3:26
(44 ,3 13) 7777790 3d 3:17:16 (42 ,3 7) 1234019 10:34
(44 ,3 12) 32448444 3d 7:28:20 (42 ,3 6) 158556 1:32
(44 , 311) 76436861 3d 12:37:0 (42 ,3 5 ) 18084
(44 ,3 10) 108183543 *16:34:19 (42 ,3 4 ) 2073
(44 , 39 ) 96273769 2d 5:19:06 (42 ,3 3 ) 263
(44 ,3 s ) 55621336 18:56:28 (42 ,3 2 ) 40
(44 ,3 7 ) 21326125 4:38:18 (42 1 3) 7
(44 ,3 6 ) 5511065 1:21:14 (42) 2
(44 , 35 ) 976346 16:35 ( 4 ,322) 590
(44 , 34 ) 122628 1:29 (4, 321) 34302 10:23
(44 ,3 3 ) 11710 (4, 320) 824735 3:59:23
(44 j 32) 970 ( 4 ,3 19) 9474152 9:54:30
(44 j 3) 82 ( 4 ,318) 57722151 Id  15:23:11
(44 ) 11 (4, 317) 194993453 *22:55:13
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Table 7.6: Linear Spaces on 13 points (Part VI)

line case # so I tim e line case # s o l tim e

( 4 ,3 16) 445479140 * ld  23:14:44 (321) 2306220
( 4 ,3 15) 633464694 *2d 9:46:27 (320) 15142370 5:55:34
( 4 ,3 14) 579870663 *2d 2:15:39 (319) 58893945 7:56:14
(4 ,3 13) 405064372 3d 2:16:55 (318) 143386618 *10:45:33
( 4 ,3 12) 191602452 Id  6:27:58 (317) 228896539 *21:23:10

(4) 3 11) 65563256 11:07:05 (316) 248583304 * ld  2:45:28
( 4 ,3 10) 16546837 3:20:5 (3 15) 189057254 Id  12:05:38
(4 ,3 9 ) 3165219 41:33 (314) 103043009 Id 8:7:40
(4 ,3 s ) 480802 6:24 (313) 41023224 10:17:50
(4 )37) 62568 (312) 12142983 4:6:25
(4 ,3 6) 7786 (3 11) 2729981 45:13
(4 ,3 s ) 1033 (310) 482568 7:47
(4> 34 ) 167 (39 ) 71311 1:43
(4> 33) 31 (38) 9768
( 4 ,3 2) 7 (37 ) 1419
(4 ,3 ) 2 (3«) 250

(4) 1 (3s ) 54

(326) 2 (34 ) 16

(32S) 10 (33 ) 5
(324) 267 (32 ) 2
(323) 9348 (3) 1
(322) 197746 ( ) 1

T o ta l S o lu t io n s  = 8 ,5 9 2 ,1 9 4 , 823
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Table 7.7: Parameters refinement comparison

case # c a se s tim e(R ) # s o l tim e(sol) to ta l tim e avg

line (7, 4, 38 ,2 27) 1

point (2) 46,083 0:05 3,157 4:05 4:10 13

line (3) 1,886 0:32 ★ 3:01 3:38 15

point (4) 2,897 0:07 ★ 0:04 0:48 66

line ( 7 ,39 ,2 30) 1

point (2) 2,188 0:00 3,686 0:22 0:22 168

line (3) 1,202 0:02 * 0:17 0:19 194

point (4) 2,975 0:04 * 0:03 0:09 410

line (6 ,4 2 ,3 7 ,2 30) 1

point (2 ) 341,578 0:49 158,766 39:13 40:01 66

line (3) 181,203 5:59 ★ 7:20 14:08 187

point (4) 151,030 4:56 ★ 1:34 13:18 199

line ( 6 ,4 ,3 13,2 18) 1

point (2) 16,099 0:02 168,123 46:22 46:24 60

line (3) 30,150 1:21 ★ 24:47 26:08 107

point (4) 119,953 2:05 ★ 3:05 6:33 428

line (4 ,3 21,2 9) 1

point (2) 18 0:00 34,302 10:45 10:45 53

line (3) 256 0:00 ★ 9:30 9:30 60

point (4) 5,856 0:02 ~k 2:29 2:31 227

line (5) 25,444 0:25 •k 1:46 2:13 258

(T D O )p o in t (10) 33,880 0:31 ★ 0:07 1:12 476

line (322, 2 12) 1

point (2) 17 0:00 197,746 3:34:17 3:34:17 15

line (3) 164 0:00 ★ 2:55:49 2:55:49 19

point (4) 3,346 0:01 ★ 1:06:54 1:06:55 49

line (5) 63,312 0:30 ★ 1:00:13 1:00:44 54

point (6 ) 137,928 0:42 ★ 55:23 56:36 58

line (7) 176,320 0:50 ★ 43:56 45:59 72
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Table 7.8: Parameters refinement comparison

line type point type depth p ea ses tim e(R ) # s o l tim e(sol) avg

1 X (35 ,2 2 ) 2 1 0:00 >  5,000,000 Id 2:31:45 52

(315,2 33) 4 X (34 ,2 4 ) 

8 X (33 ,2 6 )

4 9,490 0:04 61,341,764 50:12 20,366

(3 15,2 33)
6 X (34 ,2 4 )

7 x  (33 , 26 )

2

4

1

2,241

0:00

0:00

>  1,359,542  

5,359,458

7:36:24

49:10

50

1,817

2 x  (36 , 2°) 2 1 0:00 59,131 17:28:49 1

(3 19,2 21) 1 X (35 ,2 2 ) 4 3 0:00 59,131 2:20 422

10 X (34 ,2 4 ) 6 12,018 0:10 59,131 1:10 845

1 X (4 ° ,3 6 ,2 ° )

3 X (41,3 3 ,2 3 ) 2 1 0:00 1,266,585 23:43:18 15

( 4 ,3 17,2 21) 2 X ( 4 ° ,35 ,2 2) 

1 X (41,3 2 ,2 5) 

6 X (4°, 34 ,2 4 )

4 144,044 3:23 1,266,585 17:35 1,201

1 X (42 ,3 2 ,2 2)

1 X (41,3 4 ,2 1)

(42 ,3 15,2 21)
4 X (41,3 3 ,2 3 ) 

1 X (4°, 35 , 22) 

1 X (A1^ 2^ 5)
5 X (4°, 34 ,2 4 )

2

4

1

1,151,360

0:01

20:05

3.641.685

3.641.685

16:33:48

43:25

61

1,398

and the generations is displayed below indicated by time(R) and time(sol), 

respectively.

