
DISSERTATION 

MAPPING TAMARIX: NEW TECHNIQUES FOR FIELD 

MEASUREMENTS, SPATIAL MODELING AND REMOTE SENSING 

Submitted by 

Paul H. Evangelista 

Department of Forest, Rangeland and Watershed Stewardship 

In partial fulfillment of the requirements 

for the Degree of Doctor of Philosophy 

Colorado State University 

Fort Collins, Colorado 

Summer 2009 



UMI Number: 3385125 

All rights reserved 

INFORMATION TO ALL USERS 
The quality of this reproduction is dependent upon the quality of the copy submitted. 

In the unlikely event that the author did not send a complete manuscript 
and there are missing pages, these will be noted. Also, if material had to be removed, 

a note will indicate the deletion. 

UMI' 
Dissertation Publishing 

UMI 3385125 
Copyright 2009 by ProQuest LLC. 

All rights reserved. This edition of the work is protected against 
unauthorized copying under Title 17, United States Code. 

ProQuest LLC 
789 East Eisenhower Parkway 

P.O. Box 1346 
Ann Arbor, Ml 48106-1346 



Copyright by Paul H. Evangelista 2009 

All Rights Reserved 



COLORADO STATE UNIVERSITY 

th 
May 19m, 2009 

WE HEREBY RECOMMEND THAT THE DISSERTATION PREPARED 

UNDER OUR SUPERVISION BY YOUR PAUL EVANGELISTA HERE ENTITLED 

MAPPING TAMARTX: DEVELOPING NEW TECHNIQUES FOR FIELD 

MEASUREMENTS, REMOTE SENSING, AND SPATIAL MODELS BE ACCEPTED 

AS FULFILLING IN PART REQUIREMENTS FOR THE DEGREE OF DOCTOR OF 

PHILOSOPHY. 

Committee on Graduate Work 

( 5 i * A ^ £ f c ' 

(Dr. Melihda Laituri) 

WeWa (Dr. Philip WSstra) 

/J. ( j y v y v - ^ 

Advisor (Dr. William Romme) 

11 



ABSTRACT OF DISSERTATION 

MAPPING TAMARIX: NEW TECHNIQUES FOR FIELD 

MEASUREMENTS, SPATIAL MODELING AND REMOTE SENSING 

Native riparian ecosystems throughout the southwestern United States are being altered 

by the rapid invasion of Tamarix species, commonly known as tamarisk. The effects that 

tamarisk has on ecosystem processes have been poorly quantified largely due to 

inadequate survey methods. I tested new approaches for field measurements, spatial 

models and remote sensing to improve our ability measure and to map tamarisk 

occurrence, and provide new methods that will assist in management and control efforts. 

Examining allometric relationships between basal cover and height measurements 

collected in the field, I was able to produce several models to accurately estimate 

aboveground biomass. The best two models were explained 97% of the variance (R2 = 

0.97). Next, I tested five commonly used predictive spatial models to identify which 

methods performed best for tamarisk using different types of data collected in the field. 

Most spatial models performed well for tamarisk, with logistic regression performing best 

with an Area Under the receiver-operating characteristic Curve (AUC) of 0.89 and 

overall accuracy of 85%. The results of this study also suggested that models may not 

perform equally with different invasive species, and that results may be influenced by 

species traits and their interaction with environmental factors. Lastly, I tested several 

approaches to improve the ability to remotely sense tamarisk occurrence. Using Landsat7 

ETM+ satellite scenes and derived vegetation indices for six different months of the 

growing season, I examined their ability to detect tamarisk individually (single-scene 

analyses) and collectively (time-series). My results showed that time-series analyses were 
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best suited to distinguish tamarisk from other vegetation and landscape features (AUC = 

0.96, overall accuracy = 90%). June, August and September were the best months to 

detect unique phenological attributes that are likely related to the species' extended 

growing season and green-up during peak growing months. These studies demonstrate 

that new techniques can further our understanding of tamarisk's impacts on ecosystem 

processes, predict potential distribution and new invasions, and improve our ability to 

detect occurrence using remote sensing techniques. Collectively, the results of my studies 

may increase our ability to map tamarisk distributions and better quantify its impacts over 

multiple spatial and temporal scales. 

Paul H. Evangelista 
Department of Forest, Rangeland and Watershed Stewardship 

Colorado State University 
Fort Collins, Colorado 80523 

Summer 2009 
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INTRODUCTION 

Riparian ecosystems throughout the southwestern United States are being 

threatened by the rapid invasion of Tamarix species, also known collectively as tamarisk 

or saltcedar. Introduced from Eurasia in the early 1800s for use in erosion control, as 

windbreaks and as ornamentals, tamarisk was acclaimed for its ability to withstand 

drought, heat, and diverse soil conditions (Carleton 1914, DiTomaso 1998). These views 

began to change by the mid 1900s as resource managers witnessed tamarisk's remarkable 

ability to spread and dramatically affect native flora, wildlife habitat, and hydrologic 

processes (Christensen 1962, Robinson 1965, Harris 1966). It is generally reported that 

the rapid spread of tamarisk between the 1920s and 1960s was correlated with increased 

regulations of stream flows associated with dam construction and water diversions used 

to facilitate agriculture (Everitt 1980, Everitt 1998). Its estimated distribution in the 

southwest grew from 40 km2 in 1920 to over 4,800 km2 by the mid-1960s (Robinson 

1965). Initially, tamarisk infestation was primarily confined to regions of the American 

southwest (i.e., Colorado, Arizona, New Mexico, Utah, and Texas) but is now a major 

threat to riparian ecosystems from California to Washington and has become established 

in at least 38 states (Morissette et al. 2006, NIISS 2008, USDA Plants Database 2008). 

There is no evidence that tamarisk invasion has subsided. New invasions have been 

reported throughout the U.S. and tamarisk is now found in several Canadian providences, 

throughout Central America, and as far south as Brazil and Peru (Baum 1967, NIISS 

2008, USDA Plants Database 2008). 
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Species Profile 

Tamarisk species are members of the family Tamaricaceae, which consists of 

four genera totaling about 100 species (Mozingo 1987). None of the species are native to 

North America and only the genus Tamarix can be found in North America. Currently, 

there are 11 species of tamarisk in the U.S. (USDA Plants Database 2008) and at least 

three new forms that have resulted from hybridization (Gaskin and Schaal 2002). The 

most pervasive species are T. chinensis (native to Mongolia, China, and Japan), T. gallica 

(native to Europe and northern Africa), T. parviflora (native to southern Europe and Asia 

Minor) and T. ramosissima (native to the Middle East, China, and Korea; Baum 1967, 

Mozingo 1987). Analyses of DNA sequence data by Gaskin and Schaal (2002) found 

that the most common type of tamarisk found in the U.S. is a hybrid involving the 

combination of T. ramosissima and T. chinensis. Other less common hybrids identified 

include crosses of T. ramosissima and T. chinensis with T. gallica and T. parviflora 

(Gaskin and Schaal 2002). 

Tamarisk may exhibit varying growth forms, generally growing as a large shrub 

that can reach heights up to 6 m tall with multiple stems. Its deciduous leaves are scale­

like, alternately arranged, and grow 1.5 to 3.5 mm long. Its flowers are pinkish purple in 

color and have five sepals, five petals, five stamens, and a five-carpellate pistil arranged 

on a flowering stalk that is 2 to 7 cm long (Welsh et al. 1993). Flowering may begin one 

to three years after germination and generally peaks between April and August. The 

seeds are produced in a lance-ovid capsule, are viable for up to 45 days under ideal 

conditions, and can germinate within 24 hours after moistening (Carpenter 1998). 

Tamarisk is a prolific seed producer that can generate as many as 600,000 seeds annually; 
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the seeds are easily dispersed over long distances by wind or water (Robinson 1958). 

Reproductive success is further enhanced by its ability to sprout from branches and its 

ability to develop adventitious roots from pieces of the plant in wet soils (Horton 1977). 

Tamarisk possesses several other important characteristics that contribute to its success as 

a riparian invader. The genus has a greater tolerance to saline soils than native 

vegetation. Salts from deep in the soil are assimilated by roots and deposited on the soil 

surface in leaf litter where the salts may accumulate at high concentrations, inhibiting the 

persistence of many native species (Carman and Brotherson 1982, DiTomaso 1998). 

Tamarisk is also resilient to a variety of natural and anthropogenic disturbances such as 

fire, drought, flooding, and cutting, creating a dilemma for resource managers trying to 

control or eradicate it (Busch and Smith 1995, Smith et al. 1998). These physiological 

characteristics and interactions with riparian communities make tamarisk a superior 

invader that can successfully compete with most native plant species. 

Impacts of Tamarisk on Native Ecosystems and Natural Resources 

Although researchers have been actively examining the effects of tamarisk on a 

number of ecological processes (Campbell and Dick-Peddie 1964, Carman and 

Brotherson 1982, Stromberg 1998, Sher et al. 2002), there is still little quantitative 

information to provide a complete picture of its impacts. This is of particular concern for 

western states such as Colorado, where water yield is heavily managed for human 

consumption, agriculture, and maintenance of biodiversity. Tamarisk is a facultative 

phreatophyte and can extend its root system as deep as 50 m, desiccating flood plains and 

water tables (Blackburn et al. 1982, Pinay et al 1992). Observations from resource 
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managers and results from several small-scale studies show that tamarisk uses water more 

efficiently than native cottonwoods (Populus spp.) and willow (Salix spp.; Busch and 

Smith 1993, Cleverly et ah 1997). Research efforts attempting to quantify water loss 

from tamarisk infestation have yielded varying results; however, it is evident that large 

stands of tamarisk utilize significantly more water than ecosystems dominated by native 

species. 

The impacts of tamarisk on hydrological processes are further compounded by the 

extent of infestation. Many studies show that tamarisk now dominates a larger area of 

many southwestern riparian ecosystems than native riparian species (Christensen 1962, 

Harris 1966, Busch and Smith 1995, DiTomaso 1998, Everitt 1998). Anderson et al. 

(1977) reported that tamarisk comprises 95 to 100% of the total trees one small portion of 

the lower Colorado River, while Briggs and Cornilius (1998) reported that Cottonwood 

stands have decreased from over 20 km in the 1600s to less than 2 km in 1998 in the 

same area. Throughout riparian ecosystems of the Colorado River Basin, tamarisk may 

account for as much as 40% of the total ground cover (Zamora-Arroyo et al. 2001). 

Along the Arkansas River Basin in eastern Colorado, tamarisk was first observed in 1913 

by R. Niedrach near the present-day city of Lamar. On a return visit to the area in 1921, 

he reported that the species had spread considerably (Lindauer 1985). Today, tamarisk 

covers 117 km2 between the Pueblo Dam and Colorado/Kansas state line with an 

additional 60 km2 along the tributaries of the Arkansas River (Tamarisk Coalition 2008). 

Similar rates of infestation have been reported on other Colorado rivers, and mapping 

initiatives and predictive models indicate potential tamarisk expansion into new riparian 

ecosystems (Morisette et al. 2006, Tamarisk Coalition 2008). 
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Riparian ecosystems in the southwest are of particular importance to plant 

diversity. Because tamarisk infestations often result in dense monotypic stands, native 

plant diversity is greatly reduced as tamarisk increases in dominance (Lindauer 1983, 

Stromberg et al. 1993, Busch and Smith 1995, Smith et al. 1998, Briggs and Cornilius 

1998, Horton et al. 2001, Bhattacharjee et al. 2002). Besides its ability to outcompete 

native plants for water, tamarisk utilizes other strategies to increase its competitive 

advantage. First, the species is more tolerant to drought than most native species (Horton 

1977, Busch and Smith 1995, Cleverly et al. 1997). This not only includes tolerance to 

natural variations in climate but also to artificial conditions created by altered flow 

regimes from anthropogenic activities (Dick-Peddie 1993, Everitt 1998). Second, 

tamarisk foliage contains high concentrations of salts which can alter soil chemistry as 

litter accumulates in the understory inhibiting the establishment and growth of native 

plants (Decker 1961, Wilkinson 1966, Carman and Brotherson 1982, DiTomaso 1998). 

Increased salinity in the soil can enhance the establishment of other invasive species such 

as cheatgrass (Bromus tectorum), hairy whitetop (Cardaria pubescens), Russian 

knapweed {Acroptilon repens), and Canada thistle (Cirsium arvense), which are also 

known to be highly competitive with native species (Akashi 1998, Simberloff and Von 

Holle 1999). Third, tamarisk is unpalatable to most domestic livestock and wild 

ungulates, while native cottonwood and willow are grazed by cattle, deer, and elk 

(Horton 1977, Stromberg 1998). Finally, tamarisk is capable of sprouting from the root 

crown after a fire; native plants and seed banks are less tolerant of fire. Dense stands of 

tamarisk tend to be highly flammable at certain times of the year resulting in high-

intensity fires that cause high mortality in native plant populations and the destruction of 
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seed banks. Aboveground tamarisk stems are burned, leaving the roots intact, allowing 

the plants to rapidly reestablish (Busch 1995, Hohlt et al. 2002). The physiological 

characteristics of tamarisk allow the species to compete successfully with native plants, 

but its ability to withstand wide-ranging environmental conditions and to alter ecosystem 

processes further enhances its ability to reduce native plant diversity and establish itself 

as a dominant species over time. 

The impacts of tamarisk on wildlife and critical habitat have not been fully 

examined. Studies on specific wildlife species have shown that infestations may have 

varying effects. In some cases, habitat quality is greatly reduced by the presence of 

tamarisk (Cohan et al. 1979, Anderson et al. 1984, Meents et al. 1984, Jake and Gatz 

1985), while other cases have shown that some wildlife species have the ability to adapt 

with little or no effects (Hunter et al. 1989). Riparian habitats generally provide two 

broad functions for wildlife: cover for breeding and protection, and as a source of food. 

