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ABSTRACT 

A model for description and generation of new samples of intermitt ent daily precipitation series is de­
velop~d. The basic assumption is that precipitation is a r esult of truncating a non-intermittent process. 
Clas~1cal ~ethods for modelin~ the time dependence in this latter process can then be applied. The univariate 
n~n-1nterm7tte~t process perm1ts then an extension to multivar iate case. Specific tests, related to stationa­
rlt~ and t1~e ln~ependence of the process, are formulated. The model is tested on series of several precipi­
tatlon stat1ons 1n USA. Results have been found satisfactory. 

Another model, in this case for the descri ption and generation of new samples of daily streamflow, is also 
~ev~l~ped. The basic_assumption is that the rising and fa tling limbs of discharge hydrographs can be modeled 
1n~1V1dually as two d1fference, intermittent processes, also physically different. The r ising limb process is 
ma1nly due to factors external to watersheds. It i s modeled similarly as the intermittent precipitation process. 
The falling limb is conceived as governed by regularities of water outflow from watersheds , with the watershed 
storage and outflow represented by two linear reservoirs. A sequence of r ecession flows is then a s t ochastic 
output from these two reservoirs. The model is tested for a case study. Results are satisfactory in repro­
ducing the combined process. 

FOREWORD 

Hydrologic time processes have been classified for practical purposes as continuous and intermittent. Most 
climatologic and hydrologic time processes are continuous series, meaning that t here is a non-zero value of t hat 
variable at any time. Instantaneous precipitation, evaporation, sedimen~ transport in rivers, some runof f (usu­
ally on small rivers with negligible underground or surface· water storage) represent the typical hydrologic 
intermittent time series . For some times the observed values are zeros ; for other times values are greater than 
zero . Though there may be a continuous flux of water molecules through the liquid-gasous or solid-gasous inter ­
phases on the cont inental areas, with a difference in the number of molecules passing in two directions, the 
original concept of precipitation var i a ble was designed in such a way that the process of instantaneous or short­
interval precipitat ion is intermittent . 

In practice, many intermittent processes , with po~itive series values for some time intervals and zero 
values f or the other time intervals, are observed as totals for given time intervals . usually counted in minutes, 
hours, days, or a longer interval . Therefore, a sequence of i ntervals with values greater than zero is inter­
changed with intervals of zero values. This i s the way how many observed or computed time series have been pro­
cessed and their data published. A large amount of available data of th is type makes it necessary to design 
methods most feasible for their investigation and mathematical description that would permit the simulation of 
th~se intermittent series by the data generation methods. 

Because of spatial interrelation for most of the climatolo~ical variables. the resulting hydrologic varia­
bles such as precipitation, evaporation. sediment tran~port, runoff of small rivers, and similar variables may 
all have intermittent series that are arso spatially dependent . Solutions of practical water resources problems 
require data on time series either at a point or at a set of points . When a point ser ies is studied independently 
of time series at the other points . methods are already available for the description of these intermittent series 
in the form of mathematical models and the estimation of their parameters . The classical approach to the uni­
variate (or point) , intermittent time series is to first describe the process by such random events and their 
time process as the sequence of zero and non-zero interval s . The difficulty i n this approach arises from the 
fact that nearly all the parameters, especially the interval mean, standard deviation and autocorrelation coef­
ficients (and sometime the skewness and kurtosis coefficients). nre or may be per iodic . To avoid the difficulty 
of this combination of periodicities and inter mittency, an approach to analys is starts by dividing the annual 
cycle into the seasons and the daily cycle i nto its parts , with an assumpt ion that all the parameters are con­
stants inside these intervals. This assumption requires the break of cycles into a relatively large number of 
seasons or parts, in order to justify it. 

When the problem of generating new samples by using the Monte Carlo (experimental statistical method) is 
posed in hydrology and water resources, with the generated data to preserve both the t ime and space properties 
of random variables involved, this problem becomes that of a mathematical description and that of the generation 
of new samples i n case of periodic-stochast ic , intermittent time series . Both the periodicity in parameters, 
and the fact that the non-zero values occur at some space points while the zero values are not observed simul­
taneously at the other point s , create difficulties in generating new samples of multi-point intermittent t i me 
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series . Attempts have been made to apply the combinatorial analysis and Markov chain~ in order to ~enerate 
simultaneously the series of 2- 3 stations, by generating fi rst their zer o and non-zero intervals, and then by 
preserving both the space and time dependences within the non-zero intervals . Researchers following this ap­
proach have been able to simulate only 2-3 station series. For more t han four ~tations. the combinatorial 
approach becomes so complex that it is then difficul t to extend it to cases of five . six . and more intermittent 
time series. 

The generat ion of multivariate time series, which are per iodic, intermittent and also stochastical l y depend­
ent both in time and space, can be best accomplished by using the approach of the multivariate normal distribution 
and the principal component analysis. It seems logical to precede in that direction also for variables which 
have asymmetric probabili t y distributions and periodic-stochast ic, intermittent time series. When a multivaria­
ble process is found to be periodic-stochastic, intermittent, non-normal stochastic process. difficulties arise 
both in mathematical description and in generation of new multivariate samples. When it becomes feasible to 
study intermittency by assuming it to be a truncated process of a non-intermittent time series, by removing 
periodicities in parameters, and by transforming the original variaoles or their residuals into the normal varia­
bles, then the principal component analysis for the generation of new samples becomes a feasible and very de­
sirable approach. 

The Ph.D. dissertat ion by Jerson Kelman. entitled "Stochastic Modelin~ of Intermittent Daily Hydrologic 
Series" (1976), and the Ph.D. dissertation by Clarence Wade Richardson. entitled "A Model of Stochastic Structure 
of Daily Precipitation over an Area" (1976). represent attempts to mathematically model the multi-series pro­
cesses and to generate the new multivariate samples of periodic-stochastic , intermit t ent time ~eries of daily 
precipitation as asymmetrically distributed random variabl e. As shown by the first dissertat ion . also the non­
intermittent daily runoff series may be conceived as two intermittent processes, with variables transformed to 
normal distributions. Daily series are selected as typical examples of the short-interval time series. The 
basic approach is then in postulating that an intermittent time series with short time interval is only a trun­
cated process of a non-intermittent, descrete time series. Basically. it is as sumed that the probability distri­
bution of non-zero values of an intermittent time series is only a tail , or a part of, either a truncated normal 
distribution, or a truncated other distribution, such as gamma, lognormal and similar . Therefore, techni ques be­
come needed for estimation of properties of a non-intermittent process from a periodic-stochastic, intermittent 
process . Techniques are further needed for the transformation of original variables or of their stochastic re­
siduals in such a way that the periodic-stochastic, intermittent process of an asymmetric variable becomes only 
the truncated part of a normal distribution in case of the non-normal distribution of variables . The above two 
doctoral theses, one more tilted toward the theoretical and the other more t oward the practical side, are the at­
tempts to implement the above concepts by postulating the mathematical models and by estimating parameter s of non­
intermittent time series from the original, intermittent series. Once the properties of the non-intermittent dis­
crete t ime series are estimated for each point of a multi-point set of series , it t hen becomes feas1ble t o ap­
proximate closely by transformations their multivariate non-normal distribution by a multivariate normal di stri­
bution. From it then the periodic parameters can be estimated by fitting a set of harmonics in the Fourier ana­
lysis , and the periodic parameters appropriately removed from the series . The remaining stationary stochastic 
components may be either dependent or independent time processes. For a dependent process, linear dependence 
models can be inferred and their parameters estimated. This permits the computation of the independent identi­
cally distributed residuals, as the time independent stochastic components (TISC-variables). Once the series have 
been reduced to a set of normal, t ime independent, identically distrib~ted stochastic processes, their spacial lag­
zero correlation matrix enables a transformation of this set of series t o their principal components , as a new 
set of space and t ime independent normal process. To generate the new samples of multi- point series, the normal 
independent samples are generated for each point and the reversed procedure applied on these time and space 
normal independent processes . Further transformations of reverse order produce the periodic-stochastic, non­
intermittent process at each point. They preserve then the space dependence, periodicity and time dependence. 
By equating each negative value with zero , t ho multivariate, periodic-stochastic truncated (or intermittent) 
normal process is simulated by a set of new samples. Var iables are t hen transformed from normal to the corres­
ponding · non-normal distribution. 

The writer of this Foreword is convinced that the approach outlined above , and studied in this paper . for 
the generation of new samples by using the Monte Carlo (or statistical experimental) sampl e generation method 
is a feasible , practical method to model a set of periodic-stochastic . intermittent. time and space dependent 
series . 

The other problem invest igated by Dr. Jerson Kelman in this paper is th~ difference process applicable to 
the non-intermitt ent descrete time series , such as the non-intermittent daily runoff series. It is assumed 
that whenever the flow increases for a river the response of the river basin is different from it s response 
dur ing the river flow decrease . Therefore, the process could be divided into two separate but interconnected 
intermittent processes: the positive intermittent process as a difference process during the runoff increase, 
and a negative intermittent process as another difference process during the runoff decrease. The two differ­
ence processes, each considered as an intermittent process . are then combined to become a non-intermittent 
pr ocess. 

Further research into the application of the above concept of considering the intermittent processes at a 
set of points along a l i ne, over an area or across a space as the truncated processes of the periodic-stocha­
stic, non-intermittent processes, is needed to sharpen the practical aspects of this method for the generation 
of new series. 

February 1977 
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Chapter 1 

Introduction 

1-1 Needs to Simulate Hydrologic Processes 

The need for generating hydrologic sequences in 
the study of complex water resources problems is 
recognized by many hydrologists. It does not mean 
that this so-called experimental (~~nte Carlo) method 
needs to be applied in every or most hydrologic pro­
blems. One should use an anlytical solution whenever 
availabl e r at her than any other method. Unfor tunately 
such explicit solutions are rare. Usual l y the 
way to extract probabi listic information about the 
performance of a system is to determine its response 
or output to a set of new hydrologic sequences obtain­
ed through simulation. 

2-2 Obj ectives of the Study 

This study is devoted to a development of a model 
for generating of sequences (samples) of daily preci­
pitation and anot her model for daily streamflow 
sequences. 

The precipitation is assumed to be a filtered 
realization of the first-order, linear, autoregressive 
stochastic process. Figure 1-1 i llustrates this 
filtering procedure. It wil l be seen i n the ensuing 
chapt ers that the resulting Xt -process is not only i n­
termittent but also it possesses a mechanism t hat en­
sures the persistence in data. Furthermore, the set 

Figure 1-1. Representation of the Intermi ttent Model. 

of positive outcomes can be accept ed as drawn from a 
highl y skewed marginal distribution. These character­
istics are qui te relevant to the time series studied 
herein. (~t} are independent random variables with 

standard normal distribution; 

{Zt} being Zt = JJ + p(Zt_1-JJ) + ah-o2 
tt; {Yt} 

being Yt = Zti(o,oo)(Zt); {Xt} being Xt= Y~/a; I(o,oo)(· ) 
is the indicator function; and JJ , o, o, a are 
paramet ers . 

The streamflow record, q(t ) , is analyzed 
according to its increments q(t)-q(t -1). The posi­
tive sequences of these increments are model ed differ­
ently from the negative ones. This approach is intend­
ed to bring forth a model that takes into 
consideration the diversity of physical factors that 
pr oduce streamflows . The posit ive increments, pro­
duced mainly by spel ls of surface and sub-surface 
f l ow, are characterized by a weak persistence. The 
negative increments are the consequences of the wat er­
shed retention and outflow process , and therefore have 
a strong persistence . The sequence of positive incre­
ments has the same form as the precipitation process, 
because t he surface f l ow may be considered as a 
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s 1 ightly filtered rainfall. The sequence of negati vc 
increments is obtained by assuming that the recession 
discharges are a stochastic output of two linear 
reservoirs. In this model the sequence of positive 
increments and the sequence of negative i ncrements are, 
respectively, the r ealizations of maht~ and Atav~ 
stochastic processes. 

The model is designed for rivers with runoff 
predominantly produced by rainfal l. Care is recom­
mended when it is used under different conditions , say 
when snowmelt is a significant input to streamflow. 
No attempt is made to route the rainfall excess to end 
up as the streamflow. In f act, these two processes 
~re dealt with separately. 

Time intervals shorter than one day are not deal t 
with in order to avoid the complexities resulting from 
the diurnal variations in the pr ocesses. Nevertheless, 
techniques are available in the literature for it by 
breaking down the daily values int o hourly val ues. 
One of these wit~n-the-~v periodicit ies are found to 
be not significant , there is no conceptual i mpediment 
for the use of the models presented herei n for modeling 
processes on a 6~n-o6-the-day time interval . 

Meteorological factors related to the precipi­
tation process, for example cloud type, temperature, 
winds, humidity, etc. , are not considered. The 
observed record is examined merely as a realization of 
the stochastic process. No physical explanation of 
precipitation occurrence can be derived from t he 
statistical description of the observations presented 
herein. 

The precipitation model was conceived as 
reproducing (in a stochastic sense) processes with 
s ignificant time persistence . No claim is made on the 
goodness of fit of t his model to various types of 
precipitation. 

l - 3. Needs for the Use of Daily Series 

The use of models to model and generate the annuU 
and/or monthly sequences is already widespread in 
hydrology. In many situations, when a large scale 
project is involved , further refinement of the time 
scale becomes an exercise in futilit y. However, in 
many hydrologic studies the use of series of short 
time intervals is required. For example, Beard (1968) 
stated that "although fluctuations of flows wi thi n a 
month usually have minor i nfluence on r eservoi r 
storage required for conservation purposes, such fluc ­
tuations are ordinari l y crucial i n the determination 
of reservoir space requirements f or flood contr ol." 
The optimization of a system involving a ~n-o66-the­
~v~ hydroelectric power pl ant is another example. 
In fact, Pfaehl er (1933), referring to duration curvES, 
said that " ... the monthly curves were used as a basis 
in arriving at the estimated power output, and check­
i ng the figures .. . by the use of daily streamfl ow re­
cords, the results thus obtained sometimes differed 
as much as 35% to the disadvantage of the project." 
In the 30 ' s the difficulty in handling the prodigious 



amount of daily data justified using the monthly 
values. In the computer age this is no longer the 
case. It should be pointed out, however, that the 
shorter the time interval of the series to be studied, 
the more difficult it is to develop a generation 
scheme. It is understandable that time series with 
long i ntervals, say annual streamflow , b~ behave 
than those with the short interval, say the daily 
streamflow. 

1-4 Needs to Model Precipitation Process of Short 
Intervals 

The needs for developing a reliable model for 
daily strea.flow is in general accepted. However, 
with respect to the precipitation process,a discussion 
on its needs seems to be appropriate. First, a 
precipitation time series is mostly homogeneous, a 
property not always found in streamflows . The latter 
is frequently affected by man-made structures, while 
climate is in general stationary. 

Second, the generated rainfall samples can be 
used in deterministic models which route rainfall 
through the 5everal phases of the land segment of the 
hydrologic cycle. These models implicitly assume that 
the stocha.sticity of the streamflow process is due 
only to rainfall and potential evapotranspiration, 
which is equivalent to stating that the stochasticity 
imbedded in the watershed is integrated in such a way 
that it yields mean values. These models may be used 
to predict 110difications in the streamflow due to 
changes in the watershed (for examples, the urbani­
zation) without modifying the generation model for 
precipitation. Whether the accuracy and the physical 
meaning of deterministic models is sufficiently high 
to assure the reliable samples is a question which 
cannot be answered in the text. Riviews of various 
philosophies in this approach, as well as a closer 
examination of some of these deterministic models, 
may be found in Flemming (1975) or Brown et al. (1974) 

Third, many btack-bo~ techniques are available 
which connect runoff to rainfall. It is conceivable 
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that due to the better quali ty and quantity of rain­
fall data one may choose to face the uncertainty in 
the transfer function, rather than generati ng new se­
quences of streamflow from the unreliable historic 
records. Regional studies may fit these conditions . 

Finally, generated rainfall sequences may be 
important by themselves, and not merely to be used to 
produce streamflow sequences, as would be the case in 
water resources systems which involve the irrigation 
and urban drainage. 

1-5 Outline of Chapter Contents 

Chapter II gives a brief survey on the state of 
the art of modeling as related to the present study. 

Chapter III presents the conceptual framework for 
modeling the intermittent processes. An i ntermittent 
process is such that tpero is a positive probability 
that an observation is equal to a constant. For ex­
ample, daily rainfall is such a process, since there 
is a finite probability that at any given day no rain­
fall would occur, i .e., that the observation is equal 
to the constant, in this case the value of zero. 
Similarly, daily streamflows of small rivers may have 
zero flows between floods; therefore, they satisfy the 
definition of intermittent processes. 

In Chapter IV the developed model is tested 
whether it reproduces the major statistics of the 
rainfall process, either univarite or multivariate. 
Periodic functions are used to account for the sea­
sonal variation of parameters. 

In Chapter V a model for daily streamflow is 
presented. It uses the dual approach : positive in­
crements of streamflow are represented by an inter­
mittent process which is different from the one 
related to the negative increments. 

Chapter VI presents concl usions and recommenda­
tions for further studies. 



Chapter II 

Brief Review of Models For Daily Rainfall and Daily Streamflow 

The first part of this chapter includes a de~ 
scription of mathematical models used for the precipi­
tation process. The second part does the same thing 
for the streamflow process. No attempt is made to 
report about all the efforts and contributions made on 
this subject; only those that are designed for daily 
data and/or are relevant to the present study are men­
tioned. For a broader perspective on the topic of 
stochastic modeling on hydrology the interested reader 
might consult , for example , Yevjevich (1972), Lawrance 
and .Kottegoda (1976), or Clarke (1973) . 

2-1 Models for the Precipitation Processes 

One o6 the 6-i.lut thought!. on the 1.u.bject. One 
should start with recognizing the fact that most 
records of daily rainfall have large numbers of zeros . 
They can be conceived as the realizations of a non­
negative, intermittent stochastic process . As a first 
approach to the problem of modeling such a process, 
one might consider that a good fit would be obtained 
by a mixed distribution, with the probability mass 
concentration. p{O<p<l) at the origin of x ~ 0, and 
a continuous probability density distribution, 
(1-p)f(x) for x > 0. Alternatively, one could lump 
all the values which are smaller than a small value 
6* (including the zero), and fit a continuous distri­
bution for x > 0 in such a way that P (X<6*) • 
6* 
f f(x) dx is close to the relative frequency in the 
0 

interval [0,6*). Das (1955) made o* = 0.05 inches 
and applied this method for the Sydney rainfall data 
from October 17 to November 7 for 94 years. He used a 
truncated gamma distribution to fit the values larger 
than 6* , and obtained good results . Unfortunately, 
the approach is not powerful enough to satisfy the 
needs of stochastic hydrology.. As it will become 
clear in the following subsections, a general model · 
should have the capability to cope with these subjects: 
(i) the non-stationarity of the process, (ii) the time 
persistence of the process, (iii) the expansion from 
the univariate case to the multivariate (several rain­
fall stations), and (iv) the extreme events {the model 
shoul d be able to reproduce the flood causing type of 
events). 

Statio~y. It is conceivable that if Das 
{1955) wanted to model not 22 but, say. 100 days he 
could have analyzed five periods of 20 days each. This 
is the so- called 4ea40n approach to the obviously non­
stationary hydrologic time series with discrete series 
intervals shorter than the year. An abrupt transition 
between the last day of season i and the first day 
of season i + 1 may not be acceptable. Therefore, 
some hydrologists use the continuous variation of 
parameters along the seasons of the year, creating 
thus a smooth representation for changing parameters 
for non-stationary processes. The season can be as 
short as one day, though it may not be advisable 
because of an increase of uncertainty in the estimatio~ 
Most of the rainfall models use the seasonal approach. 
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Todorovic (1968), Verschuren (1968), and 
Todorovic and Yovjevich (1969), attempted at obtaining 
the explicit expressions for distributions of some 
functionals of a hypothesized continuous and instan­
taneous rainfall process, rather than develop a model 
oriented to generation of samples. In the l atter 
reference the year was divided into 28 seasons, each 
13 days long, and the following functionals were 
studied; (i) the number of complete storm events in a 
given time interval, (ii) the maximum number of storm 
events , with the total precipitation which does not 
exceed a given amount, (iii) the end times of storm 
events; (iv) the total precipitation for a given number 
of storm events; (v) t .he total precipitation for a 
specific storm event; and (vi.) the total precipitation 
during a given time interval. A storm event was 
defined either as an uninterrupted period of rainfall, 
or as a day (or an hour) with rainfall. An assessment 
of the sensitivity of final results to these two 
interpretations of uninterrupted period was estab­
lished. Assuming that the number of storm event.s in a 
given time interval (within a season, in order to 
assure the stationarity) was distributed as Poisson, 
made some simplification.s possible. The result was 
that the desired probability distributions could 
actually be evaluated. It was demonstrated that all 
the functionals were dependent on the t wo parameters: 
r1 • the number of storms in a time unit, and r

2 
= the 

inverse of the average yield per storm at a given time 
of the year. The time variation of these two parame­
ters was studied for four precipitation stations in 
the USA and periodic .functions were fitted for the set 
of 28 points (one for each season), respectively of 
r 1 and r 2. 

There is an alternative to the seasonal approach. 
One might consider the raw data as the combination o£ 
a deterministic and· .a stationary s t ochastic process. 
When the determ.inistic component in form of periodic 
parameters is identified, the hydrologist can isolate 
the remaining stochastic process, usually modeled by 
a linear autoregressive scheme . As is well known, 
there is always a random independent component in any 
autoregressive model. Therefore, the last task is to 
fit some probability distribution to this no~e. 
Yevjevich (1972b) gives a thorough discussion o£ this 
method for the general application in hydrologic time 
series. However , the type of distribution of the 
no~e for the daily rainfall process remains undefined. 
Adamowski and Smith (1972) assumed that the noise was 
normally distributed, without giving a justification. 
It seems that this approach does not work properly 
for hydrologic time series with short time intervals, 
although it may be satisfactory for longer time in­
tervals, as for example a month or perhaps even a week. 
This assertion will be investigated when the stream­
flow models are dealt with. 

P~~tence. Wiser (1964) has shown dependence 
in daily precipitation for North Carolina gauging 
stations. He states that the dependence is quite a 



general phenomenon. The degree of dependence is small­
er in monthly than in daily series, and also smaller 
for wet periods than for dry periods of these series .. 
At some locations the dependence tends to a condition 
in which the information about only the previous day 
is required for its description. 

Grace and Eagleson (1967) report that there is a 
definite persistence in rainfall values with time 
interval equal or shorter than the day. They developed 
a dependence model for the 10-minute rainfall incre­
ments by fitting the probability. distributions to the 
length of time between storms and to the duration of 
each storm. A ~~~ is defined as the sequence of 
observations separated from the others by a row of 
zeros longer than a certain ~cal lag. An alter­
nating sequence of wet and dry periods could thus be 
generated. They divided storms into three classes: 
trace, moderate and peaked. For each class they 
fitted a linear regression to the storm depth given 
the storm duration. By fitting a probability distri­
bution to the residuals of the above regression they 
were able to generate a sequence of storm events , with 
the total depth of each storm known. The question 
comes of how to distribute the total amount of preci­
pitation in a given time interval in such a way that 
the serial dependence is preserved. They developed 
an interesting technique that is particularly relevant 
to the present study because it might be applied to 
transform the generated daily sequences into hourly 
ones. Suppose that there are n hundreths of an inch 
of rainfall to be distributed amongst k intervals. 
An equivalent problem is how to distribute n black 
balls contained in an urn amongst k boxes. The 
serial dependence is introduced by adding to the urn 
m red balls and allocating the balls to the boxes 
according to the following rule. The first black ball 
is allocated at random, say to box j . To box j is 
then given m

0 
red balls, boxes j-1 and j+l are given 

m1 of the remaining red balls , and so on . The next 

blac.k ball is allocated in such a way that the proba­
bility of it falling in any given box is proportional 
to the number of red balls that it contains . Then the 
process is repeated again. The first and last box 
must be given at least one black ball in order to 
assure the duration of the storm. The values of m, 
m

0
, m1, ... ,were selected by trial and error, corn-

paring the correlation coefficients and probability 
distributions between the generated historic sequences. 

Gabriel and Neumann (1962) studying the succes­
sion of wet and dry days for the mid-winter period in 
Tel Aviv, showed that a two state (wet and dry) Markov 
chain was a good model for representing this dichoto­
mized process. This means that, at least for the 
situation analyzed by these authors, the probability 
that day i+l will be wet (or dry) is clearly depen­
dent upon the event which occurred on day i . They 
were not concerned with generating new rainfall se­
quences, but concluded by suggesting that a valuable 
information could be obtained if the amounts of preci­
pitation were included in the analysis . 

