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ABSTRACT OF DISSERTATION 

COMPUTATIONAL MEASURE THEORETIC APPROACH TO 

INVERSE SENSITIVITY ANALYSIS: METHODS AND ANALYSIS 

We consider the inverse problem of quantifying the uncertainty of in­

puts to a finite dimensional map, e.g. determined implicitly by solution 

of a nonlinear system, given specified uncertainty in a linear functional of 

the output of the map. The uncertainty in the output functional might be 

suggested by experimental error or imposed as part of a sensitivity analysis. 

We describe this problem probabilistically, so that the uncertainty in the 

quantity of interest is represented by a random variable with a known dis­

tribution, and we assume that the map from the input space to the quantity 

of interest is smooth. We derive an efficient method for determining the 

unique solution to the problem of inverting through a many-to-one map by 

computing set-valued inverses of the input space which combines a forward 

sensitivity analysis with the Implicit Function Theorem. We then derive an 

efficient computational measure theoretic approach to further invert into 

the entire input space resulting in an approximate probability measure on 

the input space. 
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We provide detailed error analysis for inverse problems involving non­

linear ordinary differential equations and scmilinear elliptic partial differ­

ential equations. 

Troy Daniel Butler 
Department of Mathematics 
Colorado State University 
Fort Collins, Colorado 80523 
Summer 2009 
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Chapter 1 

SENSITIVITY ANALYSIS 

Consider the problem of predicting the global behavior of a complex 

system, e.g. climate change. A solution to such a problem often involves 

combining observations from different sources and different scales, e.g. rang­

ing from local field observations to satellite images, to form input data and 

parameters. Knowledge of which parameters have the greatest effect on the 

output of the model is extremely useful, e.g. 

• We may want to quantify the effects of uncertainty in data and pa­

rameters as well as error in evaluation on model predictions 

• We may be able to predict which kinds of experimental data are most 

important for producing reliable predictions 

At their heart, these are sensitivity analysis problems. We define sensitivity 

analysis as the study of a response of a system to variations in data and 

parameters. We use sensitivity analysis to determine which parameters 

have the greatest effect on information computed from the system, and to 

search for parameter values producing optimal values of the output. 

There are two directions in sensitivity analysis: forward sensitivity 

analysis and inverse sensitivity analysis. In forward sensitivity analysis, we 
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vary the input data and parameters and observe the effect on the output 

of the system. For inverse sensitivity analysis, we start with uncertainty in 

the output of the system and seek to determine the variations in the input 

data and parameters that produce this uncertainty in the output. The 

uncertainty in the output of the system is either observed, e.g. variations 

in empirical data, or imposed, e.g. modeling measurement error. Often 

times the parameter space has high dimension while the observation space 

has low dimension resulting in a "many-to-one" map. In that situation, 

the inverse sensitivity analysis problem is an ill-posed problem, i.e. there is 

typically more than one solution. 

There are two predominant approaches to sensitivity analysis problems: 

deterministic and statistical. The deterministic approach uses derivatives 

to determine sensitivity at a point, and requires the map from input to 

output to be smooth. If no information is known about the map from 

input to output, then the statistical approach is often preferred. Statistical 

approaches consider variation in the input data and parameters to reflect 

uncertainty or be the consequence of error, and models the input data and 

parameters as random variables associated with some distribution. The 

model output becomes a new random variable with a new distribution. We 

often use sampling methods to determine the new distribution. In other 

words, this is a density estimation problem. Both of these approaches are 

useful, and they can be combined [20]. 

1.1 Forward Sensitivity Analysis 

The motivation for solving complex systems, e.g. climate change, is 

often to obtain a low-dimensional quantity of interest, e.g. temperature, 
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rather than the entire output of the system, e.g. the entire state of the 

climate, which is often too complex to analyze in any meaningful way. We 

study quantities of interest obtained from linear functionals of the solution 

to the system. 

Considering functionals is typically physically motivated. For example, 

in experiments [18, 22], radioactively marked tumor cells were added to the 

blood stream of laboratory mice and levels of cancer cells were measured 

over time. The proposed model has two compartments in order to account 

for the fact that the rate of decay does not follow a simple exponential decay 

model. Let x\ and x2 denote the number of cancer cells in the capillaries 

and lung tissue, respectively. The loss of cancer cells from the capillaries by 

being dislodged and carried away by the blood and the transfer from the 

capillaries to lung tissue is modelled by linear functions —X\X\ and —A2.X1, 

respectively. The loss of cancer cells in the lung tissue is modelled by — A3X2. 

This leads to the system of differential equations 

xx = -(Ai 4- X2)xx , 1 ^ 
X2 = A2Xi - A3X2 

In experiments, state variables can not be measured individually, but the 

total amount of radioactivity, x\ + x2 is measurable. Thus, due to physical 

restrictions and not model complexity, we solve the system in order to obtain 

the quantity of interest, q(X) = q(x(X)), represented by the linear functional 

q(X) = Xi + x2. We use the notation q(X) throughout to emphasize the 

dependence of the quantity of interest on the choice of input parameters. 

We analyze theoretical sensitivities of x\ and x2, but only the sensitivity of 

the quantity of interest is experimentally verifiable. 

We present two different methodologies to solve the forward sensitivity 

analysis problem based on the motivation for solving such a problem. We 
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use a forward derivative analysis to obtain sensitivities of the entire output 

of the system to the input data and parameters. We use an adjoint deriva­

tive analysis to obtain sensitivities of a quantity of interest to the input 

data and parameters. 

1.1.1 Forward Derivative Analysis 

Given a model, we compute the partial derivatives of the solution with 

respect to parameters along with the solution by solving an extended model. 

We illustrate this with a simple linear model. Suppose the model is defined 

by the linear system 

Ax = 6. (1.1.2) 

Here, x € Rn is a vector of states, A E R roxn describes the relations be­

tween states, and b € Rm is the data. Suppose b = 6(A) and A = /1(A) 

depend on parameter A e Rp, then x = x(X) is implicitly a function of A. 

Differentiating (1.1.2) with respect to A yields the linear system 

.dx dA db . n „. 
AT\ + axx = T\- (1L3) 

which we solve for dx/dX. Note that the system used to solve for the 

sensitivity dx/dX depends on the solution to (1.1.2). Thus, we obtain the 

sensitivity by solving the extended model defined by the linear system 

J Ax = b 

We use similar steps to form extended models for nonlinear systems and 

differential equations. Consider the following nonlinear differential equation 

jx = f(x;X1), 0 < t , 

U H A O ( L L 5 ) 
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1 
To compute the sensitivities, we solve the extended system 

fx = /(x;A1), 0<t, 

x-(0) = A0, ( 1 6 ) 

|f = /'(x;A)^ + f{(x;A), 0 < t, 
1(0) = 5, 

where / ' is the Jacobian of / with respect to x, and B is a nonzero matrix 

if and only if at least one of the components of Ao is a parameter subject 

to variation. 

Example 1.1.1. Recall the model for malignant tumors is 

±i = - ( A i + A2) .TI , ^ 1 7 , 

x2 = A2Xi - A3x2. 

We assume the initial conditions are given and static. We calculate the 

sensitivities by solving the extended system 

-x\ —x\ 0 

0 x\ —x2 

(1.1.8) 

where A = ( Ai A2 A3 ) . Solving the extended system numerically, we 

obtain the sensitivities of x\ and x2 with respect to all the parameters for 

all time. We summarize these sensitivities in figures 1.1 and 1.2. 

Example 1.1.2. Consider the classical SIR-epidemic model represented by 

the following nonlinear system of differential equations 

' S = fiK - pSI - fiS, 

t = pSI--yT-fiI-aI, (1.1.9) 

R = ~ll - H,R. 

Here, S, I, and R are the state variables representing susceptible, infected, 

and recovered individuals, respectively, and K = S + I + R denotes the total 

population. The parameters are ji, (3, 7, and a, where 
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Figure 1.1: Forward derivative sensitivity analysis for x\ in malignant tumor 
model. The top. middle, and buttom plots are the partial derivatives of x\ 
with respect to Ai, A2, and A3, respectively. The top two plots show that in 
the first couple hours, the number of cancer cells in the capillaries is most 
sensitive to changes in the rate of blood flow, Ai, and the rate of transfer of 
the cells to the lungs, A2. The sensitivities decrease quickly after the first 
couple of hours, and by hour 15 the number of cancer cells in the capillaries 
are no longer significantly sensitive to changes in these parameters. The 
bottom plot shows that the number of cancer cells in the capillaries is never 
sensitive to the rate of loss of cancer cells in the lung tissue. Suppose there 
is a medication that promotes the rate of transfer of cells from the blood 
to the lungs or increases the rate of blood flow, and the medical goal is 
to decrease the number of cancer cells in the capillaries significantly, then 
the best time to adminster such a drug is approximately two and a half 
hours into the observation of the mouse, when the sensitivities are largest 
in magnitude 
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Figure 1.2: Forward derivative sensitivity analysis for x<i in malignant tumor 
model. The top, middle, and buttom plots are the partial derivatives of 
x2 with respect to Ai, A2, and A3, respectively. Comparing the plots, we 
first note a difference of scale between the top plot and the middle and 
bottom plots. The sensitivites become an order of magnitude higher in the 
bottom two plots compared to the the sensitivity shown in the top plot. 
The sensitivities of the number of cancer cells in the lungs with respect 
to the rate of blood flow, Ai, and the rate of transfer of the cells to the 
lungs, A2, are about half of their respective peaks by the end of two days. 
However, the sensitivity with respect to the rate of loss from the lungs, A3, 
continues to increase at the end of two days. As with the previous plots, 
this information can be used to determine appropriate times of adminstering 
different medical treatments or drugs in order to obtain the most extreme 
results in reducing the number of cancer cells. 

7 



dx 

• j.i is the birth and natural death rate, with all births placed in S class 

• P is the infection rate 

• 7 is the recovery rate 

• a is the fatality rate due to the disease 

We assume the initial conditions are given and not subject to variation. We 

calculate the sensitivities by solving the extended system 

' S = LIK - L3SI - pS, 

i = /3SI--yI-fiI-aT, 

R = 7l- fiR, 

( -pi -pS + [i fx \ 

PI pS - 7 - fi-a 0 

V 0 7 - /x / 
(1.1.10) 

Here x = ( S I R ) and A = ( LI P 7 a ) . 

While the method presented above provides a complete sensitivity anal­

ysis, there are some drawbacks to consider. First, the dimension of the 

extended model is substantially larger than the initial model if the number 

of parameters is much greater than the number of state variables. Second, 

there is no obvious error control or analysis other than a priori error bounds 

when solving only the forward problem. There is also the issue of what we 

do with all the information obtained via the forward derivative analysis. If 

the motivation is to obtain a quantity of interest, then post-processing of 

the results remains, and some or most of the sensitivities might be discarded 

to obtain this quantity of interest. 
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1.1.2 Adjoint Derivative Analysis 

Consider again the linear model 

Ax = b. (1.1.11) 

Suppose the quantity of interest g(A) is given by the linear functional q(\) = 

(x, 0) for fixed vector -0 e R". We define the adjoint problem to be 

AY(j) = 4>, (1.1.12) 

where AT is the transpose (or adjoint) of the matrix A: and <p is the Green's 

vector. Note that 

Or, 0) = (x, AT4>) = (Ax, <f>) = (6, 0). (1.1.13) 

Now suppose the data b is subject to variation and is treated as a ran­

dom variable with some distribution from which independent identically 

distributed samples of b arc generated, and we want to know the distribu­

tion of the output. If we only use the forward problem, this requires solving 

the system (1.1.11) for each sampled data vector. In the adjoint analysis, 

we solve one adjoint problem once, and use an inner product to cheaply 

compute the output for each sample. 

We now assume A = A(X) and b = 6(A) depend on parameter A. Now 

to obtain the quantity of interest for distinct A using (1.1.13), we either need 

to solve (1.1.11) or (1.1.12) for each distinct value of A. The sensitivity of 

the quantity of interest is obtained using similar steps as above and (1.1.3), 

which yields 
dq(X) ( A db OA \ 

= M 7ST - IJr*. <M • (1.1.14) d\ V dA d\ 
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The sensitivity of the quantity of interest depends on the solution x = x(A) 

to (1.1.11). Thus, to compute the sensitivity of the quantity of interest we 

observe that for each distinct A we solve (1.1.11) to obtain x, and we solve 

the adjoint problem each time with the new AT since A = A(\) implies 

4> = 0(A). We then use a cheap inner product to compute the sensitivity. 

Compare this to the forward derivative analysis that also required solving 

two linear systems for each distinct A. There does not appear to be an im­

mediate benefit to this method. We show later that by linearizing (1.1.11) 

about reference parameters and the corresponding reference solutions, we 

need only solve a small number of adjoint problems once, and then use a 

global piecewise-linear approximation to q(X) that uses cheap inner prod­

ucts. 

Adjoint problems for nonlinear differential equations are slightly more 

complicated than the adjoint problems for linear systems. If the forward 

problem is defined by a nonlinear map between two Banach spaces, then 

we require the map to be at least Frechct differentiable. The smoothness of 

the map makes it possible to linearize a perturbation of the map around a 

reference solution/parameter pair, which in turn makes it possible to define 

an adjoint problem. Suppose we solve the differential equation 

f* = /(x;A,), 0 < < < r , 
\.c(0) = A„, 

where the initial condition is also considered a parameter subject to vari­

ation, and the function / is smooth in both variables. Linear functionals 

take the form 

q(X) = [ {x(S]X),^(s))ds, (1.1.16) 
Jo 

where ^ is a function of time. We describe the effect of varying the parame­

ter A = ( X] Aj ) around a reference parameter value 7 — ( 7^ 7^ ) . 
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Let y solve (1.1.15) for this reference parameter. We call y the reference 

solution. Let e = x — y where x solves (1.1.15) at parameter A near 7. Then 

e solves 

fe = / ( x ; A 1 ) - / ( y ; 7 i ) , 0 < t < T, ? ) 

| e (0 ) = A0 - 7 0 . 

The smoothness of / gives f(x; Ax) - f{y; 71) « / '(y; ji)e + dXlf(y; 7i)(7i -

Ai), where ,/7(:t/(£;7);7i) is the Jacobian of / , and <9AI/(?/;7I)(7I — Ai) 

is the derivative of / with respect to A evaluated at the reference solu­

tion/parameter pair. Substitution of this linear approximation to the per­

turbation of / into (1.1.17) yields a linear differential equation for e. We 

use this linear differential equation to form an adjoint. When we refer to 

linearizing a nonlinear map around a reference solution/parameter pair, we 

follow this process of linearizing the perturbation. 

The generalized Green's function <f)(t) solves the adjoint problem 

u^T:nhT>t>-°' <"-»> 
where A :— f'(y(t;j);"fi). A standard variational argument analogous to 

(1.1.13) gives 

5 ' ? ( A ) ( A - 7 ) « ( A o - 7 o , 0 ( O ) ) + / ( 5 A l / ( y ; 7 i ) ( A 1 - 7 i ) , 0 ) ^ . (1.1.19) 

The last term on the right describes the effect of variations in the model 

parameters, and the second to last term describes the effect of variations in 

the initial conditions. Similar results hold for iterated maps, e.g. discrete 

time population models, and partial differential equations. 

Example 1.1.3. Recall that the quantity of interest for the malignant tumor 

model is the total amount of radioactivity q(\) = x\ +X2- Suppose the goal 
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is to compute the total amount of radioactivity after a day and a half, so 

it the dual data tj;(t) = 6(t — 36) I 

The linearized adjoint problem is 

we set the dual data tj;(t) = 6(t — 36) ( 1 1 ) . 

i/>, T > t > 0, 

and the quantity of interest sensitivity, denoted Vq{\), is 

(1.1.20) 

fT ( -yi o \ 
Vg(A)= / - y i yx \4>ds. (1.1.21) 

"/o \ 0 - y 2 / 

Numerically solving the adjoint on the same time mesh with the same 

method as the forward problem yields the sensitivities shown in Table 1.1, 

which are compared with results obtained from the forward derivative anal­

ysis. The values produced from the two analyses are identical. This is not 

surprising since the numerical method is identical for both analyses. There 

are some advantages of the adjoint analysis over the forward derivative 

analysis, such as 

• The quantity of interest and its sensitivity are calculated directly, i.e. 

no further processing of the solution is required 

• Adjoint analysis naturally extends to the effects of numerical error in 

the evaluation of the model 

Example 1.1.4. Recall the classical SIR-epidemic model described by the 

nonlinear system of differential equations 

'S = fiK-pSI-nS, 

i = pSI--yI-fiI-aI, (1.1.22) 

R = -yI- fiR. 
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?(A) 

V«?(A) 

Adjoint Analysis Results 

9.4204e + 006 

/ -0.2533 \ 
1.0e + 008 1.0551 

\ -3.1388 / 

Forward Analysis 

9.4204e + 006 

/ -0.2533 \ 
1.0e + 008 1.0551 

\ -3.1388 / 

Table 1.1: Table of sensitivities of total amount of radioactivity at 36 hours 

We rewrite this as 

x = f{x;X), (1.1.23) 

where x — ( S / R ) and A = ( /? 7 \x a ) . Suppose the quantity 

of interest is the total population at the end of one week. The dual data 

tp(t) — ( 1 1 1 ) 8(t — 7), and the linearized adjoint problem is 

01 -PS + H n 
(31 pS-i-n-ct 0 I <t> = il;,T>t>0, (X X 24) 
0 7 -M 

d>(T) = 0. 

There are viruses that have many strains that can vary from year to year, 

e.g. the flu. Thus, this is a perfect example for examining the effect of vari­

ations in the model parameters on the quantity of interest. Using (1.1.19) 

we see that 

g(A)« / (y,^j)ds+ / 
Jo Jo 

T ( l -SI 0 I+R 0 
SI -I -I -I I (A-A),<H ds, 
0 / -R 0 

(1.1.25) 

where y is the reference solution solved about reference parameter A. 
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1.2 Inverse Sensitivity Analysis 

We study the following inverse sensitivity analysis problem, given a 

specified uncertainty in the output of a map, e.g. a quantity of interest cal­

culated from the solution of a differential equation, determine variations in 

the input data and parameters that produce this uncertainty in the output. 

This inverse sensitivity analysis problem is typically ill-posed, i.e. there 

is typically more than one solution, since the solution involves inverting 

through a many-to-one map. One approach to deal with nonuniqueness of 

solutions is a probabilistic description of the input data and parameters. 

We describe the inverse sensitivity analysis problem assuming an abstract 

probabilistic formulation of the forward problem. Given 

• a joint density, p\{X), in parameter (input) space A C Rd, 

• a model M(Y, X) with solution Y = G(X) that depends (implicitly) 

on parameters A in a smooth way, 

• a linear functional q(X) = q(Y(X)), 

determine the density pv{q), of measurable output data q(X). Note that 

we assume the model, e.g. the physics of the problem at hand, is well 

known and described by a smooth system of equations so the map q(X) is 

implicitly a smooth and deterministic function of A. Even though this is 

a probabilistic formulation of the forward problem, we may use derivative 

information typically used in deterministic forward sensitivity analysis to 

cheaply approximate the density of q(X) [20, 11, 12, 8, 9, 6, 10]. We now 

state the abstract version of the inverse problem. Given 

• a model M(Y, X) with solution Y = G(A), 
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• a linear functional q(X) = q(Y(\)), 

• an observed density, pv(qW) = Pv{q{YW)), of output values q{\), 

determine a posterior density, (T\(X) of parameters that produces the ob­

served density. This inverse problem has an abstract formulation, where 

we pose a density for the output in order to observe the effect. It also has 

an experimental formulation, where the model output is meant to match 

the observed values of an experiment and the imposed density is associ­

ated with the experimental data. This observed density may reflect the 

uncertainty in the data or be the consequence of error. It is affected by 

our ability to measure it. There is a very strong connection between the 

inverse sensitivity and forward sensitivity problems that we exploit in our 

approach. 

