Finance & Real Estate

Personal and Professional Business Explorations in Finance and Real Estate

Financial Risk Management

Coherent Risk Measure

A set of "risk-measure axioms"

"Well-behaved"

- Monotonicity: $V(Y) \le V(X) \rightarrow \rho(X) \le \rho(Y)$
- Translation invariance: $\rho(X+n) = \rho(X)-n$
- (Positive) homogeneity: $\rho(hX) = h \rho(X), h>0$
- Subadditivity: $\rho(X+Y) \le \rho(X) + \rho(Y)$
- Interpret the risk measure ρ : minimum cash that has to be added to a *risky* position to make this risky position acceptable
- VaR not sub-additive
 - Temptation to split up accounts or firms

Problem of VAR

- VaR is non-subadditive in general
 - E.g., two identical bonds A and B, each with a default probability of 4% and a loss of 100 if defaults
 - 95% VaR for A? for B?
 - Assuming independence, what is 95% VaR of the portfolio (A+B)?
 - How does the portfolio VaR compare to the sum of each bond's VaR?
 - VaR is sub-additive only in special situations (e.g., Normal distribution)

Why VAR is not Necessarily Subadditive

- Consider an investment in a corporate bond with face value of \$100,000 and default probability of 0.5%; the portfolio has 3 such bonds, with independent defaults
- For each bond, returns are -\$100,000 with probability of 0.5% and \$0 with prob of 99.5%
- Joint loss distribution is:

S	tate	Probability	<u>Payoff</u>
N	o default	$0.995^3 = 0.985075$	\$0
1	default	$3*0.005*0.995^2 = 0.014850$	-\$100,000
2	defaults	$3*0.005^2*0.995=0.000075$	-\$200,000
3	defaults	$0.005^3 = 0.0000001$	-\$300,000

Computation of VAR

- Lowest loss (as positive value) such that the probability of losing more is at least 99%
- VAR for 1 bond is \$0
- VAR for 3-bond portfolio is \$100,000

Non-Subadditive VAR

- Adding up the 3 VARs gives \$0
- Portfolio VAR=\$100,000
- Thus $\rho(\Sigma W) > \Sigma \rho(W)$: VAR is not subadditive
- This may be an issue for concentrated portfolios, or at the level of an option trader
- This is less of an issue, however, for large portfolios
 - most empirical work shows little difference in classifications based on VAR or ETL
 - no bank reports ETL

Problem of VAR

- Does not provide information of the actual values which might be expected in the extremes, only the value associated with a given percentile
 - A threshold value of loss yet not a expected value of loss
 - Focuses on the "good states" (the 99 days) rather than the "bad scenarios" (that 1 day)
- Moral hazard
 - Traders/managers "game" the performance target as extreme tail losses do not affect VaR

More on VaR Measure of Risk

- Why still use VaR?
 - Coherent for elliptical distributions
 - Central limit theorem for large portfolios
- More reasons for the popularity
 - A "common" measure across positions and risk factors
 - "Aggregate" and "holistic": taking account of different risk factors
 - "Probabilistic": as opposed a fixed number
 - A good "unit of measure"
- Other risk measures?

Quantile-Based Risk Measures

- What is Quantile-based risk measure (QBRM)?
- Why QBRM?
 - Try to maintain the strengths of VaR
 - Based on the tail of the distribution
 - Probabilistic, universal measure
 - But overcome some major problems
 - Coherent
 - Gives information on the tail events
 - Other considerations

Expected shortfall/tail loss (Conditional VaR)

- Take a summary measure of the tail area average of the worst 1- α losses
- Discrete case: $ES_{\alpha} = \frac{1}{1-\alpha} \sum_{p=\alpha}^{1} (pth \ worst \ outcomes) \times (respective \ probability)$
- Continuous case: $ES_{\alpha} = \frac{1}{1-\alpha} \int_{\alpha}^{1} F^{-1}(p) dp$
- "Equivalently": $E[X | X > q_{\alpha}(X)]$
- Other names: expected tail loss, conditional VaR, etc.

Expected shortfall (Conditional VaR)

- Coherence of ES
 - Consider the discrete case
 - $ES_{\alpha}(X) + ES_{\alpha}(Y) = Mean \text{ of } N\alpha \text{ worst cases of } X + Mean \text{ of } N\alpha \text{ worst cases of } Y \ge Mean \text{ of } N\alpha \text{ worst cases of } (X+Y) = ES_{\alpha}(X+Y)$
 - For the continuous case, take to the limit as $N \rightarrow \infty$

- Coherent risk measures as a result of scenario analyses
- Any shortcomings of ES?

Expected shortfall (Conditional VaR)

- Expected loss conditional on going out in the left tail
- This is also called "Conditional VaR"
- Advantages
 - Better information on possible tail losses
 - Some better properties (sub-additive)
- Disadvantages
 - Sensitive to outliers
 - Difficult to estimate (for high confidence numbers)
 - More difficult to explain

Example: Calculation of 1-day, 99% VaR for a Portfolio on Sept 25, 2008

Equal Weight Model

•									
Simulation Approach									
	DJIA	FTSE 100	CAC 40	nikkei 225					
DJIA	1	7 702 100	C/1C 40	maker 225					
FTSE 100	0.489105943	1							
CAC 40	0.495709627		1						
nikkei 225	-0.061899208								
	DJIA	FTSE 100	CAC40	Nikkei 225		밀	FT	٥	Z
Return	0	0	0	0	DJIA (Equal	1.000			
Gross Return	1	1	1	1	FTSE 100 (E	0.489	1.000		
					CAC40 (Equ	0.496	0.918	1.000	
Portfolio Loss	o				Nikkei 225	-0.062	0.201	0.211	1.000
Forecast Name	Portfolio								
Standard Deviation	94.22								
Variance	8,878.11								
1%	-211.44								
One-Day 99% VaR	211.44								
Conditional Shortfall	0								
Conditional VAR	o o								
Forecast Name	Conditional VAR								
Mean	-250.72								

Example: Calculation of 1-day, 99% VaR for a Portfolio on Sept 25, 2008

• EWMA

Simulation Approach									
	DJIA	FTSE 100	CAC 40	nikkei 225					
DJIA	1								
FTSE 100	0.611	1							
CAC 40	0.629	0.971	1						
nikkei 225	-0.113	0.409	0.342	1					
	DJIA	FTSE 100	CAC40	Nikkei 225		Ret	3	Ω	롲
Return	ó	0	0	O	Return (EWMA)	1.000			
Gross Return	1	1	1	1	FTSE 100 (EWMA)	0.611	1.000		
					CAC40 (EWMA)	0.629	0.971	1.000	
Portfolio Loss	Ó				Nikkei 225 (EWMA)	-0.113	0.409	0.342	1.00
Forecast Name	Portfolio Loss								
Standard Deviation	204.50								
Variance	41,819.90								
1%	-477.28								
One-Day 99% VaR	477.28								
Conditional Shortfall	0								
Conditional VAR	ō								
Forecast Name	Conditional V	AR							
Mean	-566.81								
One-Day 99% CVaR	566.81								
One-Day 99% CVaR	566.81								

VaR vs. Conditional VaR

- VaR is the loss level that will not be exceeded with a specified probability
- Expected Shortfall (or C-VaR) is the expected loss given that the loss is greater than the VaR level
- Although expected shortfall is theoretically more appealing, it is VaR that is used by regulators in setting bank capital requirements