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ABSTRACT

A parametric infiltration model is incorporated with a surface routing model, based upon a kinematic
cascade of planes and channels to constitute a watershed model. Relationships are developed to compute flows
by the kinematic approximation in channels of circular cross-section for routing through storm drains. The
infiltration model is tested on some infiltrometer experiments; model parameters are estimated from measured
data and by comparison to characteristics of soils used in a previous study. Two types of flow resistance
relationships are considered: the Chezy formula and a friction relationship that is initially laminar and then
becomes turbulent (Chezy) above a transition Reynolds number. The watershed model is used to compute discharge
from: 2a) a 0.6 acre impervious experimental rainfall-runoff facility, b) a 27 acre experimental agricultural
watershed, and ¢) a 165 acre urban watershed.

A computer program of a general kinematic watershed model is described and documented. This program,
called KINGEN 75 may be used to predict hydrographs of individual storms for small rural and urban watersheds,
based on basin topography and field measurements of infiltration parameters.

FOREWORD

The basic KINGEN program for computing the runoff hydrograph from a complex configuration of impervious
planes and channels was written by D. A. Woolhiser in 1969. The philosophy adopted at that time was to test
the model on successively more complicated systems, beginning with the CSU Experimental Rainfall-Runoff Facility
and progressing to more complicated rural and urban watersheds. As his M.S. Thesis topic E. W. Rovey added an
infiltration subroutine (developed by R. E. Smith) to the model, added a routine to handle unsteady flow in
clreular conduits and performed extensive tests using apriori information.

Because the KINGEN program used by E. W. Rovey had evolved over a period of 5 years, it had become quite
unwieldy. Consequently, we decided to completely reprogram the model, making extensive use of subroutines,
and simplifying the input as much as possible. The KINGEN 75 model, presented in the Appendix, is the result
of this effort.

David A. Woolhiser
Research Hydraulic Engineer
USDA-ARS

July 1977

Fort Collins, Colorado

DISCLAIMER

The programs listed herein are furnished with the express understanding that the United States Department
of Agriculture or Colorado State University give no warranties, expressed or implied, concerning the accuracy,
completeness, reliability, usability, or suitability for any particular purpose of the information and data
contained in these programs or furnished in connection therewith, and the USDA or Colorado State University
shall be under no liability whatsoever to any person by reason of any use made thereof.

The programs herein belong to the USDA. Therefore, the recipient further agrees not to assert any propri-
etary rights therein or to represent these programs to anyone as other than USDA programs.
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Chapter 1
INTRODUCTION

The increase in world population has resulted in
increased development in natural floodways in both
rural and metropolitan areas. As a consequence of
this development, property values have risen and more
people are exposed to flood danger. The increased
potential for flood losses warrants the development of
more accurate techniques for estimating flood peaks.

Watershed models of various types have been used
to estimate flood peaks. A watershed model may be
defined as a physical or mathematical representation
of the real watershed. Any useful model involves
simplification of the real system and therefore inev-
itably results in distortion. However, the model
developer attempts to minimize distortion of the most
crucial watershed characteristics, and it is assumed
that the most important aspects are accurately por-
trayed.

Mathematical models are usually more useful than
physical models in hydrologic studies. The models
consist of differential or partial differential equa-
tions which may have analytic solutions for only a
few, highly simplified problems. Consequently numer-
ical methods must be used to obtain solutions for
most mathematical models.

There are four important phases in using mathe-
matical models as aids in understanding and predict-
ing hydrologic phenomena. The first phase is to
determine the equations, and appropriate boundary con-
ditions that describe the physical processes being
investigated and to consider possible simplifications.

The second phase is to develop an efficient and ac-
curate computer algorithm to solve the equations and
to handle the logical steps. Methods of parameter
estimation must then be developed using rainfall, run-
off, topographic, and soil data from a variety of
watersheds. The final and most important phase of
modeling comes when the calibrated model is used to
predict the response of a system using only knowledge
of the system and its inputs.

The major objectives of this study are:

1. To develop a flow routing procedure for cir-
cular conduits, based on the kinematic approximations
of unsteady free surface flow equations, and compare
the solutions to those obtained by other methods of
routing,

2. To incorporate an infiltration model with a
surface runoff model, based on the kinematic approx-
imation,

3. To compare observed hydrographs with com-
puted hydrographs from the model for:

a) a small impervious experimental watershed
at Colorado State University,

b) an experimental agricultural watershed at
Edwardsville, I[llinois,

¢) an experimental urban watershed at
Denver, Colorado,

4. To test the sensitivity of the model para-
meters,

5. To document a computer program for estimat-
ing surface runoff hydrographs from complex watersheds
described as a cascade (logical flow sequence) of
overland flow planes and channels.



- Chapter 2
PREVIOUS STUDIES OF KINEMATIC WATERSHED MODELS

2.1 Kinematic Wave Theory

The continuity and momentum equations for grad-
ually varied unsteady flow were developed by De Saint
Venant in 1871 (Yevjevich, 1960). Direct solution of
these equations, even by numerical means, was not pos-
sible before electronic computers were available, ex-
cept for extremely simplified initial and boundary
conditions. Graphical methods were used for approxi-
mate solutions but even these were tedious. Usually,
simplified methods, considering only continuity or
approximations to the momentum equation, were used to
route flows (Yevjevich and Barnes, 1970).

Many investigators have studied gradually varied
unsteady flow and found conditions for which a sim-
plification of the complete momentum equation and the
continuity equation are sufficiently accurate.

Lighthill and Whitham (1955) considered propaga-
tion of flood waves in rivers as mainly kinematic, a
balance of bed slope and friction slope; they also
investigated kinematic shock waves. Wooding (1965)
applied kinematic wave theory to a catchment formed
by two planes in a V-shape, each discharging into a
stream at the center. He concluded that kinematic
theory was applicable to gradually varied unsteady
flow if the Froude number was less than 2. Woolhiser
and Liggett (1967) showed how the use of dimension-
less continuity and momentum equations could reduce
the number of parameters for overland flow on a plane
from five to two. A parameter of the dimensionless
momentum equation was used to measure the applicabil-
ity of kinematic wave theory. The parameter was

SL
2
HU FO

K = (2-1)

where S is surface slope; L is length of flow; Ho
is normal depth; and ¥ is the Froude number for
K> 10 , the

normel flow, Figure 2-1 shows that for

Variation of Dimensionless Hydrograph with
Kinematic Flow Number (after Woolhiser and
Liggett, 1967)

kinematic wave solution, labeled K = = , is a good
approximation. The kinematic wave parameter is often
several thousand or more for many cases of overland
flow. Foster, et. al. (1968) simulated rainfall on
an erodible fallow plot and found that a kinematic
wave model satisfactorily predicted overland flow.
Observed hydrograph data were analyzed to estimate
retention storage and surface roughness. These re-
sults were used to predict hydrographs. A comparison
was made between a constant Darcy-Weisbach f or
Manning's n and a variable friction factor of the
form

b
f = aRe (2-2)

where a and b are constants and Re is the Rey-

nolds number. The constant friction factor gave re-
sults as good as a variable factor, which would indi-
cate the flow was turbulent. Henderson (1963) and
Eagleson (1970) have utilized the kinematic wave
theory, but they limit the kinematic waves to a non-
subsiding state. They do not account for the subsi-
dence property of kinematic shock waves that may
exist. Kinematic shocks result when waves travel
faster and overtake slower waves that originated
downstream. This phenomenon is represented mathemati-
cally by an upstream characteristic intersecting a
characteristic that originated below it; there is a
discontinuity at the intersection (see section on
Kinematie Equations for a Plane for mathematical defi-
nition of a characteristic). Kibler (1968) and Kibler
and Woolhiser (1970) developed dimensionless kinematic
equations for a cascade of planes and developed a para-
meter based upon the widths, slope, and roughness of
adjoining planes to predict occurrence of kinematic
shocks. A method for tracing the shock waves was also
presented.

The kinematic wave models that have been formul-
ated have been solved by a variety of finite difference
methods, some implicit and some explicit. Brakensiek
(1967a) tested three types of finite difference meth-
ods on a kinematic model of flood routing and found
that a four point implicit scheme, which centered on
the two upper points, gave the most satisfactory re-
sults. Kibler and Woolhiser (1970) found that an ex-
plicit finite difference scheme with second order
accuracy was the most satisfactory numerical method
for their studies of overland flow.

Kinematic models have usually been used to simu-
late hydrographs of individual runoff events. Such
simulations require that the surface geometry or mac-
roscale features of the watershed, like length, width
and slope of overland flow areas and channel lengths,
slopes, and cross-sections, be measured from topograph-
ical maps and incorporated into the model geometry.

Although this procedure is subjective, it can be
done with reasonable accuracy. The mesoscale features
of rills and obstructions to flow and the microscale
features of surface roughness cannot be measured as



easily and are generally lumped in a hydraulic rough-
ness parameter or parameters that are often estimated
by optimization techniques.

Several researchers have worked on the problem of
resistance to overland flow. Some of the results of
this work are plotted in Fig. 2-2 for Darcy-Weisbach
f vs. Reynolds number. 1In this analyses, they as-
sumed that the friction law was of this form. Woo
and Brater (1962) simulated rainfall for conditions
of laminar flow but found that raindrop impact affect-
ed flow resistance. Iwagaki (1955) solved the char-
acteristic equations for kinematic waves in steep
channels and found good agreement between calculated
and observed results. He observed an increase in
discharge momentarily after lateral inflow abruptly
went to zero. Yu and McNown (1964) experimented with
data obtained from Crops of Engineers rainfall exper-
iments on a concrete surface. They could model the
sudden increases of discharge after rainfall ceased
by lowering the friction coefficient when rainfall
stopped. Henderson and Wooding (1964) applied a kin-
ematic wave model to experiments on tarred gravel,
clipped sod, and tarred sand surfaces. They obtained
good agreement between computed and observed hydro-
graphs.

The variation in hydraulic resistance is quite
large as shown in Fig. 2-2. Of course, one would
expect the research results to vary when the experi-
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Fig. 2-2 Darcy-Weisbach f vs. Reynolds number

ments were conducted on the different types of sur-
faces or under different conditions. Morgali and
Linsley (1965) simulated some hydrographs with a kin-
ematic model and found laminar flow conditions best
fit discharge over a painted wood surface, while the
best fit for the rising limb of roughened surfaces
was with a turbulent friction factor, n = .017 for
crushed slate, and n = 0.4 - 0.5 for turf. The
friction factor had to be lowered for the recession
hydrograph. Morgali (1970) found the range of the
laminar roughness constant, k , which is the: product
of the friction factor, f , and the Reynolds number
was 14-35 for asphalt, 20-65 for crushed slate, and
5,000 - 14,000 for turf. As Reynolds' number increas-
ed, transition to turbulent flow occurred, and resis-
tance could be modeled by Manning's law. Kibler
(1968) and Kibler and Woolhiser (1970) verified their
work on the Colorado State University experimental
rainfall-runoff facility and their results indicated
that observed hydrographs rose more slowly during the
initial periods of rainfall than did the predicted
hydrographs. Computed peak rates varied both above
and below the observed rates but the timing of the
peaks agreed fairly well and the recession hydrographs
were accurately simulated.

Woolhiser (1969) proposed a portion of a cone at
the upstream end of an area to approximate the con-
vergence of flow on many watersheds. This was com-
bined with two planes and a channel to represent an
entire watershed. He derived the dimensionless equa-
tions for a converging section, tested it on observed
data, and obtained good agreement on the steeply ris-
ing early portion of the hydrograph. Fawkes (1972)
tested several roughness relationships on the Colorado
State University facility and found that a mixed
laminar-turbulent roughness relationship gave the
best results. He found good agreement using "disturb-
ed" laminar conditions during rainfall and "undisturb-
ed" laminar conditions without rainfall. For both
cases a constant turbulent friction coefficient was
used above a "transitional" Reynolds number. The
laminar roughness constant was about 25 for butyl
rubber and 100 for rubber roughened with 20 lbs. per
square yard gravel. The transition Reynolds number
was about 400 for the smooth rubber and 80 for the
roughened rubber.

Kinematic wave models have been used to simulate
runoff from agricultural areas and found to give
satisfactory results. Woolhiser, Hanson and Kuhlman
(1970) modeled runoff as beginning under laminar con-
ditions and changing to turbulent flow at a Reynolds
number of 300 for a short-grass, grazed prairie.

The average value of the parameter k was about
7,000, Langford .nd Turner (1973) simulated rain-
fall on a stabilized fallow surface with a friction
relationship in the form of laminar-turbulent Manning's
n that varied with rainfall intensity. The surface
retention showed a hysteresis effect because of chang-
ing hydraulic roughness under conditions of rain and
no rain. Brakensiek (1967b) depicted a mixed-cover,
agricultural watershed in Wisconsin as a distributed
system by utilizing a hypsometric curve and contour
length-elevation curve. He fitted hydrographs by
varying Manning's n and obtained satisfactory re-
sults with values of 0.08 to 0.10 for n . These
values seem low for an agricultural area. Overton
and Brakensiek (1970) also applied the kinematic

wave model for a V-shape configuration. They derived
a lag time based on watershed dimensions, roughness,
and rainfall rate. Their relation between lag time
and rainfall rate agreed well with observed data for
several events on a Hastings, Nebraska, experimental
watershed. A sensitivity analysis showed the solution



more sensitive to errors in rainfall than to errors in
averaging geometry and roughness.

2.2 Urban Hydrology

The development of rural areas into urban commun-
ities has a significant effect on the hydrologic res-
ponse because the impervious area is drastically
changed and conveyance systems for drainage are often
installed. Schulz (1971) summarized the salient fea-
tures of unit hydrographs generally changed by urban-
ization--increase of peak discharges, reduction of
response time, and reduction of hydrograph base length.
Runoff volumes also increase. These changes have been
observed since the Nineteenth Century but were not
quantitatively investigated until the Twentieth Cen-
tury. In urban hydrology there is still a shortage of
accurate rainfall-runoff field data. Considerable em-
phasis has been placed on this problem in the last 5
years (ASCE Urban Hydrology Research Council, 1968).

Horner and Flynt (1936) quantitatively studied
the runoff from two different city blocks in St. Louis,
Missouri, Tzzard (1946) studied flow over paved and
turf surfaces and in gutters from which he developed
some empirical curves to estimate the maximum rate of
runoff. Much of the early work in calculating runoff
from urban areas was based upon the well-known ration-
al formula. Introduction of the unit hydrograph per-
mitted its use in urban hydrology. A survey of cur-
rent practicing engineers indicated they use the rat-
ional method for areas less than 5 square miles, while
larger areas are calculated by the unit hydrograph
method (Committee on Flood Control, 1969).

Several "hydrograph' methods, which permit esti-
mation of runoff, have been developed in particular
regions of the country. Caution must be used if
these methods are applied to conditions that may be
different than the ones under which they were derived.
The Los Angeles Hydrograph Method, developed by Hicks
(1944) for use in southern California, is based upon
a substantial amount of data from that region. The
procedure uses two methods of computing discharges--
the peak-rate method (which is a rational type method)
and summing hydrographs (used when the time of concen-
tration exceeds 60 minutes or a flow retention struc-
ture is part of the system) (Chow, 1964). Tholin and
Keifer (1960) published one of the classic reports on
urban hydrology, the Chicago Hydrograph Method. A
step-by-step design procedure based upon a unit size
of 10 acres was presented, Abstractions from design
rainfalls were calculated. Overland flow was computed
by Izzard's procedure. Routing through all sewers was
done by a time-offset method because of its simplicity.
From the storm sewer hydrographs, it was possible to
develop a series of design charts for peak discharge
based on percent of directly connected impervious area,
type of land use, and travel time. The time-offset
method of routing in storm sewers is often used. This
method seems to give satisfactory results under some
conditions, but its limitations have not been fully
evaluated. Harris (1970) used a progressive average-
lag method for routing in storm sewers. He compared
this technique with the method of characteristics for
the full dynamic equation of motion. He found a sat-
isfactory comparison of the two methods and thus chose
the simplified method; however, this method requires
observed hydrographs (at least three) to evaluate the
routing constants.

Since the mid-1950's, the Johns Hopkins Univer-
sity has conducted extensive research in storm sewer
drainage. An inlet hydrograph method was developed,
based on a rational type formula for peak flows and
an assumed triangular shape. These hydrographs are

“types of flow for a segment.

summed to obtain the total hydrograph, after each in-
let hydrograph is reduced by a factor based on the
time characteristics of the event (Viessman and Geyer,
1962). Schaake (1970) applied a kinematic wave model
by separating the catchment into segments over which
the model parameters were assumed uniform. He pre-
sented a technique to compute the kinematic parameter,
based upon geometrical characteristics and assumed

The model was tested on
an 0.4-acre experimental catchment in Baltimore, Mary-
land. The University of Cincinnati developed a run-
off model for urban watersheds (1972). Infiltration
on pervious segments was computed by Horton's equation
with surface retention estimated by an exponential re-
lationship recommended by Linsley, Kohler, and Paulus
(1949); average values for impervious and pervious
segments were given if measured data were not avail-
able on the watershed. Overland flow was assumed to
be turbulent and computed by a storage routing pro-
cedure, while gutter flow was computed strictly by
continuity and was assumed to occur over relatively
short lengths, Sewer routing was performed by undis-
torted lagging of the inflow hydrograph. This pro-
cedure results in higher peaks at later times than
more exact methods. The model was applied to a 13-
acre watershed in Chicago with satisfactory agreement
between observed and computed hydrographs, except on
the recession portion.

In 1969, the Denver Regional Council of Govern-
ments published an urban storm drainage criteria man-
uval. This manual outlined design requirements for
urban storm drainage projects in the Denver region.
Rainfall-frequency maps were prepared up to the 100-
year return period. The rational formula was used to
compute runoff in areas which did not contain storm
sewers and were less than 200 acres. The unit hydro-
graph method was used for areas larger than 200 acres
or if storm sewers or channels were present. The
manual outlined procedures to estimate the rainfall
excess and compute runoff by the rational formula
with typical coefficients or from the specified unit
hydrograph method.

2.3 Infiltration

Any watershed model simulating runoff from a par-
tially or totally pervious surface must have a means
of estimating infiltration. The process of infiltra-
tion has remained as one of the most complex problems
faced by the watershed engineer. Many methods have
been developed for estimating infiltration quantita-
tively--some empirical and some based on theoretical
relationships. Horton's (1940) infiltration equation
accounts for the time variability of infiltration.

The equation is

£=£ + (fo-fm}e":t (2-3)

where f
the steady-state infiltration rate; fo

is infiltration rate at time t ; f_ is
is the ini-
tial infiltration rate; and c
to the soil cover complex.

is a parameter related

Philip (1969) developed a theory of infiltration
based upon the governing relationship for movement of
a fluid in porous media. An algebraic form of his
relationship for infiltration from a ponded surface is

1/2

£ /2 877" %A (2-4)



where s is the "sorptivity'" of the soil, a measure
of the influence of capillarity, and A is an approx-
imate value of the steady state infiltration rate.
Several empirical methods are merely indices of infil-
tration and assume a constant loss rate throughout the
entire hydrograph. The ¢ Index and W Index are the
best known of this type. These indices are best suit-
ed for major storms occurring on wet soils or storms
when the peak rates and durations occur after infil-
tration can be approximated as a constant.

The partial differential equation that governs
one-dimensional flow of water in an unsaturated porous
medium (ignoring air counter-flow) is often referred
to as Richard's equation (Smith and Woolhiser, 1971)

3(s.¢) 3K
&% g 2 k. 2% . K B

at $ 3z ©r 92 3z (2-5)

where Sa is relative saturation; ¢ is porosity;

Ks is saturated conductivity; Kr is relative con-

ductivity; ¢ is soil capillary potential; and 2z is
distance below the surface. The solution of this non-
linear differential equation requires a knowledge of
the functional relationships among ¢ , S , and Kr

and the values of ¢ and Ks for a particular soil.

Richard's equation can be solved analytically only if
severely simplifying assumptions are introduced. The
usual means of solution is by finite difference meth-
ods. Smith and Woolhiser (1971) used an implicit fin-
ite difference method to solve Eq. (2-5) for a wide
variety of rainfall rates and initial conditions.
These results were summarized by parameteric relations
reported by Smith (1972) (discussed in Chapter 3).

2.4 Sensitivity

Sensitivity is a measure of the effect of change
in a parameter on a response. The role of sensitivity
analysis in hydrologic models is often inherent in
models that utilize optimization techniques to fit
observed data. A sensitive parameter may converge
quickly, while the converse applies to an insensitive
parameter.

McCuen (1973) presented a mathematical framework
for sensitivity analysis. He gave explicit relation-
ships which can be applied to models if the governing
equations can be differentiated. The most common form
of sensitivity analysis is by parameter perturbation.
One parameter is varied, while the others are held
constant and the response to this change is recorded.
The means of estimating a response is usually by an

objective function. The choice of an objective func-
tion is at least partly a subject matter. Ibbitt
(1970) presents a review of some of the common object
ive functions and the features which they emphasize.
Probably the most common objective function that is
used is the sum of the squared deviations between the
observed and computed response. One reason this for-
mulation is used so extensively is that it has some
statistical significance for linear systems. The sum
of the squared deviations divided by the number of
degrees of freedom is the variance of the deviations
for linear models.

L

Dawdy (1969) emphasizes the importance of having
model parameters that are physically significant, par-
ticularly on urban watersheds where little observed
rainfall-runoff data exists and the transferability of
a model is essential to usefulness. Lichty, Dawdy,
and Bergmann (1968) presented an objective function
that was the sum of deviations of the logarithms of
observed and computed response with the peak values
weighted twice that of the volume. This objective
function removes some of the emphasis of the extreme
values. The objective function utilized should be re-
lated to the goal of the model, i.e., peak-predicting
models should emphasize the large flows, while a water
quality model needs to predict the total volume as
well as the peak rate.

2.5 Summary

This review has provided a limited summary of
the development of kinematic wave theory as an appro-
priate means of computing some categories of gradually
varied, unsteady flow. Much of the work discussed
referred to laboratory or small scale experiments, but
some work has been conducted on small watersheds, ei-
ther agricultural or urban areas. The extensive re-
search related to kinematic wave theory makes its
application to field problems possible. The variety
of surfaces and cover conditions to which the kinemat-
ic theory has been applied make possible the preselec-
tion of approximate roughness factors for a watershed.
These factors can be varied to give a better fit to
observed data.

There are mathematical watershed models, such as
the Stanford Model, that utilize some aspects of kin-
ematic theory plus other mathematical functions to
simulate the hydrologic processes for a continuous
period of time, generally, for several months or
years. The model that is developed in this study is
designed to have the capability of predicting storm
runoff from agricultural or urban watersheds for dis-
crete periods of time, generally, for several hours
to no more than 1 or 2 days.



Chapter 3
MATHEMATICAL MODEL

The model developed herein is classified as non-
linear, deterministic, and distributed. Input to the
model is: (1) the hyetograph of precipitation as
measured on or near the watershed and is assumed con-
stant over the watershed, (2) the geometry and topo-
graphy as determined from a map of the area, (3) two
parameters, which relate to the surface roughness
characteristics and the regime of flow (laminar or
turbulent) which would be expected to occur, and (4)
infiltration characteristics for pervious areas. The
watershed is segmented into a series of planes cas-
cading onto other planes or connected with other
planes by channels as shown in Fig. 3-1. The planes

2 I
&

Fig. 3-1

Watershed Represented as a Kinematic
Cascade

are either impervious, i.e., streets or parking lots,
or are pervious, i.e., rural open areas or lawn areas.
The channels are assumed to have either a trapezoidal
or circular cross section.

3.1 Surface Water Routing

The governing equations of motion for spatially
varied, unsteady flow over a plane surface are derived
by applying the principles of conservation of mass and
momentum.

Equations of Motion

The one-dimensional continuity equation with lat-
eral inflow 1s written as

3h _ 3(uh) _
ol (3-1)

where h is the depth of flow; u is the local ave-
rage velocity; q is the lateral inflow; x is the

distance from the upstream end; and t is time.

The momentum equation for one-dimensional gradually-

varied, unsteady flow can be written as

1 du au 3h
TG Tt (3-2)

where g is the acceleration due to gravity; S is
the slope of the bed surface; and Sf is the fric-

tion slope. These equations for gradually varied,
unsteady flow are based on the following assumptions
(Yevjevich and Barnes, 1970):

i. The slope of the bed surface, S , is small
and is approximately equal to the sine of
the angle of inclination.

ii. The flow is one-dimensional so that the
vertical components of velocity and accel-
eration are negligible.

iii. The pressure in the vertical cross section
is hydrostatic.

iv. Boundary friction and turbulence can be
accounted for by introduction of a resis-
tance term that is the same as at a corres-
ponding uniform flow depth.

v. The velocity distribution in the vertical
cross section is the same as the distribu-
tion in steady flow.

Each term in the momentum equation corresponds to a
component of the energy gradient as

L %% , the slope due to the velocity variation
B with time (acceleration),

L u %E- , the slope due to velocity variation with
g » distance in the direction of flow,

%2 , the slope of the water surface,

1,2 he slope d 1 1 infl

g B the slope due to lateral inflow,

and S and S, are slopes as defined previously.

g

Lighthill and Whitham (1955), Henderson (1963),
and Woolhiser and Liggett (1967) have reported on con-
ditions where the gravity and friction components dom-
inate the other terms of the momentum equation. These
two components reach an approximate equilibrium so
that the momentum equation can be reduced to

S=5§ (3-3)

f

This simplification is known as the kinematic wave
approximation to the momentum equation.

Kinematie Equations for a Plane
Equation (3-3) can be used to write a parametric
equation for the local velocity as

(3-4)

where h is the local mean depth, and = and N are
parameters related to surface roughness and geometry.
Chezy's turbulent flow formula is

u = C/RS

where R is the hydraulic radius and C is the Chezy



friction factor of flow resistance. For planes and
wide channels, R = h . This approximation and the
substitution of Eq. (3-3) into Eq. (3-5) results in
Eq. (3-4) with o =CYS, and N = 3/2 .

For laminar flow, the Darcy-Weisbach friction
factor is

f =

:ulw

(3-6)
e

where k is a dimensionless friction parameter and
Re is the Reynolds number. The Darcy-Weisbach for-

mula

f u2
£~ IR -'2-3- (3-7)

2
f u
§ = Bgh - (3-8)
The Reynolds number is
uh
A= (3-9)

where v 1is the kinematic viscosity. Substituting
Eq. (3-9) and (3-6) into Eq. (3-8) yields

fReuu
S = 5 (3-10)
8gh
or
8gSh?
u = -f;—-— . (3-11)

Equation (3-11) has the form of Eq. (3-4) with
a = %%§- and N=3 .

Equation (3-4) can be substituted into Eq. (3-1)
and yields

N-1
sh  3(ah 1) [
Ty % q (3-12)

ah N-1 8h
Y aNh T s (3-13)

The total differential of h[x,t] is

sh ah
dh = 5% - dt + L. dx . (3-14)

Equations (3-13) and (3-14) can be solved simultan-
eously. The matrix form of the equations is written

O i | L q

. . (3-15)
¢ dax J2 dh

Equating the determinant of the square matrix to zero
defines the path of the characteristic in the x-t
plane

g—’t‘ - dTr (3-16)

Substituting the column vector of the right hand side
of Eq. (3-15) into the second column of the square
matrix and equating the determinant to zero defines
the rate of change of depth with respect to time al-
ong the characteristic

%% =q . (3-17)

Equations (3-16) and (3-17) are the characteristic
equations. Equation (3-17) can be integrated for
constant q , to find the depth along the character-
istic as

h = hO + q{t-to} (3-18)

where ho is the initial depth at time t, - The

uniform flow equation can be written
Q= ah" (3-19)

where Q 1is the discharge rate. Equations (3-16),
(3-18), and (3-19) can be used to compute the entire
outflow hydrograph for a single plane segment from a
constant lateral inflow rate of q . This develop-
ment of dimensional kinematic flow equations for a
single plane is analogous to the equations for a wide
channel and the development for the channels will not
be repeated here. Discussion of the equations for a
wide channel will follow in a later section.

Finite Difference Method of Solution

Equation (3-13), the kinematic flow equation, can
be solved analytically for many initial and boundary
conditions, if shocks are not present. Such solutions
become cumbersome for realistic situations so it is
convenient to use a finite difference method of numer-
ical solution. Kibler and Woolhiser (1970) investi-
gated several different methods of numerical solutions
including: (1) an upstream differencing scheme, (2) a
four-point implicit scheme, and (3) the Lax-Wendroff
explicit scheme. These finite difference schemes were
compared with the method of characteristics for eval-
vation of their performance, The Lax-Wendroff scheme
was found to give the most satisfactory results. The
method has second-order accuracy but because it is
explicit, it requires a limitation of the time step
size to maintain numerical stability. The implicit
scheme is unconditionally stable which permits fewer
time steps than the Lax-Wendroff scheme, but requires
an iterative process for solution which under some
circumstances may negate the time step advantage.
Figure 3-2 shows the notation for the Lax-Wendroff
scheme.

The strategy of solving the kinematic equation
is to find the depth at the advanced time step,
h[x,t+At], in terms of known values. Expand h[x,t+at]
in a Taylor's series

2 2
hix,test] = hix,e] + 20 a¢ + 2B 2L

£ + 0(At)S  (3-20)
at
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Fig. 3-2 Lax-Wendroff Finite Difference Scheme

where O(At}3 is the order of the truncation error.
Equation (3-12) can be written as

N
LACIC A

a3t (3-21)
then
2 N N
h, )L (dsh) .. (oh), , 39
st2 ot s e R S R R

Completing the differentiation with respect to t ,
Eq. (3-22) becomes

2
ah . 3 N-1 3h 3q
v T e T R (5-23)
at
Now, substitute Eq. (3-21) into Eq. (3-23), then
?h 3 Nl @GHD ),
2 B ax 4 it (3-24)

Equations (3-21) and (3-24) can now be substituted in-
to the Taylor's series expansion which results in

N

hix,teat] = h[x ] - At[il%%-l - ql
2 N

P2 ™) g 4 3 (3-25)

This second order approximation for h[x,t+At] pro-
vides the basis for the Lax-Wendroff finite differ-
ence formulation as follows:

N N
b] j b] i
athy . - hy ) fag.qy * a5 .¢)

k k- 5
ni" . a{ - atf ’; It e . Xloy

2 ol el e - h{N) @, +ad)
RS PP I e 13 _ e S,

48x k+1 k ax 2 :

N1 N uo-,{" . a{"p @ +al
.0 =)l e e

+

28x (q{ol -

BtaN “i” . (3-26)

This finite differencing formulation permits the eval-
uation of depths interior of the upstream and down-
stream boundaries.

