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ABSTRACT

ADJUSTING FOR CAPTURE, RECAPTURE, AND IDENTITY UNCERTAINTY

WHEN ESTIMATING DETECTION PROBABILITY FROM CAPTURE-RECAPTURE

SURVEYS

When applying capture-recapture analysis methods, estimates of detection probability, and

hence abundance estimates, can be biased if individuals of a population are not correctly

identified (Creel et al., 2003). My research, motivated by the 2010 and 2011 surveys of West-

ern Arctic bowhead whales conducted off the shores of Barrow, Alaska, offers two methods

for addressing the complex scenario where an individual may be mistaken as another indi-

vidual from that population, thus creating erroneous recaptures.

The first method uses a likelihood weighted capture recapture method to account for three

sources of uncertainty in the matching process. I illustrate this approach with a detailed

application to the whale data.

The second method develops an explicit model for match errors and uses MCMC methods

to estimate model parameters. Implementation of this approach must overcome significant

hurdles dealing with the enormous number and complexity of potential catch history config-

urations when matches are uncertain. The performance of this approach is evaluated using

a large set of Monte Carlo simulation tests. Results of these test vary from good perfor-

mance to weak performance, depending on factors including detection probability, number

of sightings, and error rates. Finally, this model is applied to a portion of the bowhead

survey data and found to produce plausible and scientifically informative results as long as

the MCMC algorithm is started at a reasonable point in the space of possible catch history

configurations.
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CHAPTER 1

INTRODUCTION

1.1 Capture Recapture Surveys

Capture-recapture surveys have a long history (Cormack, 1968, Otis et al., 1978, White,

1982, Pollock et al., 1991, Seber, 1982, Schwarz, 1978 and Williams et al., 2002), with one

of the main benefits and goals of such surveys being the ability to estimate a population’s

abundance. In classical capture-recapture experiments there are c independent capture op-

portunities, where at each capture opportunity animals are captured, tagged with unique

identifying tags, and released. During each capture opportunity the researchers record which

animals were captured for the first time, and which were recaptured, i.e., which had been

captured at a previous capture opportunity. The data collected from capture-recapture ex-

periments are the collection of each individual’s capture history. Capture histories can be

expressed as sequences of 0’s and 1’s, where a 0 indicates that the individual was not cap-

tured at that specific capture opportunity and a 1 indicates that the animal was captured

at that specific capture opportunity. For example, if the number of capture opportunities is

c = 2, a 10 capture history represents an individual captured at the first opportunity but

not recaptured at the second. A 01 history represents an individual not captured at the first

opportunity but captured at the second. A 11 capture history represents an individual being

captured at the first opportunity and recaptured at the second.

After the experiment is complete capture histories for each individual are used for estima-

tion of detection probability and abundance, where detection probability is defined to be the

probability that an individual is captured given it was available to be captured (Amstrup

et al., 2005). Many models (Amstrup et al., 2005) include abundance in the likelihood as a

parameter to be estimated. Others remove abundance from the likelihood by conditioning

on only those individuals captured during the survey. The most notable of these is the Hug-
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gins model (1989). For models where abundance is conditioned out of the likelihood, one

can use a Horvitz-Thompson type estimator (Särndal et al., 2003) to estimate population

abundance where the detection probability estimates are part of the inclusion probabilities.

These models are based on the assumption that capturing and physically tagging individuals

in the population is possible.

1.1.1 Uncertain captures and recaptures and the goal of this dissertation

More recently individual identification based on naturally existing tags such as DNA (Taber-

let et al., 1997) or scar patterns (Langtimm et al., 2004) has been used in capture-recapture

studies. While the use of naturally existing tags have broadened the range of ecological stud-

ies (Waits, 2004), it has the potential to introduce errors into the data set. In particular, the

use of naturally existing tags introduces the potential for mis-identification of individuals

(Hammond, 1986; Taberlet et al., 1999; and Wright et al., 2009). Mis-identification occurs

when it appears that several individuals were captured when in fact only just one individual

was captured. This potential for mis-identification, if unaccounted for, can create bias in

estimation (Creel et al., 2003). In some situations, the other type of error can occur: two

individuals may be mistaken as a single one. This type of error is seen often in the data I

examine in this dissertation.

Some researchers have examined ways to account for mis-identification errors, whether

through improved methodology, or through the model used in estimation (Paetkau, 2003,

Waits and Paetkau, 2005, Stevick et al., 2001, Lukacs and Burnham, 2005, Yoshizaki, 2007,

and Link et al., 2010). Stevick et al. (2001) assumes known error rates. Lukacs and Burnham

(2005) extend the full likelihood models of Otis et al. (1978) and the conditional likelihood

of Huggins (1989) focusing specifically on an animal’s genotype being used as a unique iden-

tifying tag when determining model assumptions. Link et al. (2010) relaxes some of the

2



assumptions made by Lukacs and Burnham (2005) and proceedes by connecting the ob-

served, or recorded frequencies, f , to the latent frequencies, x (with cell probabilities π(θ)),

via a linear transformation, i.e., f = A′x. They then employ a MCMC strategy via the Gibbs

and Metropolis-Hasting samplers, treating the latent frequencies as parameters needing to

be estimated.

There has been little or no work on methods to cope with other sorts of errors such as falsely

declaring a recapture (i.e., when two individuals are mistaken as one). In such a case the

data appear as if there are fewer individuals than were actually captured. The large complex

whale data set that serves as motivation for this dissertation presents both types of potential

errors - failures to match (i.e., mis-identification yielding two purported individual captures

instead of one recapture) and false matches (i.e., mistakenly identifying two individuals as

a recapture event). My dissertation provides statistical methods for estimating detection

probabilities (and hence abundance) in the face of both types of capture and recapture

uncertainty. This is challenging, novel work that draws upon a variety of statistical concepts

and is strongly grounded in the whale application motivating my work.

1.2 Whale Dataset

In subsequent chapters I will describe the whale dataset motivating my statistical method-

ology research. Initially, however, it may be useful to provide a quick overview in order

to illustrate the presence of false recaptures (i.e., false matches) and failed recognition of

recaptures (mis-identification).

The North Slope Borough Department of Wildlife Management in Barrow, Alaska has con-

ducted ice-based visual cenuses of the Bering-Chukchi-Beaufort Seas (BCBS) stock of bow-

head whales, Balaena mysticetus, for over 30 years. Conducted annually from 1979 to 1988

and then again in 1993, 2001, 2010 and 2011, the main purpose of these censuses is to pro-
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vide the International Whaling Commission with population abundance estimates. Further

discussion of the history of the surveys and analytical procedures for the years preceding

2010 can be found in George et al. (2004). In 2010 and in 2011 the visual census switched

from a single perch design to a two perch independent observer system, creating the need

for an updated statistical analysis.

Every spring the BCBS stock of bowhead whales migrates from the Bering Sea into the

Beaufort Sea, traveling north-eastward through the Chukchi Sea. From April to June, 2010,

and again from April to May, 2011, a two-perch independent observer system was imple-

mented to record visual sightings of passing bowhead whales. The two-perch independent

observer system establishes two stationary locations, or perches, constructed on the ice near

the water’s edge. The two perches are a sufficient distance from one another to ensure in-

dependent sightings. When a sighting is made at either perch, the whale location (based on

theodolite readings), time, group size, visual sighting conditions, and other covariates are

recorded. Note that each perch creates its own independent dataset.

Due to the fact that whales cannot be physically marked or captured, recapturing or ‘match-

ing’ was done post hoc by a team of experts comparing the sightings from both perches using

special data plotting software to display the time, location, and other relevant factors to for

each sighting. The researchers replicated the matching process three times for the 2010 sur-

vey data over the course of 4 months. Matching was not replicated in 2011. Researchers

spent hundreds of hours making these decisions, however it would be a mistake to assume

that all of these decisions are correct. Therefore, these surveys produce capture-recapture

data with uncertain recaptures.
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1.3 Overview

In this dissertation I will provide two new novel approaches that incorporate both types of

errors described above in the estimation of detection probabilities. The first method uses

a weighted likelihood approach for modeling capture-recapture histories, with weights to

account for three sources of identification or match uncertainty, namely conditional sightings,

availability and match uncertainty. This approach is described in Chapter 2, with a detailed

application to the whale survey data. The second method builds an explicit model for the

error processes inherent in the uncertain matching. This approach is developed in Chapter

3. In Chapter 4, the performance of the latter method is examined using a broad suite of

simulation testing. Finally, in Chapter 5, application of this approach to a portion of the

bowhead data allows an examination of how my methods might be used in practice.

5



CHAPTER 2

WEIGHTED LIKELIHOOD APPROACH

2.1 Introduction

This chapter describes estimation of detection probabilities from the 2010 and 2011 survey

data using a weighted likelihood approach. A revised and extended version of this chapter

has been published in Environmetrics (Givens et al., 2014).

In April and May of 2010 and 2011, scientists from the North Slope Borough Department of

Wildlife Management attempted ice-based counts of bowhead whales (Balaena mysticetus)

from the Bering-Chukchi-Beaufort Seas population as the animals migrate northward past

Barrow, Alaska. Descriptions of the surveys are given by George et al. (2011).

These surveys employ a two-perch independent observer protocol. Specifically, two teams

of observers stand at fixed survey sites (perches) situated atop pressure ridges near leads

and open water. The two perches are sufficiently distant that the teams cannot hear each

other or incidentally cue each other about their sightings. All sightings and other data are

recorded independently at each perch. During some periods (independent observer, or ‘IO’

periods), both perches were operating. At other times, only one perch, or neither, was used.

Typical IO shift periods were 4 hours.

The ultimate purpose of the surveys is to obtain a population abundance estimate. Most

previous abundance estimates have been based on ice-based surveys (Braham et al., 1979;

Zeh et al., 1986, 1991; George et al., 2004; Zeh and Punt, 2005) The most recent abundance

estimate, derived from an aerial photo-identification survey, is 12,631 (95% confidence inter-

val 7,900 to 19,700) by (Koski et al., 2010). The key requirements for estimating abundance

from the ice-based survey data are the count of whales seen, the proportion of the population
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available to be seen as whales migrate past the perches, and an estimate of the detection

probability, i.e., the probability of detecting a whale given that it passes the perch within

viewing range. This chapter is focused solely on detection probabilities, which may depend

on covariates such as visibility conditions and distance of the whale from the perch.

In 2010, the survey was partially successful. There were 399 hours when at least one perch

was operating, during which 306 hours of two-perch independent observer effort was main-

tained. The total numbers of New and Conditional whales (respectively, first or likely first

sightings; see Section 2.2.1 for precise definitions) seen at the primary perch were 1332 and

242, respectively. Of these 1332 New whales, 1216 were seen during 306 hours of IO. Note

that many sightings were repeat sightings of the same whale or group made from the same

perch or the other one. Despite the partial success of the 2010 survey, it would be diffi-

cult to produce a reliable abundance estimate from these data. Ice and weather conditions

prevented all survey effort for much of April and May 4-6, and survey effort ended on May

28 before the migration ended. As many as a third to one half of the bowhead population

probably passed Barrow during those unmonitored times. However, the 2010 data are ample

for detection probability estimation.

The 2011 visual survey was extremely successful. A total of 3379 New and 632 Conditional

whales were seen in 859 hours of effort at the primary perch, including 1230 New whales

during 180 hours of IO. These counts are within a few whales of the all-time record since

surveys began in 1979. Although the total survey effort (859 hours) was much greater than

in the previous year due to survey design and weather, the IO effort in 2011 was much less.

This change in emphasis from IO and detection probabilities in 2010 to counts in 2011 was

planned to optimally use resources and yield the best multi-year dataset for abundance es-

timation.
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This chapter describes estimation of detection probabilities from the available survey data.

First I describe how the raw survey data are converted into capture/recapture data appro-

priate for detection probability estimation. After a description of the estimation approach,

I present the results and sensitivity analyses. The chapter ends with a discussion of my

findings and future implications.

2.2 Data

In Section 2.3 I describe the statistical model used to estimate detection probabilities (Hug-

gins, 1989). The basis for the analysis is the capture-recapture principle. In a generic case,

sighted groups are classified into three categories: those seen by observers in team 1, those

seen by team 2, and those seen by both teams. The detection probability (for whale groups)

for a team is estimated as the ratio of the number of groups seen by both observers to the

total number of animals seen by the other observer team.

However, ordinary capture-recapture methods cannot be directly applied to the bowhead

data. Usually, the counts of animal captures and recaptures are known exactly. For exam-

ple, animals may be marked with bands or matched via photo-identification. In the bowhead

case, the best way to count captures and recaptures is less clear because no matching can be

done at the moment of sighting or re-sighting (especially at high whale passage rates), and

no identifying marks or bands can be placed on the whales. Moreover, even the sightings

themselves are subject to confusion since the same whale may be sighted multiple times

from the same perch. The sighting and matching methods used in the survey yield very

complicated data structures that we call ‘chains’, which include a time- and perch-varying

array of covariates, too. In the following subsections we describe the dataset and how it is

organized for analysis.
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2.2.1 Linking Sightings

The first stage of my data treatment is to identify captures, in other words whales seen

for the first time. One of the most important variables recorded for a sighting is a link

code, which indicates whether the observer team believes that it has previously detected the

sighted whale(s). The link codes and their meanings are given in Table 2.1. Each sighting

from a single perch is labeled as New (N), Duplicate (R, X, Y, or Z) or Conditional (C),

where the latter two categories represent a possible re-sighting of a previously seen whale or

group.

These link codes are assigned independently at each perch and pertain only to the sightings

from that perch. For example, a New whale seen at one perch might never be seen at the

other; or perhaps this New whale is a Y Duplicate within a sequence of previous/future

sightings at the other perch, such as N-X-Y-R-Z. Duplicate and Conditional sightings are

explicitly perch-specific (as are New sightings) and hence are not recaptures. Due to the

presence of Duplicate and Conditional sightings, the total number of sightings reported by

a perch exceeds the total number of distinct whale groups sighted.

Connections between related sightings from a single perch are called ‘links’. Links are estab-

lished by the observer team at the time of sighting using the link codes, and links can only

refer backwards in time to previously seen whales. It is required that a New or Conditional

whale be identified as the originating sighting for any subsequent sighting coded as a R, X,

or Y Duplicate. By definition, C sightings are not linked back to a previous sighting and Z

sightings rarely are, but both types may be connected to future sightings via those future

sightings’ backward links. Critically, sightings and links at one perch are totally independent

9



Table 2.1: Link codes for sightings of whales or groups. Every sighting is classified with one
of these codes. The three fundamental classifications are New, Duplicate, and Conditional.

Link Code Meaning
N New whale or group. Observer team is confident that it is seen for the

first time.
R Duplicate. Roll. The sighting is part of a sequence of surface dives or

‘roll series’ of a previously sighted whale or group. A link is assigned
to indicate the associated previous sighting.

X Duplicate. The observer team is 100% confident that the whale or
group can be linked to a specific previous sighting. A link is assigned
to indicate the associated previous sighting.

Y Duplicate. The observer team is about 90% confident that the whale or
group can be linked to a specific previous sighting. A link is assigned
to indicate the associated previous sighting.

Z Duplicate. The observer team is quite sure that the whale or group has
been previously sighted but the team cannot link it back to a specific
previous sighting with 90% confidence. Rarely a link is assigned.

C Conditional. The observer team cannot determine whether this whale
or group is New or a Duplicate of some previous sighting. Links to
earlier sightings are forbidden.

of those from the other perch. If a group was seen by both perches, the links (if any) assigned

by each perch are unrelated.

Since time is recorded with each sighting, a sequence of sightings connected by links has a

unique link ordering. I call a sequence of linked sightings a ‘link chain’. By definition, a link

chain must begin with a N or C (or rarely but improperly a Z) and contain no subsequent N

or C. Since the perches operate independently, link chains are associated with a single perch.

Let an arrow denote a link, with superscripts representing the number of whales reported

in the group and subscripts representing perch. It will be implicit that time flows from left

to right. Then the link chain N1
1 → X1

1 → Y 2
1 represents a link chain created by perch 1,

where a new sighting of one whale was linked to an X Duplicate of a single whale, and then

to a Y Duplicate where two whales were seen in the group. Note that group size may not be

consistent within a chain. The direction of our arrows is, technically, inappropriate because

10



Figure 2.1: Example of the software display for matching sightings during about two hours
on May 8, 2010. Sightings (dots) are labeled by link code and time, and associated by perch
according to dot shade. Links and matches are indicated by line segments of different shades.
The software displays data but does not attempt any automatic matching.

Duplicates are linked backwards in time to previous sightings. However, our notation is

more natural to read because it is consistent with time flow. Similarly, we may say that a

sighting ‘links onward’ to another sighting when, more precisely, the future sighting is linked

backward in time. Also for simplicity I will omit superscripts or subscripts when they are

irrelevant.

We will see later that certain other types of chains may involve loops or other features

that preclude the simple notation adopted here. Finally, for brevity later I often adopt the

convention that link chains are permitted to be length one, i.e., a single New, Conditional,

or Z Duplicate whale, unless the distinction between single- and multi-sighting link chains

is important.
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Figure 2.2: Separation of paired matched sightings in space and time. Each dot represents a
match pair. The data have been transformed by taking square roots to better separate the
dots. The E/G/A categories are explained in Section 2.2.2. E matches (black dots) are the
most certain, G matches (plus symbols) are intermediate, and A (open circles)matches are
the least certain.

2.2.2 Match Data

Matching sightings

Next I consider the identification of recaptures: whales that were seen from both perches.

It is critical to understand that a match connects sightings between perches rather than

within a perch. Links connect sightings within a single perch. The observer teams do not

communicate, so the process of matching a link chain from one perch to a link chain from

the other perch must be done by a third party.

In 2010, matching was attempted both in real time and retrospectively. For the period 1-14

May, observer teams radioed the sighting time, location, swim direction and speed to a com-
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mand center. The two teams used different radio frequencies. Master matchers in the com-

mand center plotted these data using software adapted specifically for this task and tracked

sightings approximately in real time, trying to identify between-perch matches. The software

was for data display only–matches were determined using human judgment integrating all

relevant information. An example of the match display is shown in Figure 2.1. Sightings are

labeled with link code and time. Links and matches are shown with line segments in three

different colors. One motivation to attempt real time matching was that the master matchers

could radio the perch for additional information if the matchers had a question or needed

clarification about a sighting. George et al. (2011) provide much more detail about matching.

At high whale passage rates, it became evident that the real time protocol was not practical.

Observers on the perches did not have enough time to record sightings, make links, and also

radio back the data to the command center. For the rest of the season, sightings data were

collected without real time matching. Several months later, the entire dataset was scrutinized

to identify matches. The master matchers used the same software and essentially simulated

what would have happened during real time matching, except that the software allowed time

to be slowed as much as needed to allow full and careful identification of matches. Match de-

cisions were twice re-assessed and validated through comprehensive reviews later in the year.

In 2011, only post hoc matching was used. Applying the same methods as in 2010, the

master matchers produced a matched dataset that they considered to be equivalent to the

2010 match data in terms of data usage and and decision thresholds. The total time spent

for the matching effort was about 50 person-weeks for the two surveys.