Green (1964) approached the same problem by 
assuming t hat the sequence of dry and wet periods could 
be model ed by an alternating renewal process, with 
exponential density f unctions for the lengths of dry 
runs and the l engths of wet runs. It was found that 
the results yielded by this non-Markovian approach were 
comparable, and sometimes even better, than t hose 
obtained by Gabriel and Neumann (1962). · 
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Nicks (1974) used the two-state Markov chain to 
model the occurrence and non- occurrence of rain on 
each day for a whole region, rather than for a single 
point in space. For a wet day the rainfall was gen­
erated in two steps: (i) determine which station 
receive~ the maximum rainfall and generate its value; 
this is done by sampling from distributions fitted to 
the historical data, and (ii) determine the rainfall 
depth for each station, based on regression on the 
center of the storm type equations. 

Todorovic and Woolhiser (1974) aimed at finding . 
an explicit expression for the probability distribu­
tion of the total amount of precipitation, Sn' during 

a period of n days. Under the hypothesis that the 
total precipitation for k wet days in a period of 
n days long is independent of which of these k days 
were actually wet and which of the (n-k) days were 
dry, they showed that 

P(S < s) = P(N = 0) + n- n 

n .. 
L P(Sv ~ s) )(Nn = v), 

v=l 

where N is the number of wet days in an n-d.ay 
n 

* period; and S is the total amount of precipitation 
v * 

for 

that 

v wet days . P(Sv ~ s) was evaluated assuming 

P(S~ ~ s) ,. 1-e->-·s, i.e., the amount of rainfall 

of a wet day is exponentially distributed. They 
further assumed that the rainfall depths on different 
wet days were independent; therefore, S~ is the sum 

of v independent exponentially distributed random 
variables and thus has the gamma distribution. 
P(Nn = v) was evaluated under two hypothesis: (i) 

that there is no serial dependence in the sequence of 
wet and dry days, and consequently Nn is assumed 

binomially distributed, and (ii) the sequence of wet 
and dry days follows a two-state Markov chain and 
hence the results of Gabriel and Neumann (1962) are 
applicable. They found that the Markov-chain expo­
nential model was superior to the binomial- exponential 
model. This is one more indication that precipitation 
cannot be treated as a succession of independent 
events . 

Ison, Feyerhem and Bark (1971) also considered 
the sequences of wet and dry days as a Markov chain. 
The amount of rainfall in a sequence of n wet days 
was assumed to be gamma distributed with the scale 
parameter dependent on n. Therefore the results were 
similar in some respects to those of Todorovic and 
Woolhiser (1974). 

It appears that a new class of models is at hand 
if one assumes that not only the dry-wet condition of 
day i+l depends on the condition of day i, but also 
the amount of precipitation on day i+l depends on the 
measured depth of the day i . This seems to be a 
reasonable assumpti on to make when one qeals with 
precipitation of the frontal type. The obvious way to 
proceed is to divide the range of observations in 
n > 2 cl asses (states), rather than have only n = 2. 
An n x n transition matrix can then be estimated and 
the concept of ~larkov chains again applied. Pattison 
(1965) used this approach to model the hourly rainfall . 
However, the l arge probability that a state 0 (no 
rainfall) will follow the state 0 made the model 
incapable of reproducing the length of dry periods: 



the generated sequences usually had ~ ~ longer 
than the historic series. To resolve this he broke 
the models into two parts. The first part, used for 
wet periods, was the same first-order n x n Markov 
chain . The second part, used for dry periods, was a 
sixth-order Markov chain in which each hour.was classi­
fied only as wet or dry. For generation, the first­
order chain was used when the hour i was wet. If 
the hour i was dry the model shifted to the sixth­
order chain, i..e., the information was used on the wet 
or dry state of hours i-5, i-4, •.. , ·i, in order to 
generate the new state at the hour i+l . If it 
happened for the (i+l)-th hour to be dry, the sixth­
order chain was used again . If it was wet, the rain­
fall depth was sampled from a distribution fitted to 
the 6~~ wet he~, and the model would again switch 
to the first-order chain. In the wet period the 
actual rainfall depth would be obtained by sampling 
from a uniform distribution defined only for the in­
terval under consideration. 

Khanal and Hamrick (1974) used the n state 
Markov chain to model the daily rainfall. They report 
that "the problem that Pattison had with the inbetween 
sequence while synthesizing the hourly rainfall values, 
doe·s not arise with the daily rainfall values." They 
considered the process stationary for each month, i.e., 
the year was divided in twelve seasons. The range for 
the daily rainfall depth was divided in 14 intervals. 
Therefore, 13 x 14 = 182 transition probabilities 
ought to be estimated for each season. They did not 
attempt to fit the analytical distributions to con­
ditional probabilities of the transition matrix. 
Whenever a state was reached, the midpoint of the 
corresponding interval was assigned as the generated 
rainfall depth. Any Markov-chain approach suffers 
from the opposite effects between the need for a large 
number of states (for an increase of precision) and 
the explosion of the number of transition probabil­
ities which must be estimated . Analytical distribu­
tions not always can be f itted to alleviate the 
problem. 

The Muttiv~e Ca6e. None of the techniques 
described so far appears to be apt for generalization 
in order to treat the multiple stat ion case . Franz 
(1974) developed a model f or the multivariate hourly 
rainfall . He tested it for a three-s tat ion network in 
northern Cal ifornia. The storm and interstorm events 
were modeled separately. A storm was taken to be a 
consecutive series of hours in which each hour had the 
rainfall recorded at one or more stations of the 
network. I t was assumed that t he data corresponding 
to storm peri ods can be transformed in such a way that 
it will appear as a sample from a multivariate normal 
distribution. Strictly speaking the set of transformed 
observations does not constitute a random sample 
because of the persistence in data and the lack of 
negative values. The persistence was included by 
treating the transformed series as a Markov model of 
lag one. The limited range was included by assuming 
that all the negative values have been set to zero 
before the sample was observed . The transformation 
used to normalize the marginal distributions was of 

the form Y = a+bXg, where Y = the normal variable, 
X = the observed values, and a, b and g are the 
parameters. The estimation of these parameters was 
performed by fitting the above equation , by a least 
squares approach, to the pairs (xi' yi). For each 

xi the value of yi was obtained in such a way that 

Y.· 
f 1 ~(t)dt = P(Y < yi) = P(X <xi)' where '(·) is the 
-co 
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p:d.f. of the standard normal and P(X < xi) stands 

for the sample c.d.f. evaluated at x .• The co-
l 

variances between the transformed variables of differ­
ent stations were also found ithrough fitting proce­
dures . For storms the generation procedure followed 
the steps suggested by Matalas (1967). It was 
necessary, to t ake into account the stationarity con­
siderations, to divide the year into four seasons . 
The interstorm model required that the year to be 
divided into SO seasons , for each one of them an 
empirically defined distribution was found for the 
interstorrn length. No single distribution could be 
fitted accurately to interstorms. It was concluded 
that empirical adjustments had to be used to obtain an 
acceptable level of performance. 

One must not confuse the multivariate wi th the 
multidimensional models. The first category deals 
with the rainfall as point processes; with the obser­
vations of one station related to those of the other 
through a correlation structure, regardless of the 
distance between the stations. The second category 

-deals with a process that is not only dependent upon 
the time but also upon the geographic location; a good 
introduction to multidimensional models can be found 
in Bras and Rodriguez (1975). 

E~eme Eventh . The generated sequences should 
imitate the historical sequence, and not only for the 
average conditions but al so for the situations in 
which f loods or droughts are of the concern. ln other 
words, the ~ event4, or the very large observations, 
should occur in the generated sequences with the same 
magnitudes , pattern and frequence as in the historical 
one. By the same token, the dry intervals should be 
correctly reproduced. An agricultural drought is 
related to the sequence of dry and wet runs of rain­
fall during the growing season for crops. It is 
surprising that very little attention has been given 
to these two factors by the buil ders of hydrologic 
models for rainfal l. An exception is the work by 
Todorovic and Woolhiser (1976), who gave the distri­
bution of the largest daily value of precipitation in 
the n-day period, for the same set of assumptions as 
advanced in their previous work (Todorovic and 
Woolhiser, 1974) . Gupta and Duckstein (1975) concen­
trated on the problem of the maximum dry interval for 
a point r ainfall process. They assumed, as many 
others did, that the number of wet days in an n-day 
period is Poisson distributed. They reported a good 
agreement between the theoretical and empirical 
distribution funct i ons . 

0~~ Rev~~. Complementary reviews to the 
pr esent one might be found in Todorovic and Woolhiser 
(1976); also in Rhcnals, Rodriguez, and Schaake (1974). 

2-2 Models for Streamflow Processes 

O~ect App~aeh. Likewise to precipitation, a 
daily streamflow model should be able to cope with 
four aspects: non-stationarity, persistence, multi­
variate case . and extremes . At first, one might try 
to approach the problem of how to model the process by 
using the same successful techniques employed in 
studying the hydrologic series with the longer time 
intervals, such as a month. For example, following 
Yevjevich (1972b) let the daily streamflow sequence 
be represented by {xi}' where i = 1, 2, ... , n 

(n " number of years). If m, and st, t = 1, 2, 

365, are designated as daily means and daily 



standard deviations, respectively, the standardization 
of the process gives ti x (xi·m~)/s~ , in which ti 

is the new reduced variable. This process may be 
stationary and quite often well modeled by a linear 
autoregressive scheme. For the sake of simplicity, 
let us assume that a second-order model is appropriate , 
namely 

ti : ~1 ti-l + ~2 ti-2 + ;i - a~ - ~~ - 2a1a2p ~i ' 

where a1, a2, and p = the parameters and ~i • the 

random component, with mean zero and variance unity, 
independent and identically distributed over all ~ 

positions. Quimpo (1967) applied this scheme to daily 
runoff records of the 17 rivers and found that indeed 
all the residual series satisfied the second-order 
autoregressive representation. 

Tao (1973), usine the same data as Quimpo (1967), 
made an extensive attempt to fit a distribution func­
tion to the random component, ~1 • In his words 

" ..• no distribution was found to fit the frequency 
distribution of . the daily variables, because of the 
sharp peak and high skewness of the empirical distri­
butions." For longer time intervals, . however, he was 
able to fit distributions with unusually high number 
of parameters. For example, for the 7-day variables 
the double-branch gamma function with six parameters 
was found .est applicable. He also devoted attention 
to testing whether the distribution of the random 
component had or had not a heavy tail. This is some­
what surprising since the very important problem of 
tail behavior (for extreme events) is usually neglected 
by model builders. He concluded that the distributions 
of the studied variables did not possess heavy tails. 

Iotteeoda (1972) avoided the complexities "of 
daily streamflow because " ••• the high variance of the 
flows, the unconventional probability distributions, 
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and the failure of the simulation processes to trans­
fer hydrograph characteristics of the historical 
flows." Instead he aimed. to model the 5-day stream­
flow. For the £i·process he found the fourth- order 

autoregressive representation to be appropriate. The 
distribution for the random component, ~i' was 

searched among the Pearson. system and Johnson type 
distribution functions. It was concluded that the 
best fits were obtained by using the Pearson Type III 
and Type VI, and the lognormal distribution functions. 

Inditect Ap~ach. Since the direct approach 
for generating daily sequenc·es is unsuccessful most of 
the time, one alternative procedure is often used, 
namely the values are generated for longer time 
intervals , say a month or a week, and then dih~uted 
among the days. For example, Green (1973) used 
Kottegoda's (1972) model to generate sequences of 
5-day average flows, and then split them into daily 
average flows using a sophisticated method of inter­
polation. Beard (1968) used a linear regression of 
the standard deviation of daily flow logarithms, within 
each month of record, upon the logarithm of the total 
flow for that month. The daily values were obtained 
considering {ti} as a second-order autoregressive 

process, and s~ as a linear function of the generated 

monthly streamflow, this one generated by some other 
model. 

F~~ Commenth. Many other attempts have been 
made to develop the daily runoff models. However, it 
seems fair to say that all of them have serious 
limitations . It is this writer's opinion, this con­
dition can only be changed if hydrologists recognize 
that the high complexity of the process stems from 
the diversity of the factors that are lumped into the 
streamflow. The only hope for improvement is to embody 
into the stochastic models some knowledge about the 
physical processes that cause runoff. · 



Chapter III 

MODEL FOR INTERMITTENT PROCESSES 

In this chapter a model for intermittent processes 
is developed and proposed. Hopefully it wi ll be a 
useful tool for hydrologists studying time series such 
as rainfall, overland f l ow, and the runoff of ephemezal 
rivers. In Chapter V it will be shown that the model 
is also often appropriate to represent the positive 
increments of streamflow. The model was conceived 
with the generation of new samples in mind. Therefore, 
an important objective in the model building stage 
was to obtain a simple-to-use scheme of generation, 
even for a multivariate case; and yet fulfill all the 
requirements specified in Chapter II. This does not 
imply that the estimation procedure is simple. As a 
matter of fact, quite the opposite comes out to be 
true . 

3-1 The Conceptual Framework 

Let us assume that a stochastic process follows a 
first-order autoregressive model. Furthermore, let 
us admit that the marginal distribution is normal, 
namely 

where E;t:; N(O,l), and 
(3-1) 

Obviously, the Zt-process is far from resembling 
an intermittent record such as daily rainfall (for the 
sake of simplicity in this chapter only daily rainfall 
will be considered) . Therefore, some filtering is 
necessary, at least to eliminate the negati ve values 
of zt . 

Define a Yt-process as: 

(3-2) 

A realization of the Yt-process can be consider­

ed as a censored sample of Zt . A censored sample is 

such sequence for which the values of t he process that 
fall in a specified i nterval are not known. For ex­
ample, all zero values in a realization of the Yt-

process represent negative but unknown observations of 
Zt. In this case the censoring interval is ( -"', 0). 

For this example, the resulting sample would be trun­
cated, if the negative values of Zt were not only 

censored but also deleted from the record. In this 
case even the number of negative outcomes would not 
be known. 

It is clear that Yt is an intermittent process, 

provided with a mechanism of persistence. It remains 
to be seen whether this mechanism is appropriate in 
modeling and whether the marginal distribution of the 
positive observations obtained through the Yt model, 
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namely P(Yt<y iYt>O) fits the sample distribution well. 

In fact this l ast condition is not satisfied, because 
quite often the marginal distribut ions, in case the 
positive observations of the processes are only studie~ 
are characteri~ed by a high skewness (higher than the 
one obtained by the truncated normal) . Incidently, 
the ~ncated no~ is the name given to the cumula­
tive distribution function (c.d.f.) 

P(Y<y) = ~[(r\1)/a] I (y) 
~ 11fa] (o , "') . (3-3) 

where ~( · ) is the c .d.f. for the standard normal 
distribution. The positive values of Yt might then 

oe considered as a sample of this truncated normal 
dist ribution. 

3-2 Need for a Power Transformation of the Truncated 
Normal 

An examination of a typical case will help to 
explain why Yt is not sufficient to r epresent the 

precipitation process. The histogram of the positive 
observations of dail y rainfall at Austin for 70 years 
during the period May 1-June 1 is plotted in Figure 
3-1. For comparison the probability density functions 
(P.d.f.) which correspond to the truncated normal, and 
to the exponential distributions are ·also plotted i n 
Figure 3-1 . The exponential dlstribution is included 
because it is often used to model the precipitation 
(see Chapter II). The p.d.f. of the exponential dis ­
tribution is 

(3-4) 

The par .ameter ~ is routinely estimated as the 
inverse of the arithmetic mean of.the positive obser­
vations . For t .he Austin example ojl = 1 .898. The p.d.f. 
of the truncated normal distribution is 

1 1 X-II 
fx(x) = exp{- 2 (0 )} I(o,oo)(x) 

~(~) 12ii'a (3-5} a 
The parameters 11 and a are in principle 

estimated following the procedure proposed by Cohen 
(1959) . However, Cohen was mostly concerned with 
cases in which the number of censored elements is small 
compared with t .he total number of observations . In 
precipitation data there is a large number of zeros 
(censored observations). It turns out that graphs and 
tables supplied by Cohen are not sufficiently complete 
to handle this situation. Alternatively, ·an estima­
tion procedure presented in Section 3-3 is employed, 
and as will be seen, it is a better approach, because 
it takes into consideration the serial dependence. 
For the moment it is sufficient to give the estimates 
~= 0.627 and &=0.951 . The e~ponential one- parameter 
distribution was fitted only to positive observations, 
while the two-parameter truncated normal was fitted to 
the censored sampl e, in which the number of zeros was 
important. Since the probability of a zero ou~come 



depends on the ratio ~/cr, it can be said that both 
distributions, exponential and truncated normal , had 
one degree-of-freedom to fit the data. 

..: _ .. 

l.O 

Fig. 3-1. Comparison in Fitting Three Probability 
Density Functions to the Frequency Histogram 
of Daily Rainfall at Austin for the Interval 
May 1-June 1: (1) Histogram for 70 Years 
of Data; (2) Fi t of the Truncated Normal, 
Eq. (3-5) ; (3) Fit of the Negative Exponen­
tial, Eq. (3-4); and (4) Fit of the Power­
Transformed Truncated Normal, Eq . (3-7). 

The inspection of Figure 3-1 leads to the conclu­
sion that none of the two distributions produces a 
good fit. The form of the histogram suggests t hat a 
better fit could be obtained by using a p.d.f. which 
is asymptotic to the vertical axis. 

to 
Suppose that the Yt-process is filtered according 

X = yl/a 
t t ' · (3-6) 

wit h a = a real number. In this case the marginal 
distribution of positive observations of the Xt-process 

is the power-transformed truncated normal distribution 
(p.t.t.n., for short), namely 

axa-l 1 xa-~ 
fx(x) = exp{- zC-cr-)} I(o "")(x) (3-7) 

4>()1/cr)crrz:ii' ' 
Notice that when a < 1, ~!~ fx(x) = "" From the 

procedure to be presented in Secti~n 3-3, for the Austin 
rainfall example, the estimate is a = 0. 595. The cor­
responding p.d.f. is plotted in Figure 3-l. From 
visual inspection, without any test, i t is apparent 
that the p . t.t .n. does fit better the frequency histo­
gram than the other two p.d.f. 

3-3 The Estimation Procedure 

Seek. 6oJt :the. max..Unwn lik.e.Uh.ooa et~.timiLtu . Given 
a sample x1, x2, x3, ... of an intermittent process, 

a method should be available for estimating the para­
meters ~. cr, p, a (see Figure 1-1). Usually the avail­
able samples will be large. The maximum likelihood 
estimators possess several asymptotic properties. 
Some of these properties are essential to the analysis 
of data. Therefore it is natural to select the max~ 
likelihood estimation procedure for the intermittent 
process. 
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Let us approach the problem straightforwardly, 
but showing that some ~ckh, as presented later, are 
necessary. Suppose the time series displayed in 
Figure 3-2(a) is available. In general the likelihood 
function L is 

(3-8) 

where e is the parameter vector. The first difficulty 
arises from the fact that some of the xi are zero, 

and therefore r epresent censored outcomes of the Zt­

process. For the realization shown in Figure 3-2(a), 
z3 , z4 , zm_6, zm_3, zm_2 , zm-l are all censored . 

The second difficulty arises from the fact that xi 

are not independent in sequence , so that Eq. 3-8 can­
not be wr itten as a product of marginals. 

To show how the difficulties of censoring and 
dependence complicate the estimation procedure, it is 
sufficient to examine a simple case . Assume a = 1 
and the need to write the likelihood function, given 
the realization displayed in Figure 3-2 (b). 

The m values between x
0 

and xm+l represent 

the unmeasured negative values. Assume the dependence 
follows a Markov or linear autoregressive model, 

(3-9) 

IL-L.'; __.__..___. --· ~~~ n • I I • • • - I 
Q 2 3 4 5 6 rn--6 m-5 m- 4 m- 3 m- 2 m- 1 m 

r I • • 0 I 2 

Fig. 3-2. 

Now, 

(a} 

• ll • • • • • • • l.t • • • 3 4 5 6 m-6 m-5 m-4 m-3 m-2 m- 1 m m+l 

(b) 

Representation of Two Possible Outcomes of 
the Intermittent Process 

m 
P( n {xJ.<O}Ixo,xm+llfx X (xo,xm+l) ' 

j=l o' m+l 
(3-10) 

where obviously in the present case P( · ) and 
f ( · • ) are functions of e : (IJ , cr ,p) . 
xo,xm+l ' 

Therefore , 

m 

(3-11) 



where fx(~ is the p.d.f. for a multivariate normal, 

(3-12) 

Cv1, v2, ... , vm) is the mean vector 

lJ
1
, 1 [(pi 2m+2-i) ( m-tl - i m+l+i) 

1 
2m+2 - p xo + P -p xm+l 

-p 

+ (l A2m+2 m+l-i m+l+i i 2m+2-i ) 
p -.. -C> +p - p +p . ) 

and I: 
mat rix, 

(aij), i=l, m and j=l, m, is the covariance 

a .. 
lJ 

cr
2 

( j-i 2m+2-i-j 2m+2+i-j i+j 
2m+2 p -p +p -p ) , i _< j 

(1- p ) 
(3-13) 

In general the analytical solution for the m-fold 
integral of Eq. (3-11) is not available , except for 
m ~ 3. Even for m = 3 the expression is very cumber­
some. An alternative is to use the tetrachoric series 
expansion suggested by Kendal et al. (1963), used and 
extended by Saldarriaga and Yevjevich (1970) . Never­
theless, according to Kendall (vol. 1, p. 351), the 
technique "though convergen·t, converges too slowly to 
be of general use." 

This example shows that the straightforward 
approach of evaluating the likelihood funct ion is, in 
this particular case, untractable. 

The .(..te/titt.(.ve a.tgoltdhm 601t. the wU.vaM.a-te c.a.6e. 
Several attempts were made to find the approximate 
solut ions to this esti mation problem. Unfortunately, 
none has worked satisfactorily. As an alternative, a 
sol ution to an approximate problem was searched for, 
rather than looking for an approximate solution to the 
correct problem. 

The approximate problem is to find the estimates 
for the parameters assuming the pairs of values 
(X

1 
,X2), (X3,X4), (X5 ,x6), ... , to be independent. The 

experience obtained on generated series, i.e., in such 
situations that population parameters were known, 
supports the results obtained under the above sim­
plifying approximation. 

The estimation problem reduces to the evaluation 
of parameters of a bivariate distribution. Suppose a 
sample (xt,xt+l)' t =l,3,5, ... ,n, to be available. 

Define the three events as: 

Alt" {Xt • o, xt+l = o} 

A2t• {\ • zt' \.1 • y } 
t 

A3t= {\ • zt' xt+l = O} or {Xt o, xt+l • zt} 

0 < zt, Yt• zt 

Assume further for the sample given that each of the 
events A1t, A2t, A3t occurs respectively n1, n2 and 

n3 times (n- n1+n2+n3). The likelihood function is 

then 
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n n n 
L()l,cr,p ,a) ,. I n!l I [P(A )) 1 'lr2 P'A ) 'lr3 P{A ) 

nl.n2 n3 1 t=l ~ 2t t =l 3t 

(3-14) 
2 2 

for (U, V) ' :: N [ (P) • ( 0 2 ap~ ) ) 
v Pa 

P(A1) = P(U < 0, V < 0) 

(3-15) 

The random variables (U-p)/a and (V-v)/a might be 
expressed respectively by 

IP w1 + lf:P w2 ] 

IP w1 + 11-P w3 

and 

(3-16) 

with wl' w2, w3 the independent standard normal 

variables. From (3-15) and (3-16 i t resul ts 

P(A1) 

(3-17) 
Similarly, 

(3-18) 
where 

1 exp{ Q 2 } 
2wa2~ . 2(1-p 

with } (3-19) 

Now 

where the Jacobian is 

J[~] ,. I au/ax au;ay/ = ~az~-l 
x,y av/ax av;ay o 

Hence, Eq. (3-18) becomes 
2 a-1 a a 

P(A2t) = a (zeYt) fu,v<zt,yt)dx dy 

' (3-20) 
Finally, 

0 

P(A3t) g fu(z~) du ~- fvlu<vlu = z~)dv 

a 
o 1 v-pzt-v(l-P) 

du f --H ] dv , 
-CD 1'2 1'2 a.'l-p- a.'l-p~ 

or 

(3-21) 

From Eqs. (3-14), (3-17), (3-20), and (3-21), and after 
dropping the subscripts, 



log L = 

= LL(~,o,p,a) C + n
1 

log j ~(t)(t(-p-~ot)] 2 dt 
_.,. oll=P 

2 2 
+ (2n2 + n3) log * -n2 [log(;-P ) + P } 

(l+p)o2 

n2 a a 2a 2a a 
+ L [(a-l)log(xy) + 2P(l-p) (.:r +y )-(.z +y )+2p(.:ry) ) 

2(1-p 2)o2 

where C is a constant. 

a 
+ log~ (z -p)] 

a 
(3-22) 

The estimate e = (~.~.~ .~) ought to be found in 
such a way that the-likelihood function, or its loga­
rithm, becomes the maximum for e. When the objective 
function LL is concave, as is the case here, it is 
enough to search for a local maximum, since this will 
be a global maximum. Recall that a necessary condition 
for a local 'optimum is that the first derivatives be­
come zeros. Therefore, the estim~tion problem is 
equivalent to finding the point e for which the first 
derivatives of LL(9) are simultaneously equal to 
zero. This can be accomplished numerically, through 
the Newton-Raphson algorithm, by 

-1 
~EW = ~LD - (H ~~LD (3-23) 

where H is the Hessian matrix corresponding to the 
LL-function, 

namely 

a2LL/3/ a2LL/dpCla a2LL/Clpap a2LL/Clp3a 

a2LL/ao
2 a2LL/ aoap a2LL/ aoaa 

H = 
a2LL/3p2 2 a LL/apaa 

a2LL/aa2 

(3-24) 

and D' = (aLL/3p,aLL/ao,aLL/3p,ClLL/3a). The first 
and second derivatives of LL , needed to evaluate 
Eq. (3-23), are given in Appendix A. 