The greatest concern with changes in riparian habitats is with avian species that rely 

heavily on riparian corridors for nesting, migrant use, and food (e.g., insects, berries). 

Although many bird species are known to use tamarisk (Brown et al. 1987, Hunter et al. 

1988, Livingston and Schemnitz 1996), several studies show that they prefer native 

vegetation or, at the least, require native vegetation to be in close proximity (Rosenberg 

et al. 1991, Young and Finch 1997). The yellow-billed cuckoo {Coccyzus americanus), 

for example, is known to require native riparian forests but will utilize tamarisk stands in 

defining territories and breeding activities (Hunter et al. 1988, Kunzmann et al. 2000). 

Reduced reproductive fitness has been observed in the endangered southwestern willow 

flycatcher (Empidonax traillii) in tamarisk-dominated habitats; however, they are able to 
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maintain fledgling survivorship rates similar to those recorded in native habitats (Dudley 

et al. 2000, Sogge et al. 2003). Although many studies show that avian diversity and 

abundance are not significantly impacted by tamarisk (Brown et al. 1987, Hunter et al. 

1988, Finch and Stoleson 2000), some species simply require large native trees (e.g., 

cavity nesters, drillers, granivores; Cohan et al. 1978, Rosenberg et al. 1991, Ellis 1995). 

The impacts of tamarisk on avian species must be assessed on a case-by-case basis; 

however, a general rule would be that specialist species have a higher likelihood of being 

negatively impacted by tamarisk replacement. These species are also more likely to be 

rare or endangered. 

Many native flora and fauna rely on insects and other arthropods as pollinators or 

as a food base. Most studies comparing invertebrate populations living in tamarisk stands 

to those living in native vegetation suggest that diversity and abundance are only 

minimally reduced (Liesner 1971, Stevens 1985, Miner 1989, Ellis etal. 2000). Only a 

few native insects will feed on tamarisk (Glinski and Ohmart 1984, Ellingson and 

Andersen 2002). Those that do are usually pollinators, such as bees and butterflies 

(Nelson and Andersen 1999, Drost et al. 2001). Because tamarisk retains its flowers 

longer than many native plants, life cycles for insects may be extended, which in turn 

may provide longer foraging opportunities for birds and other fauna (Drost et al. 2001, 

Yard et al. 2004). 

Herpetofauna appear to be at greater risk from tamarisk invasion. A few studies 

have shown herpetofauna populations to be significantly lower in tamarisk stands than in 

native vegetation (Jakle and Gatz 1985, Szaro and Belfit 1986, Konkle 1996). These 

studies were largely focused on species diversity and abundance, and offered no 
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conclusive evidence of the exact cause of population declines. The decrease in 

populations could be related to habitat structure (e.g., loss of thermal cover) or alterations 

in hydrological processes (e.g., decreased water levels; Szaro and Belfit 1986). For some 

species, such as the western pond turtle (Actinemys marmorata), reduced water levels 

appear to be responsible for population declines (Lovich and DeGouvenain 1998). Food 

supplies (e.g., insects, small mammals), for the most part, remain intact. Studies by Ellis 

et al. (1997) and Hink and Ohmart (1984) found that diversity and abundance of rodent 

populations in tamarisk stands were comparable to those in native vegetation. Some 

populations, such as deer mice {Peromyscus spp.), have been observed to increase in 

tamarisk stands (Ellis et al. 1997), while habitat alterations (e.g., reduced herbaceous 

vegetation and water) can be conducive to kangaroo rats (Diodomys spp.) and pocket 

mice (Perognathus spp.; Anderson andNelso 1999) 

Research and Management Needs 

Tamarisk infestation is now widespread and continues to expand throughout the 

U.S. If tamarisk is to be successfully controlled, new research is required to better 

support the needs of resource managers. Specifically, resource managers need detailed 

distribution maps of tamarisk to determine its impacts on an ecosystem, formulate control 

strategies, and monitor ecosystem recovery. Spatial models are proving to be useful in 

predicting the potential spread of tamarisk and other invasive species; however, they are a 

better measure of risk and do not always accurately reflect where current infestations 

occur. As a tool, spatial modeling software and techniques can be fit with real-time data, 

such as satellite imagery, to detect current tamarisk distributions. Most spatial models 
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rely on landscape features (e.g. elevation, slope, distance from water) to predict tamarisk 

occurrence, where remote sensing data measures spectral properties (e.g. reflectance, 

green-up, wetness) of a landscape at the time of data acquisition. In previous studies, 

remote sensing of tamarisk has not always produced the results desired. Detailed 

information on tamarisk distribution is increasingly compromised with ecosystem 

heterogeneity, coarse data resolution, and at large spatial scales. When used in 

combination, spatial models and remote sensing may greatly enhance our ability to detect 

tamarisk better than either technique used independently. 

Perhaps the greatest constraint to spatial modeling and remote sensing 

applications is the methods used to map tamarisk in the field. Field surveys are generally 

conducted by collecting location points where tamarisk is either present or absent. This 

method is not only costly and labor intensive, but provides little information on stand 

structure and is soon outdated as new infestations emerge, young stands become mature, 

and control treatments are conducted. Improved methods for collecting data on stand 

structure are required to facilitate new spatial modeling and validate remote sensing data, 

in addition to addressing some general research and management concerns. The impacts 

of tamarisk on native ecosystems are difficult to quantify. Information on tamarisk 

occurrence (e.g. presence, absence) offers little insight on the effects an infestation may 

be having on ecosystem processes. Field surveys that can estimate tamarisk biomass 

accumulation over a given area would be more useful to resource managers. In addition 

to clarifying potential transpiration and water use, biomass measurements provide critical 

information to a suite of ecological processes and facilitate better control and restoration 

strategies. In particular, they can be helpful in developing cost projections and for 
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planning logistical requirements related to control efforts, and be implemented in long-

term monitoring programs. 

Overview 

This dissertation consists of three chapters, each with the objective of improving 

our ability to detect, map, and monitor tamarisk invasion. My work has been an iterative 

learning process that examines tools and techniques that can be employed under a variety 

of conditions with significant accuracy. My research question is "How can we improve 

our ability to detect tamarisk distributions at different scales and geographic regions 

using existing knowledge and technology?" To answer this question, I had three 

objectives: 

(1) Develop field techniques for measuring tamarisk infestation that will provide 

better information on the stand structure and ecosystem impacts, while improving 

the performance of spatial modeling and remote sensing efforts. 

(2) Test and compare a suite of spatial models to evaluate their performance in 

predicting tamarisk occurrence. 

(3) Examine different remote sensing approaches to detect phenological 

characteristics of tamarisk and help distinguish the species from other vegetation 

and landscape features. 

Each of these objectives is addressed in a chapter of this dissertation. Chapter 1 

describes field and laboratory methods that can be used for estimating aboveground 
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biomass of tamarisk at the stand level. The species' irregular growth form has prevented 

the use of traditional biomass measurements and formulas; as a result, most surveys only 

record its presence or absence. By adding estimated basal cover and height 

measurements, allometric relationships are developed to enhance information collected in 

the field. In Chapter 2,1 examine the utility of five spatial models in predicting the 

occurrence and potential distribution of tamarisk occurrence and another highly invasive 

plant species. With an increasing number of spatial models available to researchers, my 

aim in this study was to identify the best model(s) for predicting tamarisk occurence 

using varying types of field data. In Chapter 3,1 investigate different techniques in 

remote sensing to detect pheonological attributes of tamarisk by comparing satellite data 

from six different months of year, independently and collectively. I also test the 

applicability of some commonly used vegetation indices in an effort to determine the best 

times of the growing season for distinguishing tamarisk from other vegetation. 
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CHAPTER 1: ESTIMATING ABOVEGROUND BIOMASS OF TAMARISK IN 

THE ARKANSAS RIVER BASIN OF SOUTHEASTERN COLORADO 

1.0 Abstract 

Predictive models of aboveground biomass of non-native tamarisk of various sizes were 

developed using destructive sampling techniques on 50 individuals and four 100 m2-

plots. Each sample was measured for average height (m) of stems and canopy area (m2) 

prior to cutting, drying, and weighing. Five competing regression models (P<0.05) were 

developed to estimate aboveground biomass of tamarisk using average height and/or 

canopy area measurements and evaluated using Akaike's Information Criterion corrected 

for small sample size (AICC). My best model (AICC = -148.69, AAIC0 = 0) successfully 

predicted tamarisk aboveground biomass (R2 = 0.97) using average height and canopy 

area as predictors. My second best model, using the same predictors, was also successful 

in predicting aboveground biomass (R2 = 0.97, AICC = -131.71, AAICC = 16.98). A third 

model demonstrated high correlation between aboveground biomass and canopy area 

only (R2 = 0.95), while two additional models found high correlations between 

aboveground biomass and average height measurements only (R2 = 0.90 and 0.70, 

respectively). These models illustrate how simple field measurements, such as height and 

canopy area, can be used in allometric relationships to accurately predict aboveground 

biomass of tamarisk. Although a correction factor may be necessary for predictions at 

larger scales, the models presented will prove useful for many research and management 

initiatives. 
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1.1 Introduction 

Researchers have been actively examining the effects of tamarisk on a number of 

ecological processes (Campbell and Dick-Peddie 1964, Carman and Brotherson 1982, 

Stromberg 1998, Sher et al. 2002). However, there is still little quantitative information 

on biomass or transpiration rate, and predictive regression models or allometric equations 

have not been previously developed. This is of particular concern to resource managers 

who work where water yield is intensively managed and biomass estimates are required 

for many research, monitoring, and restoration efforts. In addition to clarifying potential 

transpiration and water use (Sala et al. 1996), biomass measurements are commonly 

utilized in evaluating leaf area (Nagler et al. 2004), nutrient flow and productivity (Kelly 

et al. 1974, Cannell et al. 1987), wildlife habitats (Wiens and Rotenberry 1981; Rea and 

Gillingham 2001), fire effects and hazard (Abrams et al. 1986), disturbance (McWilliam 

et al. 1993), impacts of non-native plant invasions (Haase and Haase 1995, Standish et al. 

2001), and monitoring the effectiveness of restoration efforts (Johnson et al. 1986, 

Oomes 1992). Many resource management agencies are also actively engaged in 

tamarisk mitigation efforts (Personal communication, A. Hughes, Grand Staircase-

Escalante National Monument; F. Pannebaker, National Park Service; S. 

VanLandingham, Colorado State Forest Service). A reliable method for estimating 

biomass would enhance their ability to plan budgets and identify the necessary labor and 

equipment required for tamarisk removal. 

Although there are several methods available for estimating the biomass of 

various tree species (Whittaker and Woodwell 1968, Monk et al. 1970, Swank and 

Schreuder 1974, Young 1976, Crow 1983, Pastor et al. 1984), there is yet to be an 

27 



adequate method for estimating biomass of tamarisk and other multi-stem shrubs and 

trees. Diameter measurements (DBH, diameter at breast height) are frequently used and 

have strong correlations with biomass (Prescott et al. 1989, Arthur and Fahey 1990, 

Harcombe et al. 1993); however, DBH measurements are difficult to acquire for tamarisk 

due to its irregular growth patterns, multiple stems, and tendency to persist in dense 

stands. A single tamarisk tree may have a single bole or dozens of stems protruding from 

the ground. Variations in growth patterns are often related to species characteristics, 

fluctuations in resource availability, or various disturbances. These discrepancies in stem 

growth, and labor associated with collecting field measurements, have discouraged the 

collection of DBH measurements and limit most tamarisk surveys to presence or absence, 

and occasionally basal cover (Campbell and Dick-Peddie 1964, Wilkinson 1966, Nagler 

et al. 2004). 

There are two methods that are generally employed for measuring biomass of 

single-bole trees. The first is complete harvesting, or destructive sampling, where an 

individual or area is measured, cut, dried, and weighed (Grier and Logan 1977, Gholz 

1980, Jenkins et al. 2001). Although this method produces accurate results, it is often 

labor intensive, costly, and impractical, while limiting possibilities of temporal studies. 

The second method uses regression models based on other tree dimensions that are more 

easily measured, such as stem diameter, height, and canopy cover (Swamy et al. 2006). 

Due to the constraints of associated with DBH measurements, I examine the potential of 

modeling tamarisk biomass using only height and cover measurements. 

1.2 Methods 
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1.2.1 Study area 

Biomass data were collected from two different areas in the Arkansas River basin 

of southeastern Colorado, USA. In October 2005,1 collected data from the Oxbow State 

Wildlife Area (SWA) and in February 2005 from Grenada SWA. Oxbow SWA is in 

Otero County (38.04° N, 103.41° W) on the south bank of the Arkansas River near Bent's 

Old Fort National Historic Site. The SWA covers approximately 164 ha at 1,219 m 

elevation and contains large expanses of mixed-sized tamarisk. The Colorado Division 

of Wildlife, Colorado State Forest Service, and National Park Service have been 

removing tamarisk at Oxbow SWA since 2001. Grenada SWA is located east of Oxbow 

SWA and also borders the south bank of the Arkansas River. Located in Prowers County 

(38.04 N°, 102.22° W), Grenada SWA has an elevation of about 1,036 m and covers 

about 2,226 ha. Tamarisk at this site is largely evenly sized with more than 90% 

categorized as mature (height > 3 m). Since 2003, the Colorado Division of Wildlife has 

aggressively removed tamarisk to open river access and promote cottonwood 

regeneration. This region is believed to be one of the earliest tamarisk infestations in 

Colorado. First reported in the early 1900s, tamarisk has since become the dominant 

species along much of the Arkansas River, its tributaries, and neighboring reservoirs 

(Robinson 1965, Lindauer 1985, Pannebaker 2005). 