Figure 2.2 shows how the sightings comprising a matched pair are separated in space and

time, for the 2011 data. Most matched sightings are very close spatially and temporally.

The gap in the middle of the plot is a result of whale diving behavior. The sighting pairs in
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the bottom left portion of the plot are likely to have been sighted by both perches during the

same surfacing sequence. The pairs at the top right portion of the plot are likely matches

where the sightings were separated by one or more dive periods.

Match chains

Matches explicitly connect sightings, not link chains. However, since every sighting is a

member of exactly one perch-specific link chain, a match to any sighting implicitly connects

a link chain from one perch to a link chain from the other perch. The entire set of sightings

connected by a sequence of matches and links is called a match chain. For 2011, the numbers

of match chains, link chains and single sightings were 704, 199, and 3443 respectively.

Match chains may connect a variety of link chains from the two perches, thereby containing

multiple matches and multiple links. Note that the matches within a match chain often do

not directly connect the earliest sightings within each constituent link chain. Supplement-

ing our previous notation with double arrows to indicate matches, an example match chain

might be N1
1 → X1

1 ⇔ N1
2 → Y 1

2 ⇔ C1
1 . This represents a link chain from perch 1 (a New

whale linked onward to an X duplicate) matched to a link chain from perch 2 (a New whale

linked onward to a Y duplicate)–where the match is made between the X duplicate and the

New whale at perch 2–and then the Y duplicate is matched to a Conditional sighting at

perch 1. The Conditional is not linked to the original link chain at perch 1 even though the

master matchers have implicitly asserted that it was an additional sighting of the original

chain at perch 1.

The majority of match chains in our dataset are N1
1 ⇔ N1

1 . With the diversity of cases in the

dataset, however, my notation is woefully insufficient. If the first link chain in the previous

paragraph was extended so that its X Duplicate was linked onward to an unmatched Y Du-

plicate at the same perch then the overall match chain would have an additional loose end.
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If the New whale from perch 1 was matched to the Y Duplicate from perch 2 then the match

chain would include a loop. Forks occur when one sighting is matched to several others. In

principle a match chain may have quite a few loose ends, loops, and/or forks. Figure 2.3

shows a match chain of moderately high complexity from the 2010 data.

For the 704 match chains I analyze, the median length is 2, the mean is 2.2, and the longest

is 14. To illustrate the potential complexity of chains, consider a whopper from 2010 which

has 9 links, 11 matches, 4 forks (one of which is 3-way), 7 loose ends and several loops.

It is impossible for the master matchers to have equal confidence in all match decisions.

Thus, to each match they assigned a quality or ‘confidence rating’. Excellent (E) matches

were considered to have at least 90% certainty. Good (G) matches were believed to be be-

tween 66% and 90% certain. Adequate (A) matches were considered to have between 50%

and 66% certainty. In addition to these numerical bounds, the matchers were also given

plain language interpretations of the categories: ‘nearly certain’, ‘at least twice as likely as

not’, and ‘barely more likely than not’, respectively.

2.2.3 Covariate Data

When a sighting is recorded, a variety of covariate data were collected in addition to the

time, sighting location, and link code. Additional covariates such as whale passage rate and

chain length (hours) can be derived from the observed information. I list the main covariates

in the dataset in Table 2.2.

During exploratory data analysis, I investigated a variety of ways to express certain covari-

ates. The most relevant ones for my analyses are as follows. Distance from the perch is
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Figure 2.3: Example match chain structure from 2010. Sightings are ordered in time (flowing
from left to right). The vertical axis is irrelevant except to separate the two perches. Arcs
represent links and arrows are matches. The sighting notation (N/C/X/Z) is explained in
Section 2.2.1; the match notation (E/G/A) is explained in Section 2.2.2.
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treated as a continuous variable. Visibility is consolidated into three groups: EVG (Excel-

lent or Very Good), GO (Good), and FA (Fair). Although clear, partly cloudy, and overcast

weather categories are retained, the remaining categories of heavy fog, heavy rain, heavy

snow, light fog, light rain, light snow, and snow/rain mix are consolidated into the category

of precipitation. Behavior categories are also consolidated into two groups: easier (breach,

spy hop, interaction, tail lobbing, under-ice feeding, and exceptions), and standard (migrat-

ing, lingering, resting, trawling, flukes, southbound, unknown, ordinary surfacing, pushing

head through hummock, and heard only). Group sizes are consolidated into 1 and > 1, with

calves counting towards the total. The rationale for this choice (aside from a good model

fit and very few group sizes exceeding two) is that observers felt strongly that the presence

of a calf increased detectability at least as much as a second adult whale due to the surface

behavior of the cow-calf pair.

Since link and match chains contain several sightings, there is ambiguity about how to assign

covariate values to chains. For link chains, the assigned covariate value is taken to be the

last value observed within the chain. For match chains, the assigned covariate value is taken

to be the value recorded at the first recapture event within the chain. The covariates used in

my preferred models vary quite slowly compared to sighting events and are usually assessed

consistently by the two perches, so we consider this approach to have at most minor impact

compared to other decisions discussed later. For group sizes, the covariate used for model

fitting is also taken to be the value observed at the first recapture. However, group sizes

introduce an important additional complication in my analysis and are discussed in detail

later; see Section 2.3.2.
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Table 2.2: Main covariates recorded or derived from sightings data in addition to the time,
location, and link code.

Visibility Unacceptable, Poor, Fair, Good, Very Good, Excellent
Weather Ten categ. describing cloud cover, precipitation, and fog
Wind Speed and Direction Miles per hour, degrees clockwise from magnetic north
Ice Coverage Percent
Lead Condition Unkn., Closed, Not Contin. (Patchy), Contin., Wide Open
Lead Width Meters
Swim Direction North, South, Lingering
Group Size Number of whales
Calf Presence Zero or one
Behavior Fifteen categories, e.g., migrating, trawling, breaching
Number of Observers Usually 3 or 4 people on a perch
Observer Name Only for the theodolite operator
Passage Rate Derived as chains per hour
Chain Length Derived as total time from first to last sighting
Number of Sightings Derived as total number of sightings (not whales) in chain

2.2.4 Data Exclusions

Some data were discarded before estimating detection probabilities:

• Closed or indeterminate lead conditions.

• Distances from perch exceeding 4 km, or missing.

• Visibility rated as poor or unacceptable.

• Single sightings occurring at times when matching would have been impossible. See

Section 2.3.1.

• Unlinked X, R, Y, and Z Duplicates. All of these are re-sightings of previously seen

groups or single animals. Therefore, these exclusions do not reduce the number of

captures from the perch.

• Chains not starting with a New or Conditional sighting.
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• A handful of sightings where on-perch calculations of distance (using theodolite data

and a hand-held calculator) were wildly inconsistent with post-hoc calculations during

matching. In half these cases, an obvious single-digit typographical error was corrected;

the other cases were discarded.

All results in this paper pertain to the clean dataset. Note that excluding cases while esti-

mating detection probabilities does not have any more direct effect on abundance estimation.

For the latter task, all the sightings can be used.

2.3 Analytical Methods

2.3.1 Chain Weighting

My analysis weights chains to account for differences in the opportunity to match sightings

and the confidence in sightings and matches.

Availability Windows

I begin our discussion of weighting by introducing the concept of IO windows. A period of IO

effort usually lasted about 4 hours, although longer and shorter times sometimes occurred.

We call these periods ‘IO windows’. For a four hour IO window, we define the first and last

hours of the period to be the ‘fringe’. The middle two hours are the window ‘core’. For

shorter windows, the core will be smaller or even zero. For longer windows, the core will be

greater than two hours but the fringes are always one hour.

Based on average swim rates and the experience of observers and matchers, the opportunity

to sight a whale that is matched to another sighting is nearly zero before and after one hour

from that sighting. Notwithstanding this, the master matchers examined a much longer time

frame (2.5 hours ‘lookback’), yet very few sightings were matched beyond one hour apart.
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Note that any unmatched sighting within the IO window core is available for matching dur-

ing the entire time when it could potentially be matched. Sightings in the fringes of the

IO window have less opportunity to be matched. A correction should be applied to prevent

downward bias in the number of recaptures and corresponding downward bias in estimated

detection probabilities.

Call the 2-hour period centered at a sighting (i.e., ±1 hour) the sighting’s ‘availability win-

dow’. Then unmatched chains whose availability window is not wholly contained in an IO

window might have been matched if IO effort had been expanded. Thus, the evidence such

a sighting provides in favor of a non-match is weaker than an unmatched sighting with

complete match availability. Weights are assigned to single sightings to reflect this. For

a sighting at one perch, define its ‘match availability weight’ to equal the percent of the

sighting’s availability window that overlaps with any IO window(s). The simplest example

is a case where one perch operates continuously and sights a whale at the exact instant that

the other perch ends IO effort. Then this sighting has weight 0.5 because it can be matched

backward to the last hour of the IO period but cannot be matched forward to the subsequent

hour when the second perch is inoperative. Counterintuitively, a sighting from one perch

that occurred outside an IO window may still have some opportunity to be matched: it

may be matched to a sighting within an IO window whose boundary is within 1 hour of the

outside sighting. Match chains are assigned availability of 1.

Conditional sightings

Another complexity concerns the treatment of chains (including single sightings) involving

Conditional sightings. Zeh et al.(1991) and subsequent analyses have treated a Conditional

sighting as half a New sighting when estimating detection probabilities and abundance. We

too assign a ‘Conditional weight’ of 0.5 to any Conditional single.
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Conditional sightings also occur in link chains. For example, consider a sequence of sightings

like N1 C1 → X1 where, importantly, the gap indicates that there is no link between the

initial New whale and the subsequent Conditional sighting. The absence of a preceding link

is compelled by the definition of the term Conditional, and indeed the earlier New whale is

merely implicit in the sense that every Conditional whale has at least one New or Duplicate

whale before it. Assigning equal odds for a Conditional being New or Duplicate, the above

sequence of sightings can be interpreted in two ways. With probability 0.5 the Conditional

has not been previously seen so the sequence is equivalent to N1 N1 → X1. On the other

hand, with probability 0.5 the Conditional is actually a re-sighting of some previous whale,

in which case the sequence is equivalent to N1 → X1 → X1 for some preceding N1. Thus a

Conditional link chain is also half a sighting.

Treating match chains with leading Conditional sightings at one or both perches is more

complex–particularly because the chain must be weighted as a single unit rather than weight-

ing the sightings from each perch separately. Nevertheless, we can apply analogous reasoning

to show that we should use Conditional weights of 0.75 if one of the matched sightings is

Conditional and 0.5 if both are.

Match uncertainty

Section 2.2.2 explained the Excellent, Good, and Average ratings the master matchers used

to rate their confidence in each match. I will associate probabilities pE, pG, and pA to the

three types of matches to indicate the probability that the declared match is correct. In

our baseline analysis, we will let pE = 1, pG = 0.78, and pA = 0.58, with the latter two

values chosen to be the midpoints of the respective confidence ranges used by the matchers.

Sensitivity to these choices is explored in Section 2.4.2.

21



These match confidence probabilities pertain to matched sightings, not complete match

chains. When one considers that each match connection in a match chain may or may not

be correct, it is clear that any observed match chain could be a flawed observation of an

underlying truth. Many possible changes to the match calls, in isolation or combination,

create alternative configurations of the relevant sighting data, and each configuration can be

associated with a corresponding probability weight. Specifically, the other configurations can

be enumerated by considering all possible combinations of ‘retaining’ and ‘breaking’ declared

matches, and the probability of each resulting configuration can be derived using pE, pG,

and pA.

Consider the match chain N1
A⇔ N2

G⇔ C1 where the letters above the match arrows indicate

match quality ratings. Table 2.3 lists the possible alternative configurations for this match

chain, and the corresponding probabilities. Note that when pE = 1, as for our recommended

analysis, Excellent matches are never broken.

For any chain or alternative configuration, define its ‘match confidence weight’ to be the

probability of that configuration using the probabilities discussed here, such as the example

in Table 2.3. For statistical modeling and analysis, each match chain is replaced by the set

of possible configurations, each assigned its corresponding match confidence weight. Finally,

I note that the original chain always receives the highest probability since all the match

confidence probabilities exceed 0.5.

Replacing match chains with sets of chain configurations weighted by their probabilities may

seem to be a bold departure from the raw data until one can witness the actual matching

process. To a master matcher, such an approach seems not only sensible but essential. The
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Table 2.3: Possible alternative configurations and probabilities for the match chain N1
A⇔

N2
G⇔ C1 where the letters above the match arrows indicate match quality ratings. The

original chain is most likely and is listed first.

N1 ⇔ N2 ⇔ C1 pApG
N1 N2 ⇔ C1 (1− pA)pG
N1 ⇔ N2 C1 pA(1− pG)
N1 N2 C1 pApG

master matchers can spend up to 1 hour agonizing over just one potential match decision and

debating match confidence ratings as they pore over the data. When they decide to declare a

match and rate it as Good, they are relying on that confidence rating and its quantitative de-

scription (e.g., ‘at least 66% confidence’) to express their very real uncertainty about the call.

Summary of weighting

In summary, there are three factors that can affect how a chain is weighted. First, the

concept of availability is used to adjust sightings made when there was a reduced recapture

opportunity due to the timing of IO and single perch effort. This must increase detection

probability estimates. Second, the traditional half-weighting of Conditional sightings is

applied to single and link chains, with analogous extensions to match chains involving one or

more Conditional sightings in a match. This weighting should be roughly neutral with respect

to detection probabilities. Third, match chains are weighted by their match confidence. This

has a negative effect on detection probabilities. The overall weight for a chain is defined to

be the product of these three weights, with the match confidence weighting implemented

using the alternative configuration method in Section 2.3.1.

2.3.2 Group Size Consistency

Each recorded sighting may be of a single animal or a group. These groups are not whale

pods in the conventional sense. Except for cow-calf pairs, migrating bowheads appear to
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have only weak and probably brief allegiance to any aggregation but their associations are

not purely random (Zeh et al., 1993). When the number of whales in a sighted group (‘group

size’) is seen to vary along a chain, this may be attributable to whales joining or leaving a

chain, and/or to variation in detection. A poll of observer opinions after the survey finds

divided views, with some observers tending to attribute group size inconsistencies to a fail-

ure to detect group members, and others tending to attribute it to whales (‘transients’)

joining or leaving groups. Group size inconsistencies are relatively common among match

chains. Indeed, 574, 109, 16 and 5 match chains had (maximal) group size inconsistencies

of 0, 1, 2, and 3 whales, respectively. This corresponds to an inconsistency rate of 18.5%

for match chains. The most common inconsistency is a group size 1 matched to a group size 2.

Along with distance, group size is a dominant factor influencing detection probabilities. The

fact that animals may join or leave a chain during the period that the chain is (repeatedly)

sighted is of paramount importance because estimation of detection probabilities fundamen-

tally relies on counts of captures and recaptures. When group sizes in a chain vary, these

counts are uncertain. Thus, resolving group size inconsistency is a major dilemma that must

be addressed in the analysis. It is clear that analysis methods that recognize these potential

fleeting group allegiances better reflect the behavioral processes that generate the observed

data.

We must also recognize that whales are not individually sighted. For the bowhead survey,

capture and recapture events pertain to groups, not individuals. Groups are sighted and

recorded on the perches, and groups are plotted and matched during the post-hoc matching

phase. All the approaches I will describe below embrace this fact: I will estimate detection

probabilities of groups. However, this does not require me to ignore group size inconsistency,

nor should I. Nevertheless, the first approach I apply for dealing with group size inconsis-

tency is to ignore it. I label this method ‘Inconsistent’. This approach amounts to assuming
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that there are never transient departures or joinings to a group. Next, I introduce another

strategy I call ‘deconstruction’ to model the possibility of transient group affiliation. With

this approach, I may isolate certain possible transients, thereby decomposing a match chain

into several parts.

To explain deconstruction, I first define a sub-chain of an original chain to be any chain of

connected sightings (links and/or matches) from the original chain with consistent group

size that can be obtained by reducing the group sizes at any chosen sightings in the original

chain. A chain can be decomposed into a unique set of group size consistent sub-chains

by sequentially removing the longest chains of each possible group size, starting with the

largest group size and working downward. For example, the sub-chains of a chain having

group sizes (2,1,1,2,2) in that order are the chains (1,1,1,1,1), (1,0,0,0,0), and (0,0,0,1,1)

where ‘0’ indicates absence of chain membership.

Deconstruction identifies sub-chains of link and match chains that can be reasonably at-

tributed to transients. The following is a deconstruction method based on mode chain group

size.

1. Calculate the mode m of group sizes for sightings comprising the chain. (Suppose here

that we are beginning with a match chain.) The mode is chosen to be a reasonable

estimate of the true group size.

2. Replace all group sizes less than m in the chain with m.

3. Set aside the sub-chain having consistent group size m.

4. Subtract m from the group size of each sighting in the original chain. Remove from

the chain any sightings with group size 0.

5. Break all remaining matches in the original chain, if any. Although we break these

matches, the remnant group sizes are unchanged.
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6. What remains, if anything, will be a collection of isolated (i.e., unlinked) groups and

link chains with sightings, possibly with inconsistent sizes.

7. Repeat the above steps separately for each link chain. No repetition is needed for

any single group because it already has consistent group size. Continue iterating this

process within each sub-chain, and for every sub-chain, until what remains is a set of

chains all having internally consistent group sizes, including the original chain with the

mode group size.

An elaborate example of deconstruction is presented by the chain having the sequence

of group sizes (2,3,1,1,1,3,3,4,4). The longest sub-chain we can extract with consistent

group size is (1,1,1,1,1,1,1,1,1), assuming we define the mode to be 1. Subtracting these

whales leaves (1,2,0,0,0,2,2,3,3), which must be further deconstructed. The next sub-chain

is (0,0,0,0,0,2,2,2,2) since we attack the right hand remnant first. Continuing in this fashion

yields the remaining components: (1,1,0,0,0,0,0,0,0), (0,1,0,0,0,0,0,0,0), and (0,0,0,0,0,0,0,1,1).

This example is for illustration; most real chains are far simpler.

It is possible that the subtraction step #4 may leave match connections between sightings

of non-zero group sizes. The reason that these matches are broken in step #5 is because the

original chain represents one recapture event. Failing to break remnant match sub-chains

would count the match event more than once.

The mode group size may be a tie between two values. Accordingly, I define two alternative

methods: ‘Decon↓’ rounds modes downward, and ‘Decon↑’ rounds upward.

Deconstruction both subsumes and creates transients. In step #2, whales are added to

match chains to represent true group members that were undetected. In steps #4-6, the ex-

tra chains (if any) produced represent whales having transient memberships to the true group

recaptured. This approach is a compromise between assuming that every chain represents

26



the largest possible group with no transients and assuming that every chain corresponds

to the smallest group size seen with all remaining whales being transients. Finally, recall

that group size is a direct observation, not a derived variable. The observers are making an

explicit statement about what they see. An appealing aspect of deconstruction is that field

observations are taken at face value rather than second-guessing the trained observers after

the fact.