Ex..ten6-i.on :to :the Mui.t.i.vaJt..UU:e CMe. In generating 
samples of several dependent station series, the cross 
correlations ought to be preserved. For the sake of 
simplicity only the lag-zero cross correlation will be 
considered. Yet, the estimation probl em becomes 
greatly complicated because of the increase on the 
dimensionality of the parameter space. In order to 
avoid the use of the objective functions with too many 
variables, the following two-step procedure is proposed 
in dealing with the multivariate cases: (i) To find 
for each station the parameters ~(j), p(j), and a(j), 
according to algorithm of Eq . (3-23); for l the num­
ber of stations, j = 1,2, ... ,!; and (ii) Find each 
lag-zero cross correlation coefficient, p(j,k), 
1 < j < k < l, using only the data of station series 
and k. -

The estimation procedure for the multivariate 
case can, in principle, follow the approach used for 
the univariate case, namely the maximization of the 

10 

likelihood function. However, if all the positive 
~bservations of station series j are raised on the 
a(j ) power, the problem is reduced to the question as 
to how to estimate the correlation coefficient of a 
standard bivariate normal distri bution, with a cen­
sored sample. The censoring is done in such a waythat 
observations respectively of the two variables to the 
left of -~(j)/o(j) and -~(k)/cr(k) are not available. 
For truncated samples (rather than censored), when only 
the observations (events) type A

2 
are available, the 

problem was solved by Rosenbaum (1961) and by Regier 
et al. (1971). Often one might be satisfied with the 
use of expressions derived by the tAunca£ed ~p~~ch, 
even at the cost of losing some information, because 
they are easier to use. This is the course of action 
herein chosen . Rosenbaum used the method of moments 
and obtained a particularly simple expression, adopted 
for the purposes of this study as, 

- r~(j) + ~CkJJ Pz(j,kJ 
a(j) o(k) 

• { r~ (j) • ~ CkJ J m cL kJ • p o J ~ CkJ rn.l (j J 
a (j) 0' (k) 0 (j)a (k) 

• rWl.. • ~ CkJ 1 _ ~ (j J ~ CkJ A [ml (j) 
a(jJ a(kJ cr(j)o(kJ 

+ m Ck) 1- f.ill. m Cj J- ~ CkJ m CkJ 
1 o(j) 2 o(kJ z 

where 
n2 

ml Cj J 
I 

n2 

I 

m(j, k) 

&cj) 
- v(j)n2 

n A . 
X L2 [[xa(J) A; ~(j)J\ 

n2 cr(j) 
mzOJ 

n2 a (j) 

y& (k) - ~ (k)n n A 
2 i 2ckJ 

2 [ a (k) • (k)] 2 

n
2 

o (k) 
I r Y .; ~ l· 

n2 a (k) 

~(j))(y&(k) - ~ (k))l 
n2cr(j)cr(k) (3-25) 

and ;(j ,k) is the only unknown. Once again it is 
emphasized that the expression of Eq. (3-25) is to be 
used for the data of days with non-zero observations 
occur in both stations under consideration. All the 
remaining i nformation is neglected. Because of the 
sample variation Eq. (3-25) may not have the real roots. 

3-4 Till Asymptotic Covariance Matrix for the Estimators 

Me:thod o~ Ob.ta...i.n.i..ng the CovaM.a.nce IAa..t!Ux. The 
estimation of a parameter is not always sufficient. 
Sometimes it is necessary to f ind how the system under 
study reacts to variations in parameter values. This 
is the so-called sensitivity anal ysis. Its use results 
from the recognition that an estimate e is one obser­
vation of a random variable and as such-is subject to 
~ampling departure from the unknown population value 
e. Then the question to deal with is the vari ation of 
the parameter vector . One would expect that the dif­
ferent parameters will have different ~eaAonable 



ranges of variation, accordi ng to the confidence one 
has on the accuracy of its estimation. Actually, the 
higher reliability of an estimate, the narrower is its 
~~enAble range. The measure of reliability of an 
estimate most often used is the variance of the cor­
responding estimator. Similarly, covariances between 
the estimators give measures of their dependence, which 
help i n the decision how the parameters should be 
simultaneously changed in the sensitivity analysis. 
Hence, it is highly needed to calcul ate the covariance 
matrix of the estimators. It happens that maximum 
l i kelihood estimators asymptotically follow t he multi ­
variate normal distribution. Furthermore, the asympto-

tic covariance matri x can be expressed by {-E(H)}-1, 
where H is the Hessian matrix given by Eq. (3-24) 
and E(· ) is the expectation operator. This is usefill 
for the problems herein anal yzed due to the fact that 
most of the samples are of large size. 

In order to find the asymptotic covar iance matrix, 
the first step is to evaluate the expected va1ue for 
each one of the second derivatives which appear i n 
Appendix A. An inspection of these expressions shows 
that this task is difficult. As a result numerical 
approximations are used. Fortunately these approxi­
mations have no significant effect on the accuracy of 
the results, as it wi ll be seen i n an ensuing exampl e . 

The values of n1, n2, and n3 which appear i n 

equations of Appendix A, are the actual observations 
of random variables. In order to evaluate the asympto­
tic covariance maxtrix, they should be substituted in­
to their correspondi ng expected values; namely 

n 
E(N1) • 2 P(U < 0, V < 0) nl(0,0,2) 

2 
(3-26) 

E(N2) 2 I P(U > 0, v > 0) =I [l-2I(O,O,l)+I(0 ,0,2}] 

(3-27) 

E(N3) = I P(U>O, V<O or U<O, V>O) 

n(I(O,O , l)-1(0,0,2)] (3-28) 

wher e I(i, j ,k) is as defined i n Appendix A. Similarly, 
T(v;i,j ,k) , also as defined in Appendix A, should be 
substituted by the corresponding expected values. 
These expected values are not always available in 
closed form . However, the most frequent occurrence of 
(T(v; i,j,k) is for i~k=O; and for these , explicit 
solutions can be derived. The following five results 
are helpful: 

f f x+(x ,y;p) dxdy = +(n)~(6)(l+p) 
n n 

"" .. 
j f x2+(x,y;p) dxdy = [l-2I(O,O,l)+I(0,0, 2) ) 
n n 

+ n+(n)¢(6) (l+p2) + ph-P2 +(n)+(6) 

.... 

(3-29) 

(3-30) 

f f xy+(x,y;p) dxdy P(l-2I (O,O,l)+I(0,0, 2)) 
n n 

+ 2pn+(n)~(6) 

(3-31) 
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n .. 
f f x~(x,y;p) dxdy = +(n) [l-~ (6)(l+p)] 
_,. n 

(3-32) 
n .. 
f f x

2
+(x,y; p) dxdy = I(O,O,l) - 1(0,0,2) 

_,. 1\ 

2 1'2 + n+(n) (1-~(6) (l+p )] - pll-p ~ +CnJ+(6) 

(3-33) 

where 

+(x,y;p) 
1 -1 _.;;.__ exp{ 2 
r--2 2(1-p ) 2trll-p- (3-34) 

and 

:.::i 6zJ!. /l-p 
1\ (J • (J l+p 

(3-35) 

Equations (3-29) to (3-31) are given, but in a modified 
form by Rosenbaum (1961) . Equations (3-32) and (3-33) 
can be evaluated in a straightforward but tedious way. 
These expressions could be al so found by using the 
moment generating functi on of the truncated multi­
normal distribution, as given by Tallis (1961) . Then, 

E(T(x,O,l,O)] = E(T(y, O,l,O)) = E(N2E(~)) 

= ~ P(U>O,V>O)E(~) 
(3-36) 

Recall that U and V foll ow the bivariate normal 
distribution, with equal marginal distribution 

N(~ , o2 ) and the correlation coefficient p . TherefOre, 

EcxaJ = Eculu>o,v>o) 
(D .. 

= (P(U>O,V>O))-l f f (xo+~)~(x ,y;p) dxdy 
n n 

From Eqs . (3-27), (3- 29) and (3-37) 

From Eqs. (3-36) and (3-38) 

E[T(x,O,l,O)) = E[T(y,O,l,O) ] 

= ~ [o<P(n)~(6 ) (l+p) +~ [l -2I (O,O,l)+I(0,0, 2) ]] 
2 

Similarly, 

(3-37) 

(3-38) 

(3- 39) 

E[T(x ,0,2,0)) c E[T(y,0,2 , 0)] = I P(U>O,V>O)E(X2a) 

(3-40) 



and 

E(X2a) = E(U21U>O,V>O) 

.... 
= [P(U>O,V>O)]-l f J (xo~~)~(x,y;p) dxdy 

n n 

From Eqs. (3- 27), (3-29), (3-30), and (3-41), 

E (X2a) 

(3-41) 

c~2 + 02) + -~o(p2-2p-1)~(n)t(o)+o2p~~(n)~(6) 
(1-2I(O,O,l)+I(0,0,2)] 

From Eqs . (3-40) and (3-42) , 

Similarly, 

E(T(z,0,2,0)] = E[T(y,0,2,0)] 

~ [(~2+o2)[1-2I(O,O,l)+I(0,0,2)] 
2 

E(T(xy,O,l,O)] = ~ P(U>O,V>O) E((XY)a) 

and 

E[(XY)a] = E(UVjU>O,V>O) = 

(3-42) 

(3-43) 

(3-44) 

[P(U>O,V>O))-l I J (xa+~)(ya+~)~(x,y;p) dxdy 
n n 

(3-45) 

From Eqs. (3-27), (3-29), (3-31), and (3-45), 

(3-46) 

From Eqs. (3-.44) and (3-46) , 

E[T(xy,O,l,O)) = 

n 2 2 2 [(~ +a P) [l-2I(O,O,l)+I(0,0,2))+2~a~(n)t(6) 

+ a
2 h-P2 Hn)Ha)J 

(3-4 7) 

Similarly 

E(T(z 0 1 0)] =· nP(U>O,V<O or U<O,V>O) E[Za) 
' ' ' 

(3-48) 
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and 

n .. 
[P(U>O,V<O)]-l f I (xo+~)~(x,y;p) dxdy 

_.., n 

(3-49) 

From Eqs . (3-28), (3-30), and (3-49), 

(3-50) 
From Eqs. (3-48) and (3-50), 

E (T ( z. 0, 1, 0)) = 

n(J.!(I(O,O,l)-I(0,0,2))+aHn) (1-IP(o) (l+p)]] 
(3-51) 

Similarly 

E(T(z,0,2,0)) = nP(U>O,V<O or U<O,V>O)E(Za) 
(3-52) 

and 

1 n "" 2 
[P(U>O,V<O)]- f f (xo+J.!) ~(x,y;p) dxdy 

From Eqs. (3-28), (3-32), (3-33) , and (3-53), 

E[Z2a] = 

(3-53) 

2 2 r----'2 2 2 ~oHn) [l+IP(o)(p -2p+l)] -o pll-p~Hn)HoJ 
J.l +a+ [I(O,O,l)-1(0,0,2)] 

(3-54) 

From Eqs . (3-52) and (3-54), 

2 2 E(T(z,0,2,0)] "' n[(~ +o) [I(O,O,l)-1(0,0,2)] 

(3-55) 

The values of E[T(v;i,j,k)] for i ~ l and/or 
k > 1 can be found in an approximate way. If two 
random variables R and S follow a functional rela­
tionship, R = g(S), then the Taylor series expansion 
may be used giving 

2 
R = g(E(S) ] +[S-E(S) ]g' [E(S)]+ [S-E3S)] g"(E(S)) 

(3-56) 
where the terms of the order higher than two were 
neglected. 

Taking the expected value on both sides of 
Eq . (3-56) then, 

g" [E(S)J E [R) : g (E (S)) + - - i -- var (S) (3-5 7) 



where var(·) stands for the variance operator. 
Therefore, 

E[T(v;i , j,k)J • n~* (g[E(S)) + g"[Ep)] var(S)] 

(3-58) 

where P* and S are given in Table 3-1, according to 
the meaning of v, 

Table 3-1. Values of P* and S of Eq. (3-58) 

v P* S 

y 

xy 

z 

and 

where 

P(U>O,V>O) = [1-2I(0,0,1)•I(0,0,2)] 

P(U>O,V>O) • [1-21(0,0,1)+1(0,0,2)] 

P(U>O,V>O) [1-21.(0, 0, 1) •I (0, 0, 2) J 

P(U>O,V<O or U<O,V>O) = 

g(x) 

n(x) 

2[1(0,0,1)-1(0 ,0,2)} 

H-Px-11(1-p)/ ca0) J 

~ ( -px-11 (1-p) I cah-p 2) J 

From Eqs. {3-59) and (3-60) 

·g"(x) ., 

(3-59) 

(3-60) 

_ PX+)I(l-p))2 

l!fi-p2 

- 1 + h(x)(h{x) - PX+II(l-p)) 

ah-p2 

+ 2(j(loagx) • ~){h(x) - PX•II(l-p))] 

a h -p2 

. 2 k 
• xJ- (logx) - 2 

k (k(k-1) + 1ogx(jk+(j-1)(jlogx+k)))} 
a 

(3-61) 

Equations (3-59) and (3-61) should be substituted into 
Eq. (3-58). The expected values of S, for each case, 
are given by Eqs. (3-38), (3-42) , (3-46), and (3-50), 
respectively. 
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From Eqs. (3-38) and (3-42') it follows 

var(;tJ) = (J
2 • aHn> [ rz 

[1-21(0,0,1)+1(0,0,2)] ap{l-p' ~(6) 

(3-62) 

From Eqs . (3-50) and (3-54) it follows 

var(fl) = a2 • a+(n) [ [~("') (1 2) 1) [1(0,0,1)-1(0,0,2)) II u -p -

1"2 ] [aHn)[l-~(6)(l+p)]]2 - ap{l-p· ~(6) - -- -- - -- --
1(0,0,1)-1(0,0,2) 

(3-63) 

fhe derivation of var[Xya] would require the 
evaluation of the fourth-order moments . In order to 
avoid this complication, the Taylor expansion is 
applied once more, yielding: 

var [ (X.Y)a] i! 2 (E (;{J)] 2 {var (;{J) E [ (XY) 4 ]-(E(.fl)] 2} 

(3-64) 

It could be shown that for i =k=O, Eq. (3-58) is 
identical to Eqs. (3-39), (3-43), (3-4 7), (3-51), and 
(3-55), respectively. In other words, the Taylor 
expansion yields the exact results for these particular 
cases. 

The approximations used to calculate the asympto­
tic covariance matrix might cast doubt upon the ac­
curacy of results. Fortunately, the experience shows 
that the procedure is worthy, and this can be best 
expounded through the example to follow. 

Exampt~. 195 new samples were generated with 
v•-0.25, a•l.OO, p•0. 40, and az0.60. These parameters 
are fairly typical for the precipitation process. 
Algorithm of Eq. (3-23) was applied to each generated 
time series, resulting in a sample of 195 observations 
for the estimator vector (random vector). To better 
understand the role of the sample length, the time 
series were grouped into three classes respectively of 
lengths 500, 1000 and 2000 . Therefore, there are three 
sets, each of 65 observations of a random vector, as 
shown in Tables 3-2, 3-3, and 3-4. For reasons that 
will become clear in the following text, each set was 
further divided into three subsets, each with 15, 20, 
and 30 samples, respectively. The information on each 
set is condensed in Tables 3-5, 3-6, and 3-7. There­
sults are: 

(a) First row gives the population parameters , 
which were used for the generation. Second row gives 
the means of the 65 estimates. The comparisons be­
tween the means of estimates and the population values 
suggest that the estimation procedure is unbiased. 

(b) The use of asymptotic expressions for the 
estimation of the covariance matrix is subject to the 
following 'two sources of errors: Th~ llampt~ ll.U~ mi.ght 
no.t b~ l.altg~ enough; Nwnell1.ctLl. a.ppltCxhna.t.i.onll aiLe. Ul>W. 
.to e.va.lu.a.t~ th~ ~xp11.e4~.i.onll . 



Third row gives the asymptotic standard deviation 
(of the estimators) evaluated at the co~~ct point, 
i.e., calculated at the population parameter vector. 

Tabl e 3-2 . Estimates of the Parameters for the 65 
Samples of Length M ~ 500 

A 

11 

1 -0.2302 

2 -0.1719 

3 -0. 2759 

4 -0 . 2266 

5 - 0.2441 

6 -0. 2357 

7 ' - 0.3444 

8 - 0.1593 

9 -0.2909 

10 - 0.2600 

11 -0.3438 

12 -0.3425 

13 -0.4058 

14 -0.2514 

15 -0.2304 

16 -0.2662 

17 -0.1820 

18 -0.4205 

19 -0.1237 

20 -0.3160 

21 -0.1948 

22 -0.2491 

23 -0.2853 

24 - 0.1895 

25 -0. 1111 

26 -0.2329 

27 -0.3029 

28 -0 . 3450 

29 -0.2322 

30 -0.2310 

31 -0.2242 

32 -0.3805 

33 -0.2351 

34 -0 .1441 

35 -0. 4101 

36 -0.2405 

37 -0.1584 

38 -0 .2564 

39 -0.2018 

40 -0 .2105 

41 -0. 3412 

42 -0.2012 

CJ 

0.8749 

0.9607 

0.9735 

0.9783 

0.9578 

1.0118 

1.0565 

0.9306 

1. 0311 

0 . 9809 

0.9525 

1. 0335 

1.1929 

0.9290 

0.9668 

1.0195 

1. 0791 

1. 0374 

0.9439 

0.9303 

1. 0011 

0.9729 

1.0883 

0.9308 

0.9387 

1. 0209 

1. 0547 

1.1022 

0.9766 

0.9573 

0.9876 

l. 1171 

1.0069 

0. 9139 

1.1717 

0.9212 

0.9177 

0.9541 

0.9411 

1. 0194 

0.9594 

0.9446 

p 

0.2881 

0.3413 

0.3298 

0.4109 

0.3374 

0.3404 

0.4300 

0.3985 

0. 3335 

0.4298 

0.3120 

0.3410 

0.3858 

0.3741 

0.3217 

0 . 3852 

0.5279 

0.4347 

0.3788 

0.3381 

0.4531 

0.5949 

0.5568 

0.3920 

0.3764 

0.3050 

0.3178 

0. 3755 

0.3874 

o. 3878 

0.4261 

0.4342 

0.4804 

0. 4034 

0. 4285 

0.2813 

0.4213 

0.3116 

0.3861 

0.4379 

0. 3690 

0.4141 

0.6437 

0.5211 

0.6023 

0.5758 

0.5741 

0.6303 

0.6102 

0.6236 

0.6669 

0.6088 

0.6514 

0.6083 

0.6038 

0.6208 

0.6537 

0. 5727 

0.6051 

0.6322 

o. 5672 

0.5957 

0.6093 

0 . 5970 

0.6170 

0.5887 

0.5760 

0 . 6132 

0.6221 

0.6461 

0.5795 

0. 5916 

0.6144 

0.6190 

0.5928 

0. 6168 

0.6257 

0.5583 

0.6138 

0 . 5757 

0.5591 

0.6378 

0.5881 

0.5793 

14 

43 -0. 2944 

44 -0.2138 

45 - 0.3821 

46 -0.2494 

47 -0.2662 

48 -0.2575 

49 -0.3500 

so -0.1693 

51 -0.3085 

52 -0.4103 

53 - 0.2909 

54 -0 .1803 

55 -0.2178 

56 -0.0908 

57 -0.1972 

58 -0.1922 

59 -0.2583 

60 -0.3284 

61 -0 . 2885 

62 -0 . 2973 

63 -0.2259 

64 -0. 2813 

65 -0 . 1627 

A 

0 

1. 0262 

0.9794 

1. 0580 

0.9404 

0.9807 

l. 0168 

1.0880 

0.8910 

0.9383 

1. 0576 

0.9464 

0.9750 

0.9587 

0.8829 

0.9003 

0.9755 

1. 0037 

0.9580 

1.0799 

1. 0078 

1.0403 

1.1096 

0.8997 

. 
p 

0.2329 

0.3250 

0.3818 

0.4270 

0.3807 

0.5128 

0 . 2582 

0.3020 

0.4135 

0.3354 

0.3319 

0.5094 

0.3899 

0.3727 

0.3193 

0.4238 

0 .4282 

0.3296 

0.4560 

0.4916 

0.3246 

0.5248 

0. 3119 

a 

0.5788 

0.5241 

0.6248 

0.6041 

0.6407 

0.5920 

0.6436 

0.5516 

0.5734 

0.6157 

0.6179 

0.6455 

0.5701 

0.5309 

0.5973 

0.5938 

0.6046 

0.6193 

0.6363 

0.5830 

0.5860 

0.6191 

0.5936 

Table 3-3. Es~imates of the Parameters for the 65 
Samples of Length m z 1000 

II IJ 

-0.1994 

2 -0.2290 

3 -0.2846 

4 -0.2457 

5 -0.2971 

6 - 0.2576 

7 -0.3034 

8 - 0 . 2369 

9 -0.3435 

10 - 0.1983 

11 -0.1428 

12 -0. 2245 

13 -0.3120 

14 - 0.2623 

15 -0.2125 

16 -0.2195 

17 -0 .1956 

18 -0.2750 

19 -0.2338 

0.9185 

0.9491 

0 . 9992 

0.9823 

1. 0184 

0.9614 

1. 0523 

0.9145 

0.9969 

0.9653 

0.8921 

0.9891 

1. 0229 

1.0252 

0.9956 

0.9338 

1.0994 

1. 0702 

l. 0453 

0.3552 

0.3512 

0.4130 

0.3237 

o. 3549 

0.4050 

0.3906 

0 . 3594 

0.3335 

0 . 4536 

0.3497 

0. 4263 

0.4037 

0.4053 

0.4266 

0.3756 

0.4631 

0.5016 

0.3580 

0.5828 

0. 5686 

0.6186 

0.5785 

o. 5660 

0.6269 

0.6162 

0.5614 

0.6153 

0 . 6042 

0. 5605 

0.5990 

0.6253 

0. 5830 

0.6035 

0.5598 

0.6510 

0.5978 

0.6148 



• 
20 -0.2007 

21 -0.3178 

22 -0.2514 

23 -0.3110 

24 -0.2403 

25 -0.1969 

26 -0.2926 

27 -0.3147 

28 -0.1884 

29 -0.1940 

30 -0.3312 

31 -0. 1910 

32 -0.2309 

,33 -0.2674 

34 -0.1694 

35 -0.3590 

36 -0.3116 

37 -0.2714 

38 -0.1471 

39 -0.2384 

40 -0.2770 

41 -0.1706 

42 -0.2562 

43 -0.2701 

44 -0.2636 

45 -0.2254 

46 -0.2636 

47 -0.2572 

48 -0 .2668 

49 - 0.1504 

so -0. 2671 

51 -0.2879 

52 -0. 2275 

53 -0.3026 

54 - 0.2565 

55 -0.2195 

56 -0 . 1956 

57 -0.2750 

58 -0. 2338 

59 -0 .2007 

60 -0.3178 

61 -0.2514 

62 -0.3110 

63 -0.2403 

64 -0. 1969 

65 -0. 2926 

A 

a 

0.9410 

0.9596 

1. 0134 

0.9482 

0.9890 

0.9887 

0.9636 

1.0596 

1.0128 

1. 0047 

1.0908 

1. 0012 

1.0266 

1. 0467 

0.9800 

1.0002 

0.9845 

0.9508 

0.9631 

0.9633 

1.0877 

0.9654 

0.9670 

0.9774 

0.9632 

1. 0500 

0.9924 

0.9659 

1. 0293 

0 . 9349 

1. 0372 ' 

I. 0369 

0.9722 

1.0553 

1.0262 

0.9338 

1.0994 

1. 0702 

1. 0453 

0 . 9410 

0.9596 

1. 0134 

0.9482 

0.9890 

0.9887 

0.9636 

p 

0.3514 

0. 2694 

0.4406 

0.2869 

0.4038 

0.4778 

0.3815 

0.3925 

0.4133 

0.4366 

0.3697 

0.4329 

0.3990 

0. 3723 

0.3815 

0.3126 

0.4008 

0.3604 

0. 3883 

0.3280 

0 . 4409 

0.4326 

0.3177 

0.3751 

0.3867 

0 .4608 

0.4117 

0.4026 

0.5745 

0 . 3846 

0. 3113 

0.3842 

0.4073 

0.4558 

0.4158 

0.3756 

0.4631 

0.5016 

0.3580 

0.3514 

0.2694 

0.4406 

0.2869 

0.4038 

0·.4778 

0.3815 

0.5997 

0.5876 

0.5673 

0.5697 

0.5845 

o. 6472 

0. 5546 

0.6311 

0.5869 

0.5835 

0.6406 

0.6374 

o. 6116 

0.6311 

0.5968 

0.5588 

0.5877 

0.6167 

0.5706 

o. 5771 

0.6199 

0.5611 

0.5880 

0.6234 

0. 6118 

0.5871 

0. 5950 

. 0 . 6007 

0.6036 

0.5813 

0.6174 

0.6084 

0.6028 

0 . 6043 

0.6098 

0.5598 

0.6510 

0 . 5978 

0 . 6148 

0.5997 

0.5876 

0.5673 

0. 5697 

0.5845 

0.6472 

0.5546 
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Table 3-4 . Estimates of the Parameters for the 65 
Samples of Length m = 2000 

.. 

