
QC852 
C6 
ATSL 

GEOSTROPHIC ADJUSTMENT IN A 
STRATIFIED ATMOSPHERE 

SCOTT R. FULTON 

WAYNE H. SCHUBERT 



GEOSTROPHIC ADJUSTMENT 

IN A STRATIFIED ATMOSPHERE 

by 

Scott R. Fulton 

Wayne H. Schubert 

This research was supported by the 
Global Atmospheric Research Program, 

National Science Foundation 
under Grant Nos. ATM-7808125 

and ATM-8009799. 

Department of Atmospheric Science 
Colorado State University 

Fort Collins, Colorado 
80523 

August, 1980 

Atmospheric Science Paper No. 326 



ABSTRACT 

The geostrophic adjustment process in a compressible atmosphere 

with arbitrary vertica l stratification is studied as an initial value 

problem. The governing equations are the adiabatic quasi-static equa-

tions on an f-plane linearized about a motionless basic state. A 

rigid lid upper boundary condition is assumed which permits the use of 

a discrete eigenfunction expansion in the vertical. Using Fourier 

t ransforms i n the horizontal a general solution is obtained for both 

the transient and final states. 

The general solu t ion is evaluated for several simple experiments 

with axisymmetric ini t ial conditions in the mass and vorticity fields 

which have h)rizontal variations on the tropica l cloud cluster scale. 

These experi ments assume a basic state characterized by constant static 

stability in log-press ure coordinates and a Coriolis parameter corre-

sponding to 20°N latitude. Results are presented which illustrate the 

nature of the transient adjustment process. Comparison of the initial 

and final st ates indicates that the inclusion of vertical structure-

does not al t er {he basic conclusion from previous barotropic studies 

that in the tropics the mass field tends to adjus t to the wind field. 

However, it is found that the extent of this adjustment depends strongly 

on the vertical structure of the initial conditions. These results are 

interpretec in term s of the projection of the initial conditions onto 

the vertical modes. 
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1. INTRODUCTION 

A fundamental feature of the tropical atmosphere is that it is con-

~inually being perturbed away from a quasi-balanced state by sources 

and sinks of energy and momentum such as radiation, the release of la-

tent heat in clouds and momentum mixing by convective scale motions. 

The atmosphere responds to such perturbations by developing gravity-

inertia waves which carry away energy and momentum and leave behind a 

state of approximate pressure-wind balance. In a linearized model 

where the final balanced state is geostrophic t Js proce~s is known as 

geostrophic adjustment. The objective of this research is to study the 

geostrophic adjustment process as it occurs in a stratified atmosphere. 

As indicated int e comprehensive review of the subject by Blumen 

(1972), the geostrop ic adjustment problem has been studied extensively. 

Rossby (1938) first considered the relationship between the initial 

unbalanced and final balanced states of a simple one-dimensional current 

system in an incompressible fluid. His work was later refined by 

Mihaljan (1963), who derived exact expressions for the solution and 

energetics, and extended by Cahn (1945), who considered the linear 

transient aspects of the problem. Obukhov (1949) first treated the 

adjustment of two-dimensional barotropic flows, obtaining results for 

both the transient and final adjusted states. Other investigations of 

the adjustment probl em since these initial studies have included con-

sideration of the effect of a variable Coriolis parameter (Geisler and 

Dickinson, 1972; Silva Dias and Schubert, 1979), the effect of a 

basic flow with horizontal shear (Blumen and Washington, 1969) and the 

effects of transient forcing (Paegle, 1978). Recently, Schubert et 

al. (1980) have considered the geostrophic adjustment of axisymmetric 
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vortices and have clarified how the horizontal scale of the initial 

perturbation detennines the nature and energetics of the adjustment 

process. 

The studies cited above are primarily barotropic; i.e., they 

utilize simple models with little or no vertical structure. In the 

real atmosphere, however, initial perturbations may have various ver-

tical structures and gravity-inertia waves can propagate vertically. 

Thus the effects of vertical stratification must be considered in 

order to more fully understand the adjustment process. Several inves-

tigators have studied this problem. Some (e.g., Manin, 1958; Kibel, 

1963) have obtained solutions for certain specified basic states in 

terms of Green's functions in three dimensions. Although this approach 

yields general solutions, the evaluation and interpretation of these 

solutions is quite difficult due to their complexity and hence few 

examples have been studied. Other investigations (e.g., Bolin, 1953; 

Fjelsted, 1958; Fischer, 1963) have utilized spectral expansions in the 

vertical. This spectral approach reduces the solution to a super-, 
position of solutions of the corresponding barotropic problem (each for 

a different depth of incompressible fluid) and thereby simplifies both 

the evaluation and the interpretation of the solution. In the past 

this approach has been used with basic states consisting of stratified 

incompressible fluids and an isothermal compressible atmosphere, and 

again only a few examples have been studied. 

In this research we extend this spectral approach to study the 

geostrophic adjustment of a general stratified atmosphere and present 

results which illustrate the important features of the adjustment 

process. In chapter 2 we derive a general solution to the problem; 
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in order to make it mathematically tractable we consider linear pertur-

bations about a basic state at rest. A general spectral expansion is 

used in the vertical which allows the consideration of any basic state 

stratification and ve r tical boundary conditions, subject only to the 

restriction that the corresponding vertical structure problem be of the 

Sturm-Liouville type. The initial value problem for the horizontal 

structure is solved by the method of Fourier transforms to obtain 

Obukhov's so: ution. In chapter 3 the general solution is evaluated for 

several simpl e experi me nts with axisymmetr i c initial conditions, using 

a basic state with cons t ant static stabili yin log-pressure coordinates 

as a reasona bl e first approximation to the real atmosphere. Initial 

conditions in both the mass and wind fields are studied, concentrating 

on the effects of the vertical structure of these initial conditions. 

In chapter 4 we disc Jss the implications of the results of this study 

for tropical d~namics and suggest topics for further investigation. 



2. GENERAL SOLUTION 

In this chapter we derive a formal solution to the problem of 

the transient geostrophic adjustment of a compressible atmosphere on 

an f-plane. We consider only the case where the vertical structure of 

the basic state and the boundary conditions in the vertical give rise 

to a countably infinite set of vertical modes with a discrete phase 

speed spectrum. In section 2.1 the governing equations are linearized 

about a motionless basic state and reduced to a single equation in the 

geopotential tendency. The horizontal and vertical structure of the 

problem are separated in section 2.2 using an eigenfunction expansion 

in the vertical, and the transient solutions for the various field 

variables are expressed as superpositions of the resulting horizontal 

and vertical structure functions. In section 2.3 the horizontal 

structure equation is solved using Fourier transforms. The final 

adjusted state is obtained in section 2.4 by solving the potential 

vorticity equation. 

2 .1 Governing equations 

We consider the adiabatic motions of an inviscid, compressible 

atmosphere in hydrostatic balance on an f-plane. The assumption of 

hydrostatic balance, valid for large-scale motions (e.g., Charney, 

1948), eliminates vertically propagating acoustic waves and allows the 

convenient use of pressure as an independent variable. We choose as 

the vertical coordinate the logarithm of pressure 

z* = tn [pi] • ( 2. 1 ) 

where p is pressure and p
0 

is the constant surface pressure. 

Neglecting the horizontal component of the earth's rotation vector 

4 
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(Phillips, 1966), the horizontal momentum, mass continuity, hydrostatic 

and adiabatic thermodynamic equations may be written as 
Dv "' 
Dt + fkxv + 9¢ = 0 , (2.2a) 

aw* w* + 9 0 az* - . V = , (2.2b) 

cl¢ RT 0 - = az* (2.2c) 

OT RTw* 0 cp Dt + = (2.2d) 

Here t is time, = D~/Dt is the horizontal velocity vector, where 

x is the horizontal position vector, w* = Dz*/Dt is the "vertical 

velocity" in log-pressure coordinates, <I> is the geopotential, T is 

the absolute temperature, k is the vertical unit vector, f is the 

constant Co iolis parameter, R and are the gas cons~ant and 

specific he3t at constant pressure, respectively, for dry air, 9 is 

the del operator at constant z*, and 

_Q_ = 1- + v • 9 + w* _a_ Dt - at az* 

is the timE derivative following the motion. 

( 2. 3) 

We no~ linearize the system (2.2) about a motionless, horizontally 

homogeneous basic state. Denoting the basic state quantities by over-

bars we ha "'e 

V = 0 

w* = o , 
¢ = "¢(z*) , 

f = f( z*) , 

(2.4) 
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where ¢ (z*) and T(z*) are assumed to be specified. Requiring that 

(2.4) satisfy the governing equations (2 . 2) leads to 

d¢ = RT dz* ( 2. 5) 

which is the hydrostatic relation for the basic state. Denoting per-

turba t ions from the basic state (2.4) by primes, we write 

~( ~,z*,t) = ~ 1 (~,z*,t) , 

w*(~,z*,t) = w* 1 
( x z* t) - , ' , 

<I> (~,z*,t) = i (z*) + ¢ 1 (~,z*,t) , 

T(~,z*,t) = T(z*) + T'(~,z*,t) 

(2.6) 

Substituting (2.6) into (2.2), making use of (2.3) and (2.5) and 

assuming that the perturbation amplitudes are small enough so that 

products of perturbation quantities may be neglected, we obtain the 

linearized system of governing equations 

where 

av .... 
at+ fkx~ + V<I> ' = o , 

aw* a z * - w* + V • = 0 , 

a<I> ' az* - RT' = o , 

aT1 

at + rw* = 0 , 

is the static stability parameter and K:: R/cp. 

The system (2 .7) may be reduced to a single equation in one 

dependent variable as follows. Applying the operators (V • ) and 

(2.7a) 

(2.7b) 

(2.7c) 

(2.7d) 

(2.8) 
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,._ 
[ k • (Vx )] to (2.7a ) we obtain the divergence an d vorticity equations 

ao 2 f r,; + 'ij' q> I : 0 at (2.9) 

and 

+ f ~ = 0 at u , (2.10) 

where 

0 = v' • Y., (2.11) 

and 
,._ 

s- k•(vxv) .., (2.12) 

are the horizontal d·vergence and the vertical component of relative 

vorticity, respectivel y . Elimina t ing the vorticity r,; between (2.Q) 

and (2.10) results in 

a
2o + f2 0 + v2 (a¢ 'J 

at2 Kj = o . (2.13) 

Eliminating T' between (2.7c) and (2.7d) yie l ds 

a (a¢ 'J az* at j + Rr w* = o . (2.14) 

Using this result to eliminate w* in (2.7b) e obtain 

(2.15) 

We can the r use (2. 15) to eliminate o in (2.13), obtaining 

(2.16) 

Finally, defining t ~e geopotential tendency X= a¢ '/at we can write 

the tendency equat i on (2.16) in the form 

(2.17) 
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In the following two sections we derive a general solution of (2.17}; 

the initial and boundary conditions on x(x, z*, t) which are neces-

sary to guarantee the uniqueness of the solution will be discussed as 

t hey naturally arise. 

2.2 Solution by eigenfunction expansion in the vertical 

The tendency equation (2.17} may be solved by separating the 

horizontal and vertical dependence of x(x, z*, t) as follows. First, 

we look for solutions of the form 

x(~,z*,t) = X(~,t) Z(z*) (2 .18) 

With this substitution (2.17) becomes 

[[::2 + t2Jx] [•2
• di*[•;;• dd,z.J] +zv2x = o, (2 .19) 

which may be written in the form 

e z * ¾,. (;;: ddzZ*j (2.20) 

[L + t2]x 
at 2 

z 

Since the left-hand side of (2.20) is independent of z* while the 

right-hand side depends only on z* , both sides must in fact equal 

a constant, which we will denote by c- 2 In this manner (2.20) yields 

two equations: the horizontal structure equation 

(2.21) 

and the vertical structure equation 

d (e -z* dZ) + e-z* z = 0 dz* dz* 2 · 
C 

(2.22) 
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Given the basic state stability profile r (z*) and any suitable 

boundary conditions, the vertical structure equation (2.22) forms an 

eigenvalue problem with eigenvalue c-2 and eigenfunction Z(z*). 

