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ABSTRACT 
 
 

 
UNDERSTANDING PROTECTED AREAS: AN ANALYSIS OF DRIVERS OF FOREST 

LOSS AND CONSERVATION TRENDS   

 

 

Global forests harbor much of the world’s terrestrial biodiversity, provide critical 

ecosystem services, and directly support the livelihoods of over a billion people. Nonetheless, 

forest cover continues to decline rapidly, largely due to human-driven land use changes, such as 

conversion for agriculture, urban expansion, and increased forest market demands. Protected 

areas are one of the most common conservation tools used to counter global forest loss. 

However, forest conversion has been found to persist in protected areas globally. Understanding 

the diverse factors driving forest cover change in protected area is critical for ensuring forest 

conservation success. This dissertation contributes evidence to help advance our understanding 

of protected area performance through three empirical manuscripts. Each manuscript uses a 

unique approach to examine drivers of conservation outcomes in protected areas at different 

scales. All three manuscripts are focused on Mexico’s protected area network. 

The first manuscript uses a machine learning approach – random forest regression – to 

identify the main drivers of deforestation in protected areas across Mexico. By comparing the 

relative importance of multiple socioeconomic, biophysical, and protected area design 

characteristics in driving forest loss, this manuscript highlights the important role that placement 

characteristics, such as topography and proximity to development, can play in protected area 

conservation success. Additionally, results from this manuscript demonstrate the nonlinearity of 

the relationships between most forest loss predictors and observed deforestation.  
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The second manuscript uses a propensity score matching approach to quantify the 

influence of protected area management effectiveness on forest loss outcomes in protected areas 

across Mexico. This manuscript finds critical evidence that protected areas with high levels of 

management effectiveness reduce forest loss to a greater extent than those with lower 

management effectiveness. This manuscript also finds that multiple dimensions of management, 

such as effective planning, collaborative decision-making, equitable benefit sharing, as well as 

sufficient financial and human resources, can contribute to the reduction of forest loss.  

The final manuscript examines how the COVID-19 pandemic influenced protected areas 

and conservation outcomes across Mexico. This manuscript measures protected area managers’ 

perceptions of the impacts of the pandemic on protected area inputs, mechanisms, moderators, 

and non-compliance. We find a perceived decrease in human capacity, monitoring capacity, and 

tourism, and an increase in a number of non-compliant activities in 2020 compared to 2019. 

Understanding how protected areas are impacted by unexpected global events such as the 

COVID-19 pandemic is critical for building more resilient protected area networks in the future.  

Together the three manuscripts demonstrate the range of factors that can influence 

protected area performance, including landscape characteristics, protected area management 

practices, and global events. By advancing our understanding of the factors influencing protected 

area performance, we can improve conservation planning, more strategically allocate resources, 

and more proactively protect key biodiversity areas in the future.  
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CHAPTER 1: INTRODUCTION 
 
 
 

Covering one-third of the total global land area, forests serve as a home for over 240 

million people, support the livelihoods of 1.6 billion people, and provide critical ecosystem 

services for all humans on Earth (Chao, 2012; FAO & UNEP, 2020; Keenan et al., 2015). Over 

half of the world’s remaining forests are located in tropical and sub-tropical countries, with 26% 

in temperate countries, and 22% in boreal countries (Keenan et al., 2015).  

Forests are threatened on a global scale, with an estimated 6.5-7 million hectares 

deforested annually in tropical forests alone (FAO & UNEP, 2016). The conversion of primary 

vegetation has been estimated to have caused a 13% reduction in global species richness and 

11% reduction in species abundance (Newbold et al., 2015). Additionally, continued widespread 

and increasing loss of forests will have profound and long-lasting impacts on climate change due 

to reduced carbon sequestration capacity.  

Human activity is a significant driver of deforestation. Agriculture and large-scale 

commercial forestry operations have been estimated to account for almost three-fourths of the 

total global forest loss (Curtis et al., 2018). Direct threats to forests, or proximate pressures, have 

been found to vary by region (Curtis et al., 2018; Schulze et al., 2017). For example, a land cover 

change analysis using satellite imagery found commodity agriculture and cattle to be significant 

drivers of forest loss in tropical regions, while forestry plantations were the main driver in 

temperate and boreal forests (Curtis et al., 2018).  

In response to the widespread loss of biodiversity and climate change impacts, forest 

conservation has become a global priority. Protected areas are a widely promoted tool to protect 

the world’s remaining forest and have significantly expanded since the adoption of the Aichi 
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Targets by the Convention of Biological Diversity, which aimed to protect 17% of the world 

terrestrial surface and 10% of marine area by 2020 (i.e., Aichi Target 11) (Butchart et al., 2015; 

Convention on Biological Diversity, 2010). A recent evaluation found that while the total 

protected area coverage had almost been achieved, the designated areas were not necessarily 

ecologically representative, of particular importance, well-connected, or effectively and 

equitably managed (Secretariat of the Convention on Biological Diversity, 2020).  

Additionally, while there has been significant growth in protected area networks, 

protected area evaluations have found varying levels of effectiveness (e.g., Heino et al., 2015; 

Jones et al., 2018; Joppa & Pfaff, 2011). Multiple recent analyses have found that global 

protected areas continue to face threats from human pressures within protected area boundaries 

(e.g. resource extraction, land conversion, urban development) (Geldmann et al., 2014; 

Geldmann et al., 2019; Jones et al., 2018). However, in general the amount of human pressure 

within protected areas has been found to be lower than the pressure experienced in similar 

unprotected areas (Geldmann et al., 2019; Jones et al., 2018), and smaller and sustainable use 

protected areas were found to experience human pressure more often than larger and stricter 

areas globally (Jones et al., 2018).  

Recent studies have also found heterogenous results on the ability of protected areas to 

prevent forest loss. Several studies found lower deforestation rates in protected areas compared 

to non-protected areas (Barber et al., 2012; Ferraro et al., 2013; Leisher et al., 2013), while 

others have recorded increased deforestation rates inside protected area boundaries (Heino et al., 

2015; Joppa & Pfaff, 2011; Leberger et al., 2019). In a literature review of 76 studies on 

protected area ecological effectiveness, with counterfactuals considered, Geldmann et al. (2013) 
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found strong evidence of protected areas’ ability to maintain forest habitat, but “inconclusive” 

evidence on their ability to maintain species populations (Geldmann et al., 2013).  

My dissertation contributes to the body of literature on protected areas by examining 

drivers of protected area performance from various angles, using Mexico as a focal country. I use 

novel methods (e.g., machine learning), best practice impact evaluation designs (e.g., propensity 

score matching), and a mixed methods approach to contribute rigorous evidence to the existing 

body of protected area research.  

The dissertation is organized around three empirical manuscripts that seek to answer the 

overarching question, “what factors influence protected area forest conservation success?”. 

Manuscript one identifies the main factors driving deforestation in protected areas using a 

machine learning approach, specifically examining the relative importance of socioeconomic, 

biophysical, and protected area design characteristics in determining forest loss outcomes. 

Manuscript two uses a propensity score matching approach to quantify the effect of protected 

area management effectiveness on forest loss outcomes. Manuscript three investigates how the 

COVID-19 pandemic has influenced protected area outcomes, using a detailed theory of change 

to understand how the pandemic’s impact on protected area inputs and mechanisms influenced 

the level of non-compliance inside protected areas. All three manuscripts are conducted at the 

national level in Mexico.  

This introduction aims to situate the three manuscripts within existing protected area 

literature and is organized into three sections, including Protected Area Evaluations & 

Manuscript Summaries, Study Site – Mexico, and Broader Impacts. The first section provides 

short summaries of each manuscript, highlighting the key contributions of each study. The 

second section summarizes conservation efforts and research in Mexico to date, while the final 
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section outlines implications of the research for conservation science and practice going 

forwards. Following this introductory chapter, the dissertation is organized by manuscript, with 

each manuscript including an introduction to my research questions, a focused review of relevant 

literature, methods, and results. 

Protected Area Evaluations & Manuscript Summaries 

Understanding the factors that shape protected area performance has been identified as a 

top priority for the conservation of global biodiversity (Sutherland et al., 2009). Additionally, 

there has been a recent push for more evidence-based conservation research to inform practice 

(Pullin & Knight, 2001; Sutherland et al., 2004). Given the range of objectives that protected 

areas may hold (e.g., forest protection, species conservation, habitat connectivity), a variety of 

performance metrics have been used in existing literature examining drivers of protected area 

effectiveness (Ghoddousi et al., 2021). Forest cover change is one of the most commonly used 

metrics given the accessibility of high-resolution global forest loss data (e.g., Leberger et al., 

2019; Spracklen et al., 2015; Yang et al., 2021). Alternative metrics used to examine 

protected area conservation success include species abundance or richness (e.g., Geldmann et 

al., 2013; Gray et al., 2016), normalized difference vegetation index (NDVI) (e.g., Muñoz 

Brenes et al., 2018; Tang et al., 2011), forest fire occurrence (e.g., Nolte & Agrawal, 2013; 

Román-Cuesta & Martínez-Vilalta, 2006), and land cover change more broadly (e.g., Joppa & 

Pfaff, 2011; Pfaff et al., 2017). Other studies have used proxies for human pressure including 

the Human Footprint (e.g., Jones et al., 2018), a temporal human pressure index (e.g., 

Geldmann et al., 2014, 2019), as well as an assessment of threat levels inside protected areas 

(e.g., Schulze et al., 2017). Existing research has also measured a number of social outcomes 

as protected area effectiveness metrics, often representing changes to human-wellbeing and 
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equity (see Ghoddousi et al., 2021; Oldekop, et al., 2016; Pullin et al., 2013). Here I largely 

focus on the impacts of protected areas on forest cover change given the quality and quantity of 

data available, and due to the cascading impacts of forest loss on other measures of biodiversity 

(e.g. species diversity and abundance). In doing so, I recognize that not all impacts of protected 

areas will be captured by focusing on forest cover loss. For example, many species (particular 

large mammals) may be locally extirpated while forest cover remains intact, creating what 

Redford (1992) referred to as empty forests. Additionally, the positive and negative impacts that 

protected areas can have on the well-being of local human communities will not be fully 

captured by measuring protected area performance based on forest cover change. 

In addition to the integration of diverse effectiveness indicators, there have been many 

advancements in protected area evaluation design in recent years, increasing accuracy through 

rigorous methodological approaches (e.g. Barnes et al., 2017; Geldmann et al., 2013; Jones et al., 

2018; Joppa & Pfaff, 2011). For example, more recent protected area evaluations often address 

concerns of threat displacement (i.e., spillover effects) by including buffer zone comparisons 

(e.g., Andam et al., 2008; Fuller et al., 2019) and potential confounding factors by controlling for 

characteristics such as proximity to human pressure and physical characteristics of the landscape 

(e.g., Baldi et al., 2017; Joppa & Pfaff, 2009, 2011). An increasing number of studies have also 

used a quasi-experimental research design to more accurately quantify protected area 

effectiveness compared to a counterfactual, or what would have happened if the area was not 

protected (e.g., Ferraro, 2009; Ferraro & Pressey, 2015; Miteva et al., 2012). While these 

research approaches have increased our knowledge of protected area performance, many studies 

remain limited by methodological assumptions that oversimplify complex relationships, and 

omitted variable biases (dos Santos Ribas et al., 2020; Vaca et al., 2019).  



  

 6 

Manuscript one overcomes these limitations by using machine learning to account for 

non-linear relationships and adjust for higher order interactions among multiple predictor 

variables while determining key drivers of forest loss outcomes in protected areas (Breiman, 

2001; Hastie et al., 2017). In doing so, we identify the relative influence of socioeconomic, 

biophysical, and design characteristics (e.g., age and size) on protected area outcomes. We also 

demonstrate the complex relationships between forest loss and common predictor variables - 

often oversimplified in existing research - using accumulated local effect plots to map the 

conditional relationships between important drivers of deforestation and observed forest loss. In 

summary, this manuscript highlights the significant role that placement characteristics (e.g., 

slope and elevation, or proximity to urban areas and roads) can play in determining protected 

area success.  

Existing research has frequently examined IUCN category as a determinant of protected 

area success and found evidence of both strict protected areas avoiding more forest loss than 

multi-use protected areas (e.g., Ferraro et al., 2013; Nolte et al., 2013; Pfaff et al., 2017), as well 

as multi-use protected areas avoiding more forest loss than strict protected areas (e.g., Blackman, 

2015; Miranda et al., 2016; Pfaff et al., 2014). This has led to a call for a better understanding of 

the management factors that influence protected area performance beyond IUCN category 

designation (Macura et al., 2015).  

Manuscript two responds to this call by examining the influence of five different 

dimensions of management on protected area performance. Specifically, we test the influence of 

management effectiveness on forest loss outcomes using a propensity score matching approach 

to control for the strong influence of placement characteristics highlighted in manuscript one. 

Matching methods are designed to account for hidden biases by systematically selecting 
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treatment and control groups based on observable characteristics (Schleicher et al., 2019; Stuart, 

2010). Understanding the degree to which management effectiveness can drive forest loss 

outcomes has important implications for conservation practice given the emphasis placed on 

effective and equitable protected area management in global conservation goals. Additionally, it 

is critical that we understand the influence of different dimensions of management to ensure we 

are setting the right goals for the greatest success in conservation practice.  

In 2020, we experienced an unexpected global health crisis, the COVID-19 pandemic, 

which led to restrictions on human movement, ultimately having an indirect impact on the 

environment and conservation efforts. Understanding how and through what pathways protected 

areas were impacted by the pandemic is critical in order to design protected area networks that 

will be resilient to future unexpected events.  

In manuscript three, we develop a detailed theory of change with the National 

Commission of Natural Protected Areas (Comisión Nacional de Áreas Naturales Protegidas; 

CONANP), Mexico’s federal agency primarily responsible for management and monitoring of 

their protected area network, to provide evidence of the impact of the pandemic on protected 

areas in Mexico. Specifically, the theory of change was used to highlight the pathways through 

which the pandemic drove changes in protected area inputs, mechanisms, and moderators, and 

led to conservation outcomes. The findings of this manuscript highlight the complex web of 

factors that can influence protected area performance and can be used to understand potential 

impacts of future unexpected events, such as political instability and economic crises.  

Study Site – Mexico  

The focus of the three empirical manuscripts of my dissertation is on protected areas in 

Mexico because of the immense biodiversity that the country holds, the extensive protected area 
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network that has been established across the country to protect this biodiversity, and the mixed 

evidence on whether or not the protected area network has been successful in delivering 

conservation outcomes to date (e.g., Blackman et al., 2015; Figueroa & Sanchez-Cordero, 2008; 

Figueroa et al., 2011; Pfaff et al., 2017).  

Mexico is recognized as one of the world’s few megadiverse countries. While 

representing only 1.4% of the Earth’s surface, it hosts more than 10% of the world’s biological 

diversity (Comisión Nacional de Conocimiento y Uso de la Biodiversidad, 2010). More 

specifically, Mexico ranks in the top five countries with the greatest diversity of vertebrates and 

vascular plants (Alonso Concheiro et al., 2006), and in the top three countries with the greatest 

diversity of reptiles (Flores-Villela & Canseco-Márquez, 2004). It has been estimated that about 

33% of Mexico’s terrestrial mammals, 60% of its amphibians, and 40% of its plants are endemic 

(USAID, 2002). However, Mexico’s biodiversity and remaining forest cover face significant 

threats, as is true on a global scale (FAO & UNEP, 2016). Major threats include agricultural 

expansion, urbanization, and climate change. 

Mexico is also incredibly culturally diverse, with about 22% of Mexico’s total population 

identifying as Indigenous (Instituto Nacional de Estadística y Geografía, 2015). Mexico’s 

cultural diversity has been found to closely correspond with its ecological diversity (Comisión 

Nacional de Conocimiento y Uso de la Biodiversidad, 2010). Much of Mexico’s forests reside in 

Indigenous territories, and about one third of Mexico’s federal protected areas include 

Indigenous territories (Comisión Nacional de Conocimiento y Uso de la Biodiversidad, 2010).  

There are over 1,000 designated protected areas across Mexico, including UNESCO 

World Heritage Sites, Ramsar Wetlands of International Importance, and 32 different 

national-level designations (UNEP-WCMC, 2021). These areas vary widely in the levels of 
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protection provided, from strict protection (IUCN categories I-IV) where limited human use is 

permitted, to sustainable use protected areas (IUCN categories V and VI) where human 

communities and their resource use activities are integrated into management objectives. 

Within the last decade, Mexico established four new UNESCO biosphere reserves, three new 

world heritage sites, and many other nationally recognized protected areas, including four 

national parks (UNEP-WCMC, 2021). These recent designations increased the total national 

coverage of protected areas in Mexico to 14.5% of terrestrial area and 21.6% of marine area. 

My research focuses on a subset of Mexico’s protected areas, specifically national 

protected areas with management plans. This includes 132 protected areas managed by 

CONANP. CONANP has made many advancements in improving their protected area network, 

despite limited resources and regular budget cuts. For example, CONANP recently developed a 

management effectiveness evaluation tool, with the help of senior scientists at the IUCN, to 

regularly monitor management across their protected area network every four years (Comisión 

Nacional de Áreas Naturales Protegidas, 2020b). CONANP has also been awarded the IUCN 

Green List Sustainability Standard for two of their protected areas, including National Park Zona 

Marina Archipiélago Espiritu Santo and Biosphere Reserve Isla San Pedro Mártir. The IUCN 

Green List is the most recent global protected area standard, with only 59 parks in 16 countries 

meeting requirements since 2015 (IUCN, 2021).  

Similar to other regions of the world, researchers have found variability in the 

performance of Mexico’s protected area network (Blackman et al., 2015; Bruner et al., 2001; 

Figueroa & Sanchez-Cordero, 2008; Figueroa et al., 2011; Pfaff et al., 2017; Sánchez-Cordero 

et al., 2011; Sims & Alix-Garcia, 2017). For example, Figueroa et al. (2011) analyzed 44 

federal protected areas and found 70% to be successful at slowing rates of land use change 
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compared to surrounding areas, while 80% were successful when compared to similar 

ecoregions. In an earlier study, Figueroa and Sanchez-Cordero (2008) found only 54% of 69 

protected areas to be successful at slowing deforestation compared to a surrounding area. Neither 

study, however, considered drivers of performance beyond protected area type (i.e., national 

park, biosphere reserve, national monument, etc.).  

More recently, researchers have controlled for placement biases when comparing land 

cover change in protected areas in Mexico by using a matching technique. Blackman et al. 

(2015) found heterogenous impacts within protected area boundaries and in surrounding areas 

(spillover effects) compared to non-protected areas. The authors concluded that larger, newer, 

mixed use protected areas, and protected areas with sufficient funds, were more successful at 

slowing deforestation. Conversely, Pfaff et al. (2017) found stricter protected areas to be more 

successful at slowing forest loss compared to mixed use protected areas when examining a 

slightly later time span. Both studies found elevation, slope and travel time to urban centers to 

be significant drivers of forest conversion (Blackman et al., 2015; Pfaff et al., 2017).  

The three manuscripts of this dissertation help to advance our understanding of the 

factors driving the variation in performance in Mexico’s protected area network. Manuscript 

one and two use forest loss as a metric of protected area performance given that rates of 

deforestation in protected areas in Mexico have been found to vary (e.g., Blackman et al., 

2015) and deforestation is frequently reported as a critical threat by protected area managers 

in Mexico on management evaluations such as the Management Effectiveness Tracking Tool 

(see Stolton & Dudley, 2016). Manuscript 3 examines changes in seven different non-

compliant activities impacting biodiversity outcomes to understand changes in protected area 

performance during the pandemic. Using these performance metrics, this dissertation 
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examines a wide range of socioeconomic and biophysical factors known to influence forest 

loss outcomes globally, quantifies the influence of management dimensions previously 

unexamined in Mexico, and identifies the pathways through which unexpected global events, 

specifically the COVID-19 pandemic, can influence management capacity and non-

compliance in protected areas. 

Broader Impacts 

Protected areas are one of the main instruments for conserving biodiversity in Mexico 

(García-Frapolli et al., 2009) and globally, with over 200,000 protected areas designated around 

the world (UNEP-WCMC et al., 2020). Moreover, global coverage of protected areas is 

projected to increase in the coming years - an increase in coverage has been proposed in early 

drafts of the post-2020 biodiversity targets (Convention on Biological Diversity, 2021) and 50 

countries, including Mexico, pledged to help conserve 30% of the world’s terrestrial and marine 

areas by 2030 in early 2021 (Campaign for Nature, 2021). If this expansion of protected area 

coverage is to be successful in delivering conservation goals, it is critical that we continue to 

advance our understanding of the factors that determine protected area performance.  

My dissertation research contributes empirical evidence to better understand the 

complex relationships between various drivers of protected area performance. Specifically, 

across the three studies, we build evidence on the influence of various socioeconomic, 

biophysical, and management characteristics driving conservation outcomes. The findings of 

each manuscript can help to inform protected area planning and resource allocation decisions. 

Additionally, the findings can inform the design of future protected area evaluations by 

identifying key confounding factors and demonstrating approaches that can account for the 

complex relationships between drivers of protected area performance and protected area 
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outcomes. Ultimately, the methodological contributions and findings of this dissertation can help 

to improve the accuracy of conservation evaluations not just in Mexico, but on a global scale.   

Note on Authorship 

The three empirical studies of this dissertation resulted in manuscripts with multiple co-

authors. While each was a collaborative effort, I was the individual primarily responsible for the 

conceptualization of each study, the design and execution of the analyses, and the writing of each 

manuscript. Co-authors provided critical support through idea development and by providing 

feedback on each written manuscript. Manuscript one was coauthored by Jonathan Salerno, 

Kelly Jones, and Michael Gavin. Manuscript two was coauthored by Michael Gavin and Kelly 

Jones. Manuscript three was coauthored by Kelly Jones, Elva Ivonne Bustamante Moreno, Maira 

Abigail Ortíz Cordero, Jennifer Solomon, and Michael Gavin.  
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CHAPTER 2: THE INFLUENCE OF PROTECTED AREA PLACEMENT AND DESIGN 
CHARACTERISTICS ON FOREST LOSS OUTCOMES IN MEXICO 

 
 
 

Chapter Summary 

Protected areas are a commonly-used strategy to confront forest conversion and 

biodiversity loss. While determining drivers of forest loss outcomes is central to conservation 

success, our understanding has been limited by conventional modeling assumptions. Here, we 

use random forest regression to account for non-linear relationships and higher-order interactions 

while evaluating a range of potential drivers of deforestation in protected areas in Mexico. We 

find socioeconomic drivers, such as road density and human population density, and underlying 

biophysical conditions, such as distance to water, elevation, and slope, are stronger predictors of 

forest loss than protected area characteristics, such as age, type, and management effectiveness. 

We show that the relationships between most predictors and forest loss are non-linear. Our 

findings can help inform decisions on the allocation of protected area resources by strengthening 

management in protected areas with the highest risk of deforestation and help preemptively 

protect key biodiversity areas that may be vulnerable to deforestation in the future.   

Introduction 

Global forests harbor much of the world’s terrestrial biodiversity, provide carbon 

sequestration and other critical ecosystem services, and directly support the livelihoods of over a 

billion people (FAO & UNEP, 2020; Fedele et al., 2021). Nonetheless, forest cover continues to 

decline rapidly, with an estimated 10 million hectares lost per year between 2015-2020 (FAO & 

UNEP, 2020). Human-driven land use changes, including forest conversion for agriculture, 

urban expansion, and increased forest market demands, have been found to be the primary cause 

of forest loss (Armenteras et al., 2017; Curtis et al., 2018). Protected areas are one of the most 
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common conservation tools used to counter this loss, with 18% of the world’s remaining forest 

under some form of protection (FAO & UNEP, 2020; UNEP-WCMC et al., 2020). However, 

forest conversion and biodiversity loss persists in protected areas globally, albeit often less than 

in unprotected areas (Geldmann et al., 2019; Wolf et al., 2021). Understanding the diverse 

factors driving the impacts of protected areas on forest cover change is critical to ensuring forest 

conservation success.  

Existing research has identified a number of protected area design characteristics (e.g., 

size, strictness), socioeconomic drivers (e.g., distance to roads, human population density), and 

other underlying biophysical factors (e.g., slope, elevation, climate conditions) that influence 

protected area outcomes (e.g., Barnes et al., 2017; Geist & Lambin, 2002). However, previous 

methods used to examine these drivers have been limited by strict methodological assumptions, 

such as linear relationships and independence among predictors. This has often resulted in low 

explanatory power and biased protected area evaluations due to the oversimplification of 

complex non-linear relationships or the omission of key predictor variables (Andam et al., 2008; 

Vaca et al., 2019). Here we use a machine learning technique – random forest regression – to 

overcome existing limitations and advance our understanding of the drivers of forest cover 

change in protected areas in Mexico, a global biodiversity hotspot. 

Specifically, we assess hypothesized drivers of forest loss related to protected area design 

characteristics, socioeconomic drivers, and underlying biophysical factors in influencing forest 

cover change in protected areas. Although high resolution satellite imagery has allowed 

researchers to analyze patterns of global environmental change (Pettorelli et al., 2014; Turner et 

al., 2003), we conduct our analysis at the country-level, given its higher relevance for protected 

area policy. Additionally, conducting a country-level analysis allows us to contribute unique 
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empirical evidence on the importance of protected area design characteristics, beyond IUCN 

category, by integrating scores from a national-level management effectiveness evaluation, 

filling a critical gap previously identified in protected area research (Macura et al., 2015).  

Identifying key drivers of forest loss in protected areas has implications for both the 

design of future protected areas and the management of existing ones. An understanding of the 

factors contributing to increased deforestation risk can lead to better informed protected area 

design and more strategic allocation of resources to forested areas with higher vulnerability. 

Additionally, our findings can help improve the design of protected area evaluations by 

providing critical information for variable selection to control for confounding factors. Ignoring 

key confounding variables in effectiveness evaluations can lead to over- or under-estimating 

protected area impact (see Andam et al., 2008; Baylis et al., 2016); by identifying the most 

important variables driving outcomes, we can increase the accuracy of future research. 

Drivers of Protected Area Outcomes  

An extensive body of literature exists that summarizes potential drivers of forest loss and 

other conservation outcomes (e.g., Aide et al., 2012; Barnes et al., 2017; Busch & Ferretti-

Gallon, 2017; Geist & Lambin, 2002; Salafsky et al., 2008). For the purpose of this study, we 

summarize relevant drivers of protected area outcomes into three categories – protected area 

design characteristics, socioeconomic characteristics, and biophysical characteristics – to 

compare relative influence. Socioeconomic drivers of forest cover change serve as proxies for 

development pressure (e.g., human population density and population growth) and forest 

accessibility (e.g., proximity to roads), while biophysical drivers (e.g., slope and climate 

conditions) represent potential for economic productivity.  
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Protected Area Design characteristics  

Existing literature has identified a variety of protected area characteristics that can 

influence protected area effectiveness, including age, size, level of strictness, enforcement 

capacity, stakeholder engagement, and management resources (Barnes et al., 2017; Ghoddousi et 

al., 2021). However, the estimated degree of influence and the direction of influence of many 

characteristics have varied across studies, potentially due to geographical differences, scale of 

analysis, and study design (e.g., control variables included, or outcome variable examined). For 

example, a recent study found that protected areas with higher management effectiveness 

prevented more forest loss than those with low management effectiveness across Mexico 

(Powlen et al., 2021) and similar patterns have been found between higher management 

effectiveness and vertebrate abundance on a global scale (Geldmann et al., 2018). However, the 

influence of management effectiveness on protected area outcomes has been less clear in other 

regions, such as the Amazon Basin (e.g., Carranza et al., 2014; Nolte & Agrawal, 2013).  