1 -0.2798 

2 -0.2807 

3 -0.2860 

4 -0.1781 

5 -0.2397 

6 -0.2404 

7 -0.2539 

8 -0 . 2398 

9 -0.2632 

10 -0.2710 

11 -0.1973 

12 -0.2250 

13 -0.2507 

14 -0.2446 

15 -0.2098 

16 -0.2665 

17 -0. 1800 

18 -0.2763 

19 -0.2519 

20 - 0.2877 

21 -0.2363 

22 -0.3075 

23 -0.2800 

24 -0.2640 

25 - 0. 2174 

26 -0.2047 

27 -0. 1648 

28 -0.1912 

29 -0.2597 

30 - 0.2359 

31 -0.2078 

32 -0.2907 

33 -0.3311 

34 -0.2092 

35 -0.2314 

36 -0.2714 

37 - 0.2755 

38 -0.2091 

39 -0.2407 

40 - 0.1990 

41 -0.2118 

42 -0.2866 

43 -0.2985 

0. 9871 

0.9679 

1 .0601 

0.9373 

0.9399 

0.9813 

1. 0350 

1.0024 

0.9669 

0. 9877 

1.0585 

1.0115 

0.9813 

1.0393 

1. 0282 

1.0363 

0.9774 

0.9697 

0.9824 

1.0716 

0.9893 

1. 0444 

1.0344 

1. 0405 

1.0239 

1. 0120 

0. 9113 

1.0458 

0.9838 

1.0320 

0.9792 

1. 0167 

1. 0178 

1. 0219 

0.9450 

0.9428 

1.0344 

1. 0273 

0.9791 

0.9139 

0.9867 

1.0574 

1. 0535 

p 

0. 4132 

0.3903 

0.3994 

0.3878 

0.4120 

0.4078 

0.4375 

0.3973 

0 . 3378 

0.3955 

0.4012 

0. 4223 

0.4156 

0.3431 

0.3780 

0.4329 

0.3818 

0.3484 

0.3906 

0.4234 

0.3806 

0.4738 

0.4545 

0.4078 

0.4144 

0.4448 

0.3783 

0.4054 

0.4487 

0.4682 

0.3219 

0 . 3683 

0.4242 

0 . 4035 

0.3638 

0.4588 

0.4193 

0.4256 

0.3961 

0.4154 

0.3389 

0.4426 

0.4070 

a 

0.5893 

0.6135 

0.6358 

0 . 5575 

0.6144 

0.5737 

0."6001 

0.5833 

0.5941 

0. 6059 

0.6031 

0.6428 

o. 6042 

0.6314 

0.6211 

0.6058 

0.5918 

0 . 5·639 

0.5787 

0.6232 

0.6131 

0.6028 

0.6187 

0.6241 

0.6123 

0.6042 

0.5762 

0. 6323 

0.5999 

0.5891 

0.6075 

0.5986 

0.6125 

0.5910 

0.5823 

0.5819 

0.6419 

0.5960 

0 .6022 

0.6080 

0.6028 

0.5928 

0.5908 

J 

I 
J 

'I 

l 
l 

.I 



# 

44 -0.2370 

45 -0.2330 

46 -0.2351 

47 -0.1640 

48 -0.2779 

49 -0.2849 

so -0.2550 

51 -0.3345 

52 -0.3041 

53 - 0.2555 

54 -0 . 2975 

55 - 0.2869 

56 -0.2071 

57 - 0.2764 

58 -0.3019 

59 - 0.2298 

60 - 0.2424 

61 -0.2815 

62 -0.2284 

63 - 0.2650 

64 -0.2442 

65 -0. 2935 

0.9866 

1. 0120 

0.9692 

1. 0001 

1 .0216 

1. 0090 

0.9897 

o. 9977 

0.9794 

0.9906 

0.9478 

1. 0068 

0.9699 

1.0136 

1. 0016 

1.0352 

1.0124 

1. 0137 

0.9914 

0.9768 

1. 0567 

1.0390 

p 

0.4479 

0.4052 

0. 4181 

0.4372 

0.4321 

0.3936 

0.3904 

0.4233 

0.3861 

0.4416 

0.3842 

0.4211 

0.4367 

0.4004 

0.3794 

0.4219 

0.4400 

0.3987 

0.4049 

0.4321 

0.4508 

0.4878 

a 

0.6101 

0.5796 

0 . 6064 

0.6074 

0.6167 

0 .6190 

0.5874 

0.5998 

0.5805 

0.5882 

0.5873 

0.5938 

0.5786 

0.5798 

0.5828 

0.6026 

0.5983 

0.6075 

0. 5914 

0.5911 

0.6426 

0.6673 

Table 3-5. Characteristics of Sample Estimates with 
Sample Length m = 500 

Row 

2 

3 

4 

5 
6 
7 
8 

9 
10 
11 
12 

13 
14 
15 
16 

n• 

a 

n• 

20 

30 

ae 
a 
a15 
a a 
o.Ca15J 

e 
a35 
oa 
a.ca35) 

e 
965 
oe 
o.ce65) 

- 0 .250 

-0.256 

0.071 

0.074 

-0.268 
-0.230 

0.068 
0.066 

-0.254 
- 0.410 

0.086 
0 . 076 

- 0.251 
-0.163 

0.070 
0.079 

a 

1.000 

0.992 

0.063 

0.066 

0.989 
0.967 
0.073 
0.058 

1.013 
1.172 
0.071 
0.084 

0 . 979 
0 . 900 
0.060 
0.068 

• the number of generated samples 

p 

0.400 

0.387 

0.073 

0.069 

0.358 
0.322 
0.044 
0.077 

0 .419 
0.429 
0.076 
0.066 

0.380 
0.312 
0 . 077 
0.092 

(l 

0.600 

0. 602 

0.040 

0 . 030 

0.613 
0.654 
0.037 
0.043 

0.604 
0.626 
0.021 
0.054 

0. 595 
0.594 
0 . 032 
0.039 

~the dummy parameter (may represent any one of p,a,p, or 
a) 
n 

• (L a1)/n* (0i is the estimate a for the ith sample) 

: e for the lumped set of 65 observations 

• the population parameter 
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a a /{Yea. - a )2)/n• (the sample standard deviation) 
1 p 

oa ~ oa for the lumped set of 65 samples 

a.(a) • the asymptotic standard deviation, evaluated at e. 

Table 3-6. Characteristics of Sample Estimates with 
Sample Length m = 1000 

1 

2 

3 

4 

5 
6 
7 
8 

9 
10 
11 
12 

13 
14 
15 
16 

n* 
e 

a• e 

20 

30 

a; 
a 
e1s 
a a 
a.(e15) 

e 
a35 
a a 
a.(e35) 

a 
965 
ae 
o.{e65) 

p 

-0.250 

-0.249 

0.050 

0.049 

-0.250 
-0.213 

0.051 
0.049 

-0.249 
-0.359 
0.055 
0.052 

-0.248 
-0.293 
0.044 
0.049 

a 

1.000 

0.996 

0.045 

0.047 

0.979 
0.996 
0.049 
0.045 

1.009 
1.000 
0.047 
0.043 

0.996 
0.964 
0.046 
0.041 

• the number of generated samples 

9 

p 

0.400 

0.392 

0.051 

0.056 

0.383 
0.427 
0.041 
0.049 

0.391 
0.313 
0.059 
0.059 

0.398 
0.382 
0.063 
0.053 

a 

0.600 

0 . 598 

0.028 

0.026 

0.594 
0.604 
0.024 
0.028 

0.601 
0.559 
0.030 
0.028 

o. 597 
0.555 
0.024 
0.026 

• the dummy parameter (may represent any one of u,o,p, or 
a) 
n 

c (L e
1
)/n* (ei is the estimate e for the ith sample) 

. e for the lumped set of 65 observations 

• the population parameter 

~ liYce. - a )2]tn• (the sample standard deviation) 
1 p 

~ a
9 

for the lumped set of 65 samples 

a_(e) ~ the asymptotic standard deviation, evaluated at e. 

Table 3-7. Characteristics of Sample Estimates with 
Sample Length m = 2000 

Row n• e 

2 

3 

4 

5 
6 
7 
8 

9 
10 
11 
12 

oe, 
a 
e15 
a a 
o_ce15) 

a 
9s5 
a a 
a .. (a35) 

p 

-0.250 

- 0.252 

0.035 

0.038 

-0.244 
-0.210 

0.031 
0 .037 

-0.250 
-0.231 
0.044 
0.036 

0 

1.000 

1.002 

0.031 

0.036 

0.999 
1.028 
0.038 
0 . 035 

1.007 
0.945 
0.039 
0.031 

p 

0.400 

0.410 

0.036 

0.032 

0.396 
0.378 
0.026 
0.037 

0.407 
0.3'64 
0.041 
0.040 

a 

0.600 

0.602 

0.020 

0.020 

0.605 
0.621 
0.023 
0.020 

0.601 
0.582 
0.018 
0.019 



13 
14 
15 
16 

n• 

e 

o• e 

-0.258 
-0.293 

0.038 
0.038 

1.001 
1.039 
0.034 
0.035 

• the nu.ber of generated saaples 

0 .418 
0.488 
0.029 
0.034 

0.601 
0.667 
0.020 
0.022 

• the du..y parameter (aay represent any one of ~.o,p, or 
n a) 

• cE e11tn• ce1 is the estiaate e for the ith sample) 

• a for t he lUJqled set of 65 observations 

• the population parameter 

• /{rce1 - ep)
2
)tn• (the sample standard deviation) 

c o
8 

for the lumped set of 65 samples 

o.(e) • the asymptotic standard deviation, evaluated at a. 

Fourth row gives the sample standard deviations 
calculated from the 65 outcomes . In order not to 
increase the complexity of the analysis the covariance's 
between the estimators have not been investigated. 
Comparing the third and fourth rows, the approximation 
between corresponding values seems good. 

(c) It must be emphasized that the standard 
deviations of the estimators do not appear in the 
fourth row , but rather the corresponding estimates 
?btained from a sample of 65 items . Therefore, there 
1s a new source of error, as far as this comparison is 
concerned, name~y:. The numbe11. o6 geneJtetted ~amplu 
1110.!J not be. ~u66-<.Uen.t to pJt.Odu.c.e a.cc.wt.a.te u.tUna.:tu o 6 
~.ta.ndt.vtd. de.v.i.a.tion.~~ o 6 the u.ti.ma..toll.h . 

To clarify this issue each set was subdi v.ided 
into three subsets, with unequal number of samples in 
each (15, 20, 30). The means and sample standard 
deviation were then calculated. These values are 
shown in rows .5, 9, 13, and 7, 11, 15, respectively. 
The second row is the result of a weighted average of 
the corresponding values of rows 5, 9, 13. The same 
is true of the fourth row, with regard to rows 7, 11, 
15. 

(d) An important question to be addressed is 
whether the asymptotic expressions can be used re­
liably in any real case . Usually only one historic 
record is available, which yields the estimates of the 
parameters. Not knowing the population values, the 
logical thing to do is to evaluate the asymptotic 
expressions at these estimated points. Therefore, a 
fourth source of error is: The unceJ!..t:a..in..t a.bou.t the. 
pa.Jtame.te/1. va.tuu a..t wh,i.ch the. ~ymp.to.t.i.c. exp~LU~.Wn6 
Me e.val.ua..te.d. 

This question was investigated assuming that 
only the 15th, 35th, and 65th samples of each of the 
three sets were available. The corresponding estimates 
are found in rows 6 , 10, 14 {and also in Tables 3-2 , 
3-3, and 3-4) . Tho asymptotic standard deviations 
evaluated at these points are given in rows 7, 11, and 
15. The feasibility of the proposed procedure may be 
evaluated by comparing rows 7, 11, and 15 to the fourth 
row. The evaluation is approximate because only nine 
cases were examined. 

(e) Though the accuracy of results increases 
with an increase of the sample length, it seems that 
the procedure may be applied to samples as short as 
500 . Likely even shorter samples will yield satis­
factory results. 
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(f) For the sample lengths of n 
1 

relationship 

o .. (o,n1) 

o .. (e,n2) 

and n 2, the 

(3-65) 

hold.s , where 0
00

(9 ,n) is the asymptotic standard 

deviation evaluated at e, for a time series of length 
n • 

and 

Thus, for instance 

a. (9P, 500) 

0 ... (9p. 2000) 
/ 2000. 2 00 

500 • 

a~(ep,lOOO) am(9p,500) 

o~(0p,2000) • a .. (ep,lOOO) 
12=1.41 

which can be easily verified by comparing the third 
rows of Tables 3-5 , 3-6, and 3-7. 

3-5 Tests to be Performed 

The material so far presented had implicitly 
assumed a number of hypotheses, for example that there 
is time persistence in the data and that the process 
is stationary. Actually, this last condition will be 
relaxed in Chapter IV. In what follows, tests for the 
two above mentioned hypotheses are developed. 

Tu.t o6 SeJLia.l. Independence. One !light wonder 
whether the model assumed for the continuous process, 
namely the first-.order-Markov, may be excessively 
sophisticated for the problem at hand- This can be 
put in another way, whether it is possible that the 
continuous process is in fact serially independent, 
therefore with p• O. If this is the case, any 
positive value estimated for p would be due to 
sample fluctuations. Hence, a test of the null hy­
pothesis that p•O may be appropriate. 

Le~ ~ be the four-dimensional parameter space, 
namely ~ • { (IJ,a,p,a); -oo < 11 < "'• 0 <a, 0 ~ p ~ J;, 
-"' < a < m}. Let us define the three-dimensional 
parameter subspace by a = {(\I,O,p,a); -"' < 1J < m, 

'"'t) 

0 < a , P • 0, _.., < a < ..,} - We want to test the null 

hypothesis H : a = {\l,a,p,a)£ a versus the alter-o -o 
native hypothesis HA : a • (~,a,p,a)£ e- e . The - -o 
generalized likelihood- ratio, denoted by ~ ·is 
defined to be 

sup9£~ L 
). = ---"­

sup0£9L 

with sup(• ) meaning the supremum. 

(3- 66) 

Notice that ~ is a function only of the ob­
servations and therefore is a statisti c. When the 
observations are replaced by their corresponding 
random variables then ~ is itself a random variable . 
It is know, for examp,le from Mood et al. (1974), that 
for large sample - 2 log A is approximately distri­
buted as chi-square with one degree of freedom, for 
this particular case. 

Recalling that LL ~ l og L, we have, from Eq. 
(3-66) 



2(sup0c~ LL - supece LL] - x2(1) 
-o 

(3-67) 

sup9c~ LL is the value of the log-likelihood 

function evaluated at the estimated vector. Let . 

LL* = sup - LL (3-68) ec!!_ 

Therefore, one should reject the null hY.Pothesis, for 
the size of the test equal to y , if 

where y 
reached, 
erro:r). 

2(LL* - supece LL) > xi-y (1) , 
-o 

(3-69) 

is the probability that a wrong decision is 
if the null hypothesis is rejected (Type I 

TeA.t o6 S:t.t:Lt.Wnai!.A..ty. The stationarity assump­
tion made for each season is perhaps the hypothesis 
that may raise most of the doubts. Actually, this is 
an intermediate step toward a more realistic repre­
sentation of· the usually non-stationarity processes of 
hydrology; each season yields a parameter vector and 
the fitting of periodic functions to this number of 
points, which equals the number of seasons, will give 
a non-stationary representation of the whole process. 
Hence, the stationarity assumption ought to be seen as 
an approximation used in an estimation. procedure de­
signed for .a non-stationary model. Nevertheless, one 
should expect the period of the year to be divided in­
to seasons in such a way that the non-stationarity in­
side each season is kept at a low level. A test for 
the stationarity of each season is, therefore, in 
order. 

A way of testing for the stationarity is again 
through the use of the generalized likelihood ratio. 
Let the season be split into t wo subseasons, A and B. 
If the process was indeed stationary, one could expect 
the estimates for the subseason A to be clo6e to those 
for th~ subseason B. Different seasGn splitting 
criteria represent different alternative hypotheses. 
From the several ways of splitting a season, the follow­
ing two schematic representations may be most convenient 

Alternative I 

A is the first half and B is the second half of 
the season. See Figure 3-3(a). 

Alternative II 

A is made of the first and last quarters, and B 
of the second and third quarters of the season . See 
Figure 3-3(b). 

It is easily verified that Alternative I would 
work satisfactorily whenever a parameter e varies 
with time in the way shown in Figure 3-3(c) . However 
it would not be appropriate for a situation like the 
one displayed in Figure 3-3(d); des~ite the fact that 
0 is not constant with time, still 0A and 0B might 

turn out to be statiscally equal. By a similar rea­
soning it can be shown that Alternative II is appro­
priate for situations like the one displayed in 
Figure 3-3(d) and not appropriate for situations 
exemplified by Figure 3-3(c) 

18 

For safe tests, both alternatives should be used. 
The parameter space can be reshaped in the following 
way: 
91 )JA-JJB' 02 ., oA-oB' 03 = pA-pB' 

e 6 OA 07 = PA 

A A B B 

(a) 

8 

(c) 

~A~~~B--~B~~~A~•--.L 
(b) 

8 

(d) 

04 :: aA-aB, 

08 a A 

Fig. 3-3. Illustration of splitting Criteria for 
Testing for the Stationarity. 

Let ~ be the eight-dimensional parameter space 

~ {(0i) ' -~ < ei <~for i=l,2,3,4,5,8; 0 < 06; 
0 < e7 < 1}. Define the four- dimensional parameter 

space ~ ~ {(0i); ei = 0 for i=l,2,3,4, -~·< es, 
0

8 
< ~; 0 < 0

6
; 0 < 0

7 
< 1}. The null hypothesis is 

then H
0

: ec~, versus the alternative HA: ec~. 

The generalized likelihood ratio is then given by 
Eq. (3-66). From the definition of ~· sup0c~ LL 

-o 
LL*, where LL* is defined by Eq. (3-68) . For large 
sample -2 log A is distributed as chi-square, this 
time with four degrees of freedom. Therefore, one 
should reject the hypothesis, for a test of size y, if 

2(sup0c~ LL - LL*) > X~-y (4) (3- 70) 

3-6 Generation of New Samples 

Once the parameters are estimated, the generation 
of new samples can be accomplished by following the 
stepwise procedure i llustrated in Figure l-1 . 

The standard normal noise, ~t' can be obtained 

by using several canned computer subroutines. Howeve~ 
for the multivariate case some care must be paid in 
generating tt .; j = 1,2, ... ,! because the variables 

,J 
may not be i ndependent, with j as the station subscripc 
A way of doing this i s by the use of: 



(3-71) 

in whick rr is a .txl. matrix and ~ is a lxl vector of 

independent standard normal deviations. Then 

cov(~) = cov(rr~) = rr cov(~) rr ' 

where cov(•) means the covariance matrix of the 
argument vector. Because 

(3-72) 

(3-73) 
where I.e. is the lxl. identity matrix, then from Eqs. 
(3-72) and (3-73) 

COY(~) = rrrr 1 
(3- 74) 

On the other hand, the linear autoregressive equations 
for stations j and k are: 

zt,j., ll(j) + P(j)(Zt-l,j-IJ(j)) + o(j) fi_P2(j) t . 
t,J 

(3-75) 
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and 

ll(k) + P(k)(Zt-l k-ll(k)) + o(k) li-p2(k) ; 
' t,k 

(3-76) 

Multiplying Eqs. (3- 75) and (3-76) and finding the 
expected valu.es, then 

cov(; .;t ) = p(j,k)(l-p(j)p(k)) 
t,J t , k I 2 2 

{1-p (j) (1- p (k)) 

(3-77) 

where p(j) and p(k) are the serial correla~ion 
coefficients respectively for stations j and k, and 
p(j,k) is the lag-zero cross correlation between the 
two station series. From Eqs. (3- 74) and (3-77) one 
may conclude that the (j,k)-element of matrix rrrr', 
)Fk, is given by Eq. (3-77) . The diagonal elements 
are unities. Several methods are available for find­
ing the matrix rr when rrrr ' is known; Young (1968) 
gives a straightforward one. 



Chapter IV 

,APPLICATION OF INTERMITTENT PROCESSES MODEL TO 
PRECIPITATION DAILY SERIES 

In this chapter the model previously presented is 
applied and tested to daily precipitation data. The 
approach undertaken is to show, by a few examples, 
that the model has sufficient merit to find place 
among the techniques already used in hydrologic prac­
t ice. No attempt is made to test the method on a 
large number of station series. The emphasis is on 
demonstrating the reliability of the methodology, 
rather than an exhaustive examination of the stochas­
tic characteristics of hundreds of precipitation series. 

4-1 Data Selection 

Choosing a particular precipitation record to be 
one of the cases studied in this chapter has been con­
ditioned by the two requirements: 

(i ) The climatological description of the station 
location should be easily available; and 

(ii) The stations should be sufficientl y apart 
to possess different climatological conditions. How­
ever, a few stations should be sufficiently close in 
order to display some dependence, in this way serving 
as an illustration for the multivariate case for which 
the model is also applicable. 

The first requirement was satisfied by fmposing 
that a station would only qualify if it had been se­
lected to receive a detailed description in WIC (1974). 
This publication gives a summary of climatological data 
of a large number of precipitation stations in USA, 
furnished on a state by state basis. Among those , only 
a fe·w are chosen to receive a complete description. 
The stations herein selected for study belong to this 
second category. They are given in Table 4-1. 

Table 4-1. List of Stations Used for the Study 

Station Period of I.A>ution elevaticm Avcraa:• Annuo.l 
Record LATIT. UJI'C. (ft.) Procip. D•ys w/ 

(ln. l l'recip. 

ColumbiA (MO) 1951-19<>8 Js•sa' 92"22' 778 33.66 107 

~nsas City (~10) 1946-1961 39'07' ~4·:56· 742 33.04 91 

Springfield (MO) 1946-1968 37.14 I 93*23 I 1268 ~.46 1% 

Raloigh-llurlla• (!'C) 1951-1971 3S'S2' 78.47' 434 41.35 liS 

Austin (TX) 1898-1967 30'18' 97'42' 597 33.02 81 

Rapid City (SO) 1951-1968 44'0l ' 103' 03' 3165 16.39 93 

Fhgst~!f (AZ) J 953-1970 ss•oa • 111 ' 40' 6993 19.82 72 

Seattloe-Tacoaa (lfA.) 1950-1970 47'27 1 122' 18' 386 39.95 164 

The periods of record given in Table 4-1 were 
selected on the basis of the availability of data. 
They do not necessarily coi ncide with the periods in 
the WIC (1974) publication . Figure 4-1, with the lo­
cations of eight stations shows that the second re­
quirement is also satisfi~d, namel y that the stations 
are scattered throughout USA, with the exception of the 
three stations located in the State of Missouri, used 
to il lustrate the multivariate case. 
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To avoid an excessive number of tables and graphs 
throughout this chapter, the detailed results pertinent 
to the station of Columbia (MO) will be only given in 
the text. The results related to the other stations 
will be referred to and introduced in a summarized way. 
However, Appendices Bl to 87, give the detailed outputs 
corresponding respectively to each one of the remaining 
stations. They are presented in the same order as the 
one employed in t he text for the station of Col umbia 
(MO). 

Figure 4- 1. Location of Stations of Daily Precipita­
t ion Series Used in this Study. 

4-2 Application of the Model for the Stationary Case 

A possible application of the model may be in 
generating the new samples related to a specific short 
interval of time during tlte year, say a particular 
month. For this case one is tempted to assume the 
stationarity in the data, therefore enabling the use 
of the model in the form developed in Chapter III. To 
study the applicability of the model for this case the 
data of each station series is divided in twelve sea­
sons . The tests developed i n Chapter III are t .hen 
applied to each season of each station series yielding 
a detailed picture of how the data conforms to the 
hypotheses of the model. The seasons have al ternating 
lengths of 32 and 28 days, adding up to a total of 360 
days. The selection of these l engths stems from the 
fact that the stationarity tests developed in Section 
3 .5 require the number of daily observations to be the 
multiples of 8 and 4, r espectively. 

