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ABSTRACT OF DISSERATION
GENERALIZED MIXED EFFECTS MODELS FOR ESTIMATING

DEMOGRAPHIC PARAMETERS WITH MARK-RESIGHT DATA

Mark-resight methods constitute a slightly different type of data than found
in traditional mark-recapture, but they are in the same spirit of accounting for im-
perfect detection towards reliably estimating demographic parameters. Compared
to mark-recapture, mark-resight can often be a less expensive and less invasive al-
ternative in long-term population monitoring programs. However, the mark-resight
estimators developed to date do not provide a flexible framework allowing the ef-
ficient use of covariates in modeling the detection process. information-theoretic
~ modcl sclection and multimodel inference, and the joint cstimation of abundance
and rclated demographic parameters. Herc I develop a scries of mark-resight mod-
cls for the sampling conditions most often encountered in these studics that address
this nced for a more generalized framework.

In Chapter 1, I introduce the the logit-normal mixed effects model (LNE)
for estimating abundance when sampling is without replacement and the number of
marked individuals in the population is known exactly. I compare the model to other
mark-resight abundance cstimators when applied to mainland New Zealand robin
(Petroica australis) data recently collected in Eglinton Valley, Fiordland National

Park. I also summarize its relative performance in simulation cxperiments.

il



It can often be difficult to achieve sampling without replacement or to know the
exact number of marked individuals in a population. In Chapter 2, I address these
limitations of LNE by introducing the (zero-truncated) Poisson-log normal mixed
effects abundance model, (Z)PNE. I demonstrate the use and advantages of (Z)PNE
using black-tailed prairie dog (Cynomys ludovicianus) data rccently collected in
Colorado. I also investigate the cxpected relative performance of the model in
simulation cxpcriments.

In Chapter 3, I extend (Z)PNE to a full-likclihood robust design model analo-
gous to that used in mark-recapturc for the simultancous estimation of abundance,
apparent survival, and transition probabilitics between observable and unobserv-
able states. I illustratc the use of the model with additional New Zealand robin
data collected in Fiordland National Park, New Zealand. I also report on a scries
of simulation cxperiments cvaluating the performance of the model under a variety
of sampling conditions.

Brett T. McClintock
Department of Fish, Wildlife, and Conservation Biology
Colorado State University

Fort Collins, CO 80523
Spring 2008
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Chapter 1

A generalized mixed effects model

of abundance for mark-resight
data when sampling is without

replacement

1.1 Introduction

The mark-resight method for estimating population abundance when the number
of marked individuals is known (White and Shenk, 2001; McClintock and White,
2007) may in many circumstances be considered a reliable, cost-effective alternative
to traditional mark-recapture or index methods based on counts. Mark-resight is
generally most uscful for estimating relatively small, closed populations, and because

animals only necd to be physically captured and marked once prior to resighting sur-



veys, the method is typically less expensive and less invasive than mark-recapture.
The various mark-resight cstimators available include the Joint Hypergeometric esti-
mator (JHE) (Bartmann ct al., 1987), the Minta-Mangel estimator (MME) (Minta
and Mangel, 1989), the Immigration/Emigration Joint Hypergeometric estimator
(IEJHE) (Neal et al., 1993), Bowden’s estimator (BOWE) (Bowden and Kufeld,
1995), and the Beta-Binomial estimator (BBE) (McClintock ct al., 2006). These
primarily differ in their sampling protocols and means of modeling variability in
resighting probabilities. Temporal variation in resighting probabilities is readily
handled by all of the cstimators, but individual heterogencity (where sighting prob-
abilitics vary among animals) is not. Similar to mark-recapture abundance modcls,
individual heterogencity has been particularly problematic and often causes biased
cstimates when not properly accounted for (Otis et al., 1978; Neal ct al., 1993).
JHE requires the standard assumptions of mark-resight estimators for the size
of a closed population: 1) geographic and demographic closure; 2) no loss of marks;
3) no errors in distinguishing marked and unmarked animals; 4) independently and
identically distributed (iid) resighting probabilitics for marked and unmarked an-
imals; 5) homogencity of resighting probabilitics within an occasion; and 6) sam-
pling without replacement within occasions (Neal et al., 1993; White and Shenk,
2001). IEJHE requires the same assumptions of JHE, but geographic closure neced
not be met because the presence of marked animals on the arca surveyed is deter-
mined explicitly (Neal et al., 1993). BOWE relaxes several assumptions of JHE
by allowing temporary movement off the study area, individual heterogeneity, and
sampling with replacement (Bowden and Kufeld, 1995). Some study designs, such
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as those using camera traps or lacking a defined "occasion,” may only be conducted
with replacement and necessitate the use of BOWE. MME has similar assumptions
to BOWE, but its performance in simulation experiments has proven inferior to
the other models allowing individual heterogeneity and its use is not recommended
(White, 1993; White and Shenk, 2001). BBE has the same assumptions of BOWE;,
but sampling must be without replacement. Any heterogeneity modecl requires that
marked animals be individually identifiable, but in some cases this is not feasible
and necessitates the use of JHE. If individually identifiable marks are used, both
BOWE and BBE tolerate less than 100% individual identification given that the
animal is identified as marked (White and Shenk, 2001; Magle et al., 2007). This is
a comnion occurrence in mark-resight studies, and failing to account for unidentified
marks will generally result in overestimmation of abundance due to underestimation
of resighting probabilitics. Heterogeneity models also allow demographic closure
to be violated via mortality independent of mark status, but abundance estimates
produced when this occurs become the population residing in the study arca at the
beginning of the resighting period. As with IEJHE, when geographic closure is vio-
lated via temporary movement off the study area, the interpretation of abundance
cstimatces for the heterogeneity models becomes the total population using the study
area, often termed a “super population” (Kendall et al., 1995). For all mark-resight
estimators, the assumption of iid resighting probabilities for marked and unmarked
individuals is typically considered acceptable when a sufficiently different method is
used for selecting the marked individuals (e.g., via helicopter capture) than is used

for resighting (c.g., via ground surveys on foot) (White and Shenk, 2001; McClintock



and White, 2007).