We will refe r to Z(z*) as a vertical structure function and c as 

the phase speed associated with it; the motivation for the term phase 

speed will be clarified below. The set of phase speeds c for which 

(2.22) has non-trivial solutions Z(z*) will be referred to as the 

phase speed spectrum. As discussed in Appendix A, this set may be 

empty, finite, countably infinite or uncountably infinite, depending 

on the boundary conditions in the vertical and the vertical structure 

of the basic state as expressed by r (z*). 

In this study only the case where the phase speed spectrum is 

countably infinite wi ll be considered . As a pa r ticular example of 

this case we consider the following boundary conditions. At the lower 

boundary we require hat w = 0 , where w = Dz/Dt is the vertical 

velocity in height coo rdinates and z = ~/g is the geopotential height. 

If the earth's surfa ce is taken to be flat, this condition should be 

applied at z = 0 . This is difficult to do in log-pressure cqordinates 

because in general z = 0 does not coincide with a z* surface. 

Therefore, following Monin (1958) and Siebert (1961), we will apply 

the approximate lower boundary condition 

w=O at z*=O (2.23) 

The validity of the approximation involved in (2.23) was discussed in 

some detail by Kibel (1963). An upper boundary condition which re-

flects vertically propagating waves is necessary to guarantee that the 

phase speed spectrum be discrete. For concret eness, we choose the 

"rigid lid" condition 
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w* = 0 at z * = z * T ' (2.24) 

where zr* is finite. The significance of such an upper boundary con-

dition and its implications for the application of the results of this 

study to the real atmosphere will be briefly discussed in chapter 4. 

The boundary conditions (2.23) and (2.24) can be expressed in 

terms of x and then applied to Z as follows. First, w is ex-

pressed in terms of <t> according to w=(l/g){D<t>/Dt) using (2.3) and 

the resulting expression is linearized to obtain 

w = ½ ( X + w* ddz<t>*J . (2.25) 

Substituting for w* from (2.14) and using the hydrostatic relation 

(2.5) reduces (2.25) to the form 

(2.26) 

Then using (2.26) the lower boundary condition (2.23) may be written as 

ax r - -- x = 0 at z* = 0 . az* -T 
(2.27) 

Also, the upper boundary condition (2.24) may be expressed using (2.14) 

as 

ax = o at az* z* = z{ . (2.28) 

Finally, substituting from (2.18) for x in (2.27) and (2.28), we see 

that Z must satisfy the boundary conditions 

and 

dZ 
dz* - r z = o at z* = O 

T 

dZ dz* - 0 at z* = z{ . 

(2.29) 

(2.30) 
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With the static stability r(z*) specified as a function which is 

b.oth positive and con t inuously differentiable for O~z*~z{ , the 

vertical structure equation (2.22) with the boundary conditions (2.29) 

and (2.30) (or any other linear homogeneous boundary conditions) forms 

a boundary value prob em of the Sturm-Liouville type. This guarantees 

(Morse and Feshbach, 1953) that the phase speed spectrum is countably 

infinite and that the phase speeds c0, c1 , .. _. , en , . . . are real and 

can be ordered as c0 > 1 > •.. > en > •.. > 0 . The corresponding verti ca 1 

structure functions Zn(z*) then satisfy (2.22) for each n ; that is, 

d~* [•;;• ::~] + •-;• Z
0 

= 0, n = 0, 1, 2, 
en 

(2.31) 

In Appendix Bit is shown that the 

orthonormal : ty condi t ion 

Z (z*) may be made to satisfy the n 

z * t T Z
0

(z*) z: (z*) .-z* dz* = Cmn , (2.32) 

where the d~gger ( t) denotes complex conjugation and omn is the 

Kronecker delta. It can also be shown (Titchmarsh, 1962) that the 

vertical structure functions form a complete set, in the sense that 

any sufficiently smooth function of z* which satisfies the boundary 

conditions (2.29) and (2.30) may be represented as a unique series 

combination of the Zn(z*) 

The properties of the vertical structure functions discussed above 

allow the ~endency equation (2.17) to be solved as follows. First, we 

expand x( x, z*, t) in terms of the Zn(z*) as 

00 

x(~,z*,t) = I X (x,t) Z (z*) , n ~ n 
( 2. 33) 

n=O 
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where the coefficients X (x, t) in this series will be referred to 
n ~ 

as horizontal structure functions. Substituting (2.33) into (2.17) 

we obtain 

CX) 

}: (2.34) 
n=O 

Using (2.31) we can write (2.34) in the form 

C 
2 

'i/
2 

X 1 z = 0 n n n 
(2.35) 

) 

Then to show that the coefficient of Zn in this series vanishes 

identically for each n , t -z* we multiply (2.35) by Zm (z*)e and 

integrate from z* = 0 to z* = z * T and use the orthonormality property 

(2.32) of the Zn to obtain 

c 2 'i/2 X = 0 , n n 
a2x 

n + l X 
n 

n=0,1,2, . . . ' (2.36) 

where we have replaced m by n as a final step. Thus the horizontal 

structure functions X (x, t) appearing in (2.33) are found by solving n ~ 

the horizontal structure equation (2.36) for each n . 

Equation (2.36) is identical to the one obtained for the problem 

of geostrophic adjustment in the divergent barotropic model (i.e., the 

shallow water equations) on an f-plane, with the phase speed of a pure 

gravity wave in that model replaced by the "phase speed" en Thus 

the constant c corresponds to the phase speed of a pure gravity n 

wave (i.e., the short wavelength limit) with vertical structure Z (z*) n 

in the stratified atmosphere. This is the motivation behind the choice 

of the form and name for the separation constant in (2.20). In the 

literature the phase speed en is often expressed in terms of an 
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"equivalent depth 11 h defined by c 2= gh , following Taylor (1936) n n n 
who was the first to discuss the existence of these vertical modes in 

a general context. 

Once we have solved (2.31) and (2.36) for Z (z*) and X (x, t), n . n ~ 
respectively, these solutions may be combined according to (2.33) to 

obtain x(x, z*, t). The other physical fields of interest can then . 

be obtained by substi t uting (2.33) into (2.14) and (2.26) and making 

use of (2.7b : , (2.7d) , (2.10), (2.31) and the definition of X. In 

this manner we obta fo the fo 11 owing series representations: 

Here 

o(x,z*,t) 

00 Yn(~,t) 
dx,z*,t) = f I Z ( z*) + r;(x,z*,O) 

n=O 2 n 
en 

00 

<I>'(x,z*,t) = I Y (x,t) Zn(z*) + i 1 (x,z*,O) 
n=O n ~ 

l 00 d Z ( z*) 
T' (x,z*,t) I Y (x,t) n + T' (x,z*,0} - R dz* n=O n ~ 

l 00 dZ ( z*) 
w*(x,z*, ) I X (x,t) n - - Rr(z*) dz* n=O n ~ 

w(x,z*,t) 
l oo 

= - I 
g n=O 

X (x,t) [z (z*) n ~ n 
lid_ 
-~ 

( 2. 37) 

(2.38) 

(2.39) 

(2.40) 

(2.41) 

{2.42) 

(2.43) 



14 

and we have introduced the additional horizontal structure functions 

Y (x, t) defined by 
n ~ 

t 
Y (x,t) = J X (x,T) dT , n = 0, l, 2, .... n ~ n ~ 

(2.44) 
0 

The horizontal velocity field v(x, z*, t) can be obtained from 

o(x, z*, t) and dx, z*, t) using (2.11) and (2.12); the details of 

this calculation will depend on the horizontal coordinate system 

chosen. 

It can be seen from (2.38)-(2.40) that initial conditions are 

needed on z-;, 4>', and T', in addition to those on Xn and aXn/at 

required for the solution of (2.36). All of these initial conditio'1s 

can be easily obtained as follows. We assume that the initial wind 

v(x, z*, 0) and perturbation temperature T'(x, z*, 0) are specified, 

as is consistent with the original system of equations (2.7). Then 

¢ 1 (x, z*, 0) is obtained from T' (x, z*, 0) by integrating (2.43 ) 

in z*, and z-; (x, z*, 0) is obtained from v(x, z*, 0) using (2.12). 

Also, from (2.11) and (2.9) we have 

o(x,z*,O) = V• [v(x,z*,O)] (2.45) 

and 

(2 . 46) 

To relate these expressions to the initial conditions which are needed 

on X , we multiply (2.37) by n 

to z* = z * to obtain 
T 

t -z* Z (z*)e and integrate from m 
z* = 0 



2 -c n 

z * 
foT 
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( * ) znt (z*) e· -z*dz* o x,z ,t (2.47) 

where we have replaced m by n as a final step. Then evaluating 

(2.47) and its time derivative at t = 0 a·nd substituting from (2.45) 

and (2.46) we obtain 

and 

X (x,O) 
n ~ 

2 
= -c n 

z * 

I T t -z* V • [ v ( x , z * , O ) ] Z ( z *) e dz * 
0 n 

(2.48) 

The initial condition~ (2.48) and (2.49) allow us to solve (2.36) for 

X (x, t) n ~ 

derived. 

In the next section we show how this solution may be 

2.3 Solution of the horizontal structure equation bj Fourier 

transforms 

A solution oft e horizontal structure equation (2.36) was first 

presented by Obukhov (1949). In that study the equations of motion 

were averaged in the vertical, and as a result the coefficient of the 

last term of (2.36) was defined different l y than the phase speed en 

defined above. In this section we show how Obukhov 1 s solution of the 

horizontal structure equation may be obtained by the method of Fourier 

transforms. This method of solution helps to clarify some aspects of 

the adjustment process. 

For this derivation it is convenient to use the rectangular 

coordinates (x,y) in the horizontal, in which (2.36) becomes 
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(2 . 50) 

Now for any function ~(x, y) we define the Fourier transfonn (denoted 

by a tilde) as 

co co 

(2.51) 
-00 -oo 

This transform exists, and satisfies the inversion theorem 
co co 

~(x,y) = in I f ~(k,£) e-i(kx + £.y) dkd£ , (2.52) 
-00 -oo 

if ~(x, y) is piecewise continuously differentiable in both x and y 

and absolutely integrable over all x and y (Sneddon, 1972). We as-

sume that Xn(x, y, t) satisfies these conditions. This is reaso able 

because as a physical field it should be suitably smooth, and as a 

perturbation quantity it must vanish outside a region of finite ho i-

zontal extent at any finite time if the perturbation is of finite hori-

zontal extent initially and propagates outward at a finite speed. Then 

transforming (2.50) according to (2.51) we obtain 

[ a2 2] ~ _ en 
2 

Joo Ioo[ a2 a2] i ( kx + £y) at2 + f Xn(k,£,t) -2,r -co -co ax2 + a/ Xn(x,y,t) e dxdy. (2.53) 

Splitting the last term of (2.53) into terms involving a2xn/ax2 and 

a2xn/ ay2 and integrating these by parts twice in x and y as appro-

priate leads to 
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00 00 

. . [ a 2
2 

+ i] . x ( k , i , t ) + 
at n 

ei(kx+ty) dxdy 
- co -oo 

(2.54) 

C 2 oo [ [ X l ] y= + 
00 

+2: f aa/-HxneHy - ei_kxdx. 
00 y- - 00 

The conditions already assumed on X (x, y , t) are sufficient to force n . 

the terms on the ri gh t-hand side of (2.54) to vanish; then usiDg (2.51) 

to simplify the last term on the left-han d side, (2.54) reduces to 

(2.55) 

The general solution of (2.55) may be written as 

iv t -i v t 
X (k, i ,t ) = A (k,i) e n + B (k, i ) e n 
n n n (2.56) 

where 

(2.57) 

Taking the inverse transform of (2.56) according to (2.52) we obtain 

- oo - 00 

(2.58) 
00 00 

l f f -i(kx+iy+v t) dkdi . 
+ 2TT Bn(k, i ) e n 

- oo - oo 
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In the form (2.58) the solution can be seen to consist of a super-

position of traveling waves, with wavenumbers k and £ in the x 

and y directions, frequencies v (k, £) and amplitudes A (k, £) n n 

and B (k, £). These amplitudes may be related to the initial condi-n 
tions by evaluating (2.56) and its time derivative at t = 0, obtaining 

~ 
Xn(k,£,0) = An(k, £) + Bn(k,£) (2.59a) 

and 
ax 
a; (k,£,0) = ivn [An(k,£) - Bn(k,£)] (2.59b) 

Solving (2.59) for An and Bn yields 

An(k, £) = ½ [xn(k,£,0) + i~ aa:n (k,t,o)] 
n 

(2.60a) 

and 

(2.60b) 

Substituting from (2.60) in (2.58) we obtain, after some manipulation, 

00 00 

Xn(x,y,t) = irr J J Xn(k,£,0) cos(vnt) e-i(kx+ty) dkd£ 
-oo -oo 

(2.61) 

, Ioo Ioo [ axn ( ] sin(vnt) e-i(kxHy) dkdn 
+ 2TT - oo - oo at k , £ , 0) v n )I., 

Since 

we may write (2.61) as 
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X ( t) = -1._l_l f00 f00 X (k R, 0) sin('Jnt) e-i(kx+ty) dkdtl 
n X ,y' d t 2rr n ' ' 'J n -00 -00 

(2.62) 

+ 2~ w ( [•.:n (k,l.,O)] sin~:nt) •-i(kx+l.y) kdkl. 