Note th a t  >  5,000,000 at the first line case in the table above means 

th a t the search was not completed. These results show th a t using the TDO 

algorithm for constructing linear spaces is an improvement in the sense of the 

time needed to  construct such structures. This might be considered as evidence 

th a t this algorithm helps to  avoid some of the expensive computations needed 

by the isomorph-rejection in the canonical augmentation. Thus, it may lead to 

a new study line where one might consider such an algorithm for constructing 

other incidence structures.
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However, in some cases namely with line cases of small classes, this TDO 

algorithm might not lead to an improvement. The following tables show some 

information about the generation and the refinement for different line cases 

in different depths. The tim e in the th ird  column between parenthesis ” ( )” 

represents the tim e was used in the refinement of the cases in the previous 

depth.
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Table 7.9: Parameters refinement comparison

line case depth # ca ses(tim e) tim e(sol) # s o l  to ta l tim e

line (6 4 313 2 18) 1 1

2 16,099 (0:02) 33:09 168,123

3 30,150 (1:44) 25:27 ★

4 119,953 (2:51) 3:08 ★

5 159,174 (6:08) 3:52 ★

6 166,266 (9:41) 4:28 ★

7 167,381 (7:35) 4:43 *

line (6 3 16 218) 1 1

2 296 11:30 (0:00) 94,896

3 3,185 5:46:52 (0:02) ★

4 34,046 3:08 (0:48) ★

5 77,329 5:40 (7:01) ★

6 93,262 3:07 (7:06) ★

7 93,760 4:03 (9:08) ★

8 93,927 4:03 (7:40) ★

line (5 42 3 16 28 ) 1 1

2 1,401 (0:02) 29:34 4,352

3 4,088 (0:10) 28:05 ★

4 4,244 (0:12) 0:16 ★

5 4,543 (0:11) 0:19 *

6 4,196 (0:10) 0:11 ★

7 4,231 (0:10) 0:11 ★

8 4,219 (0:11) 0:11 ★

line (43 317 29) 1 1

2 260 (0:00) 38:29 74,707

3 35,747 (1:01) >  10:00:00 >  10

4 87,491 (2:34) 4:20 74,707

5 81,343 (3:04) 37:34 ★

6 74,138 (4:07) 1:57 ★

7 74,310 (3:31) 2:18 ★

8 74,268 (3:40) 2:23 ★
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Table 7.10: Parameters refinement comparison

line case depth # ca ses(tim e) tim e(sol) # s o l total tim e

line (5 43 313 211) 1 1

2 46,062 (0:30) 5:03:35 78,065

3 247,538 (2:35) Id  15:38:13 ★

4 85,561 (10:15) 3:08 *

5 79,346 (5:20) 3:07 *

6 78,404 (6:56) 3:14 ★

7 78,447 (5:05) 3:17 ★

line (5 3 19 2 11) 1 1

2 123 (0:00) 1:44:07 28,267

3 669 (0:00) 4:30:41 ★

4 8,030 (0:05) 1:53 *

5 21,693 (0:45) 9:04 ★

6 24,719 (0:59) 1:00 ■k

7 26,908 (1:23) 1:20 *

line (5 4 3 17 2 11) 1 1

2 1,742 (0:00) 1:40:20 81,820

3 10,885 (0:25) 2:07:53 ★

4 60,010 (2:06) 3:41 ★

5 77,300 (4:09) 6:03 ★

6 80,349 (5:50) 3:05 ★

7 81,337 (5:03) 3:13 ★

line (5 44 33 235) 1 1

2 149,793 (0:15) 2:46 26,324

3 69:495 (8:10) 1:42 ★

4 26,871 (4:02) 0:25 ★

5 27,088 (1:25) 0:38 ★

6 27,098 (2:25) 0:50 ★

7 27,098 (1:43) 0:46 ★

line (52 42 34 234) 1 1

2 104,959 (0:32) 2:35 15,264

3 357,532 (14:25) 11:17 ★

4 20,299 (28:03) 0:25 ★

5 20,587 (1:17) 0:33 ★

6 20,514 (1:51) 0:40 *

7 20,515 (1:27) 0:40 ★
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Table 7.11: Param eters refinement comparison

line case depth # ca ses(tim e) tim e(sol) # s o l to ta l tim e

47 33 227 1 1

2 2,612 (0 :00) 1:13 24,917

3 262,664 (45:54) 1:21:07 ★

4 23,648 (9:57) 0:31 ★

5 25,643 (1:36) 0:41 ★

6 24,943 (2:21) 0:48 ★

7 25,036 (1:45) 0:52 ★

42 3 5  2bi 1 1

2 1,836 (0:00) 0:08 18,084

3 22,523 (0:10) 0:32 ★

4 17,480 (2:26) 0:15 *

5 18,250 (0:49) 0:22 ★

6 18,115 (1:46) 0:28 ★

7 18,122 (1:00) 0:30 ~k
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C hapter 8 

N orm ally  R egular D igraph

In this chapter, we discuss a class of digraphs called n o rm a lly  re g u la r  d i­

g ra p h s , abbreviated by N R D s, which were introduced by Jorgensen [44], In 

the same tim e we present some of the theoretical results found in [44], and 

add some observations on the automorphism group of such structures.

Our goal in this chapter is to  expand the results were found in [44] in the 

sense of constructed digraphs. For more details about stated results in this 

chapter, one can see [39, 40, 43, 44, 45, 46].

8.1 D efinitions and Exam ples

D e fin itio n  8 .1 .1 . Let G = (V ,E ) be a finite directed graph, a digraph, and 

let x  and y be any two vertices of G such that x=fiy. Then:

1. We say that x  dom in a tes y i f  there is an edge directed from x  to y and 

we write it as x  —+ y.

2. Define x + to be the set of out-neighbors of x , i.e. the set of vertices in 

G dominated by x. Sometimes we consider this set as a subgraph of G, 

x+ C G.