JHE is gencerally contended to be the most precise when its assumptions hold,
but confidence interval coverage can fall well below the nominal 95% when individual
heterogenceity is moderate to high (Neal et al., 1993; McClintock et al., 2006). BOWE
performs well when individual heterogeneity is present, but is not likelihood-based
and therefore lacks the benefits of likelihood theory, including information-theoretic
model selection and model averaging methods. BBE successfully combines likeli-
hood theory and the ability to modecl individual heterogeneity. The model may also
incorporate a “robust” sampling design, which combincs data from both closed and
open sampling periods to estimate demographic parameters (Pollock, 1982; Kendall
ct al., 1995). The “primary” sampling occasions consist of > 2 “sccondary” sam-
pling occasions, and the time period for sccondary sampling must be short enough
for the assumption of closure to be acceptable. The open periods between primary
occasions apply to longer intervals of time where closure need not be met. This
approach has many advantages in long-term monitoring studics, including the abil-
ity to model detection probabilitics similarly across time (or groups) for increased
efficiency. Under the robust design, BBE has advantages over JHE in the presence
of individual heterogeneity and over BOWE in cascs where sighting probabilitics are
similar between primary occasions (McClintock et al., 2006).

When sampling is without replacement, BBE will often outperform other cs-
timators and aid rescarchers in determining which model is most appropriate, but
it is by no means a supcrlative mark-resight estimator for all situations. Due to the
different assumptions and general rigidity of JHE, BOWE, and BBE, researchers

4



must commit to a particular model based on cducated guesswork without rigorous
quantitative justification for model sclection based on the data. Because there is
no quantitative criterion to choose between these estimators, there remains a need
for a more generalized framework for mark-resight abundance cstimation. Similar
to those available for mark-recapturc studics, this framework would allow a wide
variety of sampling conditions to be parameterized efficiently and provide quantita-
tive justification for model selection regardless of the types and levels of variation
encountered in the field. These parameterizations would include complex models
utilizing covariates and simpler models where potential sources of variation such as
individual heterogencity may be ighored. By incorporating a more flexible model
structure under a generalized framework, the uncertainty that remains in mark-
resight model sclection would be reduced substantially. In the following scction,
I introduce a modecl addressing this need for a more gencralized framework when
sampling is without replacement. [ then apply the model to New Zcaland robin
(Petroica australis) data and compare its performance to the other ecstimators. Fi-
nally, I evaluate the performance of the model based on simulation experiments and

discuss the implications for mark-resight model selection.

1.2 The Model

The logit-normal mixed effects mark-resight model (LNE) has the same assumptions
of BBE and allows the data to be combined across ( primary sampling occasions

in a robust sampling design. In order to incorporate heterogencity parameters into



the model, T will assume marked individuals are individually identifiable. How-
cver, unlike BBE and BOWE, LNE does not require individually identifiable marks
(although its utility is somewhat diminished without them). A known number of
individuals (n;, j7 = {1,....,t}) must first be marked at the beginning of interval
J, and resighting data arc collected during the ¢ closed intervals consisting of k;
(j ={1,...,t}) distinct sccondary resighting occasions. The data consist of resight-
ings for marked individual s on secondary occasion i of primary occasion j (d;;) and
the total number of unmarked sightings across all k; secondary occasions of primary

occasion j (Tu_,)- The §,;; are modeled as independent Bernoulli random variables,

where d,;; = 1 if individual s is seen on secondary occasion ¢ of primary occasion
j, and d4; = 0 otherwise. Individual sighting probabilitics are approximated as the
realization of a logit-normal random variable, where time is modeled as a fixed effect

(#i;) and individual heterogeneity as a random effect with mean zero and unknown

variance 0]2. The marked individual resighting data have conditional expectation

1
1+ exp(—(0;Zs; + 0i5))

E(5sij [ aj, Zsjaﬁij) =Psi =

where Zj; i N(0,1). Therefore, any randomly sclected individual s from primary

occasion j with latent sightability Z,; has the marginal probability of being seen on

secondary occasion 2

1
Ez,. sij ) = Pijls = o 2s; d sjs
Zs](p ]) p]‘ / 1+0Xp(‘(0j25j +,6ij))¢(zj) ZJ




where ¢(z,;) is the standard normal distribution. Time (3;;) could possibly be
treated as a random cffect, but I chose not to investigate this approach because the
number of occasions is gencrally too small for this to be uscful. Under this frame-
work, resighting probabilities may be modeled with no time or heterogeneity effects
within secondary occasions (3;; = 6;,0; = 0). only time effects, only heterogeneity
effects, or additive time and heterogeneity effects. Across all marked individuals

and sccondary occasions, an unconditional likelihood function for ¢; and §;; is

L(aj,Bij | 0siys 1, k; f!Hpsi” 1 - poiy) %) L (255) dzyy. (1.1)

i=1

Abundance (N) enters the cquation by focusing on T, and the number of
unmarked individuals in the population (U; = N;-n;). Using the approach validated
for BBE (McClintock ct al., 2006), T, " N[E(T,,), var(T,,)], the approximatc

likclihood function for N is:

L(Nj |0}, Bij, 0sijsmj by, Tu,) =

= ex {_[T“J —E(Tu_,)]z}
V2mvar(Ty, ) P 2var(Ty, ) '

Combining the two likelihoods across the ¢ primary occasions yields the LNE likeli-

hood of the general form:

:o

L(N,o.8|é,n,k T,) = ﬁ{ﬁ/[ﬁpsu (1- psu)(l o ’):|¢(ZSJ)dZSJ}

7=1
-1, —E(Tuj)]Q}, (1.2)

: ——————cX [
]I—I\/27rvar(T ) ‘p{ 2var(T.,,)




For the simplest model, with no time or individual heterogeneity effects within

secondary occasions,

E(T.,) = (N; —nj)kjm,
J

and

) exp (6;)
var(T,) = (N; = m) b o

For the case of fixed time effects only within secondary occasions,

k.
i 1
E(T,)=(N,-n; T4oxn(—-3-)
( j) (] ]);1+CXP('6’U)

i k; exp (ﬁz )
var(Ty) = (Ny =) 3 ST

The individual heterogeneity model with no time effects within secondary occasions

has unconditional
E(Tu]) = (1\"']‘ - Tl]')k]',u]‘,

and

var(Ty,) = (N; = ny)k; [ (1= p) + (ks = 1) (5 - 12)] (1.3)



where

1
My = f 1+ cexp(—(o,z; + Qj))¢(zj)dzj’

2

1
V= _/ [1 +eXp(—(0'jzj +‘9j)) ¢(Zj)d2j7

and ¢(z;) is the standard normal distribution. For the hetcrogeneity model with

fixed time effects within secondary occasions,

kj
E(T,,) = (N; = ny) > pij,
i1

and
kj
var(Ty,) = (N =) [ D0 pas (1= pig) + 30D (g = gy ) | (1.4)
i=1 I#q
where
/ : #(z)d
ij = Zj 24,
P T (o, + Ag)
and

- [ ! ! 6
g 1+ exp(=(ajz; + By;)) 1+ exp(=(0;2; + Bi;))

(2;) dz;.