-00 -00 
By a straightforward application of ordinary one-dimensional Fourier 

transforms from tables such as Erdelyi et al. (1954) we can derive the 

inverse transform 

= 

where 

00 00 
;, I J 

-00 -00 

sgn(t) 
en 

2 2 2 2 l 12 
cos[(f/c )(c t -x -y) ] n n 

( 2t2 2 2)1/2 C -X -y n 

0 

{ 
+l 

sgn(t) = 
-1 

, t > 0 } 

, t < 0 

2 2 2 2 
x +y < en t (2.63) 

2 2 2 2 
, X +y > C t n 

Using (2.63) and the definition of v (2.51) we can apply the con-n 
volution theorem 

00 00 
irr f f F(k,t) G(k,t) e-(kx+ty) dkdt = 

00 00 
irr f f F(x' ,y') G(x-x', y-y') dx'dy' 

-00 -00 
to (2.62) to obtain 
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Xn(x,y,t) = 

aat fJ Xn(x-x' ,y-y' ,0) dx'dy' 

2 2 2 2 1/2 cos[(f/cn)(cn t -x' -y' ) ] 

( 2 t2 ,2 ,2)1/2 C -X -y n 
dx I dy', 

(2.64) 

where the region of integration in both terms is the disk x12 +y 12 < 

c 2t 2 It is convenient to introduce the polar coordinates (p, 8) 
n 

defined by 

x 1 = - pcose , y' = - psine 

Then (2.64) may be written as 

Xn(x,y,t) = 

a 
at 

sgn(t) 
2TICn 

2rr Jc t I 
f f n Xn(x+pcose,y+psinS,0) 
0 0 

This is the solution obtained by 0bukhov (1949). As discussed in the 

preceeding section the functions Xn(x, y, 0) and (ax /at)(x, y, o) n 

can be obtained from the initial conditions. Thus the formal solution 

of the transient adjustment problem is complete. 

2.4 Potential vorticity and the final adjusted state 

The transient solution derived above allows us to examine the 

state of the atmosphere at any finite time t during the adjustment 

process. The state of the atmosphere after the adjustment process is 
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complete is also of interest, and may be easily obtained without com-

puting any of the intermediate states. To accomplish this, we first 

derive the potential vorticity equation by eliminating the divergence 

o between (2.10) and (2.15), obtaining 

(2.66) 

This eq uatio~ implies that the potential vorticity 

( 2. 67) 

is independent of time. Now if the final state (i.e., the state of 

the atmosphEre in the limit as t -+ 00 ) is assumed to be in geostrophic 

balance we have 

2 f z:;, ( X , z *, CX) ) = 'v ¢ I ( X , z * ' CX) ) • (2.68) 
~ ~ 

Then evalua:ing (2.67) at t = 0 and t = 00 and making use of (2.68) 

and the fact that O x,z*) is constant in time we obtain 

l 2 z* a [e-z* a<I> ' ] f 'v ¢ '(~,z*,oo ) + fe az* Rf az* (x,z*,oo ) 

(2.69) 

Given initial condi t ions on z:;, and ¢ ' , (2.69) may be solved for the 

geopotential field of the final adjusted state, and the corresponding 

vorticity field may be obtained from (2.68). The assumption of geo-

strophic balance in the final state impl i es that the divergence and 

vertical motion fiel ds vanish as t -+ 00 • It should be noted from (2 .69) 

that the final adjusted state is i ndependent of the initial divergence 

and vertical motion, so that if only the diver gent part of the wind is 
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perturbed initially the atmosphere will eventually adjust back to a 

state of rest. This is consistent with the results of Schubert et al. 

(1980) for the qi vergent barotropic model. 

To solve (2.69) we first eliminate the vertical structure by making 

use of the eigenfunction expansions already developed. Substituting for 

¢ '{x,z*,00 ) in (2.69) from (2.39) leads to 

nia\tv\(~,oo ) Zn(z*)+fYn(~,oo ) •'* d~* [•;;• dZ~~:•)] 

(2.70) 
1 2 = dx,z*,0) - f 'v <!> ' (~,z*,0) 

Using the vertical structure equation (2.31) we can reduce (2.70) to 

the form 

00 [ 2 2 ] v2¢ •(~,z*,0) l 'v Yn(~,oo ) --½- Yn(~,oo) Z ( z*) = f d x , z * , 0 ) n n=0 c ( 2. 71 ) n 

Then replacing n by m in (2.71), multiplying by Z t (z*)e-z* , 
n 

integrating from z* = 0 to z* = z * T and making use of the orthogo-

nality relationship (2.32) results in 

2 i 'v Y (x,oo ) - - 2 Y (x,oo ) n ~ n ~ en 
n=0, 1, 2, . . . , 

(2.72) 

where the right-had side is given by (2.49) and measures the initial 

departure from geostrophy for mode n 

The method of Fourier transforms can now be used to solve (2 .72); 

the details of this approach are much the same as in section 2.3 and 

therefore will not be repeated here. Taking the transform of (2.72) 

yields 



23 

(k, £,O) 

which may be solved for Yn(k, £ ,00 ) to obtain 

~ 2 2 2 2 -1 a Xn 
Yn(k,£,00 ) = [f +en {k H )] at (k, Z,O) (2.73) 

Then taking the inver se transform of (2 ;73) with the help of the con-

volution theorem and the inverse transform 
00 00 

ir f f [f2 + c; (k2+£2)]-l e-i(kx+£y) dkd £ 
-00 - 00 

where K
0 

is the modi f ied Bessel function of the second kind of order 

zero, we obtain 

Yn(x,y,oo) = (2.74) 

2w: 2 ( ( [',:n (x-x' ,y-y' ,o)] Ko [ [cfn[ ( x' 2 +y' 2) ½] dx' dy' 
n -oo -oo 

Finally, defining t e polar coordinates (p,0) by 

x ' = -pcose , y' = -psine , 
(2.74) may be written as 

2
7T 

00 

[ 3X ] - 1--,2.- f f a; (x+pcose ,y+ps ine ,O ) 
27TCn O 0 

pdpd 0 (2.75) 

This completes the formal solution for the fi nal adjusted state. The 

similarity which can be seen between (2.65) and (2.75) will be made use 

of in the next sect ion, in which we evaluate the general solution of 

the adjustment problem obtained above. 



3. EXPERIMENTS 

• J 
/I 

This chapter describes a series of experiments in which the general 

solution derived in section 2 is evaluated for different initial con-

ditions. The choice of the basic state is discussed in section 3.1, 

where the vertical structure equation is solved for the phase speeds 

and vertical structure functions. In section 3.2 we describe the 

numerical evaluation of the general solution for axisymmetric initial 

conditions. Results of simple experiments are presented in section 

3.3 and discussed in section 3.4. 

3.1 Basics ate, phase speeds and vertical structure functions 

The basic state chosen for this study is one with constant static 

stability r . This basic state is simple enough to allow the vertical 

structure equation to be solved analytically and yet is a reasonable 

first approximation to the real atmosphere, as we shall see. By in-

tegrating (2.8) with r held constant we obtain the basic state tem-

perature profile 

- KZ* f(z*) = (T -T) e + T
00

, 0 00 
( 3. 1 ) 

where T
0 

is the basic state surface temperature and T = r / K 
00 

is the 

1 imit of f(z*) as z*+ 00 • The corresponding basic state geopoten-

tial, obtained from (3.1) by integrating the hydrostatic equation 

(2.5), is 

[
T -T 

¢(2*) = R OK oo (3.2) 

For the results reported here the value zf = 2.313 was used, whic 

placed the rigid l i d at p = 100 mb (assuming a surface pressure of 

1010 mb). A least-squares procedure was used to determine appropriate 

24 
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values of r and T
0 

by minimizing the sum of the squares of the 

deviations of the te erature profile (3.1 ) from an observational 

sounding at discrete pressure levels. Using the data of Jordan (1958) 

for the mean summertime (June-September) temperature sounding for the 

West Indies area the values r = 23.79 K and T = 302.53 K were 
0 

obtained. The obser ational sounding and the temperature profile (3.1) 

evaluated with these values of r and T are shown for comparison 
0 

in Fig. l . 

With t~e consta t static stability basic state the vertical struc-

ture equaticn (2.31) reduces to 

d -z* n 
[ 

dZ ] 
dz* e dz* 

To solve this equat ion we first define W ( z*) 
n 

With this 

where 

z*/2 Z(z*)=e W(z* ) n n 

s1bstitut ion (3.3) becomes 

iw n 2 
dz*2 - µn Wn = 0 , 

2 _ 1 Rr 
µn = 4 - -2 ' 

en 

by 

and the boLndary co ditions (2.29) and (2.30) reduce to 

dW n 0 at z* 0 dz* + n wn = = 
and 

dWn 1 
0 at z* z * dz* + 2wn = = , T 

( 3. 3) 

(3.4) 

( 3. 5) 

( 3. 6) 
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h - 1 r w ere n = '2 - T 
0 

We now investigate the solution of (3.5) with the 

boundary conditions (3.6) for three cases di~tinguished by the sign of 

Case 1 : 2 µ > 0. n In this case the general solution of (3.5) may 

be written in the form 

W (z*) = Asinh(µ z*) + Bcosh(µ z*) , n n n ( 3. 7) 

where 

µ = (l_ _ _filJ 1 / 2 
n 4 2 ·1 

en J 
(3.8) 

and A and B are constants. The boundary conditions (3.6) then 

imply that 

and 

Writing (3.9) in ma rix form as 

µ . 
n 

µncosh :µnz{) 

+ } s inh(µnz{) 

n 

µ sinh(µ z *) n n 

1 + 2 cosh(µnz{ 

(3.9a) 

A 0 

= 

B 0 

and noting that for non-trivial solutions the determinant of the 

coefficien: matrix must vanish we find that in the case where 

the phase speeds en must satisfy the transcendental equation 

µ cosh(µ zr*) . n n 

2 µ > 0 n 

(3.10) 
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> (zT*) ·t = 4r /(T -2r) er, o then (3.10) has It can be shown that if zr* 

precisely one root c
0 

with 

then (3.10) has no roots with 

2 c
0 

>4Rr , and that if zr*< (zT*) ·t - er, 
2 µn > 0 . Thus (3.10), along with (3.8), 

defines the one phase speed c
0 

in the case where z* > ( z{ ) cri t . 
2 An approximate value for c , obtained by assuming that c >> 4Rr 

0 0 

and therefore setting µ
0 

= ½ in (3.10), is given by 

co - [[1-.- 2T] RT0]112 

The vertical structure function corresponding to 

from (3.7) and (3.4) to be 

z*/2 Z (z*) = [Asinh(µ z*) + Bcosh(µ z*)] e . 
0 0 0 

C 
0 

(3.11) 

is found 

(3.12) 

The constants A and B may be determined by substituting (3.12) into 

the normalization condition (2.32) and using the lower boundary condi-

tion (3.9a). The end result, after much algebra, is 

A z*/2 Z (z*) = Z [µ cosh(µ z*) - nsinh(µ z*)] e , 
0 0 0 0 0 (3.13) 

where 

(3.14) 

2 2 2 2 2 _, 
x[(µ +n )sinh(µ zT*)cosh(µ zT*) - ?JJ n sinh (µ zT*) + (µ - n )µ zT* J 0 0 0 0 I ' 0 0 0 

This vertical mode has an exponential behpvior in the vertical; it is 

referred to as the external mode and its existence depends on the fact 

that w* is all owed to vary at the lower boundary. 