Before generalizing to higher dimensions, we present some simple one-

dimensional inverse problems and the issues that arise in such problems. 

Example 1.2.1. Consider the 1-1 map y = ex over the interval [0,1]. If 

x is assumed a random variable with uniform distribution on [0,1], then y 

is a random variable with a distribution determined from a simple change 

of variables formula, see Figure 1.3, Now suppose we start with this dis­

tribution on y and wish to invert through the map y — ex. We can use 

a simple change of variables as with the forward problem to determine the 

distribution of random variable x is uniform on [0,1]. Suppose instead we 

linearize the forward problem using a deterministic sensitivity analysis and 

invert through the linear map to obtain an estimate of the distribution of the 

random variable x. Figures 1.4-1.6 show the results obtained using various 

piecewise linear approximations to y = ex. These figures suggest that as 
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the linear approximations converge to the nonlinear map, the approximate 

density functions of the random variable x converge in some sense to the 

true density function. We note that some liberties are taken in the inver­

sion through the piecewise linear approximations since these do not form a 

function of y in terms of x (there are some values of y that can be mapped 

to two values of x), but we address this problem more generally in the next 

example. To obtain the results of Figures 1.4-1-6, we simply invert through 

each piece of the piecewise linear approximation independently as a way to 

navigate around this technical difficulty. 

Vy)=lin(y).[o.H<y)1 /y 

Figure 1.3: The forward problem of determining the density of random 
variable y (right) by passing the density of x (left) through the map y = ex 

(middle) 

Example 1.2.2. Consider the two-to-one map defined by y = x(l — x) 

on [0,1]. Suppose y is a uniform random variable on [0,0.25], i.e. the 

range of y — x(l — x) on [0,1], and we want to determine the density of 

random variable x on [0,1]. Except at y = .25, there are two possible x 

values for each value of y and a simple change of variables cannot be used 

to determine the density of x unless we restrict x to be in [0, .5] or [.5,1] 

where the map is 1-1, see Figure 1.7. Thus, except at y = .25, we identify 

the set of two values of x found by inverting y € [0, .25) as the inverse. 

y*H„o,„<><) 
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,vM=W)«|ini (y)1'y 

Figure 1.4: The inverse problem of approximating the density of random 
variable x (right plot, approximation is in red, exact is in blue) by passing 
the density of y (left) through a linear approximation of the map y = ex 

(middle plot, linear approximation is in red, exact is in blue) 

Wv)=L [0.i,(v)i'y K^ vy^u.,,00 

Figure 1.5: The inverse problem of approximating the density of random 
variable x (right plot, approximation is in red, exact is in blue) by passing 
the density of y (left) through a piecewise-linear approximation of the map 
y = ex (middle plot, linear approximation is in red, exact is in blue) 

fy(y)=li„ 0„(y)i/y yx>=lx«[o,n<x> 

Figure 1.6: The inverse problem of approximating the density of random 
variable x (right plot, approximation is in red, truth is in blue) by passing 
the density of y (left) through a piecewise-linear approximation of the map 
y = ex (middle plot, linear approximation is in red, truth is in blue) 
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With this set-valued interpretation, all the inverses are indexed on the line-

segment on the x — axis between either [0, .5] or [.5,1]. Given two distinct 

indexed points xa and xg in either line-segment of[0, .5] or [.5,1], we might 

choose an indexing so that if xa < xg, then the indices a and (5 satisfy 

a < P. In this way, we define a "direction" to the inverse set so that the 

points in [0, .5] are indexed in increasing order and the points in [.5,1] are 

indexed in decreasing order, and given a distribution on y, we can uniquely 

define the distribution of the inverse set on either [0, .5] or [.5,1] by using 

consistent indexing. Thus, the distributions of the inverses is independent 

of the choice of inverse set! This approach is more complicated for a map 

that is not symmetric as seen in Example 1.2.3. 

Suppose we want to invert into the entire set of possible inputs x £ [0,1] 

that generate the output y(x) £ [0,0.25]. We require some information on 

the probability of the various possible inputs such as a prior density function 

on the parameter space for a Bayesian approach. Given a value ofy to invert 

through this two-to-one map, we find all possible values of x that map to this 

y value and use a given prior density function to determine the probability 

of each possible choice of x. For example, if the prior probability is uniform 

on [0,1], then each value of x found in Figure 1.7 for the given value of 

y = .15 is assigned probability .5, and more generally the posterior density 

is given by Figure 1.8. If the prior is defined as values in [0,0.5] being twice 

as likely as values in (.5,1], then the probability of the value of x to the left 

(right) of x = .5 in Figure 1.7 is 2/3 (1/3) and the posterior density is 

given by Figure 1.8. 

Example 1.2.3. Consider the map defined by 

( x ( l - x ) , 0 < x < . 5 , 
y \ - 4 ( x - . 5 ) 3 + .25, . 5 < x < 1. { } 
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x=0.5 

Figure 1.7: Plot of two-to-one map 

p o s t e r i o r d e n s i t y 

p o s t e r i o r d e n s i t y 

Figure 1.8: Left: A posterior density function if prior is uniform. Right: A 
posterior density function if prior is nonuniform 
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Figure 1.9: Non-symmetric map 

We plot this map in Figure 1.9. As above, we assume y is a random variable 

with density function whose support is the range of the map, which in this 

case is [—.25, .25], We seek the density function of input random variable x 

given random variable y. Note that if we restrict x to be in [.5,1], then the 

map is a bisection so each value of y is uniquely associated with a unique 

value of x. If we restrict x to be in [0, .5], then each value of x is associated 

with a unique value of y, but there are y values that are not mapped to from 

any value of x in this interval due to the lack of symmetry in this map. We 

can add a disjoint interval and restrict x to be in [0, .5] U ((1/16)1/3 + .5,1], 

which defines a bijection between x and y. We might define an indexing of 

[.5.1] as before, so the points are indexed in decreasing order. If we choose 

[0, .5] U ((1/16)1/3 + .5,1], then with the same indexing scheme, we begin 

indexing points in ((1/16)1/3 + .5,1] in decreasing order, and then index 

points [0, .5] in increasing order. 
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Chapter 2 

GENERALIZED CONTOURS: A 
COMPUTATIONAL APPROACH TO 

USING SET VALUED INVERSES 

2.1 Basic theory 

As foreshadowed in the 1-D examples of the previous chapter, we first 

define a unique solution to the inverse problem by indexing the "inverse 

sets." This does not require a probabilistic approach to inversion, but is 

rather a well posed "inverse"' density estimation problem, in which we use a 

random variable on the output, and we compute the density of the random 

variable of our indexed inverse sets. In the next chapter, we use a prob­

abilistic description, i.e. a measure-theoretic description, to further invert 

into the entire parameter space and make that problem mathematically 

rigorous. Our computational approach to inverting through a many-to-one 

map by using a set valued inverse uses the well known 

Theorem 2.1.1 (Implicit Function Theorem). Let f{x,y) : Rn + m - • Rm be 

continuously differentiable, where x <G Rn and y <E Rm. If for (a. b) G Rn + m , 

f(a, b) — 0 and [dyjfi(a, b)] is an invertible matrix, then there exists open U 

containing a, open V containing b and a differentiable function g : U —» V 

such that 

{(x, g(x))} = {(x, y)\f(x, y) = 0}n(UxV). (2.1.1) 
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Under the assumption of a smooth map, if we are given a fixed out­

put value g, then the Implicit Function Theorem guarantees the existence 

of a (d - l)-dimensional manifold in A that is mapped to q. Motivation 

and intuition comes from the two-dimensional case, A = (Ai,A2), and in 

this dimension the manifolds are simply contours of the surface q(\\,\2) 

(Fig. 2.1). Every point in A lies on a unique contour, so we first consider 

Figure 2.1: Each observation value corresponds to a unique contour curve 

A as a set described by its contours. 

We need to find a way to describe the set of contours. In the set of these 

contours, there exists one-dimensional curves transverse to the contours 

that intersect each contour once and only once (lefthand illustration in 

Fig. 2.2). We can take one of these curves as the index for the set of 

contours. There is a bijection between the points on an index curve and 

the points in the range of the output q{A). Therefore, any measure posed 

on the range of the output imposes a measure on the index curve. Thus, the 

intersections of the contours with the index curve is a random variable with 

a distribution uniquely defined by the distribution of the output Pd{qW) 

(righthand illustration in Fig. 2.2). In other words, there exists a unique 

solution to the inverse sensitivity analysis problem in the set of contours. 

However, determining the set of contours analytically is infeasible in 

practice. To construct a computable approximation, we use a piecewise-

22 



linear tangent plane approximation to the output surface q(X) to construct 

approximate contours. 

Figure 2.2: Left: On the horizontal plane, we show a transverse parame­
terization. Each point on the transverse parameterization corresponds to a 
unique contour curve, so the transverse parameterization acts as an index 
for the space of contour curves. There is a unique map from the points 
in the interval containing the observed output values to the points on the 
transverse parameterization. Right: We show a probability distribution 
imposed on the output values. A sample of output values drawn from this 
distribution corresponds to a unique sample of contour curves. 

We study the inverse problem for a finite dimensional map q from the 

space of parameters to the output. Such a map can be defined implicitly, for 

example by the solution to a differential equation that depends on a finite 

number of parameters in the problem. With this in mind, we consider the 

finite dimensional nonlinear system of equations 

f(x;X) = b, (2.1.2) 

where x G Rn, parameter A e A c Rd (we assume A is compact) is a 

random vector, and / : M.n+d —* Rn is assumed smooth in both variables. 

The motivation for solving this system is to compute a quantity of interest, 

denoted q(X) = q(x(X)), which can be represented as a linear functional of 

the solution x(X). The Riesz representation theorem implies there exists 
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</> 6 Rn such that q(X) = (x,'0). Note that x depends implicitly on A. 

Assuming that this dependence is smooth, then the dependence of q on A 

is also smooth. 

We define q(X) := q(X) — q, where q G g(A) is fixed but arbitrary. By 

assumption, q(X) : Rd —> IR is continuously differentiable and there exists 

A 6 A such that q(X) = g, which implies that q{X) = 0. We are initially 

only interested in the cases where the quantity of interest varies as the 

parameters vary (and later where local extrema of the quantity of interest 

occur), so we assume that d\dq(X) ^ 0. Then, by the Implicit Function 

Theorem, there exists an open set Ux C Ad_1 , where Arf_1 := {A''-1 := 

(Ai , . . . , Ad_i)|A = (Ai , . . . , Ad) 6 A}, containing Ad~\ an open set Vx C A^, 

where A^ := {Ad|A 6 A}, and a differentiable function g\ : Ux —> V\ such 

that 

{ ( A ^ 1 , ^ - 1 ) ) } = {A|g(A) = q} n (U-x x V-x). (2.1.3) 

Since the Implicit Function Theorem is a local result, there may be 

additional points in A that map to q, but are not contained in the set 

defined by (2.1.3). Thus, given q E <?(A), we choose a collection of sets 

{Ux x Vx) = \ja(iA{UXa x VXJ where {JaeA{Xa} is the set of all A € A such 

that q(X) = q. Then using the same notation as in (2.1.3), the function 

^(A d _ 1 ) might be piecewisc defined. 

Definition 2.1.1. The set in (2.1.3) is a (d — 1)-dimensional manifold 

that is a natural inverse of q(X) given q. We call this set the generalized 

contour. 

Theorem 2.1.2. If we choose distinct <ji,<?2 € 9(A), then the generalized 

contours for q~\ and q% are unique and do not intersect. 
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Proof: 

The nonintersection property follows immediately from the fact that q(X) is 

a function. Uniqueness follows immediately from our convention of choosing 

{Ux x V-x] = \JaeA{U-Xa x VXJ where \JaeA{\a] is the set of all A e A such 

that q(X) = q for a given value of q G <?(A). D 

The two-dimensional case (A = (Ai,A2)) provides motivation and in­

tuition. In this case the generalized contours are simply contours of the 

surface q(X\,X2)- We find it notationally convenient at times to denote a 

generalized contour for a specific quantity of interest q as q~l(q). Since q{X) 

is smooth and A is compact, q(A) defines a compact interval of real num­

bers, Iq := [qm,qM] — <?(A), where qm and qu arc the absolute minimum 

and absolute maximum of (/(A), respectively. We redefine q(A) to be the 

open interval (qm,qM), which we also denote by Iq. 

Remark 2.1.1. We relax the restriction of dXdq(X) ^ 0 for a finite number 

of points in A, where q(X) possibly attains a local extreme value. We ignore 

this set of points when considering the generalized contours. 

Our goal is to show that in the space of generalized contours, the 

inverse problem has a unique solution. We start by proving that there 

exists (possibly discontinuous) 1-dimensional curves that are transverse to 

the generalized contours. This allows us to index the family of generalized 

contours, and subsequently define the inverse into the space of generalized 

contours for a given distribution of q(X) uniquely. We give a constructive 

proof that is a useful algorithm. The algorithm produces discontinuous 

curves in A in general. 
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Definition 2.1.2. We call any such curve that has the property that it 

intersects each generalized contour once and only once a transverse pa­

rameterization (TP). 

Theorem 2.1.3. Suppose f is smooth in (2.1.2) and q(X) is a linear func­

tional of the solution to (2.1.2). If q{\) is a random variable with distribu­

tion Fq(q(X)), then there exists a TP in A, the distribution of the intersec­

tions of the generalized contours on the TP, which is a random variable, is 

unique. 

We interpret this theorem to say that there is a unique solution to the 

inverse problem in the space of generalized contours. 

Proof: 

We claim that such a transverse curve can be constructed from a finite 

number of connected curves. To prove this, first fix c > 0 and e > 5 > 0, 

and take Iq^ = [qm + e,qM — e]. If A is compact, then the existence of 

transverse curves is guaranteed by the smoothness of q{\). To construct 

such a curve, we begin at a point 7M € A such that <J(7M) = <?M — b, 

and follow the direction of the negative gradient until the curve either in­

tersects the boundary or a minimum or saddle is reached, and denote this 

point 7m . From smoothness, we have that exactly one contour for each 

value of q(X) between (</(7m), <?(7M)) has been intersected by this curve. If 

(q(lm), Q{IM)) does not completely cover 79)£, then we select a point rm € A 

such that q(Tm) = qm + 5, and follow the direction of the gradient until the 

curve either intersects the boundary or a maximum or saddle is reached, 

and denote this point TM. We now check if (g(7m), (?(7M)) U {q{rm), q{jM)) 
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covers Iq<t. If so, then we eliminate any part of the second curve that gives 

an overlap with contours intersected by the first. Otherwise, we continue to 

create this possibly discontinuous curve with the same steps above trying to 

cover the output interval defined by (q(rM), q{lm))- This process produces 

a countable number of connected curves whose union forms a (possibly 

discontinuous) transverse curve through the generalized contours that cor­

responds to a countable open cover of 7g]£, which is compact, so there is a 

finite subcover of Iqt, which implies that only a finite number of steps is 

needed to construct such a (possibly discontinuous) transverse curve to the 

generalized contours of Iq,t. Thus, there exists a (possibly discontinuous) 

1-dimensional curve in A that is orthogonal to the generalized contours it 

intersects, and intersects each generalized contour exactly once. 

In practice, we construct the transverse curve to the generalized con­

tours of Iq by initially following the first two steps above with e = 0, i.e. 

locate 7M € A such that <7(7M) = QM and rm € A such that q(rm) = qm 

and construct the pieces of the transverse curve by following the negative 

and positive directions of the gradient, respectively. If we now take e to 

be half the minimum of </(7M) — <l(lm) a n d Q{TM) - q{Tm), and define Iq<t 

with this choice of e, then following the steps above, we construct a curve 

transverse to all the contours of Iq in a finite number of steps. • 

2.2 Approximation of the space of generalized contours 

Suppose that q is a linear function of A, i.e., q(X) = 7TA for some 

7 <E Md (recall A C Rd). Then for fixed q € q(A) we have (with the same 

conventions as above) U-x, Vx, and gi : U~x —> V~x such that {(Ad~\ gx{Xd~1))} 

is the generalized contour. In this case, we write the function g j , ^ - 1 ) = 

(q-(ld~lY^d-l))hd explicitly. 
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Definition 2.2.1. The generalized contour above is a (d — 1)-dimensional 

hyperplane and we refer to this as a generalized linear contour. 

We approximate generalized contours locally by generalized linear con­

tours, and approximate a generalized contour by a generalized piecewise-

linear contour. We use generalized piecewise-linear contours computed from 

a piecewise-linear tangent plane approximation to q(X). If q is an affine map 

of A, i.e., q{X) = 7TA + q0 for some go e R, then we use the function above 

with q replaced by q — go-

2.3 Local linearization of the linear functional 

The goal is to approximate the map </(A) with a piecewise-linear map 

g(A) since it is possible to calculate the generalized contours for this approx­

imate map. We show how to linearize the map q(X) locally, and prove the 

approximate contours converge to the true contours locally as the number 

of linearization points increases. 

Suppose we choose a reference parameter value A = // at which to solve 

/(x;A) = 6 

exactly. Call this reference solution y. Then according to Taylor's Theorem, 

f{x; A) = /(;</; n) + Dxf(y; n){x - y) + Dxf(y; /x)(A - //) + 11, 

where 71 ~ 0(\\x - y\\2 + ||A - /i||2), for \a\ = 2. Here Dxf and D\f denote 

the derivatives of / with respect to x and A, respectively. 

In order to compute the tangent plane approximation efficiently, we 

use the generalized Green's vector 4> that solves the adjoint to the linearized 

problem 

AT(j> = xjj, (2.3.1) 
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where A = Dxf(y;fx). Recall that g(A) = (x,ip), so by substitution of the 

above and standard linear algebra we arrive at 

<?(A) = g(/i) - (Dxf(y; /i)(A - fi), 0) - (K, 0 ) . 

Neglecting the higher order term leads to an approximation of q by an affine 

map q. We denote the generalized contour of q given q by {(Ad_1, ^(A d _ 1 ) )} 

and the generalized linear contour of q given q by {(Ad_1, <7A(Ad-1))}, then 

at any Ad~x <E UX: 

[gx^-1) - h(^1)} [<PTo,J(y, fi)} = - (n, <t>). (2.3.2) 

By assumption, 

aAdg(A) = c/>TdXif(y,ri f 0, 

so we rewrite (2.3.2) as 

k ( A d - 1 ) - 5 A ( A d - 1 ) ] = c ( ? e , 0 ) , 

where 

is a nonzero constant determined entirely by the reference point (y,n). 