176
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3. Let x  be the set of in-neighbors of x, i.e. the set of vertices in G

that dominates x. Sometimes we consider this set as a subgraph of G,

x -  c  G.

4■ Denote the cardinalities of x + and x + D y + by d+(x) and d+{x,y), re­

spectively. Similarly, d~(x) and d~(x ,y)  denote the size of the sets x~ 

and x~ P\y~, respectively.

5. G is regular i f  there is a number k so that d+ (x) = dT (x) — k for  every 

vertex x  in G.

6 . G is a to u rn am en t i f  there is an edge between every distinct vertices 

in G.

Definition 8.1.2. Enumerate the vertices of G from  1 to n, so that V(G)  =  

{ v i ,v 2 , . . . , vn}. Define the adjacency m a trix  A  of G to be the n x n  matrix 

whose (i , j ) th entry equals 1 i f  Vi —> Vj and 0  otherwise.

Claim 8.1.3. I f  A* is the transpose of A, then the (i , j ) th entry of AA* is

d+(vi,Vj) and the (i , j ) th entry of A*A is d~(vi,Vj).

Thus A  is normal if and only if d+(x, y) = d~(x, y) for every x, y e  V(G).

Definition 8.1.4. A digraph G is norm al i f  its adjacency matrix is normal.

Lemma 8.1.5. A tournament is normal i f  and only i f  it is regular.

Proof. First, if tournam ent T  is normal, then d+(x) = d~{x) for any vertex x  

in T. Therefore, T  is regular.

For the other direction, assume th a t  T  is a regular tournam ent. If x  and 

y are two vertices in T, then we want to  show th a t d+(x, y) =  d~(x, y). Now, 

if x  =  y we are finished. Assume th a t x  fi-- y, and without loss of generality 

assume th a t x  —> y. If the number of out-neighbors of y is d+(y), then some 

of those vertices are also out-neighbors of x, which are equal to  d+ (x, y). The
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remaining vertices which are out-neighbor of y, but not out-neighbors of x  are 

equal to  d+(y) — d+( x ,y ) and dominate x. Besides these vertices which dom­

inate x, there are additionally d~(x ) — (d+(x) — d+(x, yj) = d+(x ,y )  vertices 

th a t dominate x. And these vertices also dominate y  because they are not in 

y +. Therefore, d+{x,y) = d~(x ,y)  and then T  is normal. □

Definition 8.1.6. A n orm ally  regular digraph, NRD, with parameters 

(v, k, A, p) is a directed graph, G, on v vertices without 2-cycles or m ultip le  

edges such that the following properties hold:

• Every vertex has out-degree k, i.e. d+(x) = k where x  G G.

• Every pair of adjacent vertices has A common out-neighbors, i. e. d+ (x, y) — 

A where x  ~  y and x , y  G G.

• Every pair of non-adjacent vertices has p  common out-neighbors, i.e. 

d+(x, y) =  p  where x  ^  y and x , y  € G.

Remark 8.1.1.

p = k -  p  + ( p -  A ) 2 (8.1)

p = k + p — A (8.2)

Claim 8.1.7. In NRDs, we have the following conditions:

v > 2k + 1 f o r  k > 1 (8.3)

k > 2A +  1 f o r  k > 1 (8.4)

Claim 8.1.8. I f  A  is an adjacency matrix of an N R D ( v , k , X , p ) ,  G, then A  

satisfies the following equation

AA* = k l  + A (A + A * ) + p ( J  - I  - A -  A *), (8.5)

where I  is the v x v identity matrix and J  is all 1 v x v matrix.
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Note th a t the ( i , j )  entry of the m atrix  AA* is d+ (v,,Vj), which is k, A, or 

p,  depending on whether Vi = Vj, Vi —> Vj and V i ^ V j ,  or Vi /»  Vj and Vi ^  Vj, 

respectively.

Sometimes it is more convenient to  write Equation 8.5 in the  following 

form:

{A +  (ft — A)/)(j4 +  [ft — A)/)* =  g l  +  fjtJ (8 -6 )

where g = k — p +  (p — A) 2 and p = k + ft — A.

Theorem  8.1.9. A normally regular digraph is normal. In particular, AA* — 

A*A.

Proof. Let B  = A  + (p — A)/. Then with simple calculation, we have BB* — 

g l + p j . If we assume th a t B  is singular, then one of the eigenvalues of g I + f t J  

is zero. Then, we solve for the determ inant in order to  find the eigenvalues of 

g I  +  p, J:

det((g l  +  f tJ) -  7 1)

g + p - g  ft

p  g + p - g

p

p

p

p v + p - g

and then we add every row to  the 1 st row:

g + v p - g g + v p - g  . . . g + vp  — g 1 1 . . .  1

P g + p - g  . . .
= g + v p - g

0  g — g  . . .  0

p g + p - g 0  . . .  0  g — g

Therefore, we have two eigenvalues, g +  vp  and g with multiplicities 1 and 

v — 1, respectively. Then, g +  vp = 0 or g = 0. But because p, v > 0 this is 

possible only if g =  k  — p + (p — A) 2 =  0 . Then, k +  (p -  A) 2 >  k > p, but 

also p  = k + (p — A)2. This implies k = p — A. By 8.4, k = 0.
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Therefore, we may assume th a t B  is nonsingular. Now, since every vertex 

has out-degree k, and J  is symmetric, then

B  J  =  (A + (fi -  X) I )J  = (k +  n -  A) J  = p j  

=> B J  = pJ  => p~x J = B ~ l J

B* = B - \ B B * )  = B ~ x{rjl + f i j )  = r)B~x +  ^p ~ l J  (8.7)

Using th a t J  is symmetric, we get the following:

p j  =  (B j y  = JB* = r j JB - 1 +  p,p~xJ 2 = r)JB~l +  jip~xv J

This implies th a t

and so

Thus

J B - '  =

VJ  = J 2 = ( J B ~ l ) {BJ)  = P— >JP ^ pvJ  
V

p — up ' v  1 .
- — ^ ------------=  p 8.8

V
and J B ~ l =  p ~ 'J  or p j  = J B .  Now Equation 8.7 implies

B *B  = rjl + p p - ' J B  = p i  + p,J =  BB*

Thus by using the definition of B ,  we have A*A — AA*. Rewriting Equation 

8 .8 , we get

pv  =  p2 — rj (8.9)

□

To give a better idea on those digraphs and to  see the normality in NRDs, 

we present the following NRD with param eter set (6,2,0,2),  where we have 

v — 6  vertices and each vertex has a degree k = 2 , and if two vertices are
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adjacent then they have A =  0 common out- and in-neighbors and fj, = 2 

otherwise.