Case 2: 2 < 0 In this let A 2 = 2 and write the µn case we - )J n n 
general solution of (3.5) in the form 
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C sin (\ z*) + D co s (>t z*) n n (3.15) 

where 

An a [ CRn~ - tJ1'2 (3.16) 

and C and D are constants. The boundary conditions (3.6) then imply 

that 

(3.17a ) 

and 

>t [Ccos (>t zr*)- Dsin (\ zr*)] +l2 [(sin( \ z_*)+ Dcos (\ zr*)] = O . (3.17b ) n n n n n 
Writing (3.17) in matrix form as 

n C 0 

>tncos{ )._ nzT) - >t sin( \ zr*) n n 
= 

+ } sin (>t nzT) 
D 0 

and again noting that for non-trivial solutions the determinant of the 

coefficient matrix must vanish we find that in the case where µ; < O 

the phase speeds c must satisfy n 

sin( \ zr*) = >t cos( \ zr*) n n n (3.18) 

It can be s hown that (3.18) has solutions c ( n = l , 2 , 3, ... ) with n 

and that 

4Rr 
2 [2(n+l) rr /z*] +l 

2 < C n < 4Rr 
2 (2nrr /z{) + l 

i f zT* <(z* ) ·t then (3.18) also has one solution c cr1 o 

4Rr 
2 ( 2rr / z{ ) + l 

2 < C 
0 

< 4Rr • 

with 
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Thus (3.18), along with ( 3. 16), defines a countably infinite set of 

phase speeds C For large n , C may be approximated by n n 

c ::: (Rf) l 12 z * T (3.19) n nn 

The vertical structure functions which correspond to these phase 

speeds are found from (3.15) and (3.4) to be 

z*/2 Z (z*) = [C sin( >-. z*) + Dcos ( >-. z*)] e n n n (3.20) 

Evaluating the constants C and D by substituting (3.20) into the 

normalization condition (2.32) and using the lower boundary condition 

(3.17a) we obtain 

A 

Z ( z*) = Z n n 
z*/2 [>-. cos( >-. z*)- n sin( >-. z*)] e , n n n (3.21) 

where 

Z 2 = 2>-. n n (3.22) 
2 2 . . 2 2 2 -1 x[( >-. - n )sin( >-. zr*) cos( >-. zr*)- 2>-. nsin ( >-. zr*)+ (>-. +n )>-. zr* J n n n n n n n 

These modes exhibit an oscillatory behavior in the vertical and are 

referred to as internal modes. They correspond to waves which propa-

gate vertically, with "'n as a type of vertical wavenumber. 
2 Case 3: µ = 0 In this case the general solution of (3.5) i s n 

simply 

W (z*) - w + w1z* , n o (3. 23) 

where w
0 

and w1 are constants. By applying the boundary conditions 

(3.6) to (3.23) it can be easily shown that for a non-trivial solution 
2 2 we must have z{ = (z{ )crit . Now µn = O implies that en = 4Rr 

h: so c = (4Rr ) 2 is a phase speed of a vertical mode if and only if 
0 
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zf =(zf) crit , thus fi 11 ing the gap between cases l and 2. The cor-

responding vertical structure function, found by substituting (3.23) 

into (3.4) and applyin g the normalization and lower boundary conditions , 

is 

where 

Z ( z*) 
0 

" z*/2 
= Z ( l - n z*) e 

0 

- nz * T 

This mode represents a transition of the lowest order mode from an 

external type to an internal type as 

(z *) to less t han (z *) T crit T crit 

z * T goes from greater than 

For the particular basic state descr i bed earlier with zf = 2.313 

r = 23.79K and T = 302.53 K we find that (zT*) ·t = 0. 373 so the o er, 
above results imply that this atmosphere has an external mode with 

l 
phase speed c

0 
> (4Rr )~ satisfying (3.10) and a countably infinite 

set of internal modes with phase speeds C (n=l, 2, 3, ... ) satis-n 
fying (3.18) with k ( 4 Rr ) 2 > c 1 > c 2 > The values of the phase 

speeds determined by solving (3.10) and (3 . 18) numerically are pre-

sented in the second column of Table l fo r the external mode and the 

first ten internal modes. The corresponding approximate values deter-

mined from (3.11) ad (3.19) appear in the thi r d column of the same 

Table. The vertica l structure functions for t he external mode and 

the first four internal modes are shown in Fig. 2. These phase speeds 

and vertical structure function s were used in the calculations described 

in the following sections. 
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C (ms -1 ) 
n n 

exact approximate 

0 287.00 2.79.70 
l 56.28 60.84 
2 29. 79 30.42 
3 20.09 20.28 
4 15. 13 15. 21 
5 12. 13 12 .17 
6 l 0. 12 l 0 .14 
7 8.68 8.69 
8 7.59 7.60 
9 6.75 6.76 

l 0 6.08 6.08 

Table l. Exact and approximate values of the 
phase speeds of the con stant static 
stability atmosphere. 

3.2 Numerical eval ation of the solutio for axisymmetric 
perturbations 

In the numerical evaluation of the solution derived in chapter 2 

it is convenient to make certain assumptions about the initial condi-

tions. First, in section 2.4 it was shown that the final adjusted 

state is independent of the initial divergence. Thus, at least in a 

dry model where there can be no interaction between the vertical motion 

field of propagating wa ves and a moisture field, the initial divergence 

is not of such fundamental importance as the initial vorticity and 

geopotential. Therefore, we shall consider here only initial condi-

tions with zero divergence. With this assumption (2.48) implies that 

X (x,0) = 0 for all n so that the first term of (2 .65) vanishes. n ~ 
Second, since we are primarily interested in the effects of 

vertical stratification on the adjustment process, we will assume that 

the initial perturbations are axisymmetric. The invariance of the 

f-plane model with respect to rotations in t~e horizontal about the 

origin then implies that all fields will rem3in axisymmetric at all 
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times so we can use axisymmetric cylindrical coordinates . (r,z*) , 
2 2 k where r= (x +y ) 2 In this coordinate system (2.11) and (2.12) 

simplify to 

and 

0 = a(ru) 
rar 

a(rv) 
l;; = r ar 

(3.24) 

where u(r,z*,t) and v(r,z*,t) are the radial and tangential compo-

nents of the horizontal wind v(r,z*,t) , respectively. 

Finally, we will assume that the horizontal and vertical structure 

of the initial conditions are separable; in particular, we assume that 

[

v(r,z*,O) l = 

~•(r,z*,O) 
D(z*) (3.25) 

so that the initial v and ~• fields have the same vertical struc-

ture. This assumption leads to a considerable simplification i n the 

evaluation of the solution, as will be shown below. In this st dy we 

will investigate initial conditions in the vorticity and geopotential 

fields separately, so the form of (3.25) will not be particularly 

limiting. 

With the above assumptions (2.49) easily reduces to 

axn 2 at (r,0) = en On ~(r) , (3.26) 

where 

t -z* D(z*) Z (z*) e dz* n ( 3. 27) 
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is the projection of the vertical structure of the initial Conditions 

onto vertical mode n and 

(3.28) 

measures the departure of the initial conditions from geostrophic 

balance. Substituting (3.26) into (2.65) and (2.75) and using (2.44) 

we obtain 

where, for t < 00 , 

Xn(r,t) = Dn Fn(r,t) 

Yn r,t) = Dn Gn(r,t) 

2n lent ! 2 2 1/2 f ljJ [(r+p +2rp cose) J 
0 0 

2 2 2 l 12 
x cos[(f/cn)(cn t - p ) 

2 2 2 l 12 pdpd0 

and, for t = oo, 

(c t - p ) n 

t 
G (r,t) n = I 

0 

F ( r ,r) dT 
n 

F ( r ,00 ) = 0 , 
n 

2n oo , f I 2 2 1 /2 Gn(r, 00 ) = 2n ljJ[ ( r +p +2r p cos e ) ] 
0 0 

(3.29) 

(3.30) 

( 3. 31 ) 

. (3.32) 

pdpd0 . (3.33) 

To put these results in a form more suitable for numerical calculation 

we first eliminate the singularity in the in t egrand in (3.30) pt 

p = IC ti n by the substitution 
2 2 2 l / 2 

(en t - p ) 
s = 

cnltl 
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and then reverse the order of integration in (3.30) and (3.31), obtain-

ing 

and 

l 

= C 2 t I 
n 0 

2 l /2 
I[cn Jt l (1-s ) , r] cos(fts) ds 

Gn(r,ro ) = Iro l( p,r) Ko [l:IP] 
O n 

pdp , 

where, after appropriate manipulations, 
1T , I 2 2 ,12 I( p,r) =; l)J [(r +p +2r p cos e ) J de 
0 

(3.34) 

(3.35) 

(3.36) 

Finally, by substituting (2.37) and (2.38) into (3.24) and using (3 .29) 

we find that the horizontal wind components may be written in the form 
co 

u(r,z*,t) = I D U (r,t) Z (z*) 
n=O n n n 

( 3. 37) 
co 

v(r,z*,t) = I 
n=O 

D V (r,t) Z (z*)+~(r) D(z*) n n n 

where Un and Vn are related to Fn and Gn by 

a F (r,t) 
[ run ( r, t) J n 

r ar - -
C 2 

and n (3.38) 
a [rVn(r,t)] = f 

Gn(r,t) 
rar cn2 

The above results, along with (2.37)-(2.43), express the solution 

of t he geostrophic adjustment problem in terms of the four functions 

V , each of which depends on the phase speeds n 

and the quantity l)J (r) defined by (3.28). In all but the most trivial 

cases the calculation of these four functions will involve numerical 

i ntegrations, some of which will be quite time cons~ming. However, 

the above form of the solution allows us to compute values of Fn, Gn, 
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Un and Vn once and store them, and then use these results to compute 

the solution for any initial conditions which result in the same ¢ . 

In particular, the same values of these functions can be used for any 

vertical structure of the initial conditions. This fact leads to a 

considerable savings in the time required to compute the solution. 

For the results presented in the next section the functions Fn, 

Gn, Un and Vn were evaluated numerically for a finite number of 

phase speeds en (n = 0, 1 , ... , N) as follows. Due to the large 

range of values of en each vertical mode was trea t ed independently. 