Thus, if we define 

\\U-X\\ = sup | |A- /2 | | 2 , 
\eu-x 

where ||||2 denotes the standard Euclidean norm, then as \\UX\\ —» 0, ||R||2 —» 

0, which implies that ^ ( A ' ' - 1 ) - 0A(Ad-1)| —> 0. We summarize this as the 

following 

Theorem 2.3.1. The generalized linear contours converge pointwise to the 

true contours locally in A. 
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R e m a r k 2.3.1. This also applies to differential equations that depend on 

a finite set of parameters. For ordinary differential equations, we require 

the same assumptions as the standard existence and uniqueness theorems 

to guarantee the smoothness of q{\). For partial differential equations, we 

have similar smoothness assumptions, and discuss these along with an in 

depth error analysis in more detail in later chapters. 

2.4 Global l inearization of the linear functional 

We extend the local linearization technique to obtain a global piecewise-

linear approximation of the linear functional over all of A. We first define 

a partition {Bi}f=1 of A. We refer to the Bi as cells even though we might 

use Voronoi tesselations or other more complicated geometric objects to 

partition A. We apply the local linearization technique described above for 

each box, and defining 

' 1, if A e Bu 
l s ' ( A ) : - i 0, HX^Bu 

we obtain a global piecewise-linear approximation q(X) to q(X) defined by 

M 

q(X) : = J^ (q(fH) + ( V ? ^ ) , (X - &))) lBj(A), (2.4.1) 
i=i 

where /ij is the reference parameter value chosen in cell Z?j. For the finite 

system of nonlinear equations, we have 

V?(/*i) = <t>]D\f{yi\m), 

where ^ solves the linearized adjoint problem using the reference point 

(yt, Hi). If we let — (IZi, 4>i) denote the higher-order terms neglected in the 
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linearization of q(X) in cell /?,, then we can write the error of the piecewise-

linear approximation, e(A) = q(X) — (/(A), as 

M 

e(X) = ~J2(^^)1BlW-

The generalized linear contour of q given q is a collection of line segments 

in A. Using the same notation as above, 

M 

i = l 

where 
C-1 = mm{\cpJdXdf(yufM)\}. 

Thus, as ||-Bt|| —> 0 (or as M —> oo when the number of sample points are 

distributed uniformly), the generalized linear contour converges pointwisc 

to the generalized contour. We demonstrate the convergence of generalized 

linear contours to true contours in the two examples below. 

Example 2.4.1. Suppose g(A!,A2) = XXX2 exp [— {X\ + 1.25A| — 1)] over 

[0,2] x [0,2], We approximate q over some partition {Bi} of [0,2] x [0,2], 

where each Bi is a square of the same size, and we linearize around the mid­

point of each Bi to form q as in (2.4-1). We plot various contour curves 

and two TP's on each plot. The black dotted line (with stars marking where 

it enters and exits each Bi) is a TP formed by starting at the maximum of 

q and following the direction of the negative gradient. The red dotted line 

(with plus signs marking where it enters and exits each square) is a TP 

formed by starting at the minimum of q and following the direction of the 

positive gradient. The results are summarized in Fig 2.3 below. 

Example 2.4.2. Suppose g(Ai,A2) = exp [cos(Ax) + sin(A2)] on [-2n — 

0.1, 27T + 0.1]2. We proceed as above to obtain the numerical results summa­

rized in Fig 2.4 below. 

31 



1 • i • • ' " » I 
0 0.2 0-4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 0 0.2 0.4 0.6 0.8 I 1.2 1.4 1.6 1.8 2 

Figure 2.3: Contours of q using 5 x 5 square cells (top left), 10 x 10 square 
cells (top right), 25 x 25 square cells (bottom left) and 50 x 50 square 
cells (bottom right). The TP is created using the same steps as in the 
proof of its existence and is denoted by the circle-dotted and plus-dotted 
lines. The circle-dotted line is constructed from the maximum of q(X) and 
follows the negative direction of the gradient of q{\), and the plus-dotted 
line is constructed from the minimum of q(\) and follows the direction of 
the gradient. 
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Figure 2.4: Contours of q using 7 x 7 square cells (top left), 10 x 10 square 
cells (top right), 25 x 25 square cells (bottom left), and 50 x 50 square 
cells (bottom right). The TP is created using the same steps as in the 
proof of its existence and is denoted by the square-dotted and circle-dotted 
lines. The square-dotted line is constructed from the maximum of q(X) and 
follows the negative direction of the gradient of q{\), and the circle-dotted 
line is constructed from the minimum of q(X) and follows the direction of 
the gradient. 
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Chapter 3 

PARAMETER ESTIMATION 

3.1 Basic concept of parameter estimation 

We define the solution of the inverse sensitivity problem as computing 

the probability of events (measurable sets) in parameter space. This re­

quires further inversion from the computed density on the set of contours 

as described in the previous chapter. In order to assign a probability to a 

measurable set in A, we recognize that such a set is defined by the contours 

it contains and the amount of each contour it contains, see Fig. 3.1. A 

Figure 3.1: Plotted is a sample of contour lines in parameter space corre­
sponding to a specified distribution on the output observation values along 
with three events. The Lebesgue uniform measure is specified as the mea­
sure on the parameter space. Event B has relatively low probability because 
while it has relatively large area, it contains relatively few contours. Event 
A has intermediate probability because while the area of event A is rela­
tively small, A contains relatively many contours. The probability of event 
C is largest because it contains as many contours as A but has larger area. 

measure specified on A quantifies the amount of each contour contained in 
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any given set. Combining the results of the generalized contours with such 

a measure, and using the Monotone Convergence Theorem and additivity 

properties of measures, we develop an algorithm to estimate the probability 

of any measurable set in A. 

Alternately, results may be obtained by standard implementation of a 

Bayesian approach by sampling prior densities, solving the nonlinear model 

for each sample, accepting/rejecting these samples using the observed den­

sity, and finally by binning the accepted samples. Our methodology does 

not require any model solves other than the small number used to construct 

a piecewise-linear tangent plane approximation after which all calculations 

arc done directly in parameter space. Furthermore, our method does not 

require sampling the prior density as it is used only as a normalized measure 

to determine the size of contours, so we never encounter convergence issues 

that often arise in Markov Chain Monte Carlo methods of sampling used 

to implement the Bayesian approach. Our method also gives the ability to 

directly test candidate prior densities without performing additional model 

solves. 

3.2 Poster ior densities 

For smooth / in (2.1.2) and linear functional q(\), if q(\) is a random 

variable with distribution Fq(q(\)), then for a fixed TP in A, the distribu­

tion of the points of intersection of the generalized contours on the TP is 

unique. 

We now discuss how to use the unique solution to the inverse problem 

to determine estimates of model parameters. We first observe if / = [qi, q^] 

is an event with probability P(I) (meaning the probability of the quantity 
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of interest q(\) occuring in the interval V), then this corresponds to a mea­

surable set in A that is defined as the set of all contours obtained by q~1{I)-

From the basic assumptions of smoothness and the nonintersecting prop­

erty of the contours, the set of all contours is a set in A that is contained 

between the two contours defined by q~1{qi) and q~l(q2) (or possibly one of 

these contours and the boundary of A). We assign this set the probability 

P(I). In this way, we can assign a distribution to the space of contours 

that is described by the distribution of intersection points of the contours 

on the TP. In order to assign a probability to a measurable set in A, we 

first recognize that such a set can be defined by the contours it contains and 

"how much" of each contour it contains. In order to assign a probability 

to such a set, it is clear that we need to quantify what is meant by "how 

much" of a contour is contained in the set, and to do this we need to have 

some concept of the "size" of a contour. Thus, we must identify a measure 

on A. 

Definition 3.2.1. We normalize measures on A and call any such normal­

ized measure a joint measure reflecting standard probabilistic terminology. 

Before proceeding further, we connect our notation with the standard 

nomenclature [25, 1]. Abstractly, we begin with a model M(Y,X) (e.g., fi­

nite system of nonlinear equations or differential equations) that depends 

on some model parameters A. We refer to a particular choice of model 

parameters A € A as a model selection while the model space A is 

a manifold in which each point represents a possible model selection. We 

obtain information on model parameters via the data (or observable pa­

rameters) q € V where the data space V is a manifold in which each 

36 



point represents a possible measurement of the solution Y = Y(X) to the 

model M(Y, A). The data are determined by a linear functional of the so­

lution to the model denoted 17(A) = g(Y(A)). We define the parameter 

manifold, denoted X, as the space whose points are defined by x = (A, q), 

where A and q come from the model and data spaces, respectively. In other 

words. X is the joint manifold formed from the Cartesian product of the 

model and data manifolds, X := A x V. 

We first assume that there exists measures on both the model and data 

space that are absolutely continuous with respect to the Lebesgue measure. 

This means we have a way of measuring volume in the model and data 

space, and we can measure volume in the joint manifold X. We assume the 

manifolds have finite volume, and define the homogeneous probability 

density on X as 

dfi(x) = di/(x)/V, 

where V is the total volume of X and dv(x) is the volume density of the 

manifold X. Thus, given a measurable set A C X we have a probability 

li(A) = / d/i(x) 
J A 

proportional to its volume V(A). We assume that any probability measure 

P on X is absolutely continuous with respect to the homogeneous prob­

ability measure \i. By the Radon-Nikodym theorem, there exists positive 

function f(x) such that 

P(A) = j f f(x)drtx) = J ^ dn(x), 

for any measurable A C X. The function f(x) is called a joint density 

function on X. 
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Since X and its homogeneous probability density dp, come from a prod­

uct space and product measures, we write 

dp(x) = dp(X,q) = dpAWdpv{q), 

where d/iA(X) and dpv{q) represent the homogeneous probability densities 

on model and data space, respectively. 

Let Q(X,q) represent the joint (theoretical) probability density on X 

defined by the model, and use the fact that a joint probability density can 

be written as the product of a conditional and marginal probability density 

functions to obtain 

Q(\,q) = 6(q\\)diiA{\), (3.2.1) 

where 9(q\X) represents the probability density of an output given an input 

and we take the homogeneous probability density on model space as the 

marginal probability density function. Neglecting any uncertainties in the 

model, 9(q | A) = 6(q — q(X)). Equation (3.2.1) represents all the information 

on X we can obtain by solving the model. 

Remark 3.2.1. We ignore errors in model evaluation in this chapter. In 

a later chapter, we consider the effects of error in model evaluation and 

observed density. 

We use the probability density function pv{q) to account for the uncer­

tainty in the output, e.g. resulting from varying empirical observations or 

by modeling the error of the measurement equipment. We define the prior 

information on A as the information obtained about the model param­

eters independently of the data, and we model this prior information with 

the probability density function p\(X). If we have no prior information, 
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then we take p\(X) — dfi\(X). By definition of the prior information on A, 

we write 

p(X,q) = pA(X)pv(q), (3.2.2) 

to represent the joint (prior) probability density on X that takes into ac­

count all the prior information before statistical inversion and model pa­

rameter estimation. 

We have defined two probability distributions on X that represent two 

different states of information. The combination of these two states of in­

formation defines the posterior state of information. It is widely accepted 

[25, 1, 19, 17] that the joint probability density on X that represents this 

posterior state of information is formed by the conjunction of the theoret­

ical and prior information. Forming the conjunction leads to the posterior 

joint probability density function a(X, q) defined by 

/» x , P(^,<?)©(A,g) 
o-[X,q) = k , 

dft{X, q) 

where A; is a normalizing constant. Generic approaches to form a poste­

rior joint probability density are widely understood and accepted in the 

Bayesian inference community developed with respect to applications to 

many fields of science [25, 1, 17, 19, 13]. We now investigate how to obtain 

model parameter estimates from this posterior joint density function. 

3.3 New approach - computational measure theory 

We propose a new method for finding the posterior density. By using 

the adjoint and generalized contours, this method uses weaker assumptions 

than those typically required to implement a Bayesian approach involving 

sampling from the posterior [13, 16, 17]. 
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We do not require a prior density on model space. Rather, we assume 

only that the volume measure on model space is defined by the homogeneous 

density d/iA(A). We later construct a volume measure using a product space 

structure and assuming prior densities on model space are given. With these 

assumptions, 

a{x'q) = k—dizm—• 
In the examples below, the data space is linear, making dp,-D(q{X)) a con­

stant, so 

<r{\, q) = ld,iA(X)pv(q)5(q - q(X)). (3.3.1) 

where v is the new normalization constant. We are interested in the pos­

terior density on A calculated from (3.3.1) by integrating over V, which 

yields 

O-A(A) = ^dfJiA(\)pv(q{\)). (3.3.2) 

Our goal is to approximate the posterior density in (3.3.2) in a cost-effective 

way. Our approach is measure-theoretic in the sense that we approximate 

the posterior density using simple functions. 

T h e o r e m 3.3.1. Given a measurable set A C A, P(A) can be approxi­

mated by a simple function approximation to (3.3.2), which only requires 

calculations of volumes in A. 

Algorithm 3.3.1 (Approximate Posterior Probability Measure Method). 

Fix simple function approximation, p~v '(q), to pv{q) 

pv (q) induces partition U ^ '[<&_!, ĝ ) ofV 

For each i = 1 , . . . , N(M), p\, (q) is constant on [qt-i, qi) 

U i=1 '[qi-i,qi) induces partition of generalized contours {Aj}N}i of A 

Let Pj denote probability of Aj given by J, .pv \q) dn-p(q) 
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Partition A with small cells {h}i=l 

fori = 1 , . . . ,M ' do 

for j = l , . . . ,yV(M) do 

Calculate ratio of volumes of bi fl /lj to J4J, store in matrix Vij 

end for 

Set P(bi) equal to E f j f 5 VijPj 

end for 

Given event A c A, estimate P(A) using 

• inner sums, i.e. ^ P{h) for i G / C { 1 , . . . , M'} with bi C A, 

• outer sums, i.e. ^ P(bi) for i e I C { 1 , . . . , M'} with k D A ^ 0, 

• average of inner and outer sums, or 

• JAo-AM>(\)d\ 

In the absence of a set A, wc still carry out the first part of Alg. 3.3.1 

to obtain a discretized approximation of the measure P on model space. 

Note that there are several discretizations that take place in Alg. 3.3.1. 

The first discretization is the simple function approximation of the output 

density pr>(q). This discretization induces the partition of A by generalized 

contours {A3}^1]. 

Remark 3.3.1. For A restricted between any two contours induced by a 

subinterval of a partition of V as above, q(\) is approximately a uniformly 

distributed random variable. 

This discretization allows the probability of any event A C A to be 

calculated using a ratio of volumes as seen in the proof below. 
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Remark 3.3.2. The choice of {h}i=1 is arbitrary, and is not necessary 

to the approximation of P(A). We choose {bi}i=1 in order to approximate 

P(A), for any event A C A, without carrying out the calculations in the 

nested loops of Alg, 3.3.1 for each new event. If we only want to com­

pute the probability of a particular event, A C A, then we skip the step of 

partitionining A by {bi}i=1 and replace the step in the nested loop by the 

following: Calculate ratio of volume of A n Aj to volume of Aj, store %n 

vector Vj. We may then approximate P{A) by X]J=i VjPj-

Proof: 

Suppose that {qj}j=0 is a partition of V such that go < <7i < • • • < <7JV, and if 

Ej = [qj-i,qj], then V = UjEj. Let Aj = {A | q(X) G Ej}. We assume that 

the relationship between data and model parameters has been exploited 

so that A = UjAj, which is to say that we are working with appropriate 

data and model spaces such that any choice of model parameters A G A 

corresponds to q(X) G T> and any q G V can be mapped to from some 

A 6 A. We have that the probability of Aj from the posterior density is 

given by 

P(AJ)= f f a(X,q)dqd\=- [ pv(q(X)) ^ A ( A ) . 
J AJ JV v J Aj 

Given measurable set (or an event) A C A, we use the law of total proba­

bility to write 

N 

r(A) = ^rP(A\Aj)P(Aj). 
3 = 1 

Since the Aj are induced from the partition on data space, we rewrite 

P{A\Aj) = P{X E A\q{X) G Ej) and P{Aj) = P(q{\) G Ej). If q{X) ~ 
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U(Ej), then pv(qW) is constant for A 6 Aj, so by (3.3) we have 

P(A\A\= P{A n Aj) = ^ d4lA{X) = ^ A C ) A ^ t[A]Aj) P(Aj) JAjdvLA(\) li^Aj) ' 

Hence, P(X e A \ q(X) e Ej) = P(A \ Aj), and this probability can be calcu­

lated from the homogeneous density on model space since it only depends 

on measurable sets in A if we assume that q(X) ~ U(Ej) for A € Aj, and its 

value is the ratio of volume of A n Aj to the volume of Aj. Since the prior 

density on data space is a nonnegative integrablc function, there exists a 

sequence of simple functions \ pv ' (q) \ with 

I J M=I 

2 2 M + 1 , 

' 2M k=\ 

and IM<k = [(k - l)/2M,k/2M\. We first observe that the partition {IMtk} 

induces a partition, denoted {EM,/C}, of P . Also, we observe that (rv \q) —> 

Pv(q) in Ll as M —> oo by the Monotone Convergence Theorem, and for 

any measurable set E C P 

2 2 M + 1 

[ P{v\q)dq = J2 ^ M % n £ ) 
• ^ fc=l 

-» Px)(E) as M -> oo. 

Thus, we can approximate the value of P(A \ Aj) by the ratio of volume 

of A n Aj to volume of Aj obtained from the homogeneous density on 

model space if the induced partitions {Aj} come from a sufficiently fine 

partition {Ej} of data space so that the distribution of q(X) for A € Aj is 

approximated by U{Ej). • 

We can estimate P(A) using the inner and outer sums described by 

Alg. 3.3.1 since P(A) - sup {P(K) : K C A, K compact} and P{A) = 

inf {P(U) : AcU, U open}. 
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Remark 3.3.3. In Alg. 3.3.1, the probabilities of cells 6j are computed 

exactly as the set A in the proof above, and the ratio of the volume of bi to 

the sets Aj is determined using the generalized contours. 

Note that as we refine the partition {Ij} on data space, which in turn 

refines the partition {Aj} on model space, we need to also refine the mesh 

that defines the partition {bi} on model space. The reason is that we assign 

a probability P(bi) to each cell bi that in essence approximates the posterior 

density on model space by the simple function 

M' 

a A (A)«cr A ,M' (A)-^P(fe l ) l f ) i (A) . 
fc=i 

If the partition {fcj} remains fixed as the approximation of po{q) by simple 

functions is refined by the partition {Ij}, then the approximation of the 

posterior density on model space fails to improve even though we might 

obtain slightly better estimates for P{bi) on each fej. 

Note that the calculation of volumes is a computational geometry prob­

lem and the technical details are covered in Chapter 7. 

3.3.1 Example 

We present results for the finite-dimensional nonlinear system of equa­

tions given by 

AiXj + x\ = 1 
£ j — X2X2 — 1) 

where Aj and A2 are the parameters. Geometrically, solutions x = {x\,x2)
T 

to the system represent intersections of the hyperbola and ellipse. The 

quantity of interest is the second component of the solution in the first-

quadrant, i.e., q(X) — q(x(X)) — x2=(xy0), where ip = ( 0 1 ) . Accord­

ing to (2.3.1), the adjoint problem is 

V 2y 2 - 2 M 2 y 2 J * ^ 
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where /J ~ (/Ui,^2)T and y = (yi,y2) r are the reference parameter and 

reference solution for the forward problem. In order to capture interesting 

behavior of the solution with respect to the parameter values, we choose 

A = [.79, .99] x [1 - 4.5^/01,1 + 4.5\/0l] based on analysis of the forward 

problem [20]. We use 6 uniformly spaced mesh points in both the Ai and 

A2 directions of A to create cells { B i } ^ that partition A, and choose the 

centroid of each cell as the reference parameter jii — (/Ji,i, M2,i)T in that cell 

and solve the forward problem to obtain reference solutions y* = (yi,,, j/2,t)T 

at these points, and then solve for the generalized Green's vector fa = 

(0i,i, fa,i)T a t the reference point (//j, y*). According to (2.4.1), we obtain a 

global piecewise-linear approximation q to q defined as 

9(A) := f ; (y2i l + (A - ,k)
T ( V^ _ ^ ) ^ lflj(A). 