Younger protected areas are often more successful than older protected areas due to 

management resources (financial and staff capacity) increasing in the first few years following 

establishment (Barnes et al., 2017). Research in Mexico has pointed to similar relationships 

between age and effectiveness, with Blackman et al. (2015) finding a negative correlation 

between avoided deforestation and age (Blackman et al., 2015). However, younger protected 

areas may be established in response to more recent threats, and thus could appear less successful 

than older areas if original threat level is not appropriately controlled for (Geldmann et al., 2018; 

Kere et al., 2017). 

Larger protected areas are expected to be more successful due to their ability to fully 

protect a critical ecosystem or species range. Larger areas also experience a decreased risk of 



  

 17 

edge effects, or development pressure, encroachment, or the concentration of ecological stress 

along the boundary of a protected area (Barnes et al., 2016). Research in Mexico has found 

larger protected areas better conserve forest cover compared to smaller protected areas on 

average (Blackman et al., 2015). However, larger areas can require a greater amount of resources 

for monitoring and management, and were found to experience more forest loss than smaller 

protected areas in a recent global assessment (Wolf et al., 2021).  

Protected area strictness refers to the regulations on resource use inside protected areas 

and can range from strict no-access zones to multi-use areas, which allow sustainable livelihood 

opportunities. Existing evidence has found strict protected areas to be more successful at the 

global-level (Jones et al., 2018) and in Mexico (e.g., Figueroa & Sanchez-Cordero, 2008; Pfaff et 

al., 2017). However, other studies have found conflicting evidence, with multi-use protected 

areas appearing more successful than strict protected areas in Mexico (e.g., Blackman, 2015; 

Sims & Alix-Garcia, 2017), as well as in other Latin American countries, such as Brazil and Peru 

(see Miranda et al., 2016; Pfaff et al., 2014). Blackman (2015) found that while multi-use 

protected areas had more heterogenous outcomes, those that provide sustainable livelihoods 

opportunities, such as forest concessions, resulted in less forest loss on average (Blackman, 

2015).  

Socioeconomic Characteristics  

Proxies for development pressures and forest accessibility are often correlated, and both 

can increase biodiversity threats (e.g., urban areas contain larger human populations and higher 

road density). Proximity to roads and higher road density are expected to increase risk of 

deforestation in protected areas, due to increased accessibility for natural resource extraction or 

development opportunities (Joppa & Pfaff, 2009; Kere et al., 2017; Laurance et al., 2009). 
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Similarly, human population growth, human population density, and proximity to urban areas are 

also expected to increase biodiversity risk due to risk of encroachment, increased demand for 

resources, and a larger labor force available for extractive industries (Busch & Ferretti-Gallon, 

2017). Alternatively, protected areas that provide tourism-related opportunities may incentivize 

compliance from local populations leading to less forest encroachment (Barnes et al., 2017). An 

increase in both accessibility and human populations may also lead to greater surveillance and 

enforcement efforts (Andam et al., 2008), which could decrease forest cover loss particularly 

when it is linked to non-compliant activities.  

Land tenure, including usufruct rights, land ownership, and tenure security, have also 

been examined as a driver of forest conservation outcomes (e.g., Bonilla-Moheno et al., 2013; 

Robinson et al., 2014; Skutsch et al., 2014; Blackman et al., 2015; Barnes et al., 2017; Hajjar et 

al., 2021). Mexico has a communal tenure system, known as “ejidos”, which provide usufruct 

rights over an area of land, requiring a group of ejidatarios to make land use decisions 

collectively (Bray et al., 2008). While some researchers have promoted community forest 

management as a key strategy for biological conservation in Mexico (e.g., Ellis & Porter-

Bolland, 2008; Porter-Bolland et al., 2012), other studies have found no significant relationship 

between tenure and forest loss outcomes (e.g., Bray et al., 2008; Mas & Cuevas, 2013; Skutsch et 

al., 2014). Additionally, establishing overlapping protected areas may weaken tenure security or 

undermine existing tenure systems, leading to increased biodiversity risks (Geldmann et al., 

2019).  

Biophysical Characteristics  

Physical characteristics of the landscape, such as slope and elevation, are often examined 

as a proxy for suitability for other land uses, such as agriculture and livestock grazing. Lands 
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with lower agricultural preparation costs are often more likely to be deforested (Busch & 

Ferretti-Gallon, 2017; Joppa & Pfaff, 2009; Vaca et al., 2019). Climate-related variables, such as 

temperature and precipitation, are also often examined as proxies for suitability and potential 

productivity. Areas with more ideal climate conditions are expected to be more at risk of 

clearance for development or agricultural use (Aide et al., 2012; Busch & Ferretti-Gallon, 2017). 

Proximity to water has been linked to increased agricultural activities (Vaca et al., 2019) and can 

increase accessibility of forests via water transportation (Bax & Francesconi, 2018). Previous 

research has found biophysical variables – specifically, temperature and elevation – to be 

stronger predictors of land cover change than socioeconomic variable at the municipality level in 

Mexico (e.g., Bonilla-Moheno et al., 2012) and across Latin America (e.g., Aide et al., 2012).  

Methods 

We use random forest regression in order to further investigate the relationships between 

design characteristics, socioeconomic and biophysical variables, and forest cover change in 

protected areas. In doing so, we demonstrate how random forest regression can help advance our 

understanding of drivers of protected area outcomes due to its capacity to examine a large 

number of predictor variables at once, while adjusting for multicollinearity and non-linear 

relationships (Breiman, 2001).  

 Data  

Data used in our analysis were gathered from publicly available sources (Table 2.1). This 

included five protected area design characteristics, 10 socioeconomic predictors, and six 

biophysical predictors. Our dependent variable was forest loss, accessed from Global Forest 

Watch (Hansen et al., 2013). We examined forest loss between 2015-2019, and aligned all other 

predictor variables with this time period. 
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Table 2.1: Summary of data and data sources.  

Independent Variables  Source 

Socioeconomic 

·    Distance to roads INEGI 
·    Distance to urban centers  INEGI 
·    Ejido tenure  INEGI 
·    Payment for ecosystem service (PES) enrollment  CONAFOR 
·    Population change WorldPop 
·    Population density WorldPop 
·    % population in extreme poverty CONEVAL1 
·    % population in moderate poverty  CONEVAL 
·    Roads density INEGI 
·    State CONANP 
Biophysical  
·    Ecoregions WWF 
·   Elevation USGS 
·    Precipitation WorldClim 
·    Proximity to water INEGI2  
·    Slope  USGS  
·    Temperature WorldClim 
Design Characteristics  

·    Age   CONANP 
·    Management effectiveness  CONANP 

·    Total area CONANP 

·    Strictness (protected area type)  CONANP 

Dependent Variable Source 

·    Forest Cover Loss GFW 
 

Scores from CONANP’s i-efectividad evaluation were used as our management 

effectiveness variables. The evaluation, conducted in 2017, is a standardized survey taken by 

protected area managers measuring five dimensions of management using 48 indicators. The five 

categories include: context and planning, administration and financial, use and benefits, 

governance and social participation, and management quality (see Comisión Nacional de Áreas 

Naturales Protegidas (2019) for more details). We used scores from each of the five dimensions 

 
1 CONEVAL - Consejo Nacional de Evaluación de la Política de Desarrollo Social 
2 INEGI - Mexico’s National Institute of Statistics & Geography 
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and an overall score calculated by CONANP.  

Poverty indicators were taken from a multidimensional poverty index developed by 

Mexico’s National Council for the Evaluation of Social Development Policy (Consejo Nacional 

de Evaluación de la Política de Desarrollo Social; CONEVAL). The multidimensional index 

measures access to social services, such as education, health services, housing quality, and 

access to sufficient food, in addition to sufficient income. CONEVAL defines moderate poverty 

as having insufficient income and lack of access to at least one social service. Extreme poverty is 

measured as having insufficient income and lack of access to three or more services. The poverty 

values are estimated at the municipality level. 

In addition to an extensive protected area network, Mexico has implemented a payment 

for ecosystem service (PES) program focused on watershed protection, biodiversity 

conservation, and carbon capture and storage since the early 2000s. Given the significant overlap 

with existing PES programs and protected areas across Mexico, and evidence that these 

programs have a positive and significant influence on forest conservation outcomes (e.g., Min-

Venditti et al., 2017; Sims & Alix-Garcia, 2017), we examined PES as a predictor of protected 

area outcomes. 

Data extraction was conducted in ArcMap Pro using 1km2 grid cells to extract variable 

values. Grid cells were created within protected areas with management effectiveness scores 

from CONANP’s i-efectividad management evaluation (n=77). We selected all cells in terrestrial 

protected areas with a baseline forest cover of 75% of the cell or greater in 2000 for a 

computationally feasible sample size. This excluded cells from 11 protected areas that were 

primarily marine or coastal and an additional 15 terrestrial protected areas in non-forested 

ecoregions. The final sample resulted in 30,888 grid cells in 51 protected areas. Grid cells with 
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missing data were removed from the analysis. See Appendix Table A1 for more specific details 

about data sources and data extraction.  

Analysis  

Random forest is a machine learning approach that can be used to classify a categorical 

variable or predict a continuous or binary dependent variable (i.e., regression) (Breiman, 2001). 

Random forest regression is a strong exploratory approach for analyses where there are many 

potential predictor variables with higher-order interactions and non-linear relationships 

(Breiman, 2001; Strobl et al., 2009). It uses a bootstrap aggregating, or “bagging”, approach to 

create multiple subsamples of a dataset for training and testing a model (Strobl et al., 2009). 

With the training data, the algorithm uses a split-variable randomization process to develop a 

collection of uncorrelated decision trees and averages the prediction across all trees (Hastie et al., 

2017). Averaging the predictions across a diverse set of trees reduces the variance and bias and 

ultimately, increases prediction performance. The remaining test data are used to measure the 

model’s predictive power. Using between 60-80% of the data is recommended for training, with 

the remaining 20-40% used for testing (Breiman, 2001). We used a 70:30 training-test split ratio. 

Random forest is often referred to as an “off-the-shelf” machine learning algorithm due 

to its high predictive capability with low hyperparameter tuning requirements (Hastie et al., 

2017). Optional tuning parameters for the model include the total numbers of trees (ntree) and 

the number of variables randomly sampled to split each tree node (mtry) (Breiman, 2001). 

Similar to Epstein et al. (2021), we used the caret package (Kuhn, 2008) in R (version 3.6.1) 

using RStudio (version 1.2.1335) to determine optimal tuning parameters and a 10-fold cross 

validation method to assess model accuracy (Epstein et al., 2021).  
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Our full model includes all sampling grid cells selected from forested protected areas 

across Mexico. To examine differences in deforestation predictors across forest type, we subset 

the data by ecoregion based on simplified terrestrial ecoregions from World Wildlife Fund 

(WWF) (Olson et al., 2001). The subsetting classified grid cells into five forest types: moist 

forest (n=15,087), dry forest (n=2,094), pine-oak forest (n=10,450), montane forest (n=592) and 

mangrove forest (n=1,541) (see Appendix Table A3 and A4 for more details). Separate random 

forest models were then run for each subgroup. Appendix Table A5 includes test and train data 

summaries for each model.  

We present the mean absolute error (MAE) as a measure of model performance (Chai et 

al., 2014; Willmott & Matsuura, 2005). In addition to the MAE, we report total variance 

explained (R2) and the importance values from each model. Random forest regression calculates 

importance values as the increase in node purity (IncNodePurity), or the reduction in the sum of 

square errors from splitting with each specific variable (Hastie et al., 2017). The values were 

adjusted using the caret package to fall along a 0-100 scale for interpretability.  

The importance values are an estimate of the level of influence of each variable in the 

prediction and does not reflect the direction of influence. Therefore, random forest analyses are 

often paired with partial dependence plots (PDP) or accumulated local effect (ALE) plots to 

better depict the nature and direction of the relationship (Apley & Zhu, 2020; Hastie et al., 2017). 

We use ALE plots to present the conditional relationship between our predictors and forest loss 

due to the multicollinearity of many of our predictor variables (see Apley & Zhu, 2020; Strobl et 

al., 2008). We use the iml package (Molnar et al., 2018) to produce ALE plots for the top nine 

most important variables in the final model and include all other ALE plots in Appendix A.  
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Results  

Descriptive Statistics  

The final sample contained grid cells in 51 protected areas located in 27 different states. 

Five protected area management categories were represented, including biosphere reserves 

(74%), flora and fauna protection areas (14%), national parks (6%), natural resource protection 

areas (6%), and national monuments (0.001%). The ages of the protected areas ranged from six 

years to 86 years (mean: 35 years). The smallest area was 20 km2 and the largest was 7,232 km2, 

with a mean of 3,806 km2. The median overall management effectiveness score was 74, with a 

minimum of 42 and maximum of 88 (mean: 72). The highest scoring management dimensions 

were governance and social participation (median: 87), management quality (median: 81), and 

use and benefits (median: 76).  

The average coverage of ejido tenure in the grid cells was 40%, and the average overlap 

with PES enrollment was 65% (Table 2.2; see Appendix Table A6 for descriptive statistics by 

forest type). Population density was relatively low, and the population change rate was negative, 

on average. The median estimate for the percent of the population in extreme poverty was 

23.5%, with around twice as many living in moderate poverty.  
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Table 2.2: Summary statistics of predictor variables. 

Variable Median Mean Standard Dev. Min Max 

Socioeconomic       

Distance to Roads (km) 3.20 4.12 4.07 0.00 14.99 

Distance to Urban Areas (km) 14.91 16.58 13.62 0.00 49.99 

Ejido Tenure (%) 0.00 39.55 46.85 0.00 100.00 

Extreme Poverty (%) 23.55 21.92 14.02 0.18 69.97 

Moderate Poverty (%) 48.27 45.19 8.62 4.23 72.25 

PES (%) 100.00 65.32 46.73 0.00 100.00 

Pop. Change Rate (△pop/km2) -0.01 -0.49 3.86 -205.23 8.38 

Pop. Density (pop/km2)  0.37 5.28 39.53 0.00 1,959.03 

Road Density (0-5) 0.09 0.24 0.43 0.00 4.15 

Biophysical      

Elevation (m) 600.00 906.52 853.16 1.00 3,618.00 

Distance to Water (km) 1.07 2.06 2.73 0.00 14.99 

Precipitation (mm) 1,154.00 1,240.35 570.07 281.00 3,100.00 

Slope (degree) 2.69 4.64 5.30 0.00 31.85 

Temperature (°C) 22.00 19.85 5.07 6.00 27.00 

Design Characteristics      

Age (years) 32.00 35.27 16.41 6.00 86.00 

Area (km2) 3,312.00 3,806.00 2,379.00 20.00 7,231.00 

Mngmt Effectiveness 74.00 72.24 11.28 42.00 88.00 

ME: Context 71.00 69.22 12.73 41.00 95.00 

ME: Admin 56.00 56.37 7.60 17.00 92.00 

ME: Use 76.00 77.08 17.18 38.00 100.00 

ME: Governance 87.00 83.1 17.67 30.00 100.00 

ME: Mngmt Quality 81.00 77.91 15.93 38.00 90.00 
 
 

A correlation analysis found multiple predictors to be correlated, further emphasizing the 

need for modelling methods that control for multicollinearity when exploring a variety of 

potential drivers of forest loss. Correlated variables occurred within the same variable category 

(e.g., socioeconomic, biophysical, design characteristics), including temperature and elevation (r 

= -0.95), population density and population change (r = -0.97), and the overall management 

effectiveness score with individual management categories (governance and social participation, 
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r = 0.91; management quality, r = 0.92), as well as across categories, such as percent of the 

population in extreme poverty and precipitation (r = 0.76) and overall management score and 

elevation (r = -0.63). A full list of Pearson correlation coefficients is included in Appendix A 

(Appendix Table A7).  

We find evidence of overall forest loss between 2015 and 2019, with a mean baseline 

forest loss of 1.19% per cell (median: 0) (Table 2.3). While the mean is relatively low, there 

were a few outliers, with 27 cells losing over 75% of forest cover, 11 of which lost over 90%. 

We find variation in the rate of forest loss by ecoregion, with the highest rates of deforestation 

occurring in moist forests (1.93%), followed by montane forests (1.72%) (Table 2.3). Dry forests 

(0.28%) and pine-oak forest (0.40%) experienced the lowest rates of forest loss across the five 

forest types.  

Table 2.3: Forest loss summaries, calculated as percent of the baseline forest area lost per cell 
between 2015-2019.  

Forest Type  Mean Forest Loss  (%) Standard Dev. Max Forest Loss (%) 

Moist Forest 1.93 7.00 98.97 

Montane Forest  1.72 4.01 28.00 

Mangrove Forest   0.53 3.48 81.54 

Pine-oak Forest 0.40 2.58 68.56 

Dry Forest  0.28 1.69 38.42 

All Forests 1.19 5.45 98.97 

 

Random Forest Model 

The random forest model was able to predict about 60% of the variance in the full 

dataset, with model fit varying by forest type. The highest variance was explained in moist 

forests (R2=0.61; MAE=1.38), followed by montane forests (R2=0.43; MAE=1.57), and 
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mangrove forests (R2=0.28; MAE=0.92). The dry forest model had very low explanatory power, 

with only 12% of the variance explained (MAE=0.40) (Appendix Table A8).  

Figure 2.1 presents variable importance using an inclusion cutoff value of 1.0 to increase 

figure interpretability. Three variables were under the 1.0 cutoff, including the overall 

management effectiveness score (0.84), the context and planning dimension of management 

effectiveness (0.72), and protected area strictness, with biosphere reserves having the strongest 

influence of all protected area types at 0.09. All biophysical and socioeconomic variables were 

above the cut-off in at least one category (e.g., moist forest, state of Tabasco). Notably, the top 

12 variables of importance were all socioeconomic or biophysical variables, and the first nine 

had a substantially higher importance value than all remaining variables (importance value [IV] 

of top nine > 40). 
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Figure 2.1: Variable importance (increase in node purity) from the final full forest model. 
Importance values are an estimate of the level of influence and do not indicate direction of 
influence. A 1.0 cutoff value of importance was used to increase figure interpretability. 
Management effectiveness components indicated by “ME: (component name)”. Specific 
protected areas are indicated by “PA: (name)”. 

We found road density to have the highest importance in predicting forest loss (IV= 100), 

followed by the biophysical variables of distance to water (IV= 88) and precipitation (IV= 87) 

(Figure 2.1). Other key socioeconomic variables included population density (IV= 78), 

population change (IV= 60), and road distance (IV= 58). Percent of the population in moderate 

poverty (IV= 7), extreme poverty (IV= 8), and enrollment in PES programs (IV= 4) had the 

lowest influence, although still above the 1.0 cut-off and higher than most protected area design 

characteristics. Additional biophysical variables of high importance were elevation (IV= 73) and 
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slope (IV= 51), with temperature (IV= 9) having the lowest influence of the biophysical 

variables.  

The protected area design characteristic with the highest importance value was the 

governance and social participation dimension of management effectiveness (IV= 9). This 

reflects the degree to which all stakeholders’ rights are recognized and respected, and the level of 

involvement from local communities and neighboring resource users in management decision-

making. The second most influential design variable was protected area size (IV= 3), followed 

by a second management dimension, use and benefits (IV= 2), which measures the fair 

distribution of benefits for all stakeholders, including the promotion of sustainable use of natural 

resources in the area. In addition to these variables, a number of specific protected areas were 

found to be strong predictors of forest loss, which included Cañon del Usumacinta (IV= 3.1), 

Montes Azules (IV= 1.7), Calakmul (IV= 1.6), and Cascada de Agua Azul (IV= 1.2).  

Accumulated Local Effects (ALE)  

To better understand the relationships between the variables of highest importance and 

forest loss, we produce ALE plots for the nine strongest forest loss predictors (Figure 2.2). The 

results show that none of the relationships are linear. We find that higher road density increases 

the risk of forest loss. More specifically, we found a steep increase as road density begins to 

increase, with some variation, then leveling off after a road density of 1.5 (out of 5). We found a 

decreased risk of forest loss as distance from roads and urban areas increased until about 8km 

and 20km, respectively. Risk then gradually increased as protected areas become remote and 

farther from roads. There was high uncertainty in the influence of population density and 

population change on forest loss. 
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Figure 2.2: Accumulated local effect (ALE) plots displaying conditional relationships between 
predicted forest loss and top 9 variables of importance. ALE values represent the change in 
predicted forest loss at a given value compared to the average prediction. 95% confidence 
interval shaded in grey.  

The risk of forest loss sharply declines within 1km of water, but then increased from 

around 1.25 km until approximately 7 km. The direction of the relationship between forest loss 

risk and precipitation varied, with a decrease in forest loss at low levels of precipitation, which 

begins to increase around 1,200 mm, before ultimately dropping off again at very high levels of 

precipitation of around 2,700 mm. We found a reduction in forest loss risk as elevation increased 

to about 800m, then leveling off. A similar pattern was found with slope and forest loss, with risk 
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decreasing until around a 7-degree slope, then ultimately beginning to increase in risk, though 

with some uncertainty. ALE plots for additional predictor variables are included in Appendix A.  

 Forest Subgroup Analysis  

While there was some variation across the forest type subgroups, the patterns of variable 

importance were qualitatively similar, with the five most important variables across all subgroup 

models being socioeconomic and biophysical characteristics (Figure 2.3). The most important 

variable for montane and pine-oak forest models were socioeconomic characteristics of 

accessibility (road density) and human pressure (urban distance). Biophysical characteristics 

were the most important variables for moist forests (precipitation), mangrove forests (distance to 

water), and dry forest models (distance to water). However, the socioeconomic variables of road 

density and population density were found to have equal importance in the moist forest and 

mangrove forest models respectively (both IV = 98). Protected area design characteristics were 

not ranked in the top five of any subgroup.  
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Figure 2.3: Top 5 variables of importance from forest type subgroups. 

Discussion  

Our study uses a novel approach to increase our understanding of the drivers of protected 

area outcomes. Random forest regression has been highlighted as a useful exploratory approach 

for identifying important predictors of marine protected area performance (e.g., Edgar et al., 

2014; Franco et al., 2016; Gill et al., 2017), as well as to examine drivers of deforestation 

broadly (i.e., irrespective of protected areas) (e.g., Aide et al., 2012; Bax & Francesconi, 2018; 

Bonilla-Moheno et al., 2012), drivers of protected area placement (Baldi et al., 2017), factors 

leading to social and conservation protected area outcomes in a meta-analysis (Oldekop et al., 

2016), and most recently, predictors of forest monitoring by forest-user groups (Epstein et al., 

2021). However, its application for understanding drivers of terrestrial protected area outcomes 
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remains relatively unexplored. Here we demonstrate its utility in advancing our understanding of 

the key variables driving forest loss inside protected areas.  

Overall, we find that protected area placement, including the socioeconomic context and 

landscape characteristics, has substantial influence over protected area success. More 

specifically, we find that most socioeconomic and biophysical variables are stronger drivers of 

protected area outcomes than protected area design characteristics such as size, strictness, and 

management effectiveness (Figure 2.1). We found this pattern across all five forest types and the 

full model, with slight variations in the variables of importance across different forest types 

(Figure 2.3). Within protected area design characteristics, we find variables reflecting 

collaborative management and equity and protected area size to be the strongest predictors of 

forest loss, albeit with less explanatory power than socioeconomic and biophysical variables.  

Our ALE plots provide evidence of the complexity of the relationships between various 

predictors and observed forest loss, suggesting that protected area evaluations are frequently 

oversimplifying these relationships by using conventional modeling approaches which assume 

linearity when examining drivers of forest loss outcomes in protected areas, including 

generalized linear models, probit regressions, or ordinary least squares regressions. We build 

upon the small number of studies that have examined the complexity of the relationship between 

potential drivers of forest loss and deforestation by using higher resolution data for a finer spatial 

scale of analysis, while also examining a new temporal period of forest loss (e.g., Bonilla-

Moheno et al., 2012), as well as using ALE plots (rather than PDP plots) to estimate the 

conditional relationship of predictor variables and forest loss, accounting for multicollinearity 

among predictor variables (e.g., Bonilla-Moheno et al., 2012; Bax & Francesconi, 2018).  
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Socioeconomic Factors  

We find socioeconomic variables to be strong predictors of forest loss across all models, 

including proxies for development pressures and forest accessibility (Figure 2.1). Existing 

research has often highlighted the negative effects of linear infrastructure, such as roads, on 

forest conservation (e.g., Busch & Ferretti-Gallon, 2017; Laurance et al., 2009; Mendoza-Ponce 

et al., 2018). In a meta-analysis of drivers of forest loss, Busch & Ferretti-Gallon (2017) found 

that the presence of roads was consistently correlated with higher forest loss across over 100 

studies. Our results align with previous findings, identifying road density and road distance as 

strong predictors of forest loss outcomes (Figure 2.1) and demonstrating the increased risk of 

forest loss in areas closer to roads and with higher road density (Figure 2.2a and 2.2g). However, 

we also find that more remote areas (i.e., far from roads and urban areas) experience an increased 

risk of forest loss.   

We found high levels of uncertainty in the relationship between forest loss and human 

populations (see Figure 2.2d and 2.2f). This uncertainty may reflect the complex and sometimes 

contradictory relationships between human population centers and forest cover change. For 

example, larger populations near protected areas can increase the demand for resources and 

employment opportunities in extractive industries (Busch & Ferretti-Gallon, 2017). 

Alternatively, neighboring populations can increase surveillance for conservation efforts and be 

encouraged to engage in more environmentally sustainable livelihoods (e.g., eco-tourism, forest 

concessions, honey production) (Andam et al., 2008; Barnes et al., 2017; Solorzano & 

Fleischman, 2018). Solorzano and Fleischman (2018) found that tenure legacies, political 

inequality, and economic opportunities can also influence community support for conservation 

efforts in biosphere reserves in Mexico and Guatemala. Future research should try to incorporate 
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additional socioeconomic variables to those included here, such as tenure legacy, livelihood 

opportunities, and tourism rates, to attempt to clarify some of the uncertainty found in the ALE 

plots.   

Biophysical Characteristics  

Our model found that precipitation and distance to water had a strong influence on forest 

conservation outcomes. Precipitation has been found to be a key predictor of forest loss in 

previous studies in Mexico (Bonilla-Moheno et al., 2012; Roy Chowdhury, 2006) and across 

Latin America (Aide et al., 2012). Additionally, Bax and Francesconi (2018) found distance to 

rivers and precipitation to be the second and third most important variables in predicting forest 

loss in Peru, with similar non-linear patterns found using partial dependence plots. Water access 

from rivers can increase forest accessibility (similar to roads), influencing human settlement and 

resource extraction patterns (Bax & Francesconi, 2018). Precipitation can influence agricultural 

productivity, however, landscape wetness was found to be negatively correlated with 

deforestation in a recent meta-analysis due to higher rates of wetness decreasing agricultural 

suitability (Busch & Ferretti-Gallon, 2017). Our ALE plots demonstrate this relationship with 

greater detail, finding that risk of forest loss increases as precipitation increases followed by a 

potential decline around 2,700mm, though with less certainty. Additionally, we also found high 

levels of predicted forest loss at very low precipitation values, which could reflect higher fire 

risk. To test for this, we examined the relationship between fire burn scars and forest loss, but 

found little evidence of correlation with the data used (Appendix Table A9 and A10).  