The solution for the entire length of flow can
be established when the initial and boundary condi-
tions are established. The initial condition must be
specified as

0
hix,0] {or, for all x
>0
The upstream boundary depth is determined by the posi-
tion of the plane in a cascade. Consider a cascade
of planes where i is the order of the plane in the
cascade (for the uppermost plane, i =1), 2 is
the length of a plane, and w is the width. Then,
0, ifi =1
h[O,t]i =
f[h[i,t]i_l,wi_l.wi), if i >1

(3-27)

(3-28)

The discharge from an upper plane is assumed to be
modified as the ratio of the upper width to the lower

width. The upstream boundary depth for the ith
which receives inflow from the (i-l}th plane is found
by

plane

hlo,t]; = [(Ql2,t]; , - & (3-29)

i-1 %

Equation (3-29) defines the upstream boundary depth.
The downstream boundary depth cannot be obtained from
the finite difference scheme because of the nature of
the scheme. However, the characteristic equations
can be used to obtain the depth at the downstream
boundary. Equation (3-18) with o 0 , can be sub-

stituted into Eq. (3-16) to obtain

dx = ol [ho+qt)N_l dt (3-30)
Integration of this equation yields
x = 2(h +qt)N +cC (3-31)
q o
where ¢ 1is a constant of integration. At x = Xy

and t = t0 , the initial location and time, the con-
stant can be evaluated as
c = x_ - Z(h +qt ]N (3-32)
o q o 'o

Equation (3-32) can be substituted into Eq. (3-31)
with the result

L E{(ho+qt}N - (h°+qt°}N] (3-33)

but because h = ho + qt and if L= 0, Eq. (3-33)

becomes
a,N . N
X -x = a{h -ho} 2 (3-34)
Defining 4x = x - X, and solving Eq. (3-34) for h ,

h = (h§+§ax)1f N (3-35)



Figure 3-3 shows the path of the :heracteristic from
the NK-1 node to the downstream boundary, node NK.

q
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Fig. 3-3 Path of Characteristic at Downstream
Boundary

This section has presented a means of routing a
lateral inflow over a series of cascading planes us-
ing the Lax-Wendroff finite difference scheme for the
interior depths with specified initial and upstream
boundary conditions. The downstream boundary depth
was found by integrating the characteristic equations
of the kinematic equation.

Numerical Stability

A disadvantage of the Lax-Wendroff scheme, when
compared with the implicit scheme that was analyzed
by Kibler and Woolhiser (1970), is that a numerical
stability criterion must be maintained, while the
implicit scheme is unconditionally stable. A numer-
ically stable finite difference scheme is one that
does not allow a small perturbation in the solution
to grow without limit until it destroys the calcula-
tion. The stability criterion for the Lax-Wendroff
finite difference scheme can be derived by an approx-
imate method. For complete details the reader is re-
ferred to Kibler and Woolhiser (1970).

The results of this derivation can be summarized
by noting the numerical solution, hi , is equal to
the true solution, h(jat, ké&x), plus an error term,
h{ , that is

I awea ] <
hk h(jat, kax) + hk % (3-36)

A numerically stable scheme is one in which the ratio
of successive error terms is less than or equal to
unity, i.e.,

A /ﬂi| <1 . (3-37)
The stability criterion for this finite difference
scheme is

aNh +o—< ] (3-38)

so that for a fixed length increment, At , and the
largest depth on the surface at time t , h "

st < Ag_l
uthax

(3-39)

insures that stability exists at all points on the
surface. This method of deriving the stability cri-
terion is only approximate since it is based upon a
linear analysis. Presently, there is not a general
way of analyzing nonlinear problems for numerical
stability, However, Eq. (3-39) does indicate an
appropriate time step for the Lax-Wendroff scheme.

3.2 Channel Routing

Free surface flow in channels can be computed
using the kinematic approximation to the equations
of unsteady, gradually varied flow. The difference
between routing runoff over planes and through chan-
nels is that upstream inflow to a plane is given in
discharge per foot of width of the plane, while up-
stream inflow to a channel is the total discharge

- from the previous segment. For watershed area com-

putation, a channel is assumed to have negligible
width. Therefore, rainfall does not fall directly
onto the channel. The lateral inflow to a channel
is the discharge per foot of width received from an
adjacent plane.

The two general geometrical shapes that are
considered in this study are a trapezoidal and a
circular cross-section, as shown in Fig. 3-1. The
trapezoidal shape can be used to simulate geometry
from nearly rectangular to very broad swale-like
channels, including triangular, by specifying the
proper geometric parameters. The circular cross-
section can be used to simulate the geometry of ur-
ban storm drains.

Trapezoidal Open Channels

The continuity equation for a channel with lat-
eral flow is

L (3-40)

where A is the cross-sectional area; Q is the
channel discharge; and q 1is the lateral inflow per
foot of length. Assuming that Q can be expressed
as a function of A , Eq. (3-40) can be rewritten in
the form

3A . dQ 3A
3t T ax (a-a1

A Taylor's series expansion of Eq. (3-41) can be per-
formed analogous to that of Eq. (3-20). (A complete
derivation of the finite difference equation will

not be carried out here.) The result of the expan-
sion is

ad | agf
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(3-42)
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which is the Lax-Wendroff finite difference scheme for
a channel with lateral inflow. The kinematic approxi-
mation is entered into the calculation through the dis-
charge relationship. If the Chezy formula is used,

then

Q= okt A (3-43)
where a = C/S ; R is the hydraulic radius; A is
the cross-sectional area; and N is 3/2. Hydraulic

radius is A/P where P is the wetted perimeter.
Than Q is related to the cross-sectional area by
N
Q=a E_—r (3-44)

The functional relationship of dQ/dA terms in Eq.
(3-42) can be found from the set of geometrical rela-
tionships found in Table 3-1.

The downstream boundary solution is found by a

first-order finite difference scheme based on Eq. (3-40)

j g e
= Ak * At >

)

R

(3-45)

Qj L
( NK xQéK-l}]

A

where the subscript NK denotes the downstream boun-
dary node.

Table 3-1 Elements of a Trapezoidal Channel from
Geometry of Fig. 3-1

Geometric or Variable Relationship
Hydraulic Name
Element
Wetted perimeter at P B-CO1 + HW.CO2
depth H co1 1/IL + 1/2R
— coz2 1+ 17ZL7 + /1 + 1/ZR?
Discharge at “ >
depth H GAF(Hl)  a(H+CO1+(B+H/2)) /(B-COl+H-CO2]"
Arca at
depth H AFH(H)  H-COl-(B+i1/2)
.- HEQH)  (-co1- (8+n/2))" Y/ (B-cOLen-
con)®
dQ/dn DGH(H) & HF ()= [COL+* (B+H) *N= (B-CO1
4+ H+C02)-(N-1)-C02+ (H-CO1-
(B+1/2)))
Depth at
arca A HFA(A) ~B+/B7 + (2-A/C01)
dQ/dA DGA(I1)  DGH(H)/(COL1+(B+H))

Cireular Closed Conduits

The problem of routing discharge through circular
conduits is important in the urban environment where
many watersheds contain storm sewers. The problem can
also be extended to those watersheds with combined
sanitary and storm sewers. The limitation of the kin-
ematic approximation is that it cannot account for any
backwater effect. Any user of this model must apply

10

it cautiously and avoid applications where free outfall
conditions do not exist. The conduits are assumed to
maintain free surface conditions at all times. This
assumption may not deviate from many storm sewer de-
signs because the greatest carrying capacity occurs at
about 90 percent of full pipe flow. Fig. 3-4 shows

the hydraulic characteristics of a partially full cir-
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Fig. 3-4 Hydraulic Elements of a Circular Conduit
(after Water Pollution Control Fed., 1969)

cular conduit. Storm sewer inlets are often designed
to intake less than full pipe flow. In many areas the
topography is such that runoff greater than the design
capacity of sewers can be routed through the gutter
system to some lower point on 'the watershed.

The equation of continuity for a closed conduit
is

(3-46)

This differs from the open channel equation because
lateral inflow is zero for a closed conduit. The in-
put to the channel is at the upstream end either in
the form of an outflow hydrograph from a previous
channel or conduit or the inlet hydrograph from over-
land flow. Table 3-2 gives the relationship of sev-
eral geometric parameters to the diameter of a pipe
and the interior angle to the water surface for a
circular cross-section as shown in Fig. 3-1. The
kinematic assumption of bed slope being equal to the
friction slope is entered into the calculation by the
parametric relationship for discharge. The most gen-
eral discharge relationship and the one often used
for flow in pipes is the Darcy-Weisbach formula

f u2
Sf IR H (3-47)
where f is the Darcy-Weisbach friction factor. The

kinematic assumption allows substitution of S for
S¢ into Eq. (3-47) and by solving for velocity, Eq.
(5-47] is rewritten as



Table 3-2 Geometric Elements of a Partially Full
Circular Conduit from Geometry of Fig. 3-1

Element Relationship
Depth, H D(1 - cos(0/2))/2
Area, A p%(0 - sine)/s

Hydraulic Radius, R D(1 - sin8/8)/4

Wetted Perimeter, P D(e)/2
liydraulic Depth, HD a("—s;—n-:?i-'zlf'—]/s

(3-48)

u!ﬁ?—m .

Discharge is computed using Eq. (3-48) and the cross-
sectional area by

(3-49)

where a is }%B-S and N = 3/2 . Equation (3-49)

is the same as Eq. (3-44) for trapezoidal channels,
except for a and geometrical relationships for A
and P .

Equation (3-46) can be rewritten as

aA , dQ 3A

3t T dA ax o . (3-50)

This equation is nonlinear, as were the kinematic eq-
uations for overland flow and flow in trapezoidal
channels. Equation (3-50) is solved by a finite-
difference scheme that is different from the Lax-
Wendroff explicit scheme previously used. The general
form of the numerical stability criterion for explicit
finite difference methods is

e (3-51)

Ax —

where c¢ is the wave celerity. Equation (3-51) is
known as the Courant condition. Because the velocit-
ies in storm drains can be rather high, the time step
required for a specified length increment may be quite
small so that stability be maintained. The finite
difference scheme used for the evaluation of Eq.
(3-47) is a four-point implicit scheme with the form

J+1
" 5a

el
- d ‘l ‘k
Ji? "0 3%

je1 i +
A R 1

24t
g a8
~ = dd A Ay
a-a :aﬁi-&—-qﬁr—ql =0,

where w is a weighting factor for the space deriva-
tive at the current and the past time step. The pos-
sible range of values for w and the importance of
it will be investigated in Chapter 5. A property of
this implicit scheme is that the value of the unknown,

(3-52)
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Ai+1 , must be solved by an iterative technique, like
Newton's method of finding roots of an equation. Also,
a means of evaluating the terms dQ/dA must be est-
ablished before Eq. (3-52) can be solved. The func-
tional relationship between Q and A depends upon
the discharge formula which is used, i.e., Chezy,
Darcy-Weisbach, or Manning's equation. It is apparent
from Table 3-2 that any relationship between Q and
A will involve trigonometric functions. Trigonomet-
ric functions are evaluated by a series approximation
on a computer, and if evaluated many times, the compu-
tational time for a simulation is large. An alterna-
tive to this procedure is to create a table of A vs.
Q values at the beginning of computations for each
circular conduit. For any value of A computed, lin-
ear interpolation can be used to find the correspond-
ing Q wvalue. This procedure is used to evaluate
dQ/dA .

A method for routing flows through free surface
channels has been developed in the past two sections.
To apply this method to a specific channel, we need to
know the length, slope cross-sectional geometry, and
a roughness coefficient for the conduit. With this
information, we can compute the outflow hydrograph from
a channel for a specified inflow hydrograph.

3.3 Infiltration

Smith (1972) reported on extensive numerical ex-
periments based on Richard's equation for a range of
soils from fine clay with swelling properties to a
moderately uniform sand. The infiltration model as
shown in Fig. 3-5 resulted from analysis of simulation

1
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\
\
\
\
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Fig. 3-5 General Infiltration Response Curve (after
Smith, 1972)

using a uniform rainfall rate for six soils. Initial-
ly, the infiltration rate is limited by the rainfall
rate, i . Then, soil surface capillary potential
goes to zero and surface runoff begins at the time
denoted t_ in Fig. 3-5. This time marks the begin-

ning of the infiltration decay-type function that has
the form:

£= £, +ACt-t)" (3-53)



where f is the infiltration rate: £

state infiltration rate; t

is the steady-
is time; . is the ver-
tical asymptote of infiltration decay function; and

A and o are parameters unique to a soil, initial
moisture, and rainfall rate.

For instantaneous ponding at t = 0 , Eq. (3-53)

also applies, since this condition represents the case
where i + = , and consequently N 0 . Smith found

that use of dimensionless variables would result in a
single normalized infiltration equation; the dimension-
less variables are defined as

i, = %— , dimensionless rainfall
o
f, = ;— , dimensionless infiltration

t =

-

‘—liri-

, dimensionless time
4]
where

£, f_, i, t are defined previously, and

Tb is designated as a normalizing time.

The normalizing time is defined as
(3-54)

where s is the time variable of integration. For
sudden ponding, this normalizing time is the time at
which one-half of the total accumulated infiltration
is due to the constant infiltration rate, f_, and

one-half of the accumulated infiltration is due to the
variable infiltration rate. The solution of Eq. (3-54)
is

1/a (3-55)

A
To = Imaye ]
A graphical presentation of TO , as defined by Eq.

(3-54) for a ponded initial condition, is shown in
Fie. 3-6. Equation (3-53) which can be normalized

i
To /
ool S (F-fddt~
fols Approximate

Asymptote to Slope
of Upper Curve

Accumulated Infiltration

Time

Fig. 3-6 Normalizing Time, T (after Smith, 1972)
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by using the above dimensionless variables for infil-
tration and time, results in

£, =1+ (l-a) (t,-to,]"’ (3-56)

where A has been incorporated into 'l'o by utilizing
Eq. (3-55).

The value of the non-dimensionalization procedure
is that parameter TD is much more nearly a constant

This
is demonstrated in the experimental results of Smith
(1972) reproduced in Fig's. 3-7 and 3-8. Clearly the

wider variations of A are significantly reduced by
using Eq. (3-56) with T0 from Eq. (3-55).

for a wide range of i, than is parameter A .

Figure 3-7 shows the variation of i with rain-
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Fig. 3-7 Variation of TB With Rainfall Rate, i,

(after Smith, 1972)

fall rate for the six soils that Smith tested. There
was very little variation of To with i, greater

than 5 for any soil. The loams and clays showed lit-
tle variation of To at any rainfall rate. Figure

3-8 shows the variation of A and o for the soils
tested for a range of rainfall rates under constant
initial moisture conditions, and indicates that the
value of a approaches a constant at higher rates of
t: «

Use of Eq. (3-56) to describe rainfall infiltra-
tion implies determination of four parameters; B o
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a, To »and t , . Alternately, Eq. (3-53) requires
values for f , A, a, and t0 . Appendix A illus-

trates the estimation of the four dimensioned para-
meters from infiltrometer data. The term f_ is

considered a basic’'soil parameter. T

be calculated by Eq. (3-55), once A and o« are
found.

Clearly, may

Parameter t is related to time of ponding,
t_ , which is an important value needed in rainfall

infiltration simulation. Clearly, one point on the
infiltration curve in Fig. 3-5 is (i, tp) . Thus,

from Eq. (3-53),
. A l/a .
tg = tp - [i‘f.»] (3-57)
or, in dimensionless terms, from Eq. (3-56),
_ l-a ,1/c b
tow = tp* - {:_-1—] (3-58)

Time of ponding has been studied extensively in
various approximations and numerical solutions to the
basic soil water flow equations (Eq. (2-5)). Smith
(1972) demonstrated that an excellent approximation

for tp* under a wide range of patterns of i,(t) ,
t < t_ , could be obtained by predicting accumulated
infiltration at ponding, Fp For uniform i, , Fp,

is
indicates (Smith and Chery, 1973)

i*tp* , but for any pattern, numerical simulation
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B 1-8 (3-59)

-
P Y (1.9* }

v and B may be found by logarithmic
p vs. ip*-l , as shown in Fig. 3-9.
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Fig. 3-9 Relation of Infiltrated Volume at Ponding,

FP , to Dimensionless Rainfall Rate i,

Experiments are required to determine values for vy
and B for a particular soil; however, B was found
to be very close to 2.0 for six selected soils
(Parlange and Smith, 1976). Then, one infiltrometer
Egnsggu!d provide data for estimating vy from Eq.

A second method to estimate Fp may be taken

from Parlange and Smith (1976), who devised a method
to predict tp* with only one parameter, which is

related by theory directly to soil physical properties.
Figure 3-10 indicates a proportionality between

In(i,/i,-1) and FP This figure uses the same data

(Parlange and Smith, 1976) as Fig. 3-9. In equation

form, Fp « In(i,/i,-1) . Having determined To and
fw , we may also write, in dimensionless terms,
i,
F . =B_In(——= -
b P (1*_1) (3-60)

Bp , the dimensionless slope of each line in Fig. 3-10,

becomes the dimensionless ponding coefficient, one of
the basic infiltration model parameters.

Either Eq. (3-59) or (3-60) may be used to deter-
mine t_ for a rainfall pattern composed of rain rate
pulses. A simple accounting procedure is used, where-

by at the end of the kth rain pulse, the accumulated
infiltration is:

(3-61)
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and Dimensionless Rainfall Rate, i, ,

Demonstrated for Six Soils

Ponding occurs when F = Fp(ik} , which may be in the
middle of a pulse. Thus, if Fk-l < Fp{lkwl) but

> Fp(i we find At = tp -t such that

Fx K o k-1

i, At i.k
P vz " 5 1“(1—?—): Fp(y) (3~62)
@ 0 k "=

For t > t_ , infiltration decay proceeds as for

uniform rainfall rate, as long as i > f_ . Having

may be determined from Eq.

determined tp* y tow

(3-58).

The procedure discussed above permits calculation
of infiltration based upon dimensionless Eq. (3-56),
under conditions of constant, uniform, initial soil
water. To be applicable to most field problems of
infiltration, the procedure should have the capability
of handling variable initial soil water conditions as
well.

Results of numerical experiments, using a wide
range of initial relative saturation, Si , show a

nearly linear relationship with the normalizing time,
T° , except for swelling soils, as shown in Fig. 3-11

(Smith, 1972).

occurs very close to the maximum relative saturation,
S0 , Which was 0.90 to 0.95 for the soil data used.

The data indicate the Si intercept

Using the linear relationship of Fig. 3-11, T0 can
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Fig. 3-11 Variation of To with Initial Soil Water
Content, Si , (after Smith, 1972)
be described as a parameter for a given soil by the
equation:
T, = C,(5,-8,) (3-63)

where C:l is a constant, to be experimentally deter-

mined for each soil. Figure 3-12 illustrates the varia-

tion of t_, with initial relative saturation for all

soils tested and indicates that a good first approxi-
mation for non-swelling soils is to consider dimension-
less ponding time, tp* , to be independent of Si ]

This results from the variation of TD with Si 3

which scales tp to account for variations in Si

Finally, simulation of infiltration for soils,
where the total available pore volume has been reduced
by large rocks in the soil (Smith, unpublished) has

shown that the basic scaling parameter, To , is pro-

portionally reduced by an increasing proportion of

rock volume. If we define relative rock content, vr =

as volume of rock per unit volume, we may expand Eq.
(3-63) on the basis of numerical simulation with Eq.

(2-5), to

T, = C,(5,-5,)(1-v)) (3-64)
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3.4 Computer Program KINGEN o /5 dischargs
KINGEN is a computer program based upon the math-
ematical model developed in this chapter. The model

can compute flow for the following geometrical segments:
overland flow over a rectangular impervious surface,
overland flow over a rectangular pervious surface with
an infiltration component to compute rainfall excess,

open channel flow in a trapezoidal-shaped channel, and
free surface flow in a circular conduit. Watershed
geometry is represented by combinations of the segments
just mentioned. Computer model parameters are estimated
from available information about the watershed. This
information may be obtained from topographic maps,
aerial photographs, soil surveys, property development
records, watershed reconnaissance, or any other source
that may contain hydrologic information. Input data
are utilized by the computer model to sequentially
compute the outflow hydrograph from each segment. The
computation begins on the segment at the highest eleva-
tion of the watershed and continues down slope to the

Fig. 3-13 Flowchart of Program KINGEN
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Chapter 4
EXPERIMENTAL DATA

The Jata used in this investigation are from three
witersheds: a) the Rainfall-Runoff Experimental Facil-
ity at Colorado State University, hereafter called
RREF, b) an experimental agricultural watershed at
ldwardsville, Illinois, and c¢) an urban area near
Denver, Colorado, that has been selected as an experi-
mental watershed by the United States Geological Survey.
These watersheds represent a variety of conditions.

The geometry of RREF is simple and the surface is im-
pervious. The agricultural watershed geometry is more
complex than the geometry of RREF but although the
surface is still relatively uniform, the area is per-
vious, The geometry of the urban watershed is quite
complex and there is a mixture of impervious and per-
vious area.

4.1 Colorado State University Rainfall-Runoff
Experimental Facility

Dickinson, Holland, and Smith (1967) described
the original concepts and initial experiments with an
experimental watershed composed of two planes contri-
buting laterally to a triangular-shaped channel with
a segment of a cone at the upstream end of the channel.
Fawkes (1972) gives details of the watershed as it has
evolved as shown in Fig. 4-1. The one-half acre water-
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Fig. 4-1 Colorado State University Rainfall-Runoff

Experimental Facility (after Fawkes, 1972)

shed is designed to be large enough to avoid the prob-
lem of scaling in laboratory hydrologic models but the
size is not so large that good control of the input

and output cannot be maintained. The simulated rain-
fall is supplied by a grid of lawn sprinklers support-
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ed 10 ft above the surface and centrally controlled
for simultaneous operation. The input rate can be
varied as 0.5, 1, 2, and 4 in/hr. Since these rates
are only approximate, the exact input is calculated by
allowing an event to run until an equilibrium dis-
charge is reached. This equilibrium rate is the input
rate for a set of partial equilibrium events.

Discharge is gaged by two H-flumes equipped with
FW1l water stage recorders. The FWl recorders have
been modified to give a time resolution of 5 sec per
smallest chart division. The stage is converted to
discharge by the rating curve for the appropriate
size flume. Runoff from the watershed can be gaged
at two points; discharge from the converging section
is measured before it flows into the channel, and the
total discharge is measured at the lowest point on
the watershed.

The watershed is impervious butyl rubber laid
over sand that has been graded to a constant slope of
5% on the converging section, 5% on the planes and 3%
on the channel. Experiments have been conducted with
the rubber surface or with additional material placed
on top of the rubber to increase the resistance to
flow. Gravel spread at 0.75 in. uniformly over the
surface is the most commonly used material for increas-
ing the surface roughness. Varying densities of gravel
as well as different spatial distribution of the gravel
on the watershed surface have been used.
4.2 Edwardsville, Illinois, Watershed

From 1940 to 1943, extensive hydrologic field
investigations were conducted on several small agri-
cultural watersheds near Edwardsville, Illinois

(Holtan and Minshall, 1968) (see Fig. 4-2). These
E:
< — >
s @
oS o N
! .Pmie‘ f “~| Tarpenter
ILLINOIS J q_
\\S,w;ngfh!d . P e .._.
$t. Lovis 3 's"m.*ccrS ) Jolwn
{ ;"‘{\ I
MISSOURI \.,4 K. - T
o J.‘ e?
™ G, £ 38°50'
TaN rbs;l P
i
CEgerty |

R7TW

o
o | 2 3 4

Scale in Miles

Fig. 4-2 Experimental Watersheds Near Edwardsville,

Illinois



watersheds had previously been equipped with rain gages Edwordsville, Lllinois

and weirs for recording rainfall and runoff. The in- Watershed W-I
vestigations recorded information about soil moisture, NWI=NW§ Sec.20 TSN
soil temperature, soil structure, vegetative cover, RTW of 3" Prime Meridian

and infiltration characteristics of test plots. This
study is confined to the smallest watershed which is
designated W-I, a 27.2-acre fan-shaped area.

Description of the Watershed

Watershed W-I is a cultivated area with a range
in elevation of about 20 ft and nearly two-thirds of
the area having slope of about 1%, except near the
waterways where the slope may be near 10%. There are
about 1600 ft of waterways on the watershed, as shown
in Fig. 4-3, with average channel slope of about 2%.
From 1940 to 1943, the watershed cover was 100% alfal-
fa (Minshall, 1962). The soils on this watershed are
Alma and Bogota silt loams, which are of loessial ori-
gin and overlie glacial till with a claypan layer at
depths of 10 to 20 in. When these soils are dry and \ /
protected with a good vegetative cover, they take in o /f
precipitation rapidly until the surface is saturated. ™ v
After surface saturation, additional precipitation re- 6 /
sults in a high percentage of runoff. The mean annual M e ____/ e« Recording Raingage
precipitation in the area is about 40 in. distributed : Area=27.22 Acres
throughout the year. April, May and June have slightly
higher amounts of rainfall than other months. The type o 0 S L B
of precipitation varies from snow and sleet in winter Srale
to short-duration convective thunderstorms in summer.

Figure 4-3 also shows a schematic representation of a
kinematic cascade model for Watershed W-I.

: : : 1 Schematic Representation

Infiltration and Rainfall-Runoff Data of Watershed
The infiltration surveys were conducted using a Note: Drawing not lo scale

type "F" infiltrometer on 6- by 12-ft rectangular
plots at representative locations over the watershed.
Soil moisture samples were taken before each experi-
ment. The simulated rainfall rate was calibrated by
measuring the runoff rate from the plot; the infiltra-
tion was computed as the difference between the rain-
fall and runoff rates. This procedure, which neglects
the surface storage lag, can lead to errors in comput-
ed infiltration rate (Smith, 1976). These infiltra-
tion experiments were used to aid in calibrating the
infiltration component of the watershed model.

Precipitation was measured with a recording rain
and snow gage capable of a time resolution of 30 sec.
Runoff from the watershed was measured at the outlet
by a 30-in. broad-crested, concrete, weir with a 2:1
side slope continuously monitored with a water stage
recorder.

Channel Cross-Sections

4.3 Urban Watershed near Denver, Colorado —_— T
Early in 1968, the U. S. Geological Survey began T
a cooperative study with the Denver Regional Council
of Governments and the Urban Drainage and Flood Control < .
District to collect and analyze rainfall-runoff data Fig. 4-3 Watershed W-I and Possible Schematization
from small drainage basins in the Denver metropolitan for Input to Program KINGEN

area. By 1972, 30 urban stations had recorded rain-

fall-runoff data. These watersheds were selected to

provide a wide range of values in drainage area, per-

centage of impervious cover, slope and length of main

channel. This present study is restricted to a single, Rainfall-Runoff Data

arbitrarily chosen watershed in Northglenn, a suburb

of Denver. Figure 4-4 shows the relative location of Detailed records of rainfall and water stage are
iillerest Drain, USGS Station No. 06720300. Figure collected at each station by simultaneous operation of
4-5 is a map of the Hillcrest Drain watershed. two digital recorders that code data on a 16-channel

17
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Fig. 4-5 Hillecrest Drain Watershed near Northglenn,
Colorado

paper tape at 5-min. intervals. A single timer pro-
vides synchronous actuation of both recorders, which
eliminates timing discrepancies that may occur when
separate timing mechanisms are utilized for two re-
corders. The stage-discharge relationship at Hillcrest
Drain has been determined by the step-backwater method
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because the flow is controlled by the resistance in
the reach of channel downstream from the gage.

The rainfall-runoff data through 1971 from the
Colorado small basins were published by Ducret and
Hodges (1972). Rainfall is printed as interval depths
for time increments of 5 min. or more. The tabulation
of precipitation intervals does not begin until the
precipitation in a 5-min. interval exceeds 0.015 in.
The runoff data are printed as stage height in feet
with 10 ft. representing the bottom of the gage; this
stage height has been converted to discharge (in cubic
feet per second).

Watershed Characteristics

The Denver area has a mean annual precipitation
of about 13 in. unevenly distributed throughout the
year. Winter precipitation is snow; there is a pro-
nounced rainy season between April and September when
most of the rainfall results from short-duration,
high-intensity thunderstorms.

The Hillcrest Drain area was rural before 1955.

Early development began slowly but during the 1960's,
urbanization occurred very rapidly. Figure 4-6 shows

5100
80

ov

T

O

2]
l=)
L L L L

b
o O

T

% Impervious

o

940 1950 1960 1970

Year

Fig. 4-6 Urbanization of Hillcrest Drain Watershed

the sequential urbanization of the area as measured
by the percent of impervious cover on the watershed.
The watershed is comprised of single-family dwellings,
one school and adjacent grounds plus the playground
of another school, and a small area of businesses at
the northern edge of the watershed.

The soils on this watershed are Fort Collins clay
and clay loam with a moderate to heavy texture. These
soils developed from alluvial material carried from
the mountains to the west and deposited on top sand-
stone and shale formations (Harper, et. al., 1932).
The soil is well developed and infiltrates water mod-
erately if the surface is protected by a vegetative
cover and not compacted. Most of the pervious area
is covered with thick bluegrass that is maintained as
well watered lawns.