The choice between the three methods (Decon↑, Decon↓, and Inconsistent) is a choice about

how to count captures and recaptures. Each of the three methods makes a different as-

sumption about transients–from none to many–and each of these assumptions leads to the

addition of some number of single chains (or none) to represent transient whales. This is

unrelated to how whales are counted for the purpose of making an abundance estimate. It

is also unrelated to how group size is assigned to a chain as its covariate value for estimation

of detection probabilities. As described in Section 2.2.3, the group size covariate value is

defined to be the size observed at the first recapture event. The same group size covariate

value is assigned to any sub-chains of the original chain. This is the most appropriate choice

because detection probabilities relate to detection of groups.

2.3.3 Detection Probability Estimation

I adopt the model of Huggins (1989) for capture-recapture estimation for closed populations.

This model assumes that captures at each perch are independent and that the catch history

is therefore multinomial for each individual. To form the likelihood, the model conditions on

the total number of groups detected. We constrain our analysis to assume that probabilities

are equal among the perches. The detection probability for a group is allowed to depend on

covariate observations for that group. The effect of covariates is the primary focus of our

analysis.
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Models are fit using the MARK software (White and Burnham, 1999), using the RMark

interface (Laake, 2011). However, all of the analyses described here include considera-

tion of weighted observations. A method for weighted fitting of the Huggins model using

MARK/RMark is given next.

Fitting weighted capture - recapture models with MARK

Models are fit using the MARK software (White and Burnham, 1999), using the RMark

interface (Laake, 2011). However, all of the analyses described here (except G0) include

consideration of fractional whales, which is equivalent to weighted observations. This sec-

tion provides more details and describes a method for obtaining the results of the weighted

analysis using the MARK program, thereby circumventing the need to develop a customized

estimation procedure. The key results are given in equations (1), (2), and (3). Although

I refer to MARK results below, it is easiest to implement these ideas using RMark, from

which the necessary quantities can easily be extracted and manipulated.

Weighted observations

Suppose we wish to assign the ith outcome (i.e., the catch history for a single, link, or match

chain) a weight wi for i = 1, · · · , n where n is the sample size and, without loss of generality,

0 < wi ≤ 1. Our method temporarily replaces the original, unweighted dataset with a larger

dataset that replicates the ith observation ri times, where ri = Rwi and R is chosen to be the

smallest integer such that ri is an integer for all i . Thus the total sample size in the expanded

dataset is nR =
n∑
i=1

ri = R
n∑
i=1

wi. If the desired weights are rounded to the first decimal place,

thenR ≤ 10. In an analysis where the presence of conditional whales requires wi = 1, 0.5, 0.75

for all i (see below) then R = 2 or R = 4 depending on whether any wi = 0.75.
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There are several instances where weighting may be used. Consider Conditional sightings,

i.e., sightings where the observer cannot determine whether the whale is New or a Duplicate.

Zeh et al. (1991) and subsequent analyses have treated a single Conditional whale as half a

New whale when estimating detection probabilities and abundance. Thus we assign weights

of 0.5 to conditional sightings here.

Conditional whales in link and match chains must also be addressed. For example, consider

a sequence of sightings like N1
1 C1

1 → X1
1 where, importantly, there is no link between the

initial New whale and the subsequent Conditional sighting. The absence of a preceding link

is compelled by the definition of the term Conditional, and indeed the earlier New whale

is merely implicit in the sense that every Conditional whale has at least one New whale at

some earlier time. Assigning equal odds for a Conditional being new or duplicate, the above

sequence of sightings can be interpreted in two ways. With probability 0.5 the Conditional

has not been previously seen so the sequence is equivalent to N1
1 N1

1 → X1
1 . On the other

hand, with probability 0.5 the Conditional is actually a resighting of some previous whale,

in which case the sequence is equivalent to N1
1 → N1

1 → X1
1 for some preceding N1

1 .

Assume the simplest possible capture-recapture model with the probability of capture at each

perch and the probability of recapture all equal to p. Then the first possibility represents two

whales, thereby contributing p2 to the likelihood. The second possibility represents a single

whale contributing p to the likelihood. In the next section we develop a method allowing

one to assign a weight of 0.5 to a Conditional whale by letting it contribute p× p 1
2 = p

3
2 to

the likelihood. This approach is also consistent with the standard principle of weighting ob-

servations in statistical models: that a random variable having half the weight is equivalent

to having twice the variance.
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The weight of 0.5 is used for Conditional sightings that are unconnected or which lead a link

chain. Treating match chains with leading Conditional sightings at one or both perches is

more complex - particularly because the chain must be weighted as a single unit rather than

weighting the sightings from each perch separately. Nevertheless, we can apply analogous

reasoning to show that we should assign such chains a weight of 0.75 if one perch reported

Conditional and 0.5 if both perches reported Conditional.

Weighting and MLEs for exponential families

I now discuss my weighting approach in the context of exponential families. For exponential

family distributions with weighted observations, there is a useful relationship between certain

likelihoods. In the simplest and most generic case, a density in the exponential family can

be written as

f(xi|θ) = exp{xiθ − b(θ)
φ/wi

+ c(xi, φ/wi)}

where φ is a fixed dispersion parameter and wi is a known weight. The exponential family

includes many familiar distributions including the Gaussian, binomial, and multinomial dis-

tributions; the latter two are directly relevant for capture-recapture models.

Consider the simplest (i.e., null) Huggins Huggins (1989) model with one recapture oppor-

tunity. Each weighted observation in the dataset (e.g., each catch history) contributes a

term to the likelihood function used to estimate the model. Denote the corresponding log

likelihood contribution as
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li(θ|xi) = wiAi + c(xi, φ/wi)

Ai = (xiθ − b(θ))/φ, θ = log(p/(1 − p)), b(θ) = − log(2 + exp{θ}), φ = 1 and xi equals 1

if the catch history does not include a recapture and 0 otherwise. For an i.i.d. sample, the

overall log likelihood is the sum of such contributions, namely

l(θ|X) =
n∑
i=1

li(θ|xi) =
n∑
i=1

wiAi + q

where X = xi, · · · , xn represents the entire dataset and q is a constant that does not depend

on θ.

Let XR represent the dataset where each xi is replicated ri times and there is no weighting

of the observations within XR. Let xi,ji for ji = 1, · · · , ri denote these replicates of the ith

case in X. Then the contribution to the overall unweighted log likelihood lR(θ|XR) for xi,ji

is

lR,i,ji(θ|xi,ji) = Ai + c(xi,ji , φ)

and the total contribution associated with the ith catch history is

ri∑
ji=1

(Ai + c(xi,ji , φ)) = riAi + qR,i

where qR,i is a constant that doesn’t depend on θ. It follows that the overall log likelihood

given by the unweighted, replicated dataset is

lR(θ|XR) = R

n∑
i=1

wiAi + q∗R
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where q∗R doesnt depend on θ.

Our key results follows from the fact that terms not involving θ are irrelevant when computing

the score functions from l(θ|X) and lR(θ|XR). Specifically,

dl(θ|X)

dθ
=
dlR(θ|XR)/R

dθ

Thus the MLE for the weighted likelihood equals the maximizer of the replicated likelihood,

i.e.,

θ̂MLE = θ̂R (2.1)

Although this discussion is presented for unidimensional θ, the analogous results for vector

parameters are obvious. Because it is based on the multinomial distribution, the results

above pertain to the general Huggins (1989) model, including the case when detection prob-

abilities are modelled to depend on a collection of covariates. The covariates inherent in the

model lead one to express the parameter vector in the conditional likelihood as a function

of the coefficients in the linear predictor portion of the model. The standard maximum

likelihood assumptions are also implicit above and in what follows.

Computing AICc differences

Consider the comparison of two fitted models, which we will represent as θ̂1 and θ̂2, recog-

nizing that the two models may have different parameter sets. Define

∆ = l(θ̂1|X)− l(θ̂2|X) ∆R = lR(θ̂1|XR)− lR(θ̂2|XR)
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then

∆ = ∆R/R

In other words, the log likelihood difference between the two models fit to the weighted

data can be calculated from the log likelihood difference between the two models fit to the

replicated data. Therefore, the AICc difference (Akaike (1974); Burnham and Anderson

(1998)) between two weighted models can be expressed as

AICc(θ̂1, θ̂2) = −2∆R/R +K1 −K2 (2.2)

where Ki = 2kin/(n − ki − 1) for i = 1, 2 indexing the two models and ki denoting the

numbers of parameters therein. Thus, AICc(θ̂1, θ̂2) for the weighted analysis of the original

data X can be calculated using the results of applying MARK to the unweighted replicated

dataset XR, and then adjusting the results using a collection of known constants.

Estimated standard errors and confidence intervals

The asymptotic variance of a maximum likelihood estimator is var{θ} = I−1(θ0)/n where

I(θ0) = E

(
dl(θ)

dθ

)2
∣∣∣∣∣
θ=θ0

= −E
(
d2l(θ)

dθ2

)∣∣∣∣
θ=θ0

and θ0 denotes the true value of θ. Consider the likelihood corresponding to X, namely l(θ).

In this case,

I(θ) = −E
n∑
i=1

wiA
′′

i (θ)
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Next consider lR(θ) originating from the unweighted, replicated dataset XR. Then

IR(θ) = −E
(
d2lR(θ)
dθ2

)
= −E

n∑
i=1

RwiA
′′
i (θ)

The sample sizes for X and XR are n and nR =
n∑
i=1

ri respectively. Thus it is straightforward

to show that

var{θ̂} = R var{θ̂R}

Conveniently, var{θ̂R} is output from RMark. An intuitive interpretation of this result fol-

lows from noting that R = nR

nw̄
where w̄ is the mean weight. To obtain var{θ̂} from var{θ̂R}

we must scale up var{θ̂R} by nR/n to compensate for the large size of XR, then scale this

up further by 1/w̄ to adjust for the decreased information contained in X due to the down-

weighting in some cases.

Model selection is carried out using AICc as an objective function (Akaike, 1974; Hurvich

and Tsai, 1989). The simplest model within 2.0 units from the minimum is selected (Burn-

ham and Anderson, 2002). For our data, this was essentially equivalent to choosing the

model with the lowest AICc. I use a stepwise approach (generally forward selection) con-

sidering additive and two-way interactive effects, with backward elimination and tangential

explorations conducted when it appears they might be helpful. Model selection was espe-

cially focused on the variables generally found to be important during our exploratory data

analysis with the 2010 dataset: visibility, distance, lead condition and group size.

Automated model selection methods and model averaging are not used. An alternative model

selection criterion like BIC (Schwarz, 1978) could be used to penalize model complexity more

severely, but in my case the selected models are so simple and the retained effects so clearly

scientifically justifiable that such an option is not pursued. The same reasons eliminate

the need for automated model selection methods. There are several reasons not to average
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Table 2.4: Detection probability estimates using the Decon↓ method for the simple and
complex models from analysis of the 2011 survey data. The top portion of the table shows
sample-weighted means of detection probability estimates from each model, and the mean
that would be obtained if the parameter estimates from our preferred simple model were
applied to the non-deconstructed dataset. Predictions for single whales and groups at several
distances are also shown in the bottom half of the table. These estimates are also based on
the simple model and Decon ↓.

Quantity Estimate Std. Error Confidence Interval
Sample Mean, Simple Model 0.495

. . .to orig. data 0.492
Sample Mean, Complex Model 0.494
Fit for single whale, 3000 m 0.377 0.023 (0.332, 0.423)
Fit for single whale, 2000 m 0.475 0.018 (0.440, 0.510)
Fit for group, 1000 m 0.645 0.032 (0.583, 0.709)

models here in the manner of Burnham and Anderson (2002). Most importantly, the model

fitting process shows that there is very little model uncertainty in the senses that (i) there

were few selection choices presenting ambiguous decrements near 2.0, (ii) the same model

was selected for each approach, and (iii) fits to alternative models yielded extremely similar

parameter estimates and predictions in most cases. Finally, note that the three methods for

addressing group size inconsistency use different datasets of different sizes, thereby yielding

incomparable AICc values.

2.4 Results

2.4.1 Main Findings

All three approaches favor the same model: additive effects for distance and group size.

There is no evidence of an interaction. This model will be referred to as the ‘simple model’

hereafter and it is the one I recommend. I also fit a larger model (the ‘complex model’)

which includes additive effects for visibility, distance, lead condition and group size. These

are variables that observers consider likely to affect detection probabilities, and these pre-
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dictors have often been found important in preliminary research with the 2010 data. Again,

no interactions were necessary.

The sample-weighted mean detection probabilities for the two fitted models are shown in

Table 2.4. These employed the Decon↓ method, which is the one I recommend to address

group size inconsistency. My recommendation of Decon↓ is motivated by my belief that this

approach best represents bowhead behavioral patterns and likely observer tendencies.

Table 2.4 also shows the sample-weighted mean the would be obtained when the parameter

estimates from the Decon↓ simple model are applied to the non-deconstructed data. This is

what would be done when forming an abundance estimate. The result differs very little.

Although useful as overall summaries, the sample-weighted means cannot reveal whether the

methods identify any differing covariate effects. Consequently, I also show in Table 2.4 the

predicted detection probabilities for groups at three distances and two group size categories

(group size = 1 and > 1). Since large whale groups near the perch are the easiest to detect,

the estimated detection probabilities for groups > 1 at 1000 m is largest. Single whales

are more difficult to detect, especially at greater distances, so the corresponding estimate at

3000 m is smallest. Group sizes of 1 predominate in the dataset and 2000 m is very close to

the dataset average, so the detection probability estimate shown for single whales at 2000 m

is essentially the central value. The standard error for this case is also smallest because of

the greater frequency and centrality of such cases.

General detection probability estimates can be expressed via the following equations. Let

d and s denote the distance and group size of a sighting, respectively. Then the detection

probability p can be calculated as
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Table 2.5: Sample-weighted mean estimated detection probabilities for the three methods of
addressing (or ignoring) group size inconsistency. Results are shown for both fitted models
(simple and complex).

Method Simple Model Complex Model
Decon↓ 0.495 0.492
Inconsistent 0.509 0.509
Decon↑ 0.506 0.504

p =
exp{β0 + β1d+ β2I(s = 1)}

1 + exp{β0 + β1d+ β2I(s = 1)}
(2.3)

where I(s = 1) = 1 for group size = 1 a single whale and 0 for group size > 1. For our

recommended model (simple) and group size approach (Decon↓), the parameter estimates

are β̂0 = 1.0139, β̂1 = −4.0251× 10−4, and β̂2 = −0.3104.

Our results confirm that increasing distance from the perch has a very strong negative effect

on detection probabilities, which (for singles) are as high as 67% near the perch and 29% at

4000 m. The results also indicate that, compared to a single, the odds of detecting a group

are increased by a multiplicative factor of exp{.3014} = 1.35.

2.4.2 Other Results

My analysis also finds that detection probabilities vary significantly between observers. Al-

though it is common to find observer effects in studies like mine, there is one surprising

aspect here. On the perch, search success is a team effort, yet it is only the operator of the

theodolite whose identity is recorded for the sighting. The theodolite operator is not the

only–nor the primary–person discovering whales, particularly considering the narrow field

of view of the device. Moreover, team memberships were continuously remixed so that any
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particular theodolite operator used the device with many different combinations of team-

mates. For these reasons, it is difficult to explain the observer effects. Despite an extensive

analysis not reported here, I have found no correlation between observer effects and the level

of observer experience (e.g., total hours of effort during the survey) or mean whale passage

rate during the observers effort.

My current plan for the future abundance estimate is to ignore observer effects. Such unmod-

eled extra heterogeneity will tend to cause a downward bias in abundance estimates using

standard capture-recapture abundance models (Carothers, 1973, 1979; Otis et al., 1978; Se-

ber, 1982; Pollock et al., 1990; Hwang and Chao, 1995; Pledger and Efford, 1998; Pledger

and Phillpot, 2008). Bias is undesirable, but if it is unavoidable then downward bias in

abundance is preferable to upward for the sake of conservative management. Since the ob-

server heterogeneity is substantial in our case, any resultant bias can be viewed as a safety

guard against the detection probability bias corrections discussed in this paper. In other

words, if one does not accept my bias corrections but cannot supply replacements, they may

be considered to be ‘canceled out’ by uncontrolled observer heterogeneity.

I use sensitivity analyses to investigate some of the choices made in my analysis. First, I

can ask whether the methods for addressing group size inconsistencies strongly influence

the results. Table 2.6 shows that the three methods produce quite similar sample-weighted

mean detection probabilities. This is not the whole story, however. The estimated detection

probability for groups > 1 obtained from the Decon↓ approach is roughly 0.07 and 0.10 lower

than the ones obtained from the Decon↑ and Inconsistent methods, respectively. Although

this may seem like a large difference, consider that less than 20% of the data have group

sizes exceeding 1. The net effect of, say, a 0.085 decrease in group effect is a sample-average
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detection probability reduction of only 0.20 × 0.085 ≈ 0.017, which is consistent with my

reported findings.

The second sensitivity analysis investigates the choice for (pE, pG, pA). Recall that the mas-

ter matchers were instructed to adopt (0.90, 0.66, 0.50) as their decision thresholds. In my

trials, I evaluate high, medium and low values. The medium values are those used in the

main analyses, namely (1.00, 0.78, 0.58) where the latter two values are the midpoints of the

decision boundaries. The high set is (1.00, 0.89, 0.65), and the low set is (0.90, 0.65, 0.50).

Table 2.6 shows estimates obtained using each of these choices. Although I recommend the

Decon↓ approach, results in Table 2.6 employ the Decon↑ approach since it is the one that

yields the more central marginal mean. I find that varying (pE, pG, pA) operates in the ex-

pected direction: higher matching confidence probabilities yield higher detection probability

estimates. However, the magnitude of the changes in the estimates is not extraordinary,

especially considering that the high and low scenarios are the absolute extremes of what

could be chosen. In other words, observers can’t be more than 100% certain, nor would they

declare a match that they believe is more likely not one. Overall, my results clearly support

my medium choice as a reasonable one.

2.5 Discussion

It is worthwhile reviewing the big picture surrounding this work. The 2010 survey was not

successful for the purpose of estimating abundance, but it was very successful as an inde-

pendent observer experiment. The 2011 survey was nearly unprecedentedly successful for

obtaining sighting counts, and also produced much additional IO data. Together, the IO

data from these two surveys clearly present the best opportunity in the history of bowhead

surveys to estimate ice-based detection probabilities.
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Table 2.6: Results of sensitivity analysis using high, medium, and low match confidence
weights with the Decon↑ method for addressing group size inconsistency. Although Decon↑
is not our recommended approach, it is used here because it produces intermediate results
with the medium weights in Table 2.5.