Protected areas are more often established in places less-suited to alternative land uses, 

such as higher elevations and areas with steeper slopes (Baldi et al., 2017; Joppa & Pfaff, 2009). 

While neither of these variables were the strongest determinants of forest loss in our analysis, we 
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find that they do have some influence over protected area outcomes, similar to other research in 

Mexico (e.g., Pfaff et al., 2017). Our ALE results support prior research, finding high risk of 

forest loss at lower elevations and low slopes, depicting areas with potentially lower agricultural 

preparation costs and favorable conditions for livestock grazing. We also find a substantial 

increase in forest loss risk at steep slopes, which has also been linked to fire risk, since fire 

containment is more challenging in steeper landscapes (Vaca et al., 2019). Future research 

should expand on these findings to better understand what determines directional thresholds in 

each of the non-linear predictor variables.  

Protected Area Design Characteristics  

There has been a recent call to make protected areas more just and equitable (Franks & 

Schreckenberg, 2016; Jonas et al., 2021; Zafra-Calvo et al., 2017), with related indicators being 

integrated into the most recent protected area global Green List standards (IUCN, 2016). 

Community involvement in protected area decision-making has previously been found to 

increase support for conservation efforts, and ultimately to increase protected area success 

(Andrade & Rhodes, 2012; Solorzano & Fleischman, 2018). We find the most important 

protected area management variables to be governance and social participation, with use and 

benefits shortly below. In general, the relationships trended negative, with higher scores resulting 

in lower risks of forest loss, contributing evidence in support of efforts to make protected areas 

more collaborative and equitable. Additionally, given that our analysis found the main drivers of 

forest conservation outcomes to be proxies for human pressure, the involvement and equitable 

benefit sharing with all stakeholders may serve as a key response to these threats.  

The administrative and financial management components were also ranked in the 

importance plot, albeit lower than expected. Financial resources and human capacity are 
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consistently highlighted as key drivers for protected area success, and have been known to be 

limited on a global scale (e.g., Coad et al., 2019; Gill et al., 2017). Our findings continue to 

support existing research, highlighting the importance of sufficient management resources for 

protected area success, while also contributing concrete evidence on the importance of additional 

management characteristics, such as collaboration and shared decision-making. 

Four individual protected areas were ranked as having a strong influence on forest loss 

outcomes, all experiencing higher levels of forest loss than expected. Two of the protected areas 

were biosphere reserves and the other two were flora and fauna protection areas. The four areas 

were all located in southern Mexico, but in three different states. Three of the areas were located 

either on (Cañón del Usumacinta, Calakmul) or close to (Montes Azules) the border with 

Guatemala. More research should be done to better understand the unique characteristics of these 

areas that may be driving these outcomes.  

Study Implications  

Our subgroup comparison showed that the variables used in our analysis, gathered from a 

review of relevant literature, explained the greatest variance for deforestation in moist forests. 

Additionally, we found the greatest rates of forest loss between 2015-2019 to be in moist forests, 

similar to previous research in Mexico (Bonilla-Moheno et al., 2012), Latin America (Aide et al., 

2012), and global analyses (Hansen et al., 2013; Laurance et al., 2012; Spracklen et al., 2015). 

Given these rapid rates of forest loss, and the immense amount of biodiversity that moist tropical 

forests harbor, it is critical that we continue to advance our understanding of drivers of forest loss 

in this ecoregion. However, future research should also aim to better understand drivers in the 

other forest types, including dry forests and pine-oak forest, given that they also provide critical 
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ecosystem services, are experiencing loss, and commonly-used predictor variables were found to 

have lower explanatory power for deforestation in these areas.  

Our findings highlight the importance of placement characteristics in shaping protected 

area outcomes, including proximity to human populations, road access, waterways, and the 

physical characteristics of the landscape. This has important implications for protected area 

managers, as well as researchers. By combining results of our ALE plots, landscape-level 

patterns can be identified to determine areas with the highest deforestation risk (e.g., areas at low 

elevation with low slopes, areas close to urban areas and roads, areas with cooler temperatures 

and higher levels of precipitation) and resources can be appropriately allocated to protected areas 

that may face the greatest threat based on these characteristics. Additionally, given current rates 

of environmental change driven by factors such as urban sprawl and climate change, threats to 

global biodiversity are likely to shift, and less threatened protected areas may face increasing 

pressures in future. Identifying the important design and management characteristics that can 

counter this pressure will be key to future conservation success.  

Researchers have called for more careful protected area effectiveness evaluations after 

finding evidence of protected area placement biases (see Joppa & Pfaff, 2009; Baldi et al., 2017). 

In response, impact evaluations that estimate a counterfactual (i.e., what would have happened if 

the area was not protected) are now commonly used to account for these biases (e.g., Andam et 

al., 2008; Baylis et al., 2016; dos Santos Ribas et al., 2020; Pressey et al., 2015; Schleicher et al., 

2019). Our findings reinforce the need for counterfactuals in protected areas evaluations, given 

that many variables driving outcomes are external to protected area design. We demonstrate the 

utility of random forest as an exploratory method, which can be used to help inform matching or 
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other counterfactual design measurements, in order to avoid omitted variable biases and, 

ultimately, design more accurate evaluations.   

Limitations 

Data availability is a common limitation when conducting spatial analysis with secondary 

data. Moreover, determining drivers of forest loss requires close temporal alignment of 

independent variables with observed loss (except for those which may have a lag effect), further 

narrowing appropriate data. We recognize that our list of predictors is not comprehensive and 

that there may be variables not included that can be strong predictors of forest loss. For example, 

a marginalization index from 2010 was found to influence forest loss in a previous study 

conducted at the municipality-level in Mexico (Bonilla-Moheno et al., 2012) and livestock 

density was negatively correlated with forest conservation in another (Mas & Cuevas, 2015). 

However, to our knowledge, neither were available for our time period of focus.  

A second limitation to spatial analyses is the lack of spatial referencing of complex 

variables, such as tenure security, market forces, community dynamics, and other institutional 

variables (Vaca et al., 2019). We recognize that some variables included in our analysis may be 

oversimplified. We attempted to capture some complex institutional relationships by using a 

multidimensional poverty index, which considers access to social services in addition to income. 

However, we acknowledge that there may be other key social and institutional factors driving 

outcomes that are not accounted for, such as tenure security (see Robinson et al., 2014), overlap 

with Indigenous lands (see Garnett et al., 2018), and tenure and political trends pre-dating  

protected area establishment (see Solorzano & Fleischman, 2018).  
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Conclusion 

We present evidence on the drivers of protected area forest conservation outcomes, 

finding socioeconomic and biophysical variables to be more influential than protected area 

design characteristics. Of protected area design characteristics, we find that variables reflecting 

inclusion of relevant stakeholders and the fair distribution of benefits to be strong predictors of 

outcomes. Our findings provide important information for protected area management and 

planning by identifying characteristics that can reduce protected area success and inform 

resource allocation to address those threats. We also strengthen the argument for protected area 

impact evaluation methods that calculate a counterfactual since we found that a number of 

external variables strongly influenced deforestation outcomes and can thus bias evaluation 

results. Finally, our study highlights a number of future research opportunities, including more 

investigation into thresholds determining the direction of influence of predictors, as well as 

building more evidence on drivers of forest loss across different forest types. 
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CHAPTER 3: MANAGEMENT EFFECTIVENESS POSITIVELY INFLUENCES FOREST 
CONSERVATION OUTCOMES IN PROTECTED AREAS 

 
 
 

Chapter Summary 

Understanding the factors that drive protected area outcomes is critical for increasing the 

success of global conservation efforts. Until recently, our understanding of the influence of 

management effectiveness has been restricted by the limited availability of standardized 

management data and study design limitations of prior evaluations. Here we use a quasi-

experimental matching approach to test the influence of management effectiveness on forest 

cover change inside 46 protected areas in Mexico using the results of a recently developed 

national assessment. We test the influence of five management categories, including context and 

planning, administrative and finances, use and benefits, governance and social participation, and 

management quality, as well as an overall effectiveness score, using a subgroup analysis and an 

interaction term in multiple linear regression. Our results find that protected areas with higher 

management effectiveness have a greater effect on reducing deforestation compared to those 

with low management effectiveness, but that both types of protected areas experience less forest 

loss compared to similar unprotected areas. We find this trend in all five of the management 

categories and the overall score, with administrative and finance scores having the greatest effect 

on forest loss outcomes. Our findings suggest that forest conservation requires careful design 

andplanning, effective participation from multiple stakeholders and equal sharing of benefits, 

and sufficient human and financial capital in order to be effective at preventing forest loss.3 

 

 
3Reference for publication: Powlen, K. A., Gavin, M. C., & Jones, K.W. (2021). Management 
effectiveness positively influences forest conservation outcomes in protected areas. Biological 
Conservation 260, 109192. 
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Introduction 

Protected areas are a widely promoted tool to conserve the world’s remaining forests, and 

have significantly expanded since the adoption of the Aichi Targets by the Convention of 

Biological Diversity (Butchart et al., 2015; Convention on Biological Diversity, 2010). While we 

are on track to reach global goals for protected area coverage, less progress has been made on 

other global goals, including minimal improvements in the loss and fragmentation of natural 

habitats and the restoration of ecosystems that provide essential services (Secretariat of the 

Convention on Biological Diversity, 2020). In light of this disconnect between protected area 

establishment and conservation metrics, it is critical that we gain a better understanding of what 

drives conservation outcomes for the effective pursuit of biodiversity goals.   

In addition to increasing global terrestrial protected area coverage to 17%, the CBD calls 

for the effective and equitable management of protected areas (Convention on Biological 

Diversity, 2010). Management effectiveness is expected to lead to better conservation outcomes 

as more strategic planning, better monitoring capacity, improved accountability and 

transparency, and sufficient human and financial resources should theoretically result in more 

effective enforcement and governance (Coad et al., 2013; Coad et al., 2015; Dudley & Stolton, 

2009; Geldmann et al., 2018; Nolte & Agrawal, 2013). However, until recently, these theoretical 

links remained largely untested due to limited data on de facto management (i.e., how 

management actions are carried out on the ground) and a lack of counterfactual evaluation. Our 

study overcomes both limitations by using a rigorous impact evaluation design to examine the 

influence of management effectiveness scores on protected area outcomes using the results of a 

recently developed national management effectiveness assessment in Mexico.   
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Management effectiveness assessments, known as Protected Area Management 

Effectiveness (PAME) tools, have been designed to increase and standardize protected area 

management monitoring (Coad et al., 2013, 2015; Geldmann et al., 2015, 2018; Hockings et al., 

2015; Leverington et al., 2010). These assessments focus on the design and planning, capacity 

and resources, and decision-making processes of protected areas (Hockings et al., 2006; Stolton 

& Dudley, 2016). In addition to strengthening efforts to meet global conservation goals, many 

conservation organizations have adopted these assessments as a measurement of protected area 

success, and the results play an important role in conservation investments by large donors, such 

as the Global Environmental Facility (GEF) (Nolte & Agrawal, 2013).  

Scores from management effectiveness assessments provide new opportunities to 

examine de facto management rather than de jure management (e.g., IUCN management 

categories) used in previous studies (Ferraro et al., 2013; Muñoz Brenes et al., 2018). To date, 

few impact evaluations have critically examined the relationship between de facto management 

and biodiversity outcomes (Coad et al., 2015). As of 2015, an estimated 17,700 PAME 

assessments had been conducted in over 9,000 protected areas (Coad et al., 2013), but a review 

from the same year found only nine studies, from peer-review and gray literature, that could be 

summarized as evidence on the relationship between PAME scores and biodiversity outcomes 

(Coad et al., 2015). Of those nine studies, only three studies used counterfactual evaluation, and 

all three of these studies found no correlation between management effectiveness and 

biodiversity outcomes (Coad et al., 2015). 

Evidence from other existing impact evaluations have drawn inconsistent conclusions 

about the influence of management effectiveness on conservation outcomes. For example, 

Geldmann et al. (2018) found only management characteristics related to staff and budget had a 
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significant relationship with vertebrate abundance in global protected areas, while other studies 

have found no relationship between management effectiveness scores and forest loss mitigation 

in Brazil (Nolte et al., 2013) or forest fire mitigation in the broader Amazon basin (Nolte & 

Agrawal, 2013). Additionally, while a few existing impact evaluations have attempted to link 

assessment scores to conservation outcomes on a global scale (e.g., Geldmann et al., 2018, 2019; 

Leverington et al., 2010), national-level evaluations have been largely concentrated in Brazil and 

the Amazon basin region (e.g., Carranza et al., 2014; Nolte & Agrawal, 2013; Nolte et al., 2013).  

The limited empirical research critically examining the relationship between management 

effectiveness and conservation outcomes, as well as the importance of measuring management 

effectiveness for global conservation goals and conservation funding, warrants further 

investigation. We contribute to this body of evidence by conducting an evaluation of the impacts 

of management effectiveness on forest cover loss in 46 terrestrial protected areas in Mexico, a 

biodiversity hotspot. We link the results of a standardized management effectiveness assessment 

developed by Mexico’s National Commission of Natural Protected Areas (CONANP) to forest 

loss data inside protected areas and use matching techniques to more accurately measure the 

influence of five different management dimensions, as well as an overall management score, on 

changes in forest cover.  

Mexico provides a unique opportunity to examine the influence of management 

effectiveness on protected area performance due to recent advances in management effectiveness 

monitoring across its extensive protected area network, estimated at 14.5% of terrestrial area and 

21.6% of marine area (UNEP-WCMC, 2021). Similar to other regions of the world, researchers 

have found variability in the performance of Mexico’s protected area network (e.g., Blackman 

et al., 2015; Figueroa & Sanchez-Cordero, 2008; Figueroa et al., 2011; Pfaff et al., 2017; 



  

 45 

Sánchez-Cordero et al., 2011; Sims & Alix-Garcia, 2017). For example, Pfaff et al. (2017) 

found stricter protected areas to be more successful at slowing forest loss compared to mixed-

use protected areas in Mexico, while Blackman et al. (2015) found mixed-use protected areas 

were more successful at slowing deforestation, in addition to those that were larger and newer, 

over a slightly different time span.  

Efforts to monitor management effectiveness in Mexico’s protected area network have 

been ongoing since 2005 (Comisión Nacional de Áreas Naturales Protegidas, 2019). However, 

in 2016, CONANP developed a new national assessment (i-efectividad, or El Sistema 

Permanente de Evaluación de la Efectividad del Manejo de las Áreas Naturales Protegidas 

Federales de México) to collect standardized results using indicators from four existing 

international PAME evaluation frameworks. While the role of management effectiveness in 

protected area success has been examined in three marine protected areas in the Yucatan 

Peninsula (Herrejón et al., 2020), and financial resources have been examined as a driver of 

outcomes in 56 terrestrial protected areas across Mexico (Blackman et al., 2015), this is the first 

study to test the influence of a comprehensive suite of management dimensions on conservation 

outcomes in Mexico using the results of CONANP’s recently developed assessment. By 

identifying the specific management factors that have the greatest influence on conservation 

outcomes, our results serve to inform more efficient investments in protected areas to ensure 

better protection of global biodiversity. 

Methods  

Data  

Data extraction was completed using ArcMap 10.7 and data analysis was conducted 

using R statistical software. Similar to Nolte & Agrawal (2012), we created sampling grid cells 
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of 1 km2 and used the Global Forest Watch (GFW) forest cover data to randomly select 80,000 

forested grid cells across Mexico for a computationally feasible final sample. Due to the 

distribution of ecoregions across Mexico, many of the grid cells included in our analysis were 

concentrated in southern Mexico. Grid cells in northern Mexico, which is primarily North 

America Desert, were more scarce.  

The final sample consists of 60,000 cells outside of protected areas and 20,000 inside 

protected areas. Retaining a greater number of cells outside of protected areas increases the 

probability of strong matches with protected cells due to a greater variety of control group 

characteristics. We found no evidence of spillover effects, or the displacement of deforestation 

from protected areas to adjacent unprotected areas, within a 5km and 10km buffer around each 

protected area (Appendix Table B1). Therefore, we did not exclude grid cells within a buffer 

region of protected areas in the final sample.  

We use protected area data from the World Database on Protected Areas (IUCN & 

UNEP-WCMC, 2019) and the scores of CONANP’s management effectiveness evaluation to test 

the influence of management effectiveness on performance in all forested protected areas with 

scores available. At the time of our analysis, 76 of the 123 protected areas with existing 

management plans had available management effectiveness scores. Our sub-sample of the 46 

forested protected areas represents 62% of the 76 protected areas with completed evaluations, 

accounting for 37% of all protected areas with management plans in Mexico (Figure 3.1, full list 

included in Appendix Table B2).  
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Figure 3.1: Map of the 46 protected areas included in the analysis. Management effectiveness 
subgroup were split at the median (i.e., high management effectiveness score ≥ 74 and low 
management effectiveness score < 74).  
 

The management effectiveness evaluation, like many of the PAME tools, is a self-

administered survey and responses are provided by management personnel. It consists of 48 

indicators organized into five management categories, including context and planning, 

administration and finance, use and benefits, governance and social participation, and 

management quality, each category with a score on a scale from 0-100 (Table 3.1). We use 

scores from a one-time response in 2017.  
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Table 3.1: Examples of indicators in the five management categories listed in CONANP's 
management effectiveness evaluation.  

Category Indicator Examples 

Context and Planning  
Existence of a management plan, work plan, monitoring and 
evaluation plan, documentation of natural and cultural resources 

Administration and Finance  
Sufficient financial resources, human capacity, appropriate 
equipment  

Use and Benefits  
Economic benefits, sustainable use or production within the 
boundary, appropriate infrastructure for use and visitation 

Governance and Social 
Participation 

Recognition and respect of rights of all stakeholders, 
participation from local communities and neighboring resource 
users, education and outreach programs   

Management Quality  
Area is managed to objectives, sufficient information and active 
management strategies are used for threats or endemic species  

 
For the outcome variable, we use data on annual forest cover loss from Global Forest 

Watch (GFW), the most comprehensive high-resolution data available on global forest cover 

(Hansen et al., 2013). We define protected area performance as forest loss between 2017-2019, 

assuming that management effectiveness did not change significantly in the two years after the 

CONANP assessment was conducted. Additionally, we recognize that changes in forest cover 

from 2017-2019 may also be due to management characteristics that predate 2017, for which we 

have no reliable data to test. 

We include socioeconomic, ecological and climatological variables in our analysis to 

control for confounding factors, similar to prior protected area evaluations (e.g., Blackman et al., 

2015; Nolte & Agrawal, 2013; Pfaff et al., 2017) and due to the significant differences found in 

the subgroups of our analysis (e.g., protected area and unprotected area). These variables include 

elevation, slope, distance to roads, road density, distance to urban centers, population density, 

average temperature, rainfall, and ejido (communal) land tenure (list of data sources included in 

Appendix Table B3).   
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Prior evaluations have found distance to roads and road density to have a negative 

influence on forest conservation outcomes due to roads increasing access and opportunities for 

extraction of forest resources (e.g., Joppa & Pfaff, 2009; Kere et al., 2017; Oliveira et al., 2007). 

Slope and elevation have been linked to agricultural and urban development suitability, similar to 

temperature and rainfall (e.g., Blackman, 2015; Joppa & Pfaff, 2009; Nolte & Agrawal, 2013). 

Flatter areas and more favorable weather conditions can increase forest clearing for agricultural 

production or other development. Proximity to urban areas and higher population density can 

increase deforestation due to space and resources needed to support the human population, as 

well as market integration opportunities (e.g., Leberger et al., 2019; Nolte & Agrawal, 2013; 

Waldron et al., 2017). Finally, land tenure has been found to influence conservation outcomes, 

with some community-owned forests producing better outcomes than protected areas (e.g., 

Durán-Medina et al., 2005; Porter-Bolland et al., 2012). We controlled for tenure in our analysis 

due to the substantial overlap of ejidos and protected areas in Mexico. 

Analysis  

To accurately measure causal effect relative to a counterfactual, impact evaluation design 

is needed to account for hidden biases in intervention placement (Baylis et al., 2016). Matching 

is one approach used to control for such biases, and can help account for non-randomly assigned 

treatment groups by increasing similarities among predictive variables, or observable covariates, 

within treatment and non-treatment groups (Austin, 2011; Schleicher et al., 2019; Stuart, 2010). 

We implement matching following the best practices outlined by Schleicher et al. (2019).  

Prior to matching, we examined correlation coefficients between all socioeconomic, 

ecological, and climatological covariates to minimize potential multicollinearity and maximize 

model fit (Appendix Table B4). We selected six covariates that were not highly correlated and 
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that were significant predictors of both forest loss and protected area status (Appendix Table 

B5). The final six covariates used in matching included elevation, slope, urban distance, road 

distance, average yearly rainfall, and ejido tenure. 

We used two matching algorithms to match protected and unprotected cells: Propensity 

Score Matching and Mahalanobis Distance Matching. We used a one-to-one matching without 

replacement for both algorithms and tested a caliper of 0.2 standard deviations and 0.1 standard 

deviations when necessary to improve match quality (Imbens & Rubin, 2015; Stuart, 2010). We 

evaluated the quality of each match by calculating the standardized bias (SB) and examined 

potential biases from omitted variables using Rosenbaum bounds sensitivity test (Γ), a measure 

of the amount of change in a confounding factor required to undermine the statistical 

significance of the treatment effect (Rosenbaum, 2002).  

The influence of management effectiveness on protected area outcomes was measured by 

(1) calculating average treatment effect (ATE) across matched management subgroups and (2) 

using an interaction term in a general linear regression model. For the subgroup analysis, let 

Dhe=1 if the grid cell has a high management effectiveness score and equal to 0 if unprotected 

and Dle=1 if the grid cell has a low management effectiveness score and 0 if unprotected. The 

median management effectiveness score was used as the cutoff between high and low 

management effectiveness protected areas. Y is the continuous forest loss between 2017-2019. 

After selecting the most balanced match for each subgroup, we calculated ATE as the difference 

in mean outcomes between treatment and control cells, or [Σ (Y|Dhe=1)-Σ(Y|Dhe=0)] and 

[Σ(Y|Dle=1)-Σ(Y|Dle=0)], using t-tests.  

To account for possible remaining imbalances, we also examined the significance of the 

treatment effect for each matched group using a multivariate linear regression, which included 
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the six covariates used in matching as independent variables. Specifically, we regressed the 

binary treatment dummy variables (Dhe and Dle) and the six covariates (CoVar) outlined above 

on Y, as follows:  

Equation 1: Y = β0+ β 1Dhe+ β 2CoVar1+ …+ β 7CoVar6+U  

for the high management effectiveness subgroup and  

Equation 2: Y = β0+β 1Dle+ β 2CoVar1+ …+ β 7CoVar6+U  

for the low management effectiveness subgroup.  

We used robust standard errors, U, in both regressions after finding evidence of 

heteroscedasticity among the residuals using a Breusch-Pagan test.  

Second, we used an interaction term in a multivariate linear regression to test for a 

moderating effect of management effectiveness. While both subgroup analysis and interaction 

effects are used to test for moderating effects in impact evaluation, the use of an interaction term 

allows for more variation in the moderator compared to a subgroup approach (Sills & Jones, 

2018). The moderating effect of management effectiveness in this analysis is estimated as 

follows: 

Equation 3: Y = β0 + β 1(PA * Dc) + β 2CoVar1 + … + β 7CoVar6 + U, 

where PA is a treatment dummy variable equal to 1 if the cell is within a protected area and 0 if 

else and Dc is a continuous management effectiveness score. We estimated the above regression 

separately for each of the five management categories, as well as for the overall management 

score. We used robust standard errors, U, after finding evidence of heteroscedasticity and the 

same six covariates listed above are included in each interaction model.  

Additionally, to test the robustness of the interaction models, we created a binary 

dependent variable from the continuous percent forest loss, Y, where Yb=1 for any loss and Yb=0 
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for no forest loss. A logit regression and a constructed binary variable can be used to test the 

robustness of linear regression results when continuous data contains a large number of zeros, 

and is thus severely skewed to the right (Boulton & Williford, 2018). We therefore examined the 

moderating effect of each management score using Yb as the dependent variable in a logit 

regression model similar to equation 3. We tested for spatial autocorrelation using Moran’s I and 

the residuals of each interaction model (Legendre, 1993; Negret et al., 2020).  

Results  

The 20,000 protected area grid cells were located within 46 protected areas that were all 

established before 2010 and ages ranged from 11 to 83 years. The areas represented five 

protected area types: biosphere reserves (IUCN Category Ia and VI; 72%), national parks (IUCN 

Category II; 6%), national monuments (IUCN Category III; <1%), flora and fauna protection 

areas (IUCN Category VI; 17%) and natural resource protection areas (IUCN Category VI; 

<1%).  

 Management Scores  

Management scores in all categories varied across the 46 protected areas (Figure 3.2). 

Using the median score of the 20,000 grid cells inside protected areas to create high and low 

subgroups, 34 protected areas fell within the low overall effectiveness score category (< 74) and 

12 protected areas were in the high overall effectiveness category (>74). No protected area had 

an overall management score of less than 40. Across the five management categories, protected 

areas scored highest on governance and social participation and lowest on administration and 

finance (Figure 3.2). 
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Figure 3.2: Distribution of scores for each management category and the overall score from the 
grid cells in the 46 protected areas.  
 
Covariates and Matching 
 
 The socioeconomic, ecological and climatological covariates varied greatly across 

protected and unprotected cells, as well as high and low management effectiveness protected 

area cells (Figure 3.3, Appendix Table B6). A t-test found that cells within protected areas tend 

to be at higher elevations (p<.001), with lower slopes (p<.0001), further from urban areas 

(p<.0001) and roads (p<.0001), and with lower road density (p<.0001). They were also found to 

have lower temperatures and a lower amount of rainfall, as well as a lower percentage of ejido 

tenure (p<.0001 for all covariates).  
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Figure 3.3: Boxplots displaying the variation in covariates across high and low management 
effectiveness subgroups and unprotected cells. 

Cells in low management effectiveness protected areas were located at higher elevations 

with steeper slopes and closer to roads and urban areas compared to high management 

effectiveness protected areas (Appendix Table B6). They were also found to have a higher 

population density and road density, contained a higher percentage of ejido tenure, as well as less 

rainfall and lower temperatures on average (p<.0001 for all covariates). 

The significant differences in covariates posed a challenge for well-balanced matches, 

with high management effectiveness being more challenging to match with unprotected cells 

than low management. Thus, we used a caliper in all protected area matches to improve match 

balance. We present the results from the best matching algorithms below (see Appendix Table 

B7, Appendix Table B8, Appendix Figure B1) for summaries of all matching algorithms tested 

and the associated post-matching balance).  
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Average Treatment Effect Estimates: Subgroup Analysis 

Both high and low management effectiveness protected areas experienced significantly 

less deforestation than their matched controls using post-matching t-tests (Appendix Table B9). 