The land surface slopes gradually to the north-
east at a 1 to 2% grade. The surface geometry and
storm sewer information was obtained from drawings
and specifications filed with the city of Northglenn
by the developers of the area; the watershed was field-
checked to verify the physiographic features.

4.4 Data Evaluation and Limitations

The analysis of data used in this investigation
is difficult because each of the three groups of data



has been observed and recorded in a different manmer.
The two natural watersheds, Edwardsville and Hillcrest
Drain, have a common problem that results from observ-
ing, or at least reporting the continuous processes of
rainfall and runoff by a series of discrete points of
time and rate. Use of the RREF minimizes this problem
by designing the experiments so that rainfall occurs
in discrete pulses.

The timing and variability of natural rainfall is
a feature that is difficult to precisely define but is
important when a watershed model is used for predicting
the runoff. Use of the RREF eliminates some of these
problems because the control system is designed so that
the beginning and ending of the rainfall or a change in
the rate occurs with negligible delay from the system
command. The spatial variability of rainfall on the
RREF is minimized by having the sprinkler grid properly
located and adjusted. The RREF data have been correct-
ed for small discrepancies that may result when the
computed rainfall volume is compared with the observed
runoff volume. The beginning of rainfall on a natural
watershed is often subjectively defined, as is the case
of the Hillcrest Drain urban area. The start of rain-
fall is defined as at least 0.015 in. in a 5-min. per-
iod. For example, if a rainfall event begins very
slowly, e.g., 0.02 in. in a 10-min. period, this would
not be recorded as the beginning of the event, because
it is less than the minimum specified amount; however,
this 0.02 in. could have a significant effect on infil-
tration and detention storage in the watershed. If a
significant rain pulse begins after the 10-min. inter-
val, the rain gage records this as the beginning of
rainfall, instead of the actual beginning 10-min. ear-
lier. The problem of defining the rainfall beginning
is not so clear on the Edwardsville watershed because
no minimum criterion is stated for the start. Gener-
ally, the start is defined by an observer who scans
the rainfall record until a response is perceived; this
may introduce a bias by the'observer. The problem of
defining the time rainfall begins can be minimized by
selecting a period when most rainfall events begin
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very quickly with high intensities. This is generally
true of convective storms during the summer in both
the Edwardsville, Illinois, and Denver, Colorado,
areas.

The spatial variability of rainfall over a natur-
al watershed is another problem that can cause diffi-
culties in interpretation. Often, a watershed has no
more than one precipitation gage on or near the area.
This single point rainfall is sometimes assumed to
occur uniformly over the area, whereas, actually, the
storm can be moving or changing intensities different-
ly throughout the watershed. Even if more than one
precipitation gage is available, it is difficult to
determine the area of the watershed that a raingage
represents. One means of alleviating the spatial var-
iability problem is to restrict the analysis to small
watersheds where the assumption of uniform rainfall
is justified. All of the watersheds in this study are
less than 180 acres in size.

Discharge measurements can be another possible
source of errors for any of the three watersheds in
the investigations. However, the RREF and Edwards-
ville watershed are equipped with a flume or weir that
has been laboratory tested and isbelieved to be accurate
within a few percent. The step-backwater rating at
Hillcrest Drain may be susceptible to significant
errors if good control is not maintained in the meas-
ured section. The largest source of error may result
from the data being discretized, as is done at Hill-
crest Drain for 5-min. intervals. There can be a
significant variation of discharge during a 5-min.
period.

In the previous section, problems that may exist
in the observed data used in this study have been dis-
cussed. These possible errors must be considered
whenever one attempts to draw conclusions from results
that utilize observed data for input to the model,
e.g., rainfall, or for comparison to computed results,
e.g., outflow hydrograph.



Chapter 5
RESULTS

5.1 Flow Routing in Circular Conduits

The mathematical equations to route flows in an
open channel of circular cross section with no lateral
inflow were presented in the section on Circular
Closed Conduwits. The parametric equation for discharge
was based on the Darcy-Weisbach formula. Many engi-
neers are accumstomed to using Manning's discharge for-
mula for flows in storm sewers. A large portion of
published data concerning storm sewers gives Manning's
n as the resistance factor. These facts warrant the
use of Manning's n for flow resistance in storm
sewers in this study. The relationship of f and n
is given by

fa—S8__ 1
(1.49%) rY/3

(5-1)

Equation (5-1) indicates f varies according to the

hydraulic radius for a constant n . Figure 3-4 shows
how the ratio of f divided by the full pipe f var-
ies as a function of depth for circular cross sections.

Initial numerical experiments were conducted
utilizing a second order Lax-Wendroff finite difference
scheme similar to that developed for the trapezoidal
channel with the appropriate changes made for circular
geometry. The time step for computation was based
upon an approximation of Eq. (3-51) and is

AX

At < m (5-2)

The experiments indicated that small time steps were
required to maintain stability for gradually varied
flow of small magnitude. Large flows would have re-
quired very small time increments and made the compu-
tational cost of calculating flows too high for prac-
tical use. The decision was made to test an implicit
finite difference scheme so that the problem of small
time steps could be eliminated. The four point impli-
cit scheme was presented in the section on Cireular
Closed Conduits and is illustrated in Fig. 5-1. The

o Known
/...-A-'_..___ X Unknown
3
1 41'[ T {

- i

k-1 k

Kt
Fig, 5-1 Implicit Finite Difference Grid

figure shows the poini at which the value for cross
sectional area is unknown. The dashed arrows show
the pairs of nodal points that are used when computing
derivatives in the time and space directions.
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The kinematic wave-routing technique was tested
on data published by Harris (1970). Harris developed
a computer program to route flows through storm drains
using the method of characteristics to solve the com-
plete equations of continuity and momentum. This pro-
gram was verified utilizing data from tests conducted
at Colorado State University on a 3-ft. diameter pipe,
824 ft. long. The program accurately reproduced the
measured flows. The shortcomings of the method of
characteristics is the relatively large computational
time and computer storage required. Harris needed a
method to route flows in real time, i.e. while the
event was still occurring, on a small computer. He
concluded that the method of characteristics did not
meet his requirements. However, the method of char-
acteristics did provide an accurate method with which
Harris could verify simplified methods. In this study,
the results of the method of characteristics as devel-
oped by Harris also serves as the criterion to eval-
uvate the performance of the kinematic flood routing
model. Harris conducted some numerical experiments
with a circular conduit with the following character-
istics:

Pipe diameter = 6 ft.
Length = 14,000 ft.
Slope = 0.001%
Manning's n = 0.012

The variable w of Eq. (3-52) was defined as a weight-
ing factor for the space derivatives and acts as a
damping coefficient. It can theoretically have a range
of values from 0 to 1. However, for w < 1/2 the
scheme is unstable. When w = 1/2 equal weight is
given to the space derivatives at time levels j and

j # 1. This value of w corresponds to no damping
being introduced from the finite difference scheme;
however, some artificial damping may be beneficial when
using a finite difference scheme. Figure 5-2 illus-
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Fig. 5-2 Variation of Peak Discharge and Timing with

Weighting Factor, w

trates the effect of a variable w on peak discharge
and the timing of the peaks. The computed peak dis-
charge and time to peak are denoted Qp and TP



respectively, and the observed peak discharge and time
to peak are denoted Q and T , respectively. The
minimum value of the deviation in discharge is about
w= 0.9 , but within the range 0.7 < w < 1.0 the
deviation is very small and not sensitive to the value
of w. As w approaches 0.5, the deviation increases
rapidly. The artificial damping effect of w can
often be used beneficially to suppress the minor per-
turbations that may be introduced into the computation
due to the numerical scheme. Precaution must be ob-
served when w is allowed to approach the value of 1,
because the resulting damping may be sufficient to ob-
scure a feature of the model that could be important
in the calculated flows. Figure 5-2 shows that the
deviation in timing of the peak is not affected by
variation of w . This relationship of timing and w
is the condition that is expected because w influ-
ences only the space derivative and not the time der-
ivative.

Figure 5-3 shows the results of sensitivity tests
of the time increment, AT , and the length increment,

LX
L
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“f“_—"1
o
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—1.0
o 1 1 1 1 1 79
(ee]} 0.02 003 0.04 0.05 0.06 Q.07
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T

Fig. 5-3 Variation of Peak Discharge with Length and
Time Increments

AX . Because the finite difference scheme is implicit,
the AT is specified and not changed through the flow
computation. The results indicate that for AT/T ,
where T is the total duration of the event, in the
range of values 0.01 to 0.05, the peak discharge is
not very sensitive. However, for values of AT/T
greater than 0.05, the peak response is sensitive to
the time increment. Choice of a AT increment should
be related to the time characteristics of the system
response. If the inflow hydrograph varies significant-
1y during a period of time, the model time increment
must be capable of accounting for the variations. The
results of tests on the length increment indicate that
it is not necessary to choose very small AX incre-
ments; in fact, the smallest AX tested resulted in
the largest error.

Hydrographs computed with the kinematic routing
technique were compared with Harris' numerical exper-
iments. Figures 5-4a, b and ¢ show the results of
routing three inflow hydrographs through the circular
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conduit previously described in this section. The
kinematic hydrographs fit the hydrographs computed by
the method of characteristics very well. It is shown
that kinematic routing consistently overpredicts the
peak discharge by a small amount and slightly under-
predicts the recession hydrograph. Harris' simplified
routing technique, called progressive-average lag, is
also plotted in Fig. 5-4a, b, and ¢, This technique
uses a group of averages of the inflow hydrograph to
offset and reduce the upstream input. The kinematic
routing and progressive-average lag technique compare
very closely at most points on the hydrograph. The
advantage the kinematic technique has over the lag
technique is the kinematic routing, based upon the
hydraulics of the flow, while the lag routing requires
at least three observed hydrographs to calibrate rout-
ing constants.

In this section, a kinematic routing procedure
for flows in circular conduits has been analyzed. The
technique was shown to give good results as compared
with a routing technique using the method of character-
isties to solve the complete equations of continuity
and momentum. The kinematic routing procedure has the
advantage over a simplified lagging technique in that
kinematic routing can be used for design studies in
areas without data because no historical hydrographs
are required to evaluate any routing constants as is
required for the lagging technique.

5.2 Incorporation of Infiltration Component

Smith's (1972) infiltration model was presented
in Section 3.3. A computer subroutine, called XPLINF,
based upon the mathematics of that section was devel-
oped by Smith, modified, and incorporated with the
kinematic surface runoff model, KINGEN. Infiltration
rate is computed in the XPLINF algorithm, with rain-
fall assumed to be constant over the time interval.
Rainfd1ll excess, the difference between precipitation
and infiltration, is provided interactively to each
node of the surface runoff component. A few modifica-
tions have been made to the original infiltration mod-
el to reduce computation time.

The original method of finding the time to pond-
ing was to iterate through the rainfall hyetograph by
some small time step until the accumulated rainfall
volume equalled or exceeded the infiltration volume,
predicted by Eq. (3-61). A modification to the sub-
routine was made so that Eq. (3-62) is now used to
solve for the time to ponding. If At exceeds the

k
length of the kth rainfall increment, the infiltrat-

ed volume is increased by the amount of accumulated
rainfall for the kth increment and Eq. (3-62) is

solved for the (k+1}th increment. These steps are
repeated until the time to ponding is found.

The infiltration subroutine was also modified so
that it would not be necessary to compute infiltra-
tion at each time interval required to maintain numer-
ical stability for surface routing. Figure 3-5 shows
how the infiltration rate changes rapidly just after
time tP but then the rate of change of the infiltra-

tion rate decreases and ultimately approaches zero as
the steady-state infiltration rate, f_, is approach-

ed, The shortest time intervals to compute infiltra-
tion should occur just after tp with the time inter-

vals increased as f_ is approached. However, the

time interval computed by the surface runoff component
has the opposite proportionate size as required for the
infiltration component. At tp , Tunoff begins but the
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depth on the surface is quite small and, consequently,
a rather large time-interval is calculated. As the
infiltration rate decreases, the lateral inflow in-
creases, resulting in an increase of the depth. This
increase results in a smaller time interval being re-
quired to maintain numerical stability. The dilemma
of the conflicting time intervals for the surface and
infiltration components is solved by developing an
empirical time interval as defined by

f
st = CF(TL,-TL, 1) () (5-3)

where CF is a coefficient greater than unity; TI

is the time at the beginning of a rainfall increment;
f is the infiltration rate for the past time interval;
and f_ is the steady-state infiltration rate. Equa-

tion (5-3) defines a time increment that is small when
f 1is large in comparison with f_ but as f approach-

es f°= , the time increment increases. The range of

values of the coefficient CF that have been used in
this study are from 1.25 to 3.0. The lower value cor-
responds to studies on one or two planes, while the
higher value corresponds to complex geometry of a cas-
cade of multiple planes and channels. Figure 5-5 shows
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Fig. 5-5 Infiltration and Runoff from a Pervious
Plane

an example of pulsed rainfall input onto a cascade of
three infiltrating planes, the infiltration function
and the resulting outflow hydrograph from the rainfall
excess. Besides the continuous infiltration function,
Fig. 5-5 shows the step-like function of infiltration
that results when the subroutine XPLINF is called once
for each time interval as defined by Eq. (5-3). Two
outflow hydrographs are shown where one is the response
to the rainfall excess routed over a smooth surface



with a Chezy coefficient of friction, C = 15.6 . The
other hy&rograph is the response to the rainfall ex-
cess routed over a roughened surface with a Chezy C =
8.5 . These two hydrographs demonstrate how the res-
ponse is related to the surface characteristics and
also the infiltration characteristics.

Testing the Infiltration Model

The infiltration component was tested on some
infiltrometer experiments from the Edwardsville, I1li-
nois, watershed described in Section 4.2. Recorded
data from the infiltrometer experiments along with a
soil survey of the watershed were used to estimate
the model parameters. The Alma and Bogota silt loams
of the watershed corresponded closely with the Colby
silt loam (constant ¢) with which Smith (1972) con-
ducted experiments. Table 5-1 lists the values of the

Table 5-1 Infiltration Parameters of Edwardsville
Infiltrometer Tests
Parameter Value of
Parameter

a 0.58
Y 0.90
So 0.95
c* Estimated from
i infiltromcter experiment
5. do.
1
fu do,

*this constant 1s related to the normalizing time by Eq.(3-63)

model parameters as estimated from Smith's work. The
normalizing time for each infiltrometer test was esti-
mated by the technique illustrated in Fig. 3-6 of plot-
ting the accumulated infiltration vs. time. The nor-
malizing time is then estimated from the plot to be
that time at which half of the total infiltration vol-
ume is due to f_ and half to the variable infiltra-

tion rate. The parameters Si and f_ were measured

directly for each infiltrometer experiment. Figures
5-6 to 5-8 show the computed and observed results of
the infiltrometer tests. The infiltrometer tests show
a wide range of infiltration responses. The slope of
these plots varies from 11% to less than 1% and seems
to affect infiltration rates. Plots 1 and 2 have the

highest slope and the lowest minimum infiltration rates.

It would have been possible to obtain a much better fit
of the observed hydrograph for individual experiments
by adjusting for hydrograph lag or by optimizing the
infiltration parameters. However, the primary object-
ive was to test the infiltration component of the model
using only a priori information that was obtained from
soil characteristics and field tests.

Infiltration Sensitivity

The sensitivity of the infiltration component was
analyzed by a series of tests utilizing parameter per-
turbation. So that errors in the data did not influ-
ence the tests, the '"observed'" response was generated
by the model for a selected set of parameters. The
parameters were then varied about the original set.
The "observed'" parameters are given in Table 5-2. The
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Fig. 5-6 Plots 1 and 2 Infiltrometer Tests

value of SO has been held constant at 0.95 through-

out this analysis. The results of the sensitivity
analysis are presented in Figs. 5-9 and 5-10.

The objective function for the sensitivity anal-

ysis is
F-F 2
0.F. = —RF ) (5-4)
where F 1is the total "observed" accumulated infil-

This
objective function was compared to the sum of devia-
tions for a set of points along the entire infiltra-
tion curve. The distribution is similar, except the
magnitude is different. Therefore, the simpler ob-
jective function is used. The "O" subscripted para-
meters in Figs. 5-9 and 5-10 refer to those values

tration and Fp is the predicted infiltration.



2.0 T T ;
Rainfall Rate
o Observed
¢ Computed Plot 3
= 1o Aug. 26,1940 -
o
°
I o o
« L0} ° . =)
e . .
é . C| =49
 ® Si=0.34
0.5}~ fw= 0.65 o
o
]
0 | | |
0 40 80 120 160
Time ( min)
2.0 T | I
Rainfall Rate
© Observed
15 ° Computed Plot 4 |
‘.E : Aug. 22,1940
°
g
<« 1.0 =
}g ~ . : q
& 5 o
05 e C; =49 g
g S; = 0.45
f.= 0.78.
i | !
0 40 80 120 160
Time {min)

Fig. 5-7 Plots 3 and 4 Infiltrometer Tests

Table 5-2

Sensitivity Tests

"Observed" Infiltration Parameters for

Paramcter Value of
Parameter

a 0.58

Y 1.35

(:l 873

S1 0.50

£. 0.40
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from Table 5-2. Figures 5-9 and 5-10 are arranged so
that each succeeding figure has the normalized devia-
tion scale reduced by a factor of 10 from the previous
figure. From these plots, one concludes that minimum
infiltration is the most sensitive parameter for in-
filtration with the initial water content and the
constant relating water content and normalizing time
being somewhat less sensitive. The most sensitive
parameters are fortunately those that have the most
physical significance and can be estimated from field
experiments if they are available. The parameters o
and y are the most difficult to estimate from field
measurements but also least affect the computed infil-
tration.

5.3 Testing the Watershed Model

The previous two sections of this chapter have
involved the development and verification of compo-
nents of the computer model. These components have
been incorporated with the surface water model and
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together they form a complete watershed model of rain-
fall and associated runoff. The remainder of this
chapter is devoted to testing the model on several ex-
perimental watersheds that vary in surface character-
istics, pervious and impervious areas, and degree of
precision with which the rainfall-runoff process is
measured.

Colovado State University Rainfall-Runoff Experimental
Facility

Past studies of the data from this facility have
concentrated on the upstream conic section that accounts
for slightly more than half the area. This study is
concerned with analyzing data for the entire watershed
so that the composite effect of a conic section, planes,
and a triangular-shaped channel can be studied. Simu-
lation tests were conducted on two types of surface
configurations, a butyl rubber surface over the entire
watershed and a butyl rubber surface covered with 20-

1b. of gravel/ydz over the lower one-third of the conic
section and one-third of the two planes. The conic
section was represented by a series of cascading planes.
Kibler and Woolhiser (1970) present a procedure to
determine the appropriate width of planes to approxi-
mate a conic section while maintaining the correct

area.

The first hypothesis to be tested is that a con-
stant friction relationship is sufficient to describe
the flow regime. Detailed investigations of the mech-
anics of overland flow (Woo and Brater, 1962; Yu and
McNown, 1964; and Fawkes, 1972) indicate that flow
begins as laminar and then becomes turbulent as the
Reynolds number increases. Thus, a more precise fric-
tion relationship would be variable, with the highest
roughness when depth is small and roughness decreasing
as the depth of flow increases. However, the hypo-
thesis of constant friction is formulated on the
assumption that the composite geometry and finite
difference approximation would mask the laminar-tur-
bulent effect. A constant value for the Chezy C
friction coefficient was obtained from Singh's (1974)
study of the data from the RREF. He obtained values
for the kinematic wave coefficient o by optimizing
on the peak discharges for rainfall-runoff events from
the conic section. Values of o were obtained for
each event. Average a's for a set of events from
the same surface configuration were used to estimate
a constant friction factor. Chezy's C was obtained
by relating o and C by the equation

¢l (5-5)
VS

After the initial runs were made, the conclusion was
drawn that a constant friction factor was adequate to
match peak rates but in some cases the rising limb of
the hydrograph was not well simulated. The results
of some of these tests are presented in Figs. 5-11
and 5-12.

An alternative to the constant friction relation-
ship is one of the types of variable friction laws
used by Fawkes (1972) on the CSU facility. This type
of friction relationship accounts for laminar-turbulent
flow regime and also has the capability of accounting
for flow resistance due to the impact of rain drops
on the surface. Figure 5-13 shows the variable fric-
tion relationship. The parameters of the friction
relationship are k , a constant; Re , a transition-
T

al Reynolds number; and IC , an intensity coefficient.
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The q wvariable is the rainfall rate. These para-
meters were estimated from Fawke's (1972) study of
runoff from butyl rubber and graveled surfaces for the
conic section. The best results were obtained by us-
ing k wvalues that were about 50% higher than the
average k value as computed by Fawkes. The results
of simulations using a laminar-turbulent friction re-
lationship are plotted in Figs. 5-11 and 5-12, along
with the simulations using a constant friction rela-
tionship. These figures allow comparison of the two
friction relationships that have been used in the wat-
ershed model. In three of the four cases, the peak
discharge is more closely approximated by the constant
Chezy C relationship, while the laminar-turbulent rela-
tionship consistently matches the rising limb of the
hydrographs, especially for the surface of a combina-
tion of butyl rubber and gravel. Before drawing con-
clusions about which of the friction relationships is
best, we must consider the technique by which the
parameters were estimated. Singh optimized only on
the peak discharge rates, while Fawkes optimized the
parameters based upon the entire hydrographs. This
choice of objective functions is reflected in the per-
formance of the model, as use of Singh's C values
results in a better fit of peaks, while use of Fawke's
relationship gives a better overall fit of the hydro-
graph.
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Sehaake's Urban Watershed

ersity Storm Drainage Research Project.

Schaake (1965, 1970) reported the results of com-
puter simulations of runoff from a small urban catch-
ment that has been studied by the Johns Hopkins Univ-

The results



are used in this study to provide an independent ver-
ification of the surface water routing portion of the
watershed model that has been developed in previous
sections. Schaake (1965) presented results from a
deterministic runoff model based on the complete un-
steady flow equations for channel routing and overland
flow routing. Schaake (1970) presented results of

the simulation of an event, where the computer model
was based upon kinematic routing for both channel and
overland flow. This event had also been reported in
the 1965 publication. There is very little difference
in the computed results from these two different mod-
els. The storm designated 3SPL1, and the 0.39-acre
watershed, designated SPLl, have been described in
detail in Schaake's 1970 publication. A diagram of
the watershed and the geometry of Schaake's computer
segments are shown in Fig. 5-14. Schaake specified
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Fig. 5-14 Geometric Characteristics of Small Urban
Area (after Schaake, 1970)

that overland flow for the watershed should be comput-
ed by a laminar flow relationship.
meter for laminar overland flow was given a value of
10; this parameter is theoretically equivalent to the
parameter k (shown in Fig. 5-13) divided by four.
The swale shown in Fig. 5-14 was represented by a
triangular-shaped channel where turbulent flow is
assumed to exist throughout the entire runoff event.
A roughness parameter similar to Manning's n with a
value of 0.02 was assigned by Schaake to the swale
area.

The strategy of the independent test of the com-

puter model KINGEN is to use the geometric segments,
just as Schaake had represented the watershed as well

as the same number of Ax increments for each segment.

His roughness para-
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These selections avoid bias by using another's repre-
sentation of the watershed. Schaake used a specified
time increment in the explicit finite difference form
of the kinematic equations. The model KINGEN computes
the necessary At to maintain numerical stability as
defined by Eq. (3-39). Since the geometric character-
istics of the watershed have been determined, the test
of the model is the selection of the roughness para-
meters. The laminar-turbulent friction relationship,
described in the section on Colorade State University
Rainfall-Runoff Experimental Facility, is used to model
the surface roughness. The transition Reynolds number
is selected as 300 and the intensity coefficient as 10.
This leaves the parameter k to be chosen. Two simu-
lation tests were made with storm 3SLP1 as the input.
The first test was with the lower extreme value of k
for concrete or asphalt, as reported by Woolhiser
(1974). The other test was with the upper extreme
value of k . The results of these two test computa-
tions are shown in Fig. 5-15 along with the measured
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Fig. 5-15 Comparison of Measured and Synthesized
Runoff Hydrographs--Urban Area

runoff hydrograph and Schaake's computed hydrograph.
This figure shows the results of the computer simula-
tion bracket the observed results by using the extreme
values as reported in the engineering literature.

These results are encouraging because they indicate
that a watershed engineer could exercise some judgment
about the physical characteristics of the watershed and
estimate an appropriate roughness parameter that would
result in reasonable predictions of runoff, as long as



the roughness parameter was within the reported limits.
Comparison of the computed results from program KINGEN
and Schaake's work reveals very little difference be-
tween the two for the lowest value of k . Both sim-
ulations overpredicted the first peak by substantial
amounts. The higher value of k ‘'resulted in a better
estimation of the first peak but the estimation of the
second peak was then poorer for the lower k value.

Hillerest Drain, Colorado Urban Watershed

The watershed model is used in the section on
Schaake's Urban Watershed to simulate runoff from a
small urban catchment with a uniform surface cover of
asphalt. In this section, the model is used to simu-
late runoff from a large urban watershed that is a
mixture of pervious and impervious area. A description
of the Hillcrest Drain watershed was given in Section
4.3. The complexity of the watershed features, natur-
al and man-made, requires an extremely large number
of computer segments to represent the physiographic
features with any degree of completeness. The computer
storage required to accommodate such a large number of
geometric segments may not exist on any standard com-
puter that is available to watershed engineers. The
computational cost of such a complete representation
is prohibitive even for research. Another possibility
of representing the watershed geometry is to use only
two or three computer segments, i.e. one or two planes
and a channel, and optimize the watershed parameters
by matching computed and measured results. However,
physical interpretation of parameters obtained by this
type of technique becomes very difficult, if not impos-
sible. Also, transferability of results from the
Hillcrest Drain watershed to other watersheds may not
be possible. The solution to the dilemma of represent-
ing the watershed by a very large number of segments
or a very few segments is a compromise of the two ex-
tremes. The watershed is represented by enough seg-
ments to maintain a resemblance of the physiographic

features, but the number is limited to keep the com-
puter storage and computation time to an acceptable
level. Even with severe simplifications of the geo-
metry, the number of computer segments used to repre-
sent the Hillcrest Drain watershed exceeds 150 and for
the most detailed representation used, the number is
slightly more than 200. Figure 5-16 shows the computer
segments, indicated by dashed lines, used to represent
a typical block of the watershed. Each segment is num-
bered in the same order that computations occur. The
computer segments, their corresponding physical sig-
nificance, and the sources of inflow are listed in
Table 5-3. This schematization of the urban watershed
is the most complete representation that is used.

Parameter Fatimation

The dimensions of the computer segments were
estimated from an enlarged topographic map of the
watershed. Summation of the area of all the computer
segments is within 2% of the total area of the water-
shed as measured from the topographic map. The soil
characteristics of the watershed were described in
Section 4.3, These characteristics represent the con-
ditions when the area was cultivated for agricultural
purposes. Changes in some of the soil characteristics
are expected to have occurred when the area was urban-
ized. The clayey subsurface material that is exca-
vated for basements is often spread atop or mixed with
the topsoil, which reduces the infiltration rate of
the soil. Also the soil is compacted during the move-
ment of construction equipment and the planting of
lawns. The model parameters for the pervious sections
of the watershed were obtained by comparison of the
measured and adjusted soil characteristics to the
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Fig. 5-16

Geometric Segments for a Typical Block
in an Urban Watershed

Table 5-3 Computer Segments Used to Represent
Geometry Shown in Fig. 5-16

Segment Physical Lateral Upstream Inflow

Number Significance Inflow Plane Channel
1 Roof Rainfall - -
2 Lawn Rainfall 1 -
3 Strect Rainfall - -
4 Gutter - 2 8 - -
H Roof Rainfall - -
[] Lawn Rainfall S 3
7 Street Rainfall - -
| Gutter 87 - -
9 None

(add channels) - - i, 8

10 Street Rainfall - -
n Gutter 12 - -
12 Street Rainfall - -
13 Gutter 12 - 9, 11




range of soils that Smith (1972) used to conduct in-
filtration experiments. The comparison revealed the
characteristics of the watershed soils to be closest
to those of Muren clay soil. Table 5-4 lists the mod-
el parameters for the infiltration component of the
urban watershed. Preliminary test results showed that
runoff did not occur from the pervious area, when the

C1 value for Muren clay was used for the short dura-
tion storms, as observed on the watershed. The C1

value was lowered to that value in Table 5-4 and
corresponds nearly to the C1 for Nibley silty clay

loam,
Table 5-4 Infiltration Parameters for Hillcrest
Drain Seoil
Parameter Value of
Parameter

. 0.53
¥ 0.45
so 0.95
4 400
f. 0.2+
si 0.4%*

*after initial tests, this was lowered to 0.1 in/hr.

**minimum moisture content because of watered lawns,
events preceded by precipitation estimated at higher
content.

The surface roughness characteristics were mod-
eled by constant Chezy C friction factors. These
friction factors were estimated by comparison of the
surface type being considered with the types of sur-
faces that have been studied extensively for surface
runoff and reported in the literature. The constant
friction factors were estimated for five types of
surfaces: streets, gutters, lawns, roofs, and storm
sewers. Table 5-5 lists the values of the roughness
coefficient for these surfaces.

Table 5-5 Roughness Factors for Hillcrest Drain
Watershed

Trpe of Jurfsce FrlE:::i gnctor
Strect 50
Roof 50
Lawn 4.2
Gutter 85
Storm Sewer Manning's n = 0.013
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The storm sewer roughness is listed in terms of
Manning's n for reasons that are outlined in Section
5.1, The friction factor for storm sewers has the
value that is often recommended for concrete pipe.
The Chezy C values are within the values reported by
Woolhiser (1974). The geometric, infiltration, and
flow resistance parameters are estimated for the ur-
ban watershed. With this information, simulation
experiments are conducted using measured rainfall
events as input to the model. Information about the
watershed as a hydrologic system is obtained by mak-
ing modifications to the parameters, as described in
this section.