Quantity Estimate Std. Error Confidence Interval

Single, 3000 m
(pE, pG, pA) = (0.9, 0.66, 0.5) 0.323 0.023 (0.280, 0.370)
(pE, pG, pA) = (1.0, 0.78, 0.58) 0.377 0.023 (0.327, 0.418)
(pE, pG, pA) = (1.0, 0.89, 0.65) 0.391 0.024 (0.346, 0.438)
Single, 2000 m
(pE, pG, pA) = (0.9, 0.66, 0.5) 0.416 0.018 (0.380, 0.452)
(pE, pG, pA) = (1.0, 0.78, 0.58) 0.474 0.018 (0.439, 0.509)
(pE, pG, pA) = (1.0, 0.89, 0.65) 0.494 0.018 (0.459, 0.529)
Group, 1000 m
(pE, pG, pA) = (0.9, 0.66, 0.5) 0.654 0.034 (0.585, 0.717)
(pE, pG, pA) = (1.0, 0.78, 0.58) 0.717 0.031 (0.654, 0.773)
(pE, pG, pA) = (1.0, 0.89, 0.65) 0.734 0.029 (0.675, 0.790)

Early during the 2010 survey it became apparent that sufficient coverage of the migration

would be unlikely, so effort was overwhelmingly dedicated to ensuring that we obtained a

large amount of high quality independent observer data. For the 2011 survey, the critical

need became obtaining equally good count data. Thus in 2011 we prioritized continuous

effort from one perch instead of more limited effort from both perches.

This strategy is reflected in Figure 2.4 which shows the periods of single-perch and IO effort

during the survey season in each year. Heavy lines indicate IO periods, with the boundaries

indicated with an ‘x’. Light lines indicate periods where only one perch was operating. In

2010, virtually all effort was for IO, and in 2011 coverage with at least one perch was nearly

continuous throughout the portion of the season when the largest numbers of whales pass

Barrow.

With respect to statistical methodology, perhaps the greatest focus in this chapter has been

on bias correction. The challenge presented by the bowhead survey is that the animals,
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Figure 2.4: IO effort for 2010 and 2011 survey years. Each vertical line represents one
day. Black lines represent time with 2-perch IO effort. The boundaries of these periods are
indicated with an ‘x’. Gray lines indicate periods when only one perch was used.
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environment, and survey protocol force us to work with data carrying obvious biases. In

this chapter, I have chosen to confront these biases directly and quantitatively. To balance

the possibilities of partial group detection and transient group membership, I introduce the

Deconstruction methods. To correct for missing opportunity for matches, I weight cases

based on match availability. Finally, to reflect the master matchers’ doubt when declaring

matches, I consider weighted possibilities.

In my view, these three sources of bias are so clearly present and possibly substantial that it

would be a mistake to fail to account for them. In practice, I find that the Deconstruction

adjustments have limited effect, while the other two corrections have greater impact, but in

opposing directions. Overall, the net effect of our corrections is to reduce detection proba-

bility estimates compared to a naive uncorrected analysis of the raw data.
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CHAPTER 3

EXPLICIT MODEL FOR UNCERTAINTY ABOUT CAPTURE,

RECAPTURE AND ANIMAL IDENTITY

3.1 Introduction

This chapter describes my second approach to estimate detection probability in the presence

of uncertain, captures, recaptures and animal identity. Before we can move forward, some

simplying assumptions need to be made about the data produced by the experimental design.

Let perch 1 denote the location for the first capture opportunity and let perch 2 denote the

location for the second capture opportunity. Perch 1 and perch 2 are operational simulta-

neously at nearby positions along a migratory corridor. We assume that each animal has

the same opportunity to be captured at perch 1 and perch 2 at the same time due to the

proximity of the perches relative to the visual field and the animal dispersal. Let I represent

the number of independent observational time intervals in which perch 1 and perch 2 are

simultaneously operational.

The use of unique identifying tags from perch 1 to identify animals recaptured at perch 2 is

impossible for a situation like the whale survey where there is no contact with the animals.

Instead, perch 1 identifies and records unique identifying labels for each sighted animal as it

migrates past the perch. At the same time, perch 2 identifies and records unique identifying

labels for each sighted animal as it migrates past the perch. Since capturing at perch 1 and

perch 2 occurs simultaneously, it is unknown which animals were recaptured, i.e, seen at

both perch 1 and perch 2 so the identification of recaptures must be done post hoc. It is

important to note that perch 1 and perch 2 produce their own independent data records and

that the researchers at perch 1 and perch 2 may or may not have sighted the same animals.
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After the study is complete (i.e., each perch has gathered their own independent data), re-

searchers determine which animals, if any, were sighted at both perches. Define a “match” to

be the researcher’s decision that a sighting at one perch is the same animal as a sighting at

the other perch. A non-match is the researcher’s decision that any sighting from either perch

was the only time that animal was sighted during the experiment. There are a few important

details to note. First, a sighting cannot be matched to more than one other sighting from

the other perch. If this occurs, it needs to be revisited by the researchers and fixed. Second,

for all sightings at both perches the group size associated with each sighting is assumed to

be one. Third, unlike the data described in Chapter 2, the data described here have no link

chains, i.e., each sighting at each perch is assumed to have been the only time that animal

was sighted at that perch.

The researchers subject the two independent sighting data records to J independent match-

ing decision processes. That is, the researchers make match/non-match decisions on the data

J independent times. This may be done by the same set of researchers employing waiting

periods sufficiently long to ensure that their repeated efforts are essentially independent, or

by J sets of independent researchers using the same standards and procedures. In either

case, it is clear that there will be matching decision errors and inconsistencies even though

the researchers used their best expert judgement.

3.2 Notation and Definitions

A large set of definitions and notation will be needed to proceed. Suppose that w1,i unique

animals were sighted at perch 1 in time interval i and w2,i unique animals were sighted at

perch 2 in time interval i. From now on, assume without the loss of generality that w1,i ≤ w2,i.
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Because the experimental design prevents knowledge of the true capture history, i.e., which

animals were sighted at both perches and which were sighted only once, define Ei be the set

of all hypothetical recaptured sightings given w1,i and w2,i for time interval i. Each element

in Ei represents one possible underlying, unobservable set of capture histories for the entire

sightings dataset. Let eik denote an element in Ei and Ki be the number of elements in Ei.

Hereafter I will refer to the elements in Ei as configurations.

For each configuration in Ei , several quantities can be defined. In the following, it is impor-

tant to draw a distinction between individual animals and sightings of animals. A duplicate

individual is an individual that is sighted at both perch 1 and perch 2. Denote the num-

ber of duplicate individuals in configuration eik as rik . A duplicate sighting is one of the

two sightings of a duplicate individual. A complimentary sighting is the other sighting of

a duplicate individual. For example, let sighting A be a duplicate sighting at perch 1 from

individual AB. Let B be a duplicate sighting at perch 2 from the same duplicate individual

AB. Then A and B are each other’s complimentary sighting. Next, a single individual is an

individual that is sighted at either perch 1 or perch 2 but not both, and a single sighting is

the sighting of a single individual. Finally, let dik be the number of duplicate sightings in

configuration eik and let sik be the number of single sightings given eik . Note that dik and

sik can be different for different configurations.

Everything defined previously pertains to one time interval at a time. More set notation is

needed to describe the collection of this information. Let W1 be the set of all w1,i for all i ∈

I and let W2 be the set of all w2,i for all i ∈ I. Let C be the set of all possible combinations

of configurations for all i ∈ I and for all k ∈ Ki. Let L be the number of sets of combi-

nations in C. Denote cl as an element of C. That is, cl represents one set of combinations

of configurations for all i ∈ I, k ∈ Ki, and l ∈ L. Additionally, let cli be an element in cl.
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Table 3.1: Configurations in E1 for Example 3.1

Configuration 1 (e11) Configuration 2 (e12) Configuration 3 (e13)
Sighting Complimentary Sighting Complimentary Sighting Complimentary

A none A B A C
B none B A B none
C none C none C A

The ith element in cl, cli , is the eik configuration for time interval i in cl. Finally, let sl be

the number of single sightings given cl and let dl be the number of duplicate sightings given cl.

Example 3.1

A very simple example is used to help clarify of all this notation. Suppose during time inter-

val i = 1, only a single animal was observed at perch 1. Denote this sighting as A. At perch 2

two sightings were observed. Denote these sightings as B and C. It is unknown whether A is

B’s complimentary sighting, C’s complimentary sighting, or neither. Now we consider what

configurations are in E1 given w1,1 = 1 and w2,1 = 2. The first possibility is that sightings A,

B and C are of all unique animals. In this case, animal A had the opportunity to be seen at

both perches but was only seen at perch 1, and animals B and C both had the opportunity

to be seen at each perch, however they were only seen at perch 2. The second possibility is

that sightings A and B are the same animal, AB, i.e., they are each other’s complimentary

sighting, while animal C had the opportunity to be spotted at both perches but was only

seen at perch 2. The last configuration is the same as the second with sightings B and C

switching roles. A summary of E1 is shown in Table 3.1.

Let’s take a closer look at e12 . In all, there are three sightings: A, B and C. Now A and B are

the sightings of same animal and hence represent a duplicate individual, therefore making

both A and B duplicate sightings. Animal C was only sighted once and hence is a single
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Table 3.2: Configurations in E2 for Example 3.1

Configuration 1 (e21) Configuration 2 (e22) Configuration 3 (e23)
Sighting Complimentary Sighting Complimentary Sighting Complimentary

D none D E D F
E none E D E none
F none F none F D

individual, thus making C a single sighting. Thus, d12 = 2 and s12 = 1. By similar reasoning

we get d11 = 0, s11 = 3, d13 = 2 and s13 = 1.

Now suppose that researchers collected sightings during another time interval and assume,

just as with the first interval, one animal was sighted at perch 1 and two animals were

sighted at perch 2. Denote these sightings as D, E and F respectively. Assume that no

animals sighted in the first interval were re-sighted in the second interval. Table 3.2 shows

a summary of E2.

Recall that C is the set of all possible combinations of configurations from E1 and E2. Now

that E1 and E2 have been defined C can be enumerated. Specifically,

C = {{e11 , e21}, {e11 , e22}, {e11 , e23}, {e12 , e21}, {e12 , e22},

{e12 , e23}, {e13 , e21}, {e13 , e22}, {e13 , e23}}.

Thus for this example, c1 = {e11 , e21}, c11 = e11 , d1 = 0 and s1 = 6.

3.3 Parameters

The above notation is used to describe potential configurations of sightings. This section

parameterizes a model for the sampling distribution of sightings. Recall that recaptures are
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inherently uncertain since the researchers determine, post hoc, which animals, if any, were

seen at both perches. The two decisions that the researchers can make are (1) a sighting

at one perch is determined by the researchers to be of the same animal as a sighting at the

other perch, i.e., that a duplicate individual was sighted. Call this decision a match. Or

(2) a sighting at a perch is determined to be of a single individual. Call this decision a

non-match. For decision (1) three outcomes can occur: (i) A false positive duplicate is the

event of a mis-match, i.e., that a true duplicate sighting is matched to a sighting other than

its complimentary one; (ii) A false positive single is the event that a true single sighting is

matched; (iii) A true positive is the event that a true duplicate sighting is matched to its

compliment. For decision (2) two outcomes can occur: (i) A false negative is the event that

a true duplicate sighting is called a non-match; (ii) A true negative is the event that a true

single sighting is called a non-match.

Finally, we define detection probability as the probability of sighting an animal given that

it was available to be sighted. Due to the nature of the bowhead study, it is reasonable to

assume that the probability of detection at perch 1 is equal to the probability of detection at

perch 2 regardless of whether the whale has been previously seen. Denote the probabilities

of the above events as follows:

Pr(false positive duplicate) = αd

Pr(false positive single) = αs

Pr(true positive) = (1− αd − β)

Pr(false negative) = β

Pr(true negative) = (1− αs)

Pr(detection) = p
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3.3.1 Effective Parameters for Error Rates

Without forcing any constraints, αs, αd, and β would be the parameters for two indepen-

dent multinomial distributions. However, the nature of the problem constraints the space

of possible data sets. No forks are allowed and illogical connections are forbidden. A fork

occurs when the researchers accidentally match multiple sightings from one perch to only one

sighting at the other perch. This occurrence is not allowed because of the assumption that

every sighting within a perch is a different animal. Illogical connections refers to possible

outcomes that can not occur due to the design of the study but are possible if we assume

two independent multinomial distributions. For example, an independent multinomial dis-

tribution could produce one sighting as a true positive and the rest as true negatives. This

possible outcome cannot occur because a positive outcome of any kind implies a duplicate

sighting was sighted at each perch. Together, the issues of forks and illogical connections

mean that the error probabilities, αs, αd and β, must be re-examined under the constraints.

A simple example will be used to illustrate certain constraints and the implications for error

probabilities.

Example 3.2

Suppose in one time interval, there is one sighting, denoted as A, at perch 1 and one sighting,

denoted B, at perch 2. Further, assume A and B are each other’s complimentary sightings,

i.e., they are sighting of the same animal. Note that this assumption that A and B are each

other’s complimentary sighting is the same as assuming that configuration e11 ∈ E1, is true.

The whole, unrestricted space of outcomes can be found in Table 3.3. The first two columns

represent all possible combinations of errors for sightings A and B. Notice that there can be

multiple ways to achieve certain combinations of errors. Hereafter I will refer to a specific

combination of errors as an error set type. Denote T eUt
as error set type t in the unrestricted

space. The third column indexes T eUt
.
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Table 3.3: Unrestricted space of outcomes for Example 3.2.

A B T eU
TP TP 1
TP FPd 3
TP FN 4
FPd TP 3
FPd FPd 5
FPd FN 6
FN TP 4
FN FPd 6
FN FN 2

Table 3.4: Reduced space of outcomes for Example 3.2.

A B T eR
TP TP 1
FN FN 2

Eliminating forks and illogical connections, a restricted space of possible outcomes can be

found in Table 3.4. As with Table 3.3, the first two columns of Table 3.4 represent all possible

allowable combinations of errors for sighting A and B, but this time limited to the restricted

space. Each combination of errors in the restricted space will also be defined as a error set

type and be denoted T eRt
.

Each error set type in the restricted space has a corresponding error set type in the whole

space. For example, error set type 1 in the reduced space represents the same combination of

errors as in error set type 1 of the whole space. While error set types have a counterpart for

each space, the number of a particular error set type for the whole space doesn’t necessarily

equal the number of that particular error set type in the restricted space. For example, there

is one error set type 1 (T eU1
)) in the unrestricted space and one of error set type 1 (T eR1

) in

the restricted space. This won’t always be the case.
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Next, false positive single, false positive duplicate, and false negative probabilities can be

used to determine the probability of a specific type t, T eUt
. Before that can be done, more

notation is needed. Let:

• nFPst = the number of false positive singles in error set type t, T eUt
.

• nFPdt = the number of false positive duplicates in error set type t, T eUt
.

• nFNt = the number of false negatives in error set type t, T eUt
.

• nT eUt
= the amount of error set type t, T eUt

.

• nT eRt
= the amount of error set type t, T eRt

• N e
TU

= the total amount of error set types in the unrestricted space of possible outcomes.

• N e
TR

= the total amount of error set types in the restricted space of possible outcomes.

In general, the probability mass function for the unrestricted space is:

Pr(T eUt
|αs, αd, β, rik , w1,i, w2,i) = nT eUt

× (1− αd − β)2rik−nFPdt
−nFNt

× (αd)
nFPdt (β)nFNt(αs)

nFPst

× (1− αs)w1,i+w2,i−2rik−nFPst .

The probability mass function for the restricted space is defined in terms of the unrestricted

space:

Pr(T eRt
|αs, αd, β, rik , w1,i, w2,i) =

[
nT eRt

nT eUt

]
Pr(T eUt

|αs, αd, β, rik , w1,i, w2,i)

d
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where

d =

Ne
TR∑
t=1

[
nT eRt

nT eUt

]
Pr(T eUt

|αs, αd, β, rik , w1,i, w2,i).

Now, recall that αs, αd and β are defined as the probabilities of a false positive single, false

positive duplicate, and false negative respectively in the whole, unrestricted space. Another

way to think of these probabilities is as the weighted sum of the probability (proportion of

times) that each event occurs in each error set type. In other words:

αs =

Ne
TU∑
t=1

(
nFPst

w1,i + w2,i − 2rik

)
Pr(T eUt

|αs, αd, β, rik , w1,i, w2,i)

αd =

Ne
TU∑
t=1

(
nFPdt
2rik

)
Pr(T eUt

|αs, αd, β, rik , w1,i, w2,i)

β =

Ne
TU∑
t=1

(
nFNt

2rik

)
Pr(T eUt

|αs, αd, β, rik , w1,i, w2,i)

The question is, what are the probabilities of observing a false positive single, false positive

duplicate, and false negative sighting in the restricted space? Define the following:

Pr(false positive duplicate in the restricted space) = α̃d

Pr(false positive single in the restricted space) = α̃s

Pr(false negative in the restricted space) = β̃

Pr(true positive in the restricted space) = (1− α̃d − β̃)

Pr(true negative in the restricted space) = (1− α̃s)
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where α̃s, α̃d and β̃ can be computed as functions of the original parameters. Specifically,

α̃s =

Ne
TR∑
t=1

(
nFPst

w1,i + w2,i − 2rik

)
Pr(T eRt

|αs, αd, β, rik , w1,i, w2,i)

α̃d =

Ne
TR∑
t=1

(
nFPdt
2rik

)
Pr(T eRt

|αs, αd, β, rik , w1,i, w2,i)

β̃ =

Ne
TR∑
t=1

(
nFNt

2rik

)
Pr(T eRt

|αs, αd, β, rik , w1,i, w2,i)

Due to the nature of the study and the data restrictions, my model will estimate these ef-

fective parameters rather than the parameters defined in the unrestricted space.

Example 3.2 continued

Now, suppose that αs = 0, αd = .3 and β = .2. The probability of observing error set type

1 in the unrestricted space is:

Pr(T eU1
|αs, αd, β, r11 , w1,1, w2,1) = (1− αd − β)2

= (1− .3− .2)2

= (.5)2

= .25

The probabilities for the remaining error set types can be found in a similar way and are

shown in Table 3.5. Finally, probabilities for each type in the restricted space (i.e., the

effective parameters) can be calculated. These are shown in Table 3.6. For example,
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Table 3.5: Unrestricted space of outcome probabilities for Example 3.2.

T eU Pr(T eU) nT eU
1 .25 1
2 .04 1
3 .30 2
4 .20 2
5 .09 1
6 .12 2

Table 3.6: Restricted space of outcome probabilities for Example 3.2.

T eR Pr(T eR) nT eR
1 .862 1
2 .138 1

Pr(T eR1
|αs, αd, β, r11 , w1,1, w2,1) =

Pr(T eU1
|αs, αd, β, r11 , w1,1, w2,1)

d

=
.25

.29

= .862

Finally, we can calculate the probabilities of a false positive duplicate and a false negative

in the restricted space.

α̃d =
2∑
t=1

(
nFPdt
2r11

)
Pr(T eRt

|αs, αd, β, r11 , w1,1, w2,1)

=

(
0

2

)
.862 +

(
0

2

)
.138

= 0

β̃ =
2∑
t=1

(
nFNt

2r11

)
Pr(T eRt

|αs, αd, β, r11 , w1,1, w2,1)

=

(
0

2

)
.862 +

(
2

2

)
.138

= .136
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Thus, the probability of a false positive duplicate in the restricted space is 0 and the proba-

bility of a false negative in the restricted space is .136.