Interested readers may find the derivations of (1.3) and (1.4) in Appendix A.

LNE may incorporate the number of marked individuals that were identified

as marked, but not identified to individual (¢;;). These data enter the likelihood

in (1.2) via E(T,) and var(7,,). For the general case with fixed time effects and

individual heterogencity,

and

where

and

Viig

kj
E(Tu,,) = (NJ ‘nj)’; Higs

k.?
var(Tu]) = (N;-ny) [Z Hij(l - #ij) + Z Z(’Yzz'j - Nljﬂij)} .
i=1

(£

- 1 €j | _
Hij = _/ [1 +oxp (—(o;z; + 6i5)) N n]}@(zj)d%’

1 €15 1 €ij Y do.
_/ [1 +0Xp(—(Uij +/jlj)) ’ n_3:| [1 +eXP(_(Uij +/3ij)) v n_j]gb(éj)d 7

Similar to BOWE and BBE, with high levels of individual hetcrogeneity the adjust-

ment to incorporate unidentified marks is reliable when the proportion of unidenti-

fied marks remains < 0.10. When > 0.10, the resulting underestimates of variances

can cause confidence interval coverage of N to fall as low as 88% (White and Shenk,
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2001; Magle ct al., 2007). When individual heterogencity is low to moderate, the
proportion of unidentified miarks cann approach 0.20 and still achieve nominal 95%
confidence interval coverage (Magle et al., 2007).

Because the integrals in (1.2) do not have a closed form solution, they must
be computed numecrically. These can be approximated with relative case using

Gaussian-Hermite quadrature (Givens and Hocting, 2005), with

k7
- Guij -y .
f [H ./I)s;]: (1 - psij)(l 6SU)] q)(zsj) (]’Zsj
i=1

1 M kj 1 dsij
N — Z W H ( )
ﬁ m=1 =1 \ 1+ eXp(—(ﬂUjT‘m + ,sz))

1 1-6s4;
x|1- '
( 1+6Xp(—(\/§ajvm+ﬁi]’)))

T nll-&—eXp(—(\/iO'ij'*'ﬁij))’

and

, 1 % 1 1
lij & == ), Wm ,
’ ﬁmzl 1+eXP(—(\/§Uj’Um+ﬁlj)) 1+eXp(—(\/§U]"Um+/3¢j))

for tabulated (v, w,,) pairs corresponding to M quadrature points (Abramowitz

and Stegun, 1964).
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1.3 Example: New Zealand Robin

1.3.1 Example Methods

The New Zcaland robin (Petroica australis) data were collected in March 2005 from
t = 2 study sites in the Eglinton Valley of Fiordland National Park, New Zealand
(44°58’S, 168°01°E). The two sites, Knobs Flat and Walker Creek, consisted of 100 ha
grids and wcere part of an exploratory investigation by the Department of Conserva-
tion on the usefulness of this technique for estimating /V of endangered populations
in the Chatham Islands. Prior to the resighting surveys, as many juvenile and adult
birds as possible were captured within the study areas and given individually iden-
tifiable bands. Between September 2003 and March 2005. 80 and 79 birds were
banded in Knobs Flat and Walker Creek, respectively. Immediately prior to col-
lecting resighting data in March 2005, an independent visual survey was conducted
to sample a known "marked” subsct (ng; = 23. ny,. = 20) of the previously banded
birds. This was necessary because banded birds could have died or emigrated during
the extended capture period prior to the resighting surveys. The resighting effort
was divided into 7 distinct secondary occasions where the cntire arca of both study
sites was surveyed. Sccondary sampling occasions were conducted in the morning
and typically required four hours cach. The populations were assumed closed dur-
ing the sampling intervals. On scveral occasions a marked or banded individual
was scen more than once. However, because the extended capture period left few
birds unbanded, the rescarchers belicved they could identify double counts and sat-

isty the assumption of sampling without replacement. Raw cstimates of § from the
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Table 1.1: LNE parametcrizations for 3;; and o; with ¢ = 2 primary sampling oc-
casions both consisting of k secondary sampling occasions (i = 1,...,k, 7 = 1,2).
Combining the six 3;; parameterizations with the five o; parameterizations yields
30 possible LNE models with Ny # Ny. The number of cstimated paramcters (not
including N;) in the models range from K =1 for model {3(.)o(0)} to K =2k +2
for model {G(t1,t2)0(.,.)}.

Modecl Notation Paramectcerization K
8(.) B =P =10 1
B(,) B =01, Bia = 62 2
B(t1 =12) Bi = Bia k
B(t1L,.) Gir # Bin =10 k+1
B(.,t2) Big # B3 =0 k+1
B(11,12) Gi1 * B2 2k
a(0) ogp=03=0 0
a(.) o1 =0y 1
U(.,O) 01¢02:0 1
a(0,.) oyt =0 1
a(.,.) o % 09 2

marked populations were 0.40 (SE = 0.04) and 0.41 (SE = 0.04) for Knobs Flat
and Walker Creek, respectively. Total unmarked sightings (T4 = 45, Tywe = 54)
included previously banded birds that were not included in the marked subset.
With [ = 2 primary occasions both cousisting of 7 secondary occasions, there
arc 30 possible LNE paramcterizations with Nys # Ny (Table 1.1). The modecls
range in complexity from the simplest no heterogencity model, {3(.)a(0)}, to the
most gencral time and heterogeneity model, {3(¢1,¢2)o(.,.)}. The modcls were
easily implemented using the nonlinear mixed-effects model (NLMIXED) maximum
likelihood procedure in the SAS System for Windows (SAS Institute, 2002). By
default, NLMIXED computcs the integrals in (1.1) using adaptive Gaussian quadra-
turc. The integrals in E(T,,) and var(T,,) must be programmed separately within

the procedure, and I found Gaussian-Hermite quadrature with A = 4 points to be
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an adequate approximation.