For each season and each station, the following 
procedure was used in the analysis: 

(i) Toestimatetheparameters ~.a,p and a 
of the marginal distributions, using all the data 
available; 

(ii) To find the approximate covariance matrix 
of the estimators by using the asymptotic expressions 
developed in Section 3-4; 

(iii) To test· the goodness of fit of the mar­
ginal distribution by using the x2 statistic; 



Table 4-2. Results Obtained in Case the Year is Divided in Twelve Seasons, for the Columbia Station 

ASYMPTOTIC 
PERIOD PARAMETERS COVARIANCE MATRIX T.S.l T.S.2 T.S.3 T.S.4 T.S.5 

)J C1 p a (X 10-6) (d . f . ) (ld.f.) (4d. f.) (4d.f.) N(O,l) 

001- 032 - .4109 . 5475 . 3848 .6121 2988 -2071 - 582 865 8.979 17.305 10.294 4.403 -6 . 902 
2383 950 -1302 (4) 

~ 7832 - 206 
2398 ~ 

033-060 - .3291 .5370 .3584 .6655 2382 -1555 - 416 607 7.015 15.023 6.195 -3.237 ~ 2048 827 1227 (5) 
7934 - 148 

J 2760 
~ t 061-092 -.2170 . 5383 .1928 .6249 1347 - 767 - 113 140 10.857 5.633 7.601 3.191 -5.925 

1235 320 - 648 (6) 
6754 - 25 ~ 

1676 
!I 

093-120 -.1947 .5578 .2295 . 7106 1557 - 832 - 196 101 10.427 7.316 1.028 - 2.940 

I 1381 455 - 752 (7) 
7166 - 22 

2362 

I 121-152 -.3110 . 7080 .3169 . 7143 2547 -1329 - 264 - 4 16.416 15. 243 2. 587 5. 804 -1.528 
1885 682 - 421 (9) 

6146 - 40 f 
2274 

153-180 -.2939 . 7182 .1900 .6052 2743 -1460 - 171 - 37 6.570 4 .521 2.297 - 4.870 
2076 472 - 346 (9) 

7771 - 12 \ 1784 

l 181- 212 -. 3846 .7701 .2641 .6353 3274 - 1818 - 313 2 7.825 9.650 2.242 7.865 - 4 . 185 -
I. 2352 675 - 334 (9) 

6980 - 22 
1876 j;: 

213-240 -.5526 . 7812 .2158 .6304 5566 -3465 - 427 346 7.823 4.374 4.990 - 4 .469 
3771 777 - 726 (7) 

10608 - 62 
2597 

241-272 - . 6331 .9114 .3958 .6065 6681 -3916 - 771 - 64 5.637 19.562 5.601 4.058 -4.325 
4312 1348 - 169 (9) 

7176 - 67 i! 
2093 : 

273- 300 - .6799 .8538 . 3706 .6254 8188 -5006 - 959 348 6.093 13.139 5.042 -3.186 
5115 1533 - 679 (7) 

9684 - 122 
2879 

301-332 -.5193 . 6632 .2948 . 6576 4355 -2864 - 551 788 10.577 8.961 1.449 3.572 -4 .172 
3048 891 - 1171 (5) 

9407 - 148 
2739 

333-360 -. 3301 .5219 .3451 .6527 2365 -1595 - 424 676 4.687 13.269 0. 730 -4.137 
2068 813 -1276 (4) 

8330 - 158 
2696 
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(iv) To test the hypothesis that there is no 
ser ial dependence in the data (in which case a much 
simpler model would do the job ... ) 

(v) To test the hypothesis of stationarity for 
alternative I I (only for the seasons of length 32); and 

(vi) To investigate which family of distribu­
tions, light or heavy tail, best fi ts the data. 

The results obtained are presented in Table 4-2 
(see also the Appendices Bl to 87 for the correspond­
ing tables concerning the seven other stations). The 
remainder of this section is devoted to the description 
and comments related to these tables. 

The Se44on4., The first column of tables gives 
the beginning and the end, in days of each season. 
January 1 is day one. The 12th season ends on the 
360th day of the year; therefore, five or six days (in 
leap years) are neglected for each year. This is 
certainly irrelvant for the objectives of this investi­
gation, namely to evaluate the applicability of the 
model. 

The E4.tUna:tu. aM. the Cova/LUutc.e ,t.la.t/Ux. The next 
four columns give the estimates of v,cr,p and a, 
respectively. The next four columns give the asympto­
tic covariance 118.trix of the estimators, assuming them 
arranged in the above order (11,cr,p and e1): As stated, 
previously these results are helpful in designing 
sensitivity studies . For example, assume that a gene­
rated sample will be used to perform a hydrologic 
routing, with the resulting output hydrograph at a 
location of particular interest. Suppose further that 
the hydrograph will be used for the design of a flood 
control structure. An important information is how the 
final ~duct say the height of a dam or its cost, will 
be modified when ~onable variations are imposed on 
..Parameters of the generation model. What is a Jt.e44on­
~~variation depends on the subjective criteri~ of an 
engineer. Regardless of this subjectivity, one would 
not expect that the ~e parameter would lie, say five 
standard deviations (of the pertie~ estimator) away 
from the estimated value. What is suggested is that 
the approximate covariance matrix may be useful i n 
establishing the variations of paramet ers, which will 
be found )le44onabte by most people. Logically sensi­
tivity analysis is a procedure to be applied on a case­
by case basis. It seems worthwhile to point out that 
the first step in any sensitivity study will likely be 
to construct confidence intervals around each of the 
estimates, or even better, a confidence region. An 
approximate procedure to do it is to assume that each 
estimator is normally distributed, (which is true for 
large samples), and find intervals, rather than regions. 
In this case the approximate limits of the confidence 
intervals are obtained by adding to and subtracting 
from each estimate a quantity that is equal to the 
appropriate quantile of the standard normal distribu­
tion multiplied by the corresponding standard devia­
tion. The last one can be obtained from the asymptotic 
expressions. For instance, for the Columbia data, 
period from 1 to 32, ~ s -0.4109, std (II) : 
I -6 
~2988 x 10 • 0.0547. Therefore, an approximate 95 
percent confidence interval for ~ is given by 
(-0 .4109 + 1.960 x 0 .0547), so that the limits are for 
11: -0. 5180 and -0.3038; similarly for cr: 0.4518 and 
0.6432; for p • 0.2113 and 0.5583; and for a: 0 .5161 
and 0. 7081. The same precedure could be repeated for 
each of the four parameters, for each season of each 
station. 
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Goodneh~ o6 Fit. Column 10, headed by the label 
T.S.l (symbol for the test statistic No. 1), gives 
important information, namely the chi-square goodness 
of fit statistic. Inside the parenthesis are displayed 
the number of degrees of freedom, which depend on how 
the data have been arranged into groups. The good pe~ 
formance of the model with respect to reproducing the 
marginal distr ibution for each season-station is re­
markable. Indeed none of the twelve seasons in which 
the Columbia data was divided has yielded a statistic 
that would lead to the rejection of the marginal fit, 
at a 5 percent significance level . (Appendix C gives 
the critical values of the chi-square distribution, at 
the 5 percent and the 1 percent significance levels). 
As it concerns the other stations (see Appendix 8) the 
following results are given. 

Table 4-3. Seasons for Which the Marginal Fit Were 
Rejected at the Five Percent Significance 
Level. 

Station 

Kansas City (MO) 

Springfield (MO) 

Raleigh-Durham (NC) 

Austin (TX) 

Rapid City (SO) 

Flagstaff (AZ) 

Seattle-Tacoma (WA) 

Period 

061-092 

061-092 
333-360 

032-060 
301-332 

001-032 
033-060 
061-092 
333-360 

301-332 

213-240 
241-272 

333-360 

Chi-square 
Statistic 

21.586 

16.871 
15.226 

24.353 
19.083 

34.282 
27.149 
23.074 
32.065 

7.061 

12.934 
14.631 

25.928 

Degrees of 
freedom 

9 

8 
7 

9* 
s 

11*' 
n 
13 
14*' 

2 

6 
6 

10*' 

*'Rejected also at a 1 percent significance level 

Therefore, out of 12 x 8 = 96 season-stations, 
13 had the hypothesis of correct' fit of the marginal 
distribution rejected at the 5 percent significance 
level. At the 1 percent significance level only four 
cases, those marked by an asterisk in Table 4-3 are 
rejected. No null hypothesis stating the univeJI.halitY 
of the model applications is tested here . If this was 
the case, and if the studied time series were spatially 
and serially uncorrelated, then one would expect to 
have no more than 5 season-stations rejected at a 5 
percent level or no more than l at a 1 percent level. 
The purpose of this particular study is rather to 
identify cases for which it is not avisable to apply 
the model. For instance, an examination of Table 4-3 
reveals that the four seasons that roughly span from 
December to March for the Austin station should not 
be modeled by this approach. 

Teh.t o6 Svr..iA.t Independence, The next test 
statistic to be examined, T.S.2 of Table 4-2 and 
Appendix 8, is described in section 3-5. It tests 
H

0
: p : 0 against HA: p ~ 0. If the null hypothesis 

holds, then rhe test stati~tic has approximatelY a 
chi-square distribution with one degree of freedom. 
Hence , one can reject the hypothesis, say at 5 percent 
significance level, whenever the test statistic takes 
a value greater than 3.84. For all except two of the 
96 cases the null hypotheses were rejected. The only 
exceptions occurred for the 11th season of Rapid City 



2 station, where x = 3.81, and 4th season of Flagstaff, 
2 with x = 3. 79. These two cases may be results of 

pure chance variations. 

This overwhelming rejection of the hypothesis of 
serial independence in the analysed precipitation 
series makes one wonder about the reality of several 
models, as described in Chapter II, that neglect the 
time dependence in daily precipitation 

Tut:.6 on SJ:ai:A.IJYIO.JU.ty. The next two test statis­
tics, T.S.3 and T.S.4 in Table 4-2 and Appendix Bare 
related to the question of stationarity. One would 
not use the .6e.a.60it appJtOa.ch in generating new samples 
if the data of a particular season shows some evidence 
of non-stationarity. In Section 3-5 two test statis­
tics were developed to test the null hypothesis H

0
: 

the process is stationary, versus two alternative 
hypotheses: Alternative I, with the parameters varying 
with time in a symmetrical manner around the center of 
the season. Under the null hypothesis both test 
statistics have approximately a chi-square distribution 
with four degrees of freedom. Hence, the hypothesis 
should be rejected at 5 percent significance level 
whenever the test statistic is greater than 9.49. 

The test with the Alternative II was onlY. applied 
for the seasons composed of 32 days, because the 
splitting procedure requires a sample which is a 
multiple of eight. 

For the Columbia station data, only one season 
has the null hypothesis rejected. This happened for 
the first season and only against Al ternative I. With 
regard to the other stations, very few rejections oc­
curred.either, as it is demonstrated by Table 4-4. 

Hence the hypothesis of stationarity was rejected 
for 11 seasons, at the 5 percent significance level. 
Some of these rejections might be due to randomness in 
data, rather than to a deficiency of the model. Con­
versely the test might have been accepted for some of 
the other seasons due to chance and not to the adequacy 
of t he model. However if one had to select .6u.6p.i.UOU.6 
seasons, as far as the application of the model is 
concerned, then the eleven cases which had the station­
arity hypothesis rejected would lead the 'list. In the 
ensuing sections, it will be shown that alternative 
procedures may allow the use of the model for all year 
around with satisfactory results. 

Table 4-4. Seasons for Which the Hypothesis of 
Stationarity was Rejected at the Five 
Percent Significance Level (critical value 
• 9.49) 

St ation Period Test Statistic Alternative 

Columbia (MO) 001-032 10.29 I 

Kansas City (MO) 001-032 10.57 I 

Rapid City (SO) 061-092 11 . 45 II 
121-152 13.27 II 

Flagstaff (AZ) 121-152 11.25 I 
181-212 39.62 I 
241-272 14.23 I 

Seattle-Tacoma (WA) 033-060 13.06 I 
061-092 11.18 I 
121-152 11.64 I 
241-272 19.30 I 

2 3 

Tu.U 6M. Ex,titem~ Eve.n.t-6. The last test statistic 
to appear in Table 4-2 is not directly related to the 
model, but rather is an evaluation of the characteris­
tics of the data. Do sample frequencies need to be 
fitted by a l i ght or a heavy tail probability distri­
bution? The importance of this question stems from de 
singular role played by extreme events in the hydro­
logic design. The use of some light tail distribution, 
when the data require some heavy tail distribution, 
can lead to serious mistakes . 

Bryson (1974) classified a distribution with c.d. 
f . FX(x) as heavy tailed whenever g(x) = 

1 J. ---- ~X(t)dt is an increasing function of x, 
Fx(x) x 

with ~X(x) • 1 - FX(x). If g(x) is constant, namely 
1 -~x g(x) = ~· Vx, then FX (x) • 1 - e , i.e. the expo-

nential ~distribution is the benchmark between light 
and heavy tail distributions. It is important to 
underline that the family of distributions frequently 
used in hydrology has the exponential tail. 

Holander and Proschan (1975) developed a procedure 
for testing the null hypothesis, namely H

0
: the dis-

tribution has exponential tail. They proposed the test 
statistic (modified by a constant factor here) 

(4-1) 

where 

(4-2) 

with R1, K2, ... , Rn = the order statistics. They_ 

also proved that under the null hypothesis the' test 
statistic follows the standard normal distribution. 
Lighter than exponential distributions will tend to 
have large v* values and conversely heavier than 
exponential distributions will tend to have small 
(negative) v* values. Therefore, the exponential and 
light tail hypothesis ought to be rejected, at the 5 
percent significance level, whenever the observed test 
statistic is smaller than -1.645. Checking the column 
T.S.5 of Table 4-2, one realizes that this happened 
for all the 12 seasons but the 5th . Table 4-5 lists 
all the instances where the null hypothesis failed to 
be rejected. 

Therefore only in 10 cases out of 96 cases the 
null hypothesis failed to be rejected at the 5 percent 
significance level. This could lead to the conclusion 
that in the majority of cases daily precipitation data 
ought to be fitted by a heavy tail distribution. How­
ever, it should be pointed out that the test assumes 
time particular application. Furthermore, the distri­
bution of the test statistic is only asymptotically 
known. In other words, the above test might not per­
form the task it is supposed to do. Even for a 
correct test, insight on the deg~e o6 heavinU4 of 
the precipitation distributions would be useful. An 
alternate procedure for checking the tails seems to be 
i n order. 

1/. 
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Tabl·e 4_.5. Seasons for Which the Hypothesis of Light 
Tail Failed to Be Rejected 

Station Period Test Statistic 

Columbia (Kl.) 121-152 -1.528 

Kansas City (Kl) 153-180 -1.213 

Raleigh-Durham (NC) 033-060 0.571 
333-360 0.002 

Flagstaff (AZ) 033-060 -1.592 
093-120 -0.697 
121-152 -0.741 

Seattle-Tacoma (WA) 001-032 -1 .627 
061-092 -1.325 
273-300 -1.378 

_ Bryson· (1974) suggested that a graph of log 
Fx(x) versus x could give a visual perception of the 

tail behaviour of the probability distribution function. 
In fact, the procedure serves the purpose of amplifying 
the tail characteristics of a distribution. Obviously 
in case of exponential probability distribution this 
graph will plot as a straight line. According to 
Bryson, " ... the graph of a distribution with an expo­
nential tail, such as the gamma will approach such 
linearity for large x. (Heavy tail) distributions 
then, will be characterized by graphs that do not 
approach such linearity and which remain too high. Un­
fortunately, it is difficult to be more precise. 
This property means that the graph will tena to be 
concave for large x .. . " 

Figure 4-2 displays the graphs of log Fx(x) versus 

x for several power-transformed-truncated-normal-dis­
tributions with different power parameters ~. and for 
~ = o. For comparison other distributions were also 
plotted, such as Pareto, exponential, and kappa. The 
kappa distribution was used by Mielke (1973) for fit­
ting precipitation data. The pl~t was done in such a 
way that ~(10) = 0.05 for all cases . It is apparent 
that the smaller a the heavier is the tail. For 
~ = i , which corresponds to the truncated normal, the 
tail is lighter than the exponential. 

An excess number of figures is avoided by consi­
dering only the sequence of four seasons (120 days) 
that have the highest average precipitation. This 
seems to be an appropriate criterion due to the problem 
being investigated, namely extreme or flood type events. 
Figure 4-3 displays the four graphs pertinent to 
Columbia station . The same graphs related to the other 
stations are given in Appendix B. In general, no con­
cavity of the curves, either the fitted (continuous) 
or the observed (dashed) , is evident. Rather, they 
resemble very much straight lines, which indicates 
that the distributions with exponential type tail are 
not precluded from fitting precipitation data. This 
statement is in contradiction with the previous conclu­
sion about the test made on tails . The important point, 
however, is that even if data require indeed the heavy 
tail distributions, the deg~ee o6 heav~e44 would be 
very low. Based on the above study, one can say that 
the issue of heavy or l ight tail does not seem to be 
very relevant to the application of the precipitation 
model developed in this study. 

2 4 

~0. 1 ...... 

O.OI L_ _ __.J2 _ __ 4...~.,_ _ _ 6':-- __.J8 _ _ -LIO:----I':-2--...LI4 

.. 
Fig. 4- 2. Graphs of log FX (x) . .Versus x for 

Selected Distributions: (1) Exponential; 
(2) Truncated Normal; (3) Power-Transftttmed 
Truncated Normal, ~ = 0.6; (4) Power -Trans­
formed Truncated Normal, ~ = 0.4; (S) Power­
Transformed Truncated Normal, a= 2; (6) 
Kappa; (7) Paretto. 

4-3 An Example of a Multivariate Application 

A simple illustration is given here to show the 
use of the model in a multivariate case. Suppose that 
one wants to produce the new samples of precipitation 
data for the s t ations of Columbia, Kansas City, and 
Springfield simultaneously by preserving the areal de­
pendence among them. Assume further that only the 
most rainy month for the region is of interest. This 
is in June, roughly corresponding to the 6th season of 
the classification used in the last section (period 
153-180 or June 2-June 29). Therefore the marginal 
parameters can be found respectively from Table 4-2, 
and Appendices B-1 and B-2, respectively. 

Next step is to find each of the three lag-zero 
cross correlation coefficients between station series 
by using Eq. (3-24). The results are summarized in 
Figure 4-4. 

One. hundred tri variate sampl es each for the month 
of June, were generated simultaneously according to 
the procedure explained in Section 3-6 . Out of many 





Table 4-6. Absolute Frequency of the Joint Positive 
Run-Lengths 

Sample Run-length Total 

2 3 4 ' 5 6 

Historic 31 8 5 1 0 0 45 

Generated 190 31 19 4 0 1 245 

Whether the two samples of Table 4-6 can be con­
sidered as drawn from the same population is of crucial 
importance in the evaluation of the model. A way of 
answering this question is by using the test of equa­
lity of two multinomial distributions. The reader is 
referred to Mood et al. (1974) where a description of 
the test is given (pages 448-452). It is sufficient 
to state here that the sampl e space is divided in 
k + 1 subsets and the null hypothesis states that 
Ho: Plj = p2j' j = 1, 2, ... , k + 1, where plj =the 

probability that an outcome of the first population 
belongs to the jth subset, and p2j = the same as 

p . but in regard to the second population. For the 
aSdve data the division in three subsets (k = 2) seems 
convenient, namely: (i) run of length 1; (ii) run 
of length ·2; and (iii) run of length > 2. 

It can be shown that 

2 k+l 
T.S.6 = ~ ~ 

i•l j=l 
(4-3) 

has a limiting chi-square distribution with k degrees 
of freedom, where g1 = the total number of observa-

tions for the first population (in the present case, 
45); g2 • the same as g1, but for the second popula-

tion (245); Glj =number of outcomes in class j, from 

the first population; and G2j =the same as Glj' but 

from the second population. 

The use of Eq. (4-3) with the data of Table 4-6 
yields a value of T.S.6 = 1.58. Since the 95 percent 
quantile of the chi-square distribution with two de­
grees of freedom is 5.99, the null hypothesis cannot 
be rejected at the S percent significance level. 

With regard to the joint run-sums, again the test 
whether the two samples (not given in tables) were 
drawn from the same population if p'erformed . Since 
this variable is continuous, the two-sample-Smirnov 
test seems more suitable than the multinomial one. For 
a 'description of that test see Bradley (1968). Here it 
is sufficient to state that under the null hypothesis 
of e~uality of the two distributions, the random 
variable 

T.S.7 • max IS1 (x) - s2(x) I (4-4) 
X 

has some distribution which 95 percent quantile is 
given approximately by 

1.358 

(4-5) 
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where s1 (x) is the sample c.d.f. of the historic 

sample and S2(x) is its counterpart for the generated 
sample. 

The application of Eqs. (4-4) and (4-5) to data 
gives the values of 0.1868 and 0.2202, respectively . 
Therefore, the hypothesis stating that the two samples 
can be considered as drawn from the same population 
should be accepted at the 5 percent significance level. 

In synthesis, the application of the model to the 
multivariate case is satisfactory for the example used. 
This is a positive indication about the feasibility of 
using the model. 

4-4 The Non-Stationary Approach to Analysis of 
Intermittent Stochastic Processes 

If the model is applied to a long period of time, 
say to the whole year, the season approach is no more 
feasible. First, one might consider the possibility 
qf .generating new samples by using a succession of 
seasons. For example, one could divide the year in 
twelve seasons (as in Section 4-2), and assume station­
arity inside each season, though each season would be 
stochastically different from the others. However if, 
say, April 30 is the last day of a season, and May 1 
is the first day of the next season, then according to 
described procedure the daily precipitation process is 
expected to undergo an abrupt transition in parameters 
between these two days. This is not a realistic 
approach. 

Another alternative is to assume that any para­
meter of the model is a periodic function of time, 
rather than a constant. In this case, the question is 
how to estimate the time ~unctions ~T ,crT,pT ,aT, and 

pT(i ,j). The ~ea4on ap~ach can be used as an i nter­

mediate step for solving the problem, namely split the 
year into seasons and for each season estimate a set 
of parameters under the hypothesis of stationarity. 
The time variation of each parameter can be represented 
by a bar graph, as in Figure 4-5, where 0 represents 
any of the above referred parameters. Next fit the 
bar graph with some smooth function. 

T 

. Fig. 4-5. Fitting a Smooth Function to Values Obtain­
ed by Season Approach. 

The most convenient way of expressing eT is 

through an analytical expression. Smoothing techniques 
like the moving-average scheme are not appropriate . 
Usually the periodic parameters of hydrologic time 
series are fitted by Fourier series, with the present 
study following this technique . 

The periodic,function 0 , T = 1,2 ... , 0 is 
difined by T 

+
kL2 A 

0 = e L [aJ. cos(211~T) +b. sin(
211

bT)]m(j) 
T j=l J (4-6) 



with 

2 k 21rjT 
aj ,. k ~ e cos -k-

T=l T (4-7) 

and, 

2 k 211jT b. '"'[ r e sin 
J T=l T k (4-8) 

and, 
k 
r e 

T a T=l 
-k- (4-9) 

with eT the individual estimates of e along the 

values T = 1, 2, ... , k: k =the number of seasons in 
which the year is divided (for simplicity assumed to 
be an even number); T = the day index; n = the number 

of days; and m(j) = {1 , if the jth harmonic is consi­
dered significant; 0, otherwise. 

A clarification is necessary about what is meant 
by .&4Jn.i.6.ic.a.nt: hcvunon..U.. The use of Eqs . €$- 7) and 
(4-8) yields only the estimates of the ~ parameters 
aJ. and b . . Hence even if a. and b . were both 

J J J 
equal to zero, meaning that there is no periodic signal 
with frequency j/k, still a. and b. are l ikely to be 

J J 
different from zero. In these conditions, if the jth 
harmonic is accepted as a legitimate periodic compo­
nent, then a spuriors periodicity would be included in 
the formation Of ST . The question is then hOW to 

decide whether aj and bj are significantly differ­

ent from zero, i.e. whether the jth harmonic is signi­
ficant. A way of accomplishing this is by the 
classical Fisher's test for a process composed of the 
sum of a harmonic and a normal independent process . 
This test, as well as some empirical procedures, are 
described in detail by Yevjevich (1972b). A diffi­
culty with the Fisher's approach for this kind of 
problem, besides those pointed out by Yevjevich, is 
that when fitting the periodic functions one is much 
more worried about the possibility of committing the 
Type II error than the Type I error. The Fisher's 
test only controls the Type I error. In other words, 
while smoothing a .&.te.p 6wtction one is ver y much con­
cerned with missing some periodic signal that should 
be included but does not care so much when the case is 
opposite, namely of a harmonic being wrongly considered 
as significant. 

As mentioned before, Yevjevich (1972b) suggests a 
couple of empirical procedures for testing the signi­
ficance of harmonics. Another empirical methodology 
was found to be convenient in the present study. 

The mean square of deviations of eT ,T = 1, 2, 

. . . ,k, from the mean e is given by 

var h. 
J 

(4-10) 

where (var hj) is called variance of the jth harmonic. 
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Under the hypothesis that all the k/2 harmonics 
are not significant, the expected value of the variance 
of any harmonic is given by 

2 k£2 
E(var h.) = k }. var h. • Vir h 

J j=l J (4 -11) 

If the above hypothesis is not true the tendency 
will be to have at least one of var h . well above 

) 
var h. The suggested empirical procedure is to reject 
the hypothesis whenever 

max(var h .) > Vir h, 
J 

(4-12) 

where c is a constant greater than one. In the 
cases analysed in the ensuing text the value of c = 3 
was found appropriate. 