3.3.2 Effective Parameter for Detection Probability

In classical capture recapture experiments, detection probability is the probability that an

animal is sighted given it was available to be sighted. In studies where captured animals

are tagged, the number of individuals and/or recaptures is known exactly and estimation

of detection probability is straight forward. However, due to the nature of the bowhead

data (namely that tagging isn’t possible), the true number of animals that were captured

and recaptured is uncertain. The only information available is the number of unique ani-

mals sighted at each perch. Given w1,i and w2,i there are many different possibilities for the

number of animals and the number of recaptures, as we saw during the discussion of the

definition of Ei. Each possibility will produce a different amount of duplicate individuals.

Therefore, we need to examine the probability a sighting is a duplicate sighting given w1,i

and w2,i.

Example 3.3

Let w1,1 = 1, with the lone sighting being denoted A, and w2,1 = 2, with the two sightings

being denoted B and C. Table 3.7 shows the distribution of possible duplicate sightings histo-

ries if we assume a binomial distribution in determining which of the w1,1 and w2,1 sightings

are duplicate sightings or single sightings. D indicates that a sighting is a duplicate sighting

and S that a sighting is a single sighting. Table 3.7 lists different combinations of duplicate

and single sightings and the fourth column indexes those different combinations. Hereafter

I will refer to these different combinations as duplicate types, denoted at T d.
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Table 3.7: Unrestricted space of duplicate sighting outcomes for Example 3.3.

A B C T d

D D D 3
D D S 1
D S D 1
S D D 1
D S S 4
S D S 4
S S D 4
S S S 2

Table 3.8: Restricted space of duplicate sighting outcomes for Example 3.3.

A B C T dR
D D S 1
D S D 1
S S S 2

Let’s take a closer look at duplicate type 3. In this case each sighting is a duplicate sighting.

However, since sighting B and C can not be the same animal since they were sighted at

perch 2 and therefore distinguished by perch 2 observers and perch 1 has only one sighting,

it stands to reason that at most one of B or C are duplicate sightings; both couldn’t have

been. Thus, type 3 represents an illogical, i.e. impossible, outcome. Removing all illogical

outcomes we get Table 3.8. The latter table reads exactly like Table 3.7 except that T dR

represents the duplicate type combination in the now restricted space. Just like with the

effective errors, duplicate types in the restricted space correspond to duplicate types in the

unrestricted space, where the number of each type can differ between the two spaces.

Similar to the logic that led to the definition of α̃s, α̃d, and β̃ parameters, I can calculate the

general probability mass functions for duplicate types for unrestricted and restricted spaces.

Specifically,
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Pr(T dt |w1,i, w2,i, p) = nT dt p
nDt(1− p)w1,i+w2,i−nDt

and

Pr(T dRt
|w1,i, w2,i, p) =

[
nT dRt

nT dt

]
Pr(T dt |w1,i, w2,i, p)

d

where

d =

Nd
TR∑
t=1

[
nT dRt

nT dt

]
Pr(T dt |w1,i, w2,i, p)

nDt = the number of duplicate sightings in duplicate type t, T dt

Nd
TR

= the total amount of duplicate types in the restricted space

nT dt = the number of duplicate types t, T dt

nT dRt
= the number of duplicate types t, T dRt

p = classical definition of detection probability

As with αs, αd, and β, another way to view the probability of a duplicate sighting is with

the following weighted sum:

p =

Nd
T∑

t=1

(
nDt

w1,i + w2,i

)
Pr(T dt |w1,i, w2,i, p)

where, Nd
T is the number of duplicate types in the unrestricted space. Thus,

p̃ =

Nd
Rt∑

t=1

(
nDt

w1 + w2

)
Pr(T dRt

|w1, w2, p)
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Table 3.9: Probabilities for the outcomes in the unrestricted space for Example 3.3.

T d Pr(T d) nT d

1 .288 3
2 .216 1
3 .064 1
4 .432 3

Example 3.3 Continued

I will use this example to further illustrate the calculation of p̃. Suppose that p = .4. The

probability of observing duplicate type 1 in the unrestricted space is:

Pr(T d1 |w1,i, w2,i, p) = nT d1 p
2(1− p)1

= 3(.4)2(.6)

= .288

The rest of the probabilities are calculated in a similar fashion and can be found in Table

3.9. Using the probabilities of each duplicate type in the unrestricted space, probabilities

for each duplicate type in the restricted space can be calculated; see Table 3.10.

Finally, the probability that a sighting is a duplicate sighting given w1,1 and w2,1 in the

restricted space is:

p̃ =
2∑
t=1

(
nDt

w1,1 + w2,1

)
Pr(T dRt

|w1,1, w2,1, p)

=

(
2

3

)
.470 +

(
0

3

)
.530

= .313

The value of p̃ is the parameter that can be estimated in the bowhead case due to the con-

straints imposed on possible outcomes of the sighting process.
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Table 3.10: Probabilities for the outcomes in the restricted space for Example 3.3.

T dR Pr(T dR) nT dR
1 .470 2
2 .530 1

3.4 Data

An unavoidable aspect of the study design for the bowhead case is that the true number of

recaptured animals is unknown. That is, it is unknown whether an animal was seen at both

perches or not. Using the data collected from each perch, researchers try to determine which

animals, if any, were sighted at both perches. This process entails making a series of match

and non-match decisions. In the case we consider, this match process task is repeated J

times independently. These match processes, or replications, give statistical evidence about

the matching errors.

For each time interval i and match process j let Yi,j be the collection of match/non-match

decisions. Each sighting at each perch will have J match/non-match decisions associated

with it so let Yi be considered the collection of independent replications for time interval i.

Finally, let Y be the collection of match/non-match decisions for all I time intervals includ-

ing all J independent match efforts.

Example 3.4

Let I = 2, J = 3, w1,1 = 1, w2,1 = 2, w1,2 = 1 and w2,2 = 2. Let A denote the sighting at

perch 1 at time interval 1. Let B and C denote the sightings at perch 2 at time interval 1.

Let D denote the sighting at perch 1 at time interval 2 and let E and F denote the sightings

at perch 2 at time interval 2. The collection of data Yi,j, Yi and Y can be found in Table

3.11, 3.12, and 3.13 respectively.
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Table 3.11: Match/Non-Match data, Y1,1, for interval 1 and replicate 1 (Rep 1) for Example
3.4.

Sighting Rep 1
A B
B A
C non-match

Table 3.12: Match/Non-Match data, Y1, for interval 1 and replicates 1-3 (Rep 1, Rep 2 and
Rep 3 respectively) for Example 3.4.

Sighting Rep 1 Rep 2 Rep 3
A B B non-match
B A A non-match
C non-match non-match non-match

Table 3.13: Match/Non-Match data, Y , for intervals 1 and 2 and replicates 1-3 (Rep 1, Rep
2 and Rep 3 respectively) for Example 3.4.

Sighting Rep 1 Rep 2 Rep 3
A B B non-match
B A A non-match
C non-match non-match non-match
D non-match F non-match
E non-match non-match non-match
F non-match D non-match
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3.5 Likelihood

The statistical evidence about error rates is provided by the replication of matching deci-

sions. While the true capture history is unknown, we can enumerate all possibilities given

W1 and W2 with the set C. Recall that an element of a set in C, i.e., cli = eik , represents

one possible underlying true capture history for time interval i. Comparing the data, Yi,j, to

eik allows us to calculate the number of false positive duplicates, false positive singles and

false negatives. Define the following:

xTPijk = the number of true positives in Yi,j|eik

xFPd
ijk = the number of false positive duplicates in Yi,j|eik

xFPs
ijk = the number of false positive singles in Yi,j|eik

xTPik = the number of true positives in Yi|eik

xFPd
ik = the number of false positive duplicates in Yi|eik

xFPs
ik = the number of false positive singles in Yi|eik

xTPl = the number of true positives in Y |cl

xFPd
l = the number of false positive duplicates in Y |cl

xFPs
l = the number of false positive singles in Y |cl
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The likelihood function for α̃s, α̃d, β̃, p̃, w1,i and w2,i given Yi,j can be derived by applying

the law of total probability over the set Ei. It is important to note that we are conditioning

on w1,i and w2,i just like one would condition on n in a binomial distribution.

Pr(Yi,j|α̃s, α̃d, β̃, p̃, w1,i, w2,i) =

Ki∑
k=1

[
Pr(Yi,j|α̃s, α̃d, β̃, p̃, w1,i, w2,i, eik)

×Pr(eik |p̃, w1,i, w2,i)
]

Pr(Yi,j|α̃s, α̃d, β̃, p̃, eik , w1,i, w2,i) = (1− α̃d − β̃)x
TP
ijk (α̃d)

x
FPd
ijk

×(β̃)dik−x
TP
ijk−x

FPd
ijk (α̃s)

xFPs
ijk

×(1− α̃s)sik−x
FPs
ijk

Pr(eik |p̃, w1,i, w2,i) = (p̃)dik (1− p̃)sik

Due to the independence of the matching process and the independence of the time intervals,

we get the following:

Pr(Yi|α̃s, α̃d, β̃, p̃, w1,i, w2,i) =
J∏
j=1

Pr(Yi,j|α̃s, α̃d, β̃, p̃, w1,i, w2,i)

Pr(Y |α̃s, α̃d, β̃, p̃, w1,i, w2,i) =
I∏
i=1

Pr(Yi|α̃s, α̃d, β̃, p̃, w1,i, w2,i)

3.6 Estimation Framework

While maximum likelihood estimation is computationally feasible when w1,i and w2,i are

small in every time interval it is essentially impossible when at least one set of w1,i and w2,i

is of any non-trivial magnitude. To understand why, one needs only to look so far as Ki, the
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number of configurations in Ei, because the likelihood requires summing over all elements in

Ei. The calculation for Ki is:

Ki =
w1,i∑
r=0

(
w1,i!

(w1,i−r)!(r)!

)(
w2,i!

(w2,i−r)!(w2,i)!

)
(r!).

In Example 3.1 when w1,1 = 1 and w2,1 = 2, it is easy to determine that K1 = 3. If we

slightly increase the size of the dataset so w1,1 = 4 and w2,1 = 5, K1 jumps dramatically to

501. Realistic values for w1,i and w2,i yield huge Ki, making maximum likelihood estimation

very difficult. Therefore, I am proposing a Bayesian framework for parameter estimation,

treating configurations as parameters. Of course α̃s, α̃d, β̃ and p̃ are also parameters to be

estimated. The treatment of configurations as parameters resembles the approach of Link

et al. (2010), though my framework is much more general and my estimation strategy is

more complex.

There are several levels to my modeling approach. First, the sampling distribution of the

data is:

Y ∼ Pr(Y |α̃s, α̃d, β̃, p̃,W1,W2, cl)

where

Pr(Y |α̃s, α̃d, β̃, p̃,W1,W2, cl) =
I∏
i=1

Pr(Yi|α̃s, α̃d, β̃, p̃, w1, i, w2,i, cli)

=
I∏
i=1

J∏
j=1

Pr(Yi,j|α̃s, α̃d, β̃, p̃, w1,i, w2,i, cli)

=
I∏
i=1

J∏
j=1

Pr(Yi,j|α̃s, α̃d, β̃, p̃, w1,i, w2,i, eik).
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Next,

cl ∼ Pr(cl|p̃,W1,W2)

where

Pr(cl|p,W1,W2) =
I∏
i=1

Pr(cli |p̃, w1,i, w2,i)

=
I∏
i=1

Pr(eik |p̃, w1,i, w2,i).

Next, I adopt the following priors.

α̃s ∼ Unif(0,0.3)

α̃d ∼ Unif(0,0.3)

β̃ ∼ Unif(0,0.3)

p̃ ∼ Unif(0,1)

cl ∼ Discrete Uniform over the set C.

For the priors I assume that researchers do (at least) a slightly better job at correctly

identifying each sighting as being a duplicate sighting or a single sighting than flipping a

coin would. That is why the flat, relatively non-informative Unif(0,0.3) priors were chosen
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for α̃s, α̃d and β̃. I don’t make any prior assumptions about p̃ or cl and that is why Unif(0,1)

and Discrete Uniform over the set C were chosen for their respective parameters.

3.7 Markov Chain Monte Carlo

Using the framework above, the joint posterior distribution is

Pr(α̃s, α̃d, β̃, p̃, cl|Y,W1,W2) ∝ Pr(α̃s) Pr(α̃d) Pr(β̃) Pr(p̃) Pr(cl)

× Pr(cl|p̃,W1,W2)

× Pr(Y |α̃s, α̃d, β̃, p̃,W1,W2, cl)

This expression is algebraically intractable so inference relies on the Markov Chain Monte

Carlo approach (Gelman et al., 2014). However, sampling directly from the joint posterior

distribution isn’t possible so I will use a Metropolis within Gibbs MCMC strategy.

In a canonical setting, the Metropolis within Gibbs approach (e.g., Givens and Hoeting, 2005)

for simulating from distribution f(x) for the random p-dimensional X = (X1, . . . , Xp)
T is:

1. Let t = 0 and let xt denote initial starting values for all p parameters.

2. Choose an ordering of the components of xt.

3. For i = 1, · · · , p indexing the ordering above, complete the following steps.

(a) Sample candidate value X∗i from a proposal distribution g (·|xti).
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(b) Compute the Metropolis-Hastings ratio:

R(xti, X
∗
i ) =

f(X∗i |xt−i)g(xti|X∗i )

f(xti|xt−i)g(X∗i |xti)

(c) Let

X t+1
i =

 X∗i with probability min(R,1)

xti otherwise

4. Increment t and return to step 2.

In our case X = (α̃s, α̃d, β̃, p̃, cl)
T and f(x) is the joint posterior distribution described earlier

in this section. I will take the proposal distributions for α̃s, α̃d, and β̃ to be equal to the

prior distributions, i.e., each is Unif(0,0.3). My proposal for p̃ is Unif(0,1). Note that I have

chosen proposal distributions that do not depend on the parameters’ current locations in the

Metropolis step.

The proposal distribution for the set C is more complex. I have chosen to update a config-

uration, cli in cl ∈ C in a manner similar to a random walk in the sense that a proposed

configuration differs only slightly from the current configuration. For any time interval i,

denote the current configuration as eti and the proposed configuration as e∗. The steps I use

to propose one configuration given the current configuration are as follows:

1. Randomly select one sighting from the wi,1 sightings at perch 1. Denote the selected

sighting as sw1

2. Randomly select one sighting from the w2,1 sightings at perch 2. Denote the selected

sighting as sw2
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3. If sw1 and sw2 are each other’s complimentary sightings in eti, then break the connection

so that each sighting becomes a single sighting in e∗.

4. If sw1 and sw2 are both duplicate sightings but are not each other’s complimentary

sightings in eti, then switch the connections. That is, sw1 ’s previous complimentary

sighting becomes sw2 ’s previous complementary sighting complimentary sighting and

sw2 becomes sw1 ’s complimentary sighting to generate e∗.

5. If sw1 is a single sighting and sw2 is a duplicate sighting in eti then

(a) Break the connection between sw2 and its complimentary sighting. sw2 ’s previous

complimentary sighting becomes a single sighting in e∗.

(b) Connect sw1 with sw2 . Then sw1 becomes a duplicate sighting in e∗.

6. If sw2 is a single sighting and sw1 is a duplicate sighting in eti then

(a) Break the connection between sw1 and its complimentary sighting. Then sw1 ’s

complimentary sighting becomes a single sighting in e∗.

(b) Connect sw2 with sw1 . Then sw2 becomes a duplicate sighting in e∗.

7. If both sw1 and sw2 are single sighting in eti, then connect them. That is the two single

sightings, sw1 and sw2 , become each other’s complimentary sighting in e∗.

A simple example is used to demonstrate the random walk like process for the proposal

distribution of configurations, described above, for one time interval.
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Table 3.14: Current configuration, et1.

Current Configuration (et1)
Sighting Complimentary

A K
B Q
C N
D none
E none
K A
L none
M none
N C
O none
P none
Q B

Let w1,1 = 5 and w2,1 = 7. The uniquely identified sightings at perch 1 and perch 2 are as

follows:

Perch 1 = A, B, C, D, E

Perch 2 = K, L, M, N, O, P Q

Now suppose that the current configuration at iteration t, denoted et1 is shown in Table 3.14.

1. Suppose that sighting A is selected from perch 1. Then sw1=A.

2. Suppose that sighting K is selected from perch 2. Then sw2=K.
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Table 3.15: Current configuration, et1, and proposed configuration, e∗, with sw1=A and
sw2=K.

Current Configuration (et1) Proposed Configuration (e∗)
Sighting Complimentary Sighting Complimentary

A K A none
B Q B Q
C N C N
D none D none
E none E none
K A K none
L none L none
M none M none
N C N C
O none O none
P none P none
Q B Q B

3. Since sw1=A and sw2=K are each other’s complimentary sightings we proceed with

step 3, that is, we break the connection so that each sighting becomes a single sighting

in the proposed configuration, e∗. The proposed configuration compared to the current

configuration can be found in Table 3.15.

1. Suppose that sighting A is selected from perch 1. Then sw1=A.

2. Suppose that sighting N is selected from perch 2. Then sw2=N.

3. Since sw1=A and sw2=K are both duplicate sightings but not each other’s complimen-

tary sighting we proceed with step 4, that is, switch their connections. In other words,

sw1=A’s complimentary sighting is now sw2=N and sw2=N’s complimentary sighting is

now sw1=A in the proposed configuration, e∗. The proposed configuration compared

to the current configuration can be found in Table 3.16.
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Table 3.16: Current configuration, et1, and proposed configuration, e∗, with sw1=A and
sw2=N.

Current Configuration (et1) Proposed Configuration (e∗)
Sighting Complimentary Sighting Complimentary

A K A N
B Q B Q
C N C K
D none D none
E none E none
K A K C
L none L none
M none M none
N C N A
O none O none
P none P none
Q B Q B

1. Suppose that sighting D is selected from perch 1. Then sw1=D.

2. Suppose that sighting K is selected from perch 2. Then sw2=K.

3. Since sw1=D is a single sighting and sw2=K is a duplicate sighting we proceed with step

5, that is, they become each other’s complimentary sightings. In other words, sw1=D

and sw2=K become complimentary sightings and sw2=K’s previous complimentary

sighting, A, is now a single sighting in the proposed configuration, e∗. The proposed

configuration compared to the current configuration can be found in Table 3.17.

1. Suppose that sighting D is selected from perch 1. Then sw1=D.

2. Suppose that sighting M is selected from perch 2. Then sw2=M.
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Table 3.17: Current configuration, et1, and proposed configuration, e∗, with sw1=D and
sw2=K.

Current Configuration (et1) Proposed Configuration (e∗)
Sighting Complimentary Sighting Complimentary

A K A none
B Q B Q
C N C N
D none D K
E none E none
K A K D
L none L none
M none M none
N C N C
O none O none
P none P none
Q B Q B

3. Since both sw1=D and sw2=M are single sightings we proceed with step 7, that is, con-

nect the two so that they become each other’s complimentary sighting in the proposed

configuration, e∗. The proposed configuration can be found in Table 3.17.

The proposal distribution for configurations satisfies the following equality:

Pr(eti|e∗) = Pr(e∗|eti)

To prove this equality it is important to note the possible configurations that can be created.