Discrete points r. (i=O, l, ... , I) 
l 

and tk (k=O, l, ... , K) 

space and time were chosen with O = r 
O 

< r1 < . • . < r 1 and 

in 

0 = t 0 < t 1 < ... < \ A each tk , Fn(ri ,tk) was evaluated for all 

i according to (3.34) using an adaptive quad rature routine employing 

Gauss-type quadruture formulas; Gn(ri ,00 ) wa s also evaluated in the 

same way from (3.35). he inner integral (3.36) was evaluated using 

32-point Gauss-Legendre quadrature in all cases. The asymptotic form 

derived in Appendix C was used to check the calculation of Fn To 

obt ain G (r.,tk) , (3. 29) was evaluated as follows. First, n l 

G {r.,t) = G (r.,0) was set to zero for all i . Then for each tk n , o n , 
in succession, 

result added to 

Fn(ri,t was integrated from tk-l 

G (r.,tk 1) to yield G (r . ,tk). n 1 - n 1 

to tk and the 

Simpson's rule 

was used to pe form this i ntegration for modes which had phase speeds 

small enough tat it could give sufficient accuracy. For the faster-

moving modes values of Fn at additional time points between tk-l 

and tk had to be comp ted; in order to minimize the number of ad-

ditional evaluations of Fn and at the same time utilize the values 

F ( r., tk 1) and F ( r., tk) al ready computed, these addi ti ona l points n 1 - n , 
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were chosen according to the panel Lobatto quadrature rule (Abramowitz 

and Stegun, 1964) with up to 10 points and as many panels as necessary 

to achieve the desired accuracy. 

were computed for all i at each 

Finally, U (r. ,tk) and V (r. ,tk) n , n , 

k by integrating (3.38) using 

Simpson's rule; for this reason the 

spaced. 

r. 
1 

were chosen to be equally 

Having computed and stored Fn, Gn, Un and Vn as described 

above, the vertical structure of the initial conditions was projected 

onto the vertical modes by evaluating (3.27) using the adaptive quadra-

ture routine. The resulting coefficients On were then used in the 

superposition of the various horizontal and vertical structure functions 

according to (2.37)-(2.42) and (3.37), with the infinite series approx-

imated by finite sums from n = 0 to n = N . The results of these 

calculations for various initial conditions are presented in the next 

section. 

3. 3 Results 

In this section we present the results of eight simple experiments 

with the solution to the geostrophic adjustment problem described above. 

For these experiments we choose 

2 2 -r /a e (3.39) 

with a= 150 km , and set N = 30 so that the external mode and 30 in-

ternal modes are considered. The value -5 - l 4. 988 x l O s is used for the 

Coriolis parameter f, corresponding to a latitude of 20°N. 

3.3.l experiment l: initial condition in the mass field 

With no initial vorticity (i.e., v(r) = O ) , (3.39) correspond s to 

an initial condition in the mass field with horizontal structure given 
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. by 

(3.40) 

A 2 
and = 4 ¢ /a . Wit h this interpretation of ~(r) , a is the 0 0 

horizontal e-folding wid t h of the perturbation. We consider five ex-

periments with this initial condition, each having a different vertical 

structure. 

In experiment la the initial condition consists of a bubble of warm 

air in the lower troposphere as shown in Fig. 31 The initial pertur-

bation temperature field is shown in Fig. 3a and has a vertical struc-

ture defined so that the bubble is confined between pressure levels 

pl= 900 mb and Pu= 7 0 mb , with a maximum value (at r = 0) of 

l .0°C at p = 800 mb 
C The corresponding pert urbation geopotential 

field is defined so that it vanishes at p = p , implying that an 
C 

initially unbalanced press re gradient force exists t hroughout the 

depth of the model as shown in Fig. 3b. 

The time evolution of this initial condition is depicted in Figs. 

4-9. In these figures t he upper plot (a) shows the perturbation temper-

ature T' (solid contours, with dott ed contours for negative values) 

and the radial and vertical componen t s -z* -z* rue and w*e of the 

mass flux associated wi h the secondary circulation generated in the 

r, z*-plane 1 vector representation); the lower plot (b) shows the 

tangential wind v (so l id contours) and the perturbation geopotential 

¢' (dashed contours). The initially unbalanced pressure gradient force 

gives rise to a region of inflow below the bub ble and a region of out-

flow above it, generat ing strong rising moti n in the center of the 

11n experiments where the upper portion of the atmosphere is essen-
tially unaffected by the adjustment process, for the sake of clarity 
only the lower portion of the atmosphere is shown in the Figures. 
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INITIAL CONDITIONS (a) 
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Figure 3. Initial conditions for experiment la. Part (a) is the 
perturbation temperature T'(r,z*,0) with contour 
interval 0.1 °C . Part (b) is the perturbation geo-
potential ~•(r,z*,0) with contour interval 2.0 m2 s- 2 

The vertical coordinate is z* with the corresponding 
pressure p shown on the scale on the right. 
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t = 1.0 hour (a) 
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Figure 4. Transient state of the atmosphere at t = l .0 hour for 
experiment la. Part (a) is the perturbation temperature 
T'(r,z*,t) , with contour interval 0.l°C and dotted 
lines for negative values, and the secondary circulation 
rue~z*, w*e-z* with the vertical component scaled by 
5x 1010 • Part (b) is the tangential wind v(r,z*,t) 
(solid lines ) with contour interval 0.1 ms- 1 and the 
perturbation geopotential ¢ '(r,z*,t) (dashed lines) 
wit contour interval 2.0 m2 s- 2 • 
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t = 3.0 hours 
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Figure 5. Same as Figure 4 but for t = 3.0 hours. 
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t = 6.0 hours 
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Figure 6. Sae as Figure 4 but for t=6.0 hours. 
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t = 12.0 hours 
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Figure 7. Same as Figure 4 but for t = 12.0 hours . 
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t = 18.0 hours 
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Figure 8. Same as Figure 4 but for t = 18 .0 hours . 
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t = 24.0 hours 
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Figure 9. Same as Figure 4 but for t = 24.0 hours 
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FINAL ADJUSTED STATE (a) 
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Figure 10. Final adjusted state for experiment la. Part (a) is 
the perturba ion temperature T'(r,z*,00 ) with contour 
interval 0.1°C and dotted lines for negative values. 
Part (b) is he tangential wind v(r,z*,00 ) (solid 
lines) with contour interval 0.1 ms- 1 and the pertur-
bation geopotential ¢ 1 (r,z*,00 ) (dashed lines) with 
contour inter val 2.0 m2 s- 2 
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bubble by mass continuity, as shown in Fig. 4. This rising motion 

h . l -z* ~ 2 -6 -1 reac es a maximum va ue of w*e ~ x l 0 s at t = l . 5 hours , 

corresponding to w = Dp/Dt ::::: -7. 5 mb/hr . As the secondary ci rcul ati on 

develops the Coriolis force acts on it to produce a broad region of 

weak cyclonic flow below the bubble with anticyclonic flow above. This 

tangential wind pattern has become better defined by t = 3 hours as 

shown in Fig. 5, with maximum cyclonic winds of about 0.2 m s-l at 

900 mb and weaker anticyclonic winds above. By this time the adiabatic 

cooling produced by the rising motion in the center has reduced the 

amplitude of the warm bubble by 50% and has produced regions of cool 

air above and below it. The accompanying decrease in horizontal pres-

sure gradients is reflected in the decrease in amplitude of the second-

ary circulation; at t = 6.0 hours the rising motion in the center has 

vanished as shown in Fig. 6. The tangential winds have developed con-

siderably by this time with the anticyclone now slightly stronger than 

the cyclone. During the next six hours weak subsidence in the center 

gradually warms the regions of negative perturbation temperatures above 

and below what is left of the bubble; by t = 12 hours the tangential 

winds have increased to their maximum values ( 0.65 m s-l ) and have 

become somewhat more confined vertically, as shown in Fig. 7. The next 

twelve hours see a general reversal of th~se trends as the temperature 

field warms slightly in the center and the winds decrease in strength, 

.as shown in Figs. 8 and 9. The magnitudes of these changes are smaller 

now, however, as the atmosphere has reached a quasi-balanced state. 

The final adjusted state for experiment la is shown in Fig. 10. 

We see that the initial bubble of l .0°C amplitude has resulted in a 

final perturbation temperature in the same location with a maximum of 
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0.4°C and cool regions with perturbation temperatures of about -0.l5°C 

above and below. The final geostrophic wind pattern consists of a 

cyclone centered at r 130 km and p 850 mb with an anticyclone 

above it centered at p 750 mb The maximum winds in this final 

state ~~ 0.40 m s-1 -l in the cyclone and 0.43 ms in the anti-

cyclone ) are about 19% of the maximum geostrophic winds of the initial 

state 

The initial conditions for experiment lb are identical to those 

of experiment la, except the warm bubble has been moved to the middle 

troposphere with PL= 650 mb, pc= 550 mb and p = 450 mb as shown u 

in Fig. 11. The transien t adjustment in this case is qualitatively 

similar to the previous case; the main difference is that the secondary 

circulation developed in he early stages of the adjustment process is 

somewhat stronger, with maximum rising motions w -8.7 mb/hr . Con-

sequently, the initial temperature field weakens more, resulting in 

less wind being developed. The final adjusted state, depicted in Fig. 

12, has a maximum perturbation temperature of about 0.3°C; the final 

win ds in this case are about 12% of the maximum initial geostrophic 

wind. 

In experiment le we move the initial bubble to the upper tropo-

sphere, with pL = 400 mb, p = 300 mb and p = 200 mb as shown in Fig. 
C U 

13. The secondary circulation during the adjustment process in this 

experiment is again slightly stronger, with the maximum rising motion 

reaching w -9.4 mb/hr The final state shown in Fi g. 14 indicates 

that the initial 1 .0°C b bble has decreased in amplitude to about 

0.16°C; the final winds in this case are about 5% of the maximum 

ini tial geostrophic wind. 
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Figure 11. Initial conditions for experiment lb. Part (a) is 
the perturbation temperature T'(r,z*,O) with contour 
interval 0.1 °C . Part (b) is the perturbation geo-
potential ~•(r,z*,0) with contour interval 5.0 m2 s- 2 
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FINAL ADJUSTED STATE (a) 
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Figure 12. Final adjusted state for experiment lb. Part (a) is 
the perturba t ion temperature T'(r,z*,oo) with contour 
interval 0. l °C and dotted lines for negative values. 
Part (b) is the tangential wind v(r,z*,oo) (solid 
lines) with contour interval 0.1 ms- 1 and the pertur-
bation geopotential ~• (r,z*,00 ) (dashed lines) with 
contour inter val 5.0 m2 s- 2 • 
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Fi gure 13. Initial conditions for experiment le. Part (a) is 
·the perturbation temperature T'(r,z*,0) with con-
tour interval 0.1 9 C . Part (b) is the perturbati on 
geopotential <I> '(r,z*,0) with contour interval 
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FINAL ADJUSTED STATE 
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Figure 14. Final adjusted state for experiment le. Part (a) is 
the perturbation temperature T'(r,z*,oo) with contour 
interval 0.05°C and dotted lines for nega t ive values. 
Part (b) is t he tangential wind v(r,z*,oo ) (solid 
lines) with contour interval 0.1 ms- 1 and the pertur-
bation geopotential ¢ '(r,z*,00 ) (dashed lines) with 
contour interval 2.0 m2 s- 2 • 
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In the final example of an initial condition in the temperature 

field to be considered here, experiment ld, the warm bubble is expanded 

to fill most of the troposphere, with pl= 900 mb, p = 550 mb and 
C 

p = 200 mb as shown in Fig. 15. The transient adjustment for this u ' 
case is similar to that of the preceeding experiments in its general 

features, but the secondary circulation generated is much stronger, 

with the maximum rising motion reaching w -25 mb/hr . The resulting 

strong adiabatic cooling reduces the maximum perturbation temperature 

to about 0.l°C in on~y three hours and the tangential wind consequently 
-1 reaches only about 0.25 ms . The final adjusted state, shown in 

Fig. 16, has a maximum perturbation temperature of only 0.08°C and a 

tangential wind pattern with maximum winds of only about 1% of the 

maximum initial geostrophic wind. 