1.2.2 Field sampling and laboratory analyses 

During my first field campaign at Oxbow SWA, I selected 25 tamarisk trees of 

various height classes ranging from 0.6 m to 5 m for complete harvesting and biomass 

measurements. At the time of sampling, tamarisk trees were in full foliage and had only 

29 



remnant flowers. Before cutting, I established a scale-dependent plot around each tree to 

determine area and percent canopy cover. The scale-dependent plot is a square or 

rectangular design that is adjustable to the dimensions of an individual tree or stand of 

interest. The area of each plot varied in size, having different lengths and widths based 

on the size and canopy cover of the tree (or stand) being measured. The length and width 

of each plot were measured to determine the plot's area (m2). I estimated average height 

(m) and the total percent canopy cover for all sampled trees including dead stems. 

Individual trees were then cut at the ground surface and carefully moved to tarps to 

ensure that all parts were collected and weighed. Each tree was weighed using a portable 

scale immediately following cutting for total green weight. Foliage (including small-

diameter green stems) was then separated from woody parts and each weighed separately 

to determine weight distribution and ratios. 

Next, I sub-sampled both foliage (n = 20) and woody parts with mixed diameters (n = 

20) for drying. Larger woody parts were split or cut into smaller pieces to hasten the 

drying process. Each sub-sample was placed in a 20 x 30 cm pre-weighed burlap bag and 

transported to the Natural Resource Ecology Laboratory, Colorado State University, Fort 

Collins. Sub-samples were oven dried at 60° C and weighed regularly until weights 

became constant. Foliage sub-samples took seven days for weights to stabilize while 

woody parts took 14 to 18 days. 

A second field campaign was conducted in Grenada SWA to collect additional 

samples of individual trees at a stand level. At the time of sampling, nearly all of the 

foliage had fallen or was only weakly attached. My intention was to collect biomass data 

on the woody parts only, applying previous results from my weight distribution analyses 
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to estimate lost foliage. Using the same methods previously described (without foliage 

measurements), I harvested and measured an additional 25 tamarisk individuals, which 

ranged from 1.8 to 6.1 m tall. Because leaves were absent, careful consideration was 

given when estimating foliar percent coverage. My estimates reflected probable cover if 

full foliage were present. Ten sub-samples of woody parts with mixed diameters were 

collected for oven drying. Additionally, I established four 10xl0m(100 m2) plots for 

measurements. Prior to complete harvest of the 100-m2 plots, I recorded number of trees, 

average height, and total percent canopy cover of tamarisk within each plot. Tamarisk 

trees on the edges of each plot were carefully cut along the 100-m2 plot perimeters to 

determine whether branches were to be included in the sample. Woody parts and remnant 

foliage were separated and only the woody parts were saved; the foliage and deadwood 

were discarded. All standing woody parts were weighed in the field and summed to 

determine total green woody weight for each stand. No litter or dead parts were 

considered. 

1.2.3 Statistical analyses 

The canopy area (m2) for each tree or plot was calculated by multiplying plot area 

(m2) by the percent canopy cover (%) recorded in the field. My analyses included all 50 

individual tree samples and the four 100-m2 plots (n = 54). A suite of candidate 

regression models for total aboveground biomass was developed using average height 

(m) and canopy area (m2) and their interaction terms as predictor variables. In all cases I 

used P < 0.05, and tolerance levels < 0.95, as criteria to include a variable as a significant 

predictor. Regression analyses were conducted using the PROC REG procedure in SAS 
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software (SAS Institute 2004). Residuals from the models were plotted against fitted 

values to check nonlinearity, unequal variances, and outliers in the data (Zar 1999). Prior 

to regression analyses, total oven-dry aboveground biomass (TAGB; kg) of tamarisk and 

canopy area were log-transformed to normalize these variables and meet the assumption 

of normality for regression models (Neter et al. 1996). 

The candidate models were evaluated using Akaike's Information Criterion (AIC) 

and the information-theoretic approach (Burnham and Anderson 2002). Normally 

distributed errors with a constant variance were assumed for least-squares regressions. 

Since the number of observations was small (n = 54), we used AIC adjusted for small 

sample size (i.e., AICC; see Burnham and Anderson 2002: 66). I identified the best model 

with the lowest AICC and calculated AICC differences (AAICCi) across all candidate 

models in the set. The best model has A AICC j = 0 (Burnham and Anderson 2002: 70-

71). 

For log-log regression models, taking antilogs of the previously transformed data to 

estimate total aboveground biomass induces an inherent bias "because the largest values 

are compressed on the logarithmic scale and thereby tend to have less 'leverage' than 

small values in making such an estimate" (Beauchamp and Olson 1973). Therefore, a 

correction factor (CF) has been recommended to account for this bias (Sprugel 1983). 

The CF for the models was calculated as follows (Sprugel 1983): 

CF = exp [(SEE x 2.303)2/2] 

where SEE is the standard error of the estimate of the regression model. The biomass 

estimates should be multiplied by the CF for unbiased estimation of total aboveground 

biomass (Sprugel 1983). 

32 



1.3 Results 

Sampled trees from both sites ranged from 0.6 m in average height and canopy 

area of 0.03 m2, to 6.1 m in average height and canopy area of 69.5 m2. At the Oxbow 

SWA site, total green weights of foliage were higher than green weights of woody parts 

on the six smallest tamarisk samples (< 1.5 m average height and < 1.1 m2 canopy area), 

while total green woody material constituted greater weights for 19 larger samples (> 1.5 

m average height and > 1.1 m2 canopy area). Total oven dry weights of foliage were 

higher than oven dry weights of woody parts for only four samples (< 1.2 m average 

height and < 1.7 m2 canopy area) and greater for 21 samples (> 1.2 m average height and 

> 1.7 m2 canopy area). Mean dry weights from foliage collected at Oxbow SWA on 

average were reduced to 47.1% (± 2.3) and woody parts to 63.6% (± 0.6) of their green 

weights. Foliage represented on average 9.3% and woody material represented 90.7% of 

the total oven-dry weights for all samples collected at Oxbow SWA. The total oven-dry 

aboveground biomass for the individual tamarisk trees varied from 0.007 kg to 375.81 kg. 

Five competing regression models were evaluated from a suite of candidate 

models (Table 1.1). The best model (AICC = -148.69, AAICC = 0, Table 1) explained 

97% of the variation in total oven-dry aboveground biomass (TAGB) of tamarisk and 

was highly significant (P < 0.0001). It included both canopy area and average height as 

variables with canopy area being the strongest predictor of TAGB (partial R2 = 0.95). 

Similarly, the second-best model (AICC = -131.71, AAICC = 16.98) also included canopy 

area and average height and explained 95% of the variation of TAGB. Canopy area for 

this model was equally as strong a predictor as the first model (partial R2 = 0.95, Table 
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1.1). Other candidate models utilized either canopy area or average height only and 

explained 70% to 95% of the variation in tamarisk TAGB (models 3-5, Table 1.1). The 

third model related only canopy area to TAGB (Fig. 1.1) and explained 95% of the 

variation (AAICC = 21.93, Table 1.1). My fourth model considered average height (Fig. 

1.2) and square of average height as predictors to TAGB explaining 90% of the variation 

(AAICC = 57.01), whereas a fifth model that also considered only average height as a 

predictor was the weakest model explaining only 70% of the variation in tamarisk TAGB. 

The results from my best model found a strong agreement between tamarisk observed 

TAGB and predicted TAGB (Fig. 3, Y = 0.0261 + 0.9674 X, R2 = 0.97). 

1.4 Discussion 

I was extremely encouraged to be able to accurately predict tamarisk aboveground 

biomass from simple field measurements of cover and height (Table 1.1, Fig. 1.3). While 

additional destructive sampling in other areas will be needed to generalize the models, the 

individuals and stands used here are indistinguishable from many of my study sites 

elsewhere in Colorado, New Mexico, and Utah. Because there are high costs associated 

with collecting and analyzing this type of field data, the models presented here may serve 

as a first approximation of aboveground biomass of tamarisk until additional samples are 

gathered from fringe populations. 

Although my models succeeded in identifying strong relationships between 

aboveground biomass and average height and canopy area (Fig. 1.3), there are still 

important caveats to consider. The models may be strongest when applied to tamarisk 

within the geographical vicinity of my study area, and results may differ in other 
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landscapes or at larger scales, or may not be applicable throughout the species' 

distributional range. Ecological variables, such as climate, water availability, or 

disturbance regimes, are likely to affect growth formations and stand structure of 

tamarisk. Therefore, my best model would provide much better biomass estimates if 

applied to the areas that have the range of variation in average height and canopy area 

similar to this study; this model may underestimate or overestimate biomass outside these 

ranges. Furthermore, in an effort to preserve simplicity, my models do not consider 

diameter, age, or stem numbers of sampled trees, all of which may contribute to varying 

biomass estimates. Also, my study measured actual foliage weights from only half of the 

sampled trees, using the results to estimate the other half. Although dry weights of 

foliage are unlikely to vary much, I should acknowledge that some bias in the model can 

be expected. 

These models may not be suited for all species of tamarisk and should be 

evaluated prior to application, or new models should be developed using similar 

methodology. In particular, the models that utilized average height and canopy area 

measurements independently to predict aboveground biomass (models 3,4 and 5) are 

limited to the site of sampled trees. For example, model 3 (which utilizes canopy area as 

the only predictor variable) does not distinguish an area infested by new seedlings and an 

area infested by mature stand; yet there will be obvious differences in aboveground 

biomass between the two sites. Despite these limitations, my best model, which utilizes 

both average height and canopy area (model 1, Table 1.1) has the strongest potential in 

providing researchers and resource managers with a rapid and easy method to determine 

aboveground biomass of tamarisk. However, this model is also sensitive to canopy area 
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and a correction factor for canopy area may be necessary for biomass predictions over 

larger areas (e.g., > 100 m2). 

These models can be integrated with a variety of research initiatives, such as 

determining water usage and productivity, monitoring the effectiveness of bio-control 

agents, and developing remote sensing capabilities. Resource managers can employ 

these models to assess fire risks, changes in riparian habitats, and calculate costs of 

herbicides and other control treatments. With some additional field work, these biomass 

models can also be applied to mapping landscape-level tamarisk biomass using remotely 

sensed data (e.g., Hall et al. 2006). To broaden the applicability of aboveground biomass 

models, similar research initiatives are needed throughout the distribution range of 

tamarisk to assess the variability associated with geography and climate. Additionally, 

large-scale sampling in other invaded areas that have trees of varying height and canopy 

area would further enhance the model's utility for stand estimates and its application 

across the western United States. 
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Figure 1.1. Relationship between T. ramosissima canopy area (m2) and predicted total 

oven dry aboveground biomass (TAGB) (kg) (Model 3). 
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Figure 1.2. Relationship between T. ramosissima average height (m) and predicted 

TAGB (kg) (Model 4). 
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CHAPTER 2: MODELING INVASION FOR A HABITAT GENERALIST AND A 

SPECIALIST PLANT SPECIES 

2.0 Abstract 

Predicting suitable habitat and the potential distribution of invasive species is a high 

priority for resource managers and systems ecologists. Most habitat suitability models 

are designed to identify habitat characteristics that define the ecological niche of a 

species with little consideration to individual species' traits. I tested five commonly used 

modeling methods on two invasive plant species, the habitat generalist cheatgrass 

(Bromus tectorum) and habitat specialist tamarisk (Tamarix chinensis), to compare model 

performances, evaluate predictability, and relate results to distribution traits associated 

with each species. Most of the tested models performed similarly for each species; 

however, the generalist species proved to be more difficult to predict than the specialist 

species. The highest Area Under the Receiver Operating characteristic (ROC) Curve 

(AUC) values with independent validation datasets of cheatgrass and tamarisk were 0.503 

and 0.885, respectively. Similarly, a confusion matrix for cheatgrass had a maximum 

overall accuracy of only 55%, while the overall accuracy for tamarisk was 85%. 

Models for the generalist species had varying performances, poor evaluations, and 

inconsistent results. This may be a result of a generalist's capability to persist in a wide 

range of environmental conditions that are not easily defined by the data, independent 

variables, or model design. Models for the specialist species had consistently strong 

performances, high evaluations, and consistent results among different model 

applications. This is likely a consequence of the specialist's requirement for explicit 

environmental resources and ecological barriers that are easily defined by predictive 
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models. Although defining new invaders as generalist or specialist species can be 

challenging, model performances and evaluations may provide valuable information on a 

species' potential invasiveness. 

2.1 Introduction 

Invasion of non-native plant species continues to be a high-priority issue for natural 

resource managers throughout the United States. The impacts that these species have on 

the landscape include the loss of native biodiversity (Rosentreter 1994, Randall 1996), 

alteration of ecosystem processes (Vitousek et al. 1997, D'Antonio et al. 1999, Mack et 

al. 2000), and reduced availability of resources (Busch & Smith 1995, Olson 1999, Si et 

al. 2005). Only a small percentage of plant species introduced to the U.S. become 

invasive, and a species' success is generally attributed to species traits and the availability 

of resources that enable it to survive and flourish within a system (Baker 1974, Lodge 

1993, Cronk and Fuller 1995, Planty-Tabacchi et al. 1996, Thebaud et al. 1996, 

Williamson and Fitter 1996, Mack et al. 2000, Lee 2001, Stohlgren et al. 2003, Pysek 

and Richardson 2007). The success of an invasive species may be dependent on a single 

trait that facilitates a competitive advantage under specific ecosystem conditions or 

multiple traits that allow widespread dispersal across environmental gradients. Given the 

potential range of survival strategies associated with non-native species, and diverse 

ecosystem characteristics across North America, identifying or predicting attributes that 

drive or prohibit invasions can be challenging. 