If step 3 is conducted then the resulting proposed configuration has one fewer duplicate in-

dividual than the current configuration. Call the possible proposed configurations of step 3

the r − 1 group, where r is the number of duplicates in eti. If steps 5, 6 or 7 are conducted

then the resulting proposed configuration has the same number of duplicate individuals as

the current configuration. Call the possible proposed configurations of steps 5, 6 or 7 the r

group. If step 4 is conducted then the resulting proposed configuration has one more dupli-
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Table 3.18: Current configuration, et1, and proposed configuration, e∗, with sw1=D and
sw2=M.

Current Configuration (et1) Proposed Configuration (e∗)
Sighting Complimentary Sighting Complimentary

A K A K
B Q B Q
C N C N
D none D M
E none E none
K A K A
L none L none
M none M D
N C N C
O none O none
P none P none
Q B Q B

cate individual than the current configuration. Call the possible proposed configurations of

step 4 the r + 1 group.

There are w1,i ways to choose one sighting from perch 1 and w2,i ways to choose one sighting

from perch 2. Overall, then, there are w1,i ×w2,i different potential proposed configurations

given a current configuration. We can split up the w1,i × w2,i different configurations into

their different groups; the r − 1 group, r group and r + 1 group.

There are r different ways to select a configuration in the r − 1 group, all of which are

unique. That is, each configuration that can be produced in the group cannot be achieved

in multiple ways. There are (w1,i − r)(w2,i − r) different ways to get a configuration in the

r + 1 group. Once again all are unique. The r group needs to be further broken down into

subgroups to determine the number of potential proposed configurations. The first subgroup

is when step 6 or 7 is conducted, i.e., breaking one duplicate individual and creating another.

There are r(w1,i − r) + r(w2,i − r) ways to create a configuration in this subgroup. Again

all of these are unique. The second subgroup is when step 5 is conducted. This step takes
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two duplicate sightings and switches their respective complimentary sightings. There are

r(r− 1) ways to achieve this. However, there are two ways to make a switch resulting in the

same configuration. Therefore, this subgroup has r(r−1)
2

unique configurations. Notice, also,

that this second subgroup has all the same duplicate sightings as the current configuration

(although these duplicate sightings don’t necessarily have the same complimentary sightings)

while the other subgroup and groups have at least one duplicate sighting that differs from

the current configuration. Now we can compute the transition probability. In summary:

Pr(e∗|eti) =



1
(w1,i)(w2,i)

e∗ ∈ (r − 1) group

1
(w1,i)(w2,i)

e∗ ∈ (r + 1) group

1
(w1,i)(w2,i)

e∗ ∈ r group and subgroup 1

2
(w1,i)(w2,i)

e∗ ∈ r group and subgroup 2

Assume eti has r duplicate individuals and e∗ has r − 1 duplicate individuals. Then,

Pr(eti|e∗) =
1

(w1,i)(w2,i)
.

Notice that since e∗ has r− 1 duplicate individuals and eti has r individuals that eti is in the

r + 1 group compared to e∗. Now, if e∗ has r + 1 duplicate individuals,

Pr(eti|e∗) =
1

(w1,i)(w2,i)
.
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Additionally, if e∗ also has r duplicate individuals then

Pr(eti|e∗) =


1

(w1,i)(w2,i)
eti in subgroup 1

2
(w1,i)(w2,i)

eti in subgroup 2

Thus for all eti and e∗

Pr(e∗|eti) = Pr(eti|e∗).

The proposal distribution, Pr(e∗|eti), is used to explore the different possible configurations

in Ei. To apply my approach to all possible combinations of configurations in C for all

time intervals, I randomly select a pre-specified number of time intervals to update (all with

equal probability) then propose configurations for the chosen time intervals using Pr(eti|e∗).

Denote the proposal distribution for configurations for all intervals as Pr(c∗|ct).

Now we can write out the Metropolis within Gibbs algorithm:

1. Let t = 0 and denote α̃ts, α̃
t
d, β̃

t, p̃t and ct as each parameters value at iteration t.

2. Propose α̃∗s ∼ Unif(0,0.3)
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3. Calculate

R =
Pr(α̃∗s|α̃tdβ̃t, p̃t, ct, Y,W1,W2) Pr(α̃

t
s)

Pr(α̃ts|α̃tdβ̃t, p̃t, ct, Y,W1,W2) Pr(α̃∗s)

=
[
Pr(Y |α̃∗s, α̃td, β̃t, p̃t, ct,W1,W2) Pr(c

t|p̃t,W1,W2)

×Pr(α̃∗s) Pr(α̃
t
d),Pr(β̃

t) Pr(p̃t) Pr(ct) Pr(α̃ts)
]

÷
[
Pr(Y |α̃ts, α̃td, β̃t, p̃t, ct,W1,W2) Pr(c

t|p̃t,W1,W2)

×Pr(α̃ts) Pr(α̃
t
d),Pr(β̃

t) Pr(p̃t) Pr(ct) Pr(α̃∗s)
]

=
Pr(Y |α̃∗s, α̃td, β̃t, p̃t, ct,W1,W2)

Pr(Y |α̃ts, α̃td, β̃t, p̃t, ct,W1,W2)

=
(1− α̃td − β̃t)x

TP
t (α̃td)

x
FPd
t (β̃t)(Jdt)−x

TP
t −xFPd

t (α̃∗s)
xFPs
t (1− α̃∗s)(Jst)−x

FPs
t

(1− α̃td − β̃t)x
TP
t (α̃td)

x
FPd
t (β̃t)(Jdt)−x

TP
t −xFPd

t (α̃ts)
xFPs
t (1− α̃ts)(Jst)−x

FPs
t

=
(α̃∗s)

xFPs
t (1− α̃∗s)(Jst)−x

FPs
t

(α̃ts)
xFPs
t (1− α̃ts)(Jst)−x

FPs
t

.

4. Assign a new α̃s value according to

α̃t+1
s =

 α̃∗s with probability min(1, R)

α̃ts otherwise.

5. Propose α̃∗d ∼ Unif(0,0.3)
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6. Calculate

R =
Pr(α̃∗d|α̃t+1

s , β̃t, p̃t, ct, Y,W1,W2) Pr(α̃
t
d)

Pr(α̃td|α̃
t+1
s , β̃t, p̃t, ct, Y,W1,W2) Pr(α̃∗d)

=
[
Pr(Y |α̃t+1

s , α̃∗d, β̃
t, p̃t, ct,W1,W2) Pr(c

t|p̃t,W1,W2)

×Pr(α̃t+1
s ) Pr(α̃∗d),Pr(β̃

t) Pr(p̃t) Pr(ct) Pr(α̃td)
]

÷
[
Pr(Y |α̃t+1

s , α̃td, β̃
t, p̃t, ct,W1,W2) Pr(c

t|p̃t,W1,W2)

×Pr(α̃t+1
s ) Pr(α̃td),Pr(β̃

t) Pr(p̃t) Pr(ct) Pr(α̃∗d)
]

=
Pr(Yi|α̃t+1

s , α̃∗d, β̃
t, p̃t, ct,W1,W2)

Pr(Y |α̃t+1
s , α̃td, β̃

t, p̃t, ct,W1,W2)

=
(1− α̃∗d − β̃t)x

TP
t (α̃∗d)

x
FPd
t (β̃t)(Jdt)−x

TP
t −xFPd

t (α̃t+1
s )x

FPs
t (1− α̃t+1

s )(Jst)−x
FPs
t

(1− α̃td − β̃t)x
TP
t (α̃td)

x
FPd
t (β̃t)(Jdt)−x

TP
t −xFPd

t (α̃t+1
s )x

FPs
t (1− α̃t+1

s )(Jst)−x
FPs
t

=
(1− α̃∗d − β̃t)x

TP
t (α̃∗d)

x
FPd
t

(1− α̃td − β̃t)x
TP
t (α̃td)

x
FPd
t

.

7. Assign a new α̃d value according to

α̃t+1
d =

 α̃∗d with probability min(1, R)

α̃td otherwise.

8. Propose β̃∗ ∼ Unif(0,0.3).
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9. Calculate

R =
Pr(β̃∗|α̃t+1

s , α̃t+1
d , p̃t, ct, Y,W1,W2) Pr(β̃

t)

Pr(β̃t|α̃t+1
s , α̃t+1

d , p̃t, ct, Y,W1,W2) Pr(β̃∗)

=
[
Pr(Y |α̃t+1

s , α̃t+1
d , β̃∗, p̃teff , c

t,W1,W2) Pr(c
t
l |p̃t,W1,W2)

×Pr(α̃t+1
s ) Pr(α̃t+1

d ),Pr(β̃∗) Pr(p̃t) Pr(ct) Pr(β̃t)
]

÷
[
Pr(Y |α̃t+1

s , α̃t+1
d , β̃t, p̃t, ct,W1,W2) Pr(c

t|p̃t,W1,W2)

×Pr(α̃t+1
s ) Pr(α̃t+1

d ),Pr(β̃t) Pr(p̃t) Pr(ct) Pr(β̃∗)
]

=
Pr(Y |α̃t+1

s , α̃t+1
d , β̃∗, p̃t, ct,W1,W2)

Pr(Y |α̃t+1
s , α̃t+1

d , β̃t, p̃t, ct,W1,W2)

=
(1− α̃t+1

d − β̃∗)xTP
t (α̃t+1

d )x
FPd
t (β̃∗)(Jdt)−x

TP
t −xFPd

t (α̃t+1
s )x

FPs
t (1− α̃t+1

s )(Jst)−x
FPs
t

(1− α̃t+1
d − β̃t)xTP

t (α̃t+1
d )x

FPd
t (β̃t)(Jdt)−x

TP
t −xFPd

t (α̃t+1
s )x

FPs
t (1− α̃t+1

s )(Jst)−x
FPs
t

=
(1− α̃t+1

d − β̃∗)xTP
t (β̃∗)(Jdt)−x

TP
t −xFPd

t

(1− α̃t+1
d − β̃t)xTP

t (β̃t)(Jdt)−x
TP
t −xFPd

t

.

10. Assign a new β̃t+1 value according to

β̃t+1 =

 β̃∗ with probability min(1, R)

β̃t otherwise.

11. Propose p̃∗ ∼ Unif(0,1).
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12. Calculate

R =
Pr(p̃∗|α̃t+1

s , α̃t+1
d , β̃t+1, ct, Y,W1,W2) Pr(p̃

t)

Pr(p̃t|α̃t+1
s , α̃t+1

d , β̃t+1, ct, Y,W1,W2) Pr(p̃∗)

=
[
Pr(Y |α̃t+1

s , α̃t+1
d , β̃t+1, p̃∗, ct,W1,W2) Pr(c

t|p̃∗,W1,W2)

×Pr(α̃t+1
s ) Pr(α̃t+1

d ),Pr(β̃t+1) Pr(p̃∗) Pr(ct) Pr(p̃t)
]

÷
[
Pr(Y |α̃t+1

s , α̃t+1
d , β̃t, p̃t, ct,W1,W2) Pr(c

t
l |p̃t,W1,W2)

×Pr(α̃t+1
s ) Pr(α̃t+1

d ),Pr(β̃t+1) Pr(p̃t) Pr(ct) Pr(p̃∗)
]

=
Pr(Y |α̃t+1

s , α̃t+1
d , β̃t+1, p̃∗, ct,W1,W2) Pr(c

t|p̃∗,W1,W2)

Pr(Y |α̃t+1
s , α̃t+1

d , β̃t+1, p̃t, ct,W1,W2) Pr(ct|p̃t,W1,W2)

=
[
(1− α̃t+1

d − β̃t+1)x
TP
t (α̃t+1

d )x
FPd
t (β̃t+1)Jdt−x

TP
t −xFPd

t (α̃t+1
s )x

FPs
t

× (1− α̃t+1
s )Jst−x

FPs
t (p̃∗)Jdt(1− p̃∗)Jst

]
÷

[
(1− α̃t+1

d − β̃t+1)x
TP
t (α̃t+1

d )x
FPd
t (β̃t+1)Jdt−x

TP
t −xFPd

t (α̃t+1
s )x

FPs
t

× (1− α̃t+1
s )Jst−x

FPs
t (p̃t)Jdt(1− p̃t)Jst

]

=
(p̃∗)Jdt(1− p̃∗)Jst
(p̃t)Jdt(1− p̃t)Jst

.

13. Assign a new p̃t+1 value according to

p̃t+1 =

 p̃∗ with probability min(1, R)

p̃t otherwise.

14. Propose c∗ via the random walk procedure described above.
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15. Calculate

R =
Pr(c∗|α̃t+1

s , α̃t+1
d , β̃t+1, p̃t+1, Y,W1,W2) Pr(c

t|c∗)
Pr(ct|α̃t+1

s , α̃t+1
d , β̃t+1, p̃t+1, Y,W1,W2) Pr(c∗|ct)

=
[
Pr(Y |α̃t+1

s , α̃t+1
d , β̃t+1, p̃t+1, c∗,W1,W2) Pr(c

∗|p̃t+1,W1,W2)

×Pr(α̃t+1
s ) Pr(α̃t+1

d ),Pr(β̃t+1) Pr(p̃t+1) Pr(c∗) Pr(ct|c∗)
]

÷
[
Pr(Y |α̃t+1

s , α̃t+1
d , β̃t+1, p̃t+1, ct,W1,W2) Pr(c

t|p̃t+1,W1,W2)

×Pr(α̃t+1
s ) Pr(α̃t+1

d ),Pr(β̃t+1) Pr(p̃t+1) Pr(ct) Pr(c∗|ct)
]

=
Pr(Y |α̃t+1

s , α̃t+1
d , β̃t+1, p̃t+1, c∗,W1,W2) Pr(c

∗|p̃t+1,W1,W2)

Pr(Y |α̃t+1
s , α̃t+1

d , β̃t+1, p̃t+1, ct,W1,W2) Pr(ct|p̃t+1,W1,W2)

=
[
(1− α̃t+1

d − β̃t+1)x
TP
∗ (α̃t+1

d )x
FPd
∗ (β̃t+1)Jd∗−x

TP
t −xFPd

∗ (α̃t+1
s )x

FPs
∗

×(1− α̃t+1
s )Js∗−x

FPs
∗ (p̃t+1)Jd∗(1− p̃t+1)Js∗

]
÷

[
(1− α̃t+1

d − β̃t+1)x
TP
t (α̃t+1

d )x
FPd
t (β̃t+1)Jdt−x

TP
t −xFPd

t (α̃t+1
s )x

FPs
t

×(1− α̃t+1
s )Jst−x

FPs
t (p̃t+1)Jdt(1− p̃t+1)Jst

]
.

Note that Pr(c0|c∗) and Pr(c∗|c0) cancel.

16. Assign new c1 value according to

c1
l =

 c∗ with probability min(1, R)

c0 otherwise.

17. Increment t and return to step 2.
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3.8 Discussion

This chapter provided the necessary notation for my model, introduced the important con-

cept of effective parameters, and gave an in-depth look at the data, model and estimation

framework for my second approach to estimating detection probability for capture-recapture

surveys with uncertain recaptures. The next chapter provides the framework and perfor-

mance evaluation results for a simulation study of this approach.
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CHAPTER 4

MONTE CARLO EVALUATION OF PERFORMANCE

4.1 Sampling Procedure

4.1.1 Overview

I conducted a simulation study to examine estimation performance for my approach. For

simplicity and computational ease, my primary evaluation study examined only one time

interval. Though a multiple time interval study would be desirable, determining whether

my model performs well for one time interval is a necessary step, for if my model does not

perform well for one interval a multiple interval study becomes moot.

There are various factors to consider in a Monte Carlo experiment. At the highest level,

performance and behaviour are examined for different passage rates for a specified length of

time for one time interval. This is a way of controlling survey population sizes in a way that

can be compared to empirical evidence from the survey, and my choices for these parameters

are based on that evidence. Let us call this highest level of simulation factors “scenario”.

The next level, nested in the first, examines different w1,1 and w2,1 pairs, i.e., different num-

ber of whales seen at each perch. This allows me to evaluate the performance for estimating

sighting rates. Next, for given w1,1 and w2,1 values, several latent capture histories, without

matching errors, are sampled. Finally, given the previous information, matching errors are

applied randomly to generate the final error prone data sets with known effective parameter

values. These are the data sets to which my method is applied and estimation of performance

is evaluated based on these analyses.
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4.1.2 First Level of Sampling

Having given an overview of the simulation framework, I now describe the sample process in

detail. If there are N1 true number of animals migrating past in time interval 1 then there

are
N1∑
j=0

N1!
(N1−j)!(j)! different possible w1,1 values and the same number of different possible w2,1

values. For all combinations of those two variables, there are K1 ways to achieve each given

w1,1 and w2,1 pair where K1 is defined in Section 3.1 and further described in Section 3.5.

The enormity of the sampling space precluded using a large random sample at this phase,

so instead of randomly selecting many w1,1 and w2,1 pairs for each scenario, I selected five

w1,1 and w2,1 pairs in such a way as to give a representative feel to the overall distribution

of the w1,1 and w2,1 pairs. Further discussion on the choices for Ni and the 5 different pairs

of w1,1 and w2,1 for each scenario can be found in section 4.1.5.

I treat these five samples as case studies, keeping in mind that the information each contains

about the parameters is imperfect. The way that I chose the five cases is as follows. Although

N1 and p vary depending on the scenario, the overall sampling scheme is the same. Let

X ∼ Bin(N1, p) and Y ∼ Bin(N1, p) where the realizations of X and Y represent the

number of sightings at each perch and X and Y are independent. Now define W = (W1,W2)

where W1 = min(X, Y ) and W2 = max(X, Y ). The realizations of W1 and W2 represent the

number of sightings at perch 1 and perch 2 respectively (the choice of which perch has the

greater number of sightings is irrelevant). The mean and standard deviation for W1 and W2

are easily calculated. Denote µ1 as the mean of W1 and σ1 as the standard deviation of W1.

Define µ2 and σ2 for W2 similarly. The five pairs of W = (w1,1, w2,1) that were chosen are:

1. (µ1, µ2)

2. (µ1, µ2 − σ2)

3. (µ1 − σ1, µ2)
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4. (µ1, µ2 + σ2)

5. (µ1 + σ1, µ2)

It is important to note that µ1, µ2, σ1, σ2 are not whole numbers but w1,1 and w2,1 always

are. Therefore, I rounded to the nearest integer.