Effects of simplifications to watershed representation

The importance of runoff from the pervious area
is analyzed by postulating that runoff is coming from
only the directly connected impervious areas, i.e.,
streets contributing to the gutters and storm sewers.
This assumes that all lateral inflow to the lawns,
either rainfall or runoff from roofs, is infiltrated
and none flows into the gutter. Simulation experiments,
based upon this assumption, are compared with the ob-
served hydrographs. Results of these simulations are
used to judge the importance of the runoff from per-
vious areas of the urban watershed. Figure 5-17 shows
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Fig. 5-17 Runoff Simulation from Hillcrest Drain,
No Contribution from Pervious Area

the results of a typical example assuming no contribu-
tion of flow from the pervious area. Four storms were
simulated with this assumption. Three of the four
events showed results similar to Fig. 5-17, i.e., under-
prediction of the volume and peak rates.  The fourth
simulation resulted in overprediction of the volume

and peak by more than 50%. Further investigations of
the fourth event revealed that it was the first event
recorded at the gaging station and the possibility of
errors in the data because of faulty calibration is
great. No plausible explanation other than this one
could be formulated about the event. Since overpre-
diction occurs when only the streets and gutters are
assumed to be contributing flow, greater overprediction
occurs when the more realistic assumption is used that
all areas contribute flow. The underprediction of the



majority of events is what is expected when only a
limited area of the watershed contributes to the run-
off process. The conclusion is drawn that runoff from
the pervious portion of urban watersheds is important
even for moderate storms and is not to be ignored when
simulating the runoff events.

Further simulation tests were conducted with the
entire area of the watershed contributing flow. The
infiltration parameters used in these tests are shown
in Table 5-4. The results of this simulation are an
increase of the peak discharge rate and of the total
volume of runoff. However, the results are still an
underprediction of the observed peaks and volumes.
The minimum infiltration rate, f_ , was lowered to

0.1 IPH and further simulations were conducted. This
parameter modification results in a better approxima-
tion of the peak flow rates but the recession hydro-
graph is again underpredicted. The problem of under-
prediction of the recession portion of the hydrographs
is similar to that reported by Smith (1970). Repre-
sentation of overland flow as runoff from a plane
surface results in the implicit assumption that the
entire surface is covered by water if there is any
depth whatsoever present. The real situation is that
the surface is covered by a series of depression and
undulations. When rainfall ceases, only a portion of
the surface is covered by water; the remainder of the
surface protrudes above the water surface. Thus, in-
filtration computed for a plane surface is too large
during recession as compared with the natural situa-
tion where infiltration is occurring on only the sub-
merged portion of the surface. It is necessary to
limit the amount of infiltration that occurs on the
recession portion of hydrographs so that computed
recessions not consistently underpredict the observed
recession. An empirical factor was developed that
was used to limit the amount of negative lateral in-
flow-(precipitation and surface water is less than
infiltration). The factor is

F*=1-¢ (5-6)
where k” is a constant with value 75, and h is the
depth of water on the surface in feet. The parameter
F” ranges in value from zero to unity. When h is

zero, F” 1is zero and when h is 0.75 in., F* is
0.99. Thus, recession infiltration is limited by the
exponential factor as given in Eq. (5-6) whenever the
mean water depth is below 0.75 in. (This feature is
not included in the program KINGEN 75, which is listed
in Appendix B).

Simulations using the final watershed representation

Multiple storms from the urban watershed are sim-
ulated with the computer parameters, as shown in Table
5-4, for infiltration with f_ lowered to 0.1 IPH.

Roughness parameters and surface geometry are as shown
in Table 5-5 and Fig. 5-16, respectively. The results
of these simulations are plotted in Figs. 5-18 through
5-20. The results show an overestimation of runoff
volume in some of the cases but an underestimation of
the volume in other cases. The peak discharges show

a similar distribution of the predictions. The major
problem lies in the:estimation of rainfall excess.

This problem is divided into two sub-problems. One is
the amount of infiltration on pervious areas and the
other is the geometric representation of the watersheds
in terms of the percentage of pervious and impervious
area as compared with the actual amount of these areas.
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Fig. 5-18 Hillcrest Drain, June 21 and July 16, 1969

The ratio of impervious areas to the total watershed
area was measured by Root and Miller (1971) and was
nearly constant during the study period at a value of
about 42%. The ratio of impervious to total area of
the computer segments is 40%. A consistent underesti-
mation of runoff volume is expected as a result of
this bias in the amount of impervious area. The dis-
tribution of the impervious area and the amount that
is directly connected to the gutter and storm sewer
systems is not precisely known. Its importance re-
quires further investigation.

One problem that is likely to cause the variations
of overprediction and also underprediction is the
estimation of infiltration for each storm. The infil-
tration parameters have been held constant for each
event, except for the initial water content, Si

This variable was altered when recorded data was
sufficient to indicate that rainfall events or lack
of them occurred so as to affect the antecedent mois-
ture condition. The record of rainfall at Hillscrest
Drain is not published for each day, but only when
there is a runoff event. This lack of rainfall data
and the unpredictable times of lawn watering present
a problem when attempting to estimate the antecedent
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moisture. Because the usual rainfall event is the
localized thunderstorms in this area, the use of pre-
cipitation records from some other measuring station
is not adequate to define the conditions on the Hill-
crest Drain watershed. The computed results indicate
the surface runoff model is adequate to simulate the
outflow hydrograph, even for this complex system, if
the rainfall excess is accruately estimated. The
problem of infiltration estimation is the greatest
problem that must be overcome before the model can be
widely used as a means of estimating the runoff from
such a complex hydrologic system as the Hillcrest
Drain watershed.

Agricultural Watershed near Eduardsville, Illinois

The watershed model has been used in the past
three sections to simulate runoff from watersheds
that are partially or totally impervious. The W-I
watershed near Edwardsville, Illinois is an entirely
pervious area and was described in Section 4.2. Sim-
ulation of runoff from this watershed is the most
severe test in this study of the infiltration compo-
nent of the watershed model. The infiltration para-
meters are determined from the infiltrometer experi-
ments, soil survey, and comparison to the parameters
reported in Section 3.3. The infiltration character-
istics are assumed to represent the entire watershed.
That is, one set of infiltration parameters is assign-
ed to all the pervious segments of the watershed.
There is sufficient information from the soil survey
to allow a more detailed representation of the water-
shed infiltration characteristics. However, the ob-
jective of testing the infiltration component of the
model is to determine its applicability to an agricul-
tural watershed in which detailed information on in-
filtration characteristics other than the predominant
soil type is normally not available. Thus, a water-
shed engineer generally assumes that uniform infil-
tration conditions exist over the entire watershed.

Parameter estimation

Figure 4-3 shows a topographic map of watershed
W-1 and a schematic representation of the geometry.
The computer segments are chosen from the map to con-
serve the watershed area and channel flow length.
Details of the geometric segments are shown in Table
5-6. The choice of geometric representation for the

Table 5-6 Geometry of Watershed Segments at

Edwardsville, Illinois W-I

Segment Type Length Width Slope Contributing
Nusher (ft) (£r) Inflow
1 plane 3i2 643 .01 Rainfall
2 plane 275 519 015 Rainfall,!
3 plane 208 7 .039 Rainfall
4 plane 143 265 L0358  Rainfall
5 channel 385 - 01 2,5.4
L] plane 785 m 017  Rainfall
7 plane 140 276 043 Rainfall
] channel 245 016 6,7
9 plane 150 203 .07 Rainfall
10 channel 195 - .021 5,8,9
11 plane 465 380 009 Rainfall
12 plane 165 573 042 Rainfall,lL
13 plane 125 492 056 Rainfall
1" plane 395 mo L013  Rainfall
15 channel 675 018 12,13,14
16 (add channels) = - - 10,15




computer model user is subjective. There are several
reasons the geometric representation is maintained as
simple as possible. Computer time is saved with a
simple representation because fewer calculations are
made than for a very detailed representation. There
is also a savings of time for processing input data.
However, there is a trade-off in the accuracy of
simulation and cost of computations. Further investi-
gation is required to adequately define the detail of
representation that is required to obtain a desired
degree of accuracy.

Results of infiltrometer tests were presented in
- Section 5.2 These tests were conducted on sample
plots of the W-I watershed. The range of steady state
infiltration rates of the infiltrometer experiments
is .15 to .78 IPH. The upper values of this range
are quite high for the silt loam soil of the water-
shed. Several rainfall-runoff events of extended
duration were analyzed for infiltration losses. Rain-
fall events of duration of 12 hours or more are as-
sumed to have reached a steady-state condition of
infiltration. Pulses of moderate intensity rainfall
that occur late in a storm are used to estimate the
minimum infiltration rate by calculating the differ-
ence between rainfall and runoff for a period of
time. The difference between rainfall and runoff is
the infiltration. The analysis of extended events
shows the f_ rate was about .10. Chow (1964) des-

cribed a soil type within which the Alma and Bogota
soils are classes as having a minimum infiltration
rate from 0.05 to 0.15. Thus, the results of the
infiltrometer tests show substantially higher infil-
tration rates than other analyses of similar soil
types. The minimum infiltration rate for the W-1I
watershed is estimated to be 0.12. The infiltration
parameters, as determined by comparison to the Colby
silt loam described in Section 3.3, are listed in
Table 5-7.

Table 5-7 Infiltration Parameters for W-I Runoff

Simulation
Parameter Value of
Parameter
a 0.58
Y 0.90
So 0.95
*
Cl 5000
S5 " Estimated for
each storm
f 0.12

The watershed area was planted entirely with al-
falfa during the study period. One roughness para-
meter is assumed to describe flow resistance for the
entire overland flow portion of the watershed. The
Chezy C friction factor estimated for the watershed is
5.1. This value is within the range of Chezy C values
reported by Woolhiser (1974) for short-grass prairie.
The value is slightly higher than those reported by
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Woolhiser (1974) for bluegrass sod. The swale-like
areas of the watershed are represented as channel seg-
ments. The flow in these areas is deeper than over
the plane segments. Often there is little or no vege-
tation established in the lowest portion of the swales.
These two factors result in lower effective flow re-
sistance in the swales than in the overland areas.

The Chezy C value assigned to the channel segments is
35. The determination of the geometric, infiltrationm,
and flow resistance parameters permits simulation of
runoff from the W-I watershed.

Simulation of runoff from watershed W-I

The results of some of the runoff simulations are
shown in Figs. 5-21 and 5-22. The results indicate
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Fig. 5-21 Hydrographs from Watershed W-I, July 10,
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that the observed and computed hydrographs-are closely
matched when the rainfall excess is properly estimated.
Rainfall excess during the early portion of each event
is the quantity least adequately simulated by the
watershed model. The constant friction relationship

is adequate to approximate flow resistance during the
rising limb, peak discharge rates, and the recession
portion of the runoff events. More comprehensive
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friction relationships are unwarranted unless more
precise means of estimating rainfall excess are devel-
oped. The inability to use information directly from
the infiltrometer experiments when estimating infil-
tration parameters for the entire watershed is some-
what disappointing. A possible explanation of the
variation of infiltrometer experiments and the natural
infiltration is the difference between the infiltro-
meter and natural surfaces. The 6 by 12 foot plots
of the infiltrometer experiments were probably chosen
where the surface was uniform and had few depressions.
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This results in the surface water covering the ground
area uniformly. The natural surface may consist of
significant undulations and depressions. Except dur-
ing the higher intensities of rainfall, surface run-
off may quickly form into rivulets and not cover the
entire surface uniformly. Thus, infiltration is res-
tricted to less than the entire watershed surface.

It is encouraging that infiltration parameters esti-
mated by comparison of the watershed soil to the soil
types discussed in Section 3.3 resulted in as good of
estimations of runoff as indicated by the results.



Chapter 6
CONCLUSIONS AND RECOMMENDATIONS

6.1 Conclusions

Kinematic routing of flow in circular conduits is
applicable within the limitations of kinematic wave
theory. Kinematic routing cannot account for back-
water effects; applications must be limited according-
ly. This study shows that kinematic routing performs
as well as a hydrograph lag method for predicting out-
flows. The kinematic method has the advantage that no

observed hydrographs are needed to estimate parameters.

Computation of infiltration on pervious surfaces
is based upon a parametric decay-type function. Field
measurements are used to estimate parameters for sim-
ulation of infiltrometer experiments. The three most
sensitive parameters of the five computer infiltra-
tion parameters have physical significance. A pre-
vious study of the infiltration component lists appro-
priate parameters for a wide range of soil types. It
is possible to estimate infiltration parameters of a
soil by comparison of type and characteristics to re-
sults of the previous study.

A variable friction relationship that accounts
for both laminar and turbulent flow regimes gives a
better overall fit to the hydrograph than a constant
friction relationship. However, the constant rela-
tionship may give a better fit of the peak discharge
rate based on a priori estimates of flow resistance.
The variable friction relationship is warranted only
on a totally impervious area. When a watershed is
partially or totally pervious, the estimation of rain-
fall excess is more important than the type of fric-
tion relationship used. On pervious watersheds, the
constant friction relationship is adequate.

34

The watershed model is used to simulate runoff
from two urban watersheds. Results from the small
impervious watersheds show good agreement between ob-
served and predicted hydrographs. Results from the
large, complex urban watershed are good when the rain-
fall excess is properly estimated. Results from both
watersheds indicate that a priori estimates of fric-
tion parameters are adequate to define flow resistance.
The watershed model can be applied to complex urban
systems, to predict runoff rates for sizing storm
drains and conveyance structures. However, the cur-
rent form of the model may be too complex for wide-
spread use as a design tool. It does have application
in further research and also as a comparative tool for
the more simplified methods of flow calculations, like
the unit hydrograph.

6.2 Recommendations

Further research should be undertaken to make a
more extensive study of kinematic routing in circular
conduits by testing the technique on observed data.

The infiltration component of the watershed model
should be extensively tested on field data for a var-
iety of soil and cover conditions. Initial soil mois-
ture content should be estimated using daily models
that account for drainage and evapotranspiration.
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APPENDIX A

PROGRAM KINGEN 75

CENERAL DESCRIPTION

The program KINGEN described in the main portion
of this report was developed for research purposes over
a period of several years. Consequently, the program
became progressively more complicated and difficult to
understand. A new program KINGEN 75 is described and
documented in the following pages. The approach used
is similar to that described in the main part of this
report but the program has been subdivided into sever-
al subroutines and some of the numerical methods used
are different. Friction law options have been added
and a subroutine to check the input for errors has also
been included.

KINGEN 75 consists of program MAIN and 18 sub-
routines listed below, The principal function of each
subroutine is indicated here and is also indicated in
the comments cards in the Program Listing, Appendix B.
PROGRAM MAIN: Calls subroutines READER, PLANE and
CHANNL.

SUBROUT INES:
1. READER: Reads in model parameters, watershed
geometry data and rainfall data. Called
from MAIN.

2. INSPEC: Inspects input data for errors and
prints out an error message, if one is
detected.

3. RESET: Places input data read by SUBROUTINE
READER into appropriate arrays. This
is done so that no subscripts are
necessary on the data cards.

4. CONVERT: Converts units of time and length in
input data to units used internally and
reconverts to desired units in output.

Finite difference solution for overland
flow on a plane. A four-point implicit
method is used.

6. CHANNL: Implicit finite difference solution for
unsteady flow in channels with trape-
zoidal or circular cross sections.

7. XPLINF:

Computes infiltration rates. Called

only from PLANE.
8. ADD: Adds specified discharges (lateral flow,
channel junctions), and computes up-
stream boundary values (depth, area,
or intersection angle 0O in conduits).
9. RESLAW: Calculates the parameters for the
hydraulic resistance law selected in
the input.
10. CHGLAW:  Changes the hydraulic resistance laws
at the transition Reynolds number if
Laminar-Turbulent option has been
selected.
11, UNIF: Uses linear interpolation to convert a
list of discharge values at irregular
time increments into a list with regular
time increments.

12. IMTHUB: Calculates a residual function for an
assumed value of the independent vari-
able © in the iterative solution of
upper boundary area of a circular con-
duit, given an upstream discharge Q
from ADD. Called from ADD thru ITER.
13. IMPLCT: Four-point implicit finite difference
scheme., Called from subroutines PLANE
and CHANNL.

14. ITER: solve
form

Newton-Raphson iteration scheme to
general nonlinear equations of the
F(x) = 0 . Called from subrouting
IMPLCT,

15. IMPOCF: Calculates a residual function for an
assumed depth h in the iterative
solution of depth along a plane.
from IMPLCT thru ITER.

Called

Calculates a residual function for an
assumed area in the iterative solution
for cross-sectional area in a trape-
zoidal channel. Called from IMPLCT
thru ITER.

16. IMPCHA:

Calculates a residual function for
assumed value of the independent variable
@ in the iterative solution for cross-
sectional area in a circular channel.
Called from IMPLCT thru ITER.

17. IMPCIR:

Calculates a residual function for an
assumed area in the iterative solution
for the upper bound area of a trapezoidal
channel, given an upstream discharge.
Called from ADD thru ITER.

18. IMPAUB:

19. ERROR: Prints appropriate error messages.

PROGRAM INPUT

The watershed is first divided into cascades of
rectangular planes contributing to a network of triang-
ular, trapezoidal, or circular channels, as described
in the main portion of this report.

Input data are read by SUBROUTINE READER in an
order specified by NAMELIST and DATA declarations.

Example 1. As an example, consider the input
cards_?EEEEEE“hypothetical watershed shown in Fig. A-1.
In this example, the plane, element number 1, contri-
butes lateral inflow to a trapezoidal channel, element
number 2.

Identification Card. From the comment cards in
SUBROUTINE READER, we find that the data cards are
preceded by a card, which may contain up to 80 columns
of alphanumeric identifying ‘information. For this
example, the information card will be as shown below:

Gol.p 1

b ]l",!ﬂ\i-li'l.ll 1 IMPERVIOUS TTANL AND (HATEZOLOAL CHANNYL

*b indicates a blank column



Fig. A-1

Hypothetical Watershed

Card 1. From the comment cards in the program
Iisting, Appendix B, we find that the first data card
contains the variables for NAMELIST BEGIN, where: NELE
is the number of elements in the system (in this case,
2). The maximum NELE allowable in this program is 20.
This can be increased by modifying COMMON and DATA
statements and part of subroutine INSPEC. NRES is a
resistance law code that allows considerable freedom
in choosing the hydraulic resistance law to be used.
From the comments in SUBROUTINE PLANE, we find that we
have the following four choices for a plane:

NRES = 1: a Manning Law will be used,

NRES = 2: a Laminar Law will be used until the
Reynolds number exceeds a certain
value, then Manning's Law will be used

NRES = 3: a Laminar Law will be used until the

Reynolds number exceeds a given value,
- then the Chezy Law will be used,
NRES = 4: the Chezy Law will be used.

For plane 1, let us assume that we will use the
Laminar-Manning Law, therefore, NRES = 2. The Manning
Law will automatically be used for channels with this
option.

CLEN is a characteristic length that is used with
in the program to choose the length of Ax increments
in the finite difference solutions.
be set equal to the sum of the lengths of the longest
cascade of planes in the system or the longest single
channel, whichever is greatest. The number of 4x
increments is then:

NK = MAX1 (15*XL(J)/CLEN,3)
For this example, CLEN = 200 ft.

TFIN is the desired maximum duration of the run-
off event (in seconds, minutes or hours). Assume for
this example that we wish the program to stop after
it has computed a runoff hydrograph with a duration
of 60 min. from the beginning of the rain.

DELT is the desired time increment for computa-
tions and for print-out of the hydrograph. The choice
of DELT depends on the time resolution of the rainfall
input data and the response time of the system. For
this example, choose DELT = 2 min.

THETA is the weighting factor in the implicit
numerical solution.
are computed by an average of the derivatives at time
steps i and i+l . If THETA = 1, the x-derivatives
are computed entirely from the derivatives at time
i+l . We will use THETA = 0.8.

It should normally

When THETA = 0.5 the x-derivatives
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TEMP is the water temperature in degrees Fahren-
heit, used to compute the kinematic viscosity for
laminar flow computations. If TEMP is not entered,

a default value of 65° is used. We will use the de-
fault value.

Card 1 will be as shown below:

Cols.

1|2
b | F ERGIN NELE = 2, MEES = 2, CLAN = 20(., TFIN = 60.,
DELT = 2., THETA = 0.B §

Card 2. Card 2 contains the variables and para-
meters for NAMELIST OPTION where: N@PT is a code
reserved to allow an optimization subroutine to be
added. When N@PT = 0 the program is in the prediction
mode. When NPPT = 1 the reading sequence includes
observed time-discharge data, which can be used to
calculate an objective function. The friction para-
meters could be optimized by including a new subrou-
tine. THIS OPTION IS NOT OPERATIVE IN KINGEN 75 SO
N@PT = 0.

NTIME is a time units code referring to the time
units of input and output data.

jl - seconds
NTIME ={2 - minutes
3 - hours.

In this case, the input data were in minutes so
NTIME = 2.

NUNITS is a code referfing to input units (all
internal calculations are done in English units).

_J1 - English
Rainfall rates in English units are in inches per
hours and all lengths are in feet. Metric rainfall
rates assume centimeters per minutes, and all lengths
must be in meters. Input data for this example are
in English units so NUNITS = 1. Card 2 is shown be-

low:
Cols. |1| - S T R B
‘bl $ OPTION N@PT = 0, NTIME = 2, NUNITS = 1 §
Card 3. Card 3 contains the data for NAMELIST
ORDER.

NLPG(I), I = 1, NELE contains the index number
assigned to planes and channels in the order in which
computations should proceed. It is not necessary that
NLPG(1+1) = NLPG(I)+1; however, the outflow hydro-
graphs of all elements contributing as lateral inflow
or upstream inflow to the element J must be computed

before the computations can proceed for element J .
Card 3 is shown below:

Cols. |l| 2

b| $ ORDER NLPG(1) = 1,2, §

Note that the index (1) is required for this array.

Card 4. Card 4 contains data describing an ele-
ment of the cascade as specified by NAMELIST FIRST.

J 1is the index number of the element for the
plane in the example J =1 .



NU is the number of the plane element contribut-
ing to the upstream boundary of element J . If ele-
ment J is the uppermost in a cascade of planes,

NU =20,

NR is required for channels and is the number
of the plane contributing lateral inflow to the right
side of the channel. NR is omitted for a plane ele-
ment .

NL refers to the plane contributing to the left

side of the channels. NL is omitted for a plane
element.
NCl1 and NC2 refer to the numbers of channels

contributing at the upstream boundary of a channel.
For this example, they may be omitted for element 1.

NCASE
cross section.

NPRINT
out of output from any element.

is a code to indicate the type of channel
NCASE may be omitted for element 1.

1 - No print-out

2 - Qutflow hydrograph and
interim computational data
will be printed.

NPRINT =

We will select the no print-out option for plane 1.
NPRINT = 1. Card 4 is shown below:
1

Cols.lliz......

|b‘ § FIRSTJ =1, NU = 0, NPRINT = 1 §

Card 5. Card 5 contains element geometry and
hydraulic roughness data as specified by NAMELIST
SECOND.

J is the element number.

XL is the length of the plane in appropriate
units. For this example, XL = 100 ft.

W is the width of the element. For element 1,
W = 200 ft.

S is the slope. S = 0.05.

ZR , ZL, A, and DIAM are not required for

plane elements.

Rl is the turbulent law roughness parameter
(Manning's n in this case). If we assume that plane
1 is covered with asphalt, an appropriate Manning's
n is 0.0135.

R2 in the ex-

pression f =

is the laminar law parameter (K
R f is the Darcy-Weisbach fric-

tion factor and R 1is the Reynolds number). A K
value of B0 is within the range shown in Table A-1.

R2 is omitted if only a turbulent law is used. Fric-
tion parameters listed in Table A-1 were obtained from
experiments reported in the literature and are gener-
ally representative of very small areas. If a plane
is used to represent a section of watershed larger
than about two acres, the friction parameter must be
adjusted (see Lane, Woolhiser and Yevjevich, 1975).

where

FMIN is the minimum (steady state) infiltration
rate for a plane. We will assume that the asphalt
plane is impervious.

is a code used to obtain or suppress print-
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Table A-1 Resistance Parameters for Overland Flowl/

Laminar Flow Turbulent Flow
Surface Ko Manning's n Chezy C
{f:llzf:oc)
Concrete or Asphalt 25 - 108 01 = .013 73 =38
Bare Sand 0 - 120 01 = 016 65 =13
Graveled Surface 90 - 400 012 - .03 8 =~ 18
Bare Clay-loam Soil 100 - 500 012 -~ ,033 16 - 16
(eroded)
Sparse Vegetation 1000 - 4,000 .053 - .13 il = §
Short Grass Prairie 3000 - 10,000 10 - .20 6.5 - 1.6
Bluegrass Sod 7000 - 40,000 A7 = .48 4.2 - 1.8
Card 5 is shown below:
Cols.lll:. & e
‘h].“- SEEOMD 0 o= 1, XL o= 100., W = 200, & = 0,05, ‘l‘;._n 0.013
B2 = BO., FMIN = 0. § '
Card 6. Card 6 normally contains the infiltra-

tion parameters for a plane as specified by NAMELIST
THIRD. FOR THIS EXAMPLE, the plane is impervious
(FMIN = 0) so NAMELIST THIRD is omitted. An example
with infiltration will be considered subsequently,
The plane element has been completely described, so
Card 6 will contain data describing the channel,
element 2.

As described for Card 4,‘ J=2, NU=0, and
NR =0 . In this example, plane 1 contributes lateral
inflow to the left side of channel 2 so NL =1 . NCl
and NC2 are omitted because no channels contribute to

the upstream boundary of channel 2.

From the comments in subroutine CHANNL, the code
NCASE indicates the type of channel cross section.

NCASE = 1 Trapezoidal cross section.
NCASE = 2 Circular cross section.
NCASE = 3 Has been reserved for input of

irregular cross sections.

IT IS NOT
OPERATIVE IN KINGEN 75.

Use of NCASE = 3 will result in a programmed stop. In

this example, NCASE = 1.

We will select the print-out option for the chan-
nel so NPRINT = 2.

Card 6 is shown below:

Cols. JL|2: ¢« + + - &
b |§ FIRST J = 2, HU =0, NR =0, NL=1, NClL =0,
BC2 = 0, NCASE = 1, NPRINT =2 §

l-/Fro:m Woolhiser, D. A. "Simulation of Unsteady
Overland Flow.' Chapter 12 in Unsteady Flow in
Open Channels. Water Resources Publication, Fort
Collins, Colorado, 1975.



Card 7. Card 7 contains element geometry and hy-
draulic roughness data for channel 2 as specified by
NAMELIST SECOND.

As described for Card 5, J =2 and XL = 200..

The width W is set equal to zero, indicating that
this element is a channel. S = 0.03. ZL, ZR and A
are defined in Fig. A-2.

ZL ZR

Fig. A-2 Trapezoidal Channel Geometry. (Looking

downstream)

For this example, we will assume that ZR = ZL = 1.

and that A = 1. Thus, we have a trapezoidal channel
with 1:1 side slopes and a 2-ft. bottom width. If the
channel is triangular, A should be set equal to a very
small number rather than zero to avoid problems in a
function subroutine. DIAM is the diameter of a cir-
cular channel and may be omitted for this case.

Rl is the turbulent law roughness parameter for
the channel.
Law, it will be Manning's n. Choose Rl = 0.013 for
this example. R2 may be omitted for the channel and
FMIN = 0.0 for a channel.

Card 7 is shown below:

XL = 200,

We0, 8=0.03,
2R = 1.0, A=1.0,

‘h !5 SECOND J = 2,
Rl = 0.0L3, FMIN = 0.0 §

7L = 1.0,

Card 8.

All of the geometric data and‘paramaters
for the watershed itself have now been provided.

Card

8 contains rainfall data as specified by NAMELIST RAIN.

Let us assume that the rainfall intensity histogram
for the event of interest is shown in Fig. A-3.
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Fig. A-3 Rainfall Intensity Histogram

Because we have chosen the Laminar-Manning

QI(I) is the rainfall rate (iph or em/min). TI(I)
is the time at which the corresponding rainfall rate
begins. ND is the number of rainfall data pairs.

Card 8 is shown below:

{ |
Cols. IJ 1.
bl § RAIN QI{1) = 0.5, 1.0, 0.5, 0.0, 0.0,
Ti(l) = 0.0, 5.0, 10.0, 20.0, 65., ND =5 §

Note that the subscript 1 (one) is required for
arrays QI and TI . TI(ND) should be greater than
TFIN shown on Card 1 so that the rainfall rate is de-
fined throughout the event.

Because the optimization option is inoperative in
KINGEN 75, NAMELIST RAIN is the last item of input.

Example 2. WATERSHED WITH INFILTRATION, BRANCHED
CHANNELS AND CIRCULAR CONDUIT. 1In this example, use
of an infiltrating plane, branched channels, and a
circular conduit will be illustrated.
model is shown schematically in Fig. A-4. The imper-
vious plane-channel pair of the previous example will
be used as elements 1 and 2, Necessary data cards
will be shown and comments given where the options are
different from those explained in the previous example.

!
g
1

Fig. A-4 Elements Used in Example 2

Identification Card.

Cnh.l 1 | 2.
b | EXAMPLE 2. INFILTRATING PLANE AND RRANCHED CHANNEL
CASE WITH CIKCULAR CONDULT
Card 1.
Col., | 1.[ .

§ DEGIN WELE = 7, NRES = 2, CLEN = 300., TFIN = 90.,
DELT = 2., THETA = 0.8 §

‘ b

The seven element



TFIN has been increased in anticipation of longer re-
cession from a hydraulically rougher, grassed surface,
and a larger watershed.

Card 2. Same as in previous example.
Card 3. As indicated in Fig. A-4, the order

would proceed as shown:

Col. |1| g R S

tb! $§ ORDER NLOG(1) =1, 2, 3, 7, 4, 5, 6 §

Card 4. Same as in previous example.