I used Akaike’s Information Criterion (AIC. ) (Burnham and Anderson, 2002)
and the Bayesian Information Criterion (BIC) (Schwarz, 1978) as a basis for ranking
the 30 LNE modecls and obtaining model-averaged point estimates and unconditional
variances with AIC. and BIC weights (Burnham and Anderson, 2002; Link and
Barker, 2006). I defined the effective sample size for AIC. and BIC calculation as
n = Z;zl n;k; +t. I compared the LNE modcl-averaged estimates to thosc of JHE,
BOWE, and BBE. BBE cstimates were also modcl-averaged using AIC, and BIC
weights. As “equivalents” to JIHIE and BOWE, I also compared estimates of the most
general LNE and BBE models where all parameters were estimated independently.
Logarithm-transformed 95% confidence intervals for BOWE were computed as in
Bowden and Kufeld (1995). Confidence intervals for LNE, JHE, and BBE were
computed similarly but with the lower bound constrained to be greater than the
known number of marked individuals. In comparing the performance of the models,
my results focus on the precision of the estimates. Bias is also an important issue, but
I was unable to quantify this property because N is unknown for these populations.
However, both AIC, and BIC address the trade-off between bias and precision as a

mecans of modcl selection.

1.3.2 Example Results

AIC,. and BIC model rankings differed, with AIC. giving higher weights to the

more complex additive models (Table 1.2). BIC rankings suggest mean resighting
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Table 1.2: AIC. and BIC weights for sclected LNE models of New Zealand robin
abundance in Knobs Flat and Walker Creck study areas in Fiordland National Park,
New Zealand. Numbers of cstimated paramcters include V.

Model AIC, No. Est. Model BIC No. Est.
Weight  Paramcters Weight  Paramcters

3(t1, )a(.,0) 0.22 11 B()o(0) 0.61 3
A1, o () 0.14 11 B3()a(.,0) 0.15 4
3(.)o(.,0) 0.09 4 B()o(.) 0.14 4
B(tl, )o(.,.) 0.08 12 3(.)e(0,.) 0.04 4
B()o(.) 0.08 4 8(.,.)a(0) 0.03 4
B(t1,.)a(0) 0.06 10 3(.)o(.,.) 0.01 5
B()a(0) 0.06 3 8., )o(.,0) 0.01 5
A()e(.,.) 0.04 5 3(.,)0(.) 0.01 5
B(11,2)0(..) 0.0 18 B(t1,)o(,0)  0.00 11
8(.,12)0(0,)  0.00 11 B(tL.12)o(..)  0.00 18

probabilities did not differ between secondary occasions or between the two study
arcas, but AIC,. rankings provide some evidence of temporal variation in Knobs
Flat resighting probabilities. The vast majority of AIC, weight (85%) was given to
modecls incorporating individual heterogeneity. BIC favored less complex modcls,
with 36% of BIC wecight given to those with heterogentiy parameters. The highest
ranking BIC model estimates were therefore morce precise than those of AIC, .
Estimatcs for the three-parameter minimum-BIC model, {£(.)o(0)}, were 6 = —0.38
(SE = 0.12), N;; = 38.7 (SE = 2.11), and N, = 38.9 (SE = 2.37). Heterogencity and
abundance estimates for the 11-parameter minimum-AIC, model, {8(t1,.)o(.,0)},
were 65 = 0.79 (SE = 0.28), Nyis = 38.7 (SE = 2.87), and Ny, = 38.8 (SE = 2.74).

In comparing the various cstimators, point estimates were very similar re-

gardless of the method used, but precision levels did vary (Table 1.3). The BIC
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Table 1.3: Abundance estimates (N), percent coefficient, of variation (% CV), 95%
confidence intervals (CI), and percent confidence interval lengths (% CIL) for Knobs
Flat (KF) and Walker Creek (WC) study areas when using the AIC, model-averaged
(modAIC) LNE and BBE, BIC modcl-averaged (nodBIC) LNE and BBE, LNE and
BBE with both areas cstimated independently, BOWE, and JHE. Estimators are
ordered by the smallest average % CV.

95% CI
Estimator Study Area N % CV Lower Upper % CIL
LNE modBIC KF 38.7 5.8 34.9 43.7 22.8
WC 38.9 6.4 34.6 44 .4 254
JHE KF 38.4 6.0 34.5 43.5 23.4
WC 38.9 7.1 34.2 45.1 27.9
BBE modBIC KF 38.7 6.4 34.6 44.2 24.9
WC 38.8 7.1 34.1 45.0 28.1
BBE modAIC KF 38.7 6.6 34.5 44.4 25.7
WC 38.8 7.2 34.0 45.1 28.5
LNE modAIC KF 38.7 6.7 34.4 44.5 26.3
WC 38.8 7.2 34.1 45.2 28.6
BBE KF 38.7 7.4 34.1 45.2 28.8
WwC 38.8 7.6 33.8 45.4 29.9
LNE KF 38.7 7.4 34.1 45.2 28.9
WC 38.8 7.6 33.8 45.4 29.9
BOWE KF 38.7 7.0 33.0 45.4 32.2
WC 38.7 7.9 32.8 45.6 33.1
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model-averaged LNE and JHE had the highest precision, but given the AIC, and
BIC cvidence that individual heterogencity may be an issue with these data, I be-
lieve JHE is underestimating the uncertainty about /N and is therefore inappropriate.
Model-averaged LNE and BBE results were very similar for thesc data because both
incorporated a robust sampling design and cstimated individual heterogeneity pa-
ramecters. Even when compared to the “cquivalent” BBE and LNE models with
all paramcters estimated independently, BOWE was the lcast precise of the estima-
tors. Although inferences in this simple ecxample were quite similar regardless of the
modecl used, the model-averaged LNE or BBE appear to be the most appropriate
becanuse they were more efficient. Had there been less evidence of heterogeneity, 1
suspect the AIC,. model-averaged LNE would also have been more efficient than its
BBE counterpart because of its ability to incorporate these paramcters as decmed
nccessary by the data.