In the model considered here it is also possible to perturb the 

mass field by setting ¢ '(r,z*,0) constant in z* , so the initial 

perturbation temperature vanishes, but allowing it to vary in the hor-

izontal. In experiment le we use this type of initial condition in the 
A( ) ( ) A 2 -2 mass field with ¢ r given by 3.40 ; with ¢ = -100 ms the 

0 

initial geopotential field is as shown in Fig. 17. This initial con-

dition can be interpreted as lowering the height of the 1010 mb surface 

by about 10 m and corresponds to a surface pressure drop of about 

l .15 mb in a corresponding model in actual height coordinates. The 

transient adjustment of the mass field in this case occurs very quickly, 

with the maximum perturbation geopotential decreasing by a factor of 

100 within th~ first three hours and the maximum perturbation tempera-

ture adjusting to within 2% of its final value in only a half an hour. 

In contrast, the tangential wind takes somewhat longer to develop and 

undergoes a slow, damped oscillation toward the final state as in 
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Figure 15. Initial conditions for experiment ld. Part (a) is 
the perturbation temperature T'(r,z*,0) with con-
tour interval 0.l°C . Part (b) is the perturbation 
geopotential ~•(r,z*,0) with contour interval 10.0 ~2 s- 2 • 
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FINAL ADJUSTED ST ATE (a) 
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Fig ure 16. Final adjusted state for experiment ld. Part (a) is 
t he perturbation temperature T'(r,z*,ro ) with contour 
interval 0.05°C and dotted lines for nega t ive values. 
Part (b) is the tangential wind v(r,z*,ro ) (solid 
lines) with contour interval 0.05 ms- 1 and the per-
t urbation geopotential ~• (r,z*,00 ) (dashed lines) with 
contour interval 2.0 m2 s- 2 • 
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Figure 17. Initial condition in the perturbation 
geopotential ¢'(r,z*,0) for experiment 
le. The contour interval is 10.0 m2s- 2 
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FINAL ADJUSTED STATE (a) 
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Figure 18. Final adjusted state for experiment le. Part (a) is 
the perturbation temperature T'(r,z*,00 ) with contour 
interval 0.0l°C and dotted lines for negative values. 
Part (b) is the tangential wind v(r,z*,00 ) (solid 
lines) with contour interval 0.01 ms- 1 and the per-
turbation geopotential ¢ '(r,z*,00 ) (dashed lines) with 
contour interval 0.1 m2 s- 2 • Note that the z*-scale 
has been changed from that of Figure 17. 
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experiment la. The fina l adjusted state is shown in Fig. 18, where it 

can be seen that essentially all of the initial disturbance has been 

carried away during the adjustment process, leaving behind a balanced 

state with a maximum per urbation temperature of only 0.027°C. The 

final winds, while concentrated at the surface as could be expected, 

are only about 0.3% of their initial geostrophic values. 

3.3.2 experiment 2: initial condition in the vort icity field 

With no initial perturbation geopotential (i.e., ¢( r) =0 ), (3.39) 

corresponds to an initia1 condition in the rotational part of the wind 

field with the horizontal structure of the tangential wind given by 
A 

=~o ( f ) 
2 2 

v(r ) -r /a (3.41) e 
A 

and iµ = 2 f v /a . The max imum tangenti a 1 wind occurs at r =a/ff 
0 0 

(again we pick a= 150 km ). The correspondin g vor icity field has 

horizontal structure 

2v 2 ( r) = a 
0 

2 2 -r /a e 

so that with this interpretation of iµ (r) , a is the radius of 

vanishing relative vorticity, with positive vorticity for r < a and 

negative vorticity for r> a . We consider three experiments with this 

initial condition, each having a different vertical structure. 

In experiment 2a the initial vertical structure of the tangential 

wind is defined so that the disturbance is confined to the layer 650-

450 mb in the ve r tical, with a maximum wind of 1 m s- l at r = 106 km 

and p = 550 mb . This initial tangential wind pattern is shown in 

Fig. 19; the initial perturbation temperature and geopotential are zero. 

The time evolution of this initial condition is depicted in Figs. 

20-25. The initially un bal anced Coriolis force produces a region of 
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t = 1.0 hour 
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Figure 20. Transient state of the atmosphere at t = 1.0 hour for 
experiment 2a. Part (a) is the perturbat i on t~mperature 
T'(r,z*,t) with contour interval 0.05°C and dotted 
lines for negative values, and the secondary circulation 
rue-z* , w*e- 2 * with the vertica l component scaled by 
l x 1011 • Part (b) is the tangential wi nd v(r,z*,t) 
(solid lines) with contour interval 0.2 ms- 1 and the 
perturbation geopotential ¢ '(r,z~,t) (dashed lines) 
with contour interval 2.0 m2 s- 2 • 
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Figure 21. Same as Figure 20 but for t=3.0 hours. 
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t = 6.0 hours (a) 
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Figure 22. Same as Figure 20 but for t = 6. 0 hours . 
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t = 18.0 hours 
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Figure 24. Sane as Figure 20 but for t = 18 hours . 
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t = 24.0 hours 
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FINAL ADJUSTED STATE 
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Figure 26. Final adjus t ed state for experiment 2a . Part (a) is 
the perturbation temperature T' (r,z*,00 ) with contour 
interval 0.05°C and dotted lines for egative values. 
Part (b) is the tangential wind v(r,z*,00 ) (solid 
lines) with contour interval 0.2 ms- 1 and the pertur-
bation geopotential ~•(r,z*,00 ) dashed l ines) with 
contour interval 2.0 m2 s- 2 • 
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outflow in the region of the initial vortex by t = l .0 hour as shown in 

Fig. 20. This outflow generates vertical convergence at r= 0 at the 

same level, as required by mass continuity, and the associated rising 

and sinking motions begin to cool the atmosphere below p= 550 mb in 

the center and warm it above. By t = 3.0 hours this secondary circula-

tion has already reached its maximum strength (about 1 .0 mb/hr rising 

motion and 0.86 mb/hr sinking motion) and has generated temperature 

perturbations on the order of 0.1°C in the center as shown in Fig. 

21. The horizontal component of the secondary circulation reaches a 
-z* 4 2 -1 maximum strength of rue 2.2 x 10 ms after four hours, corres-

ponding to a radial wind -1 u 0.23 ms at r 180 km and 

550 mb As the Coriolis force acts on this radial flow it produces a 

slight weakening of the initial vortex, so that by t = 6.0 hours the 

maximum tangential wind has been reduced by 23% as shown in Fig. 22. 

The temperature perturbations in the center peak at about 0.2°C around 
-1 nine hours and the vortex reaches a minimum strength of about 0.7 ms 

an hour later. The secondary circulation then reverses itself so that 

by t= 12.0 hours the radial wind in the region of the vortex is directed 

inward, as shown in Fig. 23. Figures 24 and 25 indicate that the 

changes which occur during the next twelve hours are relatively small; 

the atmosphere has reached a quasi-balanced state. 

The final adjusted state for experiment 2a is shown in Fig. 26. 

The initial vortex has been reduced in strength by about 20% and a 

region of weak anticyclonic flow has been generated in the same layer 

outside of r= 300 km . The corresponding perturbation temperature 

field shows a cool central region of amplitude -0.14°C at p= 600 mb 

with a similar warm region above it at p = 500 mb . The final 
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geopotential depression at the center is approximately 70% of its 

initial geostrophic value. 

In experiment 2b we consider a different vertical structure for the 

wind perturbation (3.41). As shown i Fig. 27 this wind pattern con-

sists of a low-level cyclone centered at 850 mb and an upper-level anti-

cyclone centered at 250 mb; the maximum winds are 1 m s-1 at 

r = 106 km in both regions and the wind vanishes at the surface, p = 

550 mb and the top oft e atmosphere. The initial thermodynamic fields 

are again taken to be zero. The secondary circulation generated in this 

experiment is more complicated than that of the previous experiment, 

with the largest vertical motions being about l .7 mb/hr , occurring 

in the lower atmosphere. The final adjusted state shown in Fig. 28 

indicates that the intensity of the low-level cyclone has decreased by 

about 10% during the adjustment process while the upper-level anti-

cyclone has cha~ged by only about 3%. A warm region has been generated 

in the middle troposphere with cool regions above and below; the final 

perturbation geopotentia l values at r = 0 are roughly 95% and 85% of 

the correspondi g initia l geostrophic values in the upper and lower 

atmosphere, respectively. 

As a final example of a wind perturbation we cons i der an initial 

wind field which is constant in the vertical; thus the initial condition 

for experiment 2c consis sofa tange~tial wind field which is given by 

(3.41) at all levels. No figures are presented for this experiment 

because for all practical purposes the initial and final winds are 

identical. The final perturbation geopotential field is essentially 

the same as the corresponding initial geostrophic geopotential; the 

· 1 d i · th t of 8.7 m2s2 d t geopotent,a epress on ,n e cen er correspon s o 
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Figure 27. Initial condition in the tangential wind 
v(r,z*,0) for experiment 2b. The contour 
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FINAL ADJUSTED STATE 
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Figure 28. Final adjusted state for experiment 2b. Part (a) is 
the perturbation temperature T'(r,z*,00 ) with contour 
interval 0.05°C and dotted lines for negative values . 
Part (b) i s the tangential wind v(r,z*,00 ) (solid 
lines) wi t h contour interval 0.2 ms- 1 and the pertur-
bation geopot ential ~•(r,z*,00 ) (dashed lines) with 
contour i erval 2.0 m2 s- 2 • · 



72 

lowering the central surface pressure by 0.1 mb in a model in height 

coordinates. 

3.4 Discussion 

The manner in which the adjustment process depends on the vertical 

structure of the initial conditions in the experiments described above 

may be interpreted as follows. As is generally known (e . g. Schubert 

et al., 1980), in a barotropic model with a single phase speed c the 

mass field adjusts to the wind field when the horizontal scale a of 

the initial disturbance is small compared to the Rossby radius of de-

formation c/f, and the wind field adjusts to the mass field when a 

is large compared to c/f. In the stratified model considered here 

there is a distinct radius of deformation cn/f associated with each 

vertical mode n ; these radii range from 5754 km for the external mode 

to 40.65 km for the thirtieth internal mode. Thus an initial distur-

bance with horizontal scale a= 150 km "looks" quite small to the 

external mode but much larger to the higher order internal modes. In 

fact, the horizontal scale of such a disturbance is larger than the 

radius of deformation cn/f for all n greater than 8. Therefore, 

the relative contributions of the low and high order modes should be 

important in determining the extent to which the mass field adjusts to · 

the wind field (or vice versa) in the stratified model. 