Card 5. Same as in previous example.
Card 6.
Cols.ll [:. :

|»

We have deleted printout as this is now an intermediate

$§ FIRST J=» 2, NU=0, HR=0, L= ), RCL = 0,
KC2 = 0, NCASE = 1, NPRINT = 1 §

output.
Card 7. Same as in previous example.
Card 8. The second channel (element 5) drains

two infiltrating planes, (elements 3 and 4) each 100
ft. wide, and 200 ft. long. The right plane is the
element 3, and Card 9 will be the same as Card 4
(except J = 3), since this plane also is the most
upstream element and contributes to a channel.

Cols. !1] e

|b| $ FIRSTJ = 3, NU = 0, NPRINT = 1 §

Card 9. The data on this card specify the geo-
metry for plane three, and asymptotic (t+=) infiltra-
tion rate FMIN (as an indicator of whether this sur-
face is impervious or pervious). FMIN must be in the
same units as the rainfall, given later, as indicated
on Card 2 by parameter NUNITS. Its value is found in
this example, from an infiltrometer experiment as
explained below. Rl and R2 have been chosen from
Table A-1 to approximately represent a sparsely vege-
tated rangeland watershed.

Table A-2

Cols. |1 |2

b |% SECOND J = 3, XL » 200., W w 100., § = 0.06,
R1 * 0.05, R2 = 2000., PMIN = 0.2362 §

Card 10. The infiltration parameters for the
model outlined by Eqs. (3-56), (3-60), and (3-64) in
Chapter 3 are specified by data in NAMELIST THIRD.
Table A-2 summarizes the parameters describing infil-
tration from Chapter 3 and their corresponding com-
puter names. To illustrate the determination of these
parameters from field data, we shall here assume that
an infiltrometer experiment has been performed on the
same soil type, and the data shown in Table A-3 have
been obtained.

The basic model parameters are obtained from this
infiltrometer data in the following manner. First, a

log-log plot of t - t° vs. £ - £ is made with ini-
tial estimates of t0 and f_ . This is essentially

a graphical fitting of the data to Eq. (3-53), and is
demonstrated in Fig. A-5. From Table A-2, apparently

Z < fb < 3, and a reasonable first estimate for £,
is 1/2 tp is less than .028 cm/min.
and t, and f_  are varied to obtain a reasonably

Apparently, f_

straight line. The process is aided by noting that
estimates of f_ that are too large or too small
affect the curve at the lower end (t large) of the
data, and, conversely, the curve is sensitive to esti-
mates of to at the opposite (t small) end. The user

is cautioned that large infiltrometer plots incorporate
considerable storage delay into measurements of the
plot outflow, which will bias the infiltration para-
meters, unless this is corrected. This as well as
natural soil variability cause response curves typi-
cally not to exhibit the sharp break at t = tP shown

in Fig. 3-5.
As shown in Fig. A-5, a line has been fitted to
the data of Table A-2 using L= 1.3 and f_ = 0.01 cpm.

The intersection of this line with the horizontal line
representing i = 0.1596 cpm is at tp -ty . 1.48: ;

or tp = 2,75 min.
and A is the value of f - f when t - to = 1.0,

The slope of the line is a = -0.51 ,

here found to be 0.185 cpm.

Infiltration Model Parameters

Infiltratisn Reference in Computer Befinition Unics liniting values,
Parieter, tent, Trogram il any
(Chaprer J) Craprer ] aymbol
L] £g.(3-31) AL exponent parasecer for decay™ none Ocaxl
cucve
lp Eq. (3-80) np ponding cioe paramecer dimensionless cime C‘BP
t‘.‘1 Eq. (1=64) c infileracion scaling parameter time, (min)* osc
S* Eq-(3-64) sL Inicial volumetric relative - 0<5 <5
vater content t e
5, £5.(3-64) 5L maximus volumetric watar cengent w5e§ <l.0
uader imbibition v
v Eq. (3-55) RroC wolumetric relacive rock content - Q<ROC<<l.0

*minures ara uvsed ln subroutine omly.

Input opcion NTIME will govern data units used.



Table A-3 Example Infiltrometer Data
i = 0.1596 cm. per min,

Time Infiltration Rate
(minutes) (em/min)
0 L1596
1 L1596
2 .1596
3 .150
4 106
5 .099
7 .076
9 073
12 .068
15 .062
20 .053
30 047
50 L034
100 .028
I-o B T T ¥ TTrTrrTrT L] L 1 LN I B B
- Infiltrometer Experiment J
I Soil: Nickel Silt Loom =
i Initial Saturation=0.2 i
Max Saturation =09 T
B Rock Content =0.25 =
E Application Rate =0.1596 cm/min .
a = Slope of Best Fit Line=(-)0.51
c - A = Infercep! {at t-15=1.0)=0.185cm/min b
E tp= 2.75min
E . ~. €o=|.0
Lol @ ™., k0005 =
3 E Ko fox13 :
[/ {0015 3 skor00i0 %
: 1o~to = 45min at 5 . i
i- fo= 01496 cpm .o 7
b zi\\'; i
~. y
L a \\G
.O: 1 1 1 L 1 1111 1 L 1 11 111
| 10 100
t-tg min

Fig. A-5 Graphical Fitting of Infiltrometer Data to
Determine Infiltration Parameters y By
t, and f_

Now Eq. (3-55) is used to determine T0

0.185 1/.51

To = @ooshcon

= 1236 min,

Tb is used in Eq. (3-65) with v (which must be
measured) and the measured variables Si and Smax

from the infiltrometer experiment data to obtain Cl
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(9]
[}

T,/(8,-8,)/(1-v )

1236/ (.9-.2)/(1-0.2)

2207 min.
Bp is obtained by solving Eq. (3-60). Fp* is first

obtained as

, _i ‘p_ .1596 2.75 _
For = datoe = 5 7~ e 03551
Then from Eq. (3-60),
—o_wOBGRL o
% T 7 15.96 FEs
14,96

This completes the determination of necessary infil-
tration parameters. The data Card 10, for plane 3
will look thus:

CQm.L1]z‘
'b ‘s THLRD J = 3, AL = 0.51, B = 0.55, € = 2207
S1 = 0.6, SHAX » 0.9, R(C = 0.2 §

Note that FMIN on Card 9 is the IPH equilalent to
0.01 cpm of this example, and SI for the simulation
problem is quite independent of the soil saturation
SI from the infiltrometer experiment.

The remaining cards are prepared as described in
the previous example.

Card 11.
1

Cols. 2.

‘b‘ $ FIRST J = 4, NU = 7, NPRINT = 1 §

Card 12.

‘1

Jb| § SECOND J = 4, XL = 200., W= 100, S = 0.06,

= 0.05, R2 = 2000., FMIN = .2362 §
Card 13,
Cols. M 2.
b| $ THIRD J = 4, AL = 0.51, B = 0.55, C = 2207.,
SI = 0.6, SMAX = 0.9, RAC = 0.2 §

Card 14.

Col.'L! 1 ’2.

l JsFIR‘iTJ—S NU =0, NR =4, WL =3, NCL =0,
NC2 = O, NCASE = 1, NPRINT = 1'%




Card 15.

Cols. 1[3. 5wy o

biSSJLO‘iDJ'S.L—IOﬂ W=0., 5§=0.04, 2L = 2.,
ZR = 2., A = 0.5, Rl=0020 FMIN = 0, §

Note that we have specified a channel with 1:2 side
slopes and 0.5-ft. bottom width.

Card 16. The last element is to be a round con-
duit receiving input from channels 2 and 5. The card
reads as follows:

co1-4 1 |z.

$ FIRST J = 6, NU = 0, NR = 0, NL = O, NCL = 2,
NC2 = 5, NCASE = 2, NPRINT = 2 §

Card 17. We will use a 2.0 foot diameter conduit
150 feet long.
Cols. [1 2.
1b SECOND J = 6, XL = 150., W= 0., S = 0.02,
DIAM = 2.0, R1 = 0.012, FMIN = 0. §

Cards 18, 19. Plane no. 7 might conceptually be
a parking lot contributing to a swale composed of
planes 3 and 4 and channel 5. It is used here to
illustrate both cascading of planes with disparate
widths, and the flow from an impervious to a pervious
plane, which the infiltration subroutine is designed
to treat explicitly (statements 127 to 133). The
plane will be assumed as follows:

Colsv{1 |2.

b |$§ FIRST I = 7, NU = O, NFRINT = 1 §

§ SECOND J = 7, XL = 100, W = 200, § = 0,01, Rl = .012,
R2 = 100., PMIN = 0. §

Card 20. We have finished describing the water-
shed and this card will contain rainfall data. We
will use the same rainfall as in the previous example,
but the time TI(ND) must again extend beyond TFIN.

As specified by NUNITS, our dimensions are in inches

per hour.

w1L]1|z.

b |§ RALKN QI(1) = 0.5, 1.0, 0.5, 0.0, 0.0, TI(1) = 0.0,
5.0, 10.0, 20.0, 95.0, Kp =5 §
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PROGRAM OUTPUT

A portion of the computer output for the first
example is shown in Fig. A-3. The identifying infor-
mation and the rainfall data are shown first. HTRANS
and QTRANS are the depth and discharge, respectively,
at which the laminar flow equation and the Manning
equation intersect. The next line shows MBT and NB.
MBT is the index number in the temporary time-discharge
storage vectors, QS(I), TS(I) where the hydrograph
from the next element to be computed will be stored.
NB(I) is the index number of the storage vector where
the output from the element being computed is tempor-
arily stored. This location information is only re-
quired for debugging if program changes are made. The
message '"plane No. 1 processes' means that all compu-
tations have been completed for this element. Any
unprogrammed stop would then be caused by problems
associated with the next element. The printout of the
geometric parameters allows one to check the accuracy
of input data.

The next several lines of output are optional and
were printed by setting NPRINT = 2 in Card 6. A2(K),
K =1, NK is the cross-sectional area in square feet
at each node point of channel 2 at the time (T(I)(in
seconds)). QL(I) is the lateral inflow rate in cubic
feet per second/ft. If this print-out is requested
for a plane, the depth in feet is given for each node
point. This information is normally not required but
may be useful in special cases or if problems develop.

The final hydrograph, the volume of rainfall in-
put and the volume of runoff are all printed auto-
matically.

PROGRAM LISTING

A complete listing of KINGEN 75 follows. A card
deck of this program in 026 code can be obtained before
December 31, 1978 for the cost of cards, duplication,
and postage by writing to:

Secretary, CSU Hydrology Papers
Engineering Research Center

Colorado State University Foothills Campus
Fort Collins, Colorado 80523

REFERENCE

Lane, Leonard J., D. A. Woolhiser, and V. M. Yevjevich.
Influence of Simplifications in Watershed Geometry
in Simulation of Surface Runoff. CSU Hydrology
Paper No. 81, December 1975, 50 pp.
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APPENDIX B

PROGRAM LISTING — KINGEN 75

PROGRAR MALN (INPUTOUTPUT  TAPESS INFUT TAME 6= 0U TPUT s DERUGSOUTPUT)
COMMCM /107 [¥PADslumITE

COmMOM FCNTHLSY NRESoNOBTonNT [ME oNUNTTSomELE sCLENSDELT o MLOGLCR)
COMmON 7GF0ms RLAZO omiCPI o0 okl 4201 RSU2UI o FMEINIZ0I oNL (D) ohR |
20D INULZO) oNCL 1200 sNCE 120 sWCASE (L0 ) w il 120 ) o &M 20D 0 AE20) v DIAMIZO) #
P 2o

COMMON FEVENT/ TFINNOWUTII0001«TIA0000 006811002+ TOR(1001 +NOwSUMRCN
COMMON FPLASE LY MLAS0) o2 1500 +QLUI00) s ALFAAISO) »PUNERISC) o T 10D ) 40
TUEIO®) wruR I wdr s DRoDT o INDER ik TR ANUSGHAV ongd 120 s OS (5001 sLENGLEND
ESeLENALL «2L ) IHBT slLe 1590

COMMOM ACI&C/ TRLOMI w THZISUTeSINE IS0 o5 INS 1501 +COSLIS0) 005205000
ISINIASSINIRsCUSIAWCOS2A« THUB( 1D «DF ACsLF AT YD

COMBUN ACrANS ALISDI «RZi50) vQUE I TE0) vALKLIOD sCORWCOZ20BoNTANOOL
COMMON ZINFILY ALIAU w1120l aCi2UT o> i2VIoSMAR IO ROCTLOD

COMPON FLANSS ATURHSPTUNE s ALAMSHL AMsHTRANS s T HANS

DIMENSTON GO U100 QD20ID01s LDILIOUY

DATE ALowaSollo a2 FRINaML anhaNUINCLoNCZ INCASEnZL o ERv AsDIAMAZ0%=] o0
T2O®«) oo PO%04 0 e0®0, o200 s l0%0usd0®0sc0%Usd0%UscU®Us20%0+20%0420%0,
Zr20%040 2001, 02000,/

DaTa PleCaSToSMALHOC/L2URD,/

AHEa=®,0
CALL READER
00 405 1=)eNELE
J=NLOGIT)
AREAZPREA«W (I EL 1Y)
TF (WiJlahELO) CALL PLANE (J)
1F (WiJ)4EUL0) CALL CHANNL (J)

105 CONTINUE
CALL GOWVERT (2)
SUMRO=D,
DO Ki® L=loNT
CDALImQIL) *AHEA/43200,
SUMAGREUMHD« QDL *DELT
DAL I=OIL) 0, 04243
110 QD3 TLY=C0 (L) *0,028317
AREMaARFA®, 092951
WRITE (IWAITEw135) ANEAsANEM
GO YO (118+0&Jsl25)9 NTIME
115 “RITE (IWHITESL140) (T(LJ+QDIL) +@IL) +@GDZILY #BOI (LY sL=1sNI)
60 TO 130
120 ;:I:E l;:ﬂl!:-ll!l (TEL) UD (L) »OIL) #QD2IL) +GOI (LD sL=1 0N
0
125 WRITE (IWRITESLSO0) (TCL) #UDIL) 0@ (k) +QD2IL) QDI (LY sL=1sN])
130 wRITE (IWAITE155
SUMINEH=SUMRCH/ 2,58
SHROINSSUMRO/ANEA® 124
SHROCRESHROIN®2Z, 54
SHRAQWESUNRD®, 0Z8ILT
WRITE (IWRITE+160) SUMINCH.SUNRCH
::é:t (IWARITE»165) SMAOIN+SHROCH « SUMRD ¢ SHROM

Il!lzgghi: (20X+ 1 IMTOTAL AREA=+FZ0,5+12H50. FT.+ OReF20.5:11H 50, MET

"

140 FORMAT (ISKs23H FINAL TOTAL HYDROGRAMFHy/31Xs10M TIME(SEC)+Z20X+6HO(
1cl BRABHO LIPH) obAsohO (CPM) v8X s THOIMIFS) o/ LILRF T 2021 XeF8 500k F
2B, B IARFB e sk E10. 400

145 FORMAT (3564230 FINAL TOTAL WYDHOGHAPH./31X+10M TIME (MINI+Z0Ke6HAI
1CFST X abMOLIPH) wbB vbHGICPMI ybR e THOTMIPS) o/ LILEWF 1. 2021 XaFBSeaRsF
2O BeaTaFRbeaRsELD 4D

150 FORMAT (35K923H FINAL TOTAL WYDROGRAPH./J1Xs 10 TIME (MRS) s 20X 6RO
TCFS) A BRGLIFH]) s6RaHOICHM) bRy THRIMIPS ) o/ (JIAWF T 2021 KsFH.SealF
2 BIAAFB el eELDLA )

155 FORMAT (1H #//78BRsJIHEVENT TOTALS = INPUT AND OUTPUT)

160 FORMAT (1M o/9Xe LTHHAINFALL DEPTH = +FT.3slédh INCHESs OR +FT.304n
1CMa s d)

165 FORMAT (1M s 2BXsGHINCHES sHXs IHCH, 2 SKs ISHEULFT, CuaMys/9%s 12HTOT

TAL RUNCEFoRRaF 10 b lRoFY 8y INoFB 2ughoFE,3)

EnD
SUHROMTINE REACER

COMMON 7107 [HEADIWRITE

COMPOM CNTRLY PHESsNCPToNTIMEANUNTTSINELE+CLENDELToNLOG (200
COMMOMN FEVENTZ TFINeHDsUT (1000 s TIRLUD) «GOB(LI00) s TORCIDO) sNO» SUMRCH
COMMOM /PLANELY MLISEI oM i5V) oL (100) vALPHA(SU) s PUMER (S0 # T(100) +U
111081 oHUB 1000 sORsDT ¢ INDERs [HETAs KNUSGHAY o NH (200 9 @5 (5001 s LENG s LENG
ESeLENMLaLyOL] (500 sUL2150)

DIMENSION KaHD (M)

NAMELTST  /HEGINS NELE yNRESsCLENS TR INSDELT o THETAS TEMP
NAMELIST  ZOPTIONS MOPTonT IMENUNIETS

NAMEL IST /UMDER/ NLOG

NAMELIST  /FIAST/ JeMUwNH oML oNC Lo MC2sNCASE s HPRINT
NAMELIST /SFCOND/ JeRLsweSelHellahsDIAMaH] sRZFMIN
MARELIST  /THIHDZ JoALsAsCoSToSMARAOC

NAMEL §5T  /RaINS @LeTiehD

NAMELIST URSEMY/ QUEsTOB.ND

DATA IREAD.IGITE/Sens

DATA WELE oNHES s CLEN TF INGDELT o TEMP o THETA/ 000y 0 0B ar0,00.e0.77

OATA ®LOG/20%07

DATA NOPT NI IME +NUNTTS/040407

DATA NUSMRsNL 1MCIaNCZsMCASLNPRINT /0.0 1

lgt:l AL aWeSoZReIL A OIANSRLvRZFMIN/ =] v=lus0usOuv@as=lusluvbislan
.

DaTa

DATA

BLBsCoSTaSMARROC/B*0./
BlaTI«GOB« TOBsNDNO/L 000,01

#1080, 4 100%0.+0.0/

READ
READ

READ (1AEADs185)

IF TEOF (JREAD) )
105 STop
110 WHLTE

IN DATA = DATA DECK SHOULD BE COMPOSED AS FOLLOWS
IN IDENTIFYING INFORMATION 80 COLUMNS OF ALPHANUMERIC INFO

(RARD (R o I™1e8)
105+ 1100108

(IWRITE«190) (KARD(I)+[=148)

CARD] = CONTAINS VARIBLES LISTED FOR NAMELIST/BEGIN

= COMTAINS VARIBLES LISTED FOR NAMELIST/OPTION

« CONTAINS VARIBLES LISTED FOR NAMELIST 70RDER

CARDA = 15T CARD OF INFO FOR ELEMENT J= CONTAINS INFO FOR OTHE
CONTRIE ELEMENTS AND CHANNEL TYFE= SEE NAMELIST/FIRST
2ND CARD OF INFO FOR ELEMENT J = CONTAINS ELEMENT
GEOMETRY AND ROVGHNESS COEF =~ SEE NAMEL1ST/SECOND
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CARDG - OPTIONAL 3RU CASD OF INFO COMTAINING INFILTRATICN

CRARACTERISTICS OF PLANES = SnOLLD NOT BE INPUT IF

FriniJiwD, .

CARDS T=849=10...(N=3)=(N=2)

ELEMENTS = SEE CAWDS & A0 &
CARD(N=11 CONTAINS WAINFALL DATA OF STORM - SEE A stsa

CARD(N} = CONTAINS QBSERVED HUNOFF FOR o?!1n1311|o:(%: n(s:é:o

CARD IS OPTIONAL = SEE NAMELIST/OBSERV
THE FOLLOWING LXAMPLE CAKDS ILLUSTRATE INPLT FOM CARDS JsSe¢AND M=l

PAIRS OF CAHDS FOR OTHER

SOPTION NLOGII)=le2ebeBel20l3y15e
SSECOMD u=1eXL=200,sw=a0,s570,35:@1536.sR2=100,+ 5
SHATH GlOli=los@an0ao®anTI(1)50,035,0200,0400.9N0=8 §

Ih REOARDS TO DATA CAWDS

1 = COLUMN ] MUST BE ELANK FOR ALL DATA CaRUS.

@ = EACH RECORDIEACH READ STATEWENT) MUST HEGIN WITH % IN
COLUMN & AND END wiTw 8 AFTER ALL DATA Wed BEEN COOEDS
EACr RECORD WUST of JDENTIFIED wiTH A MAMELIST GROUP WAKE
IMMERTATELY FOLLOWING THE FI#ST 3.

A WAL, OF 150 CHEFACTESS ARE ALLOWED FOR EACH RECOWD = THE
EXTHA CakDy IF MEEEDEDY STAMTS [W COL.2 INCTHING IN COL.1)
HO SUSSCOTRIS ON vAMIAGLES CAN BE USED ON WAMELISTAFiWST
ANG NARELTST/SECOND OATA CandS (EVEN THOUBM THEY AHE Sub=
SCHIBTED LATER IN THE PROGWAM)

THE SURSCHIRT (L) [% KEGUIED FOR [nPul OF  ARARAYS NLTG
OILeTIvUOHSAND TUR (9EE E/AMMLE DATA CAWDS FOR OHDER AMD
RAIN NAMELIST GHOLP DATA INPUT CLAWIFICATLON)
ALL ASS1GNMENTS MUST BE FOLLUWED BY A CuMMAs
LASY OME,.

VAKIAGLES MAY AE LISTEN IN ANY OROER OR WAY RE OMITTED IF
NOY NEEODED FUW THE SIVaTION = OMITTEU VARTAALES wilL BE
SET TO ZEWO = EWwUn MESA%ES wILL HE [SSULD RY PRUGRAM IF
ICHO IS MOT ALLGWED Ve & EauTICULE™ VAN[ARLE,

CABD PAIMS S0k EATH ELIMEMT CAN HE A=wANGED N ANY OFGER -
PHOCESSING wilL STILL HCCUR AS SFECIFIED BY NLOG = NOSEVER
FIRST WUST PMECEED SECUWD FOM EACH J LLEMENT,

L]

>
'

-
K

EXCEPT  THE

18= A VALUE FOK J wUST WE SPECIFIED ON BOTH F1RST AND SLCOND
10= & MAR OF 20 LLEWENTS WAT RE INFUT.
12 = DO NOT INPUT WAMELIST GWBUP THIRD IF FMLNIJI=0 [N SECOND.

INPUT VARTAYLES
WELE= NUMAEH OF ELF=ENTSs NRESSAESISTENCE LAW COOE (SEE COMMENTS
I PLANE) o CLEN=CHANACTERISTIC LENGTHWTFIN=TIME TO END PHOCESSe
DELT=TIME INCHMERENT FOR QUIPUTTEMP=wATER TEMP. I IN DEGREES F=
GEFAULT IS o5F ) o INETA=we [GATING FACTOR [N 1#PLICIT SOLUTION
FORMULAS (DEFAULT vaLu€ 15 L.
NOPT=OPTIMIZATION CODE(SEE COMMENTS IN OATIM).NTIWE=TIME UNITS
CODE WHICW APPLIES TO INPUTIE T FOM SAIN BATTRkN. DELT+ AND
INFILTRATION PAMASETH Cle AND DuTPUT TIMES, CODE | = SEC.s 2a
MiN,e AND 3= WM, NUNITS =ENGLISH OR WMETHIC UNITS CODE 1] =
ENBLISH =[PHe FT. 2 = MLIRIC ~CPM« ~ETERS
NLOGI201=EACH ELEMENT OF aMRAY CUNTAINS A J - WATEHSHED
ELEMENTS ARE PHOCESSED IN DRDER OF NLCGiIVel=lewFLE,
JeRATERSWED ELEMENT IDENTIFIERshUtJI=J VALUE OF PLANE CONTRIB,
AT UPPER BOUND OF ELEMENT JoWNRIJ1=J YALUE OF PLANE CONTHIB. TO
RIGHT SIDE OF CHANNEL JohL(J)-SaMi EXCEPT TO LEFT SIDESNCLEJ)=0
VALUE OF CHAN. CONTHRIA 10 UPPER BOUND UF CHAN JoNC2(J)=SAME AS
NCl (SECOND CONTRIB CrANI oNCASE(J) ~CHANNEL TYFE COOE FOR CHAN J
(SEE COMMENTS [N CHANNL) sNPAINT=PAINT CODE = | IF NO PRINTOUT
DESIREDs = 2 [F PHINTOUT DESIRED FOW THIS ELEMENT.
ELUJI=LENGTH OF ELEMENT Jam(J)=wIDTH OF ELEMENT JIFOR CAANHELSs
WiJIm0,)oS5(J)=5LO0FPE OF ELEMENT JeZRUJ)=5LCPE OF RIGHT SI0E OF
TRAPEZOIOAL CHANNEL JodL (JP=SAME AS (R EACEPT LEFT SIDEsA(J)~
MEIGHT OF EXCLUDED TRIANGLE FOR THAPEZOID CHANNEL JeDIAM(J)=
BIAMETER OF CIRCULAK CHANNEL JeR1(JI=TUSBULENT LAW ROUGHNESLS
FACTOR (MANNING N OF CHEZY €1 FOR ELEMENT JIREQUIRED)«R2(J1~
LAMINAR HOUGHNESS FACTOR(REYNOLD=S K) FOR ELEMENT J (OPTIONAL)
FMIN(JI=MINIMUM INFILTHATION RATE FOR PLANE J,
ALEJY «BEJIoClIY = INFILTHATION PARAMETESS DETERMINED AY SOTL
CHARACTERISTICS, SEE R,E, SMITn=5 PAFEH IN JOUAN.HYDROL.:W.LlT7s
Mo l/24197200  S10J) = INITIAL SOIL MOISTURE CONTENT OF PLANE J»
SMAX(J) = MAX[MUN MOISTURE STORAGE CAPAC., OF PLANE Je ROC(J) =
PERCENT ROCK CONTENT OF SOIL IN PLANE J
QII100) ~ARRAY CONTAINING HAINFALL RATE (IN/MH OR CM/HR)
TI(100)=TIMES CORRESPONDING TO Ol ELEMENTS+NO-MUMRER OF RALN=
FALL DATA PAIRSGOB(100)=0BSERVED RUNOFF HYOHOGRAPH FOR OPTIM=
TZATION (IN/WR OF CM/HR)+TOBI160)=TIMES CORWESFONSING TO QOB
ELEMENTS«NO=~NUMBER OF CHSERVED RUNOFF DATA PAIWS.

ss«RENEMBER =~ DO NOT PUT SUBSCRIPTS ON [DATA GROUPS FIRST AND
SECOND . MWOMEVE®Rs THE SUBSCRIPT (1) IS FEQUIRED FOR ANY ARRAYS
IN DATA GROUPS ODRDER.FAINs OR OBSEAY.,..

Bassnssanaans

THE FOLLOWING ARE AHRAY DIMENSIONS USED AS CHECKS WITHIN THE PROGR
LENGS = SIZE OF QS

LENG = SIIE OF @

LENM] = SIZE OF Wi

LENGS=S00
LENE=100

LENm]=S0
GRAVEDZ 1T
UBR=&MREADEN
READ (IREADSREGINI

SURROVTINE INSPEC CHECKS [NPUT DATA FOR ANY OBVIOUS ERRORS OR
OMISSIONS, SUBROUTINE RESET PLACES YALUES READ FHOM FIRST+SECONDs
STHIRE [NTQ THEIR APPHOFRIATE ARRAY LOCATIONS IN COMMON/GEUM/INFIL

INSPEC (140s0)
CIREADSOPTION)
CALL INSPEC (24000)
HEAD (IPEADSORDER)
CALL INSPEC (24000)
JLSToNLOG INELED

CaLL
READ



faAn

Ao

c

nAn

1%

120

125

130
135

1s

145

15

155

160

165
170
175
18

8%
150
195

200
205
210
21%
220

150 THAT Tl(nOs1)

DO §1% [=]l.NELE
READ (IREAOWFIRST)
JJ=
READ (IREADSSECOND)
TF (JWNE.JJ! CALL EHROR (1SUBRaSsJJsJ)
BF IFMINGGT,0,00011 WLCAD (JREAD#THIHD)
CALL MESET (JeXLomnSolloHZoFMINaNLoNRoNUINE L sNCZoNCASE s 2R ZL oA

1 DIAMAALsBaCoSToSHARHOCNPHINT)

CALL INSPEC (4eJdeJL5T)
CALL INSPEC (6BeJdeD)
CONTINUE
READ CIREADsRAIN]
IF TTH(ND)I=TFIN) 12041254125
NOo=KD= ]
TLINDNETFIN
GIthDI =00
WRITE (IWRITE+19%)
IF (NOPT.GT.0) WEAD (IHEADCBSERV)
CALL INSPEC (540403
IF INRES.NE.2+AND<NRES.NES3) GO TO 130

COMPUTE KINEMATIC YISCOSITY IN S04 FT./SLC.

IF (TEWP,EQ.0.) TEMP=65.

TEMP= {5,/9,)* (TEMP=32,)

ANUS{ 0000017756/ (2 +0. 02160 TENPw0, 000221 # TEMPETEMP) )
ANUSINU/ (0.0254%0,0254%1 48,0

N0 $3% 1=1.NELE

LUARER L]

WRITE (IWRITE+200)

GG TO (a0 1a541500 NTIME

WRITE (IWRITE+205)
FC=0, 0166666667
60 TO 155

WRITE (IWRITE«210)
Fc=1,0

GO TO 1%%

WRITE (1WRITE«218)
FC=60.