We first assume that the data q(X) is a random variable with normal dis­

tribution on the data space defined by q(A) (Fig 3.2). We assume that 

the model space A is linear and the homogeneous measure is the Lebesgue 

measure. When implementing a Monte Carlo sampling algorithm for the 

posterior density, this corresponds to assuming independent prior densities 

that are uniform for each parameter. We implement the algorithm from the 

previous section to calculate P{pi) for small cells for each fine partition of 

A and determine the probabilities of events A C A (Fig 3.3). 

3.4 Classical approach - accept/reject sampling 

As way of comparison, we describe the classical approach to study­

ing the posterior density by generating independent identically distributed 

samples from the distribution defined by this density. We present some of 

the technical difficulties arising from this approach. 
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0.1 0.15 0.2 0.2S 0.3 0.35 0.4 0.45 0.5 

Figure 3.2: Left: Uncertainty of output is modeled as a random variable 
with a Normal distribution. Right: Map q : A —> R. 

Figure 3.3: Left: We determine which contours are contained in event A C 
A and use a joint measure to determine how much of each contour is inside 
the cell, and then use this with the probability of these contours being 
selected to determine the probability of parameters being chosen from this 
cell. Right: Using a normalized Lebesgue measure as the joint measure, 
we estimate the probabilities of small cells and can use an inner and outer 
estimate to obtain an approximation of the probability of parameters being 
chosen inside the event A 
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We summarize the method for obtaining the posterior density function. 

There is an additional assumption in this approach of the prior density, 

which is needed for sampling. Note that in our approach, a joint measure 

is used to measure volumes in A. Given 

• the prior joint probability density, p(A, q), on the joint manifold X 

• the model M{Y, A) with solution Y = Y(X) 

• the linear functional q(6) — q{Y(9)) 

• the theoretical joint probability density, 0(A, q) on the joint manifold 

X 

determine the posterior joint density function. cr(A, q), determined from the 

conjunction of the prior and theoretical joint densities as 

,x N , p(A,g)©(A,(?) 

where k is a normalizing constant. We define the posterior density in 

model space as the marginal density function, 

CA(A) = / a{\,q)dq. 
Jv 

We say that the posterior density in model space is obtained by integrating 

out the information we have about the data. We rewrite the posterior 

density in model space using (3.2.1) and (3.2.2) as 

CTA(A) = kpA{\) / — - — - - — d q . 
Jv dfiv(q) 

The posterior density in model space is paramount in describing parameter 

estimates, but the integral involved in this calculation is generally viewed as 
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analytically intractable. There exists methods, e.g. maximum-likelihood, 

to generate estimates of certain characteristics of &\(\), e.g. the mean, 

but these estimates generally do a poor job of describing the distribution of 

parameter values, e.g. consider a multimodal distribution. Thus, we desire 

a more detailed description of the distribution defined by a\(X). 

Monte Carlo sampling provides a way to generate samples, or realiza­

tions of the random vector, from the distribution defined by crA(A) without 

having to calculate the integral. We let {A( i)}^1 represent the first N sam­

ples generated via Monte Carlo from the distribution defined by a\(X). The 

distribution of the samples converges to the distribution defined by aA(X) by 

the Central Limit Theorem at a rate proportional to 1/y/N. Thus, the first 

issue to consider when using Monte Carlo methods is the slow convergence 

of the method assuming samples are independent. 

The Gibbs and Metropolis algorithms are the two main algorithms 

used in generating samples from probability distributions. We consider the 

Metropolis algorithm because it is widely used [17, 15, 25, 21]. 

3.4.1 Metropolis algorithm 

The Metropolis algorithm is based upon the Fundamental Theorem of 

Simulation. 

Theorem 3.4.1 (Fundamental Theorem of Simulation [21]). Simulating 

X ~ f(x) 

is equivalent to simulating 

(X,U)~U{(x,u) : 0 < u < / ( x ) } . 
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The Fundamental Theorem of Simulation is the basis of all accept-

reject algorithms for generating random samples from a target density f(x). 

It is often quite difficult to generate random numbers directly from a given 

arbitrary density f(x), but it is relatively easy to generate samples in the 

joint density of X and U by generating samples in an even larger easier to 

generate set and accepting only those samples that satisfy the constraint 

0 < u < f(x). This is in fact the classical acccpt-reject algorithm. More 

sophisticated accept-reject algorithms exist (e.g., the envelope accept-reject 

algorithm), but further exposition on this subject is unnecessary for our 

purposes. 

The Metropolis algorithm generates samples from the target density 

f(x) by generating proposed samples via random walks from a Markov chain 

represented by a conditional density w(y\x), which is typically taken to be 

symmetric (i.e., w(y\x) = w(x\y)), and accepting a proposed sample based 

on criteria from the Fundamental Theorem of Simulation. The algorithm 

produces a Markov Chain Monte Carlo (MCMC) set of samples from a 

given density. 

Algorithm 3.4.1 (Metropolis Sampling Method). Given 

• target density f(x) 

• conditional density w(y\x) producing a Markov chain 

• initial sample XQ 

for j = 1, .. . , N do 

Generate proposed sample Y ~ w(y\Xj-i) 

Generate U ~ W(0,1) 

ifO<U< s(^y^_x) then X3 = Y 
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elseXj — Xj-\ 

end if 

end for 

It is left to the user to determine appropriate conditional densities 

w(-\x). The density w(-\x) should be easy to simulate from so that Alg. 

3.4.1 can be implemented as efficiently as possible. Often w{-\x) is chosen 

to be symmetric, i.e. w(y\x) = w(x\y), and Alg. 3.4.1 is interpreted as 

generating samples of f(x) via a random walk. If we choose the conditional 

density w to be symmetric, then w(Xi\Y) = w(Y\Xi). In this case, the 

algorithm automatically accepts any "move to higher probability" and with 

probability f{Yi)/f(Xi) accepts a move to lower probability. Under some 

natural conditions on w(-\x), Alg 3.4.1 produces a set of samples {Xj}-0 

with the property that as N —> oo, the sample distribution converges to 

the stationary distribution that is equal to the distribution defined by f(x). 

A minimal necessary condition [21] that the stationary distribution of the 

Markov chain is given by f{x) is that 

supp / C I ) supp w(-\x). (3.4.1) 
xgsupp / 

This condition ensures that the chain has the necessary properties (irre-

ducibility, positive recurrence, aperiodicity, and ergodicity) so that the sta­

tionary distribution is f(x). 

Remark 3.4.1. Suppose {Xj}j=Q is a set of random samples generated 

according to Alg. 3.4-1- Care must be taken in using these samples to cal­

culate statistics of the random process defined by f(x). This should be clear 

since the set of samples is not necessarily a set of independent identically 
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distributed (iid) samples. For instance, we might have repeated occurences 

of the same value due to repeated rejections. The lack of independence 

implies that much of the theory devoted to sequences of independent (and 

iid) samples doesn't directly apply. For instance, none of the various laws of 

large numbers, i.e. the weak law, Kolmogorov's strong law, and Khinchine's 

strong law, can be used to discuss the convergence of the sample mean to 

the true mean. Similarly, the hypothesis of the Central Limit Theorem is 

not satisifed. 

Using {Xj}. 0 to approximate a statistic such as the mean of f(x), a 

weighted mean is used where each sample is associated with a weight chosen 

as a function of the number of successive rejections [21]. For more informa­

tion about the convergence of a Markov chain to its stationary distribution, 

we refer the interested reader to [21, 15, 16] 

We turn our attention to the problem of sampling the posterior density 

defined by the inverse problem. The posterior density can be written as [25] 

aA(A) = kpA(X) £ P D ^ j A ) dq = kpA(X)L(X), 

where 

L ( A ) ; = fpv{q)0{q\\) 

is defined to be the likelihood function, and pA{X) is the prior density on A. 

There is a functional relation q = q(X) between output data (the quantity 

of interest) and parameters A, so 9(q | A) = 6(q — q(X)) and 

L(X) = pv(q(X)). 

We use Alg. 3.4.1 to generate samples from target density aA(X). Let 

ui(-|A) be given with property (3.4.1). Observe that 

aA(Y)w(Xj.1\Y) _ L(Y) f pK{Y)w{Xj.x\Y) \ 
aA(X3^)w{Y\X^) L (AV0 Xp^X^wiY^) J ' l ' ' ) 
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Remark 3.4.2. Suppose (3.4-1) holds with f — p\. We write 

PA(Y)w(X^\Y) _ wjXj.tlY) 

Px{X].l)w{Y\X^l) w(Y\X^)- { • • ' 

Using (3.4-3) in (3.4-2), we see that generating samples o/aA(A) is equiv­

alent to using L(X) as the target density and generating proposed samples 

according to w(-\X) in Alg. 3.4-1. Moreover, generating samples from w(-\\) 

is equivalent to using pv{X) as the target density and generating proposed 

samples according to w(-\\) in Alg. 3.4-1- Therefore, generating samples 

of <TA(A) is equivalent to using L(\) as the target density and generating 

proposed samples according to pr>(A) in Alg. 3.4-1-

We assume that we are able to obtain as many samples of the prior 

density /O-D(A) as desired. Often the structure of pv(X) is simple enough that 

samples can either be simulated directly from p-p(A) or by using simple 

methods, e.g. basic accept/reject algorithms [21, 25]. Thus, not only is 

it often easy to obtain samples of the prior density p-p(A), these samples 

can generally be assumed to be iid. For example, common choices of prior 

densities represent the components of random vector A as either uniform 

or normal random variables for which many pre-packaged random number 

generators exist. 

With the assumption that we have easy access to iid samples of the 

prior density, we can alter Alg. 3.4.1 to iterate only upon acceptance of 

a sample. Thus, we produce a collection of iid samples of the posterior 

density. It is with such a set of iid samples generated as described above 

that we numerically compare the methodologies in a future paper [5]. 

Remark 3.4.3. We are interested in answering the following question. 

Given event A c A, what is P(A)? By only iterating in Alg. 3.4-1 upon 
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acceptance, we produce a collection of iid samples of the posterior density 

and binning leads to an approximation of P(A). Suppose we use Alg. 3.4-1 

as stated, i.e. iterate upon rejection, then as discussed above, weights must 

be assigned to samples as a function of successive rejections [21], which is 

equivalent to using less samples, so in a sense, there is no cost savings by 

iterating upon rejection. 

Remark 3.4.4. We assume the dimension of A C K.d is small enough 

so that the above remark is valid. For large d, the "emptiness" of high-

dimensional spaces can lead to unacceptably large rejection rates. Often 

[21, 25, 15, 16[ the solution to this problem is not to use iid samples of 

PA(A) in Alg. 3.4-1, but use a random walk to explore A in small enough 

increments so that changes in the likelihood function are small, which leads 

to an acceptable rejection rate. However, the random walk must also have 

a step size large enough so that A is searched rapidly enough for Alg. 3.4-1 

to be considered efficient. In high-dimensional spaces, there can be discon­

nected sets of high probability, i.e. near zero values of <TA(A) for A not 

in these sets, in which case these sets must be located and Markov chains 

initiated in each set separately. This is a very hard problem and is prob­

lem specific. Furthermore, the samples generated are clearly dependent and 

there is typically too much spatial correlation between samples. The solution 

to this problem is typically to accept only a subset of accepted samples by 

perhaps fixing some positive integer m, and considering the subset {Xnk} 

of samples from Alg. 3-4-1 where n^ = km. This reduces the correlation 

between samples. How to go about choosing such a subset is problem specific. 

From the above remarks, we note some fundamental issues involved 

in MCMC sampling that effect the efficiency of Alg. 3.4.1 and should be 

considered. 
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Remark 3.4.5. We now reconcile the assumption of prior densities in the 

sampling methodology to the assumption of an underlying measure in our 

new methodology and specifically to Alg. 3.3.1. In applying the computa­

tional measure-theoretic algorithm, we use the underlying volume measure 

on A, and it is this measure that we use to calculate the ratios of volumes 

described in Alg. 3.3.1. There is no notion of prior density required in this 

approach. We can incorporate a prior density into Alg. 3.3.1 by interpret­

ing a given prior density as defining a measure absolutely continuous with 

respect to the underlying measure on A. Thus, a prior density is interpreted 

as assigning a different geometry to the contours used in the calculations 

of Alg. 3.3.1. This interpretation implies that a prior probability density is 

used as a different measure of the volumes described in Alg. 3.3.1. Simi­

larly, if we only want to assume a notion of measure on A, then we assign 

the prior density to be the normalized measure on A, which is often done 

in standard Bayesian implementation. 

Remark 3.4.6. The assumption of a prior density, considered as unm-

formative or not, is a constant source of debate among the statistical com­

munity. Our assumption of a measure on parameter space is dictated by 

experimental observation. In determining the measure, we seek to answer 

the question, "How do we measure distance in parameter space?" Often 

times this question has an obvious answer of Lebesgue measure. This is 

consistent with standard Bayesian implementation in that there exists an 

underlying volume measure typically assumed to be Lebesgue. There must 

be an underlying volume measure in order to specify a prior density. Specifi­

cally, consider the fact that probability theory and density functions are built 

upon the foundations of measure theory [2, 14]. A prior density is necessary 
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for standard Bayesian implementation because sampling methods require a 

probability density. Since we perform no sampling, we do not require a prior 

density. 

3.4.2 Sampling the posterior probability distribution - an exam­
ple 

Recall that the posterior density in model space is 

crA{X) = kpA{X) / — r——dq. 
Jv d^viq) 

It is typically easy to generate samples from the prior density in model space 

/>A(A). We use this as the conditional density in the Metropolis algorithm. 

We define the likelihood function as 

L(A) = / 
Jv 

Pv(q)0(q\*) 
d^v(q) 

dq. 

According to the Metropolis algorithm, given sample A(,), we accept a pro­

posed sample 7 generated from PA(A) as sample A(t+i) if U ~ W(0,1) and 

0 < U < L(7)/L(A(j)). Continuing in this way by generating proposed 

samples from the prior density in model space and accepting or rejecting 

these samples using the likelihood function, we sample from the posterior 

density in model space. There is an expense in generating these N samples. 

It is not uncommon for rejection ratios to be higher than 70% even for 

"good" choices of prior densities in model space. The likelihood function is 

a measure of how well the parameters "fit" the solution of the model to the 

data q. Usually much trial and error goes into the choice of a prior distri­

bution that generates parameter samples that "fit" the solution so that the 

rejection ratio is acceptable. As an example, consider the forward problem 

where 

?(A) = Ai + A2, 
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where Ai,A2 are independent identically distributed JV(0,1/25) random 

variables. In this case, q(\) is a random variable with iV(0,2/25) distri­

bution. For the inverse problem, we begin with the measurements on q(X) 

that define a N(0, 2/25) distribution and seek to determine the prior dis­

tribution on A and use this with the model to obtain the posterior density 

on A. If we find a distribution of samples on A that generates q(\) ac­

cording to a N(0, 2/25) distribution, then we accept this as a solution to 

the inverse problem and call the density of these samples a posterior den­

sity. Figures 3.4 - 3.10 show samples and the approximate distributions 

generating these samples obtained by kernel density estimation, and Figure 

3.11 shows the approximate density of q(X) for all of these different model 

parameter distributions. Figures 3.11 shows that all these vastly different 

collections of samples of inputs generate the same output. These figures 

show that there are many distinct posterior densities. This problem arises 

for several reasons. We often do not have adequate information to select a 

"good" prior density on model space [13]. A poor choice of prior density 

on model space can lead to a nonconvergent Markov Chain of samples. In 

order for our method to produce these results, we require different volume 

measures, which is exactly how we interpret the use of prior densities as 

discussed above. 
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Figure 3.4: Left: 1000 random samples of parameters chosen as i.i.d. ran­
dom variables with N(0,1/25) distributions. Middle: 1000 random samples 
of parameters chosen with respect to the unnamed density denoted /9A>1 (A). 
Right: 1000 random samples of parameters chosen with respect to the un­
named density denoted PA,2(A) 

Figure 3.5: Left: 1000 random samples of parameters chosen with respect 
to the unnamed density denoted PA,3(A). Right: 1000 Random samples of 
parameters chosen with respect to the unnamed density denoted PAAW 
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Figure 3.6: Kernel density estimate of the joint distribution of parameters 
sampled as i.i.d random variables with N(Q, 1/25) distributions 

Figure 3.7: Kernel density estimate of the joint distribution of parameters 
sampled with respect to the density p\,i{\) 

Figure 3.8: Kernel density estimate of the joint distribution of parameters 
sampled with respect to the density p\^W 
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Figure 3.9: Kernel density estimate of the joint distribution of parameters 
sampled with respect to the density PA,3{X) 

Figure 3.10: Kernel density estimate of the joint distribution of parameters 
sampled with respect to the density PAAW 

-1 -0.5 0 0.5 I 

Figure 3.11: Kernel density estimate of q(X) with respect to Normally dis­
tributed parameters and parameters from PA,I(X), pA,2(X), p\^(X), and 
PAA{X)- The kernel density estimates for g(A) for the different input distri­
butions are identical. 
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Chapter 4 

APPLICATIONS 

4.1 Regions of high probability and testing priors 

If we ignore model uncertainties, then Q(X,q) — 5(q — q(\))dfiA(\): 

and we have 

Suppose there was an interval / = [91,92] C V of high probability, and 

consider the set in model space A = {A | 9(A) G / } . If /I is not in the support 

of the prior density on model space, then the Monte Carlo method does not 

generate parameter samples that give model solutions in /. If A is in the 

support of the prior density on model space, but fA p\(\) dX is small, then 

the Monte Carlo method either does not generate enough proposed samples 

from A, or it simply fails to converge. This is not a problem of Bayesian 

inference, but rather with the standard implementation of sampling from 

a prior density. Consider the fact that as the dimension of model space 

increases, the space itself becomes more "empty." This is illustrated by the 

example of inscribing a hypersphere in a hypercube [25]. The ratio of the 

volume of the hypersphere to the hypercube is given by 

•W2 

2n~1nT{n/2) 
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which rapidly decreases to zero as the dimension n increases. Thus, given 

uniform priors on the hypercube, the probability of hitting points inside 

of the hypersphere goes to zero as the dimension increases. There are 

additional problems encountered with sampling methods. The problem of 

finding and sampling from the regions of highest problem is generally viewed 

as the most difficult problem and it is said that the particular geometry of 

the problem may be the key to solving this problem [25]. 