The diversity of survival strategies exhibited by invaders has led some researchers 

to categorize species as generalists or specialists, and subsets within (e.g., dominant 
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generalist, subdominant generalist; Chong et al. 2006). These categories are loosely 

defined by the interaction between a species and its environment. Although comparisons 

between generalist and specialist species are common in biological studies (Adler 1999, 

Arens 2001, Bohn and Amundsen 2001, Lambrinos 2002), they are rarely considered 

when forecasting invasions or testing model applications (Seoane et al. 2005, Chong et 

al. 2006). Most studies use a single model to make predictions for a species of interest 

(Ficetola et al. 2007, Zhu et al. 2007), while model comparisons tend to test multiple 

models for a single species (Phillips et al. 2006, Stockman et al. 2006, Pearson et al. 

2007) or test individual models for multiple species (Bonn and Schoeder 2001, Thuiller et 

al. 2005). In any case, considerations of species traits or dispersal strategies are 

extremely rare (Segurando and Araujo 2004, Elith et al. 2006). This is especially 

common with invasives, where detailed species information is often lacking on 

autecology and inter-specific competition over large and small spatial scales. 

Alternatively, models are generally designed to identify ecosystem characteristics 

that can predict habitat suitability on the landscape and can be broadly applied to 

different species( Phillips et al. 2004, Payne and Stockwell 2006). The "one size fits all" 

approach may be applicable for species that have evolved within restricted or native 

ranges but may not always meet the challenges presented by invasive species (Lee 2001, 

Doyle et al. 2003, Saura-Mas & Lloret 2005, Stohlgren et al. 2005, Ellstrand and 

Schierenbeck 2006). Most invasive species are new arrivals lacking sufficient residence 

time to define their ecological niche, reveal biotic and abiotic interactions, or demonstrate 

species traits that would characterize them as generalist or specialist species (Chong et al. 

2006, Stayer et al. 2006). As a result, predictive models for new invaders are often 
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believed to underestimate the potential distribution and habitats at risk (Wilson et al. 

2007). 

In this study, I hypothesized that model performance can be influenced by 

species-specific traits and that the ecological niche of habitat specialists can be better 

predicted than those that are characterized as habitat generalists. As a result, models do 

not perform equally with all species; however, model performance, whether weak or 

strong, may provide resource managers and researchers with clues on how a particular 

invader will interact with potential habitats. To test my hypotheses, I selected five 

common modeling methods to predict the potential distribution of two highly invasive 

species; a habitat generalist, cheatgrass (Bromus tectorum; Mack 1981, Knapp 1996) and 

a habitat specialist tamarisk (Tamarix chinensis; Horton, 1964; Everitt, 1980). 

2.2 Methods 

2.2.1 Study area 

My study site is the Grand Staircase-Escalante National Monument (GSENM), located in 

south-central Utah, USA. The monument covers an area of approximately 769,000 ha 

with elevations ranging from 1,160 to 2,620 m. High plateaus and deeply incised 

canyons are characteristic of the landscape. The climate of the region is generally 

temperate and arid with the average annual precipitation approaching 250 mm and mostly 

occurring during winter months. Mean summer temperatures range from 16 to 32° C, and 

winter temperatures range from -9 to 4° C (National Climatic Data Center 2003). Despite 

its extreme climate, the monument is rich in floral diversity and vegetation types. Over 

984 plant species have been recorded within the monument's boundaries, of which 174 
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(19%) are regionally endemic and 98 (10%) are non-native (Fertig et al. 2002). Only a 

small proportion of the non-native species exhibit invasive characteristics, while most do 

not appear to pose a significant threat to the monument's diverse ecosystems and 

vegetation types (Waters et al. 2004). 

2.2.2 Field data collection 

For this study, I used four independent datasets collected by the Bureau of Land 

Management (BLM), the Natural Resource Ecology Laboratory (NREL) at Colorado 

State University, and the U.S. Geological Survey (USGS). BLM datasets included the 

results from a Noxious Weeds Inventory (N = >24,000) conducted by the BLM Utah 

State Office in 1997 and from the Rangeland Health Monitoring Program (N = 285) 

conducted by resource managers at the GSENM between 1999 and 2003 (Pellant et al. 

2000). Datasets collected by the NREL and USGS include a six-year landscape-scale 

vegetation assessment of GSENM (N = 380) conducted between 1998 and 2004 (Waters 

et al. 2004), and a research project titled Fingerprinting Biodiversity (N = 380) conducted 

between 2005 and 2007 (Stohlgren & Evangelista, work in progress). I randomly chose a 

selected number of samples from each dataset to achieve balance between sample sizes 

and to limit samples to within the monument's boundaries. For cheatgrass, I used a total 

of 366 samples (246 present and 120 absent) for training and 450 samples (218 present 

and 232 absent) for validation of the models. For tamarisk, a total of 449 samples (226 

present and 223 absent) were used for training and 464 samples (227 present and 237 

absent) were used for validation of the models. 
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2.2.3 Environmental variables 

I generated six different environmental variables from a 10-m Digital Elevation Model 

(DEM) in ArcGIS 9.1, Arc Toolbox (ESRI2004) to represent resource availability and 

topographic features on the landscape that may facilitate invasion (Davis et al. 2000, 

Stohlgren et al. 2003). Each variable had a 10-m pixel size and was generated in a grid 

format that extended over the entire study area. All six candidate variables were 

considered for each model and for both species. These variables were overland distance 

to water, slope (degrees), solar insolation, soil wetness index, eastness, and northness. A 

raster dataset for overland distance from water was generated using FloWS 

Geoprocessing tools (version 1.0; Theobald et al. 2006) and slope was generated using 

Spatial Analyst in ArcGIS 9.1 (ESRI 2004). A solar insolation grid was generated using 

the Shortwave program developed by Kumar et al. (1997). Soil wetness index was 

calculated using the formula [ln(A/tan fi)], where ln(.) is the natural logarithm, A is the 

area drained per unit contour or specific area, and fi is the topographic slope (Moore et al. 

1991, Wolock 1993). Eastness and northness were generated in ArcGIS 9.1 (ESRI 2004) 

using the formulas Sin(A) and Cos(A), respectively, where A is aspect in degrees (Guisan 

et al. 1999, Gutierrez et al. 2005, Kumar et al. 2006). Previous studies have 

demonstrated that these landscape characteristics often play significant roles in species 

distributions and patterns of invasions (Lambrinos 2002, Stohlgren et al. 2003, Kumar et 

al. 2006) 

2.2.4 Statistical analyses and modeling 
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The first model tested was a simple envelope design that has no statistical basis but 

simply defines the parameters of the independent variables for presence-only data 

(Envelope; http://www.niiss.org/cwis438/gather/Envelope.php). For each presence point, 

the value of each independent variable is extracted, with the minimum and maximum 

values of all presence points defining the probability range of occurrence. The highest 

probability value for the Envelope model cannot exceed the number of independent 

variables tested. I also tested maximum entropy (Maxent, version 2.3.18; 

www.cs.princeton.edu/~schapire/maxent/; Phillips et al. 2004, Phillips et al. 2006) and 

genetic algorithm rule-set prediction models (Desktop GARP, 

www.nhm.ku.edu/desktopgarp/; Stockwell and Nobel 1992; Anderson et al. 2003) which 

have gained popularity because of their ability to predict species occurrence with 

presence-only data and small datasets. Finally, I tested two commonly employed 

regression models: logistic regression (Evans et al. 2000, Pearce and Ferrier 2000) and 

classification tree analysis (Breiman et al. 1984, Lewis 2000), both of which require 

presence and absence data. Both regression models were analyzed using SYSTAT 

software (version 10.0, SSI 2004). For logistic regression models, all variables were 

assessed for multicollinearity and normality. The variables were transformed using Logio 

+ 1 where appropriate. Significance of predictors in the logistic regression model was 

assessed at alpha 0.05. 

The performance of all the models was evaluated using threshold-dependent and 

threshold-independent measures. Threshold-dependent evaluation was measured by 

specificity and sensitivity and Cohen's maximized Kappa (Cohen 1960). There are two 

possible errors that may occur in prediction models: false-negatives (under-prediction) 
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and false-positives (over-prediction; Fielding and Bell 1997). Using the independent 

validation data for each species, I present the relative proportions of these errors in a 

confusion matrix. Specificity, the proportion of true-positive and false-positive absences, 

and sensitivity, the proportion of true-positives and false positive presences, are reported 

for the best two models of each species as defined by the Area Under the Curve values 

described below. Overall accuracy was calculated using the formula [(a + b)IN], where a 

is the number of correctly classified absences, b is the number of correctly classified 

presences, and N is the total number of samples (Fielding and Bell 1997). 

Next, I used Cohen's maximized Kappa (Cohen, 1960) to measure the proportion 

of correctly classified points (i.e., presence, absence) after accounting for the probability 

of chance agreement. Kappa statistic values range from -1 to +1, where +1 is perfect 

agreement and any value less than 0 indicates a performance no better than random 

(Cohen 1960, Allouche et al. 2006). Landis and Koch (1977) rank analysis performances 

as poor when Kappa values are <0.40, good when the Kappa values range from 0.40 to 

0.75, and excellent when Kappa values are > 0.75. 

The threshold-independent evaluation required a receiver operating characteristic 

curve (ROC), where sensitivity is plotted against 1-specificity for all possible thresholds 

(Pearce and Ferrier 2000). From the ROC analysis, I calculated the Area Under the ROC 

Curves (AUC) using true presence and absence observations to measure the probability 

that a random, positive point falls within the predicted range of occurrence and a random 

negative point falls outside (Fielding and Bell 1997). The Maxent model generates AUC 

values using pseudo-random absence points on its own (Phillips et al. 2006), but I do not 

report these because I chose to maintain consistency with all models tested. 
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The independent variables used in the model comparisons play different roles of 

importance in predicting the potential habitat and distribution of each species. The 

Maxent, logistic regression, and classification tree models provide the contributions of 

each independent variable. The evaluations cannot be directly compared to each other, 

but are reported to serve as a general guide for ranking the importance of each 

environmental variable in model predictions. 

2.3 Results 

2.3.1 Generalist species 

Models tested for the habitat generalist cheatgrass generally did not perform as 

well as those tested for the habitat specialist tamarisk (Table 2.1). Evaluation of model 

performances for the cheatgrass training data showed that logistic regression was the best 

with an AUC value of 0.590. The GARP and Maxent models had slightly weaker 

predictive strength, while the Envelope model had the lowest performance. The 

classification tree analysis was unable to make any predictions using the independent 

variables tested. Evaluation of model performances for the cheatgrass validation data 

rank GARP the best with an AUC value of 0.503 (Table 2.1) which is no better than 

random, and all the models were within a range of 0.01 from each other. The Maxent, 

Envelope, and logistic regression models had only slightly weaker performances, 

respectively. For cheatgrass, the GARP model had an overall accuracy of 54.7%, while 

Maxent was 54.0% (Table 2.2). The predictive contributions of each independent variable 

for cheatgrass were ranked differently for each model. The Analysis of Variable 

Importance provided by the Maxent program ranked solar insolation as the most 
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important contributor (55.9%), slope as second (24.2%), and overland distance to water 

as third (12.4%). For logistic regression, soil wetness index was the only significant 

variable at p<0.05. 

2.3.2 Specialist species 

For the specialist species tamarisk, the Maxent model performed best with the 

training data, having an AUC value of 0.773 (Table 2.1). The logistic regression, 

classification tree, and GARP models also performed strongly while the Envelope model 

had considerably lower predictive performances than the other models. Model 

evaluations using the validation data had higher performances overall (Table 2.1). 

Logistic regression performed the best with an AUC of 0.885 (Table 2.1). The GARP, 

classification tree, and Maxent models performed equally well, while the Envelope model 

performed poorly. The overall accuracy for the two best models for tamarisk, logistic 

regression and classification tree, was 84.7% and 87.2%, respectively (Table 2.2). 

The predictive contributions of the independent variables for the models of 

tamarisk favored overland distance to water for the Maxent, logistic regression, and 

classification tree models. Maxent ranked overland distance to water as the most 

important contributing variable (82.1%), slope as second (8.3%), and soil wetness index 

as third (2.9%). Logistic regression found overland distance to water as the only 

significant predictor at p<0.05. Similarly, the classification tree analysis found overland 

distance to water as the only predictor for tamarisk and split the tree at two different 

distances. Seventy percent of the presence points (mean = 0.70, standard deviation = 
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0.45) occurred when overland distance to water was <314m, and tamarisk was not found 

in the training data when the overland distance to water was > 1731m. 

2.4 Discussion 

2.4.1 Predictability of a generalist versus a specialist 

As a generalist species, cheatgrass has become widely distributed throughout the 

GSENM and persists in a broad range of habitat types and environmental conditions 

(Evangelista et al. 2004, Guenther et al. 2004, Crall et al. 2006, Chong et al. 2006). 

Field data collected during the landscape-scale vegetation assessment found cheatgrass in 

93% of the plots, making it the second most common species recorded in GSENM 

(Waters et al. 2004). Therefore, it was not surprising to see that the models tested in this 

study did not effectively distinguish cheatgrass's ecological niche or identifying specific 

landscape characteristics that may inhibit the species' distribution (Fig. 2.1, Fig. 2.2). All 

the models had consistently weaker performances for the habitat generalist cheatgrass 

than for the habitat specialist tamarisk (Table 2.1). Other modelling efforts for cheatgrass 

(Alley et al. 2004, Crall et al. 2006) and tamarisk species (Morissette et al. 2006, Davern 

2006) have had similar results. Some of the models, such as Envelope, appear to have 

over-predicted the range of cheatgrass, which has been a concern with other generalist 

species (Dettmers et al. 2002, Hepinstall et al. 2002, Seoane et al. 2005). However, 

given the pervasiveness of cheatgrass, the predicted surface from Envelope appears to 

match field observations better than the more conservative model surfaces (Fig. 2.1, Fig. 