The hypothesis being rejected means that th·e 
harmonic hi with the highest variance ought to be 

considered significant. Next step is to redefine 

(4-13) 

(the ith harmonic is excluded) and check whether 

max (var h .) > c Vir h, 
j,j'Fi J 

and so on. As long as the hypothesis is not rejected 
the procedure is continued. 

The precipitation data for the eight stations 
studied were divided into 26 seasons (k = 26), 14 days 
each, adding up to 364 days. This is a rather arbi­
trary selection; one could choose the season length as 
short as two days. For each station-season the para­
meters ~.a.~, and p are estimated according to the 
procedure described in Chapter III. No test as applied 
in Section 4-2 was repeated. Then the above technique 
was applied to each of the four parameters of the 
eight stations. After some studies, it was found that 
sometimes the harmonics corresponding to high frequen­
cies were inferred significant, which somehow violates 
the general experience. Because of that a further 
criterion was added to the method. A harmonic was 
only considered able to be significant if its order 
was lower than six. The results are summarized in 
Table 4-7. Graphs of the functions ~T .aT,pT, and ~T 

f~r the Columbia ~tati~n, obtained by using Eq. 4-6, 
w1.th parameters g1ven w Table 4-7, are plotted in 
Figures 4-6 and 4-7. The similar graphs , corresponding 
to the other seven stations are given in Appendix B. 

A matter of interest is to check how the empi~al 
procedure for determining the significant harmonics 
compares with the Fisher's test . The later was ap­
plied to all the 8 x 4 a 32 cases and the difference 
between the number of harmonics indicated for each 
case, by the two techniques is shown in Table 4-8. 

In general the empirical method yields a greater 
or equal number of significant harmonics as compared 
with the Fisher's test. This means that the probabi­
lity of rejecting a significant harmonic is lower if 
the empirical approach is used rather than vice- versa. 
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Therefore the empirical technique has the property 
for which i t was developed. 

The number of paramet er s estimated from data and 
used for generation is an important i nformation. One 
can say that the reliabili ty of any schematic repre­
sentat ion of data varies i nversely with the number of 
parameters est i mated from data . Table 4-7 shows all 
the estimates required for generati ng new series for 
each one of the stations. Tabl e 4- 9 displays the num­
ber of parameters used for each s tation; this informa­
tion is extracted from Table- 4-7. 

Taki ng i nto consideration that daily precipitation 
is being modeled, it seems fair to say that the neces­
sa.ry number of parameters is remarkably low. However, 
the central issue is whether the model is capable of 
producing the results of pract ical signi f i cance. This 
is investigated i n t he next section . 

Fig. 4-7. The Periodic 
Values of the 
Station . 

p and a for Daily 
1
Columbia

1 
Precipitation 

Table 4-7. Significant Harmonics of Four P.arameters 

Station -11" ·-J 6j if .i bj 
IT 

. j b. 
J 

II" 
. j bj 

Colu.bia . 403666 .031419 -.190090 . 673970 -.100101 -.IU878 . 306145 .653941 

llasas City . 461411 .075159 - .191019 • 721135 I -. 113136 -.148063 • 320545 . 057535 . 067766 . 661580 6 . 022762 - .027159 
2. - .052782 - .009277 . 0(,9217 -.025740 

Sprinafiold .415715 . 030349 -.140684 • 724957 -.072601 -.088316 .314639 .620299 - .038077 .010293 

ltaloiJh .UI735 .029385 - .176152 • 751143 -.027255 -. 124785 . 30(,876 .6952$5 
. 017370 . 074133 

Au.stln • 713762 I - .150029 -. 173400 .875042 -.119636 -.084729 .425415 -.047476 -.016918 • 586901 
3 - . 042823 -. 056385 - .042252 - . 061506 
5 . 033895 .040210 
6 - .011)444 -.046761 

llap1d City • 241510 -. 010936 -.127151 . 388333 - .175118 - .048592 .319249 • 702596 .110181 -. 004344 
-.095697 -. 007476 -.043872 -.034110 

. 013093 . 063780 

Ftaastaff . 5692!'.4 2 .018979 -. 198420 . 631429 .100050 -. 022900 .418464 • 724391 
3 -.078080 .147733 • 078021 -. 043959 

. 138501 -.046141 

Seattle .069261 I - .240519 -.089106 .421739 . 040363 -.039487 .426129 - .().41110 .08293-C .685665 
2 -.010185 • 060887 
5 • 024331 - .022304 
4 -.030524 .005607 

Tab l e 4-8. Number of Harmonics Obtained by Empirical 

Fig. 4-6. The Peridoic ~T and a
1 

for Daily Values 

of the Columbia Precipitation Station. 

4-5 Further Tests of the Model 

The practical use of t he model ultimately depends 
on its capaci ty to generate new seri es that correctly 
r eproduce , i n a stochastic sense, the h istorical series. 
In order to study this s ub ject , samples of 50 years 
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Procedure Reduced for Number of Harmonics 
Obtained by Fisher ' s Test 

~ a p a 

Columbia 0 0 0 0 

Kansas City 0 1 2 1 

Springfield 0 0 1 
Raleigh-Durham 0 0 0 

Austin 3 0 1 0 

Rapid City 0 -1 0 

Flagstaff 2 2 0 0 

Seattle-Tacoma 2 0 0 0 

Table 4-9 . Total Number of Par ameters Used for 
Generation of New Series 

Columbia 8 Austin 18 

Kansas City 16 Rapid City 16 

Springfield 10 Flagstaff 14 

Raleigh-Durham 10 Seattle-Tacoma 16 



length were generated for each station using periodic 
parameters, as explained in Section 4-4. The periodic 
functions used for each station are given in Tabl e 4-7. 
The objective is to compare whether the generated and 
the histroic series can be considered as drawn from 
the same population. 

Likely, a practitioner will be satisfied with the 
model performance if the sample distributions, historic 
and synthetics .of some functional of the process are 
similar to each other. In more specific terms, an 
engineer would be interested in a practical case in 
some random variable which is derived from the original 
process (called a functional). Which functional is se­
lected depends on the problem the model user is facing. 
Eleven functionals are chosen to be investigated in 
this study . It is expected, that they adequately 
cover all the practical aspects an engineer might be 
interested in . Figure 4-8 represents a hypothetical 
year of record, for whic~ only three &to~ have oc­
curred. It helps the definitions of these functionals. 

)( { t } 

Fig . 4-8. Definition of Functionals. 

The various .functionals are na.llled and defined as 
follows: 

(i) The positive run-length as the l ength of a 
succession of days for which some precipitation is ob­
served, preceded and followed by days with no precipi­
tation registered, such as t 1, '3' and t 5 . A run 

that starts in year j and ends in year j + 1 is 
counted as it had ha~pened in year j + 1. 

(ii) The negative run-lengths as the length of a 
succession of days for which no precipitation is ob­
served, preceded and followed by days with some preci­
patation registered, s uch as t 2, t 4 . 

(iii) The longest positive run-length, as the 
length of the longest positive run i n a year, such as 

Tl. 

(iv) The longest negative run- length 
length of the longest negative run in a year, 
as 

as the 
such 

(v) The number of total runs, as the number of 
complete pairs of positive and negative run- lengths in 
a sample, such as the two total runs, (t1, t

2
) and 

(T 3' T 4). 
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(vi) The time of occurrence of the longest 
positive run-length, as the time when the longest 
positive run begins, such as t

1
. 

(vii) The time of occurrence of the longest 
negative run-length as the time when the longest nega­
tive run begins, such as t 4 . 

(viii) The time of occurrence of the largest 
run-sum, as the time when the largest run-sum begins 
(see the definition of the next functional) such as t

3
. 

(ix) The maximum run-sum, as the highest amount 
of precipitation corresponding to a positive run-sum, 

t4 
such as J x(t)dt. 

t3 

(x) The annual total, as the total precipitation 
t7 

in a year, such as J x(t)dt. 
0 

(xi) The daily maximum, as the maximum amount of 
precipitation registered for a single day, such as 
x(t6). 

The null hypothesis to be tested, for any func­
tional is that the two samples, historic and generate~ 
are from the same underlying population distribution. 

The test of above hypothesis depends on the 
functional . For the continuous variables, functional 
(ix) through (xi), the Smirnov two- sample test can be 
applied. For the discrete variables with outcomes well 
spread, the Smirnov two-sample test can be also applied 
through in an approximate way; this is the case for 
functionals (iv) through (viii). However, the func­
tionals (i) through (iii) are discrete and have their 
outcomes clustered around few possibilities so that 
for this group the test of equality of two multinomial 
distributions is most appropriate. Both tests were 
referred to in Section 4-3. 

Table 4-10 shows some of the results related to 
the functionals (i) through j(iii), that were obtained 
from the, historic and generated series. The sample 
mean and standard deviation are given respectively as x and s. The degree of homogeneity between the 
sample distributions is measured by T.S.6, which is 
defined by Eq. (4-3). Under the null hypothesis this 
test statist ic has a limiting chi-square distribution. 
The degrees of freedom, for each case, are shown in­
side parentheses, under the appropriate heading. 
Appendix C gives the critical values of the chi-square 
distribution at the 5 percent and at the 1 percent 
significance levels, respectively. 

The values marked with asterisks are those that 
lead to the rejection of the null hypothesis at the 5 
percent significance level. It can be seen that the 
generated series did quite well with respect to the 
maximum positive run-length inasmuch .as none of the 
stations had the hypothesis of homogeneity rejected. 
Even with respect to the negative run-length the per­
formance is good, with only two· rejections: Raleigh­
Durham and Flagstaff. However when it comes to the 
positive run-length the results are bad: for all the 
stations but one the hypothesis is rejected. This is 
a strong indication of the incapability of the model 
to reproduce this particular functional. An inspection 



Table 4-10. Comparisons of Sample Di stribution for Functionals (i), (ii)' (iii), of Historic and 
Generated Series 

POSITIVE RUN-LENGTH NEGATIVE RUN-LENGTH MAX POS. RUN- LENGTii 
- x2 - x2 - x2 X s X · s X s 

(HIST) (HIST) (d.f.) (HIST) (HIST) (d.f.) (HIST) (HIST) (d.f.) 
(GEN) (GEN) (GEN) (GEN) (GEN) (GEN) 

Co1wnbia 1. 73 1.07 *24.29 4.42 4.00 7. 71 5.61 1.83 3.99 
1.71 1.15 (S) 4.39 4.04 (15) 6.08 1.65 (3) 

Kansas City 1. 71 1.02 *11. 29 4. 72 4 .56 26.40 5.22 1.06 2.37 
1.68 1.06 (S) 4.79 4.89 (17) .5.54 1.17 (3) 

Springfield 1..81 1.10 *43.16 4.45 3.95 14.96 6.00 1.38 1.34 
1. 74 1.16 (6) 4.42 4.25 (16) 6.24 1.30 (2) 

Raleigh-Durham 1.82 1.13 *38.28 4.46 3.89 *46. 77 6.00 1.38 1.12 
1. 74 1.54 (6) 4.39 3.98 (14) 6.02 1.62 (2} 

Austin 1. 76 1.17 10.88 6.46 6.75 .31.78 5.56 1.82 2.43 
1.69 1.13 (7) 6.28 6.35 (27) 5.64 1. 73 (4) 

Rapid City 1.81 1.19 *11. 73 4.98 ' 5.33 8.26 6.39 1. 70 1.68 
1.80 1.31 (5) 4.89 5.09 (15) 6.90 1.84 (2) 

Flagstaff 1.98 1.45 *30.17 7.69 9.13 *36.50 7.00 3.40 0.61 
1.87 1.43 (6) 7.31 8. 77 (17) 6.96 1. 79 (2) 

Seattle-Tacoma 3.02 3.02 *19.78 3.80 4.64 14 .43 15.10 5.75 2.01 
2.76 2.44 (11) 3.52 4. 08 (12) 12.32 3.22 (1) 

*The null hypothesis is rejected at the five percent significance level. 

of sample distributions of the positive run-lenth helps 
to explain this case. See Table 4-11. 

Tabl e 4-11. Sample Distributions of Positive Run-
Lengths 

p (J=l) p (J=2) p (J~2) 

Columbia HIST .5488 .2908 .8396 
GEN . 6017 .2235 .8251 

Kansas City HIST .5488 .2882 .8370 
GEN .5944 .2442 .8386 

Springfield HIST .5011 .3079 .8090 
GEN .5924 .2223 .8146 

Raleigh-Durham HIST .5008 .3125 .8133 
GEN . 5892 .2269 .8162 

Austin HIST .5648 .2535 .8183 
GEN .6053 .2298 .8350 

Rapid City HIST .5358 .2674 .8132 
GEN . 5828 .2270 .8098 

Flagstaff HIST .4815 .2733 .7548 
GEN .5750 .2231 .7981 

Seattle-Tacoma HIST .3696 .2268 .5964 
GEN .4045 .2173 .6214 

In the Table 4-11 "J" stands for the positive 
run-length. Attention is called to the fact that the 
frequencies of runs of length one to the historic 
series are always lower than their equivalents obtained 
from the generated series. The situation is reversed 
when it comes to the runs of length two. These 
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discrepancies are the main source for high outcomes of 

x2 as listed in Table 4-10. In Tab l e 4-11 one can 
see also that the frequencies of runs of lengths 
shorter or equal to two for both, the historic and the 
generated series are very close . 

It can be inferred from the above that the gener­
ated series fail consistently reproducing the distri­
butions of positive run-length, because a part of 
the run of one should be the run of two. Whether this 
is a serious drawback of the model depends on the 
application to each particular case. The manipulation 
of the historic series is done in such a way that all 
daily precipitation that do not reach a minimum 
amount are considered as zero. Since for the gener­
ated series the same procedure is not applied, this 
might partially explain the problem. 

The Smirnov two-sample test was used for testing 
the null hypothesis for the functiona ls (iv) through 
(xi). Equation (4-4) was used to find T.S.7 and Eq. 
(4-5) was used to compute the critical value, dcr· g1 
corresponds to the number of years of the historic 
data, as given in Table 4-1; g2 corresponds to the 

number of years in the generated series, which was set 
to SO for all the stations. Tables 4- 12, 4-13, and 
4-14 show the results. As usual, an ·asterisk was used 
to mark the cases for which the null hypothesis is 
rejected at the 5 percent significance level. An ex­
amination of results in Tables 4-12, 4-13, and 4-14 
indicate that the model can be trusted as a working 
technique. The worst discrepancy came from the daily 
maximum. However, , this is more than compensated by 
the excellent results related to the maximum run-
sum, as both functionals are related to flood pro­
plems with the latter being far more important to 
flood designs than the former. 



Table 4-12. Comparisons of Sample Distribution for Functionals (iv) and (v), of Historic and 
Generated Series 

MAX NEG RUN-LENGTH NUMBER OF TOTAL RUNS 

X s T.S . 7 X s T.S.7 dcr 
(HIST) (HIST) (HIST) (HIST) 
(iJEN) (GEN) (GEN) (GEN) 

Columbia 18.56 5.62 .2778 59.17 4. 72 .1533 . 3738 
20.58 5.59 59.68 4 . 61 

Kansas City 22.43 5.34 .1530 56.57 5.91 .1191 .3427 
24. 86 7.04 56.26 5.33 

Springfield 19.26 3.98 .0878 58.04 6.05 .1696 . 3427 
20.60 6.22 59.12 6.03 

Raleigh-Durham 19.62 5.78 .1933 57.90 3.84 .2143 .3536 
18.80 3.64 59.40 6.25 

Austin 30.09 10.36 . 2000 • 44.19 6.81 .2029 . 2518 
28.86 13. 40 45.70 4.28 

Rapid City 27.89 7.36 .1844 53 . 61 7.36 .1400 . 3738 
25.36 6.87 54 .46 6.87 

Flagstaff 39.94 10.97 .1689 37.61 4.26 .3556 .3738 
42.38 14.06 39.62 4.14 

Seattle-Tacoma 24 . 67 9 . 69 .1505 53 .33 6.15 *.4086 . 3536 
22.98 6.98 57 .88 4.62 

*The null hypothesis is rejected at the five percent significance level. 

Table 4-13. Comparisons of Sample Distribution for Functionals (vi), (vii), (viii), of Historic and 
Generated Series 

TIME OF LONG. POS. RUN TIME OF LONG. NEG . RUN _TIME OF LARGEST RUN-SUM 
X s T.S. 7 X s T.S.7 X s T.S . 7 d 

(HIST) (HIST) (HIST) (HIST) (HIST) (HIST) cr 
(GEN) (GEN) (GEN) (GEN) (GEN) (GEN) 

Columbia 144.67 81 . 15 .1644 216. 94 127 .48 .1778 184 . 72 49 . 77 . 2778 . 3738 
128.14 79.28 236 .54 110.83 196.30 66.25 

Kansas City 167 . 65 76.52 *. 3461 190.17 131.60 .2061 195.48 64 . 39 .1557 .3427 
134.62 96.05 222.16 137.59 206.56 69.21 

Springfield 143. 52 99.65 . 1574 228.00 106. 73 . 1191 185. 65 92 . 34 .1922 .3427 
142.36 90.70 220.76 107.73 177.16 86.45 

Raleigh- 131 . 29 87.73 .2010 229.62 100.74 .2067 233.86 52 . 76 *.3895 .3536 
Durham 131.52 94.45 220.54 92.23 184 . 60 81.50 

Austin 143.07 109.28 .1057 186.60 87.04 .1314 187 . 34 88.32 .1114 . 2518 
152.28 116.58 179.22 83.73 186.30 90.26 

Rapid City 109.78 69.66 .3244 249 . 28 115.56 .2689 170.67 40 . 51 .1844 .3738 
134.06 55.98 187.64 131.15 163 . 52 35 . 05 

Flagstaff 130.22 109.47 ... 4578 225 . 00 97 . 23 *.4356 217.56 95 . 88 . 2733 .3738 
189.52 95 . 25 147.28 61.27 173.94 106.13 

Seattle- 171.71 146. 12 . 2210 195.86 34.74 .2143 205.38 146.61 .1590 .3536 
Tacoma 144.96 136. 74 202.50 24.48 175.24 142.89 

*The null hypothesis is rejected at the five percent significance level. 
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Table 4-14 . Comparisons for Sample Distributions for Functionals (ix), (x), and (xi) , of Historic and 
Generated Series 

MAX RUN-SUM ANNUAL TOTAL DAILY MAXIMUM 

T.S. 7 T.S . 7 - T.$.7 d X s X s X 5 

(HIST) (HIST) (HIST) (HIST) (HIST) (HIST) CT 

(GEN) (GEN) (GEN) (GEN) (GEN) (GEN) 

Columbia 3.70 1. 04 .1800 33.66 6. 43 .2422 2.50 .58 ".3822 . 3738 
3. 71 1.19 33.25 5.90 2.15 .61 

Kansas City 3. 77 1.14 .3322 36.04 9.06 .1583 2.66 . 83 .2548 . 3427 
4 . 50 1.65 36.13 7.67 2.50 .83 

Springfiel d 4.61 1. 61 .0843 38.46 7.64 .2087 3,.03 .87 ".4157 .3427 
4.49 1. so 37.26 6.20 2.36 . 65 

Raleigh-Durham 3.78 .95 .2867 41.35 4.80 .1524 2 .89 .87 .2886 .3536 
4.27 1. 39 41.44 6.62 2.41 .64 

Austin 5.25 3.25 .1800 33.02 10.09 .0800 3.75 2.10 .1971 .2518 
5.02 1.84 32.45 8.25 3.03 .96 

Rapid City 2.50 .92 .2422 16.39 3.55 .1622 1. 73 .72 .3089 . 3738 
2.69 1.35 16.88 3.51 1.29 .42 

Flagstaff 3.35 1.40 .1511 19.82 5.50 .2600 1. 87 .51 *.3822 .3.738 
3. 46 1.57 21.61 5.00 1.49 .so 

Seattle-Tacoma 5.65 2 . 43 .1857 39 . 95 6. 66 .1838 l. 84 . 56 * . 4495 . :>536 
4 .88 1.46 41. 07 5.74 1.43 .31 

*The null hypothesis is rejected at the five percent significance level 
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Chapter V 

A Dual Model For Daily Streamflows 

In this chapter a new approach for the stochastic 
modeling of daily streamflow is introduced. It should 
be pointed out at the outset that no unlven4atity is 
claimed for the model to be described. In fact, tho 
attempt to develop a general model may have been the 
reason for failures of previous efforts to model daily 
flows. It is hardly conceivable that a simple scheme 
could model equally well the streams fed by snowmelt 
and the streams draining a tropical catchment, to give 
only an example. The model to be described here 
refers to catchments for which the direct runoff plays 
an important part in the composition of the total flow. 
Nevertheless, each catchment that qualifi es for such 
a description must be studied on a case-by-case basis. 

A dual approach is used, in the sense that the 
positive and the negative first-derivatives of the 
streamflow process can be modeled by two alternating 
intermittent stochastic processes. 

In this chapter first the conceptual framework 
is set up, and then the technique described with the 
help of the case study of the Powell River, near 
Arthur, Tennessee. This river is described by Quimpo 
(1967) as having an accurate record from 1921 to 1960. 
The outlet drains an area of 683 square miles and is 
located at 36°32'N latitude and 83°38'W lon·gitude. 
The mean daily flow is 1116 cfs. For a better insight 
into the type of streamflow studied, Figure 5-l shows 
the hydrograph for the year of 1921, which is a fairly 
typical hydrograph. 
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Fig. 5-l. 

... 
Daily Flow Hydrograph of the Powell River 
for the Year of 1921. 
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S-1 The Conceptual Framework 

The runoff at the outlet af a watershed is con­
sidered to be the sum of three component s, namely, 

(5-1) 

Conceptually, these components have dif£erent 
physical characteristics, as in the case of under­
ground flow and surface flow . Therefore, it is ex­
pected that these components will exhibit also 
different stochastic characteristics. Figure 5-2 
gives an illustration of how the runoff formation is 
conceived in this study. 

Rainfall 

Fig. S-2. Schematic Representation of Components 
in Streamflow . 

q1 (t) is the .outflow from Reservoir No. 1, which 

simulates the groundwater storage; q2(t) is the 

outflow from Reservoir No. 2, which simulates the 
lumped storages of: (i) surface detention storage, 
(ii) bank storage and (iii) channel storage; and 
q

3
(t) is the direct runoff, which is compo5ed mainly 

of the surface runoff and the precipitation over the 
stream surfaces. Like daily precipitation, daily 
direct runoff is an intermittent process. 

There is no doubt that representing the retention. 
capacity of a watershed by only two reservoirs is an 
oversimplification of the real situation. However, it 
is better than assuming the homogeneity of the whole 
process, as is usually done . 

Ideally q (t) depends mostly on factors 
external to a w~tershed. It can be thought as the 
~e~e response of a catchment to the precipitation 
events. Therefore, it is modeled reasonably well by 

I 

'I 



the methods as developed in Chapter III. However, a 
serious obstacle must still be removed, namely how to 
esti mate the parameters of the process q3 (t) if no 

realization of the process is available. 

The fact is that only the time 
total discharge, q(t), is available. 
of splitting q(t) into exactly its 
q1 (t), q2(t), and q3 (t). A somehow 

series of the 
There is no way 

three components, 
arbitrary assump-

tion is then necessary. It is possible that some 
modi£ication would lead to a more realistic repre­
sentation of the phenomena. The assumption is, 

q3(t) = ~ax(O,q(t)-q(t-1)) (5-2) 

Equation (5-2) says that the direct runoff is 
either zero or it is equal to the positive increment 
of the total discharge. In fact, if q

3
(t)>O one 

might expect that the reservoirs are partially re­
plenished on the day t, and therefore it is likely 
that 

or 

Equation. (5-2) simply says that the above 
positive quantity is equal to q3 (t), or that 

q3(t) = (ql Ct+l) - ql (t)) + CqzCt•lJ - qz(t)). 

(5-3) 

for q
3 

(t) > o (5-4) 

From Eqs. (5-l) and (5-4) one can see that, 
whenever q

3
(t) > 0 

(5-5) 

Hence any rising limb of the hydrograph, say 
from day t

0
, day tf can be obtained if the value of 

q(t
0

) as well as of the succession q 3(t
0
), • .. ,q3 (tf) 

are ~nown. In order to have a rising limb all the 
values in the succession q3 (t

0
), ••• ,q3(tf) should be 

positive. 

How to cope with the falling limbs of the 
hydrographs is the subject of Section 5-3. Next the 
process q

3
(t) is studied in more details. 

5-2 Direct Runoff 

As already mentioned, the process q
3
(t) i s 

modeled according to the technique explained in Chapter 
III. Therefore, all the tests there explained, as 
well ·as the asymptotic covariance matrix, could con­
ceivably be employed to the positive increments of 
streamflow. However this was not done in this in­
vestigation. Rather a simple procedure, demonstrated 
on data provided by the case study, wa.s used to give a 
first insight on the potential benefits of this 
approach. 