The generalized contours prove very useful in finding regions of high 

probability. We view any prior knowledge as simply imposing a certain 

geometry to the contours. Consider again q(X) = Ai + A2, where A = [0,1] x 

[0,1], Fig 4.1 shows the generalized contours for 500 samples of q(X) taken 

from a iV(0,2/25) distribution along with the TP and the intersections of 

contours on the TP. Where the contours intersect the TP most densely 

corresponds to a region of high probability in the space of contours. This 

information might prove useful when selecting prior densities since it is 

determined entirely from the known output and model. Consequently, iid 

samples generated from a given prior density are on contours, and we can 

use the derivatives obtained from the adjoint sensitivity analysis to trace 

these values along the contours and find the intersection points on the TP. 

Using a 1-D statistical test, such as the Kolmogorov-Smirnov test, we can 

immediately determine if the prior density "samples the contours" correctly, 

i.e. if passing the prior density through the model generates the observed 

density on the quantity of interest. This is done without a single evaluation 

of the model. In fact, the densities of Fig 3.7-3.10 were created to sample 

the contours identically as the density shown in Fig 3.4. 
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Figure 4.1: Left: Generalized contours from 500 samples of q(X) = X\ + A2 

generated from a N(0, 2/25) distribution. Middle: The TP intersects each 
contour once and goes from the minimum of q(X) in the lower left corner 
to the maximum of q(X) in the upper right corner of the plot. Right: 
Intersections of contours on the TP are marked with a star and can be used 
to index the inverses and determine a unique distribution of the contours 
on the TP using any consistent indexing scheme 

4.2 Examples 

We first consider constrained geometric optimization problems with 

three and four parameters as the initial examples. We conclude the exam­

ples with a nonlinear ordinary differential equation with two parameters, 

and a nonlinear elliptic partial differential equation with two parameters. 

4.2.1 Three-Parameter Constrained Optimization 

We minimize the distance to the point (1 ,-1,1) subject to the con­

straint that the point lies on the surface g = 4, where 

g(xi) X2, X3] Ai, A2, A3) = Ai^ j + X^x2 + A3X3. 

Geometrically, the parameters determine the shape of the ellipsoid that de­

fines the constraint. Using the method of Lagrange multipliers we set up 

a system of nonlinear equations with four state variables and three param­

eters. We take the quantity of interest as the first state variable, which 
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geometrically is interpreted as the first spatial coordinate in the solution to 

the constrained minimization problem. We set A = [.35, .65] x [.28, .52] x 

[.42, .78] and construct a piecewise-linear approximation using 125 points 

in A. Assuming a normal distribution on q(X) and taking the joint measure 

on A to be a normalized Lebesgue measure, we use 3375 small cells {flj} in 

the algorithm to discretize the posterior probability measure on A and plot 

the probabilities at the mid-point of each cell with the color of the point 

determined by the probability of the small cell (Fig 4.2-4.3). 

Figure 4.2: Using 15 x 15 x 15 small cells, we estimate the probability 
of parameters selected from the cells using a normalized Lebesgue joint 
measure. Left: Standard 3-D view. Right: Standard 3-D view rotated 90 
degrees clockwise. 

4.2.2 Four-Parameter Constrained Optimization 

We minimize the distance to the point (5,5,5) subject to the con­

straints that the point lies on the intersection of the surfaces 5 = 1 and 

h — 0, where 

g(xi,x2,x3;\i,\2) = Xix\ + X2xl - x\, 

h(xi,x2,x3; A3, A4) = A1X1 + A2x2 - x3. 

Geometrically, g = 1 defines a hyperboloid of one sheet and h = 0 defines 

a plane through the origin, and the intersection of the two constraints is a 
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Figure 4.3: Using 15 x 15 x 15 small cells, we estimate the probability 
of parameters selected from the cells using a normalized Lebesgue joint 
measure. Left: Standard 3-D'view rotated 180 degrees clockwise. Right: 
Standard 3-D view rotated 270 degrees clockwise. 

closed curve. Using the method of Lagrange multipliers we set up a system 

of nonlinear equations with five state variables and four parameters. We 

take the quantity of interest as the first state variable, which geometrically is 

interpreted as the first spatial coordinate in the solution to the constrained 

minimization problem. We set A = [1.4, 2.6] x [.7,1.3] x [1.4,2.6] x [.35, .65] 

and construct a piecewise-linear approximation using 750 points in A. As­

suming a normal distribution on q(\) and taking the joint measure on A 

to be a normalized Lebesgue measure, we use 60750 small cells {6j} in the 

algorithm to discretize the posterior probability measure on A. By treating 

the fourth parameter as time, we can take "snapshots" for fixed A4 values 

of the approximated posterior probability density function in a similar way 

as for the three-parameter example above (Fig 4.4). The algorithm for ap­

proximating the posterior probability density allows us to locate regions of 

high probability by sorting through the probability of the fine cells {fcj}. 

We can rank order these cells and determine any cells of high probability 

within close proximity to other cells of high probability (Table 4.1). 
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Often sampling methods are used to search for the maximum-likelihood 

point. It is our opinion that this should be avoided since the MCMC meth­

ods that produce this point simply search for the maximum of the posterior 

density, and the probability of a single point with a continuous density 

function is zero. We approximate probabilities of events. If the goal is to 

produce a maximum-likelihood estimate, then our method can be used to 

search for regions of highest probability where it is perhaps more likely that 

a maximum of the posterior density occurred, replacing the simulated an­

nealing typically used in a maximum-likelihood search algorithm. If we let 

the events {bt} become small, under a smoothness assumption, the proba­

bilities of these events are related to the maximum-likelihood estimate. 

Figure 4.4: Using 15 x 15 x 15 x 18 small cells, we estimate the probability 
of parameters selected from the cells using a normalized Lebesgue joint 
measure. Left: The fourth parameter is set at its minimum value. Middle: 
The fourth parameter is set at its mid-point value. Right: The fourth 
parameter is set at its maximum value. Notice how the probabilities vary 
in space, i.e. with respect to the first three parameters, as we vary time, 
i.e. the fourth parameter 

4.2.3 Two-Pa rame te r ODE 

We now study the nonlinear ordinary differential equation 

jx = Aisin(A2x) 0 < t < T, 

Wo) = i. 
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P(bi) x 10-4 

0.600381927 
0.600446977 
0.600462420 
0.600463048 
0.600464252 
0.600465732 
0.600468545 
0.600470136 
0.600474821 
0.600501752 

bi location 

[2.44,2.52] x [1.22,1.26] x [2.04,2.12] x [0.4,0.4167] 
[2.36,2.44] x [1.06,1.1] x [1.96,2.04] x [0.4333,0.45] 
[2.44,2.52] x [1.18,1.22] x [2.04,2.12] x [0.4333,0.45] 
[1.4,1.48] x [1.18,1.22] x [1.64,1.72] x [0.3833,0.4] 
[1.4,1.48] x [1.18,1.22] x [1.64,1.72] x [0.35,0.3667] 
[2.36,2.44] x [0.98,1.02] x [2.04,2.12] x [0.4167,0.4333] 
[1.4,1.48] x [1.18,1.22] x [1.64,1.72] x [0.3667,0.3833] 
[2.36,2.44] x [1.06,1.1] x [1.96,2.04] x [0.4167,0.4333] 
[2.36,2.44] x [1.26,1.3] x [1.96,2.04] x [0.4167,0.4333] 
[2.36,2.44] x [0.98,1.02] x [2.04,2.12] x [0.4333,0.45] 

Table 4.1: The ten small cells with highest probability are listed in ascend­
ing order in the first column. The second column gives the dimensions and 
location of these cells. We can use this information to determine where 
the largest regions of highest probability are located in a high-dimensional 
parameter space 

The linear functionals (quantities of interest, 17(A)) we study take the form 

q(X) = (x(t)Mt))= [ (x(s;\)Ms))ds, 
Jo 

and we take the quantity of interest to be the average value of x(t) over 

the time interval [0,2], Thus, we set tp(t) = l[0,2](i)/2, and the generalized 

Green's function <fi(t) solves the adjoint problem, 

-<j>(t)-AT{t)(j)(t)='Ht), T>t>0, 
4>(T) = </,(T), 

where A(t) := f'(y(t;n)) is the Jacobian of / = Ai sin(A2x) evaluated at 

y{t]fi), /x is a reference parameter, and y(*;/i) is the solution to (4.2.3) 

for this reference parameter. Compare this to (2.3.1). Using substitution, 

integration by parts, and Taylor's theorem, we arrive at a linear approxi­

mation to q(X) for parameters near /i, and analagous to the finite dimen­

sional case, we obtain a global piecewise-linear approximation to q(X) over 

A = [ . 8 , 1 . 2 ] X [ . 1 , T T - . 1 ] (Fig 4.5). 
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Remark 4.2.1. There can be substantial error in the reference solutions 

and gradients used to linearize the problem, and the effect of this error on 

the contours is studied in later chapters. 

Given a distribution on g(A) and a joint measure on A, we can estimate 

the posterior density as in the above examples (Fig 4.5). 

Figure 4.5: Left: Global piecewise-linear approximation to q(A). The cells in 
A illustrate the coarse discretization of this space for the forward problem 
of obtaining a piecewise-linear approximation and the circles in each cell 
indicate the reference parameter used to linearize q(X) in that cell. The 
piecewise-linear contours to this surface are used for the inverse problem 
exactly as with the nonlinear systems of equations examples given above. 
Right: Assuming a normal distribution of q(\), we use a grid of 40 x 40 
small cells to estimate the posterior density function 

4.2.4 Two-Pa rame te r P D E 

We now study a nonlinear partial differential equation 

-Au = Ax(w - A2)
2, (x, i / ) e f i = [0,1] x [0,1], 

u = 0, (x, y) e dtt. 

The quantities of interest, g(A), take the form 

q(X) = (u,ip) = / u(x,y)'ip(x,y)dA, 
Ju 

and we take the quantity of interest to be the average value of u over fi. 

Thus, we set i/j(x,y) = 1, and the generalized Green's function </>(£) solves 
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the adjoint problem, 

- A c / > - / l T 0 = '</;, ( x , y ) e O , 

0 = 0, {x,y)edn, 

where A := f'(w(x,y;n);n) is the Jacobian of / = Ai exp(A2u) evaluated 

at w(x,y;n), // is a reference parameter, and w(x,y,fi) is the solution to 

(4.2.4) for this reference parameter. Using substitution, the weak form of 

(4.2.4), and Taylor's theorem, we arrive at a linear approximation to q(X) 

for parameters near /i, and just as with the previous examples, we obtain a 

global piccewise-linear approximation to q(X) over A = [.95,1.05] x [—.1. .1] 

(Fig 4.6). Given a distribution on q(X) and a joint measure on A, we proceed 

exactly as with the other examples to produce an estimate of the posterior 

density (Fig 4.6). Similar to the ordinary differential equation above, the 

error in the reference solutions and gradients used to linearize the problem 

might prove significant in biasing the contours, and the effect of this error 

on the contours is studied in later chapters. 

Figure 4.6: Left: Global piccewise-linear approximation to q{X). We used a 
11 x 13 grid of coarse cells to discretize A and used the mid-point of each cells 
as the reference parameter in that cell. We can determine posterior density 
estimates as with all the other examples using the same algorithm now that 
we have reference solutions and gradient information. Right: Assuming a 
normal distribution of q{X), we use a 33 x 39 grid of small cells to estimate 
the posterior density function 
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Chapter 5 

ERROR ANALYSIS FOR INVERSE 
SENSITIVITY PROBLEMS WITH 

ORDINARY DIFFERENTIAL 
EQUATIONS 

We study three sources of computational error effecting the posterior 

density. 

• There is a linearization error in the representation of the surface q(A), 

which we bound by an a priori expression. 

• There is a numerical error in the solution of q(X) and its derivative 

at reference parameter values used to form the global piecewise-linear 

representation to this surface. This error is deterministic and we 

obtain an a posteriori estimate for this error. 

• There is an error in using a finite collection of samples of a distribu­

tion on the output to "pass" this distribution through the response 

surface q(\) in order to determine the posterior density. This error is 

statistical and we obtain an a posteriori estimate for this error. 
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5.1 The effect of linearization on the inverse problem 

We study the inverse problem for a finite dimensional map q from the 

space of parameters to the output defined implicitly by the solution to a 

differential equation that depends on a finite number of parameters in the 

model. We consider the initial value problem 

fy = /(y;Ai), t > o, 
\y(o) = A0,

 l • ' ' 

where y eRn, f : Rn+P -> Rn is smooth, and A - (A[,Aj)T e A C Rd 

(d = p + n) are the parameters. We solve (5.1.1) to calculate a linear 

functional of the solution, or a quantity of interest, 

q(y)= [ M)dt. (5.1.2) 
Jo 

We assume that the solution y of (5.1.1) depends (implicitly) on parameters 

A in a smooth way and denote solutions of (5.1.1) as y\ and the quantity 

of interest as q(X) to emphasize the implicit dependence of the quantity of 

interest on the parameters. The smooth dependence of solutions to (5.1.1) 

on parameters A implies the dependence of the quantity of interest on A is 

also smooth. 

5.1.1 Local linearization of a quantity of interest 

We seek to determine the effects of variations in parameters on the 

quantity of interest. We first consider the initial value problem at a reference 

parameter value \x = (fj,J, nj)T, 

fy» = f(y»;ni), t > o, ( > 
l v ( 0 ) = /xo. ( } 
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We define (yM, //) as the reference point. We define the exact adjoint based 

on the reference point as 

- 0 - Dyf(y,; ^(P ^ , T X > 0 : . 

4>{T) = o. [ ' ' ' 

We now consider (5.1.1) for A that are near the reference parameter fi, and 

seek to determine q(X) given q(p.) and the generalized Green's function that 

solves (5.1.4). 

Theorem 5.1.1. [20] If f(y;X) is twice continuously differentiable with 

respect to both y and X and Lipschitz continuous in both y and X, then 

the quantity of interest is Frechet differentiable at (yM,/x) with derivative 

Vg(/i) : Rd -> R given by 

Vq(ti)[\] = ((\o-no),<i>(0))+ [ {Dxj(yii;ii)(\i-in),<l>)dt. (5.1.5) 

Additionally, 

g(A)« g ( / i ) + Vg(/i)[A]. (5.1.6) 

We can prove (5.1.6) without proving that (5.1.5) is the Frechet deriva­

tive of the quantity of interest, but proving (5.1.5) implies that the repre­

sentation given in (5.1.6) is in fact a linear approximation to the quantity of 

interest. We refer to the linearized approximation of the quantity of inter­

est in (5.1.6) as a HOPS (Higher Order Parameter Sample) representation 

[20]. We present a variation of the proof found in [20] that contains useful 

techniques for the a posteriori analysis. 

Proof: 
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We first prove that (5.1.6) holds. We let e(t) = y\ — yM and use a 

standard variational argument to obtain 

(e,ip) dt ei-t-Dyfiy^ni) dt 

e,<p)dt- {e,Dyf(y^ixl)
l(i)) dt 

T 

{e(TU(T))-(e(0U(0))- / M) dt 

(Dyf{y^,Hi)e,<j>) dt 

{(Ao - Mo), <K0)) + / (e - Dyf{y^ ^ ) e , </>) dt 

((Ao-Mo)>(0)) 

+ / {{i/x ~ Vp) - Dyf{y^ ^{yx ~ yj, 4>) dt (5.1.7) 
Jo 

Since / is assumed twice continuously differentiable, we apply Taylor's the­

orem to obtain 

/(VAlAi) = / (y M ; / i i ) + Dj / /(yM ;Mi)(yA- ' ( /M) + DA l / (yM ; / i i ) (Ai -/v-i) 

+#2(yA,yM ;Ai, Ju1), 

where R2{y\,y»;\i,i-ii) ~ 0{\\yx - yM||2 + ||Ai - ^ i | | 2 ) . We solve the above 

equation for -Dyf{yll\(j,i)(yx - yh) to obtain 

-Dyfiy^Myn-yx) = }{y^ni) - /(y^; Ai) + DxJ{y^ Hi)(Xi - m) 
+^2(yA,yM;Ai,/x1)-

(5.1.8) 

Substitution of (5.1.8) into (5.1.7) and using the fact that y^-/(yM;/ '-i) = 0 

and yx - f{yx; Ai) = 0 yields 

J0
T (e, i/») dt = ((A0 - /zo, 0(0)) + /0

T (DxJ(y^ /ii)(Ai - n{),<f>) dt 

+ ./o (R2(y\,yn'Ai,Vi),<t>) dt. 
(5.1.9) 
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Substituting e = y\ — y^, re-arranging the terms in (5.1.9), using the no­

tation of both (5.1.2) and (5.1.5), and neglecting the higher-order term we 

have 

<?(A)*<7M + V<7(//)[A]. 

We now prove that the Frechet derivative of the quantity of interest is 

given by (5.1.5). 

Since A is "nearby" to n, we set A = // + h. We prove that 

MA) -M - V , M [ A ] | = 0 

/i->o \\h\\ 

Let v{h) denote the numerator of (5.1.10). Then according to (5.1.9) 

u{h) = / {R2{yl,+k,yfl\iJa + hl,/jrl),(p} dt 
Jo 

< / \\R2{y^+h,y^/^i + hi,ni)\\\\(j)\\ dt. 

Jo 

We have that \\R2{yll+h,y^fii 

\\y»+h-yh\\ ~ Cdl^ll), then R2(yfl+h,y^idi + hUf^i) ~ 0(||/i | |2), and the 

proof is complete. In the rest of the proof, we make use of the fact that 

\\ho\\ < \\h\\ and \\hi\\ < \\h\\. We use the integral form of (5.1.1), 

yx(t) = Xo+ [ f{yx(s);X1)ds, 
Jo 

to obtain 

\\y»+h(t)-y»(t)\\ < I N I + / ll/(^+/.(s);^i + ^i)-/(y^);Mi)l |ds 

< (LT+l)\\h\\ + L [ \\yli+h(s)~-yll(s)\\ds, 
Jo 

where the last inequality follows from the assumption of Lipschitz continuity 

of f(y: A). Gronwall's inequality gives 

\\y,+h(t)-yM\<(LT+l) M 
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This proves that \\y^+h ~ Vn\\ ~ ^(INI) , and the proof is complete. D 

To summarize the theorem above, in the absence of numerical error, 

?(A)«/ {yli,il>)dt + ((\o-ii0),<l>(Q))+ (nxrfiy^ni^i-m),® dt 
./o Jo 

(5.1.11) 

for A close to \i. 

We extend the local linearization technique to obtain a global piecewise-

linear approximation of the linear functional over all of A. This follows the 

presentation in 2.4. We first define a partition {Sj} i = 1 of A. We apply the 

local linearization technique described above for each Bi, and define 
1, if A G fli, 

We obtain a global piecewise-linear approximation q(X) to q(X) . 

M 

q{X) := £ (q(Hi) + <Vg(/ii), (A - ^ ) » 1B,(A), (5.1.12) 
i=\ 

where fa is the reference parameter value chosen in B^. 

5.1.2 Effect of using generalized linear contours on the inverse 
problem 

We use a piecewise-linear tangent plane approximation to the surface 

q(X), which we denoted q(X). The generalized contours of q{\) are approxi­

mated by the generalized contours of q(X), and we refer to these approximate 

contours as generalized linear contours. Similar to above, the inverse prob­

lem has a unique solution in A considered as a set defined by generalized 

linear contours. The generalized linear contours converge pointwise to the 

generalized contours as the "size" of the largest cell, Bi, decreases to zero. 