4.1.3 Second Level of Sampling

Given a (w1,1, w2,1) pair recall that there are K1 different possibilities regarding which sight-

ings are part of a duplicate individual and which of those sightings are part of a single

individual. However, sampling directly from the different possibilities is difficult since I

would need to enumerate all K1 possibilities. Instead, I sample from a duplicate sighting

type, T dR, because there are only w1,1 different duplicate sighting types. Recall from Section

3.2.2 that a duplicate sighting type is defined as a certain combination of duplicate and single

sightings given w1,1 and w2,1 in the space after removal of illogical connections. Once I have

sampled a duplicate type I can randomly select an outcome of which sightings are duplicate

sightings and which are single sightings within that duplicate type because all outcomes

within a duplicate type have equal probability. This randomly selected outcome represents

a latent capture history without matching errors applied during the study in time interval

1. I repeat this sampling scheme 20 times. In summary:

Duplicate Type =



1 with probability Pr(T dR1
|p, w1,1, w2,1)

2 with probability Pr(T dR2
|p, w1,1, w2,1)

...

w1,1 with probability nT dRw1,1
Pr(T dRw1,1

|p, w1,1, w2,1)

and the latent capture history without matching errors applied, given the selected duplicate

Type = j, is selected with probability 1
nT d

Rj

for j = 1, . . . , Nd
TR

.
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4.1.4 Third Level of Sampling

The third level of sampling is similar to the second level of sampling in the sense that types

are randomly selected (a duplicate type for the second level of sampling or an error set type

for the third level of sampling). Given one latent capture history without matching errors

applied (generated from the second level of sampling, described above) I can enumerate all

the possible error set types in the reduced space described in Section 3.2.1. Enumeration

of these error set types is challenging due to the enormity of possible error set types and

extensive coding was needed to accomplish the enumeration. Thus, I can select an error set

type based on each error set type’s probability, Pr(T eRt
|αs, αd, β, w1,1, w2,1). Once an error

set type is selected, I randomly select 5 outcomes (i.e., which sightings are false positive

duplicates, false positive single, or false negatives) where each outcome in an error set type

has equal probability. The five selections represent the matching process conducted by 5

different researchers. I repeat the third level of sampling 25 times. Notice that since a latent

capture history is known along with αs, αd, β and p, I can calculate the effective parameter

values for all sampled data sets. I am then able to compare the estimates from my model to

these effective parameter values.

4.1.5 Summary

The final outcome of the sampling scheme is an error prone data set with known effective

parameter values. To summarize, it is obtained as follows. There are four scenarios that

will be explored. For each of these scenarios, 5 pairs of w1,1 and w2,1 are selected in the

first sampling step. Given these pairs, 20 latent capture histories are randomly selected

in step 2. Given the outcomes of the previous two steps, 25 error prone data sets are se-

lected in step 3. Finally, step 3 is repeated for 8 different combination of αs, αd and β values.
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Table 4.1: w1,1 and w2,1 pairs chosen for each scenario.

Scenario 1 Scenario 2 Scenario 3 Scenario 4
(µ1, µ2) (22, 28) (46, 54) (23, 27) (47, 53)

(µ1, µ2 − σ2) (22, 24) (46, 48) (23, 24) (47, 49)
(µ1 − σ1, µ2) (19, 28) (41, 54) (20, 27) (43, 53)
(µ1, µ2 + σ2) (22, 31) (46, 59) (23, 30) (47, 57)
(µ1 + σ1, µ2) (26, 28) (52, 54) (26, 27) (51, 53)

I call these combination of errors “cases”. Therefore, the simulation study involves 2,500

data sets for each case in each scenario. Thus, overall my model will be tested against 80,000

data sets.

Scenarios 1 and 3 were chosen to resemble the bowhead data in the sense that the simu-

lated data might correspond to a whale passage rate roughly equal to the mode of observed

passage rates during the bowhead study. Specifically, N and p are chosen to achieve the

desired passage rate. Scenario 1 has N = 125 and p = 0.2. Scenario 3 has N=50 and

p = 0.5. Scenarios 2 and 4 were chosen to have passage rates of 20 whales per hour, which

corresponds to the 95th percentile of the observed passage rates for the bowhead study.

Specifically, scenario 2 has N = 250 and p = 0.2. Scenario 4 has N = 100 and p = 0.5. In all

four scenarios I used a 2.5 hour time interval, similar to the time intervals used during the

bowhead study, although this choice is unimportant except for calibrating total sample sizes.

For each scenario, five pairs of w1,1 and w2,1 were chosen using the process described in Sec-

tion 4.1.2. A summary of those values can be found in Table 4.1. As you can see in Figure

4.1 the five pairs of w1,1 and w2,1 chosen for scenario 1 do a decent job of representing the

overall distribution. Similar results are seen for the other three scenarios.

For each (w1,1, w2,1) pair in each scenario, eight different cases where examined. A summary

of those values can be found in Table 4.2. Recall that the effective parameter values are cal-
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Table 4.2: Typical true values of α̃s, α̃d, β̃ for the 8 cases.

Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 Case 7 Case 8
α̃s .1 .1 .05 .1 .05 .05 .05 .05
α̃d .05 .1 .15 .05 .05 .1 .05 .05

β̃ .05 .1 .15 .1 .05 .1 .1 .2

culated based on the unrestricted parameter values (see Chapter 3). I chose the unrestricted

parameter values and calculated the effective parameter values for each data set. Note that

each simulated data set has its own varying effective parameter values, that is, there are

80,000 different effective parameter values and due to the variability between every data set,

not all effective parameters within each case will be the same. However, all have values near

the values shown in Table 4.2. So instead of listing them all out and since all are similar,

only the typical values are shown.

4.2 Model Performance Results

4.2.1 Overview

For every simulated data set I set the initial α̃s, α̃d, β̃ and p̃ values as .1, .1, .25, and .5

respectively. I set the initial configuration as the data produced from the first matching

process. The Markov Chain Monte Carlo procedure was run for 40,000 iterations and a

burn-in of 20,000 was used.

Colorado State University’s Cray super computer was used to run the simulations. To use

the Cray my simulations were broken up into 10 batch jobs per case for each scenario. Thus,

a total of 320 jobs were run where each job completed analysis for 250 data sets using 192

cores. Each job for scenario 1 and 3 took anywhere between 12 and 24 hours, while each

job for scenario 2 and 4 took anywhere from 24 and 48 hours. The reason for the length of

each job has to do with the enumeration and generation of error prone data sets and not the
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Markov Chain Monte Carlo estimation process applied to each data set. Scenario 2 and 4

took almost twice the time as scenario 1 and 3 because the number of potential error prone

data sets was significantly larger. If I assume that only one job was run at a time then the

maximum time needed to complete all of scenario 1 and 3 was between 80 and 160 days

and the maximum time needed to complete all of scenario 2 and 4 was between 160 and 320

days. However, depending on the computational needs of other Cray users, up to 10 jobs

could have been run simultaneously, thus reducing the overall computational time for this

simulation study to a more reasonable but still lengthy amount of time.

4.2.2 Informative Data

In classical capture recapture studies a higher detection probability provides more informa-

tion about the population. However, with the presence of errors, especially with respect to

duplicate sightings, a higher detection probability provides more opportunities to make these

errors, and in such situations there is a huge number of ways to do so. Replications in the

multiple matching processes are where the statistical evidence of these errors come from and

since these matching processes are made independently, the chances of the matchers making

the exact same errors are low. Thus, in a sense, there is actually less information about

each sightings true capture history because of this and there is certainty less information

available for use in estimation. One potential way to counteract this dilution of evidence is to

increase the number of matching decisions processes, or replications. However, the amount

of replications needed to be beneficial is not known and I do not explore this further in this

dissertation.

Let’s look at an example. Suppose that the true number of duplicate sightings is 6 (implying

the number of duplicate individuals is 3). If the first match process yields 4 true positive

matches (recall that the errors are defined in terms of sightings and not individuals), there

are
(

3
2

)
= 3 ways to do that. Note that if one duplicate sighting is determined to be a
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true positive then its complimentary sighting is automatically also determined to be a true

positive. If the second match process also calls for 4 true positive matches, there are again(
3
2

)
= 3 ways to do that. The chances that the two match processes make the same true

positive matches is 1
3
× 1

3
= 1

9
, due to the independence of the matching process. Now suppose

that the true number of duplicate sightings is 30 (thus the number of duplicate individuals

is 15). If the first match process makes 4 true positive matches, there are
(

15
2

)
= 105 ways

to make those true positive matches. If the second match process also makes 4 true positive

matches there are again
(

15
2

)
= 105 ways to make those matches. The chances of match

process 1 and match process 2 making the same true positive matches is 1
105
× 1

105
= 1

11025
.

Therefore, the higher the detection probability (i.e. the more duplicate sightings) with the

presence of errors, the lower the chances of the matchers making identical match decisions

and thus less information is provided for estimation of the parameters, all else being equal.

The above situation can be seen in the results discussed below, where scenario 1 and 2 (with

lower detection probabilities) overall perform better than scenario 3 and 4 (with higher

detection probabilities).

4.2.3 Summary Statistics and Visual Graphics

I calculated the coverage rates (for 95% credible intervals) for the estimates from each sim-

ulated data set. That is, I found the percentage of 95% credible intervals that contain the

true effective parameter value for each case in each scenario. The results for each scenario

can be found in Tables 4.3, 4.4, 4.5, and 4.6. Figures 4.2, 4.3, and 4.4 provide visual compar-

isons. Figure 4.2 separately graphs coverage rates for estimating each parameter, spread out

across cases in the x-axis, with different symbols for each scenario. Figure 4.3 graphs cov-

erage rates across effect parameter on the x-axis with each symbol and color representing each
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Table 4.3: 95% Coverage Rates of 95% credible intervals for α̃s, α̃d, β̃ and p̃ for the 8 cases
in scenario 1.

Scenario 1
Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 Case 7 Case 8

α̃s .936 .898 .872 .888 .918 .933 .900 .806
α̃d .902 .887 .915 .933 .900 .885 .931 .942

β̃ .924 .943 .956 .938 .912 .948 .900 .901
p̃ .940 .933 .936 .934 .941 .941 .940 .910

Table 4.4: 95% Coverage Rates of 95% credible intervals for α̃s, α̃d, β̃ and p̃ for the 8 cases
in scenario 2.

Scenario 2
Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 Case 7 Case 8

α̃s .928 .865 .861 .848 .937 .936 .903 .755
α̃d .890 .886 .910 .898 .895 .887 .906 .918

β̃ .936 .916 .903 .870 .924 .935 .890 .829
p̃ .954 .929 .923 .920 .952 .951 .951 .886

case and scenario. Figure 4.4 separately graphs coverage rates for each effective parameter

across scenario on the x-axis. The different colors represent the different cases.

As I have stated previously, I simulated 80,000 data sets. Checking the performance of all

the 80,000 data sets is not practical. Instead, I randomly chose one data set for case 1 and

case 8 for each scenario, and provided each effective parameters trace plots. Case 1 and

case 8 where chosen to represent one that resulted in decent estimates and one that resulted

in poor estimates, respectively. These can be found in Figures 4.5, 4.6, 4.7, 4.8, 4.9, 4.10,

4.11, and 4.12. What is shown in these figures is broadly similar to what is seen with the

remaining unshown cases.
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Table 4.5: 95% Coverage Rates of 95% credible intervals for α̃s, α̃d, β̃ and p̃ for the 8 cases
in scenario 3.

Scenario 3
Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 Case 7 Case 8

α̃s .912 .860 .756 .828 .903 .921 .868 .662
α̃d .889 .892 .878 .904 .902 .838 .900 .927

β̃ .920 .910 .855 .879 .919 .913 .877 .782
p̃ .944 .909 .823 .911 .945 .944 .936 .754

Table 4.6: 95% Coverage Rates of 95% credible intervals for α̃s, α̃d, β̃ and p̃ for the 8 cases
in scenario 4.

Scenario 4
Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 Case 7 Case 8

α̃s .916 .810 .750 .773 .935 .934 .880 .568
α̃d .891 .910 .862 .924 .886 .913 .913 .885

β̃ .913 .890 .828 .856 .895 .921 .876 .679
p̃ .940 .901 .848 .888 .942 .942 .936 .720

4.2.4 Scenario 1 Results

Based on Table 4.3 and Figures 4.2, 4.3 and 4.4 estimation of each effective parameter in

scenario 1 is relatively successful for most parameters in most cases. Although coverage

rates are generally a bit lower than the target 95%, the outcomes are not too bad, especially

considering that my statistical model is the first of its kind to deal with the type of data

described here.

Model Performance

The trace plots found in Figure 4.5 and Figure 4.6, without burn-in, for case 1 scenario 1

and case 8 scenario 1 look good and don’t suggest any problems with mixing or convergence.
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4.2.5 Scenario 2 Results

Based on Table 4.4 and Figures 4.2, 4.3 and 4.4, estimating the effective parameters in sce-

nario 2 shows variable performance with somewhat lower coverage rates and the range of the

coverage rates is more than for scenario 1.

Effective Parameter Results

Coverage rate performance for α̃s is best for cases 1, 5, 6 and 7 and worst in cases 2, 3, 4

and 8. Coverage rate performance for α̃d is best for cases 3, 4, 5, 7 and 8 and worst in cases

1, 2 and 6. Coverage rate performance for β̃ is best for cases 1, 2, 3, 5 and 6 and worst in

cases 3, 4 and 8. Coverage rate performance for p̃ is best for all but case 8.

Case Results

While examining each effective parameters performance is important, examining each case

and how the effective parameters collectively perform is a better indicator of overall perfor-

mance.

Cases 1, 5, and 7 provided good results, cases 2, 6 and 3 provided fairly decent results and

cases 4 and 8 provided poor results. What distinguished cases 1, 5 and 7 from the other

cases is that their overall error rates where lower than the overall error rates for the other

cases. And as the overall error rates increase the performance tends to decrease. The one

exception is case 3. Case 3 has the highest overall error rate of all the cases but performed

slightly better than case 4 and much better than case 8. This is an interesting results which

will need further exploration in future studies.
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Model Performance

Just like the with scenario 1, the trace plots for scenario 2, found in Figures 4.7 and 4.8,

look good and don’t suggest any problems with mixing or convergence.

4.2.6 Scenario 3 Results

Less than adequate performance is seen in scenario 3 which has coverage rates ranging from

fairly good to poor in some of the hardest cases as seen in Table 4.5 and Figures 4.2, 4.3 and

4.4.

Effective Parameter Results

Coverage rate performance for α̃s is best for cases 1, 5, and 6 and worst in cases 2, 3, 4, 7

and 8. Coverage rate performance for α̃d is best for cases 4, 5, 7 and 8 and worst in cases

1, 2, 3, and 6. Coverage rate performance for β̃ is best for cases 1, 2, 5 and 6 and worst in

cases 3, 4, 7 and 8. Coverage rate performance for p̃ is best for all but cases 3 and 8.

Case Results

Cases 1, and 5 outperform cases 2, 6 and 7 which then outperformed cases 3, 4 and 8. Similar

to scenario 2, scenario 3’s performance decreases as the overall error rates increase. Scenario

3 also shows that as the β̃ value increase (simultaneously with the increase in overall error

rates) the performance decreases. Notice that scenario 3 doesn’t perform as well as scenario

1 and 2. This is attributed to the discussion in Section 4.2.2, stating that data sets with

larger detection probability (i.e. the data set has more duplicate sightings) don’t provide as

much statistical evidence as data sets with lower detection probability, unless more matching

opportunities are available.
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Model Performance

Trace plots for scenario 3, case 1, found in Figure 4.9 look good, just like with the trace

plots for scenario 1 and 2. However, the trace plots for case 8 found in Figure 4.10 show

more jumpy behavior. Note that case 1 has overall lower error rates for duplicate sightings

than does case 8. The poor performance for case 8 is the result of the match processes not

having many overlapping matches, that is, there are not a lot of replicate match decisions

between the matching processes, and the MCMC process is having trouble converging to a

configuration.

4.2.7 Scenario 4 Results

Performance in scenario 4 are pretty similar to scenario 3 in all cases for all parameters with

coverage rates ranging from fairly good to poor in some of the hardest cases.

Effective Parameter Results

Coverage rate performance for α̃s is best for cases 1, 5, and 6 and worst in cases 2, 3, 4, 7

and 8. Coverage rate performance for α̃d is best for cases 2, 4, 6, 7 and 8 and worst in cases

1, 3, 5, and 8. Coverage rate performance for β̃ is best for cases 1, 2, 5 and 6 and worst in

cases 3, 4, 7 and 8. Coverage rate performance for p̃ is best for cases 1, 2, 5, 6 and 7 and

worst for cases 3, 4 and 8.

Case Results

Cases 1, 5 and 6 had the best performance out of all the cases in scenario 4. Cases 2 and

7 performed decently while cases 3, 4 and 8 performed very poorly. These results are very

similar to the results for scenario 3 with respect to the model performance for each case.
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However, overall scenario 3 out performed scenario 4 in all cases except for case 6. More

specifically, estimation of α̃d improves quit a bit. Its coverage rate goes from .838 in sce-

nario 3 to .913 in scenario 4. This seems counter-intuitive and further exploration of this

phenomenon is needed.

Model Performance

Trace plots for scenario 4, case 1 and case 8, found in Figure 4.11 and Figure 4.12 show more

jumpy behavior. This behavior is explained in Section 4.2.5.3 for scenario 3. Again, this is

the reason that overall the coverage rates for scenario 4 are not as good as the coverage rates

for scenario 1 and 2.

4.3 Summary

My model’s performance was tested against 80,000 simulated data sets with varying effective

parameter values. Performance for scenarios 1 and 2 was fairly good with almost all coverage

rates being 90% and above. Performance for scenarios 3 and 4 was adequate but the number

of data sets with high amount of errors is overwhelming and replication of matches between

raters is low. This lack of replication between the matching processes proves difficult for

mixing among configurations and discovery of highly likely configurations. Overall, though, I

believe my model performed reasonably well and proves that detection probability estimation

is possible even in the presence of errors in very complex capture-recapture datasets.
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Figure 4.1: Plot of probabilities of w1,1 and w2,1 pairs (circle areas) for scenario 1. The five
pairs of values examined in my trials correspond to the red triangles.
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Figure 4.5: Trace plots for a simulated data set in scenario 1 case 1.
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Figure 4.6: Trace plots for a simulated data set in scenario 1 case 8.
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Figure 4.7: Trace plots for a simulated data set in scenario 2 case 1.
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Figure 4.8: Trace plots for a simulated data set in scenario 2 case 8.

102



0.
00

0.
10

0.
20

0.
30

Trace Plot for α~ .s

Iteration

α~  .s

20000 30000 40000

0.
00

0.
10

0.
20

0.
30

Trace Plot for α~ .d

Iteration

α~  .d

20000 30000 40000

0.
00

0.
10

0.
20

0.
30

Trace Plot for β~

Iteration

β~

20000 30000 40000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Trace Plot for p~

Iteration

p~

20000 30000 40000

Figure 4.9: Trace plots for a simulated data set in scenario 3 case 1.
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Figure 4.10: Trace plots for a simulated data set in scenario 3 case 8.
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Figure 4.11: Trace plots for a simulated data set in scenario 4 case 1.
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Figure 4.12: Trace plots for a simulated data set in scenario 4 case 8.
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CHAPTER 5

BOWHEAD WHALE EXAMPLE

5.1 Data

I applied my model described in Chapter 3 to a subset of the 2010 bowhead whale survey

data. In 2010, the raw sightings data were matched on three separate occasions. The three

matching efforts were completed in May, August and September/October. For my case

study, I chose a 2.5 hour time interval that had similar w1,1 and w2,1 values as scenarios 1

and 3 in my Monte Carlo simulations. This time interval was on April 8, 2010, between the

hours of 14:15 and 16:45. During this period there were 22 sightings at the South perch and

25 sightings the North perch. Without loss of generality I refer to the South perch as perch

1 and the North perch as perch 2. Thus, w1,1 = 22 and w2,1 = 25.