First, the observed streamflow data of the Powell 
River was processed following Eq. (5-2) to produce the 
time series q3 (t) . (The same symbol is used for 

convenience, either for the stochastic process or for 
the corresponding time series.) The data was divided 
into 26 seasons, each 14 days long, adding up to 364 
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days. For each season the parameters ~.o,p, and a 
were estimated . This is essentially the same as done 
in Section 4-4, with the difference that there the 
year started on January 1 and here on October 1. A 
·second difference is that no goodness of fit was 
tested in Section 4-4 because it was already done in 
Section 4- 2 while focusing on the stationary case. 
For the q3(t)-process the chi-square goodness-of-fit 
statistic was computed for each of the 26 marginal 
distributions (one for each season). The results are 
shown in Table 5-l. As usual the seasons marked with 
an asterisk are those which have the goodness-of-fit 
of the marginal distribution rejected at the 5 percent 
significance level. Those marked with a triangle are 
the cases with the rejection also at 1 percent 
significance level. The number of rejections was high: 
7 cases at the 5 percent level and 2 at the 1 percent 
level. August through November, roughly the Autumn, 
seems to be the time of the year for which the positive 
increments were badly fitted by the model. Section 
5-4 will reveal that this problem is serious enough to 
impede a reliable working of the model for this spe­
cific season. However it is likely that one will be 
more concerned on studying the Spring and Summer, 
rather than the Autumn, due to the timing of the 
floods . In Section 5-4 it will be shown that for this 
particular set of data the model can be applied for 
the whole year except for the Autumn. 

Data from Table 5-l was used to produce the 
periodic functions that represent the time variation 
of each one of the parameters, expressed in the general 
form by Eq. (4-6). The criterion for de'ciding which 
harmonics are relevant was described in Section 4-4. 
The results are summarized in Table S-2. Plots of 
periodic functions ~T ' crT , pT, and aT for the daily 
flows of the Powell River are shown in Figures 5- 3 
and 5-4. 

5-3 Outflow from the Watershed Storage 

It was seen in Section 5-l that, according to the 
proposed model, any falling limb of a hydrograph is 
the result of emptying the two reservoirs. The hy­
drograph values decrease only when q3(t) ~ 0. Hence, 
the hydrograph recession curve is nearly independent 
of the characteristics of storm which causes the 
hydrograph rise. Only the states of the reservoirs , 
as well as their operating rules are relevant for 
this analysis. The description of reservoirs is then 
needed. It is assumed that both reservoirs are linear , 
meaning that the output q. (t), i = 1 and 2, is 
proportional to the storag~ S. (t). Or 

1 

qi(t) = KiSi(t) , (i = 1 and 2) (5-6) 

During the hydrograph recession part the input 
to reservoirs is zero with the continuity equation 
expressed in the simple form as 

-dSi(t) 
qi (t) = dt , (i = 1 and 2) (5- 7) 

If Eq . (5-6) is differentiated with respect to 
time t and then Eq. (5- 6) used, 

dqi (t) 
---cit"' = - Ki qi (t) , (i = 1 and 2) 

or 

1 and 2) 
(5- 8) 



Table 5-l. 

Period Froa-To 

1 1 Oct- 14 Oct 

2 15 Oct-28 Oct 

3 29 0<:\o--11 NCIV 

4 12 Nov~25 Nov 

5 26 Nov- I. Dee 

6 10 Dec-23 Dee 

7 24 Doe- 6 Jan 

a 7 Jan-20 Jan 

!I 21 Jan- 3 Feb 

10 4 Feb-17 Feb 

18 Feb- 3 Mar 

4 Mlr- 17 Mar 

18 Mar-31 Mar 

Results for Goodness-of-Fit Statistics 
for the 26 Seasons of Daily Flows of 
the Powell River 

3.6296 

3.2556 

3. 3940 

4 .3443 

4. 2393 

6.9689 

6.8980 

7.1673 

9.8158 

13.5182 

.. 
8.01 ( 1)6 

10. 57 ( 4) . 

8.76(3)• 

5.33(6) 

14 . 74 (9) 

6.19(11) 

20.54(13) 

18.57(14) 

12. 78(14) 

17.57(16) 

13.55(14) 

14.82(15) 

10.52(14) 

12. 72(9) 

14.30(10) 

12.63(9) 

11 

12 

u 
14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

1 Apr- 14 Apr 

15 Apr-28 Apr 

29 Apr-12 May 

13 May-26 May 

27 May- 9 Jun 

10 Jun-23 Jun 

24 Jun- 7 Jul 

8 Jul-21 Ju1 

22 Ju1- 4 AUI 

s Auc-ta Aua 

19 Au&- 1 Sep 

2 Sep-15 Sep 

16 Sep-29 Sep 

11.2918 

13.5328 

IS. 2014 

19.3112 

28. 4365 

36.3807 

43.4370 

29.4476 

39.4548 

35.1393 

21.0269 

19.7310 

14.4111 

12.2671 

7.0326 

8.0993 

8.9538 

6. 7849 

22.7644 

37.9861 

37.4007 

43.0868 

67.6299 

68.4997 

96.6109 

57.0287 

60.2830 

52.9360 

35.0319 

27.8554 

20.8414 

26.4863 

14.4152 

18.3048 

17.0723 

15.0933 

15.5428 

11.7339 

10.2326 

.2413 

.7113 

.6098 

.5737 

.6620 

.6352 

.6001 

.6905 

.5325 

.5148 

.6526 

.6247 

.5679 

.5625 

.5672 

. 6524 

.5145 

.5221 

.4879 

. 3834 

.4296 

.2473 

. 4047 

.5306 

.3901 

.3397 

.4312 

.4098 

.3883 

.3848 

. 4123 

.4500 

.5197 

.5067 

.5038 

.5626 

.5623 

.6158 

.5421 

.58~ 

.5483 

.5284 

. 4901 

.4903 

. 5550 

. 4371 

.4800 

.5132 

.4694 

.4953 

.4904 

,4761 

7 .00(7] 

14.14(8) 

14. 32(9) 

18. 79(10)• 

14.91 (10) 

10.3664 

7. 2767 

7.6774 

*The test h r·ejec:ted at the 5\ slrnlflc:anc:e level. 
6The test is rejected a t t he 1\ sirnifi canc:e level. 

9.86(6) 

24.88(9)6 

8 .70(5) 

9.17(3)* 

7 .30(2)• 
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Fig. 5-3. The Periodic ~T and aT for Daily 
Values of the Powell River. 
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Fig . 5-4 . ~he Periodic P, and ~, for Daily 

Values of the Powell River. 
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Integrating Eq . (5- 8) between . 0 and t yields 
qi (t) 

ln q. (O) = - Kit , (i 1 and 2) 
or 1 

-K. t 
qi (t) ,. qi (0) e l. (5-9) 

Equation (5-9) is tne well known exponential 
recession curve. I t is obvious that the outflow 
discharge from the ith linear reservoir, during a 
recession period, depends only on the initial discharge 
q. (0) and on the reservoir characteristic K .. l. l. 
Therefore any recession curve can be expressed. by 

- K t -K t 

q(t) " q1(0)e 1 
+ q

2
(0)e 2 , t ~ z (5-10) 

where for convenience t~O 

of the recession curve, and 
recession considered. 

indicates the beginning 
.e. i'S' the length of the 

For 

(5-11) 

Equation (5-10) may be rewritten as 

q{t) " q(O)(W e-Klt + (1-W) e-K2t ] 
(5-12) 

or for and 

q(t) • q(O) [Wy1 t + (1- W) Y/1 (5-13) 

K1 and K2 are const ant s t hat must be estimate~ 

On the other hand , W indicates how the maintenance of 
the hydrograph is split between the two reservoirs, 
after a storm has occurred . Since the initial states 
of reservoirs are expected to vary from one rece.ssion 
curve to another, W cannot be conceived as a constant; 
rather its visualization as a random variable se·ems 
feasible . Therefore , in order to use Eq. (5-12) in 
the generation of new samples , not only the valu·es of 
K1 and K2 must be known but also the probability 
dl.stribution of W, with q(O) always known. 

It is reasonable to estimate K1 and K2 in 

such a way that the t:lteOJr.e.ti..cai. Jtei!U4.i.on c.LLJtvu will 
resemble the observed recession curves . In the more 
specific terms, the estimation of i

1 
and K

2 
should 

be taken in the framework of the fol lowing optimiza-
tion problem: n Zfr) 

min L 
K1,K2· r=l t =l (

5
_

14
) 

-K
1 

t -K2t 2 
{q'(t,r) - q' (O,r)[w(r)e +(1-w(r ))e ] } 

whore .e. (r) is the length of the rth recession curve; 
n is the number of recession curves i n the historic 

data; q' (t ,r) is the observed discharge on the t-th 
day of the rth recession curve; and w(r) is the 
outcome of the random variable W, associated with 
the rth recession curve . 

For any pair (K
1

, K
2

) the objective function of 

Eq. (5~14) can only be evaluated if the outcomes 
w(r) , r • 1, 2, ... , are known. Again, it is 
reasonable to assume t hat each w(r) is such that the 
differences between the rth theoretical and the 
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observed recession curve values are minimized. By this 
reasoning , each w(r) can be found by solving the equa-
tion 

or 

[
Z!r) -K t 

a L {q ' (t,r)-q' (O,r) [w(r)e 1 
+ 

a w(r) t=l 

w(r) 

(1-w(r))e -K2t)}) 0 

Z!r) Z.!r) -K2t 
L q'(t,r)-q(O,r) L e 

t=l t =l 
Z !r) -K t -K t 

q(O,r) L (e 1 -e 2 ) 
t=l 

(5-15) 

(5-16) 

Several numerical algorithms are available for 
solving the optimization problem defined by Eq.(5-14). 
Among them is the Rosen Algorithm, as a quite conven­
ient one. It is a mou.nta.bl cLimbing type of technique, 
based on the gradient projection method . A detailed 
description of the algorithm is given by Kuester et al. 
(1973). Here it is sufficient to say that the only 
requirements for the a l gorithm are: (i) the objective 
funct ion, which is given by Eq. (5-14); (ii) the first­
derivatives of the objective function, which can be 
obtained by a proper use of Eq. (5-14) ; and (iii) the 
linear constraints, given as , 

or 

and 

o < r2 < 1 or 
(5-17) 

Attention is cal led to the fact that each time 
the value of the pair (K

1
, K2) is changed, the obser-

vations w(r) are r eassessed by using Eq. (5-16) . 
Also, one should expect from the way the conceptual 
model was set that y1 > y

2 
(or K1 < K

2
), although 

this does not constitute a constraint. 

is simultaneously obtained with K1 and K2. In 

principle, one might expect any outcome w to lie 
between 0 and 1. A val ue of w > 1 would indicate 
a reversion of the direction of flow related to the 
second reservoir. Analogously w < o' would indicate 
a reversion of the direction of flow coming from the 
first reservoir. These flow reversions are anticipated 
to be rare, but when one of them does occur , it is nec­
cessary to assert the rules which govern the inflow 
hydrographs, rather than the outflow hydrograpns . This 
leads to the assumption that the characteristics of 
flow either from the reservoir to outlet o~ from the 
outlet to the reservoir are identical. 

10,000 
--Observed 
- - --- Theoretical 

IOOIL---------------------
For the Powell River daily flow data, the Time ( doys) 

appli cation of the algorithm yields 

1 
9. 2091 d•y• } yl 0.897l+K

1 0.1086/day+- = 
Kl 

0.5029+K2 
. 1 

1.4548 days Y2 0.6874/day+K = 
2 (5- 18) 

It is of interest to check how the theoretical 
recession functions obtained by the above procedure, 
fit their observed counterparts . Figure S- 5 gives 
this visual compar ison for the recession curves of the 
daily flow series of the Powell River during the year 
1921 for recessions which 1~ere longer than four days. 
This choice is an arbitrary selection , imposed by t he 
practical difficulty of pl otting al l the recessions 
registered in 40 years. Attention is called to the 
fact that in general the curves would not be well 
fitted by straight lines. This means that the repre­
sent at ion of the watershed storage by a 6~gle linear 
reservoir woul ~ not be appropriate. 

Once the values K1 and K
2 

are estimated the 

next prob l em is how to statistically describe the ran­
dom variable W. The set of outcomes of this variable 
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Fig. S-5 . Comparison Between Theoretical and Observed 
Recession Curves, of Daily Flow Series of 
the Powell River, for the Year 1921. 

Qualitatively, one might expect E(Wiq(O)) to be 
smal l whenever the initial discha~ge q(O) is large. 
Indeed high f lows are associated with high retention 
in the storages that the second reservoir is supposed 
to represent. Consequently, its share of the flow 
supply should be higher initially than the flow supply 
which corresponds to the first reservoir. The first 
reservoir is characterized by a high s torage capacity , 
which makes its contribution, q

1 
(t), reasonab l e stable. 

wnenever the initial discharge 1s small, it is likely 
that the total flow will be sustained entirely by the 
outfl ow from the first reservoir, i . e., 

l im E[Wiq(O)) = 1 . 
q (0)-+D 

A mathematical representation that fits the above 
qualitative descriptions is given by 

E[Wiq(O)) = e-~q(O) , ~ > 0 (5 -19) 



For each historical r ecession curve one pair of 
values [q(O,r), w(r)] is available, 1~here r stands 
for the rth recession. These pairs can then be used 
to estimate the value of f, by the least squares 
method. For the daily flow sequences of t he Powell 
River, the value of ~ is 0 . 000160. The coefficient 
of correlation between q(O) and log w is -0.6737. 

In general the random variable 
expressed by 

w = e-~q(O) + Z 

where Z is another random variable . 

W might be 

(5- 20) 

For each recession the corresponding outcomes of 
Z can be obtained by solving Eq . (5-20) for Z. In 
case of the dail y flow series of the Powel l River, 

z (rl = w(r) - exp(- 0.000160 q(O,r)), r = l, 2, .,., n 

(5-21) 

The next thing to do is to test whether the sample 
of Z may be considered as drawn from a normal pro­
bability distribution. This was tested for the daily 
f lows of the Powell River. The chi-square goodness­
of-fit test statistic is 42.70, with 36 degrees of 
freedom. Therefore, the hypothesis of normality coul d 
not be r ejected at the 5 percent significance level . 
The sample mean and standard deviation of Z are 
0.07334 and 0 . 25604, respectively. With these l ast 
estimates and test, one can then gener a te t he new 
series . 

5-4 Testing the Model 

The utility of the model depends on its capacity 
to generate new series, to be considered the outcomes 
of t he same stochastic process from which the his toric 
series is observed. In Section 4-5 , a way of compar­
i ng the properties of historic series wit h the 
properties of generated series was presented. Here a 
similar comparison is given for the model of daily 
flo1~ series, as applied to the Powell River series . 

The generation procedure i s performed in the 
following steps. 

0.06556). Then find w by Eq.(?-20), 
and define 6

1 
= wq(t-1) and 62 = 

(1-w)q(t-1); 

(e) Make 

that 

~l = r 161 and 

q(t) = ,1 ... ,2. 
III(f). 

~2 = y2o2, so 
Go to Step 

(f) Make 61 = ' l and o2 
back to Step III(a). 

~2 • and go 

The above step-by-step procedure was used to 
generate 40 years of data for daily flows of the 
Powell River. The hydrograph for the firs t year of 
the generated series is plotted in Figure 5-6. This 
particular hydrograph year is given because the first 
year of the historic record had previously been used. 
For the model being good, Figures 5-l and 5-6 show two 
different reaLizations of the same hydrologic process. 
These sampl es are different, but the pa..t.teJt.n of the 
series is expected to be similar. This approach is 
based on a subjective infer ence, with the indi vidual 
assessment whether the hydrograph of Figure 5-6 too~ 
LHoe. the historic sample of Figure 5-l, in a general 
hydr ol ogic sense. 
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St ep I : Generate the intermittent process q3(t) . L 

This is accomplished by following the 
procedure explained i n Section 4-4. The 
parameters used are given in Tabl e S- 2. 

Step II : Select a value of the discharge for the 
begi nni ng of new samples. The mean dis­
charge is a good choice for t his value . 

Step II I: Generat e f or each day, according to: 

(a) If q3(t) > 0, take Step III(b); 

otherwise, go t o Step II I(c) ; 

(b) Make q(t) q(t -1) + q3(t), and go 

back to Step ll l (a); 

(c) If q3(t- 1) > 0, go to Step III (d); 

otherwise, go to Step III(e); 

(d) Find E(W iq(t-1)] = e-0.00016q(t- l ). 

Sample from the normal distribution 
a value for z. For the Powell 
River z comes out as (N (0 . 07334, 
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Fig . S-6 . A generated Daily Flow Hydrograph of the 
Powell River. 

On a month- to-month basis, the random variabl es 
which are l ikely to be relevant for the evaluation of 
the goodness o f t he model are: (i) the maximum daily 
discharge for each particul ar month; and (ii.) the mean 
daily discharg.e for each particular month. 

For each of these two random variables a matrix 
of observations with 40 rows (years) and 12 columns 
(months) was constructed out of t he historic and 
gene~ated samples . Let us designate these matrices by 
( F .. }; i = 1, 2, ... , 40; j = 1, ·2 , . . . , 12 . For a 

~J 

month j the sample marginal distributions are avail­
able for the historic and generated series . The 
Smirnov two-sample can then be applied. The cri tical 
values at t he 5 percent signi f i cance level are given 
by Eq. (4-5); for g1 = 40 and g2 " 40 it is 0.304. 
The t est s tatistics T.S. 7 given by Eq . (4-4) are di s­
played i n the l ast columns of Tables 5-3 and 5-4 . In 



these tabl es the values of 

and 

std(F. ) = 
J 

40 

L 
i=l 

- 2 (F . . -F.) 
1] J 

39 

(5-22) 

(5-23) 

are also shown for the historic and generated series, 
respectively. 

* 

Tab l e 5-3. Maximum Daily Flows for Each Month 

October 

llovtUer 

Dec:OIIber 

Juuary 

Pelmlary 

March 

April ..., 
JUDe 

July 

Aacust 
Septcoober 

MEAN 

HJST. GEM. 

143.2 

2574.3 

'Sl28.4 

7890.0 

8615.6 

7204. 2 

5000.1 

3n2.6 

2320.4 

2289.5 

1501.4 

747.8 

758.0 

833. 6 

4615.7 

-12347.2 

11248.0 

7888.8 

6350.9 

4638. 5 

2487.5 

1408.7 

1680.9 

1346.8 

S1ll. DEV. 

HIST. Gal. 

1649.6 

3522.9 

4706.5 

6190.5 

5377.4 

4565.6 

3270.7 

3944.9 

2910.2 

2324.7 

1745.8 

904. 2 

568.2 

990.8 

5235.4 

11286.5 

9995.9 

7156.4 

5755.6 

3164.6 

2153.4 

1002.4. 

970.1 

838.0 

T.S.7 

.350• 

.275 

.200 

.275 

.125 

.150 

.100 

.250 

.225 

. 225 

.300 

.5so• 

The ~est is rejected at the 5% significance level. 
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As usual the deviations marked by an asterisk are 
those of the rejection of the hypothesis of sta~istical 
equality of samples, at the 5 percent significance 
level. Using jointly the results given in the two 
tables, one can see that the period of time between 
August and November is characterized by a rejection 
of the model. Fortunately, the remainder of the year 

* 

Table S-4 . 

October 

Nov~r 

oec ... ber 

Jonuary 

February 

March 

April 

May 

June 
July 

Aulllst 

Septeaber 

Mean Daily Flows for Each Month 

HIST. 

235.2 

584.0 

1288.4 

1'981.2 

2.396. 9 

2.310.3 

1o612.4 

1122,7 

o652.9 

o610.3 

437.0 

:241.7 

GEN. 

293.8 

196,4 

1274.9 

3394.2 

3186.6 

2450.3 

1698.6 

1563.0 

880.0 

550.3 

707.1 

578.8 

STD.DEV. 

HlST. 

192.2 

586.1 

1053.9 

1224 . 6 

1217.7 

1136.8 

753.6 

786.5 

492.1 

440.2 

384 . 7 

173.2 

GEN. 

233.7 

160.4 

1200. 0 

2390.9 

2648.6 

1943. 8 

1290.9 

1065.7 

736.0 

374.3 

~00 . 7 

352.2 

T.S,7 

. 200 

.425• 

.125 

. 300 

.175 

.225 

.ISO 

.300 

.200 

.125 

.400• 

.sso• 

The test is rejected at the S% significance level . 

shows the model to be accepted. In Section 5-2, while 
studying the process q3(t), it was found that a rea-

sonable fit could not be obtained for the Autumn data. 
This is likely also the reason for a poor performance 
of the overall model during this specific season . 



Chapter VI 

CONCLUSIONS AND RECOMMENDATIONS 

Several further research possibilities of the dual 
streamflow model look promising, such as: 

(i) As the direct-runoff q (t) is supposed to 
represent the portion of the inpui to the watershed 
which is not retained by any river basin storage, it 
is likely that the parameters of q3(t} are strongly 

related to those that define the precipitation for the 
area. A joint study of the two processes could yield 
results valid for regional applications. 

(ii) The constants K1 and K
2

, associated 

with the l inear reservoirs, are estimated by an iter a­
tive algorithm. They define the operation rules of 
the two reservoirs. As these two reservoirs concept­
ually represent the watershed retention capacity, K1 
and K2 must be related to physiographic characteris­

tics of the catchment. An estimation procedure that 
could employ this additional information would repre­
sent a new dimension in the stochastic hydrologic 
modeling. 

39 

The performance of the developed precipitation 
model was tested for its goodness. The model is cap­
able of producing such generated samples that resemble 
the historic series, in a stochastic sense. 

The examined data show that the daily precipita­
tion series cannot be assumed to be a sequence of inde­
pendent events. Therefore, the capability of the model 
to reproduce the serial dependence of the processes is 
an essential feature to its good performance. 

It is also shown that the model can be used fior 
the generation of simultaneous precipitation series 
[or several dependent-station processes . 

The proposed streamflow model has a physically 
justified basis. It i s possible to generate new 
samples with the complex characteristics of daily 
streamflow. The intermittent model fairly fits the 
positive first - differences of daily streamflow. Repre­
sentation of the recession parts of hydrographs as a 
stochastic output from the two linear reservoirs was 
successful. 
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Appendix A 

First and Second Derivatives of the Log-Likelihood 
Function 

Define 
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Results of the Application of the Model 
to the Kansas Cit y Precipitation Series 

Results Obtained in Case the Year is Divided in Twel ve 
Seasons , for the Kansas Cit y Station 

AS\''•' roT lC 
PAIWII:Tr.RS CO\' .. \JU,\~t;l! MAl'IUX T.S. l T.$.: T.S.l T.~. >~ T.S.S 

(~ w·t-1 ,J. r.1 [IJ. f.) l ·lt.l. ( ,) ( -'d . i. ) :oitll,ll • 

.5•~o .);~: ,.,,. .. , :7ii) ·l>lSl • S>t·~ 950 10 •• ~0 u . .a.u 10.~·· I.Uo . .a .u" 
:uo Wl -12:S (5) ., .. - 19~ 

:.us 

.SUI .3015 .0095 2: n ·11U • 3o7 7lA 10. 165 1 ~.~U • . us .;.nr 
Ill< olO · 1166 (S) 

7.1)2 .. 1$i 
2l91 

. 64l6 • .nc..a .olll 19U ·1019 • U • " li.U6 :9.02~ t .SSJ l.06Z •7.0ll 
1sv2 Ul . ,.:a (9) 

4607 >I 
1408 

.oou .llt & .6113 169: • 91S • 219 10~ 10.649 17.755 l.D?t -l.lil4 
1l69 S!l - S61 (t) 

S'6S - •s 
1176 

.o9U .~o.as . 6<171 17l6 - 90' • Ill 27 II. NO 7.9~1 l.S~ .. . 707 -l .lll 
n.::2 s•9 .. 267 ( II) 

5160 10 
IllS 

.1001 .1933 .UTO 259' •1:1-19 • :.u • 14-:' " .lll 6 .53<1 .. ., · l.lll 
1902 409 . o9 (U) 

SUl 4 
1761 

.~cs: .2613 .6753 l9Sl -2271 • s:• - 133 1 .247 11.112 ·''"' 5 . 4.33 ·1.950 
21'41 6SZ J.:, (lZ) 

5115 .. 
1701 

.7116 .3120 .6660 3740 ·2130 ·437 " 6.0'Zt> 20.7ll 4 .5-07 -2 ... 0 
25:"9 '101 - lil (10) 

nu 61 
2071 

.9JlS . 3161 .6131 5480 · 3245 • 474 - 106 17.$92 1S.034 1. ~11 :. 135 - 6.422 
3511 Ill >S Ill) 

6l7l . l3 
1669 

.9JI.4 . -«89 .69~ 

·~·· 
-SllO ·IUS 17~ 10.477 ~3.S27 2.911 -2.3W 
5204 162> .. •23 (IJ 

7001 • 12$ 
29•1 

.7389 .:7tS . SG~S UIS - 3!17 • Sll SiO 11 ,\):>0 9 .310 2'.161 1.563 · 8.1" 
li)!S nt • 7•2 i6J 

1215 . u 
1719 

.SUI . .a570 .691, 2 l lll9:io - Ut\i . n• ,n .. •• 911 2!i. C'57 .1S4 ·2.9U 
71'1l I l oS ·1517 fS) 

6199 • 2~S 
Jl6l 

44 





Appendix B- 2 

Results of the Application of the Model 
t o the Spr ingfield Precipitation Series 

Table B-2-1. Results Obtained in Case the Year is Divided in Twelve Seasons, 
for the Springfield Station 
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S590 - 91 
1434 

032-060 •.liS? .5917 . l4S9 .S871 1906 -1133 - 293 2ll 10.794 1&. 9SS 9 . 230 -7.294 
ISS9 626 - 640 (7} 

Sill - 64 
1524 

061-092 -.2571 .6006 . 2712 .61S2 1395 - 761 - lSI as 16.871 14.343 2.831 4.490 -S . 982 
1149 395 - 449 (8) 

SOl& - 27 
1312 

093-120 -.3010 .6941 .2885 .6704 2182 -1155 ! 206 19 6.327 13.854 s. 717 -3.237 
16S5 547 - 390 (9) 

5701 - ll 
1791 

121 - 152 -.ns• • 7641- .2510 .6722 2011 -1042 - ISS - lOS 17.041 12.660 2.041 4.91l -2.976 
ISIS 438 - Ill (12) 

4871 - 12 
146S 

lS3-IIO -. 3741 .8291- .un .6797 SilO ·1692 - 293 - ll6 15.006 IS.647 l. 714 -2.397 
22S6 67S - 99 (II) 

5799 - JJ 
1829 

111-212 -.4639 .1136- . 2741 .6122 3197 -1121 - 267 7 IS .92S U.340 3. 7SS 6 .231 -6.464 
l222 596 - 217 (I OJ 

Sl l6 - 26 
1462 

213- 240 -. 4605 .7334 . 2317 .6094 3219 - 1991 - 270 191 S.ll2 7.324 ].221 -s. 717 
2S47 SSI • 511 (8) 

7427 - 42 
1751 

2<1-272 -.5317 .ll7:S. .3961 . S987 l9ll -22S2 - 477 II 12.114 26.191 S.217 S. 632 -s. 714 
2632 909 - 242 (10) 

5201 - 52 
ms 

273-lOO - . 7495 .9162 . 2436 .6227 7525 - 468S - 546 156 2. 574 6.411 1.292 -4 . 766 
4611 186 - 311 (I) 

9S4S - s• 
2244 

.S01-ll2 -. 4271 .7066 .]6.44 . 5711 2645 -1543 - .3'7 162 13. 029 21.736 1.902 4. 720 -7.979 
1907 70S - 453 (9) 

5322 56 
1371 

33s-l-60 -.4745 .6955· . 4420 .5866 3502 - 2124 - 584 335 15.2'26 28. 61S 2.661 -6.278 
2415 1023 - 677 (7) 

5744 - 110 
1771 

.JOOE-+QJ 

.JDOE-01 .!OOE-01 

I I ? 
~ 
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Fig. B-2-2. 