SumeCH=0,

00 IBO [=l.KD
60 TO (160+165)s NUNITS
GlE=QI(I)
QIC=QIE*, 042323
60 1D 170
GIE=QI(I1/.042333
RIC=QI(I)
MRITE (IWRITE«220) TICI)+QEEsQIC
IF (nD=1) 180+180+17%
iP=la]l
SUMRCM=SUMHCH=FC* (TI (1P} =TI(1)}*QIC
CONTINUE
=== CONVERT TIME INTO SECONDS AWD DISCHARGE INTO CU.FT. PER SEC,
CALL CONVERT (1)
RETURN

FORMAT (BA10)

FORMAT (1x1+RAL01

FORMAT (T8H A Pﬂ:NYt::INDOIIOTIINDOII HAS BEEN ADDED TO RAIN DATA
- N1 !
(21 THPUT VALUES=  TIME«¥9RBHAAINFALLY
CISXaSHISECT s 1ZXvSAIIPH) s TR4BHICHM/MING )

CISKsSHIMINI s I2XeSHOLIPHI o TR+ BHICH/MINI Y

ISR EHIMMS ) v L2RsSHUTPHI o TReBHICH/MING }
CRINGFL0LZoBAsF 10, JabReFl0.5)

FORMaT
FoRmaT
FORMAT
FORmAT
ForRmaT

EnD
SUBRQUTINE INSPEC (NPEAD.JsJLSTH

COMMON /GEOM/ KL (20) W (200 oS(200 4R1C20)sHZIZ0) oFMIMIZO) s NL (2001 4NAY(

1201 s NUI20) oNCII20) aNCL 200 «NCASE20)  ZLLZ0) 0 ZH 201 o AL20) sDIAMI20) 4
NP0

ile

11
1z0

w

125

130

135
140

145
150

COMPOMN ZCNTRLZ NHES NOPToNTIME s NUNMTTSoNELE s CLENDELT+NLOG(£D)
COMMON AINFILS ALELOD R IE0N pCHe0 ) aST (2001 43MARLL0) v HOC (2D
COMMON ZEVENTZ TFINGNDoQD 100 o TH 0000 «uOMEI00) o TORLIO0) o ND o SUMRCH

THIS SUBROUTINE INSPECTS THE [NPUT DATA FOR ANY OBVIOUS ERRORS

I15UBRWEMINSPFC

GO TO (105110+11521204050.170) ¢ NREAD

IF ENLLE,EG.D) CALL ENSOR (ISUETeledshELEQ)

IF ECLEN,EG.0.) CALL EFHCH [15UHRelsanCLENSO)

1F CTFINGEQ.O.) CALL EWHUH (IhUbMHelpaHTF [N D)

IF ENRES,E0.01 CALL EHAUN (15UMAsEsamnRES 00

IF TDELT.EQ.C.) CALL ERNOR (15UBHRs1samDELT»d)
IF ENHES,GT.4) CALL ERHUR [ISLEMs3«arnBESINHES)
IF UNELE.G1.2U) CALL ERROH (15U8Re3s4nNELEWNELE]

F

RETURN

1F INTIMELEQ.O0) CALL ERHOR (1SUBR&lsSHNTIMEWC)

IF tNUNITS,EQ,0) CALL EHKCR (1SUBHs1+6HNUNITSHO)

IF INBPT.GT.1) CALL ERFOR [1SUBR . 4. annN0PTiNOPT)

IF CNTIMELGT.3) CALL ERROR ([SUBH=3¢SHNTIHE sATIHED

IF INUNITE,G6T.2) CALL EHROH (1SUBM+3emMUNT TS NUNETS)

HETURN

;:‘l:=oitﬂitthtﬂ.¢} CALL ERROR (1SUBR+4+MLOGINELE) +MELED
v

IF UXLGJ)GLT.0.) CALL ERROR (ISUBRs2e2HELIJ)

IF TWiJhaLT04) CALL ERHOH (TSUBR2s 1MWyl

1S(J) . EQ.0.) CALL ERROR (ISUBRaeZ4lnSsd

TREGJ)EQ.0.1 CALL EMROA (ISUBR.Z2e2WR1rJ)

IWiJ) NE.O.) GO TD 140

IF VAL () oEQa0u o ANDoJoNE JLSTH CALL ERROR (ISUBRBJs0)
IF INCASE(J) EQ.D) CALL EWROR (ISURH+2+SHNCASEJ)

IF INCASE(J).GT.)) CALL ERAOR (ISUBR+3+SHNCASEsJ)

G0 TO (125+030.135) NCASE(J)

IF (ZLUJ)LEQ.04) CALL ERBOR (ISUBMWZe2HILYJY

IF (ZR(J).EQ.0.) CALL ERROH (15UBM+2s2HLRII

IF TALJI.LT.0.) CALL ERROK (TSURR+2+1HAY)

G0 TO 145

1

1DTAMIJIEGL0,) CALL ERROR (ISUBRsZeanDTAMsJI
TO 145

G0

SToR 3313

IF TEL(J)4EG.04) CALL ERROR (1SUBRe3+2HAL )

IF (NRES,.EQ.2.ANDWRZI1J)4EW.D.F CALL EFHOR (ISUBR.2s2HRZvJ)
1F INPES,EQ. 3. ANDLR21J) JEG. 0. ) CALL ERRCA [ISUBRZiZHR2vJ)
RETURN

IF TND.EQ.0) CALL ERROR
KE=0

(ESUBH L+ @HNDs0)

45

anAfNanon

naoan

155

DO 15% J=l«ND
IF (QLE1).NELO.) KKel
IF (TIM1V.EQu0.sAND.TI.NE«]) CALL ERROR (ISUARB:ZHTIHI)
CONTINUE
IF TKE.EQ.C) CALL ERROR (ISUAR.T+ZHAL+aHRAIN]
IF tNOPT.EQ.0) GO TO 165
KKe®
IF INB.EQ.0) CALL EMROR (ISUBR+1+2HNOW0)
DO 160 J=lnD
IF (COBI]).NE.O.) mK=]
IF (TOBII)2EQ.0. AND.TWNELL) CALL ERROR (ISUBRyBsIHTOBWI)

160 CONTINUE

IF (EK.EQ.0) CALL ERMOR (15USR .7+ 3IHO0R « 6HOBSENY)
165 RETURN
170 IF tFPMINIJ)LLE.0,0000) GO TO 175

17%

10
1

11

12
12

135

1a0

las
150
155

1F
1¥

TALIJIWEG. U] CALL EWFON (1SUBReZe2HALYJ)

10U, Fh.0.) CALL LCHHOW ([HUBRaZe MR

IF ICIJ)JEGLB.) CALL ERRGH [ [SUsRe2e LhCeJ)

'I?:Tl:nul.il.tu.i).l CALL ERAUN (ISUBH244HSMAR )
RN

EnD

SUBRCUTINE PESET (ToRLToWTaSTaRITaRZToFMINT oNLT oNMT oNUT oNCIToNC2T s
ANCASET e ZET o L To AT oD TAMT s ALT oD T4 CToSTToSHART 4 ROCT WNPT)

COMMUL AINFILY AL(ZUDoBIR0ICI200 ST 1201 25MARIZ004ROCI20)

LOMMON sGEUMS L2000 s (200 % (£00R1 1200 oM (200 +FMINIZ0) oML LLA) oNR(
1200 sWUT20) oNCL (201 o NC21200 ohCASEIZ0) 0 2L 120D 0 ML) ALZ0) yOLAMILON
2NP LA

LUTRRLE ¢

NUT=Q

MRLD EnRT
NRTaD
NLETI=NLT
NLT=0
NCITLVeNCEY
NC1Ted
NC211)=NC2T
NC2T=0
NCASE (1) =NCASET
NCASET=0
ALAprwaLT
L1 .
will=ut
wimel,
Si1)=ST

*IRT
ZRT=0.
Ly
LT=0.
Aflr=at
Alm=],
DIAMIEI=DIAMT
DIAMT=O,
llll;-kll

.
FHINCI)=FHINT
FHINTE

ALTI=ALT
ALT=0,
BLl)eT
BT=8

SICN)asIT
S1T=0.
SMAR(])=5SMAKT
SHAXT=0,
ROCTI)=ROCT
ROCT=0,
NP(TI=NPT
HPTul

RETURN

END

SUBROUTINE CONVERT (KEY)

COMMON /CNTRLY NRESsNOPToNTIME yMUNITSNELE+CLEN+ORLT+NLOG (20}
COMMON /GEOM/ AL (20) o (20093 (200 «R1I20)+AZ120) «FMIN(Z0) oNL120) s NR(
1200 oNU(Z0) 9NCL120) oNC2 201 WNCASEL20) v 2L 1200+ 2RI200 1 AI20)+DEAMIZTN
2NP(20)

COMMON FEVENT/ TFINsNOsQTLUO)»T10100) Q0B (L00)+TOBI100) 4NO+SUMRCH
COMMON /PLANELZ H1150) ord2 1501 9GLI100) yALPHAIS0) +POWER (50)4T (100040
10000  omUBLL00) vDX4DT o INDEZ s THETA» ENUSGRAV +NB (200 40515000 «LENGLENG
2SeLENHIsLeQLL 1500 4LL2150)

COMMON FCHAN/ ALOS0D) wAZ(S0) s QUB LTG0 vAUBII00) +COL#COZ4BoNTNOGL
COMMOM AINFIL/ AL (200 4BLI200C(20)«STI200 +SHARIZOIWROCIR0)

G0 7O (1051800 KEY

KEY®]a, CONVERT INPUT UNITS TO THBSE OPERATED ON BY PROGRAM

THIS PORTION CONVERTS ALL TINES TO SECONDS+NETEWS TO FEET+AND
CH/WIN DR TH/FR TO CULFT./5ECaunaiunsane

5 60 7O (110411501200 NTIME
0 FACWl.

S FaCe60,
G0 To 125

0 FaAC=2800,

5 TF INaTF IN®FALC
DELT=DELT*FAC

DO 130 Isle20

CUIMmCITIoFAC/b0.

00 135 TeloND
@I1II=01411 /43200,

THidd=TT i eFAC

IF INOPT.EQ.0) GO T0 1a5

DO 1aD T=14NOD
QOWII)=QURIT) /43200,

TOBRTI)=TOB(L) *FAC

METAIC CONVERSION

GO TO 117541500+ NUNITS
D0 155 I=1ND
GlilisGriti®2d.e22

1IF ANCPT,FQ.0) &0 10 165



annnn

16
18

17

]
5

175

185

AN ann Ao/ D non noOn

ann

21
21

22

10%

11

115

120

5
L]

[
5

L

DO 180 I=l.ND
COBTI1=Q0B(11%2],622
CLLn=CLEN=3.28]
0o 170 1=1+20
AL(li=gL (1103, 28]
Will=wilred,281
Atll=ag]a®d. 241
OIEM{I)=DIAMITI%3, 281
FRIN(TI=FuiNIlI®"Ed. 022
CONTINUE
RETURN

KEYs2,, COMVERT UNITS RACK FOR CONVENIENT QUTPUT
CONYERT ALL CU.FT./SEC TO IN/WR+SECONDS TO DESIRED UNITS.ssns
GO TO (18541901950 s NTIME

DIVe=I600.
DO 2085 I=1.nOD
THiD =T 010 /00Y
GECRI=Ql(TI=al200,
IF INOPT.EQ.0) GO TO 215
0O 218 I=l.NO
TOWIT)=TGRIT}/DIY
QOBTII=0OB(1) *43200.
AREA=D, 4
DO 220 I=1.MELE
JENLOGIL)
AREASBHEA« (AL (J)*N1J))
0D 225 1=1+N1
Tih=T(1) 700V
QiirmQ(II*ald200./AREA
RE TURN

EnD

SUBRNUTINE PLANE (J)

COMMON #10# TREADIWAITE

COMMON FCNTHLY KRESeNOPTANTIMEsNUNTTSoNELE+CLENSDELT o NLOGIZU)
COMMON /GEQM/ XL 1200 aw (201 o 5(201 00112000k (201 FMLINI20DoNLIZO) oMM
1200 oNULZ0DsNCE 1200 NTEIL0) oNCASE (200 o 2L (201w ZHI200 AP0 4 DIAMIZ00
enP 2ol

COMMUN FEVENTZ TFINeMUGTEI00) o TT(IUD) +COBCI00) s TURLIOD) oND s SumHCH
COMMON ZPLANELZ HITSUIaHZ 1561 LL A E0U) v ALPRAISU) yHORERISOI v T(100) 40
T0LO0) vHUBLLO0) o CXs DT« INDEAe THETA+ANUSGHAV NG 120 ) wBS15U0) s LENTILENU
ZSeLENNLsL L] 15010502 (501

COMMON ACHANZ LIS A2 (501 00U ETU0) sAURLLOU) sCORCOZvAWNTINDGL
COMBON ZINFIL/ ALIZU)oRI €01 sC1200 051 175) s SMAL(ED1MOCTIED)

COMMON FLARS/ BTUBS T UM ALAM B AMoMTHANSOTHANS

DIMENSION XINIS00e WECI00)e QIFHISO) e AVGINF (500

DATA BLANK/LIM /

CALCULATE NUMMER OF DISTANCE INCHEMENTS (Nwx) AND THE DISTANCE
INCRE®ENT SI1ZE (DX).

SUmMa=o,

SUM]=SUNZ

NEwPMARL (115, %L tJ) /CLEND 4 3,00
IF INK.LE.LENNEY 6O TO 109
WPITE (I&RITEs200)

staw

URSEL L) AIFLOAT INKY=],)

INITIALIZE

FRIMGJI=FMINJI 760,

0O 110 Eelon
oLifei=gield
aL2iki=alil)
WliK)s0,0

COMTINUE

[ LT

HFII!-OIHI
TiLYaTeli+DELT
RF ELI=QL0T)

RESLA® CALCULATES VALUES TO BE PLACED IN THE AARAYS ALPMAIK]
POMERIK), WESLAW FETURNS wITH VALUES FOR ATURH P TURE s ALAMYAND
PLAM WHICH ARE THE ALFHA AND POWEH VALUES FOR A TURBULENT anND
THE LAMIMAR OVERLAND FLOw MODELS RESPECTIVELY.

NRESE] oo s MANNING
we o MANNING-LAMINAR
WRES=3,, CHEZY=LAMINAK
NRES=4,.,CHEZY

AND

CHGLAY PLACES TWE APPHOPRIATE VALES ALMEADY CALCULATED IN WESLAW
INTO TnE ARRAYS ALPHA(R] AND POWEH (K)s K=loNK DEPENOENT UPON
CHITERIA INVOLWING HTRANS AND GTRANS. IF IFLAG®0.<.ALPHA AND POWERW
ARRAYS wILL BE BASSED ON 4 TUBULENT FLO¥ MOUEL. IF IFLAG =l THESE
ARRAYS wILL BE BASED ON THME LAMINAW FLOM WODEL.

CALL RESLAW (NRESsJ)
PRINT 285+ HTRANS:GTRANS

CHECK FOR OTHER PLANES CONTRIBUTING, NUIJI®0 = WO CONTRIBUTORS.

IF (NUEJI=0) 11Sel25e115

OTHER PLANES ARE CONTHIBUTING == CHECK TO SEE IF CORRECT Law IS IN
EFFECT == CALCULATE UPPCH BOUND DEPTHS (WUB} FOM ALL TIME INCHEMNT

JJuENU L)
MHENB (JJ)=1
IF (NB(JJ) JEQ.0) CALL EWROR (SHPLANE+151JJdy0)
00 120 M=].N]
IF (OS (MMM} /W) 6T OTRANS) JFLAG=D
IF (QS(MeMM) /uiJ) JLE.QTRANS) [FLAG=L
CALL CHGLAW TIFLAGe1+NRES)
HUB (M) = (QS (MeMM) /ALPHA (L) AW ISP L], /PONERIL)D
HLB [MB) =HUB (N1}
LUTNEE ]
60 70 135

NO PLANES APE CONTRIA, == DEFINE NI (NO. OF TIME IWCREMENTS)== SET
ALL UMPEH BOUND DEPTHS (WuB) To ZERO,.

nOonAnN

AanOn

125

130

13%

1s

-
-
w

aonon Aanoaon

fnon

noAn

anann

15
155

160
165

17

118

178

i
ls0

185

"o

200

205
210

215

22

22

w

230

HusFFIR(TF IN/DELT =2
Wlakp=1
CALL CHOLKkw
DO A30 MzleMA
CHETLEY I
CONTINUE

(0l e NKES]

CHECE Th SEE IF INTFWNAL TIME INCPEMENT LOOP IS FINISHED (LOGP I%
BOTWEEN STMTS.S00 AnD L1000 == ALLG MARE SUFE Wb ALWAYS HAVE
COMPATRARLE [NFUT ANU [NTERNAL TIME (TI ANU T WESHECTIVELY).

FFILI=gl ixP=))

RF(L=1i=RF (L)

LFLaG=0

IF 1TILILLESTFING GO TO 180

IF (1L=11e,0000.uELTFINY GO TO 230
TiLi=1F N

IF 1TIL)LY.TICKBI=L0001) GO TO 185
TiLy=T1ixd)

CALCULATE INITEAL ALVANCED TIME DEPTH (H211)) USING HUH AND A TIME
INTEHPOLATION.

MYSIFIX(TIL)ADELTIa])
HZLHITRUB (T e (HUBIMT o 1) =HUB(MTII® (ITIL) = (DELT*FLOAT (MT=111) JDELT)

IHPLCT RETUWNS »iTH LOWER POUND DEPTH (HZ(NK)) == CHECK TO MAKE
SURE COFRECT Law IS IN EFFECT == GALCULATE TOTAL DISCHARGE (CF5)
FROM PLAME J FOR TIME [NCREMENT La

DT=TLI=TiL=1)

TEST FOR [MPEWVIOUS PLANE. FMINIJ) LLE. 0.0001 = JTMPERVIOUS PLANE
TF=TILY
IF TFMINGJ) oBT,0.0001) CALL XPLINP (M1OToTIL) oHFIL) sQLZ2e TFoNR b2 [
T1I a1 eDELToAL EJIoBIISN o Cudd o ST lu) o SHMAX () +HOC 1Y o)
IF twPiJ).EG.11 6O 1O 155
TF (FMINIJ) LT 0,0000) GO TO 155
PPT=Q] (nP=]) 43200,
WRITE (IWHITE+290)
00 150 [=leng
QIPMITI=dL21TI"ad200,
CONTINUE
WHITE (IWATTE»295) (QIPMIT)sI=1sNK)
IF tL.hE 21 GO TO leb
00 169 xK=]nx
IF (QL2(m).EQ.0.) OLL(KI=O,
CONTINUE
IF tH2il) NELO.0 GO TD 1ES
DO 170 Kslshk
IF (OLZ(K) 4LEWO. oANDHLIIR) WLE.8,) OQLZIKI=0,
CONTINUE
DO 75 mulokK
IF (OLL(K).KELD.) GO TO i8S
IF (OL2(K).KE.0.) GO TO 18%
IF tM1IK) .NE=D.3 GO TO 185
CONTINUE
DO 180 Ke2oNK
80 TO (177417641764 17T7) NRES
POSER (K) =PLAM
ALPHA(K) SALAM
60 To 180
POMER [K) =P TURE
ALFHA (K] =aTURE
H2IK1=0,
IF ITIL)LGE.TIIXEI=.0000) rB=KAs]
60 10 195
IF TTILILLT.TII<A1=,00011 GO TO |%0
KB=KB4]
IF TFMINGJ) LT, C0000) LFLAGS]
CALL IMBLET (hxwd)
CONTINUE
UILVcALPHA(NE ]} ® [HZ IHE ] *oPLgE i INR] ) oM TI)
IF TNUGD) NF .03 SuMlsSUMI=(ELPHATI)*HZ (1) **PONER( L) sALPHALII®*H1 (1)
I**POuER( 1) 20T W J}
SUMI= LRE (L) P SELEJ)SCToW10] e5LM]
SUM (UL «QIL=11i*0T/eaebumM
00 200 w=]4nx
AINTEI=(RF (L) =tGL (K1 *OLZ IX})/2,1 90T
KINS=IRIN{LD s RININE)} A,
STOME(nZil)sHEinKl 17 ey
NEH2ehE =2
IF INEMZ.LT L) 6O TO 210
DO 205 we]luNxHZ
L ELE S ULEES DAL LY B

TiL)ePRT

STOR=STORHS (Kal )
STQReSTuUReNE W J)
LINS=RIMSoA0wid)

SUM2=SUMZ s X INS

IF INPLUILFULLY GO TO 215

WEITE (IWHITC»33Q) (HEIK)smalenn)

CONTINULTY CHECK

ER {SUM]=SUMZ-STOR] /SuMl*100,
WRITE (IWARITE+335) SuM]eSuk STORSER

INCREMENT L AND INTERNAL TIME == REDEFINE LATERAL INFLOW (QL) ¢AND
SET ADVANCE TIME DEFTHS (H2) EQUAL TO THE KNOWN DEPTHS (M1}

LeLs]
IF tL.LE.LENG) GO TO 220
WRITE (IWRITE«310)
SToP
TiLY=T(L=1)=DELT
DO 225 mmlann
oLl k) waLZ i)
IF ILFLAG.LT.1) GO TO 22%
OLZ (%) =31 (nE=11
QL1 k) sOL2IK)
HL(KI=HZ (K)
GO To 136
:::EE:}'&ISFN PROCESSING THE PLANE THROUGH TIME TFIMs UNIF
VERTS Q OVER UNIFORM TIME INCREMENTS AMD SAVES T
NYDROORAPH IN 05 RE ND ES THIS STANDARD

CONTINUVE



AaAfAANARD

L LT,

=L~1
LASTNE=NATL)
IF (NELE.EG.)) GO TO 240
DO 235 NE=RWNELE
TF INBINE} JGToLASTRE) LASTNR=NEINE)
CONT INUE
MET=ELASTNASNT
IF TLASTNG EL.0) mMdTs]
IF TeBT.LE.LTNGS) GO TO 245
MRIFE (IWRITEW315)

235
240

sToe
245 CALL UNIF (s ToLeOSIMBTIoNI+DELTY
hE () HET
MRITE toeded) BTinE
WEITE (IwRITE«325%) JeRL U1 «W1J1eST)
GO TO 1250+75542604465) ¢ NIES
250 WEETE (1wPITE=3300 ALtd)
GC TO 270
255 SRITE (IWRITE«3IS) WllJ)ek2id)
6c To 218
260 WRITE (Iw4ITEL280) R)LJ)eMZID
GC YO 270
265 WHITE (IWRITELI8E) RItJ)
270 IF TFMINGJILLEL.000G1) LD TO 275

WEIFF (IwRITE«IS0) FHINGJI AL (D) oBT (D) o €LY ST L) v SHAR(J) 4 HOC L)
RETLEN

PI5 WRTE (JwRITESDSS)
KETURN

2R0 FOWMART (5&M HlywZ shiLPHAY AND POWER WEED TO RE DIMENSIONED LARGE
1K1

PRE FORMAT (SXaly wTRANSELIPELZ hobM GTHANSEGIRELZ YD

290 FOPMAT (9B TWTIME 15eF [lahecln SECars FALN HATE 15 oF 1545040 1FH)

29% FORMAT (1XaiiMin 1 TPRISal@iadheFH. 500

200 FORMAT (1X4limhad {lelanmias]ldidtsfFlasl)

0% FOWmAT (10w INFLtme s F IO 00l M GUIFLOWEELGdal In STORARE=EL
10,29 T FRAOWEE N drin #ERCENT)

310 FEEmAT (3a¢ T anD 4 HEEU 10 BE DIFRSTONED LARGEN)

315 FLemal (Jan 0% HEEDS T0 PR CIMENSTGNED LAWGEH)

320 FORMAT (SH MuToy LA LERannf-odilh)

325 FOMMAT (1040 9HELANE NG s [y L0k PRGCESSED/ /9N v ZHHGEOMETRIC PAKAMEY
LY LEsFTolabm wooFT, lodm  SaeFT.4)

330 FORMAT [R50 LIMMANNINGS We FE.0)

235 FOReAT (151 I=MARNINGS KEoP S 0elZH  LAMINAN KuoF8.1)

Ja0 FOHMAT (1SAaPROHE LT Coe i CAMINAR musFBLL)

dab FCHeAT (18%1,an CHELY € .

350 FOReAT (1SR 30mINFILTSATION PAHAMFTERS FMINS FE.5 ¢34 AmsFE.24H
IesaF RePaam CEaF8.detm  SIaeFR, 200N Swala FH.Cebn  HOC=oFH.2)

A55 FUamal (1Sa«leniMPENVIOUS PLANE)
ErxD

SLESOUTINE APLINF (nlsDTaToMFeOL2aTF o NKoHUP s NI oDEL ToALF o BINSCINsST
INS0BOCH+ )

THIS SURROUTINE wAS DEVELCPLD BY R, E. SHITHs AHSs AND MODIFIED
FCR  WSE wWiTH KINGENTS

MEFERENCF . SMITHsR. Eov THE INFILTHATION EMVELOPE-RESULTS FROW A T
INFILTROMETE®y JOUNNAL OF HYDROLOGYe Vo lTeNalsegrivTa,

SUBEOUTINE COMPUTES INFILTRATION AND RETUHNS LICESS RAINFALL FOR &
TIME INCREMENT

QPERATING DIMENSIONS ARE INCHES AND MINUTES

COMMON /10/ INEADWIWRLTE
COMMON /GEOM/ AL EZ0) swi20) ¢S1200 BRI (200 +RZIZ0)«FHINIZ0) o NLI201 4NAYL
1201 s WU (200 o NCL L2010 oNC2120) o NCASE (200 #JL (200 9 ZRI20) v AT20) +DIAMI20) s
NP 1700
DIMENSION OL2450)s TOS(50)s DIS(50)e S1(500s M1(50)y DELTS(50)+ QO
151500 SINTIS0)s GSDIS01s NANISO)e NROISO) s NMODE(S01s QSTAR(SO)
DECF (SsCISEAP(ALF® (. 04/ (ALOG(S*TON) =CLI/(C+255)1 7 (Ce.551)9%.8)
DELT=CELT/60.
DT=DT/80,
T=T/60.
TF=TF/60,
RF=RF*720,
DO BOS 1=]4NK
105 ULE(T1)mQL2(TI*TR20,
RETafF AFMINIID
Ji=1
KO0
IF (T7.G7,07T) GO TO 115
GAMSALF /{1.=ALF)
wal
JEPE0
DO 110 K=]lank
SINT(X)=SIN
QSTAP (M) =0
LLUACRET |
MMODE (K) =0
110 NANTKI=Q
115 CONT INVE

®%  BIN IS DIMENSTONLESS FPAWAMETER wHICH CONTROLS TIME CF PONDING.
1T 1S THFOPETICALLY EUUAL TO NONDEIMENSIONALTZED SGAPTIVITY SQUARED
CIVICED AY 12.*FMIN) (SEE PhILIPsuSSe19570. THIS IS NOT THE SAME
P USED BY SujTms 1972
==S0LYE FOm TIME wrnN PONDING (RUNOFF BEGINS) wiLL ©CCUR
IF IREGI2)NF.0) GO TO 1a5
TONSCINS 150=SINT (2019 (] 4 =HUCK)
OON=FMINIJI*TON
Tel=pt
IF (RST.LT.1E=&) GO TO 130
DTt (MIN®ALOGIRSTA(MST=1 0 b=GS5TARIZ) ) *00ON/RF) 0, 0001
IF 1DT) 120s120002%
120 1Row2
G0 1o 138
125 IF [T+0T-1F1 1351304130
130 01=TF=T
TelE
60 To 140
135 TafenT

140 CONT InUE
IF (WFEJ).FO.1) GO TO 150
WHITE (602550 D77

145 CONTINUE
150 00 34% Jeglenn

==COMVEAT FEFT TO INCHES
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LT,

AoMAANOONONN

non

AnnOon oo

non

155
160
165
170
178
180

185

195

20%

215

22y

230

235

260
250

255
260

265

210

275

285

290

SLiLy=l2.o81 000

CIROE 15% 15919

INMODL (TH) 1801004265
INEOEEYT 180s«0ebec2V
(JRP) 170170410

e IR TR LTS LT

IFUP=, 0000010 191904265
(RET=1.) 2a0+280410%
m=m=e=e  UNPONDEDs WAININGs PLANE CASE
Flili=0,

BF (1.GE.Nn) wRITE (6edab)
JAPe]

CONTINUE

TOURCIN® (SO=SINTI1)i® 11 ,~ROCK)
CONeFMINIJI*TON

KRO(T120

IF (RST=1,) 200+,200+195
GPSERINeALOGIRST/IRST=],1)
OSTeQSTAR (T ) sRFOCT/ 00N

IF (GST-QPS) 200+205.205
GSTARITI=QSTARIT) « (RF*DT«51 10101 /G0N
GLEIIn0,

IF INP(J)LEQ.L) GO TO Jab

WRITE (IWHITE«3T0) QST+0QPS

B0 TO 3a5

ISINTIRDaR=]onK)

$* 108 IS VERTICAL ASYMPTOTE OF INFIL. DECAY CURE.