Table 2 shows the coefficients of the projection of the initial 

conditions onto the first sixteen vertical modes as determined from 

(3.27} for th~ eight experiments described above. For each experiment 

the coefficients have been normalized by the value of D which is n 

largest in absolute value for that experiment. The following general 

trends can be observed. In experiments la, lb, and le, as the initial 



n 

0 
l 
2 
3 
4 
5 , 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 

en D (normalized) 
fa n 

(m s - l) C exp. la exp. lb exp. l c exp. l d exp. le exp. 2a exp. 2b exP-. 2c n 

287.00 0.03 l. 000 -0.140 0. 531 -0.319 l. 000 -0 . 919 -0 .028 l .000 
56.28 0. 13 -0.573 l. 000 l. 000 l. 000 0.034 -0.456 0.897 0.034 
29. 79 0.25 -0.601 0.712 -0.094 0.492 0. 010 0.272 l .000 0.010 
20.09 0.37 -0.556 0.285 -0.285 0.079 0.005 0.915 0.053 0.005 
l S. l J 0.49 -0.485 - 0. 061 0.09? -0 .045 0,003 l. 000 -0. 113 0.003 
12. 13 0.62 -0. 398 -0.222 0 .126 -0.039 0.002 0. 471 -0. 137 0.002 
l O. 12 0.74 -0.306 -0 .198 -0.059 -0.026 0 .001 -0.307 -0.207 0.001 
8.68 0.86 -0. 213 -0.071 -0. 051 -0.017 0 .001 -0.823 -0. 178 0. 001 
7.59 0.99 -0. 126 0.054 0.034 -0.007 0. 001 -0. 778 -0. 152 0 .001 
6.75 1.11 -0. 051 0.108 0. 021 -0.002 0. 001 -0.266 -0 .152 0. 001 
6.08 1.23 0.011 0.084 -0. 013 0.000 0.000 0.331 -0. l 35 0.000 
5.53 l. 3ti 0.056 0.020 -0.008 0. 001 0.000 0. 631 -0. 11 3 0 .000 
5.07 1.48 0.084 -0.035 0.003 0.001 0.000 0.503 -0. l 06 0.000 
4.68 l.60 0.097 -0.052 0.005 0.000 0.000 0 .106 -0.095 0.000 
4.34 l. 72 0.097 -0.034 0. 001 0.000 0.000 -0.264 -0.079 0.000 
4.05 l . 85 0.087 -0.003 -0.003 0.000 0.000 -0.393 -0 .070 0.000 • 
Table 2. Coefficients Dn of the projection of the initial vertical structure onto the 

first sixteen vertical modes for the eight experiments described in section 
3.3. For each experiment the Dn are normalized by the value of Dn which 
is largest in absolute value for that experiment. The second column gives the 
phase speed and the third column compares the horizontal scale a= 150 km to 
the radius of deformation c /f for each mode. n 

-....J 
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warm bubble is moved higher in the troposphere the relative contribu-

tions of the higher order modes become smaller. When the bubble is 

expanded in experiment ld to fill most of the troposphere, the relative 

contribution of the higher order modes is even less. For experiment 

2a the fact that the initial wind is confined vertically leads to 

relatively large contributions form the higher order modes, while the 

more slowly changing initial vertical structure of experiment 2b 

projects more onto the lower order modes. Finally, when the initial 

geopotential or tangential wind is constant in the vertical as in 

experiments le and 2c the only contribution of any real significance is 

from the external mode. We note that these trends can be deduced from 

a comparison of the initial conditions with the vertical structure 

functions shown in Fig. 2. 

Knowing the relative contributions of the various vertical modes 

we can interpret the results of the previous section as follows. In 

experiment la the contributions of the higher order modes are relatively 

important and thus in a general sense the initial disturbance does not 

_
11 look 11 particularly small in the horizontal. Therefore, even though the 

mass field does tend to adjust to the initial wind field (since the 

initial wind is zero, this implies that the initial temperature distur-

bance tends to weaken considerably), a significant fraction of the 

initial perturbation remains in the final balanced state. In contrast, 

as a greater portion of the initial condition is projected onto the 

lower order modes in experiments lb, le and ld, the horizontal scale 

of the disturbance 11 looks 11 smaller in a general sense and the adjustment 

of the mass field to the wind field is more nearly complete. Finally, 

in the extreme case of experiment le, where practically all of the 
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initial condition is projected onto the external mode, the disturbance 

"looks" extremely small and the adjustment of the mass field to the 

wind field is almost total. An analogous interpre ation holds for the 

initial wind experiments; here the adjustment of the mass field to the 

wind field implies that the initial wind changes very little during the 

adjustment process. 

• 



4. CONCLUSIONS 

In this study we have derived a general solution to the pro lem of 

geostrophic adjustment in a stratified atmosphere. The spectral expan-

sion employed in the vertical has proven useful in providing a simple 

interpretation of the results in terms of the corresponding barotropic 

problem. Simple experiments have been used to illustrate the ad j ust-

ment process and investigate its dependence on the vertical structure 

of the initial conditons. 

Schubert et al. (1980) concluded from an essentially barotropic 

study that in the tropics the efficiency of cloud cluster scale heating 

in producing balanced vortex flow is very low while the efficiency of 

cloud cluster scale modification of the vorticity field is very high. 

We conclude from the results of the present study that when the vertical 

stratification of the atmosphere is taken into account these generaliza-

tions remain true but the efficiencies may be changed significant y. 

This change is generally in the direction of moderating the above con-

clusions; i.e., with vertical structure heating perturbations on the 

cloud cluster scale can be significantly more efficient and vorticity 

perturbations on the cloud cluster scale significantly less efficient 

than the simpler barotropic analysis might lead one to expect. The 

extent to which these efficiencies are changed depends on how the 

initial conditions project onto the various vertical mo9es. In par-

ticular, for initial conditions on the cloud cluster scale with signifi-

cant contributions from the higher-order vertical modes the mass field 

adjusts less to the wind field than might be expected, thus increasing 

the efficiency of heating and decreasing the efficiency of vortici y 

76 



77 

field modification in producing balanced vortex flow. Thus we conclude 

that the vertical structure of the initial conditions can have important 

effects on the geostrophic adjustmen t process. 

In applying these results to the understanding of dynamical pro-

cesses in the tropical atmosphere certain limitations of the approach 

taken here need to be recognized. First, this study assumes a constant 

Coriolis parameter. Second, only linear perturbations are considered, 

implying that the fina l state is in geostrophic rather than gradient 

balance. Third, the basic state is assumed to be at rest, which 

simplifies the mathematical treatment but implies that the results may 

be applied directly on ly to situations in whi ch the mean flow is rela-

tively weak. Fourth, t he model is dry and t hus the possibility of 

feedback between a moisture field and the vertical motion field gener-

ated in the adjustment process has been eli minated. Fifth, the effects 

of transient (rather than impulsive) forcing have not been included in 

this study. Finally, this analysis assumes a rigid lid at a finite 

level in the atmosphere, an upper boundary condition which does not 

allow for the vertical propagation of energy out of the model. This 

assumption will be discussed further below. 

The results presented here may be extended in several ways. First, 

the constant static stability profile of the bqsic state may be re-

placed by a suitable temperature profile determined from observations. 

In this case the vertical structure equation must be solved numerically. 

The results of Hack and Schubert (1980) for a similar problem suggest 

that the effects of this change will be relatively minor. Second, 

energetics may be computed usi~g a form of the Parseval relation ap-

propriate t the spect r al expansion. Thi r d, the rigid lid upper 
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boundary condition may be replaced by a condition which allows for the 

vertical propagation of energy out of the model. As a result of such 

a condition the phase speed spectrum for the internal modes becomes 

continuous and the discrete spectral representation used here is re-

placed by an appropriate integral transform in the vertical. At this 

point in time the physical validity of various upper boundary conditions 

remains an open question, but a comparison of the geostrophic adjust-

ment process with and without a lid may shed some light on this problem. 

The author is currently investigating the above three topics. A final 

topic for further study is the consideration of nonlinear effects and 

a non-resting basic state. This is a difficult theoretical problem 

and may not yield to solution by analytical methods. 
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APPENDIX A: The nature of the 
phase speed spectrum 

The vertical boundary conditions (2.23) and (2.24) chosen for this 

study reduce the vertical structure problem (i.e., the solution of the 

verti~al structure equation) to one of the Sturm-Liouville type. Con-

sequently, the phase speeds form a countably infinite and hence dis-

crete set. The nature of the phase speed spectrum with other vertical 

boundary conditions and its dependence on r(z*) is the subject of 

this Appendix. 

Let us first discuss the lower boundary condition. The condition 

(2.23) permits parcels of air to cross the lower boundary of the model 

(i.e., z* = O ), thus allowing an oscillation of the atmosphere as a 

whole in the vertical known as the external mode. It is well known 

(e.g., Wiin-Nielsen, 1971) that this mode is eliminated if it is 

required that w* = 0 at the lower boundary. It can be shown that 

the effect of this more restrictive boundary condition on the internal 

modes is sma 11 . 

The question of the upper boundary condition is more complicated 

and of greater consequence. The condition (2.24) is a perfect reflec-

tor; i.e., it does not allow vertically propagating waves to leave the 

model and hence traps energy in the vertical. Conceptually, any other 

linear homogeneous boundary condition applied at a finite level in the 

atmosphere will have the same ~ffe~t; mathematically this implies that 

the corresponding phase speed spectrum is discrete. An upper boundary 

condition which allows energy to propagate vertically out of the model 

is conceptually different; this physical difference shows up in the 

mathematical treatment in that the phase speed spectrum may have a 

continuous part. 
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Jacobs and Wiin-Nielsen (1966) show that when the requirement of 

finite vertical flux of wave energy is used as an upper boundary con-

dition for an infinite isothermal atmosphere the resulting phase speed 

spectrum has both a discrete and a continuous part. The discrete part 

is associated with the external mode (or, with w* = 0 at the lower 

boundary, the nondivergent barotropic mode) and the continuous part is 
2 -0 < c < 4 K RT , corresponding to the internal modes. In studies of 

free atmospheric oscillat i ons (i.e., when no forcing is considered) the 

continuous part of the spectrum is often eliminated by applying more 

restrictive upper boundary conditions, such as requiring the total 

kinetic energy in a co umn of unit cross-sectional area to be finite 

(Siebert, 1961). However, for initial value problems these internal 

modes are crucial, bei ng the components out of which the initial con-

ditions (minus the part projected onto the external mode, if any) are 

formed. The mathematical effect of allowing such a continuous spectrum 

is to turn the discrete eigenfunction expansion used in this study into 

an appropriate integral ransform in the ver ical. 

In general the effect of the vertical stratification of the basic 

state as expressed by r(z*) is to modify the p ase speeds and vertical 

structure functions somewhat but not to change the fundamental nature 

of the spectrum. Two important exceptions to this statement exist . 

First, when r(z*) is such that p + O at a finite height, the spec-

trum becomes discrete even when the upper boundary condition is simply 

that the solution remain bounded (Eckart, 1960). An atmosphere with 

constant lapse rate in actual height z is an example of this case 

(Siebert, 1961). The other case, discussed by Lindzen and Blake (1972), 

occurs when a thermosphere of very high temperature is included in the 
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model. Here the external mode may have a phase speed, determined 

primarily by the tropospheric temperature profile due to the density 
-z* factor e which appears in the vertical structure equation, which 

is small enough that it may have an oscillatory behavior in the upper 

atmosphere where the temperatures are higher. Such a wave propagates 

slowly in the vertical and thus an external wave in the strictest sense 

does not exist. 



APPENDIX B: Properties of the eigenvalues 
and eigen unctions 

2 In this Appendix we show that the eigenvalues en and eigen-

functions 

( i) 

Z (z*) satisfy the following properties: n 
2 the eigenvalues en are real 

(ii) the eigenfunctions Z ( z*) n form an orthonormal set 

We note that these properties are a result of the fact that the vertical 

structure problem is of the Sturm-Liouville type Arfken, 1970). 

The vertical structure equation is 

d 
dz* 

Replacing n by m i ( Bl ) and taking the 

by a dagger results in 

[ -z* dZ t -z* d e 
dzm* l e 

dz* + 
( cm2 ) t ) 

Then multiplying (Bl ) by z t 
m and (B2) by 

z t _d_ 
m dz* [ e;;* dZ ) 

dz~ 
z d e ( -z* 
n dz* Rf 

complex 

"'.r t Lm = 0 . 

Zn and 

dZ t 
dt*) 

= [,c) )t --¼ ] z z t -z* e 
en 

n m 

(Bl) 

conjugate (denoted 

(82) 

subtracting yields 

(B3) 

The left-hand side of (B3) may be rewritten to obtain 

[ -z* ( t dZn dZ t ] 

[ ( c] ) t - c :2 ] 
d e 2n dzm* ) z zte-z* Rr 2m dz* - = (B4) n m · 

Integrating (B4) from z* = 0 to z* = z * T we obtain 
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[ 
-z* dZ dZ t ] z* = zf 

e (z t n Z m } 
m dz* - n dz* J z* = 0 

= [ 1 - - 1-] fz{ z (z*) zt (z*) e-z* dz* 
( 2 )t 2 n m 
cm en 0 

(85) 

Applying the boundary conditions (2.29) and (2.30) to (85) we find that 

the left-hand side vanishes so that 

t -z* Z (z*) e dz*= 0 m (86) 

Now i f we set m = n in (86) the integral term is positive so we 

must have 

( i ) . Also, if mfn 

2 Thus en is real, which establishes property 

in (86) and the eigenvalues c; and c; are 

distinct we obtain 
z * 

J 
T z ( z*) Z t ( z*) e -z* dz* = 0 . 