The Periodic ~T and cr, for Daily Values 

of the Springfield Precipitation Station. 
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Plot of Log F(x) Versus x for Spring­
fie l d Data: (a) Period 93-120, (b) 
Period 121-152, (c) Period 153-180, and 
(d) Period 181-212. 

Fig . B-2-3. 
The Periodic P, and o, for Daily Values 

of the Springfield Precipitation Station. 

Appendix B-3 

Results of the Application of the Model 
to the Ral eigh- Durham Precipitation Series 
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Fig. B-3-l. Plot of Log F(x) Versus X for Raleigh-
Durham Data: (a) Period 121-152, (b) 
Period 153~1801' (c) Period 181-212, and 
(d) Period 213-240 . 

Table 8-3-1. Results Obtained in Case the Year is Divided in Twelve Seasons, 
for t he Raleigh-Durham Stat ion 

ASYMPTOTIC 
PARAMETERS COVAAIAIICE MATRIX 

T.S.1 T.S.2 T.S . 3 T.S.4 T.S .5 
PERIOO ~ (X 10' 6 ) (4. t .) (14. C.) (44 . (.) (44. f.) N(O,l) 

00l-Ol2 •.5736 . 6950 .2862 .6505 2<l6 ,1393 • 247 126 8.118 ll. 211 3.204 4.495 ·5.21£~ 
1812 571 • 484 (9) 

6050 . 43 
1768 

052-~ ·.2535 .6452 .2164 . 7514 1872 • 985 • 139 29 24.353 7 .282 .571 
1482 406 • 524 (9) 

6401 . 21 
2349 

061-092 •.2998 .633~ .3228 .1352 1850 · 1014 • 219 126 6.417 18.498 1.035 6.059 · I. 990 
1450 550 • 581 (8) 

5384 . so 
2153 

093- 120 ·.3590 .6592 • 2513 . 7530 2550 · 1526 • 285 271 11. 155 8.584 2.093 -2.160 
1.~78 581 • 785 (7) 

7271 . 54 
2710 

121· 152 • .3467 .6944 . 2101 .6681 2221 ·1260 • 156 82 6.529 1.on 5.431 2 .69~ -4.397 
1683 403 - uo (9) 

6284 - 24 
1781 

153- 180 -. 4193 • 7565 .3156 .6643 3413 · 1924 • 354 69 • • 845 13.796 2.113 ••• 313 
2425 784 - 432 (9) 

6788 . 49 
2138 

181·212 -.2985 • 7620 .3029 .6816 2357 · 1186 • 203 - 97 17.880 17.017 1.149 .628 -3.365 
1709 578 - 180 (12) 

5071 - 54 
1686 

213·240 - .3537 .8015 .2735 .6255 3172 ·1679 • 261 • 109 17 .650 II . 246 4.383 ·3.234 
2278 664 • 152 ( 10) 

6356 . 24 
1685 

241- 272 · . 8665 1.0351 .4521 .6518 10116 - 6125 - 1197 - 200 17 . 382 26.576 3 .922 12.059 - 4 . 11: 
6003 1709 17 (9) 

6545 . 80 
2440 

273- 300 · . 8053 .9473 .4502 .6897 9917 · 6033 - 1290 134 6. 383 22. 644 6.498 · 2.932 
5893 1822 • 397 (8) 

7651 • 130 
3187 

301·332 - .4139 .?lOS .3322 .6469 3350 ·2010 • 407 240 19.083 16.201 2. 735 9.362 ·3. 706 
235$ 776 • 573 (8) 

6459 . 70 
1956 

lll-360 •. 4387 .6600 .3212 • 7907 3257 ·2025 • 418 530 4. 237 12.551 2.550 . 002 
2398 800 ·lOSS (?) 

76l9 - 121 
3444 
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Fig. B-3-2. 

The Periodic ~T and ar for Daily Values 

of the Raleigh-Durham Precipitation Station. 

Fig. B-3-3. 

The Periodic pT and aT for Daily Values 

of the Raleigh-Durham Precipitation Station. 

Appendix B--4 

Results of the Appl ication of the Model 
t o the Austin Precipitation Series 

Table B-4-1 . Results Obtained in Case the Year is Divided in Twelve Seasons, 
for the Austin Station 

ASYMP'IOTIC 
PUIOO PAJWIETERS VAltlf.NC~-COVARIIINCfl T.S. I T.S . l T .S.3 T.$ . 4 T.S. S 

G (X 10"6) (d. f.) (ld.f.) (4d.f.) (4d.f.) N(O.I) 

001- 03l -.4519 .6432 .4417 .5723 141 - 412 
SSt 

- 124 99 ~.213 93.511 6.071 1 .no • 14.107 
234 • IPS (11) 

16V3 • u 
4tS 

033-060 -. 4906 .7326 .3905 .5753 lUI - 621 -Ill 5t 27.749 65.116 1.14l - 12 . 179 
731 no. -159 (13) 

2045 . II 
S.0·3 

061-092 -.6050 .n61 .3571 .5929 1~5 • 791 - 146 101 23.074 n.na 7.211 7.991 ·IO.tU 

119 2St - 117 (U) 
2229 - 23 

510 

093- 120 -.6060 . 9293 .3135 .5601 1902 -1112 • 207 - 43 21.411 64. 543 t.426 · 11 . 141 
1265 $14 - 12 (It) 

2041 • IS 
SOl 

121-ISl -. 6270 .9511 .3765 .5952 1792 · 1065 - 192 - 52 26.113 70.313 .514 1.505 - 1.761 
1201 34t 5 (20) 

IU9 - 12 
499 

ISJ-110 •• 1966 I. 0167 , 4161 .6171 «10 -2933 
2813 

• 660 - 17 26.069 14.261 7. 713 - 7.695 
IU - 41 (16) 

l236 • 40 
102 

111-212 -.97t2 .9902 , 4937 .5731 4.$45 -2961 - 667 108 16.~6 17.717 7.510 -11.7S2 

2635 172 ·IS4 ( IS) 
2201 • 52 

702 

213-240 -1.0460 .9695 .4263 .6171 5159 -J720 • 735 215 1.120 08.091 7.908 - 1. 147 
JOU 113 310 ( 12) 

3362 - 73 
1041 

241-272 -. 719$ . 9902 .4545 . 5114 2104 -1795 • 317 • 34 25.744 90.7-77 5.5$5 I . 703 - 10.741 
U30 551 . !I (II) 

1172 - 24 
559 

273-300 -.t755 1.0664 .4596 .5600 5910 - 4174 - 195 • 70 21.779 71 .410 I. 772 - 10.504 
3181 1042 " (17) 

2530 21 
611 

301-332 -,6761 . 1256 .4767 .5901 1770 -1045 • 241 19 11.971 99.947 4 .469 ) , 409 -10.510 
1071 liS -164 ( 14) 

1787 - 33 
601 

lll• l60 -.5951 • 7910 .4799 .5517 1620 • 929 - 230 67 32.065 ". 71l 4.105 -13.726 
IOU 311 - 154 (14) 

1150 - 30 
564 
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Appendix B-5 

Results of the Application of the Model 
to the Rapid City Precipitation Series 

Table B-5-1. Results Obtained in Case the Year is Divided in Twelve Seasons , 
for the Rapid City Station 

.lSYMI"roo"IC 
PERI CO PAilAIIITERS COVARIANCE MATRIX T.S.I T . S.2 T.S.3 T.S.4 T.S.S 

0 ( I 10"6) (d. f.) (ld. f.) (4d. f.) (4d. f . ) H(O,I) 

001-032 -.1457 .1640 .3687 .8567 !106 ·184 • 4U lg7g 1.033 1!.310 7. 216 3.HI ·2.133 
994 611 ·2lU (I) 

1 716 ·1060 
6610 

033·060 -.1402 .2ng .3707 .6921 642 • 516 • 225 669 2.UI 17.127 1.373 ·5.179 
1037 476 -1472 (I) 

7041 • 222 
31:14 

061-092 -.2012 • 3313 , 4050 .6514 1022 • 184 • 355 7go 4.347 U.344 1.570 11.446 - 6. 466 
1316 629 · 1435 (2) 

6lS7 • 26g 
2613 . 

093-120 - . 21U .4596 .3841 .6510 I lSI • 144 • 212 l$7 5. 330 20.015 7.545 -5.241 
1319 655 ·1059 (4) 

6457 • 101 
2349 

121-152 -.1592 .5212 .3549 .5199 1211 • $69 • 171 24 S. Stl 2%.304 3. 717 1].26t -7.355 
1051 su • S2S (6) 

Sill . ll 
1431 

153· UO •.0903 .5274 .2416 .5994 1116 • 454 • 103 . IS 4.235 !II.ISI 4 .515 ·5.611 
174 312 • 45g (7) 

5999 . I 
1501 

111·212 •.3232 . SSSI .2S61 .5915 2033 ·1320 • 2~3 399 7.331 &.339 3.574 4.54S ·6.111 
1745 53l • 1 61 (S) 

7700 . 61 
1100 

213·240 -.3269 .4154 .2105 . 6125 2223 ·1621 • 273 915 3.6P3 •• 241 5.594 -2.111 
2012 496 1503 (3) 

10444 • ng 
3057 

241· 272 ·.4190 .5220 .37g5 .6344 3221 -2325 • 61H> 11 64 3.249 1~.514 j.g03 3.506 -5.665 
2552 994 -1574 (4) 

1516 • 250 
2764 

273-300 - .S7t5 .5066 • • 4.C6 .6793 9256 ·6436 -2007 4061 2.914 12 .595 2.251 - 4. 344 
5401 2121 ·3706 (I) 

13114 • tiO 
5167 

301-332 -.2467 .2141 .3264 .6964 1785 ·1586 - sgs 1845 7.061 10. 171 9. 074 2.no · 6.396 
1741 . 766 ·2117 (2) 

10171 • 600 
3915 

333·160 •.1671 .2034 .21J9 .1030 1049 ·1016 • 3U 1764 5.039 3 .101 9.341 ·2 .902 
1193 4$9 ·2216 (2) 

12452 • 60S 
$406 

. l00£•0J .IOOE•OI 

(a) b) 

,J OQ(~J .100£-0l 

? 
§ 

? 
~ ~ ? 

~ 
? 
~ 

a d 
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Fig. B-5- 1. Plot of Log F(x) Versus x for Rapid 
City Data: (a) Period 93-120, (b) Period 
121-152 , (c) Period 153-180, and (d) 
181-212 . 

Fig . B-5-2. 

The Periodic ~1 and crT for Daily Values 

of the Rapi d City Precipitation Station. 

Fi g. B-5- 3. 
The Periodic p T and a

1 
for Dai ly Values 

of the Rapid City Precipitation Station. 

Appendix B-6 
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Results of t he Appl ication of the Model 
to the Flagstaff Precipit ation Series 
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(c) 

'---, 
' 

Fig. B-6-1. Plot of Log F(x) Versus x for Flag­
staff Data: (a) P,eriod 181-212, (b) Period 
213-240, (c) Period 241-272 , and (d) 
Period 273-300. 

Table B-6-1. Results Obtained in Case the Year is Divided in Twelve Seasons , 
for the Flagstaff Station 

A$YIIPT()T 1 c 
PUIOD PAAANETEIIS COYAaiANCE HATRil T.S. I T.$ .2 T.S. l T.S. 4 T .S.5 

• • 0 11 to' '> (d. f. ) (ld.f.) (c.!. f .) (4d. f.) 11{0,1) 

001·012 •• Sl21 . 6354 . 6456 • 7497 5036 · 1295 ·lilt 1242 5. 492 60. 055 2.0.7 3 . S40 - 1.121 
3552 1544 -1714 (S) 

3176 • llS 
4272 

031· 060 • • $328 . 6102 .5605 • 7214 5556 - lSU · IISl 94S 3. 7SS l5 .27P 3.117 · I.SP2 
3S41 1615 -1461 (5) 

6106 - 210 
1917 

061·091 - .3965 .SSM .SSM .7738 2121 - 2007 • 736 1095 6.226 37.110 7.361 5.261 ·1.677 
2315 1131 -1697 (S} 

5459 • 290 
3971 

093- 120 •. 5136 .5730 .2416 . IUl 7472 -5211 • 925 3076 1 . 546 3 . 791 1.111 - .6117 
4663 1105 -1152 (4) 

16024 - 467 
6542 

121·152 - • 6252 . 4912 .621-4 .1227 14214 9750 - 1451 1121 .179 29 .'906 11.251 1.111 •• 741 
7504 2915 - 6514 (1) 

1610 -1640 
10711 

153-110 ·1.0019 . 1114 .62U . 5757 27036 ·16611 - 4414 4111 3.165 25.922 2.515 -6.504 
12492 3917 -1410 (2) 

9411 • 690 
5194 

111· 212 •• 1950 . 49-IJ . 3625 .6654 1205 • 665 - 213 175 5. 409 20.116 39.621 7.615 · 4 . 714 
1150 536 - 779 (6) 

$522 . 54 
1915 

213-240 - . 1770 . 4971 . 2337 .6674 1255 • 671 • 114 114 12.914 7.442 6. 750 - 4 . 730 
nos 391 - 799 (6) 

7112 - 26 
2146 

241-272 - .5961 • 7217 .5091 . 6275 5779 ·3632 · 1042 746 14 . 611 30.172 14 . 210 1.702 ·6. 567 
1793 1526 ·1101 (6} 

6411 • 207 
2736 

273· 300 • • 104$ . 72Sl . $145 • 7101 14155 ·9116 -2546 3001 3.551 19. 096 5.174 -2.975 
7614 2717 - 2190 (l) 

10953 - 597 
5152 

301-332 • • 7056 • 73S4 .S2JS .6791 IUS ·S279 · 1475 1376 S. IU 27. 546 . 701 - 3.571 
4960 1171 · 1629 (S) 

7421 - liS 
JIS4 

ll3-J60 • • 6121 .1005 .5761 .6917 1120 - 5493 ·1612 112 6. U S 35.404 4 .035 ·1.270 
5540 2154 -1210 (6) 

6371 - 261 
3175 

53 



Fig. B-6-2. 
Fig. B-6- 3. 

The Periodic )JT and aT fo-,: Daily Values The Periodic 
PT and a for Daily Values 

of the Flagstaff Precipitation Station. T 
of Flagstaff Precipitation Station. 

Appendix B-7 

Results of the Application of tho Model 
to the Seattle-Tacoma Precipitation Series 

Table B-7-1. Results Obtained in Case the Year is Divided in Twelve Seasons, 
for the Seattle-Tacoma Station 

ASYMPTOTIC 
PAIAIETUS COVAAIAIICI! NAn I I 

T.S. I T.S.2 T.S. J T.5.~ T.5.S 
PUIOO • (I to"' > (4 . 1.) (ld. f .) (~d. f.) (~d . f.) M(O,l ) 

001·012 .1706 . 4655 .~602 .6299 601 . 62 . " • 265 9.960 62.657 5.574 1.156 -1.6::-
~s U7 • 126 (10) 

2400 . 19 
1046 

Oll· 060 .04SJ .~593 . 4172 .6019 619 • Ill . n • 206 11.519 40,519 U.064 -4 .175 
517 ltl • 303 ( I ) 

3414 . 41 
1207 

061·092 . 0704 . 3525 -~375 .6112 ~ I . 25 • Ul ~ - 701 54 .OIS 11.110 .ua · I. 325 
316 265 • liS (6) 

2661 . 77 
1~07 

OIS·l10 • .062S .3720 . SillS . 6771 413 • lSI . 12 . ~ 1.122 31.712 1.341 - 2. 9!8 
576 340 • 632 (S) 

4065 . 41 
1755 

121·152 -. 2146 .~192 .3213 .6611 942 • 663 • 191 393 7.041 17.716 11.6U 7.101 · 4.n> 
1067 ~30 • 93~ (4) 

S60J . 91 
1941 

153- 110 -.1115 . 3725 . 3502 .6771 197 • 692 • 250 519 4.$47 11.210 2.141 - 4.708 
1132 502 ·1171 (3) 

6206 • 156 
ll70 

111·212 -.4345 . 4316 .51!17 . 7257 li9J -29~4 ·1101 2432 2.147 30.143 1.317 3.719 -2.344 
21U llU ·2533 (2) 

6910 • 62t 
U30 

213- 240 -. ]173 . 4975 .5622 .~SO 2101 ·2006 • 751 lOll 2.505 ~1.227 6.219 -~-116 
2339 1122 ·1517 (~) 

5101 • 290 
2912 

2~1-272 -.2306 -~611 . 5~23 . 6710 I ISS • 716 • 303 335 1.3t7 59. 112 19.301 ~.139 -~ . 279 
1161 6U • PI~ (5) 

3496 • U6 
2102 

273-300 ·-0~ ,4677 . 401 .7117 715 • 234 • 109 • 141 I.Jll 42.062 1.5ll ·1.371 
671 460 • 416 (I) 

5605 . 59 
1167 

301· 332 . 0947 . 4917 .3704 . 6391 661 • 119 . u • 216 16. U2 n .ou 3.5U 7.271 ·3.064 
U7 314 • 174 (10) . 

3025 . 43 
lOll 

33l-560 . 1116 .4326 . 3430 . 6506 566 . 56 I • 311 25.121 30.622 1.162 -2. 155 
320 270 • 172 (10) 

3217 . 10 
1246 
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Appendix C 

Critical Values for the Chi-Square Probability Distribution 

Degrees of 5 Percent 1 Percent 
Freedom Significance Level Significance Level 

1 3.84 6.63 

2 5.99 9.21 

3 7.81 11.3 

4 9.49 13.3 

5 11.1 15.1 

6 12. 6 16.8 

7 14.1 18.5 

8 15.5 20.1 

9 16.9 21.7 

10 18.3 23.2 

11 19.7 24.7 

12 21.0 26.2 

13 22.4 27.7 

14 23.7 29.1 

1S. 25.0 30 . 6 

16 26.3 32.0 

17 27 . 6 33.4 

1S 28.9 34.8 

19 30.1 36.2 

20 31.4 37.6 

21 32.7 38.9 

22: 33.9 40.3 

23 35.2 41.6 

24 36.4 43.0 
25 37.7 44.3 

26 38.9 45.6 

27 40.1 47.0 

28 41.3 48.3 

29 42.6 49.6 

30 43.8 50.9 
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Key Words: Time Series, Interudttent Processes, Daily Pre­
cipitation, Daily Runoff. 

Abstract: A model for description and generation of new samples 
of intermittent daily precipitation series is developed. The 
basic assumption is that precipitation is a result of truncating 
a non-intermittent process. Classical methods for modeling the 
time dependence in t~is latter process can then be applied. The 
univariate non-intermittent process permits then an extension to 
multivariate case. Specific tests, related to stationarity and 
time independence of the process, are formulated. The model is 
tested on series of several precipitation stations in USA . Re­
sults have been found satisfactory. 

Another model, in this case for the description and gener­
ation of new samples of daily streamflow, is also developed. 

Key Words: Time Series, Inter.ittent Processes, Daily Pre­
cipitation, Daily Runoff. 

Abstract: A model for descr iption and generation of new samples 
of intermittent daily precipitation series is developed . The 
basic assumption is that precipitation is a result of truncating 
a non-intermittent process. Classical methods for modeling the 
time dependence in this latter process can then be applied. The 
univariate non-intermittent process permits then an extension to 
multivariate case. Specific tests, related to stationarity and 
time independence of the process, are formulated. The model is 
tested on series of several precipitation stations in USA. Re­
sults have been found satis factory. 

Another model, in this case for the description and gener­
ation of new samples of daily streamflow, is also developed. 

-------·----

Key Words: Time Series, Intermittent Processes, Daily Pre­
cipitation, Daily Runoff. 

Abstract: A model for description and generat1on of new sacples 
of intermittent daily precipitation ser ies is developed. The 
basic assumption is that precipitation is a result of truncating 
a non-intermittent process. Classical methods fpr modelini the 
time dependence in this latter process can then be applied. The 
univariate non-intermittent process permits then an extension to 
multivariate case. Specific tests, related to stationarity and 
time independence of the process, are for~ulatcd. The model is 
tested on series of several precipitation stati ons in USA. Re· 
suits have been found sati~actory. 

Another model, i n this case for the description and gener­
ation of new samples of daily streamflow, is also developed. 

Key Words: Time Series, Intermittent Processes, Daily Pre­
cipitation, Daily Runoff. 

Abstract: A model for description and generation of new samples 
of intermittent daily precipitation series i s developed. The 
basic assumption is that precipitation is a result of truncating 
a non-intermittent process. Classical aethods for modeling the 
ti111e dependence. in this l atter process can then be applied. The 
univariate non-intermittent process permits then an extension to 
multivariate case. Specific tests, related to stationarity and 
time independence of the process, are formulated. The model is 
tested on series of several precipitat ion stat ions in USA. Re­
sults have been found satisfactory. 

Another model, in this case for the description and gener­
ation of new samples of daily streamflow, is also developed. 



The basic assumption is that the rising and falling limbs of 
discharge hydrographs can be modeled individually as two differ­
ence, intermittent processes, also physically different. The 
rising liab process is aainly due to factors external to water­
sheds. It is modeled similarly as the intermittent precipi­
tation process. The falling li11b is conceived as governed by 
regularities of water outflow from watersheds, with the water­
shed storage and outflow represented by two linear reservoirs. 
The model is tested for a case study . Results are satisfactory 
in reproducing the combined process. 

Reference: Kelman, Jerson; Colorado State University, Hydrology 
Paper No. 89 (February 1977), Stochastic Modeling of Hydrologic, 
Interaittent Daily Processes. 
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The basic assumption is that the rising and falling l imbs. of 
discharge hydrographs can be modeled individually as two differ­
ence·, intermittent processes, also physically different. The 
r ising limb process is mainly due to factors external to water­
sheds. It is modeled similarly as the intermittent precipi­
tation process . The falling limb is conceived as governed by 
regularities of water outflow froa watersheds, with the water­
shed storage and outflow represented by two linear reservoirs. 
The model is tested for a case study. Results are satisfactory 
in reproducing the combined process. 

Reference : Kelman , Jerson; Colorado State University, Hydrology 
Paper No. 89 (February 1977), Stochastic Modeling of Hydrologic, 
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