Let Bi and Bj denote cells used in (5.1.12) such that i ^ j and the 

cells share a boundary. Consider a generalized contour, denoted q~l{q), that 
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is connected across the boundary of these cells, and let q~l{q) denote the 

associated generalized linear contour in both Bt and Bj. The generalized 

linear contour, q~x{q), is typically discontinuous across such a boundary 

since 

[q(fM) + (Vq(fii), (A - m))} - [q(Hi) + (Vg(^) , (A - fij))} (5.1.13) 

is typically nonzero for almost every A e dBi n dBj. The generalized linear 

contours are simply the level sets of q(X) and (5.1.13) gives the discontinuity 

of q(X) at each A e dBi DdBj, so the maximum of (5.1.13) over all cells Bt 

and Bj with a shared boundary is a measure of the smoothness of using a 

piecewise-linear approximation to q(X) to solve the inverse problem. We let 

D denote this measure of smoothness of q{X), so 

D = max{|<7(/ii) - q{n3) + {Vq(m), (A - m)) - (Vg(^) , (A - / i j ) ) | : 
XedBtC) dBj ^ 0} 

Since the generalized linear contours converge pointwise to the gen­

eralized contours, we can make D small and neglect the effect of using a 

piecewise-linear approximation to q(X) to solve the inverse problem. It is 

important to note that D is computable and cheap to obtain. This is easy 

to see since (5.1.13) is a linear function, and if the B{ are polygonal geomet­

ric objects, then only a finite number of points need be calculated in order 

to determine the extreme values of (5.1.13) for A e dBt n dBj. Further­

more, we claim that D is a measure of the error in using generalized linear 

contours to approximate the true generalized contours for sufficiently small 

cells {Bi}. As above, let q"1^) and <7-1(<7) denote a generalized contour 

and its approximation by a generalized linear contour, respectively, in cells 

Bi and Bj, where i ^ j and the cells share a boundary. Using an analo­

gous argument as in the case of a finite dimensional nonlinear system, the 
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error in the approximation of a generalized contour by a generalized linear 

contour in cell B{ is given by 

[g - 1 (g ) -g _ 1 (g ) ] = c (#2(yA,yw;Ai,Mi,i),</>) dt. 

Jo 

Here, C is a constant depending on Vg(/Uj). Replacing i with j in the above 

equation gives an expression for the error in cell B3. Therefore, the error in 

the approximation of the generalized contour by a generalized linear contour 

i n l a n d Bj is 0(\\R2{y\,yhH; \i,fH,i) || + || R2{y\,yH] Ai, Hj,i)\\). This is also 

true of the term D, so for small D, we consider it a measure of the error in 

the approximation of generalized contours. 

The calculation of D is an a priori measure, computed before solving 

the inverse problem. This measure allows us to determine if (5.1.12) is 

sufficient for use in solving the inverse problem. Henceforth, we assume 

that (5.1.12) is a sufficient representation of q(\), and neglect any error 

in the solution of the inverse problem arising from using generalized linear 

contours. 

5.2 A posteriori analysis 

We have shown that in the absence of numerical error, we can use 

a piecewise-linear approximation to the surface q(X) with negligible error 

occuring from this representation. Typically, we only have a numerical 

approximation of the reference solution y^ of (5.1.1). Additionally, error 

is introduced in the solution of the inverse problem, defined as a posterior 

density on A [3, 25, 17, 19, 13, 1], by finite sampling of distributions. 

We perform an a posteriori error analysis for both the deterministic er­

ror arising from using a numerical solution for (5.1.1) and also the statistical 

error arising from finite sampling. 

76 



5.2.1 Review of standard a posteriori error analysis 

We will solve ordinary differential equations assuming a discontinuous 

Galcrkin method. Let Y denote the numerical solution to 

iy = f{y,t),0<t<T, 

\y(0) = y0. 

Let e = y — Y, where y solves (5.2.1) exactly. We linearize around Y in the 

sense described in Chapter 1 to arrive at the adjoint problem 

(-^ = f'(Y,t)Td> + Mt), T > t > 0 : 

\ C 0 = v.<2. 

If ip\{t) = 0, then the quantity of interest is (e(T),i/>2). If ^2 = 0, then 

the quantity of interest is fQ (e(t),il>i(t))dt. The following discussion on 

estimating the error in a quantity of interest is a summary of [23]. For 

convenience, we let / ' = f'(Y,t) in the remainder of this discussion. 

Estimating the error in a quantity of interest valued at the end-
point 

Assume ipi{t) = 0 in (5.2.2). Take the inner product of the adjoint 

problem with e and integrate from 0 to T to obtain 

f-T nT 

I {<j>,e)dt- [ ((f')T,e)dt = 0. (5.2.3) 
Jo Jo 

The problem is solved numerically by dividing [0, T] into Ar subintervals, 

0 = to < t\ < t.2 < • • • < tN = T. The error computation is also computed 

interval by interval, so we break up (5.2.3) into a sum of integral equations 

over each interval, integrate by parts over each interval, and use properties 

of inner products to get 

" N fin * ftn 

- E ^ l t n - . + E / ( < M ) ^ - E / (4>,f'e)dt = 0. (5.2.4) 
n=l n=l Jtn-i n=l Jln-\ 
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Since e = y — Y might be discontinuous at the boundaries of each interval, 

we expand the first term on the right hand side of (5.2.4) to 

N N 

n=l n=2 

Here, [y]n-i denotes the jump discontinuity of y at tn-i calculated as the 

difference between the right and left sided limits of Y at tn-i, respectively. 

We use 0„_i as a shorthand for 4>{tn-\). Substitution of (5.2.5) into (5.2.4) 

and re-arranging the terms yields 

N 

(e(T)J(T)) = (e(O),0(O)) + ^ ( [ y ] n _ 1 ) ^ _ 1 ) 
71=2 

+ Y, I" (<f>,e)dt- f" (&f'e)dt. (5.2.6) 
n=i Jtn-\ Jtn-\ 

We substitute e = y — Y into (5.2.6), and use the first-order approximation 

that / ' (y - Y) « f(y) - f{Y) so that 

N 

(e(T),0(T)) = (e(O),0(O)) + ^ ( [ y ] n _ 1 > n _ 1 ) 
n=2 

+ Y/f
n(<t>,y)dt-fn (4>,f(y))dt (5.2.7) 

n = l tri-l •* tn-\ 

+ E r ^»n^- r (<i>,f(Y))dt. 

Since y — /(y) = 0, (5.2.7) is simplified to 

(e(T), 0(T)) = (e(0), 0(0)) + ^ ( [ y ] n _ i , 0„_i) - £ / (^ ~ /(>"). 0) <**• 
71=2 71=1 " ^ " - 1 

(5.2.8) 

Note that (5.2.8) is a computable estimate of the error. We can use Galerkin 

orthogonality to introduce terms such as the projection of </> into the space of 

test functions used in solving (5.2.1) that allow us to rewrite (5.2.8) so that 
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the error generated by discretization of the domain is estimated. Additional 

terms can be added to take into account the effect of quadrature. We direct 

the interested reader to [23]. 

Estimating the error in a quantity of interest with nonzero xpi(t) 

Assume tp2 = 0 and 4>\{t) is nonzero for some t € (0, T). We use inner 

products and integrate as above to get 

I eMdt = - [ (e,j>)dt- [ (e,/'</>) dt. 
Jo Jo 

Following the analysis above, we integrate by parts over each interval to get 

N 

(e,^)dt = (e(O),0(O)) + ^ ( [ y ] n _ 1 , ^ 1 ) 
n=2 

+ J2 (e,d>)dt-^2 (/'e> <t>) dt- ( 5 - 2 - 9 ) 
n = l Jtn-x n=i Jtn-\ 

Note that <p(T) — 0 since ^2 = 0, so the term involving e(T) docs not 

appear in (5.2.9). Using the same arguments as above we have 

fT N N ftn 

/ (e, </>i) dt = (e(0), 0(0)) + ^ ( [ r ] „ _ i , K-i) - Y . & - ^ > & dt 

^ ° n=2 n=\ • ' ' n - i 
(5.2.10) 

Note that the right hand sides of (5.2.10) and (5.2.8) are identical. 

5.2.2 The effects of deterministic error in the evaluation of the 
approximate map 

We let VM denote the numerical solution to (5.1.1) at the reference pa­

rameter \i. This is the numerical approximation around which we linearize 

the forward problem in order to construct an adjoint. We define the ap­

proximate adjoint using (5.1.4) with "perturbed" operator Dyf(Y^;i.i\), 
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and let $ denote the solution to this approximate adjoint, which is com­

puted using a numerical scheme for 

f - $ - J D y / ( y , ; / i l ) T $ = ^ T>t>0, 
\ $ ( T ) = 0. ^ • • ) 

We assume the numerical error of this solution is negligible. This assump­

tion is reasonable since (5.2.11) is a linear differential equation typically 

solved using a higher-order method than used to solve (5.1.1), e.g. when 

we use a piecewise-linear discontinous Galerkin method for the forward 

problem, we use a quadratic continuous Galerkin method for the adjoint 

problem. We can alter the analysis to include the error in $, but it makes 

the presentation tedious. 

Remark 5.2.1. In Theorem 5.1.1, we assume f(y; A) is twice continuously 

differentiable with respect to both y and X. This assumption of smoothness 

implies the Lipschitz continuity of f(y;X). 

Therefore, for VM sufficiently close to yM over short time, 

\\Dyf(y»- fh) - Dvf{Y,- /xOllv < K \\y, - Y,\\v, (5.2.12) 

where \\-\\v and \\-Wy are the L2([0,T]) norm of some appropriate matrix 

and vector norms of the arguments, respectively. 

We now seek to quantify the effect of the numerical error of using Y^ 

in the construction of the adjoint problem for the representation formula 

given by (5.1.6). 

Let q(X) denote the approximate quantity of interest calculated using 

(5.1.6) with Yn and <£ in place of yM and 0, which is to say that 

9(A) « / ( > ^ ) ^ + ( ( A O - M O ) , < E > ( 0 ) ) + / (DxJ(Y,^1)(Xl-^)^)dt. 
Jo Jo 

(5.2.13) 
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The error of using the approximate Y^ on the representation formula for 

q(X) is given by q(X) - q{X). Taking the difference of (5.1.11) and (5.2.13) 

gives 

q(X)-q(X) * / ({y,-Y,)^)dt (5.2.14) 
Jo 
+ ((Ao-/xo),(0(O)-$(O))) 

v w -

I 

+ / ((Dvf(yfl]^)(X1-fi1),c(>}-(Dyf(Y,:fi1)(X1-^)^))dt. 
i2. „ , 

V 

II 

The first term on the right-hand side of (5.2.14) is a linear functional of the 

error yM — Y^ and it can be estimated by standard a posteriori techniques 

described above. The goal is to determine estimates of terms I and II. 

Terms I and II measure the effect that the numerical solutions YM and $ 

have in the estimate for q(X). Specifically, I measures the effect of using 

an approximate adjoint on the sensitivity of q(X) to changes in the initial 

conditions of (5.1.1). Term II measures the effect of using Y^ and <J> on the 

sensitivity of q(X) to changes in model parameters of (5.1.1). 

Remark 5.2.2. The terms I and II are functions of the vector X — \x. 

The dependence is linear, and the analysis below produces estimates that 

also depend on this vector linearly so that the error estimates for these 

terms are also linear functions of this vector. Thus, following the analysis 

described below for p linearly independent vectors X — //, we obtain a set of 

error estimates such that the error defined by I and II for any vector X — \x 

can be written as a linear combination from this set of error estimates. 

Estimating term I 

We first observe that this term is a linear functional of the error arising 

from solving the exact adjoint with an approximate adjoint. Standard a 
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posteriori techniques exist for estimating a linear functional of the error of 

the forward solutions yM — Y^ using an adjoint analysis. We use a similar 

technique here. We define the adjoint to the approximate adjoint as 

(w = Dvf{Yli;fn)w, 0<t<T, 

\w(0) = (A„-/xo) 

Since w — Dyf(Yfl; /j) = 0, we have 

0 = / (w-Dyf(YM^1)w)(ct)-^))dt 
Jo 

= [ (w,{d>-^))dt- [ (Dyf(Ytl:^)w,((j)~^))dt 
Jo Jo 

= (w(T), (<j>(T) - $(T))> - <M0), (4(0) - $(0))) 

w,(4>-$)) dt (w,Dyf(Y,)fh)
T((j)-^))dt 

((Ao-Mo),(^(0)-$(0))) 

+ /o ^ 
-j> - Dvf(Yll- ^ ) T 0 + $ + Dyf(Y^ frfQ dt. 

This gives 

w, -^-Dyf(Ytt;fH)Td) + ^ + Dyf(Y„fh)
T^\) dt. (5.2.15) 

By adding and subtracting Dyf(Ylx\j.LijT4> to the differential equation in 

(5.1.4) for the exact adjoint, we have 

-<j> - DJ(YIX- /i!)T0 = \Dyf(y,- fh) - Dvf(Y»- ^)}J </> + ^ (5.2.16) 

Substituting (5.2.16) into (5.2.15) and using (5.2.11), we have 

I = J (w,lDyf(y,.^)-Dyf(Y(i:ji1)}
T, dt 

w {Dyf^^)-Dvf(Yll-lh)\
T^)dt (5.2.17) 

J (w^Dyf(yll^l)-Dyf(Yti]lil)]
J((t>-^)) dt. (5.2.11 
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We claim the second term on the right-hand side of the last equation is 

higher-order and can be neglected. We prove this claim later. For now, 

we assume it is true, and go about estimating the first term on the right-

hand side. If f(y; A) is three-times continuously differentiable, then we use 

Taylor's theorem and ignore the higher-order term to get 

j (w, [Dyfiy,, /ii) - Dyf(Y„ ^)}T $) dt 

« f (w, [$ T ® J] [Dy (vec(D ! //(^;/i1)T))](yM - ^ ) ) dt J0 \ > ^ , / 
nxn^ rf'xn 

= J ( [ D y ( v e c ( Z V ( ^ ; / i i ) T ) ) ] T [$ T ® J ] T w,(y,-Y,)) dt. 

Here, J denotes the n x n identity matrix and the vector operator denoted 

vec is a map from M'xm —> R'm defined by stacking the columns (in order) 

of a matrix to form a column vector. We let 

fr = [Dy {vec(Dyf(Yil;fi1)
T))]T [ $ T ® J ] V 

We now have that the first term on the right-hand side is a linear func­

tional of the error y^ — Y^. This term is estimable by standard a posteriori 

techniques as described above. 

We now prove the claim that the second term is of higher-order and 

can be neglected. Let 77 = <fi — $, then 

f-7) = £ > „ / ( ^ ; / x i ) T 0 - DyfiY^mF*, T>t>0 
\n(T) = 0. [ • • } 

From Remark 5.2.1, we have that the first derivatives f(y, Ai) are Lipschitz 

continuous, so if Y^ is sufficiently close to y^ over [0, T], then 

Vyf(y», ViV = Dyf(y^ M l ) T + c(t), t E [0, T], (5.2.20) 
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where e(t) is a perturbation matrix satisfying ||e(£)|| < C ||yM — YM||, for 

some C > 0 and all t e [0,T]. Substituting (5.2.20) into (5.2.19) gives, 

{-rf = Dyf(yll;n1)
JTi + e{t)$(t), T>t>0 

\r,(T) = 0. 

Let E(t) denote the fundamental matrix of (5.2.22), then 

T/(t) = -E ( t ) j ^ [E ( s ) ] - 1 e ( S )$ ( S )d S . 

This implies that 

1)̂ )11 < ||S(t)|| f \\m-'\\ W)\\ \\Hs)\\ ds<C \\y, - YX . (5.2.22) 

Here, \\-\\v is interpreted as before to mean the L2([0,T]) norm of a given 

vector norm of the argument, and C > 0 is some constant that bounds the 

product of sup t e [ 0 T ] ||S(t)||, sup t6[0iT] | |£(£)_1 | |, and sup t e [ 0 T ] | |$(t)| |. Thus, 

by Lipschitz continuity of the first derivatives of /(y; A) and (5.2.22), 

T 

< cn^-y^i I (w, [Dvf(yit; fr) - Dyf(Y,: ^ {<j> - $) ) dt 

Thus, this is higher-order, and we have established an estimate of term I. 

Estimating term II 

By adding and subtracting {D\f{Yll-)iii){\\ — /ii),(/>) to the integrand 

in II, we rewrite I I so that II = H a + l ib , where 

Ila = / ((DA /(^;/ /1)-DA . / (yA 4 ; / i1))(A1 -//i),</>) dt 
Jo 

l i b = / {DxfiY^fH)^- ti!),^-*)) dt. 
Jo 

We now estimate I la and l ib . 
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Estimating term Ila 

By adding and subtracting {{Dxf{y^,Hi)-Dx / (Y M ;MI) ) (AI - Mi),$) 

to the integrand in Ila, we rewrite I la so that Ila = Ilaa + Ilab, where 

Ilaa = / ( ( D A / ( y / J ; M l ) - D A / ( y M ; / i 1 ) ) ( A i - M i ) , ( ^ - ^ ) ) ^ 
./o 

Ilab = / ( (D A / ( y / , ; / u 1 ) -D A / ( y / , ; M l ) ) (A i -Mi ) ,$>^ . 
Jo 

We show that Ilaa is of higher-order, and can be neglected. We have 

shown above that 

u-n<c\\y,-Yx, 
for some constant C > 0, and from Remark 5.2.1 we have that the first-

derivatives of f(y; A) are Lipschitz continuous, so 

|IIaa| < C ||;^ - Y^v. 

for some constant C > 0. Thus, Ilaa ~ C(||yM — YJI2), and is neglected in 

the estimate. 

Again assuming that f(y; A) is three-times continuously differentiable, 

then 

( r > A / ( ^ i ^ 1 ) - D A / ( y / 1 ; / i 1 ) ) ( A 1 - / i 1 ) « 
[(Ax - / ^ ) T ® J] [Dy (vec(Dxf(Y„ Ml)))] (y, - Y»). 

We substitute this estimate into Ilab so that 

Ilab « / ( [ ( A 1 - M l )
T ^ J ] [ ^ ( v e c ( D A / ( ^ ; / x 1 ) ) ) ] ( y M - ^ ) , $ > ^ 

JO 

= J ((y,-Y,),[Dy(vec(Dxf(Y,]fii)))}
J [(X, - ^ ) T ®J]T $ ) dt. 

We let 

il>iiab = [Dy (vec(DA/(yM; M l)))]T [(Ax - ^)T ® J ] T $. 
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Thus, we have represented Ilab as a linear functional of the error in y^ — Y^, 

which can be estimated by standard a posteriori techniques as described 

above. 

Estimating term l ib 

We let 

i/>//6 = D\f{Y^ Mi)(Ai — A*I). 

so that 
eT 

l i b = / <V>//6, (</> - $)> dt. 
Jo 

Thus, l i b is a linear functional of the error in the adjoint solutions <j>—^. We 

apply standard a -posteriori techniques used to estimate linear functionals 

of the error in the forward solutions to estimate the error in the adjoint 

solutions as was done above. We again define an adjoint to the approximate 

adjoint as 

(z-Dyf{Y^fi1)z=ipIIb, 0<t<T, 

\z(0) = 0. 