While high management effectiveness areas were found to have experienced more forest loss 

than low management effectiveness areas in absolute terms, the average treatment effect (relative 

to control cells) was significantly greater in high management effectiveness areas (Figure 3.4). 

These findings suggest that on average, while high management effectiveness protected areas are 

located in areas with greater threats than low management effectiveness protected areas, they are 

also more successful in deterring these threats than low management effectiveness areas.  

 
Figure 3.4: Bar chart and error terms of average treatment effects (ATE), calculated as the 
difference in average forest loss in the treatment group and the control. Statistical significance 
was estimated using Wilcoxon Rank Sum analysis (p<.0001***, p<.001**, p<.01*). 
 

The average percent loss between 2017-2019 in high overall management cells was 1.19 

compared to 3.30 in the matched unprotected cells (p<.0001), and 0.46 in low overall 

management cells compared to 1.05 in the matched unprotected cells (p<.0001). Similarly, 



  

 56 

average forest loss in the high and low matches of each of the five management categories was 

significantly less than their matched control group.  

Although low management effectiveness cells experienced less deforestation than high 

management effectiveness cells in all categories except for context and planning and 

administration and finance, a Wilcoxon Rank Sum test found the ATE to be significantly higher 

in the high subgroups of the overall management scores (p <.0001), context and planning (p 

<.0001), use and benefits (p <.0001), governance and social participation (p <.0001), and 

management quality (p <.0001) compared to the ATE of the low management effectiveness 

subgroups (Figure 3.4). The ATE of the low administration subgroup was higher that of the high 

subgroup (low: -1.23, high: -0.73), however, no statistical significance was found.  

 The post-match linear regression model, used to control for remaining imbalances in 

covariates, found that both high and low management effectiveness protected areas significantly 

reduce deforestation in all models (p <.0001) (Table 3.2, full model results in Appendix Table 

B10 and B11). Across all management categories, the models indicate that less forest loss 

occurred in both high and low management effectiveness categories when compared to 

unprotected sites.  
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Table 3.2: High and low management effectiveness effects for individual management 
categories. Regression coefficients and robust standard errors shown for only the treatment 
variable of each model. Dependent variable is percent forest loss between 2017-2019 for all 
models.  

 
Overall Mgmt. 
Effectiveness 

Context & 
Planning 

Admin & 
Finance 

Use & 
Benefits 

Gov & Social 
Participation 

Management 
Quality 

High 
Management 

-2.18***  
(.106) 

-1.77*** 
(.117) 

-0.73*** 
(.049) 

-2.01*** 
(.110) 

-2.00***   
(.115) 

-1.81*** 
(.104) 

Observations 14,046 10,232 15,476 12,958 12,866 10,820 

 
Overall Mgmt. 
Effectiveness 

Context & 
Planning 

Admin & 
Finance 

Use & 
Benefits 

Gov & Social 
Participation 

Management 
Quality 

Low 
Management 

-0.50***   
(.043) 

-0.63*** 
(.049) 

-1.32*** 
(.077) 

-0.73***  
(.047) 

-0.71***   
(.048) 

-0.71*** 
(.047) 

Observations 20,242 23,334 21,140 20,740 20,820 20,658 

p <.0001***   p <.001**   p <.01* 

 

Average Treatment Effect Estimates: Interaction Effects 

Our results found a significant moderating effect of management effectiveness (overall 

effectiveness and each sub-category) using an interaction term. Higher management 

effectiveness in each category was significantly correlated with a reduction in forest loss 

(coefficients range from -1.25e-02 to -1.84e-02, all p <.0001) (full results in Appendix Table 

B12). The administration and finance score was found to have the largest ATE on average, 

followed by context and planning, use and benefits, management quality and governance and 

social participation. The overall management score was also statistically significant at the <.0001 

level. 

While holding all else constant, a 10% increase in the administration and finance score 

was associated with the largest decrease in percent forest loss, of about 0.19% (Figure 3.5). A 

10% increase in the context and planning score and the overall score was found to decrease the 
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average forest loss by about 0.16% and 0.15%, respectively. We found similar effects for a 10% 

increase in the use and benefits and management quality score, which were both found to 

decrease average forest loss by 0.14%. Finally, a change in governance and social participation 

had the smallest effect, with a 10% increase in score decreasing forest loss by 0.13%. Full 

marginal effects results are presented in Appendix Table B13.  

 
Figure 3.5: Marginal effect of each management category on predicted forest loss. Shaded area 
represents 95% confidence intervals for each model.   
 
Robustness checks 

The Rosenbaum bounds sensitivity test found that our analysis was sensitive to small 

changes in unobservable bias (Appendix Table B14). However, this test is not able to detect if 

there is unobservable bias present, only what would happen if there were omitted variables that 

affected both the treatment and outcome variables. When comparing subgroups, the 

unobservable heterogeneity would need to act differently across subgroups to bias our findings 

(Ferraro & Hanauer, 2011).  
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The results of the logit models also confirm the robustness of our interaction model 

results (Appendix Table B15). In the logit models, all interaction effects were found to have a 

negative effect on predicted forest loss (p <.0001). Additionally, we find no evidence of spatial 

clustering in the residuals of the interaction model, with all Moran indices equal to ~0.00 

(Appendix Figure B2).  

Discussion 

Our study contributes to a growing number of impact evaluations designed to measure 

the influence of protected areas on conservation outcomes. More specifically, it adds to the small 

number of those studies that have measured the moderating effect of multiple dimensions of 

protected area management effectiveness on conservation outcomes (e.g., Coad et al., 2015; 

Geldmann et al., 2018; Muñoz Brenes et al., 2018).  

We found that protected areas in general avoid more forest loss than their matched 

controls, meaning that protected areas are successfully reducing deforestation across Mexico. 

Moreover, we found that protected areas with higher overall management effectiveness scores, as 

well as those with higher scores in all five sub-categories, are associated with lower rates of 

forest loss (Figure 3.5). Our results emphasize the importance of improving effectiveness across 

multiple dimensions of management to ensure the greatest conservation outcomes. These 

findings also illustrate the predictive power of management assessments in monitoring terrestrial 

protected area effectiveness and support their use in conservation investment decisions. 

 Results of our covariate comparison suggest that, on average, protected areas with higher 

management effectiveness scores are located in areas potentially more suitable for agriculture 

compared to those with low management effectiveness scores (Figure 3.3). This includes areas at 

lower elevations with flatter landscapes, and areas with warmer temperatures and greater rainfall. 
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In their global analysis, Geldmann et al. (2019) also found protected areas with higher 

management effectiveness scores to contain flatter terrain and, in contrast to our findings, in 

areas with higher road density, on average.  

As a result of these location characteristics, we found large differences in the absolute 

forest loss findings of our high and low management effectiveness subgroup analysis. 

Unprotected cells matched with high management effectiveness protected areas experienced a 

much higher amount of forest loss compared to the unprotected cells matched with low 

management effectiveness protected areas in almost all matches (Appendix Table B9). 

Additionally, protected areas with high management effectiveness also experience higher rates of 

forest loss than protected areas with low management effectiveness. In turn, we can conclude, 

that levels of management effectiveness are not randomly distributed. Rather, high management 

effectiveness appears to be more common in protected areas that face higher threats. This could 

be due to more investment in high risk areas but would require additional research to tease out 

the cause of this relationship.  

When compared to a counterfactual in our subgroup analysis, protected areas with high 

management effectiveness are found to prevent a greater degree of forest loss compared to those 

with low management effectiveness, resulting in a higher treatment effect (Figure 3.4). Overall, 

while high management effectiveness areas experience more forest loss, they also prevent more 

loss than would have occurred without any management intervention. When controlling for 

imbalances in the matched pairs using a post-match regression and the interaction regression 

models, we found higher scores in all five management categories to be associated with lower 

rates of forest loss. These findings illustrate the importance of quasi-experimental impact 
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evaluation methods that utilize a counterfactual to compare observed differences. The influence 

of each management category is discussed in turn below.  

 Influence of Management by Category 

The management category with the greatest influence over forest loss was the 

administration and finance category, which measures whether or not the protected area has 

sufficient human and financial resources (Figure 3.5). Our results support prior research pointing 

to the importance of financial and administrative resources in protected areas (e.g., Barnes et al., 

2016; Barnes et al., 2017; Blackman et al., 2015; Bruner et al., 2001; Coad et al., 2019; Gill et 

al., 2017) and in conservation more broadly (e.g., Waldron et al., 2017). Additionally, in a global 

management effectiveness impact evaluation, Geldmann et al. (2018) found “capacity and 

resources” to be the only management category significantly related to changes in vertebrate 

abundance. Financial resources are often interlinked with human capacity (e.g., number of staff 

and staff training) and can enable better management practices for planning and enforcement of 

protected area restrictions (Leverington et al., 2010). Thus, this analysis provides additional 

empirical support to the hypothesized relationship that financial and human capital are critical to 

achieving conservation outcomes.  

The management category with the next strongest relationship with forest loss was 

context and planning. Planning has previously been highlighted as a critical component to 

increasing protected area ecological impact and has been linked to improved resource monitoring 

and adaptive capacity of management (Pressey et al., 2015). Muñoz Brenes et al. (2018) found 

planning to play a significant role in protected area outcomes in an impact evaluation examining 

management capacity in 12 protected areas across Central America. Given that effective 

planning requires sufficient resources, including time, human capacity, and appropriate 
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equipment, management planning may be largely enabled by administrative and financial 

resources. The significance of our findings highlight the important role that effective planning 

can have in protected area success and encourages greater investment in this dimension of 

management.  

The management quality category includes indicators on the protected area’s ability to 

monitor and respond to specific threats as well as to fulfill management objectives in pursuit of 

protected area goals. An increase in the management quality score was associated with less forest 

loss. Since the early 2000s, there has been a growing awareness of the importance of monitoring 

and evaluation in the conservation field and the influence that these processes have on 

conservation intervention success (Ferraro & Pattanayak, 2006; Stem et al., 2005). Monitoring 

and evaluation can increase the ability of protected area management to adapt to specific threats 

by providing sufficient information for decision-making, thereby increasing the likelihood of 

achieving specific goals.  

Higher management scores in the governance and social participation and the use and 

benefits categories were also found to decrease the probability of forest cover loss. The 

governance and social participation category reflects the degree of procedural equity in protected 

area management, or the level of inclusion and effective participation of diverse stakeholders in 

management decisions (Franks & Schreckenberg, 2016; Zafra-Calvo et al., 2017). The use and 

benefits category can be linked to distributive equity, or the distribution of cost and benefits 

across relevant stakeholders (Zafra-Calvo et al., 2017). Thus, while these categories contribute to 

overall management effectiveness, they can also be strong indicators of the level of equity in 

protected area management, another key component of the Aichi Target 11. 
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A global literature review of protected area socioeconomic and conservation outcomes 

found that protected areas with greater socioeconomic benefits and greater empowerment of 

local communities were more successful ecologically (Oldekop et al., 2016). Greater 

participation from local communities in decision-making has also been linked to more effective 

resource allocation, by identifying appropriate needs such as specific local capacity building or 

outreach and education programs (Andrade & Rhodes, 2012). Additionally, a study examining 

management effectiveness in three marine protected areas in Mexico found protected areas to be 

more successful at conserving manatee populations when management incorporated activities 

that produced socioeconomic benefits for the community, such as fishing and tourism (Herrejón 

et al., 2020). In addition to the strong evidence that exists on the links between equitable 

management and conservation outcomes, researchers have argued that equitable management is 

also important for moral reasons (Franks & Schreckenberg, 2016; Greiber et al., 2009; Vucetich 

et al., 2018).  

Areas for Future Research  

While we found all five management categories to have a significant influence on 

protected area outcomes, our interaction models were only able to explain a fraction of the 

observed forest loss (Appendix Table B12). Thus, while management effectiveness can influence 

protected area success, it may not be the main driver of success. Future research could try to 

incorporate additional data on potential institutional moderators of protected area effectiveness to 

increase the model’s predictive power (Sills & Jones, 2018). For example, level of tenure 

security has been found to influence protected area outcomes in Brazil (Nolte et al., 2013), and 

Sims and Alix-Garcia (2017) found Mexico’s payment for ecosystem services program helped 

reduce deforestation inside and outside of protected areas (Sims & Alix-Garcia, 2017). 
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Additionally, we found a greater number of protected areas with higher overall effectiveness 

scores in Southern Mexico, specifically in the states of Chiapas and Yucatán. Future research 

could test additional ecological, cultural, or socioeconomic moderators which may be driving 

these regional disparities.  

We recognize that historical management trends, for which we do not have data, could 

have also influenced 2017-2019 forest loss. Future research on management effectiveness should 

focus on temporal changes in management using regularly conducted management surveys to 

better determine causality, as well as the interrelationships between different aspects of 

management effectiveness (i.e., if better planning and resources leads to better outcomes, or if 

better performing protected areas receive greater resources and thus are better able to plan). Our 

results should be interpreted with some caution due to the one-time survey response and lack of 

prior management data with which to examine longer term trends in the relationship between 

management effectiveness and protected area performance.  

We recognize that our final sample is relatively small in terms of total protected areas. 

While the high overall management effectiveness subgroup contains over 7,000 grid cells, it only 

represents 12 protected areas. This limitation is in part due to our focus on changes in forest 

cover as a measure of protected area success. In turn, we were only able to examine forested 

protected areas. Future research should focus on expanding this analysis to include non-forested 

protected areas to test the external validity of our findings to increase sample representation 

across Mexico’s protected area network. 

Finally, we also acknowledge the limitation posed by potential biases in self-reported 

management assessments (Coad et al., 2015). Capturing the perceptions of stakeholders beyond 

protected area staff, similar to Herrejón et al. (2020), may more accurately measure different 
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management categories, especially those addressing equity in power and benefit sharing. Ground 

truthing the scores of CONANP’s management assessment should be a focus of future research.  

Conclusion 

Our study responds to calls for more rigorous evidence identifying the moderators that 

lead to protected area success by examining the role of management effectiveness in protected 

area success (Geldmann et al., 2013; Macura et al., 2015). In our sample of 46 terrestrial 

protected areas in Mexico, we find statistically significant and positive relationships between 

better management effectiveness and mitigation of forest loss. While many studies have 

previously identified the importance of sufficient financial resources for protected areas success, 

our findings highlight the importance of additional management components including planning 

and design, relationships with diverse stakeholders, equitably shared benefits, and adaptive 

management. We recognize that these management components are not mutually exclusive, and 

that often an improvement in one can enable an improvement in another (i.e., greater financial 

resources can lead to more training and human capacity building, which can lead to improved 

resource monitoring programs). However, our findings highlight that each dimension can have a 

significant impact on conservation outcomes, thereby emphasizing the importance to 

conservation planners of investing time and resources in each category to ensure the greatest 

conservation outcomes. Finally, our findings support the theory that standardized management 

effectiveness tools can be useful predictors of conservation outcomes, and thus can be an 

appropriate measurement for global monitoring.  
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CHAPTER 4: IMPACTS OF THE COVID-19 PANDEMIC ON PROTECTED AREA 
MANAGEMENT AND CONSERVATION OUTCOMES IN MEXICO 

 

 

 

Chapter Summary 

Protected areas are a widely used tool for biodiversity conservation and can be strained 

by unpredicted events such as the COVID-19 pandemic. Understanding the extent of the 

pandemic’s effect on protected area inputs, mechanisms, and conservation outcomes is critical 

for recovery and future planning to buffer against these types of events. We use survey and focus 

group data to measure the perceived impact of the pandemic on Mexico’s protected area network 

and outline the pathways that led to conservation outcomes. On average, across 62 protected 

areas, we find substantial changes in management capacity, monitoring, and tourism, and a slight 

increase in non-compliant activities. Our findings highlight the need to integrate short-term relief 

plans to support communities dependent on tourism, who were particularly vulnerable during the 

pandemic, and to increase access to technology and technical capacity to better sustain 

management activities during future unexpected events.  

Introduction 

Unexpected events such as the COVID-19 pandemic can have substantial impacts on 

conservation outcomes. These impacts can be difficult to predict and may vary over time. For 

example, global restrictions on human mobility led to positive impacts on the environment in the 

early months of the pandemic, including clearer skies, cleaner waterways, reduced ecosystem 

stress, and increased frequency of sensitive species sightings in human-dominated landscapes 

(e.g., Bates et al., 2020; Cheval et al., 2020; Corlett et al., 2020; Manenti et al., 2020; Rupani et 

al., 2020). However, as the pandemic and the associated restrictions continued, the narrative 

around environmental impacts grew increasingly negative, pointing to a rise in illegal activities 
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such as wildlife trafficking and illegal logging, and growing pressure within many protected 

areas (e.g., Cumming et al., 2021; Hockings et al., 2020).  

Research examining the impact of the pandemic in protected areas has found an increase 

in biodiversity threats, as well as negative outcomes on management capacity and tourism, with 

the impact often varying regionally (Buckley, 2020; Hockings et al., 2020; Jacobs et al., 2020; 

Lindsey et al., 2020; McCleery et al., 2020; Singh et al., 2021; Spenceley et al., 2021). For 

example, illegal logging, encroachment, and subsistence hunting were found to increase in South 

America and Africa, while gathering of non-timber forest products and grazing were found to be 

the primary threat in most other regions (Singh et al., 2021). Additionally, while Spenceley et al. 

(2021) found negative impacts on tourism, on average, the specific impacts, such as total 

reduction in visitors, reduction in tourism income, and changes in non-compliance behavior, 

were found to vary across their eight country case studies. Continued research is needed to fully 

understand the impacts of the pandemic on protected areas and examine how they vary 

geographically. In this paper we add to the growing empirical evidence by exploring the diverse 

impacts of the COVID-19 pandemic on conservation outcomes in protected areas across Mexico.  

In addition to understanding the pandemic’s impact on protected area outcomes, it is 

critical to understand how and why these impacts occurred. However, clear models identifying 

specific impact pathways, as well as protected area characteristics that may influence the level of 

impact, remain limited, with only a few studies presenting evidence of these links in South 

Africa (Smith et al., 2021) and for marine protected areas globally (Phua et al., 2021). We add to 

the body of knowledge on COVID-19 impacts on protected areas by summarizing the impacts of 

the pandemic perceived by protected area directors across Mexico. Specifically, we use data 

from a survey of 62 protected area directors to identify changes to protected area inputs (e.g., 
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human and financial capacity), mechanisms (e.g., monitoring), and non-compliance activities 

(e.g., illegal logging) due to the COVID-19 pandemic. We then draw on qualitative data from 

focus groups and open-ended survey questions to understand how those changes link together. 

Understanding the pathways through which unexpected events such as the COVID-19 pandemic 

impact protected area performance can help protected area directors and conservation 

practitioners not only with the design of post-pandemic relief efforts, but also in planning for 

future crises, such as political instability, economic shocks, and the climate crisis. 

Study Area 

This study seeks to measure the impacts of the COVID-19 pandemic across Mexico’s 

protected areas. Mexico is a megadiverse country and has an extensive protected area network, 

covering 14.5% of the country’s terrestrial surface and 21.6% of their coastal and marine area. 

There are over 1,000 designated protected areas in Mexico. We focus on a subset of these areas, 

specifically those managed and monitored by the Comisión Nacional de Áreas Naturales 

Protegidas (CONANP; National Commission of Natural Protected Areas).  

CONANP manages over 180 protected areas ranging in level of strictness. This includes 

national parks (IUCN Category II), national monuments (IUCN Category III), flora and fauna 

protection areas (IUCN Category VI), natural resource protection areas (IUCN Category VI), 

sanctuaries (IUCN Category II), and biosphere reserves (IUCN Category 1a and VI). These areas 

cover diverse ecoregions and protect unique ecological and cultural resources, such as critical 

habitat for endangered species and ancient Mayan archeological sites. The diversity in Mexico’s 

protected areas creates a unique opportunity to investigate the full range of impacts - from 

tourism impacts to illegal natural resource extraction - of the pandemic on protected areas.  
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Methods  

To measure the perceived impacts of the COVID-19 pandemic on Mexico’s protected 

areas, we first developed a theory of change (TOC) to outline potential impacts of the pandemic 

on Mexico’s protected area network with the help of CONANP and a review of existing 

literature (see Table 4.1). The TOC outlines how protected area inputs link to conservation 

outcomes through various mechanisms and moderators. A mechanism is the process through 

which the inputs lead to positive or negative outcomes, which can be enhanced or obstructed by 

moderators, or external factors (not affected by inputs), which can ultimately affect the ability to 

achieve a specific goal (Ferraro & Hanauer, 2015). The TOC was refined using data from two 

focus groups and used to guide the design of an online survey. Appropriate IRB approval was 

gained prior to data collection (ID: 19-8870H). We present the TOC as part of our results, 

adjusted to highlight the findings of our survey (Figure 4.2). The following sections outline the 

components of our TOC, justification for the inclusion of each component, and our hypothesized 

pandemic impacts.  

Table 4.1: Main components of the TOC used in this study. 

Category Component  

Inputs Management inputs (human capacity, financial capacity) 

Mechanisms Monitoring activities, visitation 

Moderators 
Governmental & non-governmental organization programs, emergency funds 
or in-person support, advisory council 

Outcomes Non-compliance, ecological restoration  

 
TOC Inputs: Human & Financial Capacity 

Higher management capacity has been found to have a positive relationship with 

conservation outcomes in protected areas in Mexico (Powlen et al., 2021) and on a global scale 
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(Geldmann et al., 2018). Management capacity includes human and financial capacity, which 

influence the ability to carry out management activities such as monitoring and maintenance, and 

effective and collaborative decision-making abilities. Recent evaluations have noted several 

different negative impacts that the pandemic has had on human capacity, including anxiety, 

fatigue, and stress, communication challenges, as well as reduced financial capacity and 

increased financial uncertainty (Smith et al., 2021; Waithaka et al., 2021).  

In addition, by March 2021, at least 24 countries had proposed budget cuts to protected 

area management agency budgets or environmental regulation rollbacks, including Mexico (see 

Cumming et al., 2021; Kroner et al., 2021). Researchers have predicted a similar reduction in 

philanthropic and international aid benefiting protected areas caused by the pandemic (e.g., 

Lindsey et al., 2020). Based on these findings, we chose to examine both human capacity and 

financial capacity as the primary management inputs for our TOC.   

We hypothesized that the pandemic would lead to a reduction in human capacity in 

Mexico due to restrictions on mobility, illness, and a reduction in staff availability due to new 

tasks (e.g., increased cleaning and sanitization in public spaces, introduction of virtual 

technology) or familial reasons (e.g., lack of childcare, ill family members) (Jacobs et al., 2020). 

Additionally, we predicted a shift in government spending priorities, reducing the overall 

financial capacity of protected areas in 2020. 

TOC Outcomes: Biodiversity Threats   

Previous research has found biodiversity threats to have increased during the pandemic in 

protected areas across the globe, with some regional variation (e.g., Hockings et al., 2020; Singh 

et al., 2021; Waithaka et al., 2021). We identified a list of non-compliant activities that pose a 

threat to Mexico’s protected area network using responses from the Management Effectiveness 



  

 71 

Tracking Tool (see Stolton & Dudley, 2016), existing literature, and the authors’ prior 

knowledge in order to measure changes in biodiversity threats in Mexico. Selected activities 

included human-caused fires, land clearing for agriculture, hunting, fishing, logging, mining, 

unapproved settlements, and unapproved camping or use of trails.  

TOC Mechanisms: Tourism & Monitoring 

Previous pandemic-related research has identified impacts on two key protected area 

mechanisms that can shape protected area performance – the ability to conduct monitoring 

activities and tourism (e.g., Bates et al., 2020; Hockings et al., 2020; McCleery et al., 2020; 

Mcginlay et al., 2020; Mitchell & Phillips, 2021; Spenceley et al., 2021). Monitoring is a critical 

mechanism for reducing non-compliant activities in protected areas. Tourism provides financial 

support to protected areas and livelihood opportunities to neighboring communities, in addition 

to increasing the overall human presence in protected areas, ultimately decreasing the likelihood 

of non-compliant activities. While we recognize that many other mechanisms can influence 

protected area performance, we focus on these two mechanisms and seek to understand how 

changes in each can lead to changes in the non-compliant activities previously identified. 

Protected area monitoring can vary in terms of total area monitored, number of trips, 

number of personnel responsible for monitoring, and support from community monitoring 

groups. The reduction in staff availability, financial capacity, and mobility restrictions were 

expected to reduce the capacity for monitoring across all four dimensions. We also expected that 

the Procuraduría Federal de Protección al Ambiente (PROFEPA; Federal Attorney for 

Environmental Protection), the agency responsible for enforcement of protected area regulations, 

would experience similar reductions in staff availability and mobility, also reducing their 

capacity for enforcement. We expected that a reduction in monitoring and enforcement capacity 
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by protected area staff and PROFEPA area would lead to an increase in non-compliance and 

threats to biodiversity.  

As part of Mexico’s response to the pandemic, protected areas were closed to the public 

between March and June 2020, with a slow reopening thereafter starting at 20% visitor capacity 

(Comisión Nacional de Áreas Naturales Protegidas, 2020a). We therefore predicted a decrease in 

the total number of visitors to protected areas in 2020. Based on early studies (e.g., Manenti et 

al., 2020), we expected this to lead to an improvement in ecosystem health due to reduced 

visitor-caused damage, as well as an increase in protected area staff’s ability to complete other 

tasks. However, we also expected reduced visitation to decrease protected area financial capacity 

and income opportunities for local communities, potentially increasing the risk of non-compliant 

activities. 

TOC Moderators 

We expected that non-compliant activities would be moderated by additional income 

gained through government subsidies and sustainable development programs such as the 

Programa de Conservación para el Desarrollo Sostenible (Conservation for Sustainable 

Development Program; PROCODES), as well as support from non-governmental organizations, 

based on the experience of the research team. We predicted that reductions in government 

spending and human capacity would reduce the ability to carry out these programs. Fewer 

government support programs, in combination with less tourism-related business, was expected 

to decrease income for local communities. We expected the decrease in income for local 

communities to create a need for new livelihood activities, potentially increasing non-

compliance and threatening biodiversity. 
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Focus groups  

We conducted two virtual focus groups in February 2021 with 10 directors from different 

marine and terrestrial protected areas to verify the components of the TOC. Focus group 

participants were selected with the help of CONANP to represent a range of ecoregions and 

protected area types (e.g., national park, biosphere reserve). The focus groups gathered a range 

of information about the experiences of each director in their respective protected areas. Each 

focus group began by asking what changes to protected area management and activities were 

experienced due to the pandemic. We then used guiding questions to gather more information on 

the reported changes (Yin, 2015).  

After receiving verbal permission from all participants, focus groups were recorded, 

transcribed, and translated from Spanish to English by a member of the research team. 

Transcriptions were coded using a multi-level coding scheme, grouping key themes into broader 

categories of protected area inputs, mechanisms, moderators, and outcomes (Yin, 2015).  

 Survey  

We used Kobo Toolkit (Harvard Humanitarian Initiative, 2021) to create an electronic, 

Spanish-language survey to measure perceived changes in protected areas on a national scale. 