The usc of AIC, or BIC has received much attention in recent years (Burnham
and Andecrson, 2004; Link and Barker, 2006). Philosophical issues aside, this ex-
amplec provides no information on the appropriateness of AIC,. or BIC for use with
these models. Further, the results from this single data sct arc not indicative of
the expected relative performance of LNE. T therefore conducted simulation exper-
iments to asscss the model’s utility in a wide variety of sampling conditions using

both AIC. and BIC.
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1.4 Simulation Experiments

1.4.1 Simulation Methods

Simulated data werc gencrated under the assumptions of geographic and demo-
graphic closure within sccondary resighting occasions, sampling without replace-
ment, iid sighting probabilitics for marked and unmarked individuals, 100% mark
identification, and no error in distinguishing marked versus unmarked individuals.
Individual resighting probabilities were modeled as logit-normal random variables
based on an underlying population f and individual heterogencity level (o7g), but
additive temporal variation (ory ) allowed pg;; to vary for cach sccondary occasion.
Because resighting probabilitics were modeled using this transformation, input val-
ues for p, o7y, and opy did not back-transform identically to their original valucs.
McClintock et al. (2006) used the same methods and categorized the realized values
for the data-generating parameters. For p, the categorics were Low (0.15 < 5 < 0.16),
Medium (0.30 < p < 0.38), and High (5 = 0.50). The categorics for o7y and ory
were Low (0.00 < 0 < 0.05), Medium (0.10 < 0 < 0.15), and High (0.16 < 0 < 0.26).

I first generated simulated mark-resight data for ¢t = 1 primary sampling oc-
casion. The input parameter values for generating resighting probabilities werc all
possible combinations of p = {Low, Medium, High} and ;5 = ory = {Low, Medium,
High}. This limited the number of resighting probability scenarios to seven because
when p = Low, only oy = o7y = Low is theoretically possible. Applying these seven
resighting probability scenarios to the four sample size classes with £ =3 or 5 and

n =25 (N =100) or 75 (N = 500) totaled 28 simulation scenarios. These scenarios
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Table 1.4: Data gencrating scenarios for simulation experiments with ¢ = 2 primary
sampling occasions. Number of secondary resighting occasions (k), marked sample
sizc (n), and population abundance (N) were the same for both primary sampling
occasions, but mean sighting probability p, individual heterogeneity (o;g), and
temporal variation (o7y ) were allowed to vary.

Scenario &k n N P OIH(1)  OTV(1) P2 O1H(2)  OTV(2)
A 3 25 100 Low Low None Low Low None
B 3 75 500 Med None High Low None Low
C 5 25 100  Med High Med Med High Med
D 5 25 100 High Med None Med High Med
E 5 75 500 Med Low High High  None High
F ) 75 500  High Med Low High Med Low

ranged in sample size from smallest (k = 3, n = 25, N = 100, § = Low) to largest
(k=5,n="75 N =500, p=High) with the variation in p determined by the level of
grg = 0rv-

I next generated data for { = 2 primary sampling occasions. With so many
possible input paramecters determining resighting probabilities and sample sizes, 1
restricted these simulations to six pseudo-randomly selected scenarios fixing k; = ko,
ny =ng, and Ny = N (Table 1.4). I first designated “small” (k =3, n =25, N =100,

7 = Low), “medium” (k =5, n =25, N =100, 5 = Medium), and “large” (k = 5,

n =75 N =500, § = High) samples. I then randomly assigned o;5(1) = 0rm(2)
and oy (1) = oy (g) from {None, Low, Medium, High} to create three scenarios.
For the other three scenarios, all values were randomly selected from &k = {3,5},
n = {25,75}, p; = {Low, Mcdium, High}, o;5(;) = {None, Low, Medium, High},
and ory(;) = {None, Low, Medium, High} with N; = 100 if n = 25, and N; = 500

otherwise.

With ¢ = 1 primary occasion, there are four possible LNE parameterizations:
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1) no time or heterogeneity effects, {#(.)o(0)}, with K = 3 parameters; 2) time
cffects only, {#(t)c(0)}, K =k +2; 3) heterogeneity only, {#(.)o(.)}, K =4; and 4)
time and heterogeneity effects, {3(t)o(.)}, K = k+3. With ¢ = 2 primary occasions
and k; = ko, there are 30 possible LNE parametcrizations (Table 1.1). If k; # ko,
there are 25 paramecterizations becausc constraining 5, = ;5 is no longer possible.
For cach of the 1000 replications within a given simulation scenario, I compared
the performance of LNE with JHE, BBE, and BOWE. For LNE, I examined both
AIC, and BIC modcl-averaged parameter cstimates. For simulations with 2 primary
occasions, I also examined the AIC, and BIC modcl-averaged parameter cstimates
for BBE. AIC, , BIC, and confidence intervals were computed as in Section 1.3.

Model performance was based primarily on percent confidence interval coverage

of N, Bias/SE = E(N - N)/SE(N), percent confidence interval length (% CIL =

100(UCI-LCI)/N), and root mcan squared error (RMSE = \ﬂBias(Z\A/)2 + Var(N)).
Bonferroni intervals with family confidence coefficient « = 0.05 (Hocking, 2003) were
used to simultaneously compare average cstimator coverage, Bias/SE, and % CIL
across scenarios. All analyses were performed using NLMIXED as described above

and the Interactive Matrix Language (IML) in SAS (SAS Institute, 2002).

1.4.2 Simulation Results

In simulations with 1 primary occasion, bias was not an apprcciable problem for
any of the estimators, with average Bias/SE across all 28 scenarios < 0.1 for all

modcls (Cochran, 1977) (Table 1.5). BOWE had the highest average point estimate
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Table 1.5: Average percent confidence interval coverage, percent confidence interval
length (% CIL), and Bias/SE of abundance estimates for BBE, BOWE, JHE, AIC,
modcl-averaged (modAIC) LNE, and BIC model-averaged (modBIC) LNE across
28 simulated scenarios with ¢ = 1 primary sampling occasion.