0 n m (87) 

Thus eigenfunctions which correspond to distinct eigenvalues are orthog-

onal in the sense of (87). If any eigenvalue has two or more linearly 

independent eigenfunctions .associated with it, they may also be made 

orthogonal in the sense of (87) by means of the Gram-Schmidt orthogonal-

ization procedure. Therefore the eigenfunctions form an orthogonal 

set. Since the vertical structure equation is linear the eigenfunctions 

are defined only to within an arbitrary multiplicative constant. We 

choose that constant for each n so that 
z{ 2 

f I z~ I -z* e dz* = l (88) 
0 

Then we may combine (87) and (a8) ~s 
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t - z* Z (z*} e dz*= o m mn ( B9) 

where 

0mn = { 10 

is the Kronecker delta . Therefore the eigenfunctions Zn form an 

orthonormal set , establishing property (ii). 



APPENDIX C: Asymptotic solution of the 
horizontal structure equation 

The exact solution (2.65) of the horizontal structure equation 

(2.36) is expressed in terms of double integrals and is therefore some-

what ·complicated (and time consuming) to evaluate numerically. There-

fore, in this Appendix we derive an asymptotic solution by the method 

of stationary phase (Whitham, 1974). This asymptotic form serves as 

a check on the calculation of the exact solution and is useful in t he 

numerical evaluation of the solution at large times. 

The starting point for this derivation is (2.58) , whi ch we wr i t e 

in the form 

( Cl ) 

where 
00 00 

I I 
-i ( kx + 9-y - v t) 

Xn (l ) (x,y,t) = 2\ An(k, £) e n dkd£ 
- 00 - oo 

and 
00 00 

I I -i ( kx + 9-y + v t) 
Xn (2)(x,y,t) = i TI Bn(k, £) e n dkd£ 

- 00 - 00 

Treating first, we hold x, y, and t fixed and de f ine 

(C2) 

so that 

- 00 - oo 
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According to the method of stationary phase, if A(k, 1) does not vary 

rapidly and t is large enough, the major contributions to the integral 

in (C3) will be obtained near the st ationary points of a (k, 1); i.e., n 
near these poi nts where aa / ak = aa /a1 = O Substituting for vn(k, 1) n n 
in (C2) from (2. 57) we find that an(k, 1) has the unique stationary 

point given by 

I f I ( ) 
(k' ,Q., ' ) = sgn(t) -c- x,y n ,n ( 2t2 2 2)1/2 n en - x -y 

(C4) 

with corresponding frequency 

\) I = \) (k I ,Q., I ) n n n , n (CS) 

Then near this stationary point we approxima t e An(k, 1) by An(k~, 1~) 

and, using Taylor's theorem, 

1 [a2°n + 2 - 2 
ak ( k , i , n , n 

(k - k I )2 
n 

2 a on 
+ 2 aka t 

( k I 
n 

With these approximati ons, (C3) reduces to 
- i ( k I X + ,Q., I y - \) It) 

Xn(l)(x,y,t) ::: An(kn' ,tn')e n n n En(x,y,t) (C6) 

where 
1 

f
oo foo · t [a2vn I 2 En ( x , y , t ) = 2 'IT exp 2 - 2- ( k - kn' ) 

-oo - 00 a k ( k I 9, I ) n , n 

2 2 I ( C7) 
+ 2 a kv n I ( k - k ' ) ( ,Q., - 9., ' ) + a v2n I ( t - ,Q., ' ) 2 ] d k d ,Q., , 

a at ( k I , 9., I ) n n at I I n 
n n ( kn , ,Q., n ) 
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having substituted for a (k, t ) from (C2). n 
The integral in (C7) has the form of an "error" integral in two 

dimensions and may be evaluated as follows. First, we employ vector 

notation to write (C7) as 
00 00 

where 
a2v a 2v n n 

cl kclt 

M -
a2 vn a2vn 
aia k c),Q, 2 ( k I ,Q, I n • n 

[ 
k-k 

1 

] k = n 
~ Q, - _Q, I 

n 

and (~,y) represents the ordinary !R2 inner (dot) product u•v 

Evaluating M using (2.57), (C4) and (CS) leads to 

2 2 2 2 1/2 
(c t -x -y) M = _n _____ _ 

cnlft l t 2 
-xy ] 

2 t2 2 C -y n 

Now the key to simplifying (CS) is to diagonalize M 

of M are found to be 

The eigenvalues 

( 2 2 2 2 3/2 f2cn2 C t -X -y) 
" = n = l cn iftit 2 ,3 

vn 
and 2 2 2 2 1/2 2 (C9) 

(c t -x -y) C 

"2 = n n = v' I ft I n 
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If r-=(x2 +y2)1/ 2 >0, , 1 d ' d. t· t d d t A an A 2 are 1s inc an correspon o 

the unit eigenvectors 

and 

respectiv-ely, and we can define the real, orthogonal transformation 

matrix P by 

P=[~l+]-~[x -y] 
~2 + y X 

If r = O then >,. =).. = (c /f) 2 and we define P as the 2 x 2 identity 1 2 n 

matrix. Then in both cases 

D = [ '-1 0 ] 

0 "2 
PMP- l = 

so that if we define a -[a1] by a= Pk , the fact that P is real ~ - a 2 
and orthogonal implies that 

(Mk ,k) = (P-l DPk,k) 

= (DPk,Pk) 

= (Dc., a ) 

a(a ,a2) 
Making this substitution in (C8) and noting that a(k, i ) = det P = 

we obtain 
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00 00 

En(x,y,t) = i TT f f exp [ i2t ( /\1a,2+ >.. 2a})] da1da2 (ClO) 
- 00 -00 

The transformation 
I 112 

s1 = exp [-isgn(t) f ][ tt1] 

then reduces (ClO) to the real "error" integral 

Using polar coordinates we easily obtain the value n for the double 

integral in this expression; finally, substituting for Al and A2 
from (C9) we obtain 

With the substitution (Cll ), (C6) becomes 

-i(k 'xH, 'y-v ' t) e n n n 

An argument similar to that above shows that 

(2) Xn (x,y,t) 
i l f i t B (-k ', - Q. ') i(k' xH' y-v ' t) 
---..r-n--;:-__,n=---=---n_ e n n n 2 2 2 2 en t -x -y 

( Cl 1 ) 

( Cl 2) 

( Cl 3) 

Noting from (2.60) that Bn(-k~ ,-1~) = A: (k~ ,1; ), (Cl2) and (Cl3) 

imply that X (2)(x,y,t) = [X (l )(x,y,t)]t. Thus (Cl) reduces to n n 
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X ( x ,y, t) ::: 2 Re [ X ( l ) ( x ,.Y , t)] . n n 

Substituting for from (Cl2) and making use of (2.60a) we obtain 

I f lt [ X (x,y,t) ::; 2 2 2 2 X (k 1
, Q, 1

, 0) sin(k I x+Q, 1 y- 'J I t) 
n en t -x -y n n n n n n 

Finally, substituting for k~ and Q, ~ from (C4) and 'J I from (C5), n 

the asymptotic form of Xn may be written as 

+ sgn(t) 
en 

2 2 2 2 l 12 
sin [ (f/c )(c t -x -y) J n n 

2 2 2 2 
C t - X -y n 

2 2 2 2 l 12 
cos[(f / c )(c t -x -y ) J n n 

2 2 2 2 l / 2 
C t -X -y) n 

~ 
X (k 1 £ 1 0) n n ' n ' 

( Cl 4) 

With the axisymmet ric, non-divergent initial conditions assumed 

in section 3.2 the above results may be expressed as follows. First, 

since w(r) as defined by (3. 28) i s axisymmetric the Fourier transform 

and zero-order Hankel transform of w(r) are equivalent, so that 
(X) 

; (k, £) = ~( k) I w(r) Jo(kr) rdr ' 
0 

" 2 2 h where k = (k H , ) 2 an d J is the Bessel f unction of the first kind 
0 

of order zero. Then substituting (3.26) into (Cl4) and comparing the 

result with (3.29) we f ind that the asymptotic form of Fn is 



F (r,t) c sgn(t) n n 

where, from (C4), 
" k I = - • 

n C n 
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( Cl 5) 

r ( Cl 6) 

In order to use this result the initial conditions as expressed by 
A 

~(r) must be transformed in the horizontal and evaluated at k' as n 
defined by (Cl6). Care should be exercised here because for some 

" " initial conditions ~(k) " varies rapidly enough near k' n that the 

above derivation breaks down. Finally, it should be noted that the 
2 2 2 above solution is valid only for en t » r so that if Gn(r,t) is 

to be obtained by integrating (Cl5) in time, the integration must be 

performed from t = 00 backwards to a finite time t , making use of 

the final adjusted state calculation (3.33). 



A, B, C, 

An, B n 

D 

Dn 

En 

F n, Gn 

M 

p 

R 

T, T, T' 

T , T 
0 00 

Un, vn 

w n 

xn, y n 

Zn 

en 

cp 

f 

g 

h n 

k, t 

D 

APPENDIX D: Principal Symbols 

constants 

Fourier amplitudes of gravity-inertia waves 

vertical structure of initial angential wind and 
perturbation geopotential 

projection of D onto vertical mode n 

two-dimensional "error" integral in asymptotic solution 

auxiliary horizontal structure functions 

matrix of second partials of vn in asymptotic solution 

transformation matrix in asymptotic solution 

gas constant for dry air 

temperature (absolute): total, basic state, perturbation 

constan t static stability basic state temperature at 
z* = 0 and z* = 00 

horizontal structure functions for wind field 

auxiliary vertical structure function 

horizon al structure functions 

vertical structure function 

phase speed (eigenvalue of vertical structure equation) 

specific eat at constant pressure for dry air 

constant Coriolis parameter 

acceleration due to gravity 

equivalent depth 

Fourier transform parameters (horizontal wavenumbers) 
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A 

k 

p 

Pa 

r 

t 

U, V 

V 

A 

V 

w 

w* 

X 

x, y 

z 

z* 

r 
iP , iP , 
A 

iP 

'I' 

St 

0 

0mn 

s 
n 

K 

Al , ),_ 2 

iP I 
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vertical unit vector; Hankel transform parameter 

pressure 

fixed surface pressure 

horizontal coordinate in axisymmetric geometry 

time 

radial and tangential wind components 

horizontal wind vector 

horizontal structure of initial tangential wind 

vertical velocity in z-coordinate 

vertical velocity in z*-coordinate 

horizontal position vector 

horizontal coordinates in Cartesian geometry 

geopotential height 

= t n(p /p): log-pressure vertical coordinate 
0 

static stability in log-pressure coordinate 

geopotential: total, basic state, perturbation 

horizontal structure of initial perturbation geopotential 

arbitrary function 

potential vorticity 

horizontal divergence 

Kronecker delta 

vertical component of relative vorticity 

_ l/2- r /T
0 

- R/cp 

eigenvalues of M in asymptotic solution 
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_ ( Rr /c 2 - l / 4) 112 : verti cal waven umber (internal modes) n 

(l/4-Rr/c 2 )112 - vertica l wav en mbe r (ex t ernal mode) - n . 

_ (kx+ 9..y)/t- \J n 

local time deriva t ive of pertur bati on geopotentia l 

horizontal structure of i nit i al departure from geostrophy 
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