The design of the survey was guided by the TOC, focus groups, and CONANP’s i-efectividad 

evaluation, a standardized survey used to monitor management effectiveness in protected areas 

nationally (Comisión Nacional de Áreas Naturales Protegidas, 2019). We distributed the survey 

via email to directors of all protected areas in Mexico that had a management plan, annual 

operating program, and budget (132 protected areas). The survey took 25 minutes to complete, 

on average. If the director was not able to take the survey, we invited other management staff 

with knowledge of management decisions and operations to participate.  
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The survey covered the management inputs, mechanisms, moderators, and outputs 

identified in Table 4.1. Question types included binary and multiple-choice formats to measure 

changes in inputs, mechanisms, moderators, and outcomes, and seven-point scale bars to 

measure the degree to which perceived changes were considered attributable to the pandemic. 

Additionally, multiple optional open-ended questions allowed respondents to expand on their 

responses or share additional thoughts (see Appendix C for additional details and the full 

survey).  

The survey was piloted with five protected area directors before sending the survey to all 

protected areas in March 2021. Limited adjustments were made after piloting the survey, 

specifically increasing the number of optional open-ended responses. Therefore, piloted 

responses were included in the final sample. The survey stayed open for six weeks and seven 

reminders were sent via email.  

One survey response from each protected area was used in the final analysis. If more than 

one response was received for a single protected area, we used the responses from the director of 

the protected area. If the director did not respond, we then used responses from the individual 

who had worked for the protected area the longest.  

We used descriptive statistics to identify the degree of change in various protected area 

dimensions measured using structured questions. We translated and coded all open-ended 

questions using a multi-level thematic coding approach, similar to the focus group transcripts 

(Yin, 2015). Major patterns in the data were coded using open codes and then organized into 

broader themes. We used the codes to verify links in the TOC and to identify changes not 

previously included.  
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Results  

We received responses from 62 protected areas, representing almost half of the protected 

areas with a management plan and annual operative budget in Mexico (47%) (Figure 4.1). The 

protected areas in our sample were primarily flora and fauna protected areas (FFPA; 37%), 

biosphere reserves (BR; 31%) and national parks (NP; 29%). One natural resource protected area 

(NRPA) and one sanctuary (S) also participated. Our sample was primarily terrestrial protected 

areas (77%), with only 8% marine and 13% mixed terrestrial and marine. The ages of the 

protected areas in our sample ranged from four to 84 years (median=29). Prior to 2020, 

respondents had worked at their respective protected areas between 1 and 34 years (median=8). 

 

Figure 4.1: Map of protected areas that participated in focus groups and responded to the 
survey. Sample includes flora and fauna protection area (n=23), biosphere reserve (n=19), 
national park (n=18), sanctuary (n=1) and natural resource protection area (n=1). 

On average, our results found that protected area directors perceived negative impacts on 

protected area management capacity, tourism, and support for local communities from the 

pandemic. Additionally, we found a perceived increase in non-compliance in 2020 compared to 
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2019, on average, across Mexico. However, as detailed below, we also note that impacts varied 

widely across different protected areas. Using our survey responses to identify substantial areas 

of change and qualitative data to link these changes to reported conservation outcomes, we 

highlight the potential pathways through which the COVID-19 pandemic has impacted protected 

areas (Figure 4.2).  

 

Figure 4.2: TOC, color coded to reflect findings from survey results. Substantial area of impact 
= change reported in over 50% of protected areas; moderate impact = change reported in 25-
50% of protected areas; slight impact = change reported in less than 25% of protected areas. 
Supporting results from qualitative data presented in gray.  

Inputs   

Respondents reported that the most prevalent impacts of the pandemic on human capacity 

were illness (63%) and reduced time availability (52%) (Figure 4.3a). Of the 39 protected areas 

with staff becoming sick with the virus, 47% had less than 20% of staff become ill and 33% 
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reported between 20-40% of staff became ill. At one protected area, 60-80% of staff contracted 

the virus.  

 

Figure 4.3: Count of protected areas who reported (a) perceived impacts on human capacity and 
(b) level of sufficiency of budget for basic needs in 2020 compared to 2019.  

 
Less than a third of protected areas in our sample experienced hiring freezes on new 

positions (27%) and only three protected areas were forced to fire staff. No protected areas had 

staff on unpaid leave. Additional impacts reported by directors included various emotional 

impacts such as stress, depression, and anxiety caused by the uncertainty of the pandemic (n=4). 

Ten protected areas reported no impacts on their staff.  

Seventy-seven percent of respondents reported a budget reduction in 2020 compared to 

2019, with 42% reporting a significant reduction (Figure 4.4). Nineteen percent of respondents 

reported no change, and one protected area reported an increase. The average estimated budget 

reduction from 2019 to 2020 among all respondents was 39%. When rating the sufficiency of 

budgets, 77% of respondents rated the budget at a 3 out of 7 or lower, with an average rating of 

2.5 (Figure 4.4). While many directors reported a decrease in financial capacity in 2020, few 

perceived the pandemic as the primary driver, with a median attribution of 2.5 out of 7 (Figure 
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4.3b). As one survey respondent stated, “The COVID-19 pandemic aggravated and complicated 

our activities even more. They were already reduced due to lack of money and now also 

uncertain due to the pandemic.” 

 

Figure 4.4: Portion of the participating protected areas that experienced changes to protected 
area inputs and mechanisms and the degree to which changes were attributed to the pandemic 
(median shown). 

 
Mechanisms  

Protected areas reported dramatic declines in the number of tourist and non-tourist 

visitors (e.g., researchers, maintenance, etc.) in 2020. Almost 91% of protected areas reported a 

reduction in tourism of 25% or greater, with little difference across protected area type. Thirty-

six percent of protected areas reported a reduction of 75% or greater. Similarly, 76% of protected 
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areas reported a reduction in non-tourist visitors, with about 19% reporting a reduction of 75% or 

greater. About 7% and 6% saw an increase in tourist and non-tourist visitors, respectively.  

Directors most closely linked the change in tourist (median attribution of 7 out of 7) and 

non-tourist visitors (6 out of 7) to the pandemic. In addition to COVID-19 closures and other 

health and safety procedures, respondents reported that reduced visitation has likely been driven 

by reduced household spending on recreational activities (n=5), reduced budgets for research and 

project development (n=5), and a perceived increase in crime in and around protected areas 

(n=3) in an optional open-ended question. 

Protected area directors perceived the reduction in tourism to have significant impacts on 

local community livelihoods, including tourism-related occupations and supporting industries. 

As one focus group participant explained, “The pandemic did not directly impact the 

management of the protected area, but rather the economy of the communities. Since there is no 

tourism … their income fell to zero.” 

As a second participant explained, the impacts went beyond just those directly engaged in 

tourism activities: “Fisheries, like tourism service providers, were directly influenced by 

[changes in] tourism… There is a direct link between tourists and fishing. When there are no 

tourists,… there is no market where fishermen can sell their product.” 

On average, monitoring capacity of protected areas decreased in 2020 compared to 2019 

(Figure 4.4). Approximately 60% of respondents reported a decrease in the frequency of 

monitoring, 53% reported a decrease in the total area monitored and 39% reported a decrease in 

the total number of staff responsible for monitoring. In contrast, 16% of respondents reported an 

increase in both the frequency and area monitored, and 11% reported an increase in the total 

number of staff. 
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On average, respondents estimated that the frequency of monitoring decreased, with a 

23% reduction in the number of monitoring trips (median= -25%). The total area being 

monitored also decreased by almost 18%, and the number of staff responsible for monitoring fell 

by about 12% on average (area median= -25%; personnel median = 0% [ i.e., no change]). 

Respondents estimated that the pandemic had the largest influence on the change in total area 

being monitored and the frequency of monitoring trips, with the median pandemic attribution 

rate of the change in both equal to 5 out of 7. The attribution rate for the change in the number of 

personnel responsible for monitoring was estimated at 4 out of 7.  

The respondents perceived the reduction in monitoring capacity to be due to reduced 

human and financial capacity, reduced access to appropriate equipment, and the restricted ability 

to collaborate with groups that support these activities. As one respondent explained, “Changes 

in the individuals responsible for inspection and surveillance and budget adjustments, coupled 

with problems generated by the COVID-19 pandemic, have hampered inspection and 

surveillance activities in the protected area.” A second respondent stated, “Monitoring requires 

collaboration with local [groups], and this collaboration was reduced by the COVID 

pandemic.” 

Over half of the protected areas in our study (57%) reported a decrease in the level of 

support provided by PROFEPA in 2020 compared to 2019. This reduction was partially 

attributed to the pandemic - specifically to the mobility restrictions, inability to be in the office, 

and reduced staff availability. However, respondents also reported a multi-year trend of 

decreasing PROFEPA capacity due to budget cuts which have left the organization under-

resourced.  
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While community monitoring groups were present in almost all participating protected 

areas (89%), changes in the level of support provided by community groups varied across 

protected areas. Forty percent of respondents reported no change in the level of community 

monitoring support, 40% reported a decrease, and 20% reported an increase.  

Moderators  

Over half of the protected areas reported impacts to subsidy programs implemented by 

the protected area for local communities (57%), as well as impacts on other government 

programs (36%) and non-governmental programs (31%). About 25 of the 35 protected areas 

reporting changes to subsidy programs experienced an overall reduction in the value of subsidies 

provided. Six protected areas reported delays in subsidy delivery and four reported other 

impacts, such as reduced participation and freezes on new project enrollment.  

Approximately 60% of protected areas perceived a reduction in other government 

programs, 23% reported a pause and 14% reported a delay. For non-governmental programs, the 

majority of directors reported a pause in implementation (42%), with 32% perceiving a reduction 

and 11% a delay. There was a high level of uncertainty in the impacts on non-subsidy 

government programs and non-governmental programs, with 27% and 31% reporting unknown 

impacts respectively. 

Almost half (48%) of participating protected areas reported access to emergency funds 

which helped to compensate for the limited financial capacity in 2020. Fund-providing 

organizations included national and international conservation funds (e.g., Mexico’s National 

Fund for the Conservation of Nature [FMCN] and the Global Environmental Facility [GEF]). 

Many protected areas also reported additional support to manage non-compliance, most 

commonly provided by the National Guard.  
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Additionally, access to technology (e.g., internet, computers, WhatsApp) emerged as an 

important moderator from our focus group and survey data. For those with access, technology 

allowed for the continuation of regular management activities, monitoring of subsidy programs, 

communicating health and safety guidelines to community members, and supporting and 

facilitating the collaborative decision-making processes of the advisory council. Other 

participants highlighted the lack of technology as a barrier to maintaining key management 

activities. For example, when talking about the advisory council, one respondent reported, “Only 

one meeting could be held over the year and it was held virtually. Many of the counselors from 

local communities found it difficult to attend because they did not have internet and computers.” 

Outcomes 

Although responses varied, on average respondents reported that non-compliance 

increased across Mexico’s protected area network in 2020 (Figure 4.5). The largest increase 

perceived by directors was in fishing, followed by hunting, the establishment of new settlements, 

logging, land clearance for agriculture, and mining. Directors perceived a slight decrease in the 

number of human-caused fires and unpermitted camping and trail use. The specific patterns of 

perceived changes in non-compliant activities did not appear to vary across different protected 

area types. 
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Figure 4.5: Raincloud plot showing perceived changes in non-compliance experienced in 2020 
compared to 2019 and the degree to which they were attributed to the pandemic. The violin plot 
shows the distribution of responses, and the box plot summarizes those responses as quartiles. 
(Quartile1 and Quartile3 of mining and camping are equal to 0, resulting in no boxplot). 

 
Although respondents reported increases across most non-compliant activities, the 

perceived degree of attribution to the pandemic varied. Changes in activities perceived to be 

most attributable to the pandemic included fishing (median=5 out of 7), camping and trail use 

(median=5), hunting (median=4), and logging (median=3). In an optional open-ended question, 

an increase in unpermitted water extraction and stone extraction were each reported by one 

respondent. 

Many protected area directors perceived the lack of a presence of authority as the main 

reason for the perceived increases in non-compliant activities. One focus group participant 

stated, “In March, April, and May, CONANP personnel were confined. However, essential 

activities continued, such as fishing. It was said to be taking place in the protected area and that 
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irregular fishing activities had increased. We received many calls from other fishermen 

noticing”.  

Similarly, a survey respondent noted: “In the absence of… authorities such as 

PROFEPA, the National Guard, and the police who monitor the roads, we have detected an 

increase in illegal activities around the protected area, such as clearings, illegal construction, 

and trespassing.”. A second wrote, “Budget cuts and staff illness reduced monitoring, and the 

poachers increased their activity”, also highlighting the perceived links between the lack of a 

presence of authority and increased non-compliance. 

Other respondents highlighted the decrease in livelihood opportunities as a potential 

driver of non-compliance, stating: “In the case of illegal fishing, [non-compliant activity] 

increased due to the need to obtain additional sources of economic income”; and “the impact 

of COVID on the economy increases demand for natural resources that are used and traded 

illegally.” 

Discussion  

We found that the COVID-19 pandemic had substantial impacts on many of the factors 

considered in our TOC. Specifically, we found considerable impacts on human capacity and 

well-being, such as staff illness, increased stress and anxiety, and an overall reduction in staff 

availability, similar to Smith et al. (2021) and Waithika et al. (2021) (Figure 4.3). Respondents 

also reported a decrease in financial capacity, with many respondents perceiving their annual 

budget to be insufficient for management needs (Figure 4.3). However, respondents did not 

perceive changes in financial capacity to be solely attributed to the pandemic. Rather, 

respondents felt the financial limitations resulting from the COVID-19 pandemic further 

compounded a more significant general trend in reduced capacity for protected areas.  
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These findings are in line with existing evidence on protected area capacity limitations 

found in Mexico and globally (Coad et al., 2019; Singh et al., 2020; Watson et al., 2014). A 

recent evaluation found that 50% of protected areas in Mexico experienced partially effective or 

ineffective management prior to the pandemic (CONANP et al., 2020) and Coad et al. (2019) 

found over 75% of the protected areas in their global analysis did not have adequate staff and 

financial resources. While CONANP has recently made significant progress in strengthening 

management effectiveness (Powlen et al., 2021), the agency has experienced multiple budget 

cuts over the past five years. Thus, as Cumming et al. (2021) argues, the current global crisis 

serves to “magnify, intensify, and exacerbate existing structural and systemic financial 

constraints and weaknesses”, rather than introducing novel threats to protected areas (Cumming 

et al., 2021, p149).   

Tourism, a key mechanism in our TOC, was significantly reduced in most protected areas 

across Mexico, similar to other regions of the world (e.g., Spenceley et al., 2021). These 

decreases were largely attributed to the pandemic, due to closures and capacity restrictions. 

Survey respondents and focus group participants perceived the reduction in tourism to have 

significant implications for local community livelihoods, reducing opportunities for tourism 

service providers, as well as linked activities, such as fishing. Additionally, survey respondents 

reported negative impacts on community programs, such as subsidies, further exacerbating the 

negative impacts on local communities. Previous research has also found local populations living 

in and around protected areas, especially those in remote areas, have been the most affected in 

terms of employment, income, and health (Mitchell & Phillips, 2021). Future research is needed 

to document community perspectives to fully understand the extent of this impact.  
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Survey respondents also reported substantial changes in monitoring, the second key 

mechanism. The reduction in monitoring, in addition to reduced tourism-related livelihoods, 

were perceived to be the main drivers of the increase in non-compliance, similar to the 

predictions in previous research (e.g., Buckley, 2020; Hockings et al., 2020; McCleery et al., 

2020; Mitchell & Phillips, 2021). The perceived increase in subsistence and economic-driven 

activities, such as fishing, hunting, and logging, and decrease in unpermitted camping and trail 

use, support this assumption. In a global overview of the pandemic impacts in protected areas, 

Waithaka et al. (2021) also found an overall perceived increase in logging, poaching, settlements 

and fires. 

Our results point to two potential avenues to reducing the impact of future global crises 

on protected areas, similar to those identified by Cumming et al. (2021) and Waithaka et al. 

(2021). The first involves providing protected area management with the skills and equipment 

required to adopt technological solutions that can help to maintain critical management activities 

in times of unexpected crises. Improved connectivity through remote working technology would 

help to maintain communication between protected area rangers, as well as between rangers and 

local communities. This would allow for administrative tasks to be completed remotely, new 

health and safety guidelines could be more easily shared, and non-compliant activities to be more 

easily reported.  

Second, protected areas should consider integrating relief plans into their management 

strategies, which would cover basic needs in times of financial uncertainty (e.g., when 

government funds are redirected to other sectors) or to provide short-term support to 

communities, specifically those reliant on tourism and vulnerable to global economic 

fluctuations. Additionally, given the negative trends in institutional support from governments 
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(see Kroner et al., 2021; Waithaka et al., 2021), it will be important that these efforts are 

supported by diverse funding mechanisms going forward. Planning in anticipation of future 

events should help build protected area networks that are more resilient to unexpected crises, 

ultimately leading to more positive biodiversity outcomes.     

Limitations 

The challenges in monitoring and measuring illicit behavior or non-compliance are well 

documented (e.g., Gavin et al., 2010; Solomon et al., 2015). Given the sensitivity of the topic and 

challenges of detecting certain activities, it is often best to triangulate evidence using diverse 

data sources. For example, while a fire occurrence may be easily spotted by smoke or a burn scar 

after an event, illegal hunting can be harder to detect. Given the recency of changes in our 

outcomes of interest, and the ongoing practical limitations to field research during the pandemic, 

data sources on biodiversity impacts of the pandemic remain limited. Therefore, perceived 

impacts reported by protected area managers and directors are the most accessible data source, 

and commonly used in existing literature (e.g., Singh et al., 2021; Smith et al., 2021; Waithaka et 

al., 2021).  

We also recognize the potential biases introduced when using the perceptions of 

protected area managers to measure management conditions and perceived changes in 

management or outcomes. For example, protected area staff may be incentivized to exaggerate 

positive performance measures while providing more conservative answers for other indicators. 

Additionally, while protected area directors have access to the information gathered in this study, 

there is no guarantee that they referred to existing documents while responding to the survey 

questions. While we recognize these limitations, perceptions have been identified as an 

“indispensable form of evidence” to understand social impacts and ecological outcomes in 
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conservation research (Bennett, 2016), and can provide valuable insight in understanding 

immediate impacts of significant events, such as the pandemic, especially when limited 

alternative forms of data are available. 

Future Research & Conclusion 

Given the challenges of measuring biodiversity threats, future research should attempt to 

triangulate these findings with additional perspectives and data sources, such as those from 

community members, tourism service providers, and satellite imagery. Additionally, given the 

potential time lag for changes to materialize, future research should continue to monitor changes 

in conservation outcomes and management trends in order to improve our understanding of 

COVID-19 impacts, the response of protected areas to unexpected events, and the length of 

recovery period required.  

The COVID-19 pandemic has highlighted the importance of preparedness for shocks and 

stressors on protected areas. We now have an opportunity to critically examine how this has 

affected conservation efforts in order to better prepare in the future. Our research has identified 

potential pathways of impact on conservation outcomes perceived by protected area directors 

across Mexico’s protected areas. Specifically, we found that the pandemic reduced human 

capacity and tourism, ultimately reducing monitoring capacity and financial benefits for 

communities in and around protected areas across Mexico. Additionally, we found an increase in 

multiple non-compliant activities in 2020, on average.  

Moving forward, it will be critical to provide support for protected area directors to 

efficiently and effectively plan, design, and implement management activities, as well as to 

engage and collaborate with stakeholders to improve adaptive capacity in protected areas 

globally. Protected area planning should also begin to integrate relief plans and build 
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technological capabilities in anticipation of future unexpected events and crises. Finally, in order 

to be effective, these plans will need to pay particular attention to impacts on local communities. 
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CHAPTER 5: CONCLUSION 
 
 
 

The three empirical manuscripts of my dissertation advance our understanding of the 

factors shaping protected area outcomes. While the three manuscripts were focused on protected 

areas in Mexico, protected areas are one of the main instruments for conserving biodiversity 

globally, with about one-sixth of the world’s terrestrial surface area under protection (Geldmann 

et al., 2019) and over 200,000 protected areas designated globally (Geldmann et al., 2019; 

UNEP-WCMC et al., 2020). Thus, the findings of each manuscript have broader implications for 

international conservation efforts. This conclusion explores the overarching themes of the three 

manuscripts, implications for conservation research and practice, and limitations and areas for 

future research. It is organized into four sections as follows: Overarching Themes, Implications 

for Research, Implications for Applied Conservation, and Limitations and Future Research.  

Overarching Themes  

Protected areas exist within complex social-ecological systems (Cumming et al., 2015). 

Landscape characteristics, such as slope, elevation, and climate conditions, can influence land 

use decisions. Certain ecological conditions can increase risk of noncompliance, deforestation 

and other human pressure inside protected area boundaries (Vaca et al., 2019). Institutions play a 

key role in managing these risks and ultimately influencing conservation outcomes in protected 

areas (Sills & Jones, 2018). Institutions can play direct roles, such as management, monitoring, 

and surveillance (e.g., CONANP, PROFEPA), or indirect ones, such as conservation 

organizations promoting sustainable livelihoods in local communities.  

Research on protected area effectiveness has increasingly acknowledged these complex 

relationships and the critical role humans play in influencing outcomes. In doing so, researchers 
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have used a variety of proxies to account for pressure from human development, natural resource 

accessibility, and suitability of the land for alternative uses while conducting protected area 

evaluations (e.g., Andam et al., 2008; Blackman, 2015; Geldmann et al., 2019; Pfaff et al., 2017). 

The three manuscripts of my dissertation build upon existing literature examining protected areas 

within social-ecological systems, while filling three critical knowledge gaps. Manuscript one 

identifies the specific socioeconomic, biophysical, and protected area design characteristics that 

have the strongest influence on forest loss outcomes in protected areas in Mexico and depicts the 

nonlinearity of those relationships. Manuscript two increases our understanding of the role of 

institutions in managing deforestation risk by quantifying the impact of effective management on 

forest loss in protected areas. Manuscript three explores the effect of unexpected global events 

on protected area management by examining the COVID-19 pandemic’s influence on protected 

areas across Mexico.  

In addition to the novel contribution of each standalone manuscript, the three manuscripts 

together demonstrate the multi-scalar nature of factors influencing protected areas outcomes, a 

common challenge to understanding of social-ecological systems (Cumming et al., 2015; 

Ostrom, 2009). For example, land use decisions inside protected areas are influenced by 

management decisions of the protected area, which are influenced by the policies and resources 

of the national park service. Additionally, land use decisions can be driven by national or global 

market forces, including prices of agricultural products or timber (Busch & Ferretti-Gallon, 

2017).  

Together, the three manuscripts of my dissertation demonstrate the local-to-global scale 

of factors influencing protected area outcomes. Manuscript one focuses on local-scale factors by 

examining the relationship between observed forest loss and socioeconomic, biophysical, and 
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design characteristics of protected areas at the 1 km2 scale. Manuscript two is conducted at the 

protected area-level, comparing forest loss outcomes in protected areas with high and low 

management effectiveness scores to understand the role of various dimensions of management in 

driving protected area performance. The third manuscript demonstrates the global scale, 

examining the effects of the current global health crisis on protected areas. It is important to note 

that there are a number of additional scales not represented in my research that can influence 

protected area outcomes, including various political scales such as municipalities or states. 

Understanding local scale factors driving deforestation has been a focus of a number of 

existing reviews (e.g., Barnes et al., 2017; Busch & Ferretti-Gallon, 2017; Geist & Lambin, 

2002). For example, Busch and Ferretti-Gallon (2017) found that biophysical characteristics, 

proximity to built infrastructure, land tenure, and demographic characteristics can influence 

deforestation rates. These findings have helped to improve the design of protected area 

evaluations by highlighting the important role that placement characteristics can play in 

conservation success. However, the ability to fully control for these factors in protected area 

evaluations has been limited by conventional modelling methods which assume independence 

among predictors and linear relationships (Vaca et al., 2019).  

Manuscript one advances our understanding of the local scale factors driving forest loss 

in protected areas in Mexico using a machine learning technique to overcome previous research 

limitations. This manuscript highlights the important role that various socioeconomic and 

biophysical characteristics play in protected area performance. Specifically, we find that road 

density, human population density, population change, and distance to urban areas are key 

drivers of forest loss outcomes in protected areas, as well as biophysical variables such as 

distance to water, precipitation, elevation, and slope. Many socioeconomic and biophysical 
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predictors were found to have a higher influence on forest loss outcomes than protected area 

design characteristics (e.g., protected area size, age, and IUCN category). These findings have 

important implications for decisions related to protected area placement, a topic discussed further 

in the next section.  

Understanding protected area performance requires accounting for these confounding 

contextual factors while examining the specific protected area design characteristics that may 

also be driving outcomes. Protected area design characteristics that are frequently examined in 

existing research include ownership type (e.g., community, private, state), age, size, and IUCN 

category (Barnes et al., 2017; Ghoddousi et al., 2021; Macura et al., 2015). However, some have 

argued that IUCN categories are more representative of de jure management regimes, rather than 

de facto management (i.e., what is actually happening on the ground) (e.g., Ferraro et al., 2013; 

Muñoz Brenes et al., 2018). As such, there have been calls for the assessment of a broader suite 

of management variables beyond IUCN categories to better understand protected area 

performance (Macura et al., 2015).  

Manuscript two responds to this call by contributing empirical evidence on the role of 

management effectiveness in avoiding forest loss using a novel nationally-employed protected 

area management evaluation, i-efectividad, which better captures de facto management. In this 

manuscript, we find that protected areas with high management scores avoid a greater amount of 

forest loss than protected areas with low management scores, expanding our understanding of 

protected area-level drivers. We find this for the overall management effectiveness score and 

across five different management dimensions. 

Linking global events, such as the COVID-19 pandemic, to protected area outcomes can 

be challenging given the complex pathways through which the impacts can be felt in protected 
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areas. Using a detailed theory of change, manuscript three captures this complexity by measuring 

changes in protected area inputs, mechanisms, moderators, and conservation outcomes. Globally, 

the COVID-19 pandemic led to periods of human confinement (Bates et al., 2020) and a 

dramatic reduction in tourism (WTTC, 2021). This led to reduced visitation for protected areas 

and reduced income for tourism-related business in and around protected areas (Spenceley et al., 

2021). We find evidence of similar tourism impacts in Mexico during the first year of the 

pandemic, as well as a reduction in protected area monitoring capacity and an increase in non-

compliant activities (e.g., illegal fishing, hunting, logging). Protected area managers perceived 

the increase in non-compliant activities to be linked to the reduction in tourism-related income 

and reduced presence of authority in protected areas during the pandemic.  

Together, these three manuscripts demonstrate how factors at different scales shape 

protected area performance, which points to the overarching conclusion that protected areas do 

not operate in isolation. Protected area success is influenced by a combination of location 

characteristics, management characteristics, availability of human and financial resources, and 

global events. While international conservation goals continue to focus on the expansion of 

protected area networks, it is important to remember that protected area designation itself is not a 

panacea for preventing forest loss. To ensure success, conservation researchers and practitioners 

need to consider the broader context in which protected areas are designated in order to 

accurately assess their potential strengths and weaknesses, and to tailor conservation strategies 

accordingly.  

Implications for Research  

Impact evaluations which estimate a counterfactual have become the new standard for 

protected area effectiveness assessments (see Baylis et al., 2016; Pressey et al., 2015; Schleicher 
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et al., 2019). Given the significant role that contextual variables played in predicting forest loss 

in manuscript one (e.g., road density, precipitation, elevation), and the significant differences 

found between protected area and unprotected areas in manuscript two, this dissertation provides 

strong evidence in support of counterfactual-based evaluations.  