% Coverage % CIL Bias/SE
Estimator Est. SE Est. SE Est. SE
BBE 94.1 0.14 42.4 0.11 0.06 0.01
BOWE 94.8 0.13 43.3 0.10 0.03 0.00
JHE 91.6 0.16 37.9 0.10 0.10 0.01
modAIC LNE 93.4 0.15 41.1 0.11 0.07 0.01
modBIC LNE 93.1 0.15 40.6 0.11 0.07 0.01

for coverage and JHE had the lowest % CIL across the scven resighting probability
scenarios in all four sample size classes. However, BOWE also had the highest %
CIL, and JHE had the lowest coverage across all four sample sizc classes. No sig-
nificant differences were observed between the AIC, or BIC modecl-averaged LNE
approaches. No significant differences in average coverage for the four sample size
classes were observed between BOWE and LNE, but average % CILs were signifi-
cantly lower in all sample size classes for LNE than for BOWE. Overall coverage and
% CIL for BBE did not significantly differ from BOWE or LNE. When o7y = Low,
no significant difference in average coverage was observed between the approaches.
However. JHE and the LNE approaches had significantlv smaller % CILs, and the
two were not significantly different from one another. BBE tended to have slightly
higher RMSEs than the other heterogeneity models, but BOWE had the highest
RMSEs with the largest sample sizes. Except with the largest sample sizes, BOWE
generally had slightly smaller RMSEs than the LNE approaches. This is attributable

to a slight positive bias for LNE with smaller sample sizes, but because Bias/SE
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ratios remained small, the LNE approaches still achicved optimal coverage and %
ClLs.

Across the six scenarios with 2 primary occasions (Table 1.4), BOWE again
had the highest average coverage and largest average % ClLs. JHE on average had
lower coverage and smaller % CILs than the other approaches. Average coverage for
the AIC, model-averaged LNE and BBE were not significantly different than BOWE.
but average coverage for the BIC model-averaged LNE and BBE were significantly
lower than BOWE. Both LNE and BBE model-averaged approaches produced sig-
nificantly smaller % CILs than BOWE. Average Bias/SE was only > 0.1 for JHE
(Table 1.6). The poorest performance for all approaches was in estimating N, of sce-
nario D, where coverage was 87.7% (SE = 1.04) for the AIC, modcl-averaged BBE,
82.8% (SE = 1.20) for the BIC modcl-averaged BBE, 92.3% (SE = 0.84) for BOWE,
80.7% (SE = 1.25) for JHE, 89.0% (SE = 0.99) for the AIC. model-averaged LNE,
and 81.6% (SE = 1.23) for the BIC modcl-average LNE. In this scenario, coverage
was not significantly different between BOWE and the AIC, model-averaged LNE
or BBE, but all other approaches were significantly lower. When o;5(;) < Low, no
significant differences in average coverage or % CIL were detected between JHE and
the AIC, modcl-averaged LNE and BBE, but BBE had the highest point cstimate
for coverage (95.4%, SE = 0.27) and LNE had the smallest point cstimate for % CIL
(53.7%, SE = 0.46). BIC model-averaged LNE had significantly lower % CILs than
JHE with no significant difference in coverage for these low heterogeneity scenarios.
With the smallest sample size (scenario A), RMSE was largest for JHE and smallest
for the BIC modcl-averaged BBE. With the largest sample size (scenario F), RMSE
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Table 1.6: Average percent confidence interval coverage, percent confidence interval
length (% CIL), and Bias/SE of abundance estimates for BOWE, JHE, AIC. model-
averaged (modAIC) LNE and BBE, and BIC model-averaged (modBIC) LNE and

BBE across six simulated scenarios with ¢ = 2 primary sampling occasions.

% Covcrage % CIL Bias/SE
Estimator Est. SE Est. SE Est. SE
modAIC BBE 94.4 0.21 47.5 0.24 0.07 0.02
modBIC BBE 92.6 0.24 45.0 0.21 0.07 0.04
BOWE 94.5 0.21 50.1 0.23 -0.01 0.01
JHE 89.8 0.27 43.7 0.26 0.13 0.03
modAIC LNE 93.7 0.22 47.1 0.25 0.07 0.02
modBIC LNE 92.0 0.25 43.8 0.21 0.06 0.04

was largest for BOWE and smallest for the BIC model-averaged BBE. For the other
scenarios, RMSE was generally largest for BOWE or BBE and smallest for JHE.
Although average performance across all scenarios was very similar for LNE and
BBE, LNE tended to be more efficient than BBE in scenarios with low levels of

heterogeneity and BBE tended to be slightly more efficient when p = Low.

1.5 Discussion

With ¢t = 1, little difference was observed in LNE performance when using AIC, or
BIC for model-averaged inference. When the number of occasions, marked individ-
uals, and resighting probabilities were all at the lowest levels (scenario A), BOWE
did perform better than the maximum likelihood models. A non-parametric model
such as BOWE (whosc properties are not based on asymptotic theory) may be a less
biased approach with such small sample sizes, but precision is so poor that none of

the estimators arc particularly useful for infercnces. With sample sizes suitable for
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producing useful levels of precision, LNE was generally a more precisc estimator with
no significant loss in coverage. Its higher efficicncy compared to BBE and BOWE
is attributable to LNE’s ability to invest in estimating heterogeneity parameters as
deemed necessary by the data. With low levels of heterogeneity, LNE had similar
coverage and precision to JHE.

With ¢t = 2, the advantages of combining data in a robust sampling design
were apparent in the increased precision of LNE and BBE. In the few scenarios with
low levels of individual heterogeneity, LNE appeared to be more efficient than the
other estimators, but not enough scenarios of this type were examined to detect a
significant difference. However, based on these results and those from the simulations
with 1 primary occasion, I expect that unlike BBE, the model-averaged LNE will
be as or more efficient than JHE when heterogeneity levels are low. I also expect
these advantages of LNE over the other estimators to be more pronounced with > 2
primary sampling occasions.