V l V 2 V 3 v 4 V 5 v e

V l X X

V 2 X X

V 3 X X

V 4 X X

V 5 X X

V 6 X X

Figure 8.1.1: NRD(Q,  2,0,2) digraph with its adjacency m atrix

From Figure 8.1.1 of the NRD or from its adjacency matrix, we can see 

th a t any two adjacent vertices, e.g. vertices 1 and 2 , have A =  0 common 

out- and in-neighbors. If we look at vertices 1 and 6  which are not adjacent, 

then they have fj, =  2 common out-neighbors, namely vertices 2 and 3, and 

in-neighbors, namely vertices 4 and 5.

NRDs in general have some connections to  some other combinatorial struc­

tures including sym m etric 2-design for some values of fi — A or A +  1, 

see [39, 40, 44, 45, 46]. Moreover, NRDs which are tournam ents have ap­

peared in many applications and were given different names. Reid and Brown 

[70] called them  doubly regular tournam ents, where Ito [40] used the 

term  Hadamard tournam ent, as these tournam ents are equivalent to  skew  

Hadamard matrices, see Reid and Brown [70].

For instance, if A  is the adjacency m atrix of an N R D ( v , k, A, fi) with A =  fi, 

then by Equation 8.5, A  satisfies:

AA* = ( k -  A)/ +  A J  

so th a t A  is the incidence m atrix of a symmetric 2  -  (v, k, A)-design, or a
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symmetric f-design with t  =  2. Assume th a t G is an N R D ( v ,  k, A, fi) with A =  

fi and G  has the vertex set { x i , x 2, . . .  , x v}. Then, by Ito ’s observation [40], we 

can construct a symmetric 2 — (v, k, A)-design with points V  =  {pi ,P2 , • • •, pv} 

and blocks B  =  {By, B 2 , . . . , B V} such th a t p.t € B } if and only if x t dominates 

Xj, i.e. Xi —> Xj in G.

For example, consider the N R D ( 7, 3 ,1 ,1) in the following figure.

V i V 2 ^3 V 4 ^5 ^6 v 7

V i X X X

V 2 X X X

v s X X X

V \ X X X

V 5 X X X

V G X X X

V 7 X X X

6

4 5

Figure 8.1.2: N R D ( 7,3,1,1)  with its adjacency m atrix  A

In the previous figure, A  can be considered also as an incidence m atrix 

of a symmetric 2 — (7,3, l)-design where the rows and columns represent the 

points V  and the blocks B, respectively. The resulting design (permuted) can 

be seen as in Figure 2.3.1 which is the Fano plane.

Conversely, suppose th a t for some symmetric design, there is an enumera­

tion of points and blocks such th a t p* ^  Bi so th a t the diagonal entries are Os, 

and if pi e  Bj ,  then pj g  Bj.  Then, the incidence m atrix of th a t design with 

respect to this enumeration is an adjacency m atrix of an N R D  with A =  p.

Jprgensen [44] explained very well the relation between NRDs and some 

other combinatorial structures with some special values o f p  =  A, A +  l,0,fc. 

Here, we consider the last two cases of fi (namely, fi — 0 and fi — k) which
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X X X
X X X

X X X
X X X

X X X
X X X
X X X

X X X
X X X

X X X
X X X

X X X
X X X
X X X

Figure 8.2.1: N R D (M ,  3 ,1 ,0 ) with p  =  0.

leads us to  some observations about the size of the automorphism groups for 

such NRDs.

8.2 N R D s w ith  f i  = 0

In this section, we investigate three types of N R D  in which some properties 

hold. In the case where ji = 0, an NRD does not need to be connected. How­

ever each component will be an NRD with the same value of k  and A. Consider, 

for example, the unique N R D (IA , 3 ,1 ,0) with p  =  0 whose adjacency m atrix 

is giving below:

It can be seen th a t this digraph is not connected. In fact, it consists of two 

connected components, both  of which is identical to the N R D (7 ,3 ,1 ,0 ) which 

was given in Figure 8.1. Thus we will only consider connected N R D s  whose 

underlying (undirected) graphs are connected. Each vertex has equal in- and 

out-degree, which implies th a t the digraph is strongly connected, i.e. for each 

pair of distinct vertices x  and y, there is a directed path  from x  to  y and a 

directed path  from y  to x. Therefore, an NRD, G, is one of the following three 

cases:
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c a s e  1:

An NRD with p  — 0 may be a tournam ent since in a tournam ent each two distinct 

vertices are adjacent and thus p  can be equal to any non-negative number.

ca se  2:

G can be a directed cycle and hence k = 1 and A =  0.

ca se  3:

In this case, we assume th a t k > 2 so th a t G is not a directed cycle, and G  is not 

a tournam ent.

Since in case (3) p  — 0 then by 8.1 and 8.2 we have 7] ~  k — p + ( p  — A)2 =  

k  +  A2 and p = k + p  — A =  fc — A. By inserting p and r) in Equation 8.9, we 

get th a t A =  Let x  £ G  be any vertex. Then we claim th a t x + and x~ 

are regular tournam ents.

C la im  8 .2 .1 . x + and x  are regular tournaments.

Proof. For a vertex x  £ G, every vertex in x + has out-degree A in this sub­

graph since for any vertex z € x +, we have d+(x ,z )  = A. Moreover, x + is a 

tournam ent, because if it is not, then there exist two vertices v i ,v 2 £ x + such 

th a t v\ and v2 are not adjacent and each of them  has distinct out-neighbors 

equal to  A in x + because p  =  0. Altogether, we have {v i,v 2} and 2A which 

will add up to  2A +  2, bu t \x+\ = k = 2A +  1 is a contradiction. Therefore, x + 

is a regular tournam ent and by Lemma 8.1.5 it is normal, which means th a t 

the size of out-neighbors is the same as the size of in-neighbors. □

Since G  is assumed to be connected and because p. = 0, it is clear th a t G  

is strongly connected, because if it is not then we have two vertices in G, say 

x  and y, such th a t there is no directed path  from x  to  y, and this is impossible 

because of the condition of p  being 0. W ithout loss of generality, assume th a t 

we have a directed path  x  to  vt and another directed path from vi+i to  y, and
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we have u* <— v*+i, as follows:

x  -»  vi -* u2 -» • • • v»_i -> Vi <- vi+1 -> ui+2 vn_i -> y.