Manuscript one demonstrated the non-linearity of the relationships between most 

predictor variables and forest loss. A small number of studies have examined the complexity of 

the relationship between drivers of forest loss and observed deforestation using machine learning 

techniques (e.g., Bax & Francesconi, 2018; Bonilla-Moheno et al., 2012) or generalized additive 

models (e.g., Vaca et al., 2019). However, the majority of protected area evaluations continue to 

oversimplify these relationships when examining protected area outcomes by using conventional 

modeling approaches, such as generalized linear models, probit regressions, or ordinary least 

squares regressions. The findings from manuscript one suggest that future research should avoid 

analytical methods which oversimplify relationships between drivers of forest loss and observed 

outcomes to advance our understanding of what drives protected area outcomes. 

In manuscript two we demonstrate how the evaluation of protected area effectiveness can 

be skewed if confounding factors (i.e., placement characteristics) are not appropriately controlled 

for. Specifically, we found higher rates of deforestation inside protected areas with higher 

management effectiveness scores when directly compared to deforestation rates in protected 

areas with low management effectives scores. However, after using a propensity score matching 

approach to estimate a counterfactual which accurately reflects the underlying threat of 

deforestation by considering multiple placement characteristics, we find the avoided forest loss 

(relative to the counterfactual) to be greater in protected areas with high management 

effectiveness scores compared to those with low scores, despite losing a higher percentage of 
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forest cover overall. This finding has important implications for how protected area success is 

defined. Total forest loss may not present an accurate picture of how protected areas are 

performing. Instead, future research needs to account for placement characteristics influencing 

outcomes by comparing observed forest loss with an estimated counterfactual to better 

understand what would have happened if the protected area did not exist. 

Implications for Applied Conservation 

Aichi Biodiversity Target 11 calls for 17% of terrestrial and 10% of coastal and marine 

areas to be conserved through “effectively and equitably managed, ecologically representative 

and well connected systems of protected areas or other effective area based conservation 

measures” (Convention on Biological Diversity, 2010). Given the prioritization of effective and 

equitably managed areas, it is important that we understand what effective and equitable 

management means and how that translates to conservation outcomes. Manuscript two helps to 

answer this question and contributes critical evidence that protected areas with greater 

management capacity, including equity-related management dimensions, avoid more forest loss. 

Manuscript three builds on these findings by highlighting the links between changes in 

management and biodiversity threats experienced during the COVID-19 pandemic. In this 

chapter, we found that disruptions to management operations such as monitoring and subsidy 

programs led to a perceived increase in non-compliance inside protected areas. By strengthening 

management capacity, protected areas will likely be more successful in avoiding deforestation 

generally and more resilient in the face of future unexpected shocks, such as political instability, 

economic fluctuations, and climate change.  

The importance of placement characteristics found in manuscript one also has key 

implications for protected area planning. By identifying the key drivers of forest loss, 
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practitioners can identify the forested protected areas that may be more at risk of deforestation 

(e.g., close to roads and urban areas) and focus on strengthening management effectiveness in 

those areas. Additionally, by understanding which characteristics make protected areas more 

vulnerable, conservation efforts can be more proactive in protecting key biodiversity areas, rather 

than reactively designating protected areas in response to biodiversity loss.   

Limitations & Future Research  

I was initially interested in Mexico’s protected area network due to its recent growth, 

efforts to improve management monitoring, achievement of the Green List Global Standard in 

two protected areas, and the substantial overlap between protected areas and community-owned 

lands. It is estimated that up to 80% of forests in Mexico are community-owned (Bray et al., 

2008) and that over half of the country’s land area is under a form of communal tenure, primarily 

in rural areas (Morett-Sánchez & Cosío-Ruiz, 2017). Given this degree of overlap, protected 

areas in Mexico can have important equity implications. Equity is a general concern for 

protected area management, since many of the benefits from protected areas are global (i.e., 

carbon sequestration), while costs are often local (i.e., restrictions to resource use) (Bebber & 

Butt, 2017; Jones et al., 2017).  

Equity considerations in conservation have increasingly gained attention over the last 

decade (Greiber et al., 2009; Martin et al., 2016; Vucetich et al., 2018). For example, the 

Convention on Biological Diversity has made equitable participation and reduced burdens on 

vulnerable populations key components to their strategic plan (Convention on Biological 

Diversity, 2010). Additionally, researchers and practitioners have developed frameworks for 

social equity in protected areas focused on governance and management, which include three 

recognized typologies of justice – distributive (i.e., distribution of costs and benefits experienced 
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by stakeholders), participatory (i.e., equal participation in the rule-making processes and 

decision-making procedures, including who gets to participate and under what conditions) and 

recognition (i.e., level of respect and recognition given to all identities and cultures) (e.g. Franks 

& Schreckenberg, 2016; Zafra-Calvo et al., 2017).  

While there is a push for increased equity in protected area governance, evidence on how 

those factors relate to environmental outcomes is limited. My initial research proposal sought to 

address this knowledge gap by building evidence on the theoretical links between just 

conservation and ecological outcomes using multiple stakeholder perspectives, such as 

managers, communities living in and around protected areas, and conservation organizations. 

However, given the travel restrictions of the COVID-19 pandemic, my ability to capture diverse 

perspectives was limited. Instead, the three manuscripts focus primarily on the perspective of 

protected area managers due to this population being more accessible than remote communities 

living inside protected areas. While the results of my research find equitable decision-making 

and benefit sharing to be important factors in protected area success (see manuscripts one and 

two), important perspectives are missing from all manuscripts. An area of future research that I 

would like to pursue is capturing the perspective of additional stakeholders to triangulate 

findings and better evaluate the role of equity-related management variables in determining 

protected area success.  

The findings of the manuscripts presented in this dissertation could also be strengthened 

by expanding the protected area performance indicators given the range of objectives that 

protected areas hold. Manuscripts one and two use the Global Forest Watch annual forest loss 

data as the measure of protected area performance. Deforestation detected from land use/land 

cover (LULC) has become a common measurement of ecological performance due to the 
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accessibility, and the temporal and spatial range of satellite imagery (e.g., Defries et al., 2005; 

Ferraro et al., 2013; Geldmann et al., 2013; Heino et al., 2015; Joppa & Pfaff, 2011; Macura et 

al., 2015; Nagendra, 2008; Porter-Bolland et al., 2012; Spracklen et al., 2015). However, changes 

in forest cover detected by satellite imagery can overlook human impacts, such as reduced forest 

productivity and illegal hunting. Land classified as ‘forest’ based on satellite imagery alone can 

have significantly reduced levels of fauna (i.e., “empty forests”) – a long-standing concern in the 

conservation field (see Redford, 1992; Wilkie, et al., 2011). To overcome this limitation, 

researchers have promoted field-based measurements, such as species richness and abundance, to 

better capture human impact (see Coetzee, 2017; Geldmann et al., 2013, 2018; Gray et al., 2016; 

Pettorelli et al., 2005). Therefore, to increase the validity of our findings in manuscript one and 

two, future research should test alternative measures of conservation outcomes.  

Protected areas can also have significant socioeconomic impacts on the communities 

living in and around them (Corrigan et al., 2018; Jones et al., 2017; McKinnon et al., 2016; 

Naidoo et al., 2019; Pullin et al., 2013). Broadly, socioeconomic impacts of protected areas may 

include changes in poverty, health, displacement, redistribution of power, and human rights 

(Jones et al., 2017). These impacts can be positive, such as the development of new economic 

opportunities (e.g., Oldekop et al., 2016; Pullin et al., 2013), or negative, such as increased 

conflict and stress in local communities (e.g., Pfaff et al., 2017; Ruiz-Mallén et al., 2015) or 

displacement (e.g., Jones et al., 2017). A recent meta-analysis found that protected areas were 

more likely to report positive conservation outcomes when there were simultaneous positive 

socioeconomic outcomes associated with the protected area designation (Oldekop et al., 2016). 

Therefore, future research should also consider socioeconomic impacts in addition to ecological 

outcomes in order to develop a more holistic concept of protected area success. 
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Concluding remarks 

Global forests are under immense threat and protected areas are a key conservation 

strategy used to counter that threat. We have seen a significant expansion of area under 

protection over the past decade, and global conservation goals aim to continue this expansion in 

the future. Success in preventing forest loss and protecting biodiversity requires a strong 

understanding of what drives protected area outcomes. My dissertation research contributes 

empirical evidence to advance our understanding of protected area performance, using novel 

research methods to identify the strongest predictors of forest loss, quantify the role of effective 

management in preventing forest loss, and outline how unexpected events, specifically the 

current global health crisis, can impact protected areas. My research demonstrates the range of 

variables that can influence protected area outcomes, from local to global scales. A better 

understanding of the factors leading to protected area success will improve our ability to monitor 

progress and conserve ecosystems that are vital both for the health of the planet and for those 

who occupy it.  
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APPENDIX A 
 
 
 
Appendix Table A1: Details of data used in the analysis. 

Independent Variable Year Measurement Source 

Biophysical 

·    Ecoregions* 2012 WWF category WWF 

·   Precipitation 1970-2000 Year Total (mm) WorldClim 

·    Temperature 1970-2000 Yearly Average (°C) WorldClim 

·    Proximity to water*  2006 Euclidean (km) INEGI 

·    Slope  -- Average (degree slope) USGS  

·    Elevation -- Average (m) USGS 

Socioeconomic  

·    Ejido tenure  2010 % of cell INEGI 

·    Population density 2015 Est. total humans WorldPop 

·    Population change 2010-2019 Avg change/year/km2 WorldPop 

·    % moderate poverty 2015 % municipal population CONEVAL 

·    % extreme poverty  2015 % municipal population CONEVAL 

·    Distance to roads*  2017 Euclidean (km) INEGI 

·    Roads density*  2017 Scale: 0-5 INEGI 

·    Distance to urban centers  2017 Euclidean (km) INEGI 

·    PES enrollment  2017 % of cell enrolled  CONAFOR 

·    State 2019 (N/A) CONANP 

Protected Area Design Characteristics 

·    Age   2019 Years from decree date CONANP 

·    Strictness  2019 IUCN Category CONANP 

·    Total area 2019 Total terrestrial (ha) CONANP 

·    Management effectiveness 2017 Score of protected area CONANP 

Dependent Variable Year Measurement Source 

·    Forest Cover (baseline) 2000 % of cell GFW 

·   Forest Cover Loss* 2015-19 % baseline lost  GFW 

*more details below    
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More data details 
 
Sample cells and missing data. Of the original 30,888 cells, 30,032 fell within forest ecoregions. A total 

of 28,630 of the forest cells had no missing data. The largest portion of missing data fell within pine-oak 

forests, resulting in the removal of 11% of the original pine-oak forest cells. Mangrove forest was the 

second highest, with about 6% of the original cells containing missing data.  

The predictor variable with the largest portion of missing data was the multidimensional poverty index, 

which was missing values for two municipalities – Temósachic (included 1,117 cells) and Mezcalapa (17 

cells). Prior to removing all cells with missing data, we confirmed that it would not lower the total 

number of protected areas considered in our final analysis. 

Appendix Table A2: Summary of missing data. 

Group orig. count w/o missing missing (#) missing (%) 

Forest cells 30,032 28,630 1,402 4.67 
Moist Forest 15,213 15,070 143 0.94 
Montane Forest 599 592 7 1.17 
Pine-Oak Forest 10,451 9,333 1,118 10.70 
Mangrove Forest 1,636 1,541 95 5.81 

Dry Forest 2,133 2,094 39 1.83 
 
Forest cover loss (dependent variable). Forest cover loss between 2015-2019 was calculated using a 

baseline forest cover dataset from 2000. We first calculated the percent forest cover of each cell in 2000. 

We then calculated the percent forest loss between 2001-2014 and 2015-2019. The final forest loss 

dependent variable was calculated as:  

% forest loss between 2015-2019 / [% forest cover (2000) - % forest loss between 2001-2014] * 100  

Roads. Data of spatially referenced roads and other linear infrastructure were downloaded from a census 

report held by INEGI. A national layer of all roads was created by merging all state-level data files. We 

then selected five types of roads for our analysis, including avenue, boulevard, street, highway and private 

road. This removed infrastructure such as sidewalks, pedestrian street, horse corridors, and roundabouts. 

Distance was measured to the closest of any of the five road types. The road density data was created 
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using the same five types of roads compiled as one “road density” measure using the line density tool in 

ArcGIS Pro.  

Proximity to water. Hydrological data was acquired from INEGI, which included rivers, streams and 

canals. All were dissolved into a single line feature and closest distance to any of the three was used as 

the distance to water measurement.  

Ecoregions. Our sampling grid cells overlapped with 32 different ecoregions from WWF’s Terrestrial 

Ecoregion Classification. We manually grouped ecoregions into five categories for the forest subgroup 

analysis (Appendix Table 3). In doing so, we also removed 856 cells (from the 30,888) that fell in non-

forest ecoregion categories. This included the following ecoregions: Central Mexican, Meseta Central, 

Tamaulipan and Tehuacán Valley matorral (n=733), Pantanos de Centla (n=73), Tamaulipan mezquital 

(n=35), Western Gulf coastal grasslands (n=12), and Chihuahuan desert (n=3). The full forest analysis 

also excluded these 856 cells. See Appendix Table 3 below for more details on each subgroup’s 

ecoregions. 

Appendix Table A3: Summary of the ecoregions included in each of the five forest types. 

Moist Forests Montane Forests Mangrove Forest 

Petén-Veracruz moist forests Chiapas montane forests 
Mesoamerican Gulf-Caribbean 
mangroves 

Sierra Madre de Chiapas moist 
forests 

Chimalapas montane 
forests 

Northern Mesoamerican Pacific 
mangroves 

Veracruz moist forests Veracruz montane forests 
Southern Mesoamerican Pacific 
mangroves 

Yucatán moist forests   

Dry Forests Pine-Oak Forests  

Balsas dry forests Central American pine-oak forests  

Central American dry forests Sierra Juarez and San Pedro Martir pine-oak forests  

Chiapas Depression dry forests Sierra Madre de Oaxaca pine-oak forests  

Jalisco dry forests Sierra Madre del Sur pine-oak forests  

Sinaloan dry forests Sierra Madre Occidental pine-oak forests  

Southern Pacific dry forests Sierra Madre Oriental pine-oak forests  

Yucatán dry forests Trans-Mexican Volcanic Belt pine-oak forests   
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Appendix Table A4: Forest type subgroup details 

Forest type All forests Moist forest Pine-oak Dry forest Mangroves Montane forest 

% Area of MX 56% 11% 24% 19% 1% 1% 

# grid cells 30,032 15,087 10,450 2,094 1,541 592 

# protected areas 51 19 30 15 8 5 

 
 
 

Appendix Table A5: Forest loss summaries for the random forest train and test datasets (forest 
loss years: 2015-2019). A 70:30 training-test split ratio was used. 

Group N Median Mean Max 

All forests 28,630 0.00 1.23 98.97 

Train 20,041 0.00 1.21 95.54 

Test 8,589 0.00 1.29 98.97 

Moist forests 15,070 0.00 1.94 98.97 

Train 10,549 0.00 1.95 98.97 

Test 4,521 0.00 1.88 95.54 

Pine-oak forests 9,333 0.00 0.38 68.56 

Train 6,533 0.00 0.41 68.56 

Test 2,800 0.00 0.39 45.37 

Dry forests  2,094 0.00 0.28 38.42 

Train 1,466 0.00 0.30 38.42 

Test 628 0.00 0.22 16.19 

Mangrove Forest 1,541 0.00 0.53 81.54 

Train 1,079 0.00 0.50 81.54 

Test 462 0.00 0.57 34.78 

Montane forests  592 0.00 1.73 28.00 

Train 414 0.00 1.84 28.00 

Test 178 0.00 1.45 26.99 
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Appendix Table A6: Descriptive statistics of forest subgroup samples 

 Moist Forest Montane Forest Dry Forest Mangrove Forest Pine-oak Forest 
Variable Median sd Median sd Median sd Median sd Median sd 

Precipitation (mm) 1275.00 584.28 2096.00 655.03 1019.00 248.57 1511.00 255.50 784.00 326.60 

Temperature (°C) 23.00 1.83 20.00 2.59 22.00 2.84 25.00 0.93 15.00 4.23 

Distance from water (km) 1.37 3.32 0.57 0.54 0.70 0.64 1.35 3.48 0.97 0.96 

Slope (degree) 0.57 3.67 5.15 3.94 7.54 5.30 0.01 0.18 7.29 5.25 

Elevation (m) 254.00 380.65 1032.50 363.45 847.50 536.57 1.00 4.84 1900.00 639.60 

Population density (pop/km2) 0.13 14.78 5.10 212.75 0.91 25.53 0.07 11.86 1.01 34.00 

Population change (Δpop/km2) 0.00 1.46 -0.23 20.36 -0.06 2.63 0.00 1.11 -0.05 3.46 

Distance from road (km) 1.79 4.47 2.64 3.95 4.29 2.47 4.42 4.94 3.75 3.39 

Road density (0-5) 0.03 0.08 0.16 0.34 0.20 0.52 0.06 0.09 0.31 0.61 

Urban distance (km) 19.30 15.94 14.47 11.04 9.43 7.26 18.68 11.24 13.06 9.78 

PES (% cell enrolled) 100.00 48.74 100.00 40.39 4.00 48.56 91.00 48.07 100.00 37.62 

Ejido tenure (% cell) 0.00 46.77 0.00 44.50 50.00 47.21 0.00 38.22 21.00 46.92 

Moderate poverty (% pop) 50.78 6.34 48.85 8.20 45.13 7.04 45.25 10.29 47.60 11.08 

Extreme poverty (% pop) 23.55 12.75 36.65 17.60 16.12 9.80 18.23 9.84 10.61 11.02 

PA Age (years) 32.00 6.46 43.00 21.11 26.00 15.29 27.00 4.77 24.00 25.05 

PA Area (km2) 5,728.08 2,422.70 3,312.00 1,303.92 1,673.09 1,410.28 3,749.84 1,973.37 2,083.81 1,417.61 

Management eff. 81.00 7.90 75.00 11.41 72.00 6.54 75.00 10.10 69.00 9.21 

ME: Context & planning 76.00 10.12 71.00 9.03 69.00 10.64 75.00 17.36 67.00 12.34 

ME: Administrative 56.00 5.89 61.00 4.81 56.00 7.56 59.00 9.03 58.00 9.66 

ME: Use & benefits 95.00 12.33 86.00 8.35 67.00 10.03 67.00 18.20 67.00 10.00 

ME: Gov & social part. 97.00 10.53 78.00 11.05 80.00 8.89 73.00 7.81 77.00 13.87 

ME: Management quality 90.00 10.80 81.00 21.16 67.00 10.77 80.00 7.18 67.00 13.33 
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Appendix Table A7: Pearson correlation coefficients between forest loss predictors. 
 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 

(1) Precipitation                      

(2) Temperature .48                     

(3) Dist. to water -.07 .24                    

(4) Slope -.27 -.49 -.27                   

(5) Elevation -.42 -.95 -.28 .57                  

(6) Pop density .04 -.07 -.05 .04 .07                 

(7) Pop change -.04 .07 .05 -.04 -.07 -.97                

(8) Dist. to roads .04 -.13 -.15 .08 .11 -.09 .09               

(9) Road density -.22 -.45 -.15 .41 .52 .15 -.15 .01              

(10) Urban 
distance 

.16 .12 -.13 -.13 -.16 -.08 .08 .17 -.21             

(11) PES .11 -.23 -.24 .26 .28 -.01 .01 .32 .22 .05            

(12) Ejido .17 -.14 -.14 .08 .16 -.03 .02 .11 -.04 -.02 .22           

(13) Moderate 
poverty 

-.25 .10 .17 -.11 -.05 .02 -.02 -.13 -.16 -.09 -.12 -.13          

(14) Extreme 
poverty 

.76 .44 -.04 -.21 -.35 -.03 .03 .01 -.28 .17 .13 .15 .03         

(15) PA Age .18 -.35 -.08 -.09 .30 .12 -.11 .11 .12 -.01 .01 .05 -.11 .07        

(16) PA Size -.08 .39 .40 -.47 -.48 -.11 .11 -.10 -.43 -.02 -.24 -.13 .32 .10 -.18       

(17) Overall ME  .33 .60 .25 -.42 -.63 -.09 .09 -.13 -.28 .11 -.17 -.06 -.03 .45 -.24 .43      

(18) ME: Context .10 .48 .23 -.29 -.48 -.09 .09 -.16 -.21 .10 -.26 -.12 .00 .15 -.27 .27 .83     

(19) ME: Admin -.20 -.01 -.05 -.09 .01 .05 -.05 -.10 -.19 .00 -.03 -.01 .26 -.08 -.06 .15 .22 .27    

(20) ME: Use .21 .52 .33 -.48 -.57 -.07 .07 -.13 -.22 .10 -.23 -.14 .15 .41 -.11 .52 .84 .60 .06   

(21) ME: Govern. .31 .59 .29 -.40 -.61 -.05 .05 -.14 -.21 .01 -.17 -.06 .05 .43 -.26 .54 .91 .67 .05 .85  

(22) ME: Quality .44 .61 .23 -.41 -.66 -.12 .11 -.08 -.28 .12 -.10 -.04 -.14 .50 -.20 .42 .92 .62 .00 .76 .85 
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Appendix Table A8: Random forest model results of full forest model and forest subgroups.  
Root mean square error (RMSE) and mean absolute error (MAE) are presented. MAE represents 
the average magnitude of all errors, ignoring direction and weight, while RMSE weighs larger 
errors more heavily than small errors (see Willmott & Matsuura, 2005). We also present 
normalized values for both the RMSE and MAE (i.e. NRMSE and NMAE) in order to compare 
performance across models. We used the standard deviation of the outcome variable in the test 
set of each model to normalize each error measure. 
 

Forest type All Forests Moist forest Montane forest Mangroves Pine-oak Dry forest 

N 28,630 15,070 592 1,541 9,333 2,094 

R2 59.37% 60.46% 48.25% 29.50% 25.17% 11.00% 

RMSE 3.60 4.06 3.09 2.98 2.02 1.15 

NRMSE 0.65 0.59 0.88 0.93 1.00 0.95 

MAE 1.04 1.38 1.57 0.92 0.58 0.40 

NMAE 0.19 0.20 0.45 0.29 0.29 0.34 
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Appendix Figure A1: ALE plots of all socioeconomic, biophysical and protected area design characteristics. 
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Appendix Figure A1 (continued): ALE plots of all socioeconomic, biophysical and protected area design characteristics. 
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Appendix Figure A1 (continued): ALE plots of all socioeconomic, biophysical and protected area design characteristics. 
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Appendix Table A9: Descriptive statistics of burn scar data across all sampling grid cells. Data was 
calculated as the total percent of 1 km2 cell with burn scar between 2017-2019. Forest fire data was 
acquired from CONABIO, with the earliest available data starting in 2017.  
 

Median Mean Standard Dev Min Max 

0.00% 1.15% 9.25% 0.00% 100.00% 

 

 

Appendix Table A10: Pearson correlation coefficients for percent of cell with burn scar and percent 
forest loss (2017-2019) for full forest and by forest subgroup.  

All Forest Moist Dry Montane Mangrove Pine-Oak 

0.07 0.18 -0.01 -0.01 0.00 0.24 
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APPENDIX B 
 

 
 
Appendix Table B1: Difference in Means (t-test) in percent forest loss from 2017-2019 in cells 
inside a 5km and 10km buffer around protected areas and the remaining unprotected cells.  

 Unprotected Buffer Sig. 

5km Buffer 1.86 2.07 -- 

10km Buffer  1.86 2.05 -- 

p <.001**    p <.01*     

 

Appendix Table B2: List of protected areas included in the final analysis and the total number of 
cells in the final sample. 

Protected Area Type  Cells 

Barranca de Metztitlán Biosphere Reserve 200 

Bonampak Natural Monument 29 

Boquerón de Tonalá Flora and Fauna Protection Area 17 

Calakmul Biosphere Reserve 7575 

Cañón del Usumacinta Flora and Fauna Protection Area 312 

Cascada de Agua Azul Flora and Fauna Protection Area 17 

Cofre de Perote o Nauhcampatépetl National Park 32 

Cumbres de Monterrey National Park 1291 

El Chico National Park 14 

El Potosí National Park 11 

El Tepozteco National Park 152 

Huatulco National Park 47 

La Encrucijada Biosphere Reserve 445 

La Montaña Malinche o Matlalcuéyatl National Park 124 

La Primavera Flora and Fauna Protection Area 148 

La Sepultura Biosphere Reserve 997 

Laguna de Términos Flora and Fauna Protection Area 763 

Laguna Madre y Delta del Río Bravo Flora and Fauna Protection Area 100 

Lagunas de Chacahua National Park 34 

Lagunas de Montebello National Park 22 

Maderas del Carmen Flora and Fauna Protection Area 193 
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Mariposa Monarca Biosphere Reserve 378 

Marismas Nacionales Biosphere Reserve 178 

Metzabok Flora and Fauna Protection Area 16 

Montes Azules Biosphere Reserve 3283 

Otoch Ma'ax Yetel Kooh Flora and Fauna Protection Area 36 

Papigochic Flora and Fauna Protection Area 925 

Pico de Orizaba National Park 4 

Pico de Tancítaro Flora and Fauna Protection Area 188 

Ría Celestún Biosphere Reserve 73 

Ría Lagartos Biosphere Reserve 112 

Selva El Ocote Biosphere Reserve 943 

Sian Ka'an Biosphere Reserve 1537 

Sierra de Manantlán Biosphere Reserve 1218 

Sierra de Quila Flora and Fauna Protection Area 104 

Sierra de San Pedro Mártir National Park 1 

Sierra Gorda Biosphere Reserve 3074 

Sierra Gorda de Guanajuato Biosphere Reserve 604 

Tehuacán-Cuicatlán Biosphere Reserve 753 

Tutuaca Flora and Fauna Protection Area 1650 

Uaymil Flora and Fauna Protection Area 558 

Volcán Nevado de Colima National Park 2 

Volcán Tacaná Biosphere Reserve 73 

Yaxchilán Natural Monument 2 

Zicuarán-Infiernillo Biosphere Reserve 461 

Zona de Protección Forestal en… en los 
municipios de La Concordia, Ángel Albino 
Corzo, Villa Flores y Jiquipilas Natural Resource Protection Area 1383 

Zona Protectora Forestal Vedada Cuenca 
Hidrográfica del Río Necaxa Natural Resource Protection Area 254 
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Appendix Table B3: Summary of data and data sources included in the analysis. 

Indicators Measurement Used Source 

·    Ecoregions (N/A) WWF 

·   CONANP regions  (N/A) CONANP  

·    Rainfall Year Total WorldClim 

·   Temperature Yearly Average WorldClim 

·   Ejido % of cell INEG 

·   Population density  Average NASA - SEDAC  

·    Distance to roads  Euclidean INEG– Census 2010 

·   Road density  Average INEG – Census 2010 

·   Distance to urban centers  Euclidean INEG – Census 2010 

·   Slope  Median USGS Earth Explorer 

·    Elevation Average USGS Earth Explorer 

·    Protected areas  (N/A) Protected Planet 

·    IUCN category  (N/A) Protected Planet 

·    Management effectiveness (N/A) CONANP 

·   Forest Cover 2000 % of cell  GFW 

·   Forest Cover Loss 2017-2019 % of 2000 baseline lost GFW 
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Appendix Table B4: Spearman correlation of all socioeconomic, ecological, and climatological variables considered for the 
propensity score model. 