Table 5.1 shows the matching data for perch 1, and Table 5.2 shows the matching data for

perch 2. These tables provide the exact same information and only one is needed for analysis.

Perch 1 sightings are identified using unique tags whose values range from 1026 to 1047 and

perch 2 sightings are identified using unique tags whose values range from 10001 to 10025.

The columns Rep 1, Rep 2 and Rep 3 represent the matching decisions for May, August, and

September/October efforts respectively. In these columns, an index number identifies the

sighting at the opposite perch that researchers believed to be the same whale as the sighting

at the current perch (first column). A 0 indicates that the researchers believed that whale

was only seen once. For example, in Table 5.1 sighting 1029 from perch 1 was thought to be

the same whale as sighting 10012 from perch 2 in matching decision processes 1 and 3 (Rep

1 and 3 respectively) and thought to be sighted only at perch 1 in the second match decision

process (Rep 2).
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Table 5.1: Bowhead Data; 4/8/10; 14:15-16:45; Perch 1.

Perch 1 Sightings Rep 1 Rep 2 Rep 3
1026 10001 10001 10001
1027 10003 10003 10003
1028 10007 10007 10007
1029 10012 0 10012
1030 10005 10005 10005
1031 10023 10006 10006
1032 0 0 10023
1033 10002 10002 10002
1034 10004 0 0
1035 0 10004 10004
1036 0 10004 10004
1037 0 0 10013
1038 10025 10025 10025
1039 0 0 10009
1040 0 0 0
1041 0 0 0
1042 0 0 0
1043 0 0 0
1044 0 0 0
1045 0 0 0
1046 0 0 0
1047 0 0 0
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Table 5.2: Bowhead Data; 4/8/10; 14:15-16:45; Perch 2.

Perch 2 Sightings Rep 1 Rep 2 Rep 3
10001 1026 1026 1026
10002 1033 1033 1033
10003 1027 1027 1027
10004 1034 1035 1035
10005 1030 1030 1030
10006 0 1031 1031
10007 1028 1028 1028
10008 0 1036 1036
10009 0 0 1039
10010 0 0 0
10011 0 0 0
10012 1029 0 1029
10013 0 0 1037
10014 0 0 0
10015 0 0 0
10016 0 0 0
10017 0 0 0
10018 0 0 0
10019 0 0 0
10020 0 0 0
10021 0 0 0
10022 0 0 0
10023 1031 0 1032
10024 0 0 0
10025 1038 1038 1038
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5.2 Analysis

I applied my model described in chapter 3 to analyse the data. I used the same prior dis-

tributions, proposal distributions and initial starting values for each parameter as I did for

the Monte Carlo simulations. Recall that in my simulations I set the initial configuration

equal to the matching decisions made in the first matching process. I did the same for the

bowhead data. I ran the MCMC sampler for 40,000 iterations and then used a burn-in of

20,000.

5.3 Results

The trace plots for α̃s, α̃d, β̃, and p̃ are shown in Figure 5.1. The red horizontal lines are the

median posterior values for the MCMC estimates of each effective parameter after a burn-in

period of 20,000 iterations. The trace plots for each effective parameter seem to show satis-

factory mixing and appear to explore each effective parameter’s space well. The acceptance

rates for α̃s, α̃d, β̃, p̃ and configuration are .351, .247, .395, .223 and .0018, respectively. The

rates for α̃s, α̃d, β̃, and p̃ fall within a desirable range (Givens and Hoeting, 2005) and are an-

other indicator that the MCMC chain is mixing well. The acceptance rate for configuration

is lower than the desired range. The current proposal distribution proposes configurations

very similar to the current configuration, however there are a vast amount of potential con-

figurations near the current one where most won’t be supported by the data. This could be

one reason for the low acceptance rate. Perhaps a different proposal distribution could be

explored making less realistic configurations less likely to be proposed. That would require

a new set of decision rules to determine which are less realistic configurations, however, that

type of information is not clearly known. While the current proposal distribution results

in a low acceptance rate, it does have the ability to explore realistic configurations. The
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autocorrelation plots in Figure 5.3 show lingering lag correlation. This could be reduced by

subsampling the chain, although I didn’t pursue that approach.

Histograms of the posterior distributions of α̃s, α̃d, β̃, and p̃ can be found in Figure 5.2, and

their respective summary statistics can be found in Table 5.3. The red vertical lines in the

histograms indicate the posterior medians for each effective parameter. The histograms for

α̃s and p̃ are fairly symmetric, while the histograms for α̃d and β̃ show slight skewness to

the left. This behavior is also apparent in the summary statistics with the mean for α̃d and

β̃ having a slightly larger value than their median.

The mean and median for α̃s, α̃d, and β̃ are .104 and .107, .044 and .049, and .109 and

.114 respectively. These results indicate that the researchers are more likely to falsely match

single sightings (whales) and fail to correctly match duplicate sightings to their complimen-

tary sighting, while they are less likely to mis-match a duplicate sighting to another sighting

other than its complimentary one. The mean and median for p̃, .429 and .427, are near

the mean detection probability (.5) that was calculated in our first approach in Chapter

2. It is reassuring that - while each approach accounts for the recapture errors in different

ways - both provide similar estimates of detection probability to the level of resolution likely

attainable from such a small sample size used here.

The 95% credible intervals from each parameter’s posterior distributions can be found in

Table 5.3. The range for α̃s, α̃d, β̃, and p̃ are .137, .102, .161, and .273 respectively. These

credible intervals are sufficiently narrow that they provide useful information about their

respective parameters. The 95% posterior credible interval for p̃ (.296, .569) is narrower

than the 95% confidence interval calculated from our first method in Chapter 2.
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Table 5.3: Posterior distribution summary statistics.

Parameters 2.5% 50% 95% Mean
α̃s .048 .104 .185 .107
α̃d .0102 .044 .112 .049

β̃ .046 .109 .207 .114
p̃ .296 .427 .569 .429
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Figure 5.1: Trace plots for α̃s, α̃d, β̃, and p̃.
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Figure 5.2: Histograms for posterior samples for α̃s, α̃d, β̃, and p̃.
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Figure 5.3: Autocorrelation plots for MCMC simulations for α̃s, α̃d, β̃, and p̃.
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5.4 Sensitivity Analysis for Configurations

In general, mixing among configurations is the most challenging part of the MCMC analysis

(see, e.g., Sections 4.2.6 and 4.2.7). To investigate the issue here, I analyzed the bowhead

whale data setting the initial configuration at two extreme cases. The first extreme starting

point was the configuration without any duplicate individuals. The other extreme value

was one (out of many) configuration with the maximum number (22) of possible duplicate

individuals. The reason I chose these as extreme cases is because these are the configurations

that most likely would be the furthest from the latent configuration.

5.4.1 Results for The First Extreme Configuration

For the first sensitivity test I ran my model using the configuration with no duplicate in-

dividuals as my initial configuration; the starting values for the effective parameters were

unchanged. Mirroring the first analysis, I used 40,000 iterations and a burn-in of 20,000.

The results are shown in Figure 5.4 (trace plots for each effective parameter) and Figure

5.5 (the posterior histograms for each effective parameter). The trace plots show that the

model is still exploring the configuration space and hasn’t approached any equilibrium state

yet. This is indicated by the sudden large jumps in the trace line. Specifically, it appears

that the MCMC simulations become “stuck” in one local region of configuration space until

a certain set of values for the other parameters allows the chain to “break out” and start

exploring other regions. It appears that more MCMC iteration may be needed to achieve

full mixing.

The acceptance rates for α̃s, α̃d, β̃, p̃ and configuration are .360, .230, .320, .210 and .0026

respectively. These acceptance rates are similar to the original analysis. However, the QQ

plots between the results of the original analysis for all effective parameters and the currents

results for all effective parameters shown in Figure 5.6 indicate that the estimated posterior
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distributions for the original analysis and the current analysis are different. The QQ plots for

β̃ and p̃ indicate similar shapes to their respective posterior distributions though differing in

location. The QQ plot for α̃d shows that the posterior distributions between the two results

are practically the same. This is a very good result. Finally, the QQ plot for α̃s shows

different posterior distributions for the two results.

5.4.2 Results for the Second Extreme Configuration

Next, I ran my model using the configuration with the maximum number of duplicate in-

dividuals as my initial configuration. I kept the other starting values for the parameters

unchanged. Again, I first ran my MCMC analysis with 40,000 iterations and a burn-in of

20,000. These results can be found in Figure 5.7 and Figure 5.8. Figure 5.7 shows the trace

plots for each effective parameter and Figure 5.8 shows posterior histograms for each effective

parameter. Similar to the results for the first extreme case, the trace plots show that the

chain is still sticking in the configuration space.

The acceptance rates for α̃s, α̃d, β̃, p̃ and configuration are .344, .220, .334, .218 and .018

respectively. These acceptance rates are similar to the original analysis for all but the con-

figurations. The QQ plots between the results from the original analysis and the currents

results for all effective parameters shown in Figure 5.6 indicate that the estimated posterior

distributions for the original analysis versus the current analysis are different except for α̃d.

The QQ plots for β̃ and p̃ indicate similar shapes to their respective posterior distributions

though differing in location except in the upper tails of each distribution. Once there, the

distributions are the same. The QQ plot for α̃d show that the posterior distributions between

the two results are practically the same. Finally, the QQ plot for α̃s show different posterior

distributions for the two results.
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Figure 5.4: Trace plots for α̃s, α̃d, β̃, and p̃ for extreme case 1; 40,000 iterations, burn-in
20,000.
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Figure 5.5: Histograms for α̃s, α̃d, β̃, and p̃ for extreme case 1; 40,000 iterations, burn-in
20,000.
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Figure 5.6: QQ plot comparing the results from the original analysis and the first extreme
configuration analysis for each parameter.
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Figure 5.7: Trace plots for α̃s, α̃d, β̃, and p̃ for extreme case 2; 40,000 iterations, burn-in
20,000.
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Figure 5.8: Histograms for α̃s, α̃d, β̃, and p̃ extreme case 2; 40,000 iterations, burn-in 20,000.
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Figure 5.9: QQ plot comparing the results from the original analysis and the second extreme
configuration analysis for each parameter.
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Table 5.4: Posterior distribution summary statistics when using Rep 1, Rep 2 and Rep 3 as
initial configuration.

Rep 1 Rep 2 Rep 3
Effective Parameters 2.5% 50% 95% Mean 2.5% 50% 95% Mean 2.5% 50% 95% Mean

α̃s .048 .104 .185 .107 .052 .112 .226 .118 .046 .119 .262 .129
α̃d .010 .044 .112 .049 .009 .043 .112 .048 .010 .046 .125 .052

β̃ .046 .109 .207 .114 .037 .103 .199 .107 .027 .101 .224 .106
p̃ .296 .427 .569 .429 .265 .419 .563 .418 .228 .412 .575 .409

5.4.3 Sensitivity Analysis for Realistic Configurations

Due to the poor results seen when the initial configuration is considered extreme, I ran addi-

tional tests using the other two matching process decisions as initial configurations (keeping

everything else the same as the original analysis) to show that with realistic starting config-

urations my model performs well.

To compare the results for the three different initial configurations (which are Rep 1, Rep

2 and Rep 3 respectively) I created QQ plots for all combinations (Figure 5.10, Figure 5.11

and Figure 5.12) and provided the posterior distributions summary statistics for the three

runs (Table 5.4). The QQ plots show that for α̃d, β̃ and p̃ the posterior distributions are

practically the same. This result is also seen in the summary statistics for those three

parameters for all three runs. The QQ plots for each of the three combinations of results

for α̃s show that the posterior distributions are similar except for the upper tail portion of

the distribution. These results are also apparent in the summary statistics for α̃s for each

run. The 2.5% and 50% quantiles are very similar but the 95% quantiles increase as initial

configuration increases from Rep 1 to Rep 3.
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Figure 5.10: QQ plot comparing the results from the original analysis and Rep 2 as initial
configuration for each parameter.
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Figure 5.11: QQ plot comparing the results from the original analysis and Rep 3 as initial
configuration for each parameter.
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Figure 5.12: QQ plot comparing the results from Rep 2 as initial configuration and Rep 3
as initial configuration for each parameter.
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Table 5.5: Initial starting values for the three combinations.

Effective Parameters Range of Possible Values Lower Extreme Mid Range Upper Extreme
α̃s (0, .3) .05 .15 .25
α̃d (0, .3) .05 .15 .25

β̃ (0, .3) .05 .15 .25
p̃ (0, 1) .1 .5 .8

5.4.4 Discussion of Sensitivity Analysis Results for Configurations

From this sensitivity analysis I found that my model can be sensitive to the chosen starting

configurations, if the configuration is unrealistically extreme. However, when MCMC was

started from more realistic points, the MCMC behavior was excellent.

The approach that I would take when analysing data using my model would be to use re-

alistic initial configurations. Any of the decisions made in any match decision process seem

to work well and provide similar results. I would be hesitant when assigning the extreme

configurations not remotely plausible. Overall, these results are promising, especially with

respect to the estimation of α̃d, β̃ and p̃.

5.5 Sensitivity Analysis for the Effective Parameters

Next, I will run a sensitivity analysis on the initial starting values for α̃s, α̃d, β̃ and p̃ while

keeping the initial starting configuration the same as the original analysis. I focus on three

combinations of initial starting values. The first will have all effective parameters near the

lower extreme of their respective possible values, the second will have all near the middle of

their respective possible values, and the third will have all near the higher extreme of their

respective possible values. Table 5.5 provides the range of possible values, lower extreme,

mid range, and upper extreme for each effective parameter. Again, like the original analysis

I use 40,000 iterations with a burn-in of 20,000.
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Table 5.6: Posterior distribution summary statistics for the lower extreme, upper extreme
and mid range initial starting values for each effective parameter.

Lower Extreme Upper Extreme Mid Range
Effective Parameters 2.5% 50% 95% Mean 2.5% 50% 95% Mean 2.5% 50% 95% Mean

α̃s .046 .184 .290 .175 .049 .108 .200 .112 .048 .104 .185 .108
α̃d .002 .034 .108 .040 .010 .043 .113 .048 .010 .044 .112 .049

β̃ .002 .062 .202 .072 .044 .107 .206 .113 .046 .109 .207 .114
p̃ .179 .345 .550 .350 .289 .423 .567 .426 .296 .427 .570 .429

5.5.1 Results Sensitivity Analysis for the Effective Parameters

I compare the three different analyses to the original results. Recall that the initial starting

values for α̃s, α̃d, β̃ and p̃ in the original analysis were .1, .1, .25 and .5 respectively. Table

5.6 provides the posterior distribution summary statistics for each analysis (including the

original). Figures 5.13, 5.14, and 5.15 are the QQ plots comparing the original analysis

results to the other three analyses.

The results for the lower extreme combination vary significantly from the original results

except for α̃d. Estimation for α̃s in the lower extreme combination is higher than for the

original analysis. The estimation for β̃ and p̃ is lower for the lower extreme combination

than the original analysis. The results for the upper extreme combination and the mid range

combination provided almost identical results compared to the original analysis. These

results indicate that a longer chain or improved mixing is needed.

5.5.2 Discussion of Sensitivity Analysis Results for Effective Parameters

From this sensitivity analysis I found that my model can be sensitive to the chosen starting

effective parameter values, especially if all initial values are in the lower extreme of their

respective possible values. However, when MCMC was started from more realistic points,

the MCMC behavior was excellent.
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The approach that I would take when analysing data using my model would be to use ini-

tial values not at any extreme. While the upper extreme combination performed well for

this small data set that might not always be the case. Overall, these results are promising,

especially with respect to the estimation of α̃d, β̃ and p̃.
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Figure 5.13: QQ plot comparing the results from the original analysis and the lower extreme
analysis for each parameter.
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Figure 5.14: QQ plot comparing the results from the original analysis and the upper extreme
analysis for each parameter.
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Figure 5.15: QQ plot comparing the results from the original analysis and the mid range
analysis for each parameter.
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CHAPTER 6

CONCLUSION

In this dissertation I provided two novel approaches to estimating detection probability in

the presence of capture, recapture and animal identification errors. In this concluding chap-

ter I will review the methods presented in the previous chapters and discuss directions for

future work in this area of study.

6.1 Review

Chapter 2 described the approach for modeling capture-recapture histories, with weights to

account for three sources of identification or match uncertainty; namely capture - conditional

sightings, availability and match uncertainty via confidence ratings. I also explored many

methods on how to handle group size inconsistencies within chains. My approaches were

described with a detailed application to the whale survey data. The sample mean detection

probability for my recommended analysis of the 2011 bowhead data is .501. What is most

interesting about this chapter is that it presents a new way to address uncertainties that are

often present but rarely acknowledged.

Chapter 3 discussed my second approach which includes the matching errors rate parameters

into the likelihood. Due to the constraints imposed by the matching processes, I introduced

the notation of effective parameters. My model estimates these effective parameters, which

pertain to the probabilities of false positive and false negative matches. I took a Bayesian

approach to parameter estimation treating the configurations of capture histories as a pa-

rameter to be estimated. An extensive simulation study to evaluate the performance of my

second approach was conducted in Chapter 4. The simulations tested four different scenar-

ios, where each of the scenarios varied based on detection probability and the true number

of whales passing by in one time interval. Estimation for the scenarios with lower detection
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probabilities outperformed scenarios with higher detection probabilities. These results are

due to the fact that in the presence of errors a higher detection probability provides less

statistical information for parameter estimation, all else being equal. The more sightings

there are the more potential errors there are and thus less statistical evidence is available.

Even in the face of these difficulties my model performs satisfactorily, especially considering

the complexity of the problem.

Chapter 5 applied my second approach to a portion of the bowhead data. A sensitivity

analysis was conducted to investigate how my model reacts to several different initial pa-

rameter values. I found that when extreme values are used my model has a difficult time

mixing and converging. Potential fixes to this problem would be to increase the number of

iterations and or the burn-in period, or increase the number of matching decision processes.

The results with realistic starting values provided similar results to the method conducted

in Chapter 2. The mean for the posterior distribution of effective detection probability is

.429 with a 95% credible of (.296, .569). It is reassuring that - while each approach ac-

counts for the recapture errors in different ways - both provide similar estimates of detection

probability to the level of resolution likely attainable from such a small sample size used here.

6.2 Future Work

There is a lot of work that still can be explored to improve and advance my second approach

for analysis of capture-recapture studies in the presence of capture, recapture and animal

identification errors. First, an exploration of a new proposal distribution for configurations

that explores more realistic configurations more often. This may improve mixing and the

results when initial parameter values are extreme. Second, the model can be expanded to

assume that detection probability (and even the error probabilities) depend on covariates,

analogous to the (Huggins, 1989) model. We know from my weighted likelihood method that,
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for example, lead condition and distance from perch affects a whales detection probability.

Also, it would be very interesting to determine, for example, if the probability of a false

negative match depended on whale swim speed. Third, determining how best to apply the

results estimated from my second approach to provide an estimate of abundance is needed.

Having surmounted the major challenge of developing and testing suitable models, I look

forward in the coming years to exploring ideas like these.
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