2.2). 
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In contrast, most of the models for the habitat specialist tamarisk had stronger 

predictive performances. This trend might be expected because specialist species tend to 

have sharply defined niches and environmental barriers that are easier to distinguish by 

model analyses (Bohn et al. 2001, Caley and Munday 2003). In my model comparisons, 

overland distance to water was the most significant independent variable in the three 

models that provided predictive contributions of independent variables (Fig. 2.3, Fig. 

2.4), which further highlights the specialist nature of tamarisk that largely confines it to 

riparian ecosystems. 

2.4.2 Model performance and interpretation 

Despite varying performances, I believe that all the models tested still have 

promising applications in predicting suitable habitat and the potential distribution of 

generalist and specialist invasive species. The results from this study suggest that no 

single model is superior in all circumstances (Table 2.1), supporting reviews from other 

studies (Elith et al. 2006). Most of the models I tested performed similarly with each 

species, suggesting that the varying results between the generalist and specialist species 

are likely correlated to species traits or the independent variables tested. On average, the 

models for cheatgrass performed no better than random, while the predictive 

contributions of each independent variable tested for cheatgrass fluctuated considerably 

between the Maxent and logistic regression models. In contrast, most of the models for 

tamarisk performed strongly. The Maxent, logistic regression, and classification tree 

models agreed that one independent variable (i.e., overland distance to water) was highly 

significant in predicting the habitat specialist tamarisk. 
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Closer examination of the predicted surfaces for tamarisk suggests that Maxent 

performed slightly better at a finer scale than the other models (Fig 2.4). For example, 

the lower portion of Hackberry Creek is cradled by steep canyon walls that are 

prohibitive to most plant establishment. Above the canyons are flat xeric landscapes 

dominated by pinyon pine (Pinus edulus), Utah juniper (Juniperus osteosperma), and big 

sage {Artemisia tridentata). Tamarisk is absent from these communities (Evangelista, 

personal observation), and these communities are highly unlikely to support future 

establishment of the specialist species. The sensitivity of Maxent was able to distinguish 

canyon walls from the riparian system but incorrectly predicted potential tamarisk habitat 

on the xeric plateau above Hackberry Creek. The logistic regression, classification tree, 

and GARP models made coarser predictions and did not account for the steep slopes of 

the canyon walls while predicting tamarisk to occur on the xeric plateaus. 

Improved predicted surfaces for both species may have been likely with inclusion 

of additional independent variables. For example, tamarisk models may be improved by 

including variables related to stream flow, native species richness, or climate (Horton 

1977, Brotherson and Field 1987, Morissette et al. 2006). Similarly, the performance of 

models for cheatgrass may have been improved had variables for fire history, livestock 

grazing, and recreational use been available (Evangelista et al. 2004, Crall et al. 2006). 

Many studies have found that model performance greatly relies on the particular 

independent variables tested, spatial resolution, or inadequate field data (Suarez-Seoane 

et al. 2002, Gibson et al. 2004, Barry and Elith 2006). I do not suggest that the 

independent variables selected for this study are completely representative of ecological 

niches for each species; however, they are known to have significant influences on 
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invasive plant species in general (Stohlgren et al. 2003) and were selected with 

consideration of my objectives in comparing models and species. 

When models perform strongly, it is generally indicative that key variables 

associated with habitat suitability and species traits were successfully identified for the 

analyses (Boyce et al. 2002, McKenney et al. 2003, Gibson et al. 2004). It is also 

reasoned that when models perform poorly, the analyses were lacking significant 

variables to predict suitable habitats (Waters et al. 2004) or relied on inconclusive field 

data (Hernandez et al. 2006, Real et al. 2006). Although these are rational interpretations 

in the model process, they are not easily corrected when assessing risk or modelling 

distribution of invasive species. If model performances are influenced by species traits 

(e.g., habitat generalist or specialist), then a broader interpretation of results may provide 

important insight to species traits, thus gauging the potential distribution of new invaders. 

I suggest that predictive models that perform poorly may not always be a shortcoming in 

methodology, the independent variables selected, or the completeness of occurrence data. 

An alternative interpretation might consider weak model performances as a clue to 

species traits and an early warning of a generalises positive response to new habitats. 

Although this is demonstrated by the poor performances of all the models tested with 

cheatgrass, it is highlighted by the inability of the classification tree analysis to produce 

any results. Overall results of my analyses of cheatgrass further highlight the pervasive 

nature of the species and the models' inability to define any significant barriers to 

invasion among the independent variables tested. My results were consistent with those 

from other studies on cheatgrass (Evangelista et al. 2004, Waters et al. 2004), but a 
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thorough review of the literature examining different species and model responses was 

inconclusive since poor model performances are rarely published. 

2.4.3 Conclusion 

Although most of the models I tested generally performed similarly with both 

species, there were some discrete differences noted. The models tested each have unique 

analytical approaches that may function better or worse with different species and 

datasets (Segurado & Araujo 2004, Pearson et al. 2007, Ward 2007). For this reason, I 

recommend that users select several models to test their data. The scientific literature 

offers numerous model comparisons suggesting that some models are superior to others. I 

do not discount the results of any individual study; however, collectively they reveal that 

model performances can exhibit different degrees of variability. 

My study also demonstrates the importance of model functions and evaluations in 

interpreting results. I recommend the selection of models that have built-in functions that 

evaluate the performance of results (e.g., R-square, AUC). Although model evaluations 

can be conducted independently of models, they require access to different software and a 

comprehensive understanding of statistical methodology. Additionally, models that 

measure the predictive contributions of the independent variables (e.g., standardized 

regression coefficients, jackknife) will provide users with valuable clues regarding 

environmental conditions that may prohibit or facilitate species dispersal and 

establishment. Maxent and classification tree models, for example, provide user-friendly 

and comprehensive operations that quantify the predictive strength of each independent 

variable tested. Users should consider the results from all the available functions when 
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evaluating model performances or making predictions on a species' potential distribution, 

while considering expert knowledge whenever possible. 

Because this study only examined two species, I cannot conclude that model 

performance alone can be used to gauge species traits or potential distribution risks of 

invasive species. However, this study offers several insights to model performances and 

their relationships to species traits. Only a few studies on these relationships have been 

conducted in any depth (Chong et al. 2006, McPherson and Jetz 2007), leaving a large 

gap in our understanding of the effects that autecology has on predictive modelling. My 

results also demonstrate the need for further studies that include a wide array of species 

(native and non-native) that exhibit different traits and dispersal strategies. Specifically, 

increased research may prove to be especially useful in assessing the risk of new invasive 

species. 

2.5 Literature cited 

Adler, L.S. 1999. Size-mediated performance of a generalist herbivore feeding on mixed 

diets. The Southwestern Naturalist 49:189-196. 

Allouche, O., Tsoar, A. & Kadmon, R. 2006. Assessing the accuracy of species 

distribution models: prevalence, Kappa and the true skill statistic (TSS). Journal 

of Applied Ecology 43:1223-1232. 

Anderson, R.P., Lew, D. & Peterson, A.T. 2003. Evaluating predictive models of species' 

distributions: criteria for selecting optimal models. Ecological Modeling 162:211-

232. 

61 



Arens, N. C. 2001. Variation in performance of the tree fern Cyathea caracasana 

(Cyatheaceae) across a successional mosaic in an Andean Cloud Forest. 

American Journal of Botany 88:545-551. 

Baker, H.G. 1974. The evolution of weeds. Annual Review of Ecological Systems 5:1-

24. 

Barnett, D.T., Stohlgren, T.J., Jarnevich, C.S., Chong, G.W., Ericson, J.A., Davern, T.R. 

& Simonson, S.E. 2007. The art and science of weed mapping. Environmental 

Monitoring and Assessment 132:235-252. 

Barry, S. & Elith, J. 2006. Error and uncertainty in habitat models. Journal of Applied 

Ecology 43:413-423. 

Bohn, T. & Amundsen, P. 2001. The competitive edge of an invading specialist. Ecology 

82:2150-2163. 

Boyce, M., Vernier, P. R., Nielsen, S. E. & Schmiegelow, F. K. A. 2002. Evaluating 

resource selection functions. Ecological Modeling 157:281-300. 

Breiman, L., Friedman, J.H., Olshen, R.A. & Stone, C.G. 1984. Classification and 

Regression Trees. Wadsworth International Group, Belmont CA. 

Brotherson, J.D. & Field. D. 1987. Tamarix: impacts of a successful weed. Rangelands 

9:110-112. 

Brotons, L., Thuiller, W., Araujo, M.B. & Hirzel, A.H. 2004. Presence-absence versus 

presence-only modeling methods for predicting bird habitat suitability. Ecography 

27: 437-448. 

62 



Busch, D.E. & Smith S.D. 1995. Mechanisms associated with decline of woody species 

in riparian ecosystems of the Southwestern U.S. Ecological Monographs 65:347-

370. 

Caley, M.J. & Munday, P.L. 2003. Growth trade off with habitat specialization. 

Proceedings Royal Society: Biological Sciences 270:S175-S177. 

Chong, G.W., Otsuki, Y., Stohlgren, T.J., Guenther, D. Evangelista, P., Villa, C. & 

Waters, A. 2006. Evaluating plant invasions from both habitat and species 

perspectives. Western North American Naturalist 66:92-105. 

Cohen, J. 1960. A coefficient of agreement of nominal scales. Educational and 

Psychological Measurement 20:37-46. 

Crall, A.W., Newman, G.J., Stohlgren, T.J., Jarnevich, C.S., Evangelista, P. & Guenther 

D. 2006. Evaluating dominance as a component of non-native species invasions. 

Diversity and Distributions 12:195-204. 

Cronk, C.B. & Fuller, J.L. 1995. Plant invaders: the threat to natural ecosystems. 

Chapman & Hall, London. 

D'Antonio, CM., Dudley, T.L. & Mack, M. 1999. Disturbance and biological invasions: 

Direct effects and feedbacks. Ecosystems of Disturbed Ground (ed. by L. 

Walker), pp. 143-452. Elsevier, Amsterdam. 

Davern, T. 2006. A predictive model: tamarisk habitat in California and Colorado. 

Thesis. Department of Forest, Rangeland and Watershed Stewardship, Colorado 

State University. 

Davis, M. A., Grime, J.P., & Thompson, K. 2000. Fluctuating resources in plant 

communities: a general theory of invisibility. Journal of Ecology 88:528-34. 

63 



Desktop GARP. 2006. Version 1.1.6 http://nnm.ku.edu/desktopgarp/ 

Dettmers, R., Buehler, D. & Bartlett, J. 2002. A test and comparison of wildlife-habitat 

modeling techniques for predicting bird occurrence at a regional scale. Predicting 

Species Occurrences. Issues of Scale and Accuracy (ed. by J.M. Scott, P.J. 

Heglund, M.L. Morrison, J.B. Haufler, M.G. Raphael, W.A. Wall and F.B. 

Samson), pp. 607-615. Island Press, Washington. 

Doyle, R.D., Francis, M.D. & Smart, R.M. 2003. Interference competition between 

Ludwigia repens and Hygrophila polysperma: two morphologically similar 

aquatic plant species. Aquatic Botany 77, 223-234. 

Elith, J., Graham, C.J Anderson, R., Dudik, M., Ferrier, S., Guisan, A., Hijmans, R., 

Huettmann, F., Leathwick, J., Lehmann, A., Li, J., Lohmann, L., Loiselle, B., 

Manion, G., Moritz, C, Nakamura, M., Nakazawa, Y., Overton, J., Peterson, 

A.T., Phillips, S., Richardson, K., Scachetti-Pereia, R., Schapire, R., Soberon, J., 

Williams, S., Wisz, M. & Zimmermann. N. 2006. Novel methods improve 

prediction of species distributions from occurrence data. Ecography 29:129-151. 

Ellstrand, N.C. & Schierenbeck, K.A. 2006. Hybridization as a stimulus for the evolution 

of invasiveness in plants? Euphytica 148:35-46. 

ESRI. (2004) ArcGIS 9.1. ESRI, Redlands, CA. http://www.esri.com/index.html 

Evangelista, P., Guenther, D., Stohlgren, T.J., & Stewart S. 2004. Vegetation response to 

fire and post-burn seeding treatments in juniper woodlands of the Grand 

Staircase-Escalante National Monument, Utah. Western North American 

Naturalist 64:293-305. 

64 

http://nnm.ku.edu/desktopgarp/
http://www.esri.com/index.html


Evans, M., Hastings, N. & Peacock, B. 2000. Bernoulli Distribution. Statistical 

Distributions, 3rd Ed. pp. 31-33. Wiley, New York. 

Everitt, B.L. 1980. Ecology of saltcedar - a plea for research. Environmental Geology 

3:77-84. 

Fertig, W., L. Fertig, H, Beck, S. Bartlett, L. Pfennifer. 2002. Annotated Checklist of the 

Flora of Grand Staircase-Escalante National Monument. Bureau of Land 

Management, Kanab, UT. 

Ficetola, G.F., Thuiller, W. & Miaud C. 2007. Prediction and validation of the potential 

global distribution of problematic alien invasive species-the American bullfrog. 

Diversity and Distributions 13:476-485. 

Fielding, A.H. & Bell, J.F. 1997. A review of methods for the assessment of prediction 

errors in conservation presence/absence models. Environmental Conservation 

24:38-49. 

Gibson, L.A., Wilson, B.A., Cahill, D.M. & Hill, J. 2004. Spatial prediction of rufous 

bristlebird habitat in a coastal heathland: a GIS-based approach. Journal of 

Applied Ecology 41:231-223. 

Guenther, D.A., Stohlgren, T.J. & Evangelista, P. 2004. Relict sites compared to grazed 

landscapes in the Grand Staircase-Escalante National Monument, Utah. The 

Colorado Plateau: cultural, biological, and physical research (ed. By C. van Riper 

III & K. L. Cole), pp. 153-162. The University of Arizona Press, Tucson, 

Arizona. 