 (1) (2) (3) (4) (5) (6) (7) (8) (9) 

Elevation (1) 1.00         

Slope (2) 0.69 1.00        

Urban Distance (3) -0.15 -0.18 1.00       

Road Distance (4) 0.07 0.06 0.53 1.00      

Road Density (5) 0.06 0.09 -0.62 -0.55 1.00     

Population Density (6) 0.15 0.22 -0.70 -0.57 0.72 1.00    

Average Temperature (7) -0.91 -0.59 0.13 -0.07 -0.05 -0.10 1.00   

Rainfall (8) -0.35 -0.14 -0.04 -0.15 0.05 0.19 0.42 1.00  

Ejido Tenure (9) 0.00 -0.02 0.05 -0.02 -0.11 -0.03 0.04 0.00 1.00 

% Forest Loss -0.22 -0.15 -0.15 -0.34 0.19 0.25 0.22 0.39 0.06 
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Appendix Table B5: Model 1: Logistic regression with a binary treatment (protected) dummy 
variable. Model 2: Linear regression with a continuous dependent variables of percent forest 
loss between 2017-2019. Each model includes the 6 covariates used in the matching algorithms 
as independent variables.  

 

Model 1:  
Treatment (1-0) 

Model 2:  
% Forest Loss  

Elevation 
2.081e-04***   
(1.236e-05) 

-1.119e-03***   
(4.058e-05) 

Slope 
-8.666e-03***  
 (2.029e-03) 

-1.531e-01***   
(6.572e-03) 

Urban Distance 
2.970e-05***   
(5.992e-07) 

3.687e-05***   
(2.061e-06) 

Road Distance 
3.324e-05***   
(1.384e-06) 

-2.345e-04***  
(4.940e-06) 

Rainfall 
1.451e-04***   
(1.636e-05) 

2.510e-03***   
(5.216e-05) 

Ejido Tenure 
-7.309e-03***   

(1.840e-04) 
6.042e-03***   
(5.912e-04) 

R2 -- 0.12 
Observations 80,000 80,000 

p <.0001***    p <.001**      p <.01* 
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Appendix Table B6: Difference in means (t-test) between protected-unprotected cells and high-low management subgroups for all 

covariates.   

 
Elevation Slope 

Urban 
Distance 

Road 

Distance 
Road 

Density 
Population 

Density 

Average 

Temperature 
Rainfall 

Ejido 
Tenure 

Unprotected 911 5.00 17844 5886 0.13 46.0 19.8 1254.12 56.07 

Protected  934 4.64 28283 9503 0.11 46.1 19.6 1232.12 41.12 

Sig. ** *** *** *** *** -- *** *** *** 

High 369 1.72 40280 12337 0.058 10.9 23.0 1454.60 38.17 

Low 1483.70 7.48 16621.77 6748.8 0.156 80.4 16.37 1015.86 43.99 

Sig. *** *** *** *** *** *** *** *** *** 

p <.0001***    p <.001**      p <.01*
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Appendix Table B7: List of algorithms and calipers used in best matches. ‘PS’ is Propensity 
Score Matching. 

Match 
High Mgmt. 
Effectiveness   # 

Low Mgmt.  
Effectiveness  

# 

Overall Management PS + .2 sd caliper  7,023 PS + .2 sd caliper 10,121 

Context & Planning PS + .2 sd caliper  5,116 PS + .1 sd caliper 11,667 

Administration PS + .2 sd caliper  7,738 PS + .1 sd caliper 10,570 

Use & Benefits PS + .1 sd caliper  6,479 PS + .1 sd caliper 10,370 

Governance PS + .1 sd caliper  6,433 PS + .1 sd caliper 10,410 

Management Quality PS + .2 sd caliper  7,044 PS + .1 sd caliper 10,329 

Match All Cells      

Protected - Unprotected PS + .1 sd caliper  18,204   
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Appendix Figure B1: Visual distribution of the propensity scores for the post-match balance of 
management subgroups for the most balanced match (Appendix Table B7).  
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Appendix Table B8: Mean standardized bias (SB) of high management and low management 
matches using propensity score matching (PS) with no caliper, PS with a 0.2 standard deviations 
caliper, PSM with a 0.1 standard deviations caliper, and Mahalanobis Matching (MM). SB is 
calculated as calculated as the difference in means in the treated and matched control subgroups 
as a percentage of the square root of the average of sample variances in both groups.  

Protected – Unprotected Match 

Covariate PS PS + .2 SD Caliper PS + .1 SD Caliper MM 

Elevation 14.41 6.17 5.40 7.61 

Slope 14.63 6.27 6.09 13.02 

Urban Distance 16.41 3.92 1.44 28.70 

Road Distance 10.95 0.52 2.61 23.38 

Avg Rainfall 2.65 1.07 0.25 4.12 

Ejido Tenure 8.40 5.94 5.34 6.56 

# Matched Pairs 20,000 18,395 18,204 20,000 

High Overall Management Score – Unprotected Match 

Covariate PS PS + .2 SD Caliper PS + .1 SD Caliper MM 

Elevation 20.51 12.59 11.69 29.08 

Slope 27.20 13.75 13.10 40.30 

Urban Distance 45.29 2.97 4.78 50.63 

Road Distance 36.14 0.90 3.48 37.89 

Avg Rainfall 14.51 4.54 4.91 12.21 

Ejido Tenure 16.23 1.96 0.34 10.28 

# Matched Pairs 9,858 7,023 6,781 9,858 

Low Overall Management Score – Unprotected Match 

Covariate PS PS + .2 SD Caliper PS + .1 SD Caliper MM 

Elevation 5.20 2.96 3.64 5.75 

Slope 0.45 1.31 0.04 3.77 

Urban Distance 1.67 3.89 1.56 2.59 

Road Distance 0.53 2.11 1.32 2.31 

Avg Rainfall 8.71 5.21 6.95 6.77 

Ejido Tenure 0.88 1.40 0.61 0.67 

# Matched Pairs 10,142 10,121 10,080 10,142 

High Context and Planning Score – Unprotected Match 
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Covariate PS PS + .2 SD Caliper PS + .1 SD Caliper MM 

Elevation 28.92 17.44 18.62 33.10 

Slope 30.81 10.93 9.61 33.23 

Urban Distance 47.24 9.60 13.29 52.10 

Road Distance 27.60 4.10 6.26 32.31 

Avg Rainfall 12.88 2.11 1.25 20.62 

Ejido Tenure 17.03 11.54 9.77 16.12 

# Matched Pairs 8,333 5,116 4,987 8.333 

Low Context and Planning Score – Unprotected Match 

Covariate PS PS + .2 SD Caliper PS + .1 SD Caliper MM 

Elevation 5.67 6.39 4.72 3.69 

Slope 5.95 5.96 6.60 0.86 

Urban Distance 2.88 3.70 3.79 7.75 

Road Distance 2.80 4.22 4.00 10.73 

Avg Rainfall 8.62 8.12 6.75 0.97 

Ejido Tenure 4.43 2.27 3.47 2.23 

# Matched Pairs 11,667 11,660 11,644 11,667 

High Administration and Finance Score – Unprotected Match 

Covariate PS PS + .2 SD Caliper PS + .1 SD Caliper MM 

Elevation 0.08 0.67 1.24 1.60 

Slope 4.12 2.75 1.13 3.35 

Urban Distance 5.19 2.08 0.37 8.68 

Road Distance 3.73 3.22 2.54 5.70 

Avg Rainfall 0.75 3.46 0.19 0.70 

Ejido Tenure 4.16 3.34 1.73 1.67 

# Matched Pairs 7,748 7,738 7,735 7,748 

Low Administration and Finance Score – Unprotected Match 

Covariate PS PS + .2 SD Caliper PS + .1 SD Caliper MM 

Elevation 17.24 7.86 7.69 11.52 

Slope 18.93 7.32 6.19 15.95 

Urban Distance 23.75 1.03 1.20 33.58 

Road Distance 12.62 2.80 2.87 27.90 

Avg Rainfall 3.57 2.56 2.23 6.17 

Ejido Tenure 8.40 3.85 3.05 5.19 
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# Matched Pairs 11,667 10,682 10,570 12,252 

High Use and Benefits Score – Unprotected Match 

Covariate PS PS + .2 SD Caliper PS + .1 SD Caliper MM 

Elevation 22.24 11.28 8.34 29.34 

Slope 26.13 12.72 10.41 46.80 

Urban Distance 49.10 4.85 0.02 53.63 

Road Distance 39.03 4.51 0.08 40.06 

Avg Rainfall 15.44 8.81 7.29 12.49 

Ejido Tenure 17.10 5.20 2.86 11.15 

# Matched Pairs 9,521 6,715 6,479 9,521 

Low Use and Benefits Score – Unprotected Match 

Covariate PS PS + .2 SD Caliper PS + .1 SD Caliper MM 

Elevation 6.16 4.66 5.43 4.75 

Slope 0.16 0.48 0.20 3.80 

Urban Distance 0.21 1.01 1.19 2.58 

Road Distance 0.13 0.06 1.01 2.30 

Avg Rainfall 8.16 7.76 7.90 7.48 

Ejido Tenure 1.17 0.42 2.29 0.55 

# Matched Pairs 10,479 10,424 10,374 10,479 

High Governance and Social Participation Score – Unprotected Match 

Covariate PS PS + .2 SD Caliper PS + .1 SD Caliper MM 

Elevation 21.45 9.75 8.57 29.83 

Slope 26.39 13.14 12.07 47.15 

Urban Distance 49.30 4.62 0.55 53.76 

Road Distance 39.34 2.35 1.86 40.19 

Avg Rainfall 16.06 7.10 6.83 12.59 

Ejido Tenure 17.89 4.34 1.58 11.11 

# Matched Pairs 9,488 6,665 6,433 9,488 

Low Governance and Social Participation Score – Unprotected Match 

Covariate PS PS + .2 SD Caliper PS + .1 SD Caliper MM 

Elevation 6.45 4.24 5.32 4.97 

Slope 0.30 0.89 0.24 3.81 

Urban Distance 0.29 2.55 0.68 2.23 



  

 143 

Road Distance 0.25 0.52 0.10 2.03 

Avg Rainfall 8.57 6.50 7.60 7.10 

Ejido Tenure 1.93 1.14 0.86 0.63 

# Matched Pairs 10,512 10,461 10,410 10,512 

High Management Quality Score – Unprotected Match 

Covariate PS PS + .2 SD Caliper PS + .1 SD Caliper MM 

Elevation 29.91 14.22 16.32 27.84 

Slope 29.98 12.37 11.71 29.25 

Urban Distance 41.77 1.30 5.27 49.13 

Road Distance 27.22 6.94 8.52 28.15 

Avg Rainfall 7.53 1.81 3.05 9.28 

Ejido Tenure 14.19 1.33 2.30 10.54 

# Matched Pairs 9,671 7,044 6,795 9,671 

Low Management Quality Score – Unprotected Match 

Covariate PS PS + .2 SD Caliper PS + .1 SD Caliper MM 

Elevation 3.25 1.37 2.90 3.71 

Slope 1.99 0.57 0.55 1.49 

Urban Distance 0.59 4.48 3.07 6.26 

Road Distance 1.37 5.16 1.99 2.97 

Avg Rainfall 6.57 2.36 4.47 1.76 

Ejido Tenure 0.92 3.08 2.40 0.37 

# Matched Pairs 10,329 10,329 10,329 10,329 
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Appendix Table B9: Difference in means (t-tests) in percent forest loss from 2017-2019 between 
management subgroups and unprotected matched cells.  

 Control High Low Sig. 

Overall Management 

High Match 3.30 1.19  *** 

Low Match 1.05  0.46 *** 

Context & Planning 

High Match 2.49 0.74  *** 

Low Match 1.42  0.75 *** 

Administration 

High Match 0.93 0.20  *** 

Low Match 2.39  1.16 *** 

Use & Benefits 

High Match 3.28 1.36  *** 

Low Match 1.15  0.38 *** 

Governance 

High Match 3.47 1.45  *** 

Low Match 1.13  0.38 *** 

Management Quality 

High Match 2.82 1.16  *** 

Low Match 1.22  0.48 *** 

p <.0001***     
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Appendix Table B10: Post-match linear regression results for high management – unprotected matches. Dependent variable is 
percent forest loss between 2017-2019. Regression coefficient presented and robust standard errors shown in parentheses.   

 

Model 1:  
Overall Score 

Model 2:  
Context 

Model 3:  
Administration 

Model 4:  
Uses 

Model 5: 
Governance 

Model 6: 
 Management 

High Management 

Score (Binary) 
-2.176e+00***  

(1.064e-01) 
-1.773e+00*** 

(1.169e-01) 
-7.326e-01*** 

(4.943e-02) 
-2.014e+00*** 

(1.102e-01) 
-2.002e+00***  

(1.151e-01) 
-1.805e+00*** 

(1.038e-01) 

Elevation 
-3.600e-04***  

(5.934e-05) 
-4.775e-04*** 

(7.542e-05) 
-7.391e-05 
(3.781e-05) 

-3.173e-04*** 
(6.874e-05) 

-4.089e-04*** 
(6.652e-05) 

-2.424e-04** 
(7.567e-05) 

Slope 
-6.508e-02*** 

(9.889e-03) 
-3.124e-02* 
(7.788e-03) 

-2.638e-02*** 
(4.581e-03) 

-7.238e-02*** 
(2.281e-02) 

-7.872e-02*** 
(1.301e-02) 

-4.201e-02*** 
(7.500e-03) 

Urban Distance 
5.349e-05***  
(4.234e-06) 

5.851e-05*** 
(4.739e-06) 

1.212e-05** 
(4.021e-06) 

4.660e-05*** 
(4.282e-06) 

4.938e-05*** 
(4.621e-06) 

4.319e-05*** 
(3.949e-06) 

Road Distance 
-1.769e-04***  

(6.105e-06) 
-1.497e-04*** 

(7.722e-06) 
-4.434e-05*** 

(5.843e-06) 
-1.731e-04*** 

(6.336e-06) 
-1.789e-04***  

(6.443e-06) 
-1.566e-04*** 

(5.615e-06) 

Rainfall 
1.266e-03***  
(8.697e-05) 

1.138e-03*** 
(1.590e-04) 

8.928e-04*** 
(8.402e-05) 

1.233e-03*** 
(9.480e-05) 

1.208e-03*** 
(9.584e-05) 

1.046e-03*** 
(8.401e-05) 

Ejido Tenure 
6.729e-03***  
(1.232e-03) 

7.814e-03*** 
(1.306e-03) 

1.562e-03* 
(6.387e-04) 

6.228e-03*** 
(1.265e-03) 

7.412e-03*** 
(1.346e-03) 

5.141e-03*** 
(1.188e-03) 

R2 0.11 0.10 0.04 0.10 0.10 0.10 

Observations 14,046 10,232 15,476 12,958 12,866 10,820 

p <.0001***        p <.001**       p <.01*      p<.05° 

 
VIF ≤ 2 for all coefficients in all models 
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Appendix Table B11: Post-match linear regression results for low management – unprotected matches. Dependent variable is percent 
forest loss between 2017-2019. Regression coefficient presented and robust standard errors shown in parentheses.   

 Model 1:  
Overall Score 

Model 2:  
Context 

Model 3:  
Administration 

Model 4:  
Uses 

Model 5: 
Governance 

Model 6: 
 Management 

Low Management Score 
(Binary) 

-4.961e-01***  
(4.317e-02) 

-6.258e-01*** 
(4.869e-02) 

-1.317e+00*** 
(7.727e-02) 

-7.254e-01***  
(4.757e-02) 

-7.075e-01***  
(4.824e-02) 

-7.069e-01*** 
(4.735e-02) 

Elevation 
-1.719e-04***  

(3.422e-05) 
-8.584e-05* 
(3.787e-05) 

-4.265e-04*** 
(4.460e-05) 

-1.444e-04*** 
(3.753e-05) 

-1.841e-04*** 
(3.673e-05) 

-1.576e-04* 
(3.684e-05) 

Slope -3.751e-02***  
(3.857e-03) 

-4.448e-02*** 
(4.861e-03) 

-4.672e-02*** 
(5.163e-03) 

-4.307e-02***  
(4.247e-03) 

-3.952e-02*** 
(4.166e-03) 

-4.853e-02** 
(4.476e-03) 

Urban Distance 
1.029e-05*** 
(2.679e-06) 

1.878e-05*** 
(2.616e-06) 

4.215e-05*** 
(3.460e-06) 

1.680e-05*** 
(2.271e-06) 

1.803e-05***  
(3.536e-06) 

1.784e-05*** 
(3.062e-06) 

Road Distance -3.927e-05***  
(4.003e-06) 

-7.235e-05*** 
(3.806e-06) 

-1.410e-04*** 
(4.880e-06) 

-4.542e-05*** 
(4.530e-06) 

-4.739e-05*** 
(4.833e-06) 

-5.274e-05*** 
(4.528e-06) 

Rainfall 1.244e-03*** 
(6.424e-05) 

1.279e-03*** 
(5.026e-05) 

1.173e-03*** 
(6.933e-05) 

1.412e-03*** 
(7.110e-05) 

1.371e-03***  
(7.898e-05) 

1.551e-03*** 
(7.725e-05) 

Ejido Tenure 
1.977e-03*** 
(4.754e-04) 

-1.774e-03*** 
(5.325e-04) 

2.054e-03* 
(8.505e-04) 

1.359e-03** 
(5.265e-04) 

1.649e-03** 
(5.376e-04) 

1.629e-03*** 
(5.262e-04) 

R2 .06 0.09 0.09 0.07 0.11 0.07 

Observations 20,242 23,334 21,140 20,740 20,820 20,658 

p <.0001***     p <.001**       p <.01*      p<.05°  

VIF < 2 for all coefficients in all models 
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Appendix Table B12: Full results for each management interaction linear regression model. Dependent variable is percent forest loss 
between 2017-2019. Regression coefficient presented and robust standard errors shown in parentheses.   

 Overall Mngt 
Effectiveness 

Context & 
Planning 

Admin & 
Finance 

Use &  
Benefits 

Gov & Social 
Participation 

Management 
Quality 

Mngt 
(Interaction) 

-1.49e-02***  
(6.93e-04) 

-1.55e-02***  
(6.83e-04) 

-1.84e-02***  
(7.98e-04) 

-1.39e-02***  
(6.670e-04) 

-1.25e-02***  
(6.17e-04) 

-1.36e-02***  
(6.58e-04) 

Elevation 
-3.37e-04*** 

(2.82e-05) 
-3.43e-04*** 

(2.83e-05) 
-2.95e-04***  

(2.81e-05) 
-3.41e-04***  

(2.83e-05) 
-3.45e-04***  

(2.82e-05) 
-3.48e-04***  

(2.83e-05) 

Slope 
-4.52e-02***  

(3.47e-03) 
-4.43e-02***  

(3.46e-03) 
-4.60e-02***  

(3.47e-03) 
-4.73e-02***  

(3.50e-03) 
-4.47e-02***  

(3.47e-03) 
-4.54e-02***  

(3.48e-03) 

Urban 
Distance 

3.06e-05*** 
(2.53e-06) 

3.05e-05***  
(2.53e-06) 

2.91e-05***  
(2.53e-06) 

3.19e-05***  
(2.53e-06) 

3.10e-05*** 
(2.53e-06) 

3.09e-05***  
(2.53e-06) 

Road Distance 
-1.10e-04*** 

(3.73e-06) 
-1.10e-04***  

(3.73e-06) 
-1.12e-04***  

(3.75e-06) 
-1.10e-04***  

(3.73e-06) 
-1.11e-04***  

(3.73e-06) 
-1.08e-04***  

(3.71e-06) 

Rainfall 1.18e-03***   
(5.38e-05) 

1.15e-03***  
(5.36e-05) 

1.12e-03***  
(5.35e-05) 

1.17e-03***  
(5.37e-05) 

1.18e-03***  
(5.39e-05) 

1.21e-03***  
(5.41e-05) 

Ejido Tenure 
3.09e-03***  
(5.34e-04) 

3.00e-03***  
(5.34e-04) 

3.17e-03***  
(5.32e-04) 

2.85e-03***  
(5.37e-04) 

3.08e-03***  
(5.34e-04) 

3.13e-03***  
(5.33e-04) 

R2 0.08 0.08 0.08 0.08 0.08 0.08 

p <.0001***  p <.001**   p <.01* 
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Appendix Table B13: Marginal effects for each continuous management score interaction term. Dependent variable is percent forest 
loss between 2017-2019.  

Overall Score Use and Benefits 

Score Predicted Forest Loss SE 95% CI Score Predicted Forest Loss SE 95% CI 

40 0.99 0.03 [0.93, 1.04] 40 1.03 0.03 [0.97, 1.08] 

50 0.84 0.03 [0.78, 0.90] 50 0.89 0.03 [0.83, 0.95] 

60 0.69 0.03 [0.62, 0.75] 60 0.75 0.03 [0.69, 0.81] 

70 0.54 0.04 [0.47, 0.61] 70 0.61 0.03 [0.54, 0.68] 

80 0.39 0.04 [0.31, 0.47] 80 0.47 0.04 [0.40, 0.54] 

90 0.24 0.05 [0.15, 0.33] 90 0.33 0.04 [0.25, 0.41] 
 

Context & Planning  Governance and Social Participation 

Score Predicted Forest Loss SE 95% CI Score Predicted Forest Loss SE 95% CI 

40 0.97 0.03 [0.91, 1.03] 40 1.06 0.03 [1.01, 1.12] 

50 0.82 0.03 [0.76, 0.88] 50 0.94 0.03 [0.88, 1.00] 

60 0.66 0.03 [0.60, 0.73] 60 0.81 0.03 [0.75, 0.88] 

70 0.51 0.04 [0.43, 0.58] 70 0.69 0.03 [0.62, 0.75] 

80 0.35 0.04 [0.27, 0.43] 80 0.56 0.04 [0.49, 0.63] 

90 0.20 0.05 [0.10, 0.29] 90 0.44 0.04 [0.36, 0.52] 
 

Administrative and Finance  Management Quality 

Score Predicted Forest Loss SE 95% CI Score Predicted Forest Loss SE 95% CI 

40 0.83 0.03 [0.77, 0.89] 40 1.02 0.03 [0.97, 1.08] 

50 0.65 0.03 [0.58, 0.71] 50 0.89 0.03 [0.83, 0.95] 

60 0.46 0.04 [0.39, 0.54] 60 0.75 0.03 [0.69, 0.82] 

70 0.28 0.04 [0.19, 0.37] 70 0.62 0.03 [0.55, 0.68] 

80 0.09 0.05 [0.01, 0.19] 80 0.48 0.04 [0.41, 0.56] 

90 -0.09 0.06 [-0.20, 0.02] 90 0.35 0.04 [0.26, 0.43] 
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Appendix Table B14. Rosenbaum Sensitivity Test  
 
 Wilcoxon Signed Rank P-value Hodges-Lehmann Point Estimate 

Gamma Lower Bound Upper Bound Lower Bound Upper Bound 

1.0 <.0001 <.0001 -1.566 -1.458 

1.2 <.0001 <.0001 -1.666 0.034 

1.4 <.0001 <.0001 -1.666 0.034 

1.6 <.0001 <.0001 -1.666 0.034 

1.8 <.0001 <.0001 -1.666 0.034 

2.0 <.0001 <.0001 -1.666 0.034 

2.2 <.0001 <.0001 -1.666 0.034 

2.4 <.0001 .047 -1.666 0.034 

2.6 <.0001 .862 -1.666 0.034 
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Appendix Table B15: Logit regression with binary forest loss dependent variable (any loss between 2017-19=1, else 0). Each model 
contains the full continuous management score of each category as the interaction term.  

 Overall Mngt 
Effectiveness 

Context & 
Planning 

Admin &  
Finance 

Use &  
Benefits 

Gov & Social 
Participation 

Management 
Quality 

Management 
(Interaction) 

-1.610e-02*** 
(3.973e-04) 

-1.701e-02***  
(4.175e-04) 

-2.028e-02***  
(5.105e-04) 

-1.442e-02***  
(3.720e-04) 

-1.353e-02***  
(3.424e-04) 

-1.477e-02***  
(3.661e-04) 

Elevation 
-2.147e-04***  

(2.085e-05) 
-2.222e-04*** 

(2.091e-05) 
-1.940e-04***  

(2.090e-05) 
-2.108e-04***  

(2.077e-05) 
-2.183e-04***  

(2.080e-05) 
-2.214e-04***  

(2.083e-05) 

Slope 
-1.170e-02***  

(3.407e-03) 
-1.015e-02** 
(3.410e-03) 

-1.106e-02**  
(3.395e-03) 

-1.310e-02***  
(3.385e-03) 

-1.158e-02***  
(3.399e-03) 

-1.295e-02***  
(3.412e-03) 

Urban Distance 
6.734e-06***  
(9.590e-07) 

6.709e-06*** 
(9.588e-07) 

5.169e-06***  
(9.506e-07) 

7.825e-06***  
(9.617e-07) 

7.140e-06***  
(9.616e-07) 

7.138e-06*** 
(9.611e-07) 

Road Distance 
-1.266e-04***  

(2.997e-06) 
-1.280e-04***  

(3.000e-06) 
-1.289e-04***  

(3.000e-06) 
-1.270e-04***  

(2.994e-06) 
-1.276e-04*** 

(2.998e-06) 
-1.251e-04***  

(2.997e-06) 

Rainfall 
1.269e-03***  
(2.657e-05) 

1.221e-03***  
(2.614e-05) 

1.191e-03***  
(2.599e-05) 

1.247e-03***  
(2.629e-05) 

1.271e-03***  
(2.653e-05) 

1.315e-03***  
(2.700e-05) 

Ejido Tenure 
1.197e-03***  
(2.969e-04) 

1.114e-03***  
(2.973e-04) 

1.051e-03***  
(2.965e-04) 

9.566e-04**  
(2.963e-04) 

1.204e-03***  
(2.964e-04) 

1.303e-03***  
(2.967e-04) 

R2 -- -- -- -- -- -- 

p <.0001***  p <.001**   p <.01*     
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Appendix Figure B2a. Global Moran’s I correlograms of the residuals of the overall 
management effectiveness score interaction term model.  
 

 

 
Appendix Figure B2b. Global Moran’s I correlograms of the residuals of the context and 
planning score interaction term model.  
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Appendix Figure B2c. Global Moran’s I correlograms of the residuals of the administration and 
finance score interaction term model.  
 

 
 

Appendix Figure B2d. Global Moran’s I correlograms of the residuals of the use and benefits 
score interaction term model. 
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Appendix Figure B2e. Global Moran’s I correlograms of the residuals of the governance and 
social participation score interaction term model. 
 

 

 
 
Appendix Figure B2e. Global Moran’s I correlograms of the residuals of the management 
quality score interaction term model.  
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APPENDIX C 
 
 
 
Narrative summary of survey  
 

Inputs  

The survey recorded a range of impacts on protected area staff, such as changes in the 

total number of staff in 2020 compared to 2019 and the previous five years, and main reasons for 

those changes. Questions about financial capacity included changes to protected area operational 

budget in 2020 compared to 2019 and compared to the previous five years, expected budget 

changes, and the perceived sufficiency of the current budget. Additionally, managers were asked 

to estimate the degree to which changes in staff capacity and financial capacity were due to the 

pandemic on a 7-pt scale (1-not attributable to the COVID-19 pandemic to 7-fully attributable to 

the COVID-19 pandemic).  