UOS IS WYPOTRETICAL INFIL UFPTH PARAMETER wHICH IS SET 50 THAT

THE INFIL CUNMVE PASSES TeRU KF(TPS) AT Telps,

NOTE OSTAR AND 905 ARE USED IN DEFINING INFIL DECAY TO CCRRECTLY A
COUNT FOR PERTONS WITHIN 1ME RAIN PATTERN oHEN RF .LT. INFIL.CAP.
(OTHERWISEs FOR SIMPLE PATIEANS WITh AF,GT.F+F [5 DEFINED BY T
AND TGS ALOME) o

m==s= CALCULATE TOST AND QO(1) FOR INFILTRATION DECAY CURVE

NRO() w2
TSeT/TON
BSTo{l.~ALF)/(RST=1,)189 (1, /7ALF)
005 (1) =0P5=D5T** (1. =ALF)-0DST
IF (OPS-0STAR(II) 21592154210
1P5eTS
TOS 1) = TPS=DST
QSTAR(II=GSTAR (L) «RF*DT /G0N
aL2ili=e,
GO TO 345
TPSutT-0T)/T0N
oPS=0sTaR(L)
TOSt11=TPS=0ST
Q0% (1) =0FS=DST** (1. =ALF)=DST
FCLuRST
80 To 230
TON=CIN® (SO=SINT LTI ® (). ~ROCK)
QON=FMINIJI*TON
TSaTATON

TLSe(T=0T)/TON
BFET=PSToSLIIN ZLT/FMINL)
IF (RFST=1.) 24Bec2be225
FOL= (1, =ALF I ZCOSTAR (1) =TLS+TOSIT)I =005 (1)) **GAn=1,

“=LET INFIL,CONTENUE AT MAK RATE

IF (RFST=FCL+1.E=74) 235+7304230

QSTAP (1 mGnS Tl (TS=1NS (1)) ®® 1], =aLF)aTS=105(1)
PN L, ~ALFIZqGSTAR (1 )=Toe TGS (11 =Q0S(T11%9Cansl,
BLA I rkF=FRInt ) *i, 58 (FUNeFCL)

80 TO Jab

OSTARIT I eQSTAH T« (HF=LT=S101)) /G0N

QL (D m=1,*(Sh11)/BTekF)

a0 TO J4%

IF (SLETI =0, SoFMINIJI®0T) 245,225,235
IF INROGT)) 2552554250
NRO(1)==]

RESET INTIAL SOIL WATEH 10 WEAK SATUMATION AT ZERD PRESSURE

SINT(1)®50-0.01
QSOCMEQSTAK ] b *Q0N
OSTAR(I) =0,

IF INPLJ}LEL) GO TD 260
WELTE (6e3e%) QSDEMS]

60 TO 260

==CMPIRICAL DRAINAGE FUNCTION

SINTEL)mSINTIR)®(lo=a02% (La=AST))®oDT
OLI(TI==51(1)/DT=,0001
80 To 148

==ThI$ SECTION 1S GEMERALLY NOT USED.. IT IS USED IF IMPEAV. PLANE
==0NTO PERV. PLANE
===as== SUDDEN PONOING SITUTATION

NeODEfI =2

JF INRN(L)) 2704270.300
NENI]) =2

IF (RF=FHIN{J) )} 2754275280
TOS(1)miT=-0T)/7TON
DELTS(1)=0.

Q05 (1) =QSTARII)

60 To 299

QPS=RINSALOGIRF/ (AF=FMIN(JII )
BSS#OSTAR(I1+RF*D1/TON
RATIO=QSS/QFS

IF (RAT]O=1,) 285+205.20%
PYSII =EMla=ALF )/ (RF/FMINGII =142 0 2% (], 7ALF)

wss=p= EMPIRICAL RELATION FOR DELTS/

PELTS(I)=OTS(I)®RATIO® (1./7ALF)

TOS(I)=1T=DT) /TON=CELTS (I
QOS(I)=OSTARITI=DELTS (1) *® (1, ~ALFI=DELTSII)
BELTS(1I1=DELTS 1) *TON

CLEALOGIDELTSII) )

TNETATON=TOS (]

DCF=DECK (TN«DELTSI(IN)

FCMuL, o0l a=ALF)/THo®ALF*0CF

IF C(FCM=04) FDCFela®iSIULI/DTHRFIAFMINGIN ) 2954295+290
GSTAR(I)#QSTAR(T) + (RFODT+S1 (1)) /GON
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c

ano

LT GG T, ooano

AAann Aann

295

o0
305

3lo
315

s
i

315
a0

s

a5

358
s0
365
e

365

11s

120

aL2ifi=o.

60 T0 Ja5

oTT=OT/TON

OSTARII I wQSTARCI) «OTToaTN*® (] =ALF)={TN=DTTI®® (] ,=ALF}
QL1 aRF=FCH*FEINIJ)

a0 To 345

CHECK TWIS ON HECESSION FROM PONDING

TR (T=0T)#TON=TOS 1)

IF (DELTSI1I=0.000010 310.310.30%
CONT I NJE

CLEALOGIOFLYS(IY)
OCH=DECF ¢ TL4DELTS (1))

&0 10 315

oCcF=1.0

CONT THUE
DENO=QSTAR(T)=TL=LCSIT)

1F (DENDE 275932754320

FCL=] o il o=aLF ) /ULNUSSGASDCF
IF (FCL=(RF=SItI}/LTIZAFwINT N
TSeT2TON=TO%11)

IF (DELTS(I)=0.80000)
PCFel,

00 To 340
DCF=DECF I TSDELTS (1Y)
CONT INUF
OSTARIIYsOSTRR(TLoDT/TONS (TS8® (], ~ALF)=TL OO (] ~ALF})
FONsl oo (lo=ALF) /(USTARIT) =T5=005(1)) **GAMSOCF
ALZCLI=RF=FMINEJI®0. 5 (FCNFCL)

CONTINUE

RF=RF/T20,

DELT=DEL Toa0,

DT=0T*e0,

TeTend,

TF=1r"an,

DO 350 [alokk
OLAI1)=aL2(T1 /720,

QSDIT1=0STAH 1) *00N

RETURN

AcSeIcHv 0

ERUTERLIEE LY

FORMAT
FORMAT
FORMAT
FORMAT

(UM s LBHOT (FHOM KPLINFRwoF §0.3:5K43HTn oF10,3)
i1xs10F10.5)

(ln SR 2IMTOTAL ACCUM INFILIIN.)=sFB,A+BHAT NODE «13)
(6H  QST=F10.5:5m OPS=4F10,5)

EnD

SLBROUTINE CHANNL (J)

COMMON 710/ [READSINRITE

COMMON ZCHTALZ MRESsNOPTyNTIME sKUNTTSoNELEsCLENSDELT NLOG (20

COMMOM /GEQM/ XL 200 +m(20) 450201 4R1(2010R21Z20)FMINI20)NLI20) NBY(

;::l;n?lzllunclliﬂl-u{!tiﬂ)-ntlsz(tﬁl-!LlZBl-Zﬂtlul-llzulpnllntzﬂio
(20

COMMON JEVENT/ TFINGNOQI (10004 TL(100)COBII00) «TOB(100) sNOeSUMRCH

COMMON ZPLANELZ MLISO! on2 (500 oQL (R00) o ELPHAISO) « PONER (SO TLIU0I 40

LU200) eMUR (1000 «DXaDT o INOER THETAw ANUSGRAVeNB 120 +Q5(500) +LEND+LENG

2SeLENMISLAOLL (501 40LE(SD)

COMMON /CHANS ALISO) AZISOIvQUBTIBOI +AUBLIODI +vCOLCO2vBeNT+NOTL

COMMONM /CIRC/ THI(S01« THZISU] «STNE (501 +SINZ 1501 «COS] 1501 +COS2(50)

ISINIACSINZAVCOSIACCSZA THUB IGO0 ) «DFACUFACD

COMMON /LANS/ ATURB+PTURBsALAMsPLAMSHTRANS s dTRANS

DATA BLANK/IH #

CALEULATE WK AND DR AND W]

NEEMARL (115 *XL(J)7CLEN) 3,1
IF INKLLE.LENHM]1) GO TO 10%
WRITE (IWRITE+280)
DX=XLEJ)ZFLOAT (NG =140
NE=IFIX(TFIN/DELT) =1

CHOOSE TURBULENT OVEHLAND FLOW RESISTANCE LAW
KRES=] Ok WHESSE.qeasoMANNING FORMULA
NRES=3 OR NHES=4 .0 CHEZY FORMULA

IF INRES.EQ.)«OF . NHES.EG.2) NHEST=]
IF TNRES.EQ3.0F (NHES EU, 4] NHESTa4
CALL RESLAW (NREST4u}

DO 369 Kalink

CALL QHOLAW (D«KiNREST)

CHECK TO 5[{ wHAT TYPE OF CRANNEL
I|¢l$ «THAPELUTUAL SHAPED CHMANNFL CROSS=-SECTION
CAS SCIRCULAN SHAPED CHOS=5LCTION
NCISE-J...IﬁRlaugnH SHAPLD CHOSS-SECTION

G0 TO (110+115+275)s NCASE(S)

COLEl /7RI oL/ 2L 1)

CO2%(bonl A CZRIJIPLIRIIIII®O0, S0 thavd o/ (2L IV LLEJIY 1 90,5
B=AT)

60 0 120

O=01AN L)

SUBROBTINE ADD RETUNNS W] TH UPPEM BOUND AMEAS (AUN) AND COMAINED
LATERRL InFLOW INTU CHAMMEL Je IF CranMEL IS A CIRCULAR CONDUITe
ADD RETUBNS WITH AND UPPEHM BUUND THETA ANGLE (TwuM! INSTEAD GF AHE
CALL m0D ()

IF 1ELEJ)) 2e5e2bbeldy

ROUTE TO COMRECT CHANNEL GLUMETRY

G0 TO (130.155:2751« NCASE(J)

TRAPAZOIDAL SHAPLD CHOSS-SECTION
CALEULAVE AWEAS AT EACH DX POINT FOM ALL TIME INCHREMENTS

L]
DO 438 KsluNx
ALIKI®0,0
0O 450 Le24NT
TeL)=T(L~1)+DELT
AZ (1) =AUBIL)
BT*DELT
EALL IMPLCT INKaJ)
DUNE (BOR+2,*A2 (NKI/COL18%0,5
WPLRIM= (DUM=R) #COZ+A*CO1
QL) =ALPHAINK) *A2 [N ) & #PONENR INK) /HPERTM®®(PONER INK) =1,
IF (NPLJ) LG L) GO TO da0
WRATE (INRETEI2BS) (AZ(K)oKalyNK)

48

fAann

fann

fanonon

140

14%
150

155

16

168

170
175

185
190

195
200

205
zle
215
220
225
230
235

240
245

25

“w

26

265

360

270
275

280
205
290

RRITE (IwRITE«290) LaTIL)aLoQuL)oLsOLIL)
B0 145 mslonm
AlL(KI=AZIK)
CONT INUE
CONTIMIE
G0 10 208

CIREULAR CONDUIT CramnEL

Tili=t,

Quli=s,

DY=DELY

DO tE8 Km]oNx
THE K.
SINl(Ki=D,0
CoSitki=l.G

CONTINUE

INiT=l

0o 7 L:z.u:

!ItllflLthD[L'
THECL) e THUB (LL)
BF ATHIG1) o LEL 0. U AND, THUB (L) oLESD.) 6O TO 165
SINLEDI=SINCTHI T /240
€051 (1)=SORT (1a=SINLILI®*SINLILM)
INIT=L
1F INPLJ)LLE1) GO TO 17O
WRETE (TwRITES2951 (THLIK) sx=1aNK)
WRETE (JwHITES290) LaT(L)sLa@il)sLeGLIL)
IF (INIT.EW,L) GO TO 178
CONTINUE
DO 200 LeINITen]
THZ I ) =THUB (LY
SINIARSING(THICIISTHZ(L) D2,
COMIARSUNT [l a=RINIA®SINIAL
NOOLwO
CALL [MPLET (NKyJ}
SINEESINITHZ INKD ]
IF (THZINK) JNEL0.) GO 1D 180
QiLi=0,
a0 10 18%
QIL = (Do (THZINK) =SINL] 78,1 **POMER (NK] 7 (D®*THZINK) F2.) ** IPUWEL [
NK} =1, ) SRLPAAINK]
IF INPiJ).EG.D] GO TQ 150
WRITE (IwHITELIG0) (IHZIK) sk ]ann)
WRITE (IwRITE«2%0) LaT(LIsLsGEL)aLsOLILY
B0 195 mnlohim
THlIR)mIHZ(K)
SINLIRI®S [N2IR)
COSLIKImCUS2IRI
QOMT INUE
CONTIMUE

HAS FINISHED PROCESSING THAUUGH TIME TFIN. STOME WYDROGRAPH IN @S
MEITE (IWRITESJ0S) JelL (2 eS{d)

GO 10 1210.215) « NCASE I

WRITE (IwalYE310) ZLIJVolMEJ) shi)
G0 10 220

MRITE (JWwRITE«315) Dlamiy)

G0 1O (225+2304235+2800 WRES
WRITE (IWRITE«2c0) WItJE

a8
TIWRITE«325) Rl1iJ)eH2ZMD)
.

(TWRITEJ30) RICJI«R20D)
245
(IMRITES325)
(IWRITEsJaD)
LASTHRaNB (1)
DO 250 NE®Z24NELE
IF INBIKE) «GToLASTNB) LASTNA=NH (NE)
CONTINUE
MBTHLASTNENT
IF ILASTNA.EQ,0) MBTx]
IF TMBT.LE.LENGS) GO TO 255
WRHITE C(IMAITE»JAN)
DO 268 L=)N]
WMEL=]
QS (MM+MBT ) =Q (L)
CONTINUVE
NB (U)EMAT
WHITE l:n:rz-:sn MBT i NB
GO To 27

R1td)
NC1EJIaNC2 (J) oNL LJY eNR L)

IF XL®0 WE MERELY OUTPUT THE ADDED UPPER BOUND DISCHARGE (QUB
WHIEH WAS CALCULATED IN ADD.

Tilr=0.0

Qtli=ouacl)

D0 368 L=2N1
TiLisTiL=1)DELT
QiLI=guaL)

CONTINUE
WRITE (IWRITE«DISS) J
wSlG=]

RE TUkN
STOP bbb

FORMAT (S3H AL+AZ+ALPHAAND POWEW NEED TO BE DIMEMSIONED LARGER)
FORMAT (1M o limAZ (Kelonk) e iSIIXeFT 400

FORMAT (SM Tiwldedmima IPEIZ.5e3XenH Qiel3e2Hine IPELZ2.Se 3Ny aH OL

TisI@dmi=elPELZ.5)

295
00
305

FORMAT (1M s1IMTHLIR=L oK) s 1SELIXaFT 40
FORMAT (1R LIMTHZ (K] oNK) 0 LS EIXFT, 40}
FORMAT (10XslOMCHANNEL NOs 14+ 10M PROCESSED /7552 2aHGEOMETRIC PARAM

LETERS  L=oFB.loAn  S=4F7,a710K, | JHCHOSS SECTIOW)

FOoRmaT (52

OHTHAPELOIDAL SHMAPE LEFT SLOPE=s+Fl.5+13H RIGHT SLOPE=

LeFTi%e3W AnsFE.2)

315
3zo
3z2s
330
135
340

IPLANE TOFRTIFICAT IUN

s
ase
355

FORMAT (SEsZ6MCTRCULAR SHAPE DIAMETER=+FB.5)

FOMMAT (1SKe ] IhMANNINGS NaoFS.3)

FOPKAT (15Xl IH4ANNINGS N=oFS.3912H LAMINAR K=eFB.1)

FORMAT (15X4BMCREZY CaaFbolvlen LAMINAK K=oF8.100

FOMMAT (15Xe9H CHELY Coafb, L)

FORMAT (10Rs2YHCHANNEL TDENTJFICATTUN NEL®=slasdH NC2maJa/I0 K 20H

NL=sl8sbH NH=s]4)

FORMAT (34M GS WFEDS 10 HE DIMENSIONED LAHGEW)

FOMMAT (SH MATRg [&v LUK InNE=sRUTAY

FURMAT (204 OUTHUT FOK ELEMENT of2s24H IS THE FINAL HYDROGHAPM)
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10

11
11

12

125

13

135

14

11

118

108

115
120

128

13

END

SUMROWTINE RESLAW (NHESsJ)

COMMOM ZGEOM/ XL 200 va {200 v50£0) sR1 1200 «RZI20) s FMINTZ0) oNLI2D) oNR [
1200 sNWE20) oNED 120) aNC2LE0) sMCASE 1Z0) oL (201 s dHIL00 oA (20D s DIAMLED) »
2Nk 200

CONWOM /PLANELY M1E50) sHZ(5U) vGLIEOU] sALPHA(S0) +PORER{SO) s TEIVD) 40
TEIO0) oHUBIIGO) oDX LT v INVERS IRETAwENUGRAVNE 12U ) s US (5000 +LENDLEND

ZSALENMLsL+OLL IS0 s 0LE (50}
COMMON FLANS/ ATUMB«PTUABs ALAMPLAM HTRANSQTHANS

Tr1S SURROUTINE CALCULATES Tmk VALUES 70 oE USED FOR ALPHALK) AND
POuERAN) In PEPTM AND DISCHAMGE CALULAT[UNS, Aluds asND PTuwd ANt
THE VALUES FASED ON & TUKBULENT OubwLAND FLUW SMOURL WHILE ALAM 4ND
FLAM BRE THUSE SASED OW A LAmINAA FLOW MODEL.
FOR NHES®].soCALCS, UMLY MANNTING TURHULENT FLOW WALUES,
NRES=2.0 o CALCS. HOTH MANNING TLMBULENT FLOW AND DARCY=
WIESUACH LAM|NAM FLUN VALULS.
NRES®)e oo CALCS, nOIH CHMELY TUMBULENT #LCw AND DARCY=-
WIESHACH LAM[NAM FLOW VALLES.
MRES=d .. CALCS. UNLY CHEZY TUMBULENT FLOW VALUES.
ALSO CALCULATED IN IMIS WOLTINE AWE TeE THANSITION POINTS FOR
CEPTH (HTRANS) ANB FOR DISCHARGE (GTHANS! wHIChn AHE THE VALUES
WHERE wF CrANGE FHUM TUMBULENT TO LAMINAM FLUW. FTUH NRES=1 AnD
NRES= HTAAKS AND UTHANS AHME MACE NEGATIVE S0 THAT THE PROGHAM
WILL ALWAYS OPERATE wiTH TUHBULEN) FLOw PANAMETEWS.

60 TO (105+105+10041100)¢ NRES
MANNING TURBULENT FLOW

ATUBBE (L A9/RLIJ) SIS III 00D, 5)
PIURB®S, /3.
G0 To 11s

CHEZY TURBULENT FLOW

ATURBERL (J)*S(J)*®0,5
PTURB®3,/2,
GO TO (135+120+1204135)% NRES

DAREY=WEISBACH LAMINAR FLOW

ALAMES (0] *8, *GRAV/ (ANUSRZ (J1)
PLAN®S,
G0 10 (125.130) 0 NRES-]

TRANSETONS POINTS FOR MANNING-LAMINAR

HYRANS® (1 A9CINUSEZ (J) /(B *0RAVERE(J)*S(J)**0,511%*0,T75
QURANS= (1,495 (J) * 20, 5onTRANS (5,73, ) 1 7RLTD)
60 10 la0

TRANSETION POINTS POR CHEZY=LAMINAR

HTRANS® (RL(J)SANUSRE(J)/ (B, *GMAVSS (J) #00, 5) ) 0*(2,/3.)
QTRANS=RIIJI*S (I * 90, 5onTHANS ] 5
60 To lae

FIX SO THAT OWNLY TURBULENT MODEL WILL BE EXPRESSED FOR NON=LAMINAR
MODELS. ONLYFOR NRLS=] OR MHES=4,

HIRANS==1,
ATRANSe=],
RETEORM

N0 :

SUBRONTINE CHGLAW (IFLAGK +NRES)

COMMOM APLANELS H] 1501 oH2IS0) sGLIRCO) s ALPHA (S0) s POWERISO) 4 TEID0) 40
U0OW) sHUBEIGO) o DX oL T o ENOEA S THETAwANU S GRAVoNB (€00 0 U5 (900) s LENGsLENG
Z2SeLENMLAL QLI (50) s 0LE15D)

COMMOM /LAWS/ ATURH1PTUHB s ALAMPLAMIHTRANS s UTRANS

THIS SUAROUTINE CHANGES MYDWAULIC PESISTENCE LawS (TURHULENT TO
LAMIHAR OR VICE VEWSA) AS DICTATED WY THE THAWSTION POINTS FOK
DEPTH AND DISCHARGE (HTHANS AND QTHANS) o

IF TIPLAG) 110+105:110
EeATURE

YapTuka

co Yo 115

KeALAN

YaPLAM

CONT I NUE
ALPHA (K) =2
POMER (K} =Y
RETuRN

EnD
SUBROWTINE UNIF (@vTaNINsUOsNI+DELT)
DIMENSION QiNINI s TININI s QUIND)

THIS SUBROUTINE TAKES THE VALUES OF @ AT THEIM COMRESPONDING TIME
CONVERTS THEWM INTO VALUES WLTM EQUAL TIME INTERVALS (UELT). ThESE
VALUES ARE STORED 1IN OU.

@ & INPUT DATA AHHAY

T & InPUT TIWE AMHAY

MIN = LENGTH OF O AND | ANRAYS

G0 = OUTPUT DATA AWRAY

MI = LENGTH OF QO

DELY = TIME INCREMENT

1sd

K=1

coiti®al

Toes,.

To=T10+DELY

IF [TUK).GE.TO) GO TO 118
KuKs

60 10 110

¥ BS(TIKI=TO) JLELLE=S) GO TO 125
HO UK=L} iTO=TIR=LIDAUTIRD=TiN=1))*(QIK}=Q(K=UD}

I=1s)

IF t1.GE.NI} GO TO 130
60 To 10%

QoITNmaIK)

60 Yo 120
QOI(NIL) =D ININ)

RETURN
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LaRalel fAan

annOn

SUBROWIINE [WMTHUB €X«FX«DERF)

COMMOM /CHAN/ AL(SO) sAZ(S0)+0UB(100) yAUBIE00) »COLPCOZvBaNTINODL
COMMOM /PLANELZ WI€S0)em2 (501 eGLILCOI v SLPHA IS0} «PONER (S0 4T (1000 42
100000 «HUB(I00) oDXyDT o INCEXs THETA« ANUyGRAY o8 1201 40515901 JLENGLENG
2SoLENMLAL+OLY 1500 e0LEISO)

COMMOM /CIRCS THLIS0) o TREISOI+SINE(S0] «SINZIS0) +COS1150) 2005215000
ISINIASSINZASCOSIACCOSZAs THUE (100) »DFACSGFACID

JeINDER

SINK=SINIX)

Rl=g«,000001

SIKX]I=SIN(R])

PHISPONER (LI =1,

FACI=ID/a 0 * 0l =SINKL/RL)

Fla= I*tFACI*®Pu])*D*0" (L1-SINK]} /0, -0UA LD
FaC I (1=SINK/R)

Fx= Li®(FAC**PMlI*0*0® (X=5INR} /B ~QUBIJ]
DER 1=FRI/.000001

HETuRM

EnD

SUBROWTINE IMPOCF (X+FX+DERFX)

COMMOM /PLANELZ M1 1501 & (%01 s0L LR00) yALPHA (S0 +PONER (S04 T1L100) 40
TC108) eHUR (ID0) oDXa DT o INGER ) THETA s ANUSGHAV o NE (201 +USI500) s LENTILEND
25sLENMLILIGLE150) sBLZISY)

JeINGEX

ALNTD

PrPOWER ()

PPEPOSLR (Jel)

PMlzp=|,

PEMYaRp=],

THeTHETA

“THETA

2HJlsX=HI LI =M LEIP LD

PHE]2,*0T/DXK)® (THY (ALPAA[JPLI®X®SPP=ALPHA L) ®HZ(J1ooP) +T1% (ALFHA (J
LPLISHEAJP L) #*PP=ALEHA [ J)*HE L) **P1)

PCoRTP(GL2(JIsOL2(SFLN)

FE=PALFRE=PC

DERFA®],# (2.,*01% (ALPHA(JPLI*PPOTHETA® (X**PFM1)} 7DR) )
RE THRAM

END

SUMROMTINE IWPCHA (X«FR+DERF )

COMMOM /CHAN/ A0 (501 +AZ 1501 +GUB100) »AUNI100) +CO1+COZvBeNTNOGL
COMMOM /PLANELS W1450) oHZ (501 sUL L100) oALPPA 150} «POMER (S0) 2 T1100) 40
OLOBI aMUB (L1001 sDXaDT s INDEL s TMET A ANUSGRAV A (£0) +US(500) sLENUSLEND
2SeLENMLLoGLL (50) UL 2(30)

DIMENSION DODA(Z2)
DODAFGT(ALsAsD1sDZ+PsPHLCI=AL® (AZD2) *=Pu]® (P~ (PHL®ASC/ (D1*D2)))
TFUNC (ByAREASCOLI = (B%H 2 YAREA/COL) *%0.5

CONSTANTS

IF 18sE0.0,) Ba,00000]
JuINDER

ceco2/c0l

IK=g*G0)

P=POWLR(1)

PelEp=],
PHZap=2,

CALEULATE DERIVATIVES OF THE DISCHMARGE EQN. (DQ/DA)

AREALIS (AL (J)eal(dsllbs2,

DUMELI=ZFUNC (BsAHEA L #CO1)

Dum2]® (DUM] ]l -8) *CO2e XK

DGOA(MI=DEOAFCT (ALPAA(L) «AREAL sDUML L sDUMZL s PsPMLSC:
AREAZE (Rea2iJ)) /2.

DUMLZSZFUNC (B AREAZCOLD

DUMB2E (DUM12-8) *COR2AK

DQDA (2)=DADAFCT [ALPHALL) JAREAZDUMIZ+DUMZ2,P+PH1+C)

CALEULATE SECOND DERIVATIVE OF DISCHARGE EQN wITH RESPECT TO X
{D2esRADX)

1IF TAREAZ.EQ.0,) GO TO 105
AZ/DUMZR)
ConpMZePM]# (], =RoC/ (DUMI2*DUMR2) )/ (2, *DUNER)
AC**PMISCOPML® (] ~AREAZ® (C+DUMZ2/(COL*0UMLE} ]/ (DUMIZ*DUMER)
1)/ (2."DUMIZYDUMEZ)
D2OBAXSALPHA [J) *ITEHML=TERMZ)
60 10 110
105 DZODAR=0,
110 CONTINUE

FINITE DIFFERENCE EQN. AND 1TS DERIVATIVE

Frm{AREAZ=AREAL) /(DT®2, 0« (TRETAZDX) *DODA (20 (X=AZ2(J) )+ (THETAL/DX) *
IDEDATEI® (AL (J* ) ) =AL (I I =0aS® (UL (L) +OLIL))

DERFel, 7 (2,*0T)+ (THETA/DX)* (DUDA (Z) +D2COAA® [X=AZ21J) )}
RETEAN

ExD

SUBROWTINE IMPCIR (X+FR+DERF)

COMMOM /PLANEL/ ML {501 sHZIS0) +0L 1R00) o ALPHA (501 s POVER (501471100140
NUSGRAY Y NB (20) v@5 15001 »LENGLENG

COMMON ZCTHES TRIESUI s TRZ1S0) o STNE (501 +5TNZ (500 +COS1 (5001 +C052(500
ISINYA#SINZASCOSIACUSZATHUBIL00) aDFACUFACSD

COMMOM #10/ IHLADs IWRITE

DIMENSION DADTHIZ) s DODTMIZ)

1F [X.€0,0,) k=0
ANGLZR® (XeTHL(UPL}) Fis
ANGL 10 (T (J) s THE (P11 /2,

ANBL2Os (ReTh21JV) 7,
SINTASSIN(ANGLEZA)
SInbanSING L)
SIN2O=SIN(ANGL2E)

COS2A=COS (ANGLIAY
€asiawcosi (J)

COSRO™COS (ANGL2G)
AREALORD*0® (ANGLIG=SINIUI /84



annn onn

AN NONN

ann

ann

1es
Lie

11
12

o

e
1%

185

110

115

120

AHEAZURDOD® (ANGLIO=51N2L) /B4
OAOTRiELI®D U® (1. =COSIA) /N,

DADTHI2V wDoD® (1. ~CuSZA) /R4

IF (AMGLIGWNELO.) WO 10 Jus

Facie=e,

GO T0 110

FACK=(Z. *AREALQ/ (ANGLIUD) ) "oPN]

FAC2= 12,2 aREA20/ LANGL /LD ) =oPu]

TERM] impogege (], =COSIUI /B,

IF TANGLIG.NELO.) GO 10 L1iS

Termld=o,

%0 T0 120

TERMI2=AREALQ*PH]ZANGLIQ

TEAMZLapepepe (|, ~COS20) /0.