We perform a standard variational argument to obtain 

l i b / {(z-Dyf(Y,:fh)z,(cP-$))dt 
Jo 

[ (z,(ct>-<P))dt- [ <£„/(*;;/*i)2,(<£-*)M 
Jo Jo 

(z(n(<i>(T)-*(T)))-mMo)-m)) 
> v ' v v > 

0(T)-$(T)=O z(0)=0 

-J (z,(j>-$))dt-J (z,Dyf(Y^^)T(<i>-$))dt 

J (z, ~<j> - Dyf(Y^ nM + * + DJiY,: ^ ) $ ) dt. 
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Using (5.2.19)-(5.2.21) in the right-hand side above, we have 

Hb = j (z^Dyfiy^nJ-Dyfiy^in)]1<p) dt 

- j (z, [Dyf(y„ /ii) - Dyf(Y„Ln)]J (<£-*)) dt 

The two terms on the right-hand side arc analagous to (5.2.17) and (5.2.18). 

The second term on the right-hand side has already been proven to be 

higher-order. Therefore, the second term is neglected in the estimate. The 

first term is estimated similarly to how (5.2.17) was estimated. We define 

i>m = [Dy (vec(D,/(yM;//1)T))]T [«S»T ® 3}T z. 

and the first term is approximated by 

rT 

J (i>ub,(y»-Yn)) dt, 

which is a linear functional of the error of yM — V ,̂ and is estimable by 

standard a posteriori techniques as described above. 

5.2.3 Summarizing the effect of deterministic error 

We consider A that are near the reference parameter //, and seek to 

determine q(\) given <?(//) and the generalized Green's function that solves 

the adjoint problem. In the absence of numerical error of the solution to 

the initial value problem, we saw that 

g(A)«9(//) + ((A0-//o),<KO))+ / (DAl/(j/ / i;/x1)(A1-^i),0)dt, 

Jo 

which we refer to as the HOPS approximation for ordinary differential equa­

tions. 
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Wc numerically solve the initial value problem (5.1.3) and the numeri­

cal error should not be neglected. We determined estimates of the effect of 

this error on the HOPS approximation. We observed that such estimates 

can be made by extending standard a posteriori techniques and applying 

smoothness assumptions to /(y;A). By solving several additional adjoint 

problems, and establishing a priori bounds on some terms, proving these 

are of higher-order and can be neglected, an error estimate on the effect of 

using numerical solutions and perturbed adjoint problems was obtained. 

Theorem 5.2.1. Let Y^ and $ denote the numerical solutions to the ini­

tial value problem (5.1.3) and the approximate adjoint problem (5.2.11), 

respectively. 

Use standard a posteriori techniques to estimate the error y^ — Y^ defined 

as e0 := JQ ((y^-Y,,),^) dt. 

Let pm be the number of model parameters and pi the number of initial 

conditions (pm + Pi = p) 

for i — 1,... ,p do 

if i < pm then 

Let z denote the solutions to the adjoint to the approximate adjoint 

problem 

x - Dyf{Yll; nx)x = Dxf(Y„, mfa, 0<t<T, 

x{0) = 0, 

where Sj denotes the ith standard basis vector in M.Prn 

Set 

ipiiab = [Dy (vec(Dxf(Y,; M l)))]T [6j ® J ] T *, 

4>m = [Dy {vec{Dyf(Y^ Mi)T))]T [ $ T ® J ] T z. 
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Solve (5.2.11) with data given by the above vectors and calculate 

the standard error representations given by 

A : = / ((y/i - Y»),il>iiab) dt, e\ := / (ipub, (yM - Y„)J dt. 

else 

Let w denote the solutions to the adjoint to the approximate ad­

joint problem 

(x-DJ(Ylx:m)x = 0, 0 < t < T , 

\x(0) - 5U 

where Si denotes the ith standard basis vector in Wl 

Set 

$!= [Dy{vec(Dyf(Y„^)T))]T [$ T ® J ] T 
w 

Solve (5.2.11) with data given by the above vectors and calculate 

the standard error representations given by 

4 = = / (><Pi,(y,-Y»))dt 
Jo 

end if 

end for 

The estimate of the effect of error on the HOPS representation in direc­

tion u given by 

u = ( v\ ••• vPrn pi ••• pPi ) 

is denoted eu, and given by 

Pm 2 Pi 

i = l j = l t = l 

89 



Time Step 

0.2 
0.1 
0.05 
0.025 
0.0125 

True Error 

-2.18 x 10"4 

-2.92 x 10"5 

-3.77 x 10-6 

-4.79 x 10"7 

-5.95 x 10"8 

Term I lab 

-1.93 x 10-4 

-2.72 x 10"5 

-3.59 x 10-6 

-4.62 x 10~7 

-5.85 x 10-8 

Error Estimate 
-1.77 x 10"4 

-2.72 x 10"5 

-3.75 x 10"6 

-4.91 x 10~7 

-6.28 x 10~8 

Ratio 
0.8114 
0.9317 
0.9952 
1.0262 
1.0557 

Term l i b 
1.63 x 10"5 

-2.90 x 10-8 

-1.57 x 10"7 

-2.98 x 10"8 

-4.36 x 10"9 

Table 5.1: Results for T = 1 

Example 5.2.1. Consider the nonlinear problem with changing stability 

given by 

{ x + (0.25 + sin(A*))x2 = 0, 

\ z(0) = l, 

with exact solution 

A 
X ~ (A + 1) + .25At-cos(At)' 

We take the quantity of interest to be the value of x(T) at various T. The 

exact adjoint solution is 

4> = C[{\ + 1) + .25At - cos(Ai)]2, 

where C = [(A + 1) + .25AT - cos(AT)]-2. We study the effect of error 

around the reference parameter \i = n and denote solution at this reference 

parameter as y. Recall from the above theorem that we present error gra­

dients resulting from using unit perturbations to the affine map q{\). The 

results are summarized in Tables 5.1-5.3. 
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Time Step 

0.2 
0.1 
0.05 
0.025 
0.0125 

True Error 

-6.13 x 10~4 

-6.76 x 10-5 

-7.85 x 10~6 

-9.46 x 10~7 

-1.21 x 10-7 

Term Ilab 

-3.78 x 10"4 

-4.41 x 10"5 

-5.28 x 10"6 

-6.44 x 10"7 

-7.94 x 10"8 

Error Estimate 
-6 .5 x 10~4 

-8.14 x 10~5 

-1.00 x 10~5 

-1.24 x 10"7 

-1.54 x 10~7 

Ratio 
1.0599 
1.2044 
1.2767 
1.3106 
1.2767 

Term l i b 
-2.71 x 10"4 

-3.73 x 10"5 

-4.75 x 10~6 

-5.96 x 10"7 

-7.45 x 10"8 

Table 5.2: Results for T = 4 

Time Step 

0.2 
0.1 
0.05 
0.025 
0.0125 

True Error 

—8,21 x 10"4 

-8.66 x 10-5 

-9.78 x 10~6 

-1.17 x 10"6 

-1.46 x 10~7 

Term Ilab 
-3.46 x 10"4 

-3.28 x 10-5 

-3.43 x 10-6 

-3.86 x 10-7 

-4.55 x 10"8 

Error Estimate 
-7.19 x 10"4 

-8.31 x 10"5 

-9.77 x 10^6 

-1.18 x 10"6 

-1.44 x 10~7 

Ratio 
0.8763 
0.9601 
0.9994 
1.0057 
0.9847 

Term l i b 
-3.73 x 10"4 

-5.03 x 10-5 

-6.34 x 10~6 

-7.91 x 10~7 

-9.85 x 10"8 

Table 5.3: Results for T = 10 
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5.2.4 Statistical error 

We examine the effect of finite sampling on the posterior density. We 

present a brief review of the salient results and methodology for obtaining 

the posterior density, and then follow a similar analysis to [8] to obtain an 

a posteriori error analysis for the approximate distribution resulting from 

finite sampling. 

The posterior density 

The goal in solving the inverse problem is to determine probabilities of 

events A C A. We precede by constructing a posterior density that defines 

a measure, or in probabilistic language a distribution, on A in order to 

determine the probabilities of these events. Recall the following 

Theorem 5.2.2. Given a measurable set A C A, we can approximate P{A) 

using a simple function approximation to (3.3.1), which only requires cal­

culations of volumes in A. 

The proof of the above theorem lead to Alg. 3.3.1. The algorithm 

assigns a probability P(bi) to each cell 6j, where {bi)f=l partitions A, re­

sulting in an approximate posterior density on model space by the simple 

function 
M' 

<*A(A) ~ <TA,M'(A) = ^ P ( 6 l ) l b t ( A ) . (5.2.23) 
k=\ 

We focus on the nested loops of Alg. 3.3.1 applied to the cells {bi} 

with a fixed simple function approximation to pv{q). 

Remark 5.2.3. We assume smoothness of pv{q) so that standard calcu­

lus results hold, i.e. so that instead of inducing a partition on V from the 

simple function approximation as in the proof of the above theorem, we can 
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instead create a fine partition on V then use this partition to approximate 

Riemann integrals of p-p{q). This is done in practice, and when pv{q) is 

available, we might use the true probability of subintervals partitioning V 

to fix the simple function approximation in Alg. 3.3.1, which is analogous 

to using an integral mean value theorem for each subinterval. Under these 

assumptions that the simple function approximation calculates the true prob­

ability for each subinterval, we seek to determine an estimate for the error 

resulting from the case where the simple function approximation is instead 

approximated by binning a finite collection of samples from pv{q)-

With this in mind, we let pv denote the simple function approxima­

tion in the discussion below. The error in using finite sampling effects the 

calculations of P(bi). We emphasize the calculation of P(bi) in Alg. 5.2.1 

below. 

Algorithm 5.2.1 (Approximate Probabilities of Cells Partitioning A). 

Partition A with small cells {bi}i=l 

for i = 1 , . . . , M' (number of small cells) do 

Use PA to calculate volume of 6j 

Calculate qiiTn — min {q(X) | A G bi} 

Calculate qi^ = max{<?(A) | A G h} 

Use p-o to calculate probability of event [qi<m, <3I,M] 

Use generalized contours to determine set Ai := <7_1([9i,mi <7I,M]) C A 

Use PA to calculate volume of Ai 

Set P(bi) to be the product of the probability of [<7i>m,</j,M] and the 

ratio of the volume of bi to the volume of Ai 

end for 
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Wc seek to determine the effect of the error in the distribution de­

fined by (5.2.23) on A when the probability of [(?,,m, C/J.M] in Alg. 5.2.1 is 

determined from a finite collection of samples of the distribution of q{\). 

A posteriori error analysis for (5.2.23) 

Let Fq(t) denote the probability distribution function of q{\). If we can 

evaluate pv(q) or Fq(t) directly, then no sampling is necessary, and from 

the above algorithm we have for 1 < i < M' 

P\h) = Fq{q{bi))y y-——r-r, 5.2.24 

where q(bi) indicates the interval in V that is mapped to by q(\) for A € 6j. 

We let F(t) denote the probability distribution on A defined by (5.2.23), 

where f e R d , and 

F{t) = P({\ | A < t}) = P{\ < t). (5.2.25) 

Here the inequality, A < t, is considered component-wise. Using (5.2.24) in 

(5.2.25) gives 

~ t J AiP\Wdfi AW 

We use a sample distribution function for Fq(t) computed from a finite 

collection of error free sample values { Q i , . . . , QN}, which we denote Fq<N(t) 

so that 
1 N 

n=l 

This leads to an approximation of F(t) by the sample distribution function 

FN(t) defined as 

F (t) - V F (nth « W * ^ ! 
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The deterministic error estimated above leads to an error in the calculation 

of q(bi). We let q(bi) denote this calculation with error, and define the 

approximate sample distribution function F/v(t) as 

M' 

i= l JAl 

Ibzn{\<t} P*W <WA) 
(5.2.26) 

/ 9 A ( A ) ^ A ( A ) 

We calculate probabilities using (5.2.26) and seek to determine the error 

F(t) — FN(t). We decompose the error as in [8] to get 

F(t) - FN(t)\ < \F(t) - FN(t)\ + \FN(t) - FN(t) (5.2.27) 

II 

We first consider I: 

w 
T ̂  ̂  i w n w T? < ti\\\ 4n{A<t} ̂ A(A) <W(A) 

i < £ \FMk)) - « « # , ) ) ! j , A ( A ) < W A ) • 
(5.2.28) 

From [8] and [24], we have that 

P (sup |F,(t) - F,i7V(t)| > e) < Ce-2e2jV, for all e > 0, 

where C > 0 is some constant not depending on Fg, or in other words, for 

any e > 0, 

sup \Fq(t) - Fq,„(t)\ < C C-^P) (5.2.29) 

with probability greater than 1 — e. Using these results in (5.2.28) gives 

KC 
logfr-QV^W^AWd/iACA) < ^ / l o g ( ^ ^ 1/2 

2iV y tr 4M(A)^,A(A) 

with probability greater than 1 — e. 

2N 

Next, we consider I I of (5.2.27). 

From the a posteriori deterministic error analysis, we have an approx­

imation for the error in q(bi) for each small cell fcj. For convenience, we 
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choose the fine partition {6j} so that for each 1 < % < A/', bi C Bj for 

some 1 < j < M. Thus, for all small cells b{ c Bj for a fixed j , there is 

the same deterministic error term associated with q(bi) since we neglect the 

effects of linearization on the inverse problem as described above. Let Ej, 

1 < J < M denote the deterministic error associated with each q(bi) for all 

bi c Bj. Set E = maxj \Ej\. Let Mi = maxq(bi) and mi = mmq(bi). Using 

an analogous argument as in [8], 

TT < S^\F (M + F) F (m F]Jhn{X<t}P^X)d^X) II < Z . \F,AMi + E)- Fq.N{m - E)\ ^ pA{x) ^ ( A ) 

< E \Fq{Ml+E) - ^(m<+E)i V" };f;^; ( A ) 

~t JAiPAWdnA(X) 
, f l r , „, „ , „,,4n{A<t}MA)<WA) 

+ £ |F,(™, - E) - F,Am, ~ E)\ j M ( A ) < M A ) 

+ ElW^)-^-^l fT"m^t|A )-
^ J,l./5A(A)d/iA(A) 

Using (5.2.29) for the first two terms on the right-hand side of the inequality 

we have that for any e > 0 
' l o g ^ 1 ) ^ 2 

II < 2C 
2yv 

M' 

~t JAlP^X)d^X) 

with probability greater than 1 — e. Assuming Lipschitz continuity of the 

distribution Fq and letting L denote the Lipschitz constant, then 

H < 2C ( l 0gjj~ r M + LE max (Mi - m*) 

with probability greater than 1 — e. 

We summarize these results as a theorem analogous to the one pre­

sented in [81. 
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Theorem 5.2.3. There exists constant C not depending on any distribution 

such that for all c > 0 

< 3C [ -2 l i £_ i ] + LE max (maxg(M - mmqibi)) 

with probability greater than 1 — e. 

Remark 5.2.4. Much of the above analysis is directly applicable to the 

forward problem of passing a distribution on A through the response surface 

q(\) to determine a distribution Fq(t) of the output. The deterministic error 

analysis is identical, and only slight changes need be made to the statistical 

error analysis since the sample distribution Fq^(t) is no longer computed 

from error free samples as above. In the above analysis, we assume that even 

if we do not have access to Fq(t) directly, we are at least able to generate 

(or are provided with) independent identically distributed samples according 

to this distribution to compute Fq^(t). In the forward problem, we do not 

know a priori what Fq(t) is, and estimate it entirely from Fq^(t) except 

that now the samples are generated by passing samples of a distribution on 

A through the surface q(X) so that now the samples are no longer error 

free. Having computed the deterministic errors associated with the output 

samples, Ej, as above, we follow the a posteriori statistical analysis of [8] 

verbatim. 

Remark 5.2.5. In the case where we can evaluate pv(q) or Fq(t) directly, 

so no sampling is necessary, the analysis simplifies greatly and we simply 

examine the effect of the deterministic error. We can take the bound in the 

theorem above and by "sending N to infinity" arrive at the correct bound 

< LE max (raaxqibi) — ming(6j)). 
\<i<M' 

F{t) - FN(t) 

F(t) - F(t) 
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Here F{t) is the distribution calculated using exact values of pv{q), but with 

deterministic errors effecting the calculation of P(bi) in Alg. 3.3.1. 

Example 5.2.2. Consider the same problem as in Example 5.2.1. We re­

strict A to be in the interval [n—0.1,7T+0.1] and use the linear approximation 

for the quantity of interest constructed in the calculations of the previous ex­

ample for T — 1 with a step size of 0.05. This implies that E = 3.75 x 10"6 

and using just one HOPS point we have that maxg(frj) — ming(6j) is ap­

proximately 0.01138. Assume the output is uniformly distributed so that 

L — 87.8231, which is found by considering the output distribution on 

[minq(6j), maxq(6j)]. This gives the bound on F(t) — F(t) as 3.75 x 10 - 6 . 

This is exactly the numerical error. This should be the case for this partic­

ular example and checks the consistency of the above analysis. A uniformly 

distributed output has a uniformly distributed input since this is a 1-1 linear 

map. The only error comes from the numerical error in this case, and is 

reflected in the result. 
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Chapter 6 

ERROR ANALYSIS FOR INVERSE 
SENSITIVITY PROBLEMS WITH 

SEMILINEAR ELLIPTIC PARTIAL 
DIFFERENTIAL EQUATIONS 

Compared to the case of ordinary differential equations already pre­

sented, there are the same various sources of computational error effecting 

the posterior density defined as the solution to the inverse problem. We 

present both the analysis for the effect of the linearization and the numer­

ical error in the solution of q(X) and its derivative at reference parameter 

values used to form the global piecewise-linear representation to this sur­

face. This error is deterministic and we obtain an a posteriori estimate for 

this error. The statistical sources of error have the same analysis as already 

presented for ordinary differential equations. 

6.1 The effect of linearization on the inverse problem 

We study the inverse problem for a finite dimensional map q from the 

space of parameters to the output defined implicitly by the solution to a 

semilinear elliptic partial differential equation that depends on a finite num­

ber of parameters in the model. We consider the boundary value problem 

- V - ( a V u ) = /(U ;A), in 0, 

u = 0, on dCl, 
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where u = u(x) = («I(.T), . . . , nm(.x))T is the solution, / : Rm+^ -> Km is the 

forcing term depending on parameters and solution, and A = (Ai, . . . , AP)T 

are the parameters. Let V = (H^Q,))™ We seek a solution u € V to the 

variational (weak) formulation of (6.1.1) satisfying 

B[u,v] = {f(u;X),v)L2, VveV. (6.1.2) 

Here B[-,-] is the bilinear form defined by B[u.v] = XX^aV'Uj, V U J ) ^ . 

We use the notation (•, -)L2 to denote the (L2)m inner product. 

We require / to be Lipschitz continuous in some invariant region for 

the solutions u to guarantee the existence of such solutions as is usually 

required in the proofs using fixed point theorems. 

We solve (6.1.2) to calculate a linear functional of the solution, or a 

quantity of interest q(u) — {u,^)v for some xjj e. V. As before, we write 

q(X) to emphasize the dependence of solutions to (6.1.2) on parameters A. 