Guisan, A., Weiss, S.B. & Weiss, A.D. 1999. GLM versus CCA spatial modeling of plant 

species distribution. Plant Ecology 143:107-122. 

65 



Gutierrez, D., Fernandez, P., Seymour, A.S. & Jordano, D. 2005. Habitat distribution 

models: are mutualist distributions good predictors of their associates? Ecological 

Applications 15:3-18. 

Hepinstall, J., Krohn, W. & Sadler, S. 2002. Effects of niche width on the performance 

and agreement of avian habitat models. Predicting Species Occurrences. Issues of 

Scale and Accuracy (ed. by J.M. Scott, P.J. Heglund, M.L. Morrison, J.B. 

Haufler, M.G. Raphael, W.A. Wall & F.B. Samson), pp. 593-606. Island Press, 

Washington. 

Hernandez, P., Graham, C, Master, L. & Albert, D. 2006. The effect of sample size and 

species characteristics on performance of different species distribution modeling 

methods. Ecography 29:773-785. 

Horton, J.S. 1964. Notes on the introduction of deciduous Tamarix. U.S. Department of 

Agriculture, Forest Service, Research Note RM-16. 8pp. 

Horton, J.S. 1977. The development and perpetuation of the permanent tamarisk type in 

the phreatophyte zone of the Southwest. U.S. Department of Agriculture, Forest 

Service, General Technical Report RN 43:124-127. 

Knapp, P. 1996. Cheatgrass (Bromus tectorum L) dominance in the Great Basin Desert. 

Global Environmental Change 6:37-52. 

Kumar, L., Skidmore, A.K. & Knowles, E. 1997. Modeling topographic variation in solar 

radiation in a GIS environment. International Journal of Geographical Information 

Science 11:475-497. 

Kumar, S., Stohlgren, T.J. & Chong, G. 2006. Spatial heterogeneity influences native and 

normative plant species richness. Ecology 87:3186-3199. 

66 



Lambrinos, J.G. 2002. The variable invasive success of Cortaderia species in a complex 

landscape. Ecology 83:518-529. 

Landis, J.R. & Koch, G.C. 1977. The measurement of observer agreement for categorical 

data. Biometrics 33:159-74. 

Lee, M. 2001. Non-native plant invasions in Rocky Mountain National Park: linking 

species traits and habitat characteristics. Thesis, Graduate Degree Program in 

Ecology, Colorado State University, Fort Collins, Colorado, USA. 

Lewis, R.J. 2000.. An introduction to classification and regression (CART) analysis. 

Proceedings of the 2000 Annual Meeting of the Society for Academic Emergency 

Medicine, San Francisco, California. 

Lodge, D.M. 1993. Biological Invasions: lessons for ecology. Trends in Ecology and 

Evolution 8:133-137. 

Mack, R.N. 1981. Invasion of Bromus tectorum L. into Western North America: an 

ecological chronicle. Agro-Ecosystems 7:145-165. 

Mack, R.N., Simberloff, D., Lonsdale, W.M., Evans, H., Clout, M. & Bazzaz, F. 2000. 

Biotic Invasions: causes, epidemiology, global consequences and control. Issues 

in Ecology 5:1-19. 

Maxent Model 2007. Version 2.3.18; www.cs.princeton.edu/~schapire/maxent 

McKenney, D.W., Hopkin, A.A., Campbell, K.L., Mackey, B.G. & Foottit, R. 2003. 

Opportunities for improved risk assessments of exotic species in Canada using 

bioclimatic modeling. Environmental Monitoring and Assessment 88:445-461. 

67 

http://www.cs.princeton.edu/~schapire/maxent


Moore, ID., Grayson, R.B. & Ladson, A.R. 1991. Terrain based catchment partitioning 

and runoff prediction using vector elevation data. Water Resource Research 

27:1177-1191. 

Morissette, J.T., Jarnevich, C.S., Ullah, A., Cai, W., Pedelty, J.A., Gentle, J.E., Stohlgren, 

T.J. & Schnase J.L. 2006. A tamarisk habitat suitability map for the continental 

United States. Frontiers in Ecology and the Environment 4:11-17. 

National Climatic Data Center 2003. http://www.ncdc.noaa.gov/oa/ncdc.html 

Olson, B.E. 1999. Impacts of noxious weeds on ecologic and economic systems. Biology 

and management of noxious rangeland weeds, (ed. by R.L. Sheley & J.K. 

Petroff), pp 4-18. OSU Press, Corvallis, Oregon. 

Payne, K. & Stockwell, D.R.B. 2006. GARP Modeling System User's Guide and 

Technical Reference, http://www.landshape.org/enm/ 

Pearce, J. & Ferrier, S. 2000. Evaluating the predictive performance of habitat models 

developed using logistic regression. Ecological Modeling 133:225-245. 

Pearson, R.G., Raxworthy, C.J., Nakamura, M. & Peterson, A.T. 2007.Predicting species 

distribution from small numbers of occurrence records: a test case using cryptic 

geckos in Madagascar. Journal of Biogeography 34:102-117. 

Pellant, M., Shaver, P. Pyke, D. & Herrick J. 2000. Interpreting Indicators of Rangeland 

Health, Version 3, pp. 118. United States Department of Interior, Bureau of Land 

Management, Technical Reference 1734-6. Denver, Colorado. 

Phillips, S.J., Dudik, M. & Schapire, R.E. 2004. A maximum entropy approach to species 

distribution modeling. Proceedings of the 21st International Conference on 

Machine Learning, pp. 655-662. ACM Press, New York. 

68 

http://www.ncdc.noaa.gov/oa/ncdc.html
http://www.landshape.org/enm/


Phillips, S.J., Anderson, R.P. & Schapire, R.E. 2006. Maximum entropy modeling of 

species geographic distributions. Ecological Modeling 190:231-259. 

Planty-Tabacchi, A., Tabacchi, E., Naiman, R.J. Deferrari, C. & Decamps, H. 1996. 

Invasibility of species-rich communities in riparian zones. Conservation Biology 

10:598-607. 

Pysek, P. & Richardson, D. 2007. Traits associated with invasiveness in alien plants: 

where do we stand? Ecological Studies 193:97-125. 

Randall, J.M. 1996. Weed control for the preservation of biodiversity. Weed Technology 

10:370-383. 

Rosentreter, R. 1994. Displacement of rare plants by exotic grasses. Proceedings, 

Ecology and Management of Annual Rangelands (ed. by S.B. Monsen & S.G. 

Kitchen), pp. 170-175. USDA-USFS, General Technical Report INT-GTR-313, 

Intermountain Research Station, Ogeden, UT. 

Saura-Mas, S. & Lloret, F. 2005. Wind effects on dispersal patterns of the invasive alien 

Cortaderia selloana in Mediterranean wetlands. Acta Oecologica 27:129-133. 

Segurando, P. & Araujo, M.B. 2004. An evaluation of methods for modelling species 

distributions. Journal of Biogeography 31:1555-1568. 

Seoane, J., Carrascal, L., Luis Alonso, C , & Palomino, D. 2005. Species-specific traits 

associated to prediction errors in bird habitat suitability modeling. Ecological 

Modeling 185:299-308. 

Si, J.H., Feng, Q., Zhang, X., Liu, W., Su, Y. & Zhang, Y. 2005. Growing season 

evapotranspiration from Tamarix ramosissima stands under extreme arid 

conditions in northwest China. Environmental Geology 48:861-870. 

69 



Systat Software Inc. 2004. San Jose, California, USA. 

Stayer, D.L., Eviner, V.T., Jescheke, J.M. & Pace, MX. 2006. Understanding the long-

term effects of species invasions. Trends in Ecology and Evolution 21:645-651. 

Stockman, A., Beamer, D. & Bond, J. 2006. Am evaluation of a GARP model as an 

approach to predicting the spatial distribution of non-vagile invertebrate species. 

Diversity and Distributions 12:81-89. 

Stockwell, D. & Nobel, I.R. 1992. Induction of sets of rules from animal distribution 

data: a robust and informative method of data analysis. Mathematics and 

Computer in Simulation 33:385-390. 

Stockwell, D. & Peters, D. 1999. The GARP modeling system: problems and solutions to 

automated spatial prediction. International Journal of Geographic Information 

Science 13:143-158. 

Stohlgren, T.J., Barnett, D. & Kartez, J.T. 2003. The rich get richer: patterns of plant 

invasions in the United States. Frontiers in Ecology and the Environment 1:11-14. 

Stohlgren, T.J., Crosier, C. Chong, G. Guenther, D. & Evangelista, P. 2005. Life-history 

habitat matching in invading non-native plant species. Plant and Soil 277:7-18. 

Suarez-Seoane, S., Osborne, P.E. & Carlos Alonso, J. 2002. Large-scale habitat selection 

by agriculture steppe birds in Spain: identifying species-habitat responses using 

generalized additive models. Journal of Applied Ecology 39:755-771. 

Thebaud, C.A., Finzi, C, Affre, L., Debusscche, M., andEscarre, J. 1996. Assessing why 

two introduced Conyza differ in their ability to invade Mediterranean old fields. 

Ecology 77:791-804. 

70 



Theobald, D.M., Norman, J.B., Peterson, E., Ferraz, S., Wade, A. & Sherburne, M.R. 

2006. Functional Linkage of Water basins and Streams (FLoWS) vl User's 

Guide: ArcGIS tools for Network-based analysis of freshwater ecosystems, pp. 

43. Natural Resource Ecology Lab, Colorado State University, Fort Collins, 

Colorado. 

Thuiller, W., Lavorel, S. & Araijo, M.B. 2005. Niche properties and geographical extent 

as predictors of species sensitivity to climate change. Global Ecology and 

Biogeography 14:347-357. 

Vitousek, P.M., D'Antonio, CM., Loope, L.L., Rejemanek, M. & Westbrooks R. 1997. 

Introduced species: a significant component of human-caused global change. New 

Zealand Journal of Ecology 21:1-16. 

Ward, D. 2007.. Modeling the potential geographic distribution of invasive ant species in 

New Zealand. Biological Invasions 9:1387-3547. 

Waters, M.A., Stohlgren, T.J., Evangelista, P.H., Guenther, D.A., Alley, N. & Newman 

G.J. 2004. Landscape-Scale Assessment of Grand Staircase-Escalante National 

Monument: Technical Report 1998-2004, 205pp. Natural Resource Ecology 

Laboratory, Colorado State University. 

Williamson, M. & Fitter, A. 1996. The varying success of invaders. Ecology 77:1661-

1666. 

Wilson, J.R., Richardson, D.M., Rouget, M., Proches, S., Amis, M.A., Henderson, L. & 

Thuiller, W. 2007. Residence time and potential range: crucial consideration in 

modeling plant invasions. Diversity and Distributions 13:11-22. 

71 



Wolock, D.M. 1993. TOPMODEL, a topography based watershed model. Proceedings of 

the Federal Interagency Workshop on Hydrologic Modeling Demands for the 

90's, pp 8-50-8-57. USGS Water-Resources Investigations Report 93-4018 

Zhu, L., Sun, O., Sang, W., Li, Z. & Ma K. 2007. Predicting the spatial distribution of an 

invasive plant species (Eupatorium adenophorum) in China. Landscape Ecology 

22:1143-1154. 

72 



2.6 Figures and tables 
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Figure 2.1. Predicted habitat and potential distribution of B. tectorum in the Grand 

Staircase-Escalante National Monument (A-D). Models compared are Envelope (A), 

Maxent (B), GARP (C), and logistic regression (D). 
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Figure 2.2. Predicted habitat and potential distribution of B. tectorum at a finer 

resolution along the Hackberry Creek, Cottonwood Creek and Paria River confluences (a-

b). Models compared are Envelope (a), Maxent (b), GARP (c), and logistic regression 

(d). 
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Figure 2.3. Predicted habitat and potential distribution of T. chinensis in the Grand 

Staircase-Escalante National Monument (A-E). Models compared are Envelope (A,), 

Maxent (B), GARP (C), logistic regression (D) and (E) classification tree. 

75 



0 ^ 
1 ' 

10 

ppl 

0 I _ J 

100 

IHI 

o u 

0.909 

0.185 

pPS* 

0.701 

M 

Figure 2.4. Predicted habitat and potential distribution of T. chinensis at a finer 

resolution along the Hackberry Creek, Cottonwood Creek, and Paria River confluences 

(a-d). Models compared are Envelope (a), Maxent (b), GARP (c), logistic regression (d), 

and (e) classification tree. 
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Table 2.2. Confusion matrix tables for the two best models of B. tectorum and T. 

chinensis with cut-off at maximized kappa value. 

GARP (B. tectorum) 

Predicted Correct 

Maxent (£. tectorum) 

Predicted Correct 

0 1 0 1 

Overall 

192 40 82.8 % 

164 54 

Cut-off threshods 

24.8% 

54.7 % 

0.85 

219 

194 

13 

24 

94.4 % 

1 1 % 

54.0 % 

0.84 

Logistic regression (T. chinensis) Classification Tree (T. chinensis) 

Predicted Correct Predicted Correct 

0 1 0 1 

200 37 8 5 % 187 50 78.2% 

34 193 84.4 % 29 198 87.2 % 

Overall 84.7 % 87.2 % 

Cut-off threshods 0.50 0.55 
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CHAPTER 3: MAPPING TAMARISK (TAMARJX) BY REMOTE SENSING: A 

COMPARISON OF SINGLE-SCENE AND TIME-SERIES ANALYSES FOR 

DETECTING PHENOLOGY 

3.0 Abstract 

Previous attempts to map invasive tamarisk (Tamarix sp.) using remote sensing 

techniques have had varying results. Most successful remote sensing studies have taken 

advantage of phenological characteristics that distinguish tamarisk from other vegetation, 

such as its extended growing season and unique coloration during different times of the 

year. I tested six Landsat 7 ETM+ satellite scenes and several vegetation indices at 

different times of the growing season for their ability to detect tamarisk along the 

Arkansas River in Colorado. Satellite scenes were selected for April, May, June, August, 

September, and October. Using bands 1-5, band 7, Normalized difference vegetation 

index (NDVI), Soil-adjusted Vegetation Index (SAVI), Ratio Vegetation Index (RVI), 

and tasselled cap transformations (brightness, greenness, and wetness) for each month, I 

conducted single-scene and time-series analyses using the Maxent model. The time-

series analyses were conducted in two modeling processes: the first model using all 

spectral variables (n=72), and second model using only the top predictors (n=7) from the 

results of the first model and removing those variables that were cross-correlated. 