Although little difference was found in the use of AIC. versus BIC with 1
primary occasion, I found a slight advantage in the usc of AIC, in some cases with
2 primary sampling occasions. The tendency of BIC to select less complicated
models with small to moderate sample sizes (Burnham and Anderson, 2004; Link
and Barker, 2006) was somewhat of a disadvantage in terms of coverage when the
population niean resighting probabilities were different. Abundance estimates arc
particularly sensitive to biases in mean resighting probability estimators, and BIC’s
greater tendency to “split the difference” in estimating fewer parameters can result

in underestimation of N in one primary occasion and overestimation in the other.
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I am not suggesting that AIC. is not susceptible to similar problems with small
marked sample sizes, but it did appcar to alleviate them more than BIC. For ex-
ample, in scenario D the “true” generating model had different values for all of the
resighting probability input parameters, and all of the estimators failed to achieve
nominal coverage in estimating No. As evidence of the criterion “splitting the differ-
ence,” Bias/SE for the LNE model-averaged cstimates of N7 and Ny were 0.35 and
-0.26 for BIC, but were 0.11 and 0.02 for AIC, , respectively. For BBE, thesc were
0.43 and -0.18 for BIC and 0.21 and 0.00 for AIC, , respectively. Although coverage
was close to nominal for Ny, coverage for N, using the BIC model-averaged approach
was significantly lower than its AIC, counterpart, and the problem appeared more
scvere for BBE than for LNE. However, this was not an appreciable problem for
either approach in simulations with different population mean resighting probabili-
tics and larger sample sizes, such as scenarios B and E. Because the estimation of
resighting probability parameters is so critical to estimates of IV, I advisc against the
usc of BIC model averaging under sampling conditions similar to those simulated in
scenario D. I reccommend as a general guideline that rescarchers carcfully compare
the cstimates obtained via model averaging to those from the most gencral model
where all parameters are estimated independently. If the parameter estimates (par-
ticularly V) are quite different, a moderately conservative approach would be to use
AIC. model averaging for inferences. The most conservative approach would be to
usc the general model. As indicated by the simulations with 1 primary occasion,
the use of the most general LNE will typically still be more efficient than BBE and
BOWE. When compared with the BIC model-averaged results for scenario D, aver-
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age performances were better with the most gencral LNE and BBE models. Bias/SE
for N7 and N, were 0.02 and 0.10 for LNE, and 0.02 and 0.12 for BBE, respectively.
Coverage of Ny was 90.9% (SE =0.91) and 90.7% (SE = 0.92) with % CILs of 57.8
(SE = 0.69) and 58.0 (SE = 0.68) for LNE and BBE, respectively. Similar to the
AIC, model-averaged results, these coverages were not statistically different from
BOWE. Decspite being slightly larger than when using AIC. model averaging, %
CILs for the general models were still significantly smaller than BOWE. Although I
found it to be a problem with 2 primary occasions, I expect this small sample issuc
for BIC to be less of a concern in longer-term monitoring studies with > 2 primary

occasions.

1.6 Conclusions

In terms of efficiency, I found LNE to be equivalent to or better than the other
available mark-resight abundance cstimators (with no appreciable loss in coverage)
regardless of the sampling conditions. LNE provides researchers a more efficient
alternative to JHE capable of incorporating a robust sampling design when individ-
ually identifiable marks are not feasible. LNE is more efficient than BOWE or BBE
and equivalent to JHE when obscrved heterogeneity levels are low becausc it may
ignore this variability as decmed appropriate by the data. When heterogeneity levels
are high, LNE is more efficient than BOWE and equivalent to BBE because it may
incorporate a robust sampling design. When sampling is without replacement, its

flexible modeling framework provides quantitative justification for model selection
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based on the data, thereby climinating the need to determine which of JHE, BOWE,
or BBE is most appropriate based on educated guesswork. Overlooking philosophi-
cal issues, I did identify some potential advantages and disadvantages of using AIC,
or BIC for these models, but little difference in inferences can generally be expected
between the two approaches when using model averaging. Although computation-
ally more complicated than the other estimators, I believe the increased complexity
that comes with the generalized modeling framework of LNE is justified by its in-
creased efficiency and rigorously defendable means of mark-resight model selection.
While not investigated here, the ability of LNE to incorporate environmental or
individual covariates in modcling resighting probabilities may further increase its
efficiency. However, when sampling must be with replacement, BOWE is still the
only reliable option available for these studies. A flexible structure similar to LNE
allowing sampling with replacement is still desirable, and I develop such a model in

Chapter 2.
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Chapter 2

Estimating abundance using
mark-resight when sampling is
with replacement or the number

of marked individuals i1s unknown

2.1 Introduction

The mark-resight method for estimating closed population abundance (V) has re-
cently received considerable attention (Bowden and Kufeld, 1995; Miller et al., 1997;
White and Shenk, 2001; McClintock et al., 2006; Magle et al., 2007). Compared to
traditional mark-rccapture (Otis ct al., 1978; McClintock and White, 2007), mark-
resight can often be a less expensive and less invasive alternative (Minta and Man-

gel, 1989). The primary advantage of these methods is that animals only need to
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be physically capturcd and marked once, and subsequent data from both marked
and unmarked individuals are used for estimating /N. This can be appealing to re-
scarchers because funds are often limited and capture is generally the most expensive
aspect of these studies. Not only can the financial cost of mark-recapture be daunt-
ing for long-term population monitoring, but capture is also the most hazardous
aspect for the animals. Mark-resight can substantially reduce stress to specics be-
causc they can be observed at a distance with minimal disturbance after the initial
capture. This is of particular importance when working with threatened, endan-
gered, or exceptionally sensitive specics.

Despite the possible advantages, one major drawback of mark-resight meth-
ods is that the number of marked individuals available for resighting usually needs
to be known exactly. This can be difficult to accomplish. It is often believed to
be reasonably achieved by capturing and marking individuals immediately prior to
resightings and assuming closure between capture and the completion of resighting
occasions. When the interval between marking and resighting is of long enough du-
ration for closurc to be violated, a more rigorous method of determining the number
of marked individuals in the population is through the use of radio-collars equipped
with mortality signals (Miller et al., 1997; McClintock and White, 2007). However,
many smaller species cannot be fit with these devices, and even if the species is
of adequate size, the cost can be prohibitive within the limited budgets typically
found in wildlife studies. Even when fit with radio-collars, the battery life of these
devices is often limited. This often results in field-readable marks still being present

in the population, but without the ability to confirm the exact number of marked
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individuals, the interval for application of these methods is essentially restricted to
the lifc-expectancy of the radios. By modifying the Minta-Mangel estimator (Minta
and Mangel, 1989), Arnason et al. (1991) developed a mark-resight modecl for when
the number of marked individuals is unknown (ARNE). However, the modecl has
found little application (Casagrande and Beissinger, 1997; Loison ct al., 2002) be-
cause of several key limitations. These include certain sample size requirements, the
assumption of equal and independent sightabilities of individuals, the neccssity of
100% marked individual identification, and the inability to combine data across mul-
tiple closed sampling periods for more efficient parameter estimation. McClintock
et al. (2006) and Magle et al. (2007) demonstrated problems associated with thesc
limitations in other estimators (also see Chapter 1). White (1993) found the perfor-
mance of the Minta-Mangel cstimator to be inadcquate in simulation cxperiments,
and [ therefore suspect this also applies to ARNE.