Mechanisms  

The average annual number of tourist and non-tourist visitors over the past five years 

were collected for each protected area. For protected areas that receive visitors, the change in 

tourists and non-tourist visitors were measured in 2020 compared to 2019. Additionally, 

managers were asked to estimate the degree to which changes in either were due to the pandemic 

on a 7-pt scale (1-not attributable to the COVID-19 pandemic to 7-fully attributable to the 

COVID-19 pandemic).  

Changes in three dimensions of monitoring were measured, including the frequency of 

monitoring, total area monitored, and the total number of staff responsible for monitoring. A 

similar question was also used to measure changes in community monitoring support and the 

level of support provided by PROFEPA, the government agency responsible for enforcement and 
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sanctions. The degree to which changes in any of these factors were due to the pandemic were 

measured on a 7-pt scale.  

Additionally, we recorded managers’ perceptions of changes in the total amount of time 

spent on infrastructure maintenance in 2020, as well as changes in the capacity to continue active 

management, and necessary studies on natural resources.  

Moderators  

Moderators measured in the survey included perceived changes to advisory council 

operations, government programs, such as subsidy programs, and programs run by non-

governmental organizations. The specific changes recorded include project delays, temporary 

freezes on project activities, and reduction in benefits. Additionally, the survey also recorded 

access to emergency funds in 2020 and the name of the supporting organization.  

Outcomes 

We measured the perceived change in 2020 in 8 different non-compliant activities, 

including human-caused fires, land clearing for agriculture, hunting, fishing, logging, mining, 

unapproved settlements and unapproved camping or use of trails, as well we the perceived level 

of threat from each activity for the 5 years prior. Finally, we measured perceived changes in 

ecosystem health in 2020 compared to 2019 on a 5-pt scale from much better to much worse. We 

recorded the degree to which changes in each activity and ecological improvements were due to 

the pandemic using a 7-pt scale.  

Open-ended questions were included throughout the survey to allow the participant to 

expand on their responses or perceived changes.
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Appendix Table C1: Full survey (translated from Spanish to English) 
 

INPUTS  

Staff Capacity  
1. Did the average number of staff working at 

one time in the PA during 2020 increase or 
decrease compared to the average number 
of staff working at one time:  
- in 2019? 
- Between 2015-2019? 

Multiple Choice – 
2 part  

A. Increase 
B. Decrease 
C. No change  
D. I don’t know  

a. If decrease (from 2019), how does the 
average number of staff working at one 
time in the PA during 2020 compared 
to the average number of staff working 
at one time in 2019. Please indicate the 
percent reduction from the 2019 on the 
bar below.  

Scale  Scale from 0-100%   

b. If decreased, to what degree was this 
change due to the COVID-19 
pandemic? 

Scale  7pt continuous scale: 
1-Not at all due to COVID-19  
7-Fully due to COVID-19 

2. In what ways did COVID-19 impact your 
staff capacity in 2020? Select all that apply. 

Select all that apply A. Did not have an impact on 
management capacity 

B. Temporary job loss with pay 
C. Temporary job loss without pay 
D. Permanent job loss  
E. Hiring freeze / unable to contract 

for open positions 
F. Less availability of personnel 

(heath or family related)  
G. Employees were sick with the 

COVID-19 virus 
H. Other (If “other”, please list.) 

a. If D, what percentage of staff have 
been permanently laid off due to budget 
restrictions as a result of COVID?  

Multiple choice  A. No staff have lost their job 
B. <20% of staff have lost their job 
C. 20-40% of staff have lost their job 
D. 40-60% staff have lost their job  
E. 60-80% staff have lost their job  
F. >80% of staff have lost their job 

b. If G, what percentage of staff members 
became sick with the COVID-19 virus 
(at work or outside of the work 
setting)?  

Multiple choice  A. No staff became ill with COVID 
B. <20% of staff became ill  
C. 20-40% of staff became ill  
D. 40-60% of staff became ill  
E. 60-80% of staff became ill  
F. >80% of staff became ill 

3. Are there any other specific events that 
influenced the total number of staff working 
at the PA in 2020? 

Binary & Open 
choice  

Yes/No 
If so, please explain.   

Financial Capacity  
4. On average, how does the PA budget in 

2020 compare to the budget: 
- in 2019?  
- in the past 5 years? 

Multiple choice – 2 
part  

A. Substantial decrease 
B. Decrease  
C. No change / about the same  
D. Increase  
E. Substantial increase  

a. If the budget decreased in the past year, 
please estimate the percent reduction 

Scale  Scale from 0-100%   
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experienced in the PA budget from 
2019 to 2020. 

b. If decreased, to what degree was this 
change due to the COVID-19 
pandemic? 

Scale  7pt continuous scale: 
1-Not at all due to COVID-19  
7-Fully due to COVID-19 

c. Do you feel the 2020 budget was 
sufficient for basic management needs? 

Scale  7 pt scale  
1-not sufficient  
7-totally sufficient   

5. Did you access to any emergency funds in 
2020 (e.g., Fondo Mexicano) 

Binary  Yes/No 

a. If yes, please list the organization 
or group that you received 
emergency funds from. 

Open-ended (list organization)  

6. Has the PA experienced or anticipate 
experiencing any changes to their budget in 
2021 compared to the budget in 2020?  
- Experienced in 2021 
- Anticipate experiencing in 2021 

Multiple choice – 2 
part  

A. Increase 
B. No change / about the same  
C. Decrease 
D. Not sure 

a. If yes, to what degree is/was this 
change or expected change due to the 
COVID-19 pandemic? 

Scale  7pt continuous scale: 
1-Not due to COVID-19  
7-Fully due to COVID-19 

MECHANISMS   
Visitation  
7. In the five years prior to the COVID-19 

pandemic, about how many tourists visited 
the PA each year? (If there is no tourism, 
write “00”.)  

Open-ended (estimated number of tourists) 

a. On average, were there changes to the 
total number of tourists that visited the 
PA in 2020 compared to the total 
number in 2019?    

Multiple choice  A. >75% increase in tourists  
B. 50-75% increase in tourists  
C. 25-50% increase in tourists 
D. <25% increase in tourists 
E. No changes  
F. <25% decrease in tourists 
G. 25-50% decrease in tourists 
H. 50-75% decrease in tourists 
I. >75% decrease in tourists 

b. To what degree was this change due to 
the COVID-19 pandemic? 

Scale 7pt continuous scale: 
1-Not due to COVID-19  
7-Fully due to COVID-19 

8. In the five years prior to the COVID-19 
pandemic, about how many individuals 
entered the PA each year for non-tourism 
purposes (e.g., researchers, local 
community members, etc.)? 

Open-ended (estimated number of non-tourist 
visitors) 

a. On average, were there changes to the 
number of individuals that entered the 
PA for non-tourism purposes in 2020 
compared to the total number in 2019?    

Multiple choice  A. >75% increase in visitors  
B. 50-75% increase in visitors  
C. 25-50% increase in visitors  
D. <25% increase in visitors  
E. No changes  
F. <25% decrease in visitors 
G. 25-50% decrease in visitors  
H. 50-75% decrease in visitors   
I. >75% decrease in visitors  

b. To what degree was this change due to 
the COVID-19 pandemic? 

Scale 7pt continuous scale: 
1-Not due to COVID-19  
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7-Fully due to COVID-19 
9. OPTIONAL: Are there any specific 

reasons that there was a change in the total 
number of individuals that entered the park 
(tourists and non-tourists) in 2020 other 
than the COVID-19 pandemic? If so, can 
you provide an example? 
  

Open-ended  (response not required)  

Management Capacity  
10. On average, were there any changes in the 

time spent on infrastructure maintenance in 
the year 2020 compared to the time spent in 
2019 due to the COVID-19 pandemic?  

Multiple choice  A. Very significantly increase (75% 
or greater) 

B. Significantly increase (50-75%) 
C. Moderate increase (25-50%) 
D. Slightly increase (<25%) 
E. No change  
F. Slightly decreased (<25%) 
G. Moderate increase (25-50%) 
H. Significantly decreased (50-75%) 
I. Very significantly decreased 

(75% or greater) 
11. On average, were there any changes in the 

staff’s ability to continue active 
management processes for natural resources 
in 2020 compared to 2019 due to the 
COVID-19 pandemic?  

Multiple choice A.     Very significantly increase (75% 
or greater) 
B. Significantly increase (50-75%) 
C. Moderate increase (25-50%) 
D. Slightly increase (<25%) 
E. No change  
F. Slightly decreased (<25%) 
G. Moderate increase (25-50%) 
H. Significantly decreased (50-75%) 
I. Very significantly decreased 

(75% or greater) 
12. On average, were there any changes in the 

staffs ability to continue necessary studies 
on natural resources in 2020 compared to 
2019 due to the COVID-19 pandemic?  

Multiple choice A. Very significantly increase (75% 
or greater) 

B. Significantly increase (50-75%) 
C. Moderate increase (25-50%) 
D. Slightly increase (<25%) 
E. No change  
F. Slightly decreased (<25%) 
G. Moderate increase (25-50%) 
H. Significantly decreased (50-75%) 
I. Very significantly decreased 

(75% or greater) 
13. On average, how does the adequacy and 

availability of the management equipment 
in 2020 compare to that of 2019 due to the 
COVID-19 pandemic? 

Select all that apply A. Equipment is in better condition 
B. Equipment is more available  
C. No change 
D. Equipment is less available 
E. Equipment is in worse condition 

14. Were changes in the following processes in 
2020 due any other specific reasons besides 
COVID-19: 
- Time spent on infrastructure 

maintenance 

- Active management processes 

- Continuation of necessary studies on 
natural resources 

Multiple choice – 
multiple part  

A. Yes – increase  
B. No 
C. Yes - decrease  
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a. If yes, please explain what influenced 
this change.  

Open-ended  

15. OPTIONAL: Were there any other 
activities or updates that the management 
staff was able to make progress or not make 
progress on due to COVID-19 changes? If 
so, please explain.  

Open ended  (response not required) 

Monitoring 
16. On average, have there been any changes in 

the frequency of monitoring and 
surveillance in 2020 compared to 2019 in 
the PA? 

Multiple choice  A. Very significantly increase (60% 
or greater) 

B. Significantly increase (40-60%) 
C. Moderate increase (20-40%) 
D. Slightly increase (<20%) 
E. No change  
F. Slightly decreased (<20%) 
G. Moderate increase (20-40%) 
H. Significantly decreased (40-60%) 
I. Very significantly decreased 

(60% or greater) 
a. To what degree was this change due to 

the COVID-19 pandemic? 
Scale 7pt continuous scale: 

1-Not due to COVID-19  
7-Fully due to COVID-19 

17. On average, have there been any changes in 
the total area of monitoring and 
surveillance in 2020 compared to 2019 in 
the PA? 

Multiple choice  A. Very significantly increase (60% 
or greater) 

B. Significantly increase (40-60%) 
C. Moderate increase (20-40%) 
D. Slightly increase (<20%) 
E. No change  
F. Slightly decreased (<20%) 
G. Moderate increase (20-40%) 
H. Significantly decreased (40-60%) 
I. Very significantly decreased 

(60% or greater) 
a. To what degree was this change due to 

the COVID-19 pandemic? 
Scale 7pt continuous scale: 

1-Not due to COVID-19  
7-Fully due to COVID-19 

18. On average, have there been any changes in 
the total number of staff responsible for 
monitoring and surveillance in 2020 
compared to 2019 in the PA? 

Multiple choice  A. Very significantly increase (60% 
or greater) 

B. Significantly increase (40-60%) 
C. Moderate increase (20-40%) 
D. Slightly increase (<20%) 
E. No change  
F. Slightly decreased (<20%) 
G. Moderate increase (20-40%) 
H. Significantly decreased (40-60%) 
I. Very significantly decreased 

(60% or greater) 
a. To what degree was this change due to 

the COVID-19 pandemic? 
Scale 7pt continuous scale: 

1-Not due to COVID-19  
7-Fully due to COVID-19 

19. OPTIONAL: Would you like to provide an 
example(s) of non-pandemic related reasons 
that there were changes in the frequency, 
area or total number of personal responsible 
for monitoring in 2020? 

Open-ended (response not required) 
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20. Does the PA receive any community 
support for monitoring and surveillance? 

Binary  Yes/No 

a. If yes, on average have there been any 
changes in the total amount of 

support from community monitoring 
in 2020 compared to 2019? 

Multiple choice  A. Very significantly increase (60% 
or greater) 

B. Significantly increase (40-60%) 
C. Moderate increase (20-40%) 
D. Slightly increase (<20%) 
E. No change  
F. Slightly decreased (<20%) 
G. Moderate increase (20-40%) 
H. Significantly decreased (40-60%) 
I. Very significantly decreased 

(60% or greater) 
b. To what degree was this change due to 

the COVID-19 pandemic? 
Scale 7pt continuous scale: 

1-Not due to COVID-19  
7-Fully due to COVID-19 

c. OPTIONAL: Would you like to 
provide an example(s) of non-pandemic 
related reasons that there were changes 
in community support for monitoring 
and surveillance in 2020? 

Open-ended (response not required) 

21. On average, have you experienced a change 
in the support and response provided by 
PROFEPA in 2020? 

 A. Very significantly increase (75% 
or greater) 

B. Significantly increase (50-75%) 
C. Moderate increase (25-50%) 
D. Slightly increase (<25%) 
E. No change  
F. Slightly decreased (<25%) 
G. Moderate increase (25-50%) 
H. Significantly decreased (50-75%) 
I. Very significantly decreased 

(75% or greater) 
a. To what degree was this change due to 

the COVID-19 pandemic? 
Scale 7pt continuous scale: 

1-Not due to COVID-19  
7-Fully due to COVID-19 

b. OPTIONAL: Would you like to 
provide an example(s) of non-pandemic 
related reasons that there were changes 
in the support and response provided 
by PROFEPA in 2020? 

Open-ended (response not required) 

22. Have you received support from other 
actors in response to reports of illegal 
activity (ex., National guard or other 
international communities) in 2020? 

Binary  Yes/No 
If yes, please list examples. 

Community Engagement & Benefits  
23. In 2019, did the PA provide environmental 

education programs? 
Binary  Yes/No  

a. If so, how did availability of programs 
change in 2020 due to the COVID-19 
pandemic? 

Multiple choice  A. Very significantly increase (75% 
or greater) 

B. Significantly increase (50-75%) 
C. Moderate increase (25-50%) 
D. Slightly increase (<25%) 
E. No change  
F. Slightly decreased (<25%) 
G. Moderate increase (25-50%) 
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H. Significantly decreased (50-75%) 
I. Very significantly decreased 

(75% or greater) 
J. Completely stopped 

24. In 2019, did the PA conduct activities that 
provided economic benefits to local 
communities? 

Multiple choice  A. No 
B. Few economic benefits 
C. Many economic benefits  

a. If so, were there any changes to the 
economic benefits that these activities 
provided in 2020 due to the COVID-19 
pandemic? 

Multiple choice  A. Very significantly increase (75% 
or greater) 

B. Significantly increase (50-75%) 
C. Moderate increase (25-50%) 
D. Slightly increase (<25%) 
E. No change  
F. Slightly decreased (<25%) 
G. Moderate increase (25-50%) 
H. Significantly decreased (50-75%) 
I. Very significantly decreased 

(75% or greater) 
J. Completely stopped 

b. OPTIONAL: Would you like to add 
any additional comments on changes to 
environmental education programs or 
other economic benefits in 2020? 

Open-ended  

MODERATORS  

25. Were there any changes in the following 
programs due to the COVID-19 
pandemic… 
- Government subsidy programs  
- Other government programs 
- Non-governmental programs  

Multiple choice – 3 
part 

A. Yes 
B. No 
C. Not applicable  
D. I don’t know  

a. If so, to what extent have government 
subsidy programs been affected by 
COVID-19… 

- In communities in the PA 
- In communities around the PA 

Multiple choice – 2 
part 

A. Have currently paused all 
programs  

B. Subsidies were delayed 
C. Programs were trimmed  
D. Other (please list) 
E. Not sure / they are not any  

b. If so, to what extent have other 

government programs been affected by 
COVID-19… 

- In communities in the PA 
- In communities around the PA 

Multiple choice – 2 
part 

A. Have currently paused all 
programs  

B. Subsidies were delayed 
C. Programs were trimmed  
D. Other (please list) 
E. Not sure / they are not any  

c. If so, to what extent have non-

governmental sustainable 
development programs been affected 
by COVID-19… 

- In communities in the PA 
- In communities around the PA 

Multiple choice – 2 
part 

A. Have currently paused all 
programs  

B. Subsidies were delayed 
C. Programs were trimmed  
D. Other (please list) 
E. Not sure / they are not any 

26. OPTIONAL: Would you like to add any 
additional comments about changes to 
government subsidy programs, other 
government programs or non- government 
programs in the PA in 2020?  

Open-ended  
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27. Did the advisory council experience any 
changes to meetings due to COVID-19? If 
so, please elaborate.  

Multiple choice   A. There is no advisory council  
B. Very significantly increase (75% 

or greater) 
C. Significantly increase (50-75%) 
D. Moderate increase (25-50%) 
E. Slightly increase (<25%) 
F. No change  
G. Slightly decreased (<25%) 
H. Moderate increase (25-50%) 
I. Significantly decreased (50-75%) 
J. Very significantly decreased 

(75% or greater) 
a. Are there any other changes that the 

advisory council experienced that you 
would like to elaborate on? 

Open ended (response not required) 

OUTCOMES 
Fires  
28. In the five years prior to 2020, how much of 

a threat was fires in the PA?  
Scale 4pt scale: 

1 - Not a threat  
4 - A severe threat  
+ (does not apply) 

a. In 2020, were there any changes in the 
occurrence of human-caused fires 
compared to 2019?  

Multiple choice  J. Very significantly increase (60% 
or greater) 

K. Significantly increase (40-60%) 
L. Moderate increase (20-40%) 
M. Slightly increase (<20%) 
N. No change  
O. Slightly decreased (<20%) 
P. Moderate increase (20-40%) 
Q. Significantly decreased (40-60%) 
R. Very significantly decreased 

(60% or greater) 
b. In 2020, were there any changes in the 

occurrence of natural-caused fires 
compared to 2019? 

Multiple choice  A. Very significantly increase (60% 
or greater) 

B. Significantly increase (40-60%) 
C. Moderate increase (20-40%) 
D. Slightly increase (<20%) 
E. No change  
F. Slightly decreased (<20%) 
G. Moderate increase (20-40%) 
H. Significantly decreased (40-60%) 
I. Very significantly decreased 

(60% or greater) 
29. Generally speaking, how does the total 

area burned in 2020 compare to 2019?   
Multiple choice  A. Very significantly increase (60% 

or greater) 
B. Significantly increase (40-60%) 
C. Moderate increase (20-40%) 
D. Slightly increase (<20%) 
E. No change  
F. Slightly decreased (<20%) 
G. Moderate increase (20-40%) 
H. Significantly decreased (40-60%) 
I. Very significantly decreased 

(60% or greater) 
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a. To what degree was this change in total 
area burned due to the COVID-19 
pandemic? 

Scale 7pt continuous scale: 
1-Not due to COVID-19  
7-Fully due to COVID-19 

Other Illegal Activities  
30. In the five years prior to 2020, how much of 

a threat was illegal agricultural land 

clearing in the PA?  

Scale 4pt scale: 
1 - Not a threat  
4 - A severe threat  
+ (does not apply) 

a. On average, how does the threat level 
for agricultural land clearing in the 
PA in 2020 compare to the threat level 
in 2019?  

Multiple choice  A. Does not apply 
B. Very significantly increase (60% 

or greater) 
C. Significantly increase (40-60%) 
D. Moderate increase (20-40%) 
E. Slightly increase (<20%) 
F. No change  
G. Slightly decreased (<20%) 
H. Moderate increase (20-40%) 
I. Significantly decreased (40-60%) 
J. Very significantly decreased 

(60% or greater) 
b. To what degree was this change due to 

the COVID-19 pandemic? 
Scale 7pt continuous scale: 

1-Not due to COVID-19  
7-Fully due to COVID-19 

31. In the five years prior to 2020, how much of 
a threat was illegal logging in the PA?  

Scale 4pt scale: 
1 - Not a threat  
4 - A severe threat  
+ (does not apply) 

a. On average, how does the threat level 
for logging in the PA in 2020 compare 
to the threat level in 2019? 

Multiple choice A. Does not apply 
B. Very significantly increase (60% 

or greater) 
C. Significantly increase (40-60%) 
D. Moderate increase (20-40%) 
E. Slightly increase (<20%) 
F. No change  
G. Slightly decreased (<20%) 
H. Moderate increase (20-40%) 
I. Significantly decreased (40-60%) 
J. Very significantly decreased 

(60% or greater) 
b. To what degree was this change due to 

the COVID-19 pandemic? 
Scale 7pt continuous scale: 

1-Not due to COVID-19  
7-Fully due to COVID-19 

32. In the five years prior to 2020, how much of 
a threat was illegal hunting in the PA?  

Scale 4pt scale: 
1 - Not a threat  
4 - A severe threat  
+ (does not apply) 

a. On average, how does the threat level 
for illegal hunting in the PA in 2020 
compare to the threat level in 2019? 

Multiple choice A. Does not apply 
B. Very significantly increase (60% 

or greater) 
C. Significantly increase (40-60%) 
D. Moderate increase (20-40%) 
E. Slightly increase (<20%) 
F. No change  
G. Slightly decreased (<20%) 
H. Moderate increase (20-40%) 
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I. Significantly decreased (40-60%) 
J. Very significantly decreased 

(60% or greater) 
b. To what degree was this change due to 

the COVID-19 pandemic? 
Scale 7pt continuous scale: 

1-Not due to COVID-19  
7-Fully due to COVID-19 

33. In the five years prior to 2020, how much of 
a threat was illegal fishing in the PA?  

Scale 4pt scale: 
1 - Not a threat  
4 - A severe threat  
+ (does not apply) 

a. On average, how does the threat level 
for illegal fishing in the PA in 2020 
compare to the threat level in 2019? 

Multiple choice A. Does not apply 
B. Very significantly increase (60% 

or greater) 
C. Significantly increase (40-60%) 
D. Moderate increase (20-40%) 
E. Slightly increase (<20%) 
F. No change  
G. Slightly decreased (<20%) 
H. Moderate increase (20-40%) 
I. Significantly decreased (40-60%) 
J. Very significantly decreased 

(60% or greater) 
b. To what degree was this change due to 

the COVID-19 pandemic? 
Scale 7pt continuous scale: 

1-Not due to COVID-19  
7-Fully due to COVID-19 

34. In the five years prior to 2020, how much of 
a threat was illegal mining in the PA?  

Scale 4pt scale: 
1 - Not a threat  
4 - A severe threat  
+ (does not apply) 

a. On average, how does the threat level 
for mining in the PA in 2020 compare 
to the threat level in 2019? 

Multiple choice A. Does not apply 
B. Very significantly increase (60% 

or greater) 
C. Significantly increase (40-60%) 
D. Moderate increase (20-40%) 
E. Slightly increase (<20%) 
F. No change  
G. Slightly decreased (<20%) 
H. Moderate increase (20-40%) 
I. Significantly decreased (40-60%) 
J. Very significantly decreased 

(60% or greater) 
b. To what degree was this change due to 

the COVID-19 pandemic? 
Scale 7pt continuous scale: 

1-Not due to COVID-19  
7-Fully due to COVID-19 

35. In the five years prior to 2020, how much of 
a threat was illegal settlements in the PA?  

Scale 4pt scale: 
1 - Not a threat  
4 - A severe threat  
+ (does not apply) 

a. On average, how does the threat level 
for illegal settlements in the PA in 
2020 compare to the threat level in 
2019? 

Multiple choice A. Does not apply 
B. Very significantly increase (60% 

or greater) 
C. Significantly increase (40-60%) 
D. Moderate increase (20-40%) 
E. Slightly increase (<20%) 
F. No change  
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G. Slightly decreased (<20%) 
H. Moderate increase (20-40%) 
I. Significantly decreased (40-60%) 
J. Very significantly decreased 

(60% or greater) 
b. To what degree was this change due to 

the COVID-19 pandemic? 
Scale 7pt continuous scale: 

1-Not due to COVID-19  
7-Fully due to COVID-19 

36. In the five years prior to 2020, how much of 
a threat was illegal camping and 

unpermitted use of trails in the PA?  

Scale 4pt scale: 
1 - Not a threat  
4 - A severe threat  
+ (does not apply) 

a. On average, how does the threat level 
for illegal camping and unpermitted 

use of trails in the PA in 2020 compare 
to the threat level in 2019? 

Multiple choice A. Does not apply 
B. Very significantly increase (60% 

or greater) 
C. Significantly increase (40-60%) 
D. Moderate increase (20-40%) 
E. Slightly increase (<20%) 
F. No change  
G. Slightly decreased (<20%) 
H. Moderate increase (20-40%) 
I. Significantly decreased (40-60%) 
J. Very significantly decreased 

(60% or greater) 
b. To what degree was this change due to 

the COVID-19 pandemic? 
Scale 7pt continuous scale: 

1-Not due to COVID-19  
7-Fully due to COVID-19 

37. For the activities that saw an increase in 
2020, please list all groups responsible.  

Select all that apply A. Community members in the PA 
B. Community members next to the 

PA 
C. Domestic visitors  
D. International visitors  
E. Tourism companies 
F. Other enterprises  
G. Other (please list)  

38. OPTIONAL: Were there any other specific 
reasons, excluding COVID-19, that resulted 
in changes in these illegal activities? If so, 
please explain.  

Open-ended (no response required) 

39. OPTIONAL: Did you experience an 
increase in any illegal activities in 2020 that 
were not previously mentioned? If so, 
please list examples.  

Open-ended (no response required) 

Ecological Restoration  
40. Has there been any changes in the health of 

any species being monitored in the PA in 
2020 compared to 2019?  

Multiple choice A. Significantly improved  
B. Slightly improved 
C. No change 
D. Slightly worsened 
E. Significantly worsened 
F. Unknown 
G. Not applicable  

a. If yes, to what degree was this change 
due to the COVID-19 pandemic? 

Scale  7pt continuous scale: 
1-Not due to COVID-19  
7-Fully due to COVID-19 
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41. Has there been any changes in the general 
health of the ecosystem being monitored in 
the PA in 2020 compared to 2019? 

Multiple choice A. Significantly increased  
B. Slightly increased  
C. No change 
D. Slightly decreased 
E. Significantly decreased 
F. Unknown 
G. Not applicable  

a. If yes, to what degree was this change 
due to the COVID-19 pandemic? 

Scale 7pt continuous scale: 
1-Not due to COVID-19  
7-Fully due to COVID-19 

Other  
42. OPTIONAL: Are there any other 

ecological changes or management changes 
that the PA experiences due to COVID-19 
that you would like mention?  

Open ended  (no response required) 

43. OPTIONAL: Do anticipate any other 
ecological changes or management changes 
that the PA experiences due to COVID-19 
in the year 2021 that you would like 
mention? 

Open ended (no response required) 
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