Models were evaluated by using area under the receiver-operating characteristic curve 

(AUC), specificity, sensitivity, and Cohen's maximized Kappa. The best model was the 

time-series analysis fit with all spectral variables, which had an AUC = 0.96, overall 

accuracy = 0.90, and Kappa = 0.79. The top three predictor variables were June tasselled 
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cap wetness (25.8%), September tasselled cap wetness (16.4%), and October band 3 

(11.6%). The second best model was the time-series analysis with the reduced number of 

spectral variables, followed by single-scene analyses for June, September, and August. 

Although several vegetation indices were strong predictors, the tasselled cap wetness 

index was one of the top three predictors in all but the April single-scene analysis. My 

results suggest that a time-series analysis of remotely sensed data is better for detecting 

phenological characteristics of tamarisk than a single-scene analysis. However, studies 

relying on a single time for data acquisition may have better results in June or late 

summer months. 

3.1 Introduction 

Mapping invasive plants has become a high priority for resource managers and 

researchers across the U.S. Ground surveys are still commonly used for most mapping 

projects despite intensive labor requirements, associated economic costs, and incomplete 

coverage of the landscape (Crosier and Stohlgren 2004, Dewey and Andersen 2004). 

Improved methods to accurately determine the current distribution of invaders are 

required to better assess their environmental impacts, formulate effective control 

strategies, and forecast potential dispersal. Remote sensing has played an important, but 

limited, role in mapping and detecting invasive plants (Anderson et al. 1993, Everitt et al. 

1995, Rowlinson et al. 1999, Noujdina and Ustin 2008) or for mapping potential habitat 

(Morisette et al. 2006). It is more commonly applied to mapping weeds in agricultural 

environments where species richness and diversity are minimal (Medlin et al. 2000, 

Lopez-Granados et al. 2006). Detecting a specific plant species in forests, rangelands, 
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riparian areas and natural landscapes using remote sensing techniques has proved to be a 

greater challenge. Large-scale infestations, where invaders are clearly the dominant 

species and environmental heterogeneity is reduced, tend to be easier to detect remotely 

(Anderson et al. 1993, Lass and Prather 2004, Laba et al. 2005). 

One invasive species that is especially problematic in the western U.S. is 

tamarisk. Tamarisk's impacts to native ecosystems in the U.S. include the desiccation of 

water tables, displacement of native plant communities, alteration of soil chemistry and 

ecosystem processes, and loss of critical wildlife habitat (Christensen 1962, Robinson 

1965, Harris 1966; See Introduction). Infestations often begin discretely among species-

rich riparian ecosystems before abruptly overwhelming and displacing competitor 

species. Once tamarisk establishes dominance, control and restoration efforts can be 

extremely labor intensive and costly. Detecting tamarisk in the early stages of infestation 

and mapping its distribution are essential to resource management and stewardship. 

Remote sensing of tamarisk distributions has been only marginally effective (Lass et al. 

2002, Hirano et al. 2003, Hamada et al. 2007, Asner et al. 2008). New airborne and 

satellite sensors promise to improve our ability to spectrally distinguish tamarisk from 

other species, but the techniques remain inadequate and are not yet economically 

practical. 

The detection of invasive plants using remote sensing may be improved if the 

target species has phenological attributes that are distinctive from native vegetation. For 

example, leafy spurge {Euphorbia esula L.) has yellow-green inflorescences that are 

spectrally unique when compared to associated flora (Everitt et al. 1995, Parker Williams 

and Hunt 2002, Hunt et al. 2004). Similarly, yellow starthistle {Centaurea solstitialis), 
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tamarisk (Tamarix spp.), yellow hawkweed {Hieraciumpratense), oxeye daisy 

{Chrysanthemum leucanthemum), and Chinese tallow (Sapium sebiferum) also have 

distinctive colorations that can facilitate remote sensing (Everett and Deloach 1990, Lass 

et al. 1996, Lass and Callihan 1997). Other species have been detected by their extended 

growing periods. Broom snakeweed (Gutierrezia sarothrae), a perennial sub-shrub, has 

been remotely sensed during its early-season greening (Peters et al. 1992). Cheatgrass 

(Bromus tectorum), an invasive annual grass, has also been successfully detected because 

it germinates in winter months prior to most native grasses (Bradley and Mustard 2005). 

The distinctiveness of any phenological attribute can vary widely with regional climate, 

latitudinal gradients, and species richness within an ecosystem. As a result, the timing of 

acquiring remotely sensed data is critical and can be difficult to predict. 

Time-series analyses of remotely sensed data are increasingly being used for 

detecting broad-scale invasions (Pavri and Aber 2004, Robinson et al. 2008) and 

monitoring the impacts of mitigation treatments (Anderson et al. 2005, Everett et al. 

2007). A few studies using time-series analyses have reported success in identifying 

cheatgrass. Bradley and Mustard (2005) demonstrated how inter-annual data collected 

from Landsat and Advanced Very High Resolution Radiometer (AVHRR) can detect 

cheatgrass responses to precipitation. Peterson (2005) was able to distinguish cheatgrass 

from other vegetation by using scenes from Landsat 7 ETM+ on two different dates 

within a single year. In both cases, the researchers were able to exploit subtle 

phenological differences (i.e., extended growing season, rapid response) between the 

invaders and associated native flora within a growing season. To determine the optimal 

time of the year to conduct remote sensing surveys, Everitt and Deloach (1990) used a 
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time-series of conventional color and color infrared aerial photographs for tamarisk and 

native riparian vegetation. From their study sites in Texas and Arizona, they found that 

tamarisk could best be identified in late fall and early winter months when foliage turned 

a yellow-orange color before dropping. 

Remote sensing of tamarisk has had limited success, and conventional methods 

(e.g., supervised and unsupervised classification) have not proved to be reliable. Ge et al. 

(2006) analyzed color aerial photographs at 1-m2 resolution using a texture analysis for 

tamarisk in northern California. The photographs were acquired in April and the mean 

grey-level values were calculated for 60 pixels representing eight cover types. They 

found that color (grey tones) alone could not distinguish tamarisk from associated 

vegetation; however, the use of textural classifiers greatly improved separability of cover 

types. In southern California, Hamada et al. (2007) used discriminant analyses of 

presence/absence data and hierarchical clustering with hyperspectral imagery collected in 

October. Overall accuracy of their research varied by scene and minimum patch size, and 

results tended to over classify tamarisk distribution. Akasheh et al. (2008) used an 

iterative classification procedure to map riparian vegetation with high-resolution multi-

spectral airborne sensors in July on the Rio Grande River, New Mexico. The vegetation 

in their study site was largely dominated by four riparian species: tamarisk, cottonwood, 

willow, and Russian olive. Using 24 validation plots for tamarisk, they were able to 

achieve 86% classification accuracy. 

These studies demonstrate an evolution of remote sensing and image processing 

for detecting tamarisk and other invasive species. The development of new airborne and 

satellite sensors and platforms, coupled with advanced statistical software, geographic 
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information systems (GIS), and predictive models, give researchers a variety of tools to 

detect and predict the distribution of invasive species (Elith et al. 2006, Liu et al. 2006, 

Morisette et al. 2006, Evangelista et al. 2008, Noujdina and Ustin 2008). I explored new 

methods in remote sensing and image processing to map the distribution of tamarisk 

while incorporating some previous strategies that have proven to be effective. I tested six 

satellite scenes and derived vegetation indices from different months of the growing 

season to detect tamarisk using single-scene and time-series analyses. My objectives for 

this study were to compare each analysis and determine which month of the growing 

season was the best time for detecting tamarisk. I also examined the effectiveness of 

several vegetation indices derived from remote sensing data that have proven useful in 

other remote sensing studies. My analyses were conducted using the Maxent model 

(v3.2.1; www.cs.princeton.edu/~schapire/maxent/), which uses presence points to predict 

the potential range and habitat distribution of a species (Phillips et al. 2004,2006). In 

several recent studies, Maxent has been found to be especially useful for mapping 

invasive species (Ficetola et al. 2007, Kumar et al. 2009) and ranked high when 

compared to other models for predicting tamarisk distributions (Evangelista et al. 2008). 

3.2 Methods 

3.2.1 Study area 

This study was conducted in the lower Arkansas River in southeastern Colorado. The 

Arkansas River is the sixth longest river in the continental U.S. Its headwaters begin in 

the Rocky Mountains of central Colorado and it flows east 2,364 km through Kansas, 

Oklahoma and Arkansas before emptying into the Mississippi River. In Colorado, the 
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river drops 1,400 m in elevation from its origin to the edge of the Great Plains near the 

city of Pueblo (Kammerer 1990). From Pueblo, the river flows approximately 400 km to 

the Kansas state line and sustains a wide belt of irrigated agriculture through a series of 

ditches and channels. Elevations and mean annual precipitation range from 1,417 m and 

29.7 cm at Pueblo to 1,021 m and 38.3 cm at the state line (Lindauer 1983). Tamarisk 

was first reported in this region in 1913, and observers noted the species' rapid spread as 

early as 1921 (Lindauer 1983). Today, tamarisk infestation along the Arkansas River 

between Pueblo and the state line is estimated to be more than 120 km2 resulting in the 

estimated loss of 47,000 acre-feet of water annually (Tamarisk Coalition 2008). 

My study area was defined by the boundaries of the Landsat7 Enhanced Thematic 

Mapper Plus (ETM+) scene (Path 32, Row 34) used in my analyses. The study area 

includes approximately 175 km of the Arkansas River in southeastern Colorado between 

the town of Avondale and the City of Lamar (Figure 3.1). Also included in the scenes are 

John Martin Reservoir, the lower sections of the Purgatoire and Apishapa rivers, 

developed agriculture, and a significant area of semi-arid rangeland that extends into 

New Mexico. 

3.2.2 Field data collection 

This study relied on the results of an intensive inventory and mapping effort by the 

Tamarisk Coalition (www.tamariskcoalition. org) and other groups in 2005. Stands of 

tamarisk were inventoried by field crews using global positioning systems (GPS) and 

transformed into geographical information systems (GIS) polygons with the aid of aerial 

photography (Tamarisk Coalition 2008). These data are now stored and available on the 
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National Institute of Invasive Species Science website (www.niiss.org). From these data, 

I randomly generated 400 presence points from tamarisk polygons that had a percent 

basal cover >50%. Of these, 250 points were used for training (62.5%) the models and 

150 points were reserved for testing (37.5%). An additional 150 tamarisk absence points 

were randomly generated using GIS from cottonwood (Populus sp.) stands, agriculture, 

and rangeland land cover types for model testing. 

3.2.3 Remotely sensed data 

I used six Landsat7 ETM+ scenes for my analyses. Each scene and derived vegetation 

indices were processed using ERDAS Imagine v9.0 (Leica 1991-2005) and ArcGIS 9.1 

(ESRI2004) software. The scenes, selected for their seasonal variance, were acquired on 

April 16, 2000; May 11,2003; June 23,2001; August 12,2002; September 7,2000; and 

October 23,1999. From each scene, bands 1-5 and band 7 were used in my analyses. 

Additionally, I generated several vegetation indices from each scene that are commonly 

used for estimating vegetation and land-cover features. Normalized difference vegetation 

index (NDVI) is a non-linear transformation of the ratio between the visible (red) and 

near-infrared bands (NIR: Rouse et al. 1974). The NDVI index is commonly used to 

measure vegetation canopy characteristics such as biomass, leaf area index, and canopy 

cover (Kriegler et al. 1969, Myneni et al. 1997, Todd et al 1998). I calculated NDVI 

using the following expression: 

NDVI = (band 4 - band 3) / (band 4 + band 3) 
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The Ratio Vegetation Index (RVI) was calculated by dividing near infrared (band 4) by 

visible red (band 3) reflectance values (Jordan 1960). The RVI and NDVI are very 

similar in that they are a measure of the slope of the line between the origin of red-NIR 

space and the red-NIR value of each pixel. The major difference between the two is the 

range of values given by the calculations. Some studies have used RVI and NDVI 

together (Liu et al. 2006), while other studies have elected to use one or the other (Lopez-

Granados and Garcia-Torres 2006). 

Tasselled Cap transformations were conducted for each scene using the 

coefficients reported by Huang et al. (2002). Originally developed for understanding 

changes in crop development, tasselled cap transformations are weighted composites of 

the six Landsat bands into three bands that have been useful in measuring soil brightness 

(tasselled cap, band 1), vegetation greenness (tasselled cap, band 2), and soil/vegetation 

wetness (tasselled cap, band 3; Kauth and Thomas 1976). These transformations have 

been described as a guided and scaled principal components analysis and have been 

shown to be useful in identifying forest attributes such as species composition, age class, 

and structure (Cohen et al. 1995, Todd et al. 1998, Jin and Sader 2005). 