Another drawback of most mark-resight estimators is that sampling must be
without replacement within distinct resighting surveys that comprise the closed sam-
pling interval of intercst (see Chapter 1). Adopting the terminology of the robust
sampling design (Kendall et al., 1995), this requires that cvery individual in the pop-
ulation be sighted at most once within cach of the sccondary sampling occasions of
the closed primary interval(s). In many circumstances, sccondary sampling must be
with replacement and necessitates the use of Bowden’s estimator (BOWE) (Bowden
and Kufeld, 1995), the Minta-Mangel estimator, or ARNE. Thesc situations arise
when closed primary sampling intervals cannot be divided into distinct secondary
occasions where individuals can only be sighted once, such as when studying a highly
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mobile specics or using camera traps. Although BOWE is a consistent estimator
when sampling is with replacement, it is particularly inefficient for long-tern mon-
itoring because each N must be estimated independently, i.c., information cannot
be borrowed or smoothed across multiple primary sampling occasions.

When sampling is without replacement, I found advantages in the use of the
logit-normal mixed effects model (LNE) when compared to the Joint Hypergeomet-
ric cstimator (Bartmann et al., 1987), BOWE, and the Beta-Binomial cstimator
(McClintock et al., 2006) by allowing more efficient parameter estimation when
combining data across multiple primary sampling occasions (sée Chapter 1). Here |
develop a model analogous to LNE when sampling is with replacement, the Poisson-
log normal mixed effects model (PNE). But unlike LNE, PNE may be modified for
when the number of marked individuals is not known exactly, and it therefore ad-
dresses two key limitations of other mark-resight estimators. After I introduce the
model in the next section, I demonstrate its use on black-tailed prairic dog ( Cyno-
mys ludovicianus) colonics of north-central Colorado in Section 2.3. In Section 2.4,
I report on simulation cxperiments cvaluating the relative performance of the model
compared to other estimators. In Section 2.5, [ summarize my findings in terms of

their implications for abundance estimation in mark-resight studics.

2.2 The Model

The Poisson-log normal mixed effects mark-resight model (PNE) has the same as-

sumptions as BOWE, but data may be combined across ¢ primary sampling occa-
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sions in a robust sampling design (Kendall et al., 1995). These assumptions arc:
1) geographic and demographic closure during secondary sampling within primary
intervals; 2) no loss of marks within cach primary interval; 3) no crrors in dis-
tinguishing marked and unmarked animals; and 4) independently and identically
distributed (iid) resighting probabilities for marked and unmarked animals. Marks
must be individually identifiable and field-readable. Because marks must be indi-
vidually identifiable, overdispersion due to resighting rate heterogeneity or lack of
independence (e.g., clustering) may be accounted for. The number of marked in-
dividuals in the population during sampling may be known exactly or unknown.
Given that an individual is identified as marked, PNE may incorporate less than
100% marked individual identification by assuming such events occur randomly
within the marked population.

I will first assume a known number of individuals (n;, j = {1,...,(}) are in-
dividually marked with field-readable marks and available for resighting at least
once during the jth interval of interest. Resighting data arc then collected dur-
ing ¢ primary intervals, cach of which is of short enough duration for the assump-
tion of demographic and geographic closure to be satisfied. The resighting data
consist of the total number of sightings for marked individual s within interval j
(ys; ={0,1.2,...}, s = {1,...,n;}) and the total number of unmarked sightings during
each intcrval (7,,,). Because PNE does not condition on distinct sccondary resight-
ing occasions within the t closed intervals, sampling may occur with or without
replacement within secondary occasions. With some similarity to the approach of

Rivest and Daigle (2004) for the traditional mark-recapture robust design, the ys;
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are modcled as realizations of independent Poisson-log normal random variables,
where (on the log scale) the jth mean resighting rate is treated as a fixed cffect (6;)
and individual heterogeneity (a source of overdispersion) as a random effect with

mean zcro and unknown variance 0]2.. The ys; have conditional expectation

E(ysj | 05, Zsj,0;) = Asj =cxp (0,255 + 6;),

where Z; i N(0,1). Thercfore, any randomly selected individual s from sampling

occasion j with latent sightability Z; has resighting rate with marginal expectation

o2
EZH](ij) = Ajjs = f exp (0;2s5 + 0;)9(zs;)dzs; = cxp (—2]— + 9]-) ,

where ¢(z,;) is the standard normal density. I stress that the primary intervals
nced not be independent with respect to parameters, but they are independent with
respect to data. The ¢ primary intervals may thercfore be treated as groups if they
do not pertain to sequential periods in time (as shown in Section 2.3). Under this
generalized framework, resighting rates may be modeled with no time (or group)
and no heterogeneity effects between sampling oceasions (#; = 6, 0; = 0), only time
effects, only heterogeneity effects, or additive time and heterogeneity effects. For
increased efficiency, these parameters may also be modeled with fixed environmental
or individual covariates believed to affect the resighting process, as is demonstrated

in Scction 2.3. By taking the product across the n; marked individuals, an uncon-
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ditional likelihood function for #; and o is

A exp( Asi)
L(0;,0; | ysj,m5) = / d

d(zs;)dzs;. (2.1)
For the sake of gencrality (and at the expense of some additional complexity), I
chose to usc this formulation instcad of the more standard negative binomial model.
Under this framework, covariates describing # and ¢ may be modeled in a relatively
meaningful and intuitive manner. Further, because therc is often no detectable
individual heterogencity in mark-resight data, my formulation allows this additional
source of variation to be ignored (o = 0) for increased efficiency. Similar to the Beta-
Binomial cstimator (McClintock ct