But then u,_i and u,+i would have a common out-neighbor, which can not 

be because /r =  0, so they have to  be adjacent. Recursing with this idea, we 

will get a directed path  from x  to  y. Therefore, G  is strongly connected.

C la im  8 .2 .2 . Every vertex in x + dominates A vertices in x ~ , and vice versa.

Proof. Since G is strongly connected and it is not a tournam ent, there is a 

vertex y E  G  such th a t x  rf y, and there is a directed path  from x  to  y  in G. 

We may choose y so th a t the directed distance from x  to y  is minimal, such 

th a t y  is dominated by a vertex in x + or in x ~ . B ut y  can not be dominated 

by any vertex in x~  because /i =  0 and x  rf y. Similarly, y  can not dominate 

any vertex in x +.

Therefore, y is dominated by a vertex, say v, in x +. Suppose there is a 

vertex w in x + th a t does not dominate y. Since x + is a regular tournam ent 

and is strongly connected, there is a directed path  from v to w in x +. On 

this path, there are vertices u  and v! so th a t u —* u' and u —> y, and u' y. 

This contradicts \x =  0. Hence, every vertex in x + dominates y. Similarly, y 

dominates every vertex in x ~ . Assume now, if there is another vertex y' with 

x  ^  y \  and th a t  y' is dominated by a vertex in x +. it will be dominated by 

every vertex in x + and so d ~ (y ,y r) = k  is a contradiction. Therefore, every 

vertex in x + dominates A vertices in x ~ .

W ith the same argument, we can show th a t every vertex in x~  dominates 

A vertices in x +, because every vertex in x~  is adjacent to  x  and thus they 

have A common out-neighbors which are contained in x +. □

Therefore, V (G )  =  { x ,y }  u T U i '  and thus |V(G)| =  2k + 2. Fur­

thermore, there is an enumeration of vertices x + = { v i,v 2, ■ ■ ■ ,v n} and x~ — 

{v[, v'2, . . . ,  v'n} such th a t ’if is the unique vertex non-adjacent to  vt and vice
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x

y

Figure 8.2.2: A graph G  explaining Claim 8.2.2.

versa. T hat means, if vt —> Vj then since no vertex dominates both v3 and v'p  

we conclude th a t w' —> u,. Similarly, v3 —> v[ and v[ —> u '. This is because 

Vj 7  ̂ u' and // =  0 . Thus the mapping u* i—> w' is an isomorphism.

The following figure gives more explanation of the situation above. We also 

see th a t v'k is a common out-neighbor of u, and v3 if and only if vk is a common 

in-neighbor of v, and v3. Thus the number of vertices in x + dominating u, and 

v3 plus the number of vertices in x + dominated by u,; and v3 is equal A — 1. 

T ha t is because and v3 are adjacent, and then d+(vi,Vj) =  A — 1 in G  

with out vertex y, and d~(vi,Vj) = A — 1 in G w ithout vertex x, and thus vt 

and Vj would have A — 1 common out- or in-neighbors in x +. T hat means if 

Vi —> vk <— Vj then w* <— v'k —> Vj, but d+(vi,Vj) =  d ~ ( v iyVj) — A and since 

y g  x + and x + is a regular tournam ent hence it is normal by Lemma 8.1.5. 

Thus in x +, d+(viy Vj) = d r(v t) v3) =  and so A is odd. Therefore, x + is an 

NRD( k ,  A,^,-)-
If on the other hand G  is a doubly regular tournam ent (i.e. a regular 

tournam ent satisfying A- and //-conditions) with degree k — 2A +  1 and with 

vertex-set =  { x i , x 2, x n}. n  =  2k +  1 , then we can construct a  graph with
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vertex-set =  {u0, Vi , . . .  ,v n, v'0,v {, . . . ,  v 'n}, and edges :

Vi —> v'0 v't v0 for 1 <  i <  n.

and

Vi —> vj —* v\ —> Vj —> Vi if Xi —> Xj in G V 1 <  i , j  <  n

It is easy to  check th a t this new graph is an N R D (2 n  +  2, n, k, 0). As a result

of this section with the case of n =  0, we summarize the cases for G in the 

following theorem, as in [44]:

T h e o rem  8 .2 .3 . A connected digraph is an N R D  with p =  0 i f  and only if  

either:

1. It is a directed cycle (k =  1),

2. it is a doubly regular tournament, or

3. it has an adjacency matrix o f the following form

 ̂ 0 1 ... 1 0 0 ... 0 ^
0 1

: A  : A*

0 1

0 0 ... 0 0 1 ... 1

1 0

A* \ A

V1 0 J

where A  is an adjacency matrix o f a doubly regular tournament.
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As an application for possibility 3, consider the following example: Con­

sider the doubly regular tournam ent N R D (3 ,1,0,0) which is a directed cycle 

with three vertices and has the adjacency m atrix A  as follows:

A =

V t V2 ^ 3

VI X

V2 X

V3 X

Figure 8.2.3: N R D {3 ,1 ,0 ,0 ) with its adjacency m atrix A

and then we can construct an N R D (8, 3 ,1 ,0) with the following adjacency 

m atrix A  as in the above theorem, as follows:

®4

V\ V2 ^3 V4 V5 V6 V7 Vg

V\ X X X
v 2 X X X
V3 X X X
l>4 X X X
v5 X X X
V6 X X X
V7 X X X
V8 X X X

Figure 8.2.4: The constructed N R D (8 ,3 ,1 ,0 ) and its adjacency m atrix A .

As can be seen, the previous graph G  is not a tournam ent because, for 

example, vertices v0 and tq are not adjacent, and clearly it has the form as in 

possibility (3) in Equation 8.10. So it is an N R D (8 ,3 ,1,0).

If an N R D (v , k, A, 0) with v — 2k +  1 is known, then we can construct an 

N R D (2 v  +  2, v, k, 0) as described above. For example, we have seen how we 

constructed the N R D (8 ,3,1, 0) from the existing N R D (3 ,1 ,0 ,0 ). Another 

example is to  construct an N R D (  16 ,7 ,3 ,0) from the N R D {7 ,3 ,1 ,0 ) in the 

same way.
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We notice th a t the constructed digraphs with param eters (2v +  2, v, k, 0) 

have edges such th a t each four vertices form a cycle, and if we know that 

Vi —» Vj for example, then we can complete the cycle directly to  be vt —> Vj —» 

v[ —► v'j —> Vi and so on.

Moreover, we notice th a t the automorphism group order of the constructed 

digraph is related to  the automorphism group order of the tournam ent. If we 

denote the tournam ent by T , and the constructed digraph by G. Then, we 

have the following relation:

\Aut(G)\ = \A u t(T )\- \V (G )\

where V (G) is the vertex set of the constructed digraph. T hat is because we 

can map any vertex from the vertex set of the constructed digraph, say Vi, to 

the vertex v0 and then we have to map v' to  v'0 and everything else will be 

settled down to preserve adjacencies, th a t is to  get the same digraph. Next, 

we multiply the order of the automorphism group of T  by |F (G )| since we 

have \V(G)\ vertices th a t can be m apped to  vertex v q .

A small example of this would be our previous example, which is the 

construction of N R D  (8 ,3,1 ,0 ) =  G from the doubly regular tournam ent 

N R D (3 ,1 ,0 ,0 ) =  T. In th a t example, we have \Aut(T)\ = 3 and hence 

\Aut(G)\ = 3-8 =  24, which is true. Another example is the N R D (11,5,2 ,0 ) =  

T  which was used to construct the N R D (24 ,11,5,0) =  G. And we have th a t 

\Aut(G)\ = \Aut(T)\ • 24 =  55 • 24 =  1320. The same idea works on the 

construction of the N R D (32,15 ,7 ,0) from the N R D (15,7, 3,0).

As a result of these connections for the case when fi = 0, we will not be 

interested in searching for those digraphs in the (3) as in the theorem. However, 

in the case where the N R D  is a doubly regular tournam ent, /i can be equal 

to 0, bu t still it is an interesting digraph since it can not be constructed from 

a smaller graph.
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8.3 N R D s with fi — k

In this section, we consider the case of p  = k.

T h e o re m  8 .3 .1 . A graph G is an N R D  with p = k i f  and only i f  there 

is a number s such that G is obtained from  a doubly-regular tournament by 

replacing each vertex x  by a set Vx of s new vertices such that i f  x  —> y in the 

tournament then u  —» w for every u  €  Vx and w G Vy. Then, s =  k — 2A =  

v — 2k.

In other words, a graph is an N R D  with p — k  if and only if it has an 

adjacency m atrix which is the Kronecker product of an adjacency m atrix of a 

doubly regular tournam ent and the all (s x s) l ’s matrix.

Proof. (<t=) It is easy to  check th a t every graph obtained from an N R D (v , k, A, •)- 

tournam ent as described is an N R D (sv , s k , , sX, sk).

(=») Suppose now th a t G is an N R D  with p  = k. Suppose x ,y  6 G and 

x  'f' y. Then, as p  = k, every vertex which dominates x  also dominates y. If 

z  is another vertex non-adjacent to  x. then every vertex which dominates x  

also dominates z, then d ~ (y ,z ) =  k  since, A <  y  and z  are non-adjacent. 

Therefore, non-adjacency is a transitive relation on the vertex-set, which is 

therefore partitioned into classes, say Vi,V2, . . .  ,Vr , such th a t any two vertices 

are adjacent if and only if they belong to  distinct classes.

Suppose th a t x  G V* dominates y 6 Vj, for some 1 <  i . j  < r. If x  ^  x' € Vi, 

then x  /  x' and thus x ' —> y. Moreover, if y ^  y ' G Vj, then x  —> y' and 

x ' y '. This is because p  =  k. Thus, every vertex in Vj dominates every 

vertex in Vj. Therefore,

2k = d~(x) +  d~(y) = v — |Vj| +  A — A =  v — |Vj|

since every vertex of G dominates either x  or y, except for the vertices in Vj 

and the A vertices th a t are dominated by both x  and y, and since there are
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also A vertices which dominate both x  and y. Similarly:

2 k = d+(x ) +  d+(y) =  v  — |V*|

It follows th a t \Vi\ = \Vj\ =  v — 2k. Denote this number by s. Then, s divides 

k  and A, since the out-degree now is sk  and the common out-neighbors is 

sA. Therefore, a digraph with vertex-set {Vi, V2, . . . , Vr}  and edges Vt —> V3 

if the vertices of Vi dominate the vertices of V) in G, is obviously a doubly- 

regular tournam ent with degree -  and double degree so th a t |  =  2 j  +  1 

and k = 2A +  s. □

As an example, consider the N R D (3 ,1,0 ,1), see Figure 8.2 and apply the 

Kronecker product to  the all one (2x2) m atrix to  construct the N R D (6 ,2 ,0 ,2 ), 

see Figure 8.1.1, as follows:

0 1 0 

0 0 1 

1 0 0
3 x 3

0 0 1 1 0 o’
0 0 1 1 0 0

1 1 0 0 0 0 1 1
1 1

2x2
0 0 0 0 1 1
1 1 0 0 0 0
1 1 0 0 0 0

6 x 6

As in the theorem above, s = 2, and thus we construct an N R D {2 *3,2-  

1, 2-0, 2-1), with v = 6, k  — 2, and A =  0. Therefore, s ~ v  — 2k and s — k — 2A 

is satisfied.

As a consequence of the previous theorem, the following corollary gives a 

necessary condition for the param eters in order for an NRD with fi = k  to 

exist.

C o ro lla ry  8 .3 .2 . A n N R D ( v , k , X , k )  with a prime v does not exist i f  it is 

not a tournament.
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Clearly if such a N R D  exists then there exists a tournam ent with v' vertices 

which was used to  obtain th a t N R D  with vertices v such th a t s ■ v' = v which 

is not possible for s >  1. For instance, we know th a t N R D {2 9 ,11,2,11) and 

N R D (2 9 ,13,5,13) do not exist because of the previous corollary.

Moreover, as in the previous section, the constructed graph is related some­

how to the original graph (tournament) with respect to the automorphism 

group orders. The automorphism group order of the constructed graph, say 

G, is related to  the automorphism group order of the tournam ent T  in the 

following relation:

\Aut(G)\ = ( a ! ) ^  ■ \Aut(T)\

where s =  v — 2k in the constructed graph. This is because we are replacing 

each vertex in the tournam ent by s new vertices. So we can map any vertex 

of those s vertices to  any other vertex in the same class, and because we have 

IV'(T)! vertices or s new sets, we get our relation.

For example, let G  =  N R D (9 ,3 ,0 ,3 ), which was constructed using T  =  

N R D (3 ,1 ,0 ,1), and we have th a t \Aut{G)\ =  (3!)3 • 3 =  648 which is true. 

Also, the construction of G = N R D {30,14,6,14) using T  = N R D (  15 ,7 ,3 ,7) 

where we have s =  30 — 28 =  2 and \Aut(T)\ =  21 and by using the previous 

relation we have

\Aut(G)\ = (2)15 • 21 =  688128

8.4 C onstructing N R D s

In this section, we describe a procedure which allows us to generate exhaus­

tively NRDs with given param eters v, k, A, and p. Note th a t for those NRDs, 

it is strongly advised to  generate such structures using adjacency matrices 

rather than  incidence matrices. However, for the isomorphism rejection tech­

niques, it is always possible to  build the corresponding incidence m atrix to
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apply the isomorph-rejection tests described in the previous chapter. If A  is 

an adjacency m atrix of an NRD G, then one can construct the corresponding 

incidence m atrix B  by Definition 2.5.2. It is clear th a t it is much easier to 

check the A- and //-conditions on A  rather than  on B.

Assuming th a t we generate NRDs with respect to  their adjacency matrices, 

we proceed to  generating an NRD, say G, as follows: Suppose th a t we started  

from the zeros adjacency m atrix (i.e. empty digraph), then we want to  fill in 

each row with k  l ’s, because each vertex in G  has out-degree equal to  k, such 

th a t we fill the l ’s as far left as possible in the matrix. This is because we are 

using the first-breadth strategy for constructing rows of the matrix. Later on 

we come back to  shift the last one on the right one step to  the right so tha t 

we cover all possibilities for any given row.

Thus the first row of A  has 0 in the first (diagonal) entry because no loop 

is allowed. The following k  entries are 1, and the remaining entries are 0. The 

second row would have 0 on the first entry (since A  +  A T is a {0, l}-m atrix), 0 

on the second (diagonal) entry, and 1 on the following A entries (since vertex 

1 and vertex 2 are adjacent), 0 on the next k  — A — 1 entries and k  — A entries 

with 1, with the remaining entries filled in with 0.

Suppose th a t we have filled in rows 0 , 1 , . . . ,  r. Then row r must satisfy 

the  following:

• It has exactly k  entries 1 and v — k  entries 0,

• Entry r  (diagonal) must be 0,

• For i < r, entry i is 0 if entry r in row i is 1,

•  If the m atrix has 0 in entry (r, i) and in entry (i, r), then the dotproduct 

of row r  and row i equals to  f i1 otherwise equals to A for i — 0 , 1 , . . . ,  r — 1,

For each possible way to  fill in row r we repeat this procedure with r 

replaced by r+ 1  and so on, until either we find some r  for which no row satisfies
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the conditions or else all v rows are completed and the desired adjacency m atrix 

has been reached. In the first case, when we reach some row r  which does not 

satisfy the condition, we go back to  row r  — 1 and change it trying to  find 

another row which satisfies the conditions. If we succeed, then we go on to 

row r and try  one more time. Otherwise, we go back again to  row r — 2 and 

so on until we find a suitable row r  and continue or until we go back to  row 0 

and then stop, concluding th a t no such NRD exists.

This construction strategy assumes th a t we construct an adjacency m atrix 

of an NRD row by row starting from row 0 and then row 1 and so on until we 

construct every possible NRD if any.

8.5 R esults o f Norm ally Regular Digraphs

In this section we present some of the results found in the search for normally 

regular digraphs. Note th a t we do not show NRDs results, because they can 

be obtained from what is in the table according to  Sections 8 .2  and 8.3 for 

H =  0 or k. In particular, we show only NRDs with n  7  ̂ 0, k  and those which 

are doubly regular tournam ents.

Note th a t we use the adjacency m atrix of an NRD to check for the A- and 

//-conditions, see Section 8.4. In the table below, we display the results of 

our search in the column ’’new” and the results th a t were found in [44, 45] by 

Jorgensen in the column ’’old” . On the left side we have the results related to  

NRDs whose /t =  A or A +  1. The part on the right side is related to  NRDs 

whose n $  {0, A, A +  1, k}. The in the table means th a t we obtained the 

same results as Jorgensen, so we do not repeat the entry in the old column in 

the new column.

In the right hand side table, the case (36, 7,0, 2) was the easiest case in 

Jorgensen table in [45], where in our table (right hand side) the case (19, 6 ,1,3) 

was the easiest since a complete search was done in 1 second. Moreover, the
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most difficult case for our search was the case (31,10,2,5) which was the most 

difficult case for J0 rgensen also, bu t this case in our search was completed in 

3.5 hours while in Jprgensen’s it was completed in 30 hours. We note th a t 

Jprgensen’s search was based on the generation by canonical representatives

[45], while ours was based on canonical augmentation, by the meaning of 

McKay’s //-function.

Table 8.1: Normally Regular Digraphs

V k A V- old new V k A old n ew

7 2 0 1 1 ★ 7 3 1 1 1 ★

7 3 1 1 1 ★ 19 6 1 3 1 ★

11 5 2 2 1 k 21 8 3 2 1 k

11 4 1 2 0 ★ 23 8 2 4 0 k

13 3 0 1 5 ★ 25 8 3 1 0 k

13 4 1 1 4 ★ 27 8 1 4 0 k

15 6 2 3 0 ★ 27 10 3 5 >  1 k

15 6 3 3 2 ★ 29 7 2 1 4 k

16 5 1 2 16 ★ 31 10 2 5 0 k

16 6 2 2 4 ★ 31 10 4 1 0 k

19 8 3 4 0 k 31 12 4 6 > 1 k

19 9 4 4 2 k 35 10 1 5 0 k

21 4 0 1 187 ★ 36 7 0 2 2 k

21 5 1 1 >  1000 > 200,000

23 10 4 5 0 k

23 11 5 5 37 ★

25 8 2 3 > 1 >  4, 070

25 9 3 3 >  1 >  36

27 12 5 6

27 13 6 6 722 ★

31 15 7 7 >  13,330

31 5 0 1 >  65,000

31 6 1 1 > 50, 000
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(P, ZfO) s e e  poset /it-function, 58
A ®  B , see Kronecker product ni (x , y )  = x, see projection map
G-invariant, 28 7r2(a:, y) — y, see projection map
GW, 30 7rf1(rc), see extension set
Gx, 27 7G l {y), see preimage set
GY, 27 p(x),  see canonical orbit represen­
Gyi,y2,...,yai 28 tative
K n, see complete graph Rowsupp(-A), 50
Mm,ni 84 Sym (m)> 27
M $„, 50 T D O S (n ,^ ) , 112

S(t ,  k, v ), 22 TDO(II, X) ,  112
S TS( v ) ,  22 PARTITIONBACKTRACK^IIj, X) ,  132,
X / G ,  30 134
[p], 152 col-sumj(j4), 21
[P}j, 152 colj(A), 21
n*, 119 deg(u), 79
n  7j,c, 109 der(II, X) ,  120
Qfj, 153 derp(II, X) ,  120
P i ,  153 derg(II, X) ,  120

79 refine(II,/ ) ,  110
£>™’fc, 85 row-sumj(A), 21

O00tr rowj(A), 21
l ( x ) ,  120 supp(G), 77, 79
T ( G , X ) ,  30 Ckyjl H i

see isomorphic d+(x),  177
l J ,h  154 d+(x,y),  177

155 d~(x),  177
NN, 49 d~(x,y) ,  177
X m , 79 ex (y), H9
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Tk,i, 110
t-(v, k , A), 22
x  —> y, see directed edges
a: V y, 43
a: A y, 43
x+ , 176
aT, 177

and G(x), 27

accepted node, 61

base, 29
ordered base, 30 

best ordering, 133 
bound

greatest lower bound, 43 
infimum, 43 
least upper bound, 43 
lower, 43 
supremum, 43 
upper, 43

canonical form, 31 
canonical labeling map, 31 
canonical node, 133 
canonical orbit, 143 
canonical orbit representative, 31 
canonical row, 142 
certificate, 105 
composition method, 151 
configuration, 24 

symmetric, 24 
coset, 29

decomposition, 46 
derived TDO, 119 
design, 22

balanced incomplete block, 22

digraph, 11
directed edges, 11 
in-degree, 12 
in-neighbor, 12 
normally regular, 176 
out-degree, 12 
out-neighbor, 12

feasible solution, 87 
flag, 19, 79 
flag graph, 79 
Floyd’s algorithm, 93 
found first leaf, 133

generating set, 29 
strong, 30 

graph, 6
(k,g)-cage, 16 
fc-factor, 16 
A;-regular, 7 
action-graph, 31 
automorphism, 8 
Automorphism group, 8 
bipartite, 15 
complement, 8 
complete, 8 
cubic, 7 
cycle, 8 

Hamiltonian, 12 
degree sequence, 8 
edge, 6 
empty, 8 
girth, 13
Heawood graph, 101 
isomorphic, 8 
isomorphism, 8 
McGee graph, 101
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nodes, 6 
order, 6 
path, 8 

end vertex, 8 
shortest path , 93 
s ta rt vertex, 8 

regular, 7 
size, 6
spanning, 12 
subgraph, 12 

induced, 13 
T utte graph, 101 
vertices, 6 

group
action, 27 

faithful, 28 
transitive, 29 

block, 29 
imprimitive, 29 
orbit, 27 
perm utation, 27 
pointwise stabilizer, 28 
setwise stabilizer, 27 
stabilizer, 27 
subgroup, 26 
symmetric, 27 
trivial block, 29

hashing, 49
hashing algorithm, 106 

Hasse diagram, 42

incidence geometry, 24 
incidence structure, 19 

automorphism, 19 
automorphism group A u t(X ), 19 
blocks, 19

isomorphic, 19 
lines, 19 
points, 19 

degree \p), 20 
incident, 6
isomorphism invariant, 104

Kronecker product, 49

lattice, 43 
ranked, 43 

lifting orbits, 61 
linear space, 25

line type, 25, 152 
param eters of the first type, 25, 

152
param eters of the second type, 

154
point type, 153 
point type distribution, 153 
refined line distribution, 155 
refined line type, 155

m atrix
adjacency, 10 
equivalent, 34 
incidence, 10 

partitioned, 113 
normal, 177 
skew Hadamard, 181

orbit
a transversal, 30 
flag orbit, 54 
shadow orbit, 54 

order tree, 45 
ordering

lexicographical, 44
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partial, 41 
total, 44 

orderly generation, 62

partial solution, 87 
partition 

cell, 14 
singleton, 15 

class, 14 
coarser, 15 
discrete, 15 
equitable, 112 
finer, 15 
ordered, 14
partition refinement, 107 
unit, 15 
unordered, 14 

partition backtrack algorithm, 118 
point stabilizing procedure, 131 
poset, 42

comparable, 44 
incomparable, 44 

power set, V ( V ) ,  7 
all i-subset Vi(V) ,  7 

projecting orbits, 61 
projection map, 54 
projective plane, 22

rejected node, 61

search
backtrack, 74 
breadth-first, 46 
depth-first, 45 
poset, 76 
space, 80 
tree, 76

set
extension set, 54 
partially ordered, 42 
preimage set, 54 
totally ordered, 44 

Steiner system, 22

tactical, 47 
column, 47
decomposition schemes, 47 
row, 47
TDO partition, 112 
TDO-method, 110 

target space, 80 
tournam ent, 177

doubly regular, 181 
Hadamard, 181 

tree, 13
ancestor, 14 
child, 14 
depth, 14 
descendant, 14 
height, 14 
leaf, 14 
level, 14 
parent, 14 
rooted, 14 
Schreier, 31 
siblings, 14 
spanning, 13 
subtree, 14

vertex
N (x ) ,  7 
deg(x), 7 
adjacent, 6 
degree, 7
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neighborhood, 7
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