6.1.1 Local linearization of a quantity of interest 

We seek to determine the effects of variations in parameters on the 

quantity of interest. We first solve (6.1.2) at reference parameter /i to obtain 

reference solution w £ V. As before, we linearize around this solution and 

solve an adjoint problem for <fi € V satisfying 

B[v, 0] = (v, Duf(w; fi)T(f))L2 + (v, i))V) Vv 6 V. (6.1.3) 

We now consider (6.1.2) for A that are near the reference parameter \x, and 

seek to determine q(X) given q(fx) and the generalized Green's function 4> 

that solves (6.1.3). Let u denote the solution associated with A and set 
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e = u — w € V. We have that 

(e,VOv = B[e,(p}-{e,Duf{w;fj,)T(j))L2 

= B[e, <(>] - {Duf(w; fi)e, (p)L2 

= (/(«,A) - /(u>,/x) - Duf(w;n){u-w),<l))L2 

= {Dxf{w\n){\- n),<l>)v> + {n,<t>)u, 

where 72. is a remainder term from the first-order Taylor expansion of / and 

is of higher order. Neglecting this term, we have the HOPS representation 

formula [20] 

q{\) « q{n) + (DA/(IO;/X)(A - fi), 4>)L*-

We rewrite this as 

?(A)«g(M) + Vg( / i ) [A-/ i] , (6.1.4) 

where Vq(/j)[-] = (•, D\f(w;^)T(j})L2 denotes the Frechet derivative of q(X) 

at \ = n [20]. 

As before, we extend the local linearization technique to obtain a global 

piecewise-linear approximation of the linear functional over all of A to ob­

tain (5.1.12). The inverse problem statement is now identical to that pre­

sented before. The analysis of the effect of using generalized linear contours 

on the inverse problem is identical to the presentation on ordinary differen­

tial equations. 

6.1.2 Review of standard a posteriori error analysis 

Let U denote the numerical solution to 

- V • (OVM) = f{u), in O, i 

u = 0, on dCl, 
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Let e = u — U, where u solves (6.1.5) exactly. We linearize around U in the 

sense described in Chapter 1 to arrive at the formal adjoint problem 

f - V • (aV0) = /'(f/)T</> + V, in Q, {Q 1 

[</> - 0, on c*fi, 

For convenience, we let / ' = /'(£/) in the remainder of this discussion. 

We work with the weak forms using e and 4> to get 

£[ e ,0] = ( e , ( / ' ) T < ^ + ( e , W (6.1.7) 

Substituting e — u — U and using the same first order approximation as in 

the analysis for ordinary differential equations, we have 

{e^)v = B[UA]-{f{U)^)L,. (6.1.8) 

Similary to the analysis for ordinary differential equations, we solve (6.1.5) 

by triangulating Q, into K elements, and we can similarly break up both 

(6.1.7) and (6.1.8) as a summation over each element contribution to the 

error. 

6.1.3 The effects of deterministic error in the evaluation of the 
approximate map 

We let W denote the numerical solution to (6.1.2) at the reference pa­

rameter pi. This is the numerical approximation around which we linearize 

the forward problem in order to construct an adjoint. We define the approx­

imate adjoint using (6.1.3) with "perturbed" operator Duf(W; p), and let 

<3> denote the solution to this approximate adjoint, which is computed using 

a numerical scheme, e.g. second order continuous Galerkin finite element 

method, for 

B[v, *] = (u, Duf{W- /j)T$)L2 + (u, $)v, \/v e V. (6.1.9) 
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As with the analysis for ordinary differential equations, we assume the nu­

merical error of this solution is negligible, and we have the same assump­

tion that / is three times continuously differentiable. Therefore, for W 

sufficiently close to w over short time, 

\\DJ(uKfi)-Dwf(W-ii)\\v<K\\w~W\\v. 

We now seek to quantify the effect of the numerical error of using W 

in the construction of the adjoint problem for the representation formula 

given by (6.1.4). 

Let q(X) denote the approximate quantity of interest calculated using 

(6.1.4) with W and $ in place of w and 0, which is to say that 

q(X) « (W, i>)v + (DJ(W; ;/)(A - ,*), $ ) L , . (6.1.10) 

The effect of the numerical error in W on the representation formula for 

q(X) is 

q(X)-q(X) « (D u / (u ; ; / i ) (A-Ai )^ ) i a - ( I>„ / (W; / i ) (A- /x ) ) $) L 2 
v v < 

II 

+ {w-W,ij;)v. (6.1.11) 
% v ' 

I 

Term I is a linear functional of the error w — W and it can be estimated 

by standard a posteriori techniques as described above. The goal is to 

determine an estimate of term II that is a measure of the effect that the 

numerical solutions W and $ have in the estimate for q{\). Specifically, I I 

measures the effect of using W and $ on the sensitivity of q(X) to changes 

in model parameters of (6.1.2). The dependence on A — fx is linear, and the 

analysis below produces estimates that also depend on this vector linearly 

so that the error estimates for these terms are also linear functions of this 
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vector. Thus, following the analysis described below for p linearly indepen­

dent vectors A — /i, we obtain a set of error estimates such that the error 

for any vector A — /i can be written as a linear combination from this set of 

error estimates, which completes the proof of Theorem 6.1.1. 

Estimating term II 

By adding and subtracting (Dxf(W;/i)(X — H),(J))L2 to the integrand 

in II, we rewrite I I so that II = I la + l ib , where 

H a = ((Dxf(w:ji)~Dxf(W^))(X-^),<p)L, 

l i b = ( D A / ( W ; M ) ( A - / / ) , ( 0 - $ ) ) i a 

We now estimate Ha and l ib . 

Estimating term Ila 

By adding and subtracting ((D\f(w;n) — D\f{W\fi))(\ - /i),<3>)z,2 to 

the integrand in Ila, we rewrite Ila so that Ila = Ilaa + Ilab, where 

Ilaa = ((DJ(w)fi)-Dxf(W-ij,))(\-fi))(b-$)L2 

Ilab = ({Dxf{w; fi) - Dxf(W; ,z))(A - ,/,), $)L2. 

We show that Ilaa is of higher-order, and can be neglected. We claim 

that 

w<t>-*\\v<c\\w-w\\y\ 
for some constant C > 0, and we have that the first-derivatives of f(u; A) 

are Lipschitz continuous, so 

|IIaa| <C\\w- WfJ2, 
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for some constant C > 0. Thus, Ilaa is neglected in the estimate. To prove 

this claim, we first observe that 

B[v, <£-$] = (v, Duf(w; vY<t> - Duf(W; //)T$)L2, Vu e V. 

If W is sufficiently close to w, then Duf(W;fj,)T — Duf(w:n)T + e, where 

e is a function satisfying \\e\\v < C \\w — W\\v. Thus, 

B[v, <f> - $] = (u, Du/(iu; /i)T(0 - $))L2 + (u, e$)L2, W € V. (6.1.12) 

Let n = 0 - $ € V and assume that Duf(w,fi) e ^i(L°°{^))m- T h e n *7 

solves the weak form of the elliptic problem Ln — 5 in f2 and 77 — 0 on 50, 

where Ln = —V • (aVn) — Duf(w: fi)Tr] and g = e$. With unique adjoint 

solutions, g G (L2(Q))m n (L°°(VL))m, we have from standard regularity 

results that 

IMIv < ll??ll(//2(n))m < C \\g\\L2 • 

Observe that if fl has finite measure, then (L2(Vt))m c (Ll(Q))m and 

||5||L2 < \\g\\i\ \\9\\L%> [14], and by Holder's inequality 

lloll1/2 < IIHI1/2II$II1/2 

Thus, we have 

110 - ^||^ < C |[w; - T^Ht/2, 

for some constant C. This proves the claim. 

1 II 
Remark 6.1.1. The constant C above depends on ||c||Loo. If the Lipschitz 

1/9 

inequality giving \\e\\L2 < K \\w — W\\y can be extended to the (L°°(FL))m 

norm on c, then the above term that is neglected can in some sense be 

considered 0(2) instead of 0(3/2), which makes it more like the case of 

ordinary differential equations. 
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Again assuming that / (u ; A) is three-times continuously differentiable, 

then 

(Dxf(w;tJ.)-Dxf(W;ti))(X-^ « 
[(A - M ) T ® J] [Du (vec(DA/(H/; M)))] (w-W). 

We substitute this estimate into Ilab so that 

Ilab « ( [ (A- M ) T ®J] [D u (vec (D A / (VK; M ) ) ) ] ( i W - i y ) , $ ) L 2 

= ((w - W), [Du (vec(DA/(W; /x)))]T [(A - /x)T ® J ] T $ ) * . 

We let 

iknab = [Du (vec(Dxf(W; /x)))]T [(A - M)T ® J ] T $• 

Thus, we have represented I lab as a linear functional of the error in w — W, 

which can be estimated by standard a posteriori techniques as described 

above. 

Estimating term l i b 

We let 

il>m = DJ(W,n)(\-ti), 

so that 

iib = (vW0-$))^. 

Thus, l i b is a linear functional of the error in the adjoint solutions (/>—$. We 

apply standard a posteriori techniques used to estimate linear functionals 

of the error in the forward solutions to estimate the error in the adjoint 

solutions as was done above. We again define an adjoint to the approximate 

adjoint as satisfying the weak equation 

B\z. v] - (DJiW; X)z, v)L2 = ^IIb, Vv e V. 
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We perform a standard variational argument to obtain 

l i b = B[z,(l>-$]-{Duf(W;iJi)z,<l>-$)L, 

= £ [ z , 0 - $ ] - ( ^ D „ / ( V V > ) T ( < / > - $ ) ) L 2 

Using (6.1.12) in the right-hand side above, we have 

l i b = (z,[Duf(w;n)-Duf(W;(i)]T<l>)L2 

= (z,[Duf{w;n)-Dvf(W;ii)}T$)L2 

+ (z, [DJ(w; fi) - DJ(W; ^ ) ] T (</> - $))L 8 . 

The second term on the right-hand side has already been proven to be 

higher-order. Thus, it is neglected in the estimate. The first term is esti­

mated by using second derivatives of / in the first argument to approximate 

the difference Duf(w;n) — Duf(W;n). This is identical to the ODE case. 

We define 

$m= [Du{vec(Duf(W:fi)
T))}T [<S>T®J]T z, 

and the first term is approximated by 

which is a linear functional of the error of w - W. and is estimable by 

standard a posteriori techniques as described above. 

6.1.4 Summarizing the effect of deterministic error 

There are many notational and a few subtle changes in the analysis 

from the ODE case presented in the previous chapter, yet the bulk of the 

analysis is identical in content. We summarize the results in the following 
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Theorem 6.1.1. Let W and $ denote the numerical solutions to (6.1.2) 

and the (6.1.9), respectively. 

Use standard a posteriori techniques to estimate the error w — W defined 

as e0 := (w - W, i)hi 

Let p denote the number of model parameters. 

for i — 1 , . . . ,p do 

Let z denote the solutions to the adjoint to the approximate adjoint 

problem 

B[z, v] - (Duf(W: \)z, v)L, = DJ{W, n)6if W e V. 

where Sj denotes the ith standard basis vector in MP. Set 

Tl>iiab = [Du(vec{Dxf(W;n)))]r [5j ® J ] T $ , 

i>iib = [Du (vec(Duf(W; M ) T ) ) ] T [ $ T ® j ] T z. 

Solve (6.1.9) with data given by the above vectors and calculate the 

standard error representations given by 

e\ := {w-W,^Uab)L2, e\ := (4>m,w - W)Lt. 

end for 

The estimate of the effect of error on the HOPS representation in direc­

tion v given by 

v = ( vx ••• up) 

is denoted e„; and given by 

p 2 

e„ = e0 +£>i]Te$. 
i = l j=l 
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Chapter 7 

MULTIPLE QUANTITIES OF INTEREST 

As seen in Alg. 3.3.1, the calculation of P(fc*) is a computational ge­

ometry problem where the volumes of bi n Aj and Aj need be calculated for 

each j . 

We first recall the case where there is one quantity of interest. Recall 

that A C M.d. We assume that none of the cells bi intersect more than one 

coarse cell B^. For simplicity, we assume the cells 6, are boxes with each 

edge parallel to one of the coordinate axes. Over any Bk we use the linear 

approximation 

vWlxeB, = M + <Vg(M). (A - M)>, (7-0.1) 

where we use /i in place of //& to avoid any confusion with components of 

vectors in the discussion below. 

If bi n Aj = 0, set Vij = 0 in Alg. 3.3.1. Otherwise, bt fl Aj defines a 

closed convex polytope. There exists a half-space representation C'X < p for 

bi n Aj, where C is a (2 + 2d) x d matrix, p is a (2 + 2d) x 1 vector, and the 

A G Kd that satisfy CX < p define the closed convex polytope bi D Aj. To 

see this, let [qj_i,qj) denote the interval of V associated with the induced 

region Aj. Since the boundary of Aj is a set of measure zero, we take Aj 

to be induced from [qj-\, qj] in the following derivations with no effect on 
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the calculation of P{bi). Since 6j C Bk for some k, we are only interested 

in the part of Aj contained in Bk- We use (7.0.1) for calculations in Bk, so 

in Bk the region Aj is defined by the inequalities 

q{fM) + {Vq(n),(\-fj)) < q,, 

q{fi) + {Vq(fi),(X-fi)) > qj.!. 

We rewrite these inequalites as 

<Vg(/i),A> < qj-q{fi) + (Vq(n),n), 

(-Vg(/i),A) < qiri-q^-iVqifi),!!). 

Set the first two rows of C to be Vq(ii)J and — V<?(//)T, respectively. Set 

the first two entries of p to be qj — g(/i) + (V'q(fx), /i) and g(/x) - <7j_i — 

(Vc/(/i), /i), respectively. The remaining rows of C and p are determined by 

6j. Let <S)n=i[̂ n>i.mini ^n,i,max] denote 6j, then 6j is defined by the following 

inequalities 

Ai < A^^max, 

— Ai < —Aĵ min, 

^ d _i ^d.i.max) 

— Arf < — Ad,i,min-

Construct the remaining rows of C and p as follows. For n — 1 , . . . , <i, set 

rows 2 + (2n - 1) and 2 + 2n of C (p) to be e^ and — ej (Aniiimax and 

A„ < 

-A„ < 
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—An,i,mm), respectively, where en denotes the n standard basis vector in 

Rd. We now have a half-space representation for the closed convex polytope 

defined by bi n Aj. We use a code that utilizes the Quickhull algorithm for 

computing the volume of 6* D Aj. It is necessary to find the points defining 

the convex hull of fyn A,-. In Rd, a point can be defined by the intersection of 

d manifolds of dimension (d — 1). We search for points defining the convex 

hull of bi fl Aj by solving CX = p, where C is any one of d,2d invertible 

matrices created by choosing a specific set of d rows of C, and p is a d x 1 

vector formed by choosing the same set of rows of p. For any point to be 

on the convex hull it must satisfy the inequality CX < p. If a point solves 

CX — p and satisfies the inequality CX < p, then that point is stored. After 

all d2d points are found and possibly stored, the code returns the volume 

of the convex polytope defined by 6j n Ay 

Remark 7.0.2. We see that C has d2d invertible submatrices of size dx d 

by first rewriting C in the block matrix form 

c= Fl , 
V ft J 

where D, F\,..., Fd are all 2 x d matrices where the two rows are linearly 

dependent. The linearly dependent rows correspond to parallel hyperplanes 

in Rd, and there are d + 1 pairs of such hyperplanes. By construction, a 

row from Fn is linearly independent of any row from Fm where n ^ m. 

By assumption, a row from D is linearly independent from the the rows of 

Fn for each n — 1 , . . . , d. Geometrically, the points on the convex hull of 

biDAj are determined from intersection points of d hyperplanes that satisfy 

the inequality CX < p. We choose d pairs from the d+ 1 pairs hyperplanes, 
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and there are d ways to do this. For each choice of d pairs, we choose 

one hyperplane from each pair to obtain d hyerplanes that intersect at a 

point. This results in 2d choices of hyperplanes for each choice of d pairs of 

hyperplanes. Thus, there are d2d invertible submatrices of size d x d. 

The volume returned is stored as v(i,j). The volume of Aj can be 

determined from the sum 
M' 

^2v{i,j). 
i=l 

The ratio of volumes of b^nAj to Aj can be determined from the calculation 

vjhj) 

The value of P{bj) is equal to JZjli VijPj according to Alg. 3.3.1, where 

Vij is the matrix with (ij)-entry the ratio of volumes of bt n Aj to Aj, so 

P(bi) can be determined from the calculation 

v(hJ) P 

Now consider the problem of multiple quantities of interest. The level 

of computational difficulty is not increased, but there is a subtle change to 

initial calculations in Alg. 3.3.1. The output space V is now a subset of Rm 

where m is the number of quantities of interest. The map q(X) is a vector-

valued function, where each component function <#(A) for / = l , . . . , m 

is approximated by a piecewise-linear function obtained from an adjoint 

analysis. For simplicity, we assume that pv{q) can be approximated by a 

simple function approximation 

Mr, 

piv\q) = J^P(bv,j)Uv,J(q), 

E 
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where {b^j}^ partitions V into Mv fine boxes. Let 0[l1[g/,j,min,9«,j,max] 

denote box bv,i- For any fixed I € { 1 , . . . , m}, the interval [qij>mm, ftj.max] 

induces a region of contours Aij in A. Since we consider multiple quantities 

of interest, set Aj = H™ 1 ^ j - Analogous to the problem with a single 

quantity of interest, for any A 6 Av q{\) is approximately a uniform random 

variable with probability P(bz>j). The remainder of Alg. 3.3.1 is unchanged 

with only the details of calculating the volumes of fcj D Aj in A slightly 

different from above. 

The matrix C is now a (2m + 2d) x d matrix, p is now a (2m + 2d) x 1 

vector, and the A € Rd that satisfy CX < p still define the closed convex 

poly tope bi D Aj. For / = 1 , . . . . m set the 2m - 1 and 2m rows of C (p) to 

be V<?;(/i)T and -V<?<(/i)T (qi,j,m^-qi(fj) + (Vg;(//),/i) and qi(fi)-qij,min-

(Vr/;(/i). //,)), respectively. The remaining rows of C and p are constructed 

exactly as before. There are now 

__ (2m + 2d)! 
7 : ~ d!(2m + 2)! 

choices of d pairs of hyperplanes, and 2d choices for each selection of d pairs 

of hyperplanes to determine the possible points on the convex hull defined 

by bz n Aj. Thus, there are j2d linear problems to be solved. 

Example 7.0.1. Consider again 

A\X^ ~r X2 — 1, 

X-y — A2X2 — 1. 

The solution of which represents the intersection of an ellipse and hyper­

bola. We initially considered the quantity of interest to be the first coordinate 

of the solution in the first quadrant. We now consider two quantities of in­

terest taken to be the first and second coordinate of the solution in the first 

quadrant, respectively. 
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Figure 7.1: Left Plot: Posterior resulting from first quantity of interest. 
Right Plot: Posterior resulting from second quantity of interest 

Distributions of these quantities of interest are determined by solving 

the forward problem with A = [.79, .99] x [1 - 4.5\/aT, 1 + 4.5V^1] and 

uniform distribution on Aj and normal distribution on A2. The results are 

summarized in Fig 7.1-7.2 
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Figure 7.2: The result of using both quantity of interest maps and output 
distributions to obtain a posterior. Elements of both distributions in this 
"combined" distribution are clearly visible 
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