I also calculated the Soil-adjusted Vegetation Index (SAVI; Huete 1988), a ratio-

based index developed to minimize the effects of the soil background. The formula used 

for calculating SAVI is: 

SAVI = [(band 4 - band 3) * (1 + L) / (band 4 + band 3 + L)] 
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where L is a correction factor ranging from 0 (high vegetation cover) to 1 (low vegetation 

cover). Each month had twelve potential predictor variables used for single-scene 

analyses, while the time-series analysis used a total of 72 potential predictor variables. 

3.2.4 Data analyses 

I conducted my analyses using the Maxent model v.3.2 

(www.cs.princeton.edu/~schapire/maxent/), which is a general-purpose method for 

estimating probability of distributions based on the principle of maximum entropy 

(Phillips et ah, 2004, Phillips et al. 2006). Maxent uses presence-only data to define 

known conditions within the parameters of the independent variables to predict a species' 

distribution and excludes all conditions that are unfounded or undefined. The model is 

nonlinear, nonparmetric, and not sensitive to multicolinearity. Besides having several 

evaluation features built into the program, Maxent also provides the percent contribution 

of each variable. Several recent studies have found the Maxent model to perform as well, 

or better, when compared to other modeling methods (Elith et al. 2006, Evangelista et al. 

2008, Kumar et al. 2009). 

Each monthly scene, and the associated vegetation indices, were analyzed and 

tested independently (six models); while the time-series analyses were conducted using 

two modeling procedures. The first time-series model used all 72 predictor variables 

generated from the six scenes. From these results, I selected all the variables that had a 

predictive contribution >1.0 percent (n = 17) and used them as predictor variables for my 

second time-series model. The 17 variables were tested for cross-correlations using 

SYSTAT (version 12; SYSTAT Software, Port Richmond, California, USA). For 
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variables that were highly correlated (Pearson correlation coefficient > 0.80), I removed 

the ones that had the least predictive cross-contribution in first-time series analysis 

model. This further reduced my number of variables to seven potential predictors. 

I tested the models with threshold-dependent and threshold-independent measures 

using Schroder's ROC/AUC software (http://brandenburg.geoecology.uni-

potsdam.de/users/schroeder/download.html). The ROC/AUC software was specifically 

developed for assessing the predictive performance of habitat models and requires 

presence and absence data. Threshold-dependent evaluations, using the ROC/AUC 

software, were measured by specificity, sensitivity and Cohen's maximized Kappa 

(Cohen 1960). Specificity is the proportion of true-positives and false-positive absences, 

and sensitivity is the proportion of true-positives and false-positive presences. The 

maximized Kappa statistic (K) measures the proportion of correctly classified points (i.e., 

presence, absence) after accounting for the probability of chance agreement. Kappa 

statistic values range from -1 to +1, where +1 would be perfect agreement and any values 

less than 0 would indicate a performance no better than random (Cohen, 1960; Allouche 

et ah, 2006). Landis and Koch (1977) ranked analysis performances as poor when Kappa 

values are <0.40, good when the Kappa values range from 0.40 to 0.75, and excellent 

when Kappa values are > 0.75. 

The threshold-independent evaluation required a Receiver Operating 

Characteristic (ROC) curve, where 'sensitivity' is plotted against '1-specificity' for all 

possible thresholds (Pearce & Ferrier 2000). From the ROC analysis, the Area Under the 

ROC Curve (AUC) is calculated using presence and absence observations to measure the 

probability that a random, positive point falls within the predicted range of occurrence, 
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and a random negative point falls outside (Fielding and Bell 1997). The AUC value can 

vary from 0.5 (no better than random) to 1.0 (perfect discrimination; Hosmer and 

Lemeshow 2000). AUC evaluations for each model are presented in the results. 

3.3 Results 

All the models generally performed well, further highlighting the applicability of remote 

sensing and vegetation indices for detecting tamarisk. The best model was the first time-

series analyses that used all 72 variables (Figure 3.2). The AUC evaluation was 0.96, 

while the percent of correct predictions was 0.90 and kappa statistic was 0.79 (Table 3.1). 

The next best models were the second time-series analyses with the reduced number of 

variables and the October single-scene analysis. The AUC evaluations for these models 

were 0.93 and 0.89, respectively. The percent of correct predictions and kappa statistics 

for the second time-series analyses and October single-scene analyses were 0.84 and 

0.85, and 0.69 and 0.71, respectively. The June, August, and September single-scene 

analyses had slightly lower but similar evaluations. Generally, the results from the 

single-scene analyses improved toward the later part of the growing season and into the 

fall months when most native plants go into dormancy. 

The best predictor variables for the first time-series analyses were the June 

tasselled cap wetness (25.8%), September tasselled cap wetness (16.4%), and October 

wetness (11.6%; Table 3.2). Similarly, the best predictors for the second time-series 

analyses were the June tasselled cap wetness (63.1%), April NDVI (9.7%), and October 

band 3 (7.8%). It should be noted that the September tassled cap band 3 was found to be 

highly correlated with the June tasselled cap wetness, thus it was omitted from the second 
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time-series analyses. With the exception of the April NDVI, the best predictors for both 

time-series analyses were from the months that performed the best of the six single-scene 

analyses. Of the eight models, seven had at least one tasselled cap transformation as one 

of the top predictors. 

3.4 Discussion 

My results suggested that the time-series analyses can better distinguish phenological 

differences between tamarisk and native flora than a single-scene analysis. Spectral data 

from the months of June, September, and October consistently had the greatest capability 

for detecting tamarisk in all of the models. I speculate that the peak in tamarisk green-up 

and its purple-white flowers contribute to the spectral uniqueness during June, while its 

extended growing season and the yellow foliage late in the year are conspicuous in 

September and October. Collectively, data from these months produced the strongest 

results in the time-series analysis; I was encouraged to see that they each performed 

exceptionally well with the single-scene analyses. My findings are also in agreement 

with results from previous remote sensing studies on tamarisk (Everitt and Deloach 1990, 

Akasheh et al. 2008). Although spectral data from these months performed best in my 

study area, they may not necessarily be the best candidates in other ecosystems, 

geographic regions, or spatial scales. 

Vegetation indices used in my analyses made considerable predictive 

contributions to the final results. Most notable were the tasselled cap transformations for 

soil/vegetation wetness (tasselled cap band 3). The tasselled cap wetness index have 

been shown in other studies to be reliable for detecting change in forest structure and 
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biomass using single-scene and time-series analyses (Franklin et al. 2005, Jin and Sader 

2005, Healey et al. 2006). Tamarisk biomass in my study site is quite extensive and 

significantly higher than native vegetation (Evangelista et al. 2008). Further study may 

be required to test the effectiveness of the tasselled cap wetness index on low densities of 

tamarisk; however, my results indicate the index may perform well with the remote 

sensing of large tamarisk stands or when used in a time-series analyses. 

I was also encouraged by the performance of the Maxent model in analyzing 

remote sensing data. I am confident that my model results could be improved if 

additional geospatial variables that characterize the physical landscape were integrated 

(e.g., distance from water, slope), but I elected to analyze monthly scenes and vegetation 

indices exclusively to better identify temporal trends with tamarisk's phenology in 

relation to the spectral reflectance. 

In conclusion, my study revealed several important factors that may significantly 

improve remote sensing efforts for tamarisk and other invasive species. I have identified 

at least three different times during the growing season when phenological attributes of 

tamarisk can help distinguish the species from native vegetation. I have also 

demonstrated that phenological differences may be better detected using a time-series 

analysis than a single-scene analysis. Biomass indicators, such as the tasselled cap 

wetness index, may prove useful for remotely sensing large tamarisk infestations or for 

detecting landscape change in a time-series analysis. Finally, the Maxent model proved 

to be a sufficient tool for analyzing remote sensing data and can easily integrate other 

geospatial variables that may enhance modeling efforts. These findings may prove useful 
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for most remote sensing studies including those that employ new, advanced sensors and 

across multiple spatial scales. 
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3.6 Figures and tables 
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Figure 3.1. Map of study area (in grey) and the Arkansas River in Colorado. 
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Figure 3.2. An enlarged view of tamarisk detected along the Arkansas River and 

irrigation ditches near the town of Riverdale in southeastern Colorado. The results shown 

here are from a time-series analysis that used 72 remotely sensed data sets from Landsat7 

ETM. Tamarisk distributions are shown from moderate (orange) to high (red) densities. 
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Table 3.1. Tamarisk model evaluations of single-scene and time-series analyses of 

Landsat7 scenes and associated vegetation indices. AUC values are presented from the 

Maxent model (Max) and the ROC/AUC Calculator (ROC), while sensitivity, specificity, 

percent correct, and the Kappa statistic were generated using the ROC/AUC Calculator. 

Scene analysis 
April 
May 
June 
August 
September 

October 

Time-series1 

Time-series2 

Num. 
variables 

12 
12 
12 
12 
12 
12 

72 

7 

AUCROC 

0.89 
0.88 
0.92 
0.91 
0.91 
0.89 

0.96 

0.93 

Sensitivity 
0.75 
0.83 
0.93 

0.91 
0.83 
0.77 

0.93 

0.85 

Specificity 
0.89 
0.84 
0.76 
0.79 
0.89 
0.94 

0.86 

0.84 

% 
Correct 

0.82 
0.83 
0.84 
0.85 
0.86 
0.85 

0.90 

0.84 

Kappa 
0.64 
0.67 
0.69 
0.70 
0.71 
0.71 

0.79 

0.69 
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Table 3.2. The predictive contributions of the top three variables for each model 

generated from Maxent. 

Scene analysis 
April 

May 

June 

August 

September 

October 

Time-series1 

Time-series2 

Variable 
band 7 
band 4 
NDVI 

band 7 
tasselled cap wetness 

band 1 

tasselled cap wetness 
band 1 
band 4 

tasselled cap wetness 
band 4 
band 1 

tasselled cap wetness 
band 5 
band 7 

band 3 
tasselled cap wetness 

band 7 

(June) tasselled cap wetness 
(Sept) tasselled cap wetness 

(Oct) band 3 

(June) tasselled cap wetness 
(April) NDVI 
(Oct) band 3 

Contribution 
(%) 
25.5 
20.6 
17.8 

37.7 
31.9 
9.9 

78.5 
8.6 
5.5 

59 
13.6 
9.6 

42.2 
16.1 
14.3 

30.2 
21.4 
17.9 

25.8 
16.4 
11.6 

63.1 
9.7 
7.8 
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CONCLUSION 

As researchers and resource managers continue to recognize the threats and 

impacts that invasive species can have on ecological processes, biodiversity, hydrology, 

and our society, there are a few critical research needs that must be explored before we 

can effectively address these issues. To direct and set priorities for control efforts, and to 

assess the environmental impacts of invaders, there is one fundamental question that 

remains to be answered: Where are they? Although an obvious question, the answer in 

regard to most invasive species remains unknown. Today, we have a better 

understanding of ecology than ever before; and advanced technology has equipped us 

with a variety of tools that can facilitate research and provide answers in regard to species 

distribution. In this research project, I have demonstrated that new and old 

methodologies can be integrated to detect the distribution of invasive tamarisk and 

predict its potential spread. I have tested multiple approaches to determine the best 

combinations of field measurements, spatial models, and remote sensing that can be 

applied over space and time. 

In Chapter 1,1 demonstrated how two easy field measurements (basal cover and 

height) can be used to make reasonable estimates of aboveground biomass. This measure 

will not only help researchers and resource managers in determining the ecological 

impacts of tamarisk but will also be used to produce better predictive models and advance 

remote sensing capabilities. The importance of this study has been demonstrated by the 

high volume of tamarisk research that now employs the allometric models presented in 

my results. For example, the Tamarisk Coalition has modified their field protocols to 
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include measurements for biomass estimation. They have used the methods for their 

statewide surveys in Colorado (see Chapter 3), and for new tamarisk surveys for the 

entire Colorado River watershed. Similarly, my results are being tested in tamarisk 

research examining water usage, impacts on avian habitat, and for potential bio-fuel 

programs. The study in Chapter 1 was also helpful in providing me with high-quality 

field data used for my remote-sensing research presented in Chapter 3. 

In Chapter 2,1 tested which of the most commonly used spatial models worked 

best for tamarisk. Although there are a few similar studies reported in the literature, 

where researchers test the performance of different models, the results have varied 

considerably. I have also found with my other research studies that models do not 

perform the same with different species, as further demonstrated by the results presented 

in Chapter 2. Based on the types of survey data commonly collected in the field and 

geospatial predictor variables that can be developed with GIS and remote sensing, it was 

important to identify the appropriate models best suited for tamarisk. The models that 

were ranked highest in my study have continued to perform well with other tamarisk 

studies (see Chapter 3). However, for research on other species, I would recommend that 

several models be tested to determine which performs the best for the species of interest 

and the data available. 

Finally, in Chapter 3,1 examined different remote sensing approaches to detect 

phenological characteristics of tamarisk that can distinguish it from other vegetation and 

landscape features. This was a temporal study that specifically targeted tamarisk's 

extended growing season in southwest Colorado and its green-up and flowering stages 

during the peak times of the year. There have been a few remote-sensing studies that 
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have successfully detected tamarisk using different sensors and techniques, but they are 

not necessarily applicable throughout tamarisk's range in the U. S. Varying climatic 

conditions and environmental heterogeneity have impeded widespread use of most of 

these methods. However, the methods I used in Chapter 3 have the potential to be 

broadly applied throughout the range of tamarisk. Although I elected to use data from the 

Landsat 7 ETM+, an older satellite platform, the principles of my study can be applied 

with other remotely sensed data and at different spatial resolutions. 

In conclusion, I present in this study several important building blocks that will 

allow scientists and resource managers to better detect tamarisk distributions. Further 

testing of all my results are recommended as species adaptations, changes in ecological 

conditions, and new technology are likely to occur. For the time being, I believe that the 

results of this work will greatly facilitate new research and help provide some critical 

answers to questions surrounding the impacts of tamarisk invasion. 
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