TERM2I=AREA2Q*FM/ANGL2U

DODTH( 1) =ALPHA LJI*FACI® (TEA]L1-TERMLZ)

DEOYHIZ) wALPHAIJPL)*FACE* (TEQMZ I =TENMZ2)
FACI=FAC2*D*ANOL20/ (2, *AREAZD)

DADX=E*0* (] ,=C05%201 716,

DERIVEZ *DADX/ [D*ANGL20) ~AREAZG/ (ANGL2Q*ANGL2G=0)

TERMISFAC2® (PRD*0*SINCC/ 16, =PI *DADA/ANGLZG*AHEAZTEPH]/ (2, *ANGL 20
TANGLEA)

TERMZEFACI*PMI*DERTV® (TERMZL=TERMEZZ)

DEOGTR=ALPHA LI (TERML+TERNZ)

D2ABTX=DLeSINZAZ LS.,

FE2ULa/(2.%0T) ) *IDADTHIII®ITHZ I} @ THL [J) ) *DADTHIZ) ® CX=THI (JPI) 300
:D:Elllbl!.ﬂﬁnlnlilﬁll-Ih!{JlitlIl-—0!!5&IIOIJ'DGO'HGII‘:YHIIJFII-T
HltJ)h
DERF={1./(2.%0T)) # (D2ADTXS (X=TH1 (WP L)) +DADTH (2] )+ (DMEGA/DX} * (D2GOT
1X® (X=FHZ (1) +000THIZ))

SIN2IJI=SINZO

COS2(yImcosS2a

RETYRN

END

SUBAOMTINE IMPAUB (X«F X4 DERF)

COMMON /CHAN/ ALISO) vAZIS0)vQUBII00) +AUBLI00) sCOLCORvBINT W NOGL
COMMON /PLANELY HL 1501 sH2150) vBL(100) sALPHA(SU) yPONER (500 4T 1400+
10L00) sHUBLLO0) +DXsDT s INUER, THE TR+ ANUS GRAVANE 1200 19515000 s LENG+LENG
2SSLENMLL+QLYISO0) 4OL2 (50}

DGOAFGT (AL ARULADZ4PoPMLICI ALY (AZDE) S9PML® (P=(PHL*ASC/ (D1%D2) ) )
LT

KFLAG=D

JuINDEX

TF (X.EG.0,.AND.QUBIJ) EQuDs) QUBILJI=0.000000]

PePONER(1)

P =l

C=CO02/C01

DUM]=(B%B+2,%2/C0011 20,5

DUMZ= (DUM]=8) *COZ+H*CO]

FRRALEMALL) #X**P/DUMES s PR -QUB (J)

CALCULATE DERIVATIVE OF EAROR FUNCTION (DERF)
DERF=DODAFCT (ALPHATL] o X4DUML +DUMZ P« PH] A C)

DUE T0 MISBEMAVIOR OF ThE EWROR FUNCTIONM IN SOME CASES. THE FOL -
LOWINS CORRECTION OF X MAY ME WECESSARY FOR CONVERGENCE

IF TeuBtd=1) ,Eu.0.) GO TO 110

IF T0URIJI /S, GT.CUBII=11) KFLAGSE

IF trFLAG.EG,.0) GO TO 110

TF MOEMF LT, 0. AND.FR.LT,0,) 60 TO 115
WETURN

Ksge]o,

Wk ]

IF IM.6T,2) CALL EMHOW (6HIMPAUBY 104104010

60 Yo los

END

SUBROMTINE ADD 1J)

COMMON /107 IHEADsIwMITE

COMMON /CHAN/ A10150) 4 A2(H8)+GUBII00) +AUB (1001 +COLsCO2E«NTsNOAL
COMMON ACLNC/ ThLi%0) s TH2 (500 o STMEIS0) «STNZ1S0) o COS1 (501 4 COSZ (500«
ISINIAPSINZA«COSTACUSEA THUH (100) «DFACIGFACHD

COMNON /PLANESZ HLIS0) oR2 1500 0L 1F00) vALPHA (50) « POWER (501 4T (100040
T0100) sHUB(IO0) oDXaDT o INOE A3 THETAw KNUGRAV o NB (200105 (500) s LENQsLENG
2S5 vLENPI L UL L 1500 sQLZ (1500

COMMON /GEOM/ NLI(Z0) oW (200 o5(200 sRLL20)aRZ120)sFMINIZO) oML (200 oNRL
1200 oWV 200 oNCLI20) oNC2 (200 sNCASE (BO) o ZL 1201 o ZHI20) sA(20) 4DIAM(20) s
2nP120)

THIS ROUTINE DOES TwO THINGS 1) IT CALCULATES THE UPPER BOUNDARY
AREA FOR INPUT [NTO THE CHANMEL E@UTINE FOR CASES wHERE THERE 15 A
EITHER A CONVEWGING PLANE OR CHANMELS CONTRIBUTING TO THE UPPER
BOUNDARY OF CHANNEL Jewa2) [T ADDS TOGETHER ALL LATERAL INFLOW FROM
ANY CONTRIPUTING LATEHAL PLANES,

NOTE THAT THE IMOER (N! INM THIS ROUTINE IS ON TIME,

EXTERNAL [MPAUR s INTHUB
NOoL=]

NP A=NCHN
NUT=NU ()
NELTwNEL (4D
NEC2TENCZ 1)
DO 105 N=].NT
AUBINI=0, 0

CHECK FOR CONTRIB. ELEMENTS AT UPPER END AND SEND TO APPROP. LOOP

TNUT.NE.O) GO TO 115
INCIT.NELO) MCHNSNCHN+1
INCZT.NE.O) NCHN®NCHNS L
INCHNLEQ.0) GO TO 21%
TO (125413504 NCHW

CONVERGING PLANE AT UPPER END OF CHANNEL

IF INCIT NE.Q.OR.NC2T.NE.O) CALL ERROR (IHADDs14+Js0,)
IF INBINUT).EQ.0) CALL ERROR (IMADD+IS'NUT4D.)
HU=NE (NUT)
DO 120 NulyN]
MMEN=]
WUB (M) QS (MM oMUY
CONT INUE
NB(NUT) =0
NUT=0
60 Y0 a8

non

nAn

ann Nnon

fann

AaAfOON

125

175

14

170

175
lee

1858
%0
195

200 CaLL ERROR

205 MRLTE (IeBITF+255) JeDouMAXsNsQUR IN)
210 SToP 85%

ONE CHANNEL AT UPPER END

MEh@ ENCLToNC2T)
IF INBNCIT+1C2T).EQ.0) CALL ERRDR (IMADD15sNCIToNC2T40,)
00 130 K=14NI
PuEN-]
GUB (M) QS (M)
CONTTAUE
NB(NCLT+8C2T) =0
NC2T=0

G0 TO 145

Tud CHANNELS AT UPPER END

wleMA INCIT)
MIZeRAINL2Y Y

IF INRINCIT) FG.0) CALL EWHOR (IMALD«15sNC1Ts0.1
TF INBINC2T) .EGa0) CALL FHKOR [IMADDs 1SeMNCZTS0.)

PO 148 NeluND
MMEN- |
BUR (NI mOS (M1 oMM 205 (M2 onm)
CONTINUE
NH(NCITInD
NE(NC2TInD
NC2Ta0
NCIT=HC2T
NCHN=0
GO T0 1a%

CALEULATE NECESSARY UPPER ROUND PARAMETERS--EITHER AREAS OR ANGLES
VALUES ARE SOLVED FOR HY NEWTONS ITERATION METHOO.

GO TO (150417042100 NCASE(J)
TRAPEIOIDAL CASE == UPPER BCUND AREA (AUB)

1F TALGJY LEQ. 00 RETURN
AURTL )0,
1END=1S
XST= (QUB(2)*B*COL/ALPHACL) ) ®® (1, /PONERLL])
00 163 N=24ND
INDE R =N
IF (QUAIN) .EQ,0,1 6O TO 180
IF (R.67..000001) GO TO 155
AUB (M) = { (QUB [N) /ALPHATL) ) #12,%CO2%C02/C0L)*% (5% (PONER (LD =1,11)
1, /1,5% IPONER (1) w0, 00)
80 To 165
IF (XST.E0.0.) X5T=0,.001
CALL ITER (AUBIN) «FADERFASIMPAUBSXST-0,0001s TEND, TER)
TER=IER.)
(IER.EQ.D)
(IERLEQ.D)
IF t1ER.EQ.4) AUBIN) =0,
(IER.EQ.&) lEH=]
F (AUBIND LLT.0,0001) AuB(N)=0,
KSTwaUB (N)
00 T0 (165+085:1904195:2000s 1ER
AUB (NI =0,
CONTINUE
G0 TO 110

AUB (NI =D,
TEwm]

CIRCULAR CONDUIT CASE = UPPER BOUND ANGLE (THUB)

PI=ACOS(=1,)
DeDIAMLJ)
OFAC=ID/Z2,)1*%(0o=1./POWERILT)
CMAXSALPHALL)*P1D® (D/4.) **POWER (1)
1END=10
X5PePI/S,
THURtLI=0,
00 188 N

INDEX =N

IF (OUB(N).EQ,0.) GO TO 175

IF (QUBIN)Z) 0, 6T GUdIN=1)) XSP=5,%THUB (N=1)

IF (XSP.EQ.D.) XSP=PLl/b,

IF (QUBINIGT,.AMAK) GO TO 20%

QFACE (QUAEN) ZALPHA (L)1 #® (], /POMERTL) )

CALL ITER (THUBIN) +FToDERFT IHTHUBeXSP+0.005, 1END IER)

TER[ERS]

IF (1FR.EQ.Y) THUB (NI =D,

IF (1ER.FO.3) [ER=]

IF (IER,EQ.4) THUBIN) =0,

IF (JER.EU.4) JFRs]

IF (THUB M) (LT, 0.005) THUBINI =@,

ASPRTHUS (N)

00 TO (180 185+190+195:200) IER

THUR (M1=0,
CONTINUE
GO 10 240
CaLL ErPOR
CALL ERRGR
CaALL EPROR

NI

FIHADD 100 TEND D)
(IMACDe L Loyl
(IHACDs 1 3sme 0,
(300 i Teanld

CHECK FOR NUWHER OF CONTRIN. PLANES ON SIDES TO CORRE
LOOP, AFTER TWIS IS DOMEs METURN. il “

215 NRTsNE ()
WL ToL ()
IF INRT NEL0) NPAENPAS]
IF tNLT.NE.O) WPAsNPAs]

ONE SIDE LATERAL INFLOM OWLY

220 MENB(NLTsNPT)

IF [NW(NRT#NLT),EQ.0)
DO 22% weloN]

MHEN= ]

ALEND = (@S (MMe W) ) /RL ()

CALL ERROR (3MADD s 15+NRT4NLT 40,41

225 CONTINUE

NPA=Q
N (NLTsNAT) 0
NLT=0



AfRNODONAONRA A0Nn

annn

annnn

AaAMARA ANORND

230

235

240
245
250

€
255

NATaNLT
60 To 2s0

AOTH LEFT AND RIGHT LATERAL INFLOW

MA=NB(NRT)
ML= KEINLT)
IF INBINAT)EQ.0) CALL ERROM
IF tNBINLT) . EQ.0) CALL ERAOR
DO 228 N=lenl
MMaN=1
QL (NI = (05 (MMoMR 1205 (MMeNL] | ZRL 1)
CONTINUE
WPA=D
NBINLTI=0
NE (NRT)=NB(NLT)
NLT =0
NRTHNLT
60 To 250

(IHADD# 1S NRT 0,0
(IRAD0 15 NLT0.)

NO LATERAL INFLOW

DO 248 NelaN]
GL NI =00
CONT INUE
nCGL=d
FETUAN

FORMAT (/421 0s12001H®) 4/ SX/OHPIPE NO. +12415H WITH DIAMETER=4FT,3
v40n wAS EXCEEDED ITS FLOW CAPACITY OF OMAK=yIPELZ.Se/ 5Ky IZHOVERF

7L0w  CCCURRED AT TIME STEP +13+10M WITH QUB= s IPELIZ.S+/1Rel2U(LR%) s

ixy

END

SUBRCOMTINE TMPLCT (NEs1)

COMMLA /1G/ TFLEDsIwHITE

CORYON FONTRLS NHESoNOPT oNTIME sHUNTTSoNELE+CLENSDELToNLOG (20}
COMEON JGEQS/ XLIZ0) o (200 20200 9@L(20)9H2(20) oFMINI20) oNLIZ0T oNM(
202 NV IZ0FoNCLIZO) oNC2020) WNCASERZO) +IL (2000 4R 1200 o A(20) sDIMMIZD) o

LT LY

COMMON ZEVENTZ TEINGNOSWT (10004 TR L0014 QOHEIO0) a TORL100) ¢HO s SUMREH
COMMON /RLANE L/ ML TS0 o2 IN0) Gl ChOU) wALPHA IS0 ) s PUWERISO) o TIIL0) @
C1OR) HURLI00) 4 DXeDT INDF Ay THETAs KNUSGRAV NS (201 05 (500) s LENGILENG

ESsLENMLefLL IS0 1 GLZ 190

LT T

1e5
110
118
izo

125

130
135
140
145

150
155

COMSON FCHANS ALISOIsAZ 1501 »QUATLDO) JAUBCIN0) +CORVCOZvRoNT o NOGL
COMMOGN FCTREY TELISO o THEIST I oSTINEISO oSINZ %G oCO05)150) +COSZI500
CINIA NS LAAYCOLIACCOSEAs THUS L1000 s 0F BCHUFALID

COMMOM /) aws/ ATUHE P TP ALAMSPLAMsHTRANS s LTHANS

EXNTERMAL IWPOCH s [HPCHAS IMPCIH

DATA EPSwIENO/0.00Ule50/

LLLI LS |
CHECK To SEE IF PLANE OW CHANNEL

IF twil).EQ0.0) GO TO 180

“ae
PLANF CASE == ADVANCE TIME DEPTH I[MZ) IS SOLVED IWPLICITLY BY
HEWTON=S ITERATIVE METeON IN ITER. WOUIINE IMPOCF 1S THME
WHICH CALCULATES TmE FINITE DIFFEHLNCE EGN. USED BY ITEW,
THAT TeE CORRECT WESISTENCE LAw 15 CHOSEN EEFOME EACH CALL TO ITER
0O 159 JslenKm]

INBEA=Y

Jelmgs]

XST=H21J)

IF (X5T.EQ.0.) X5T=nltJrl)

IF (ML EJPL) LGT HTRANS 0R W2 1) JGT HTHANS) IFLAGSO

IF (HLIEJPL) LELHTHANS ORm2 1) sLELHTRANSY TFLAG=]

CALL CHGLAW (IFLAGsJPLsNHES)

ChECK FOR NEGATIVE LATERAL INFLOWs IF 504 CWECk TO SEE [F IT
1S SUFFICIENT TO DHY WP M2iJells IF SOs SET TO © AND CONTINUE.

QTEST=0.5%(OL21J1+TLZ(JPL))*DT
IF ICTEST,GT40.0 GO TO 105
CTEST=~QTEST

IF (OTEST.LT.HIIJPL)) GO TO 105
H2iJPll=0.

60 To 155

IF (J=1) 110+110s120

TF (H2il)enlt2)) 11501150120
n2iZ)=nTeaL2(2)

1ER=]

60 TO 125

CALL ITER (MZUJPL)+FRZsDERFHZ .y IMPOCF e XSTs, 00001+ TENDs IER01D.0)
JIER=JER=1

H20Je I mAMARL IO aH2Eda])Y

INTERPRET FPROR FLAG FOR TDO MANY NEG. TRIAL VALUES AS CONVERGENCE
AT ZERD. OMLY POSSIHLE DURING RECESSION PERIOD OF HYDROGRAPH AND
WITH KINEMATIC SHOCK CONDITION,

IF (JER,NE.¢) GO TO 140
BF (OLZ(J)+0L2TIJP11.GTW04) GO TO 140
IF (JPL.EQ.NK) GO TO 13%
00 130 JK=JP 1wk
IF (H21JK],6T.0.) GO TO 135

W2iJPl) =0,

80 To 15%

80 TO (1555275+150+285:3000s 1ER

M2 (JP11=H] (JP1) +OTEST

SRITE (1wRITE.310) J

80 To 155

WAITE (IwRITESIIS) JPLsTILI4]
CONT INUE
RETURN

CHEEX FOR TYPE OF CHAMNEL
‘GO TO (1652200 NCASE(]L)

TRAPEIOIDAL CHANNEL == SOLUTION FOR ADVANCE TIME AREA(AZ).

SINCE FOUTIME wiLL NOT COWVERGE AT JEWD AND SINCE THE ERROR FLAG
FOR TOO waANY CORRFCTED MWEGATIYE TRIAL VALUES 15 SET WHENEVYER CON=
WEAQENCE AT TEROD IS ATTEWMPTEDs THMIS EPPOR FLAG 1S PECOGNIZED AS
COUNYFRAGENCE AT [EBQ. FOH NO LATERAL INPLOw CALES (NOOL=Z) JEMO

51

no onn

Aanfn

Aaon

non

AN~

AONn N

non

165

170
175

185

190

205
210

CONVFEGENCE 15 POSSIALE E1THER REFGME HUNUFF WEACHES TWE CHANWEL
FROM AROVE CP OURING THE HECESSION PERIOD OF TME HYDHOGHAPH. IF
LATERBL INFLOw OCCURS (MOSLEL} THEN ZEHO IS OMLY HOSSIALE FOR

RECESSINON,

DO 215 JslsNKH]
INDERSY
FLa LY
15T=a2(4)
60 TO (17541700 NOOL
IF (aL{JP1) L EG.D.) RST=0,
CALL TTER (AZ(JPLI+FAZsDEWFAZyIMPCHASKST+EPSoILND+ TERS1000.)
TER=ERL
IF LIFA,FO.4) GO TO 1R9
1F (A2(JP11.E0.0.) GC 1O 180
IF (p21JPLILT.EPS) A21JPLI=0,
60 To 205

CHECK TO SEE IF ZERD vALuE 1S DUE TO PRE~ RUNCFF PERIOD OR YO
RECESSION

JPl=Je]
DO IBS JRwJP] ahK
IF (AL(JK) .GT.0.) GO TO 200
CONTINUE
60 To 120541901 NOOL

RUNOFF MAS NOT REACHED g1

PO 195 JU=JPLlelk
AZ1JJ)1=0,

CONT INUE

RETURN

RECESSION ZERO WALUE

AZiJPli=D,

80 To 215

60 TO (215+275+&804285:3000s lER
AZ0Je 1= 1RLIL) +OLIL=1)1%.5%07
WRITE (IWRITE+320) J

215 CONTINUE

RETURN

CIRCULAR CONDUIT CASE =~ SOLUTION FOR ADVANCE TIME THETA ANGLE
(Tn2)e WOTE THAT TWERE 15 MO LATERAL INFLOWs SO THE SAME CONDITIO
APPLY TO CONVERGENCE AT ZELRO AS DISCUSSED ABGVE UNDER THE TRAVEZO
NG LATERAL INFLOW CASE.

220 DO 270 JsleNEM]

225

23

240

2am

260
265
210

290

295

INDER®Y

Jel=gel

IF (THZ(J)+THLIJ) #THI(JPL) o NE. 9. GO TO 230

TH2 L P1)=0.

SiNla=0,

SINZ2i1JI=SINIA

CoSla=l,

cos2iJi=Cosla

60 To 270

CONTINUE

ASPETHZ (J)

1F IXSP.EQ.0.) RS5P=0.01

CALL ITER (TH2IJPL) +FTHZ+DERFTHZ s IMPCIR e XASP+0,0000) + JEND s TERsS.
] 28)

SINIA=SIN2A

COSIA=CNS2A

JER=TERs]

1F (TH2IJP]) LEQ.0.) GO TO 240

IF (JER=a) 2604235260

CHECK TO SEE IF ZERD VALUE IS5 DUE TO PRE-HUNOFF PERIOD OR FO RECES
S1OM.

THR ISP =0,
SINZIJ)eSINETHRIJ1 /72,0
COS2(J)wSQRTIL=SINETJI®SINZII))
SINIASINITHL(JRLI /2.0

COSLARSUNT (La=SINLASSTINIA)
80 To 270
JPis el
00 245 JK=JPLahK

IF (THLIJK) 46T ,0.) G
L +67,0.) Go TO 25%

PRE-AUNDFF ZERC VALUE

SINZiJiumo,

cos2iJ)el,

D0 250 JJeuPleNK
TH2 1ty =0,
SINZtJJ) =0,
COS2iudiml,

CONT INUE

RETUAN

RECESSION ZERD VALUE

THZLIP) I =0.
SIMIASSINITHL (JPL)#2,)
COSLA=SORT (L, ~SIKIA*SINIA)
SIN2iJI=0,
C0S2tJiml,
60 To 270
B0 TO (265+275+2804290+305) s [ER
IF (THZ(JP1).LT.0,005) GO TO 225
CONTINUE
RETuRN

ERROR RETURNS

CALL ERROR (SHIMPLCT+10+1ENDO,)

IP1=INDER#]

CALL EFROR (BHIMPLCTe11sIPLe04)

IPLl=INDEXs]

IF TiMlJ) JEQuMLtJel) ) JAND, (H2 - .

1 A L) HZLJIG6TL (HLEJI*QTESTII) 00 TO 148
1P12INDEX+]

I;; ;;:l 1) EQuALtJ*11) . AND, (AZ1D) AGTLIIOLIL=11+QLIL) ) *,5°0T))) 6O
CALL ERROR (BHEMPLCT+1341P1004)
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aAafOnNN Non

fann

anno onn

RETUAN

IPL=INDEXs]

CALL ERROR (BHIMPLET+174141P1)
TPImINDERS]

CALL ERROR (6HIMPLCT+164T01P1F
RETURN

FORMAT (2X425H NO POSITIVE ROOT AT Js s[3s/s LOXsZ4HHZ (Jel)omlidel
1ist@L)InT)H)

315 FORMAT (2X434M NEGATIVE DEPTH CALLED ZERD AT J= +12+3HAT +F10,241%

1M MIN. ON PLANE 120

320 FORMAT (2X423M NO POSITIVE HOOT AT Jsslds/e10Rs29MAZ(Je)i=10LI1) 0

ILt21 ST

EnD

SUBROUTINE ITER (XoF +DEHF sFCToXSTSEPSs TEND IER AMALR)

e . .
SUBRCUTINE [TER

THIS ROUTINE SOLVES GENERAL NONLINEAR EQUATIONS OF THE FORM F(X) =0
BY MEANS OF THE NEWTON 1TEHATION METHOD.

DESCRIPTION OF PAPAMETERS

X = RESULTANT RUOT OF FUUATION FiXisg

L = PESULTANT FUNCTION VALUE AT ROOT x.

QERF-RESULTANT VALUE OF DERIVATIVE AT ®WOOT X,

FCT = NAME OF THE EXTEHMAL SUBMOUTINE USED. IT COMPUTES TO
GIVEN APGUMENT X FLNCTION VALUE F AMD DEMIVATIVE DEWF, IT
PAHAMETER LIST MuSl BE KoF sDEMF
IMPUT VALUE wiHiCH SPECIFIES THE IMITIAL GUESS OF THE
RODT X,

INPUT VALUE WHICH SPECIFIES THE UPPEH BOUND OF THE EWAON
OF RESULT K,
MANTMUM NUMBER OF ITEHATION STEPS SPRCIFEED.

IST -

EPS -
1END=

§ER = RLSULTANT ERROR PARAMETER CODED AS FOLLOWS
W0 LRROR
N0 CONVEHGENCE AFTER [END ITEWATION STEPS
TERwZ = AT ANY TIEWATION STEP DEWMIVATIVE DERF wAS
EQUAL 10 ZEROD.
JEH=] = & mAS TAKEM ON A4 NEGATIVE VALUE S CONSECUTIVE
TIMES FOLLOWING COANECTION TO a4 POSTIVE wALUE.
LI L] Ll L

185

10
115

130

140
145

150
15%

PREFARE ITERATION

COMMON /10/ THEAD«IMRITE
1ER=0

NC=8@

k=XST

TeL=x

CALL FCT (TOLwF +DENF)
DX=F/PERF

E=xk-DX

NS GN=0

IF IDERF.LT.0.) NSIGN=]
TOLF=100.°EPS

START ITERATION LOOP

00 145 1=1s[END
IF (F) 10541554105

EQUATION 15 wOT SATISFIED BY X
IF (DERF) 1101804110
ITERATION IS POSSIBLE

IF X TAKES A NEGATIVE VALUEs CORRECT X TO BE mALF ITS OLD VALUE.
IF NOTs MAKE SURE NC=0 AND CONTINUE,

IF (%) 118e1200120
NCENCs |

K= (X+DE}/(1o#FLOATINCY)
IF (MC=51 L3S+1704070
NC=0

IF (X=EMAX) 13041304125
LC=LC.

Tul GoNuan

IF (LC-5) 13541350178
Lc=o

ToL=x

CALL FCT (TOL«FsDEMF)
MCE=0

IF (DERF,LT.0,) NCK=]
EF INSIGN=NCK.NE.U) GO TO 185
DX®F/DERF
A=X=DX
TEST OM SATISFACTORY ACCURACY
TOL=EPS
iF (ARSIDEI=TOL) la0elanelss
IF (ABSIFI=TOLF) 155+155+14%
CONTINUE
END OF ITERATION LOOP
60 TO 150

NO COMVERGENCE AFTER TEND ITERATION STEPS., ERROR METURN

1ER=]
RETURN

52

AaAnO Aann

noan

ERROA RETURN [N CASE OF ZERD DIVISIOR
160 1ER=2
RETURN
®RITE

185 (IWRTTES100)

FLAGGED RETUHN [N CASE OF § CORRECTED NEGATIVE X VALUES
170

TERH)
RETUAN

FLAGOED RETURN AFTER CONVINGENCE TO 6T, WAL VALUE OF X
175 lER=4
RETURN
180 FORMAT (17X:16HERROR STOP OM CHANGE OF SIGN IN DEWF)
EKD

SUBROMTINE EAROR (TSUBRsIe[VARSKVAR)

COWNON /107 IREADS IWHRITE

DATA JuP/18/

WHITE (IWAITE+200) T+1SUBRA

IF T(1.6E.1) . AND . (1.LE.IUP)) GO TO 10%5

WRITE (TwRITEs205)

60 T0 19%
105 GO0 VO (100wl 18el200125e0304 0090 0a0e a5 1504 155416001651 T0+1T7S100
12851900 1
WRITE (IWAITES215)
NRITE (IWRITE«210)
WRITE (1WRITEs225)
60 T0 195

MRITE (IWRITE+215)
WRITE (IWRITE«225)
WALITE (IWRITEs220)
60 To 198

BRITE (IWAITEL215)
WRITE (1wRITE«230)
60 To 19%

WRITE (1WRITE«218)
60 To 195

WRITE (IWAITEs240)
G0 To 195

WRITE (IWARITE245)
Go T0 1

WRITE [INRITES2500
60 To 19%

WRITE C(IWRITE.255)
GO To 198

WRITE (IWAITE+260)
GO To 19%

=RITE (IWRITEs265)
G0 TO 195

WRITE (IWRITE«2TO)
G0 To 195

wR1TE
60 To
wRITE
RETURN
WRITE (INRITE+285)
G0 To 195

WRITE (IWAITE+290)
GO To 195

WRITE
6o To
WRITE
WRITE
SToP

1vAR

IVARSKVAK

IVAR»KVAR
VAR VAR
IVARsEVAR
VAR
IVARsEVAR
IVARSEVAR
1VAR

1VAR

1var
(IWRITE2TS)
155
(IWRITE+280) IVAR
1¥aR
IVAR

(IWRITES295) IVARsRVAR

5
(IWRITEL300)
(IWRITE305)

IVARWKVAR

FORMAT (IMO«1320IH*)/Z711H ERROR NO. 135120 CALLED FROM sdb)
FOMMAT (ATHOEWAOR NUMBER Oul OF RANGE. CALLED F¥UM EMROH.)
FORMAT (SAW 11 APPEARS THAT WO VALUE WAS BEEN INPUT FOR THE VARIAS

M L)

(16HODATA CARD EHROR»/ )

220 FORMAT (5Em T APPEARS THAT NO VALUE HAS BEEN INPUT FOR THE VARIAB
ILE #AB+30n FOA WATERSHED ELEMENT w[THW Jmel3)

225 FORMAY (79H AT LEAST UNDER THE CONDITIONS SPECIFIEDs INPUT FOR THI
15 VwARJABLE 1S REQUIRED.)

230 FORMAT (34M THE VALUE INPUT FOR THE VARIABLE »ABT9H IS ILLEGAL. T
IMIS VALUE OW ARRAY ELEMENT SUBSCRIPT (IFVARIABLE 1S AN ARRAY) [5 »

214)

235 FORMAT (96H APPARENTLY ALL WATERSMED ELEMENTS WAYE NOT BEEN ASSIGN
1ED 70 THE ORDER OF PROCESSING ARRAY NLOG.e/sllW THERE ARE o13.]9M
ZELEMENTSyBUT MLOGIvI3saMi=0.)

240 FORWAT (A2W DATA CARDS FOR GROUPS IST AND ZND ARE FOR TwQ DIFFEREN
AT wiS, ELEMENTS. ON 15Te Jeel3alaM AND OM 2ND J=+13)

245 FORMAT (11¥ ELEMENT J=s 134534 HAS BEEN SPECIFLIED AS AN ADDER CHANM
JEL  (XL=0.) BUT IS NOT THE LAST ELEMENT TO HE PROCESSED.)

250 FORMAT (1IH THE ARRAY +45+33n [S REQUIRED INPUT ON GROUP CARD +ABs
14TH o APPARENTLY [T [S MISSIMNG FROM THE DATA INPUT)

255 FORPAT (11K FOP ARRAY +ASel6H EITHEW ELEMENT #13+55H IS ILLEGAL (=0
1a) OR THE ENTIRE ARRAY HAS NOT BEEN INPUT)

ZGClﬂ:ﬂlﬂ (4TH THE NUMBER OF GEOMETRIC ELEMENTS EXCEEDS 20.

tlH=]

265 FORMAT (22H NO CONVERGENCE AFTER «]4+17H ITERATION STEPSw)

2T0 FORWAT (18w DERIVATIVE OF X(sldsbH) = 0,)

275 FORPFAT (1TH BLANK CARQ READ.)

280 FORFAT (92W 5 CONSECUTIVE NEGATIVE VALUES wERE OBTAINED FOR NEW VA
ILUES IN THE ITERATIVE SOLUTION OF X(e]3simi)

z.sl:oaua1 (9H ELEMENT +I2.40H HAS & PLANE AND CHANNEL(S) AT UPPER END

wlH=s110

290 FORWAT (9M ELEMENT <I3+27H HAS NOT BEEN PROCESSED YET)

295 FORMAT (86M CEMTRAL INTERCEPT ANSLE CALCULATED 10 BE &T. 2PLs INWP
ILYING FULL PIPE FLOW IN CONOUIT«13+8M AT Kisl2slw))

200 FORMAT (2TH AREA OR DEPTH ON ELEMENT +1216H AT R(sI2042H) IS CALC
LIULATED TO EXCEED MAXIMUM ALLOWED )

305 FORMAT (IHO+13200H®))

END
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with a surface routing model, based upon a kinematic cascade

of planes and channels to constitute a watershed model.
Relationships are developed to compute flows by the kinematic
approximation in channels of circular cross-section for routing
through storm drains. The infiltration model is tested on some
infiltrometer experiments; model parameters are estimated from
measured data and by comparison to characteristics of soils used
in a previous study. Two types of flow resistance relationships
are considered: the Chezy formula and a friction relationship
that is initially laminar and then becomes turbulent (Chezy)
above a transition Reynolds number, The watershed model is used
to compute discharge from: a) a 0.6 acre impervious experimental
rainfall-runoff facility, b) a 27 acre experimental agricultural
watershed, and c) a 165 acre urban watershed.
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through storm drains. The infiltration model is tested on some
infiltrometer experiments; model parameters are estimated from
measured data and by comparison to characteristics of soils used
in a previous study. Two types of flow resistance relationships
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A computer program of a general kinematic watershed model
is described and documented. This program, called KINGEN 75
may be used to predict hydrographs of individual storms for
small rural and urban watersheds, based on basin topography and
field measurements of infiltration parameters.

Reference: Rovey, Edward W., David A. Woolhiser and Roger E.
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(July 1977), A Distributed Kinematic Model of Upland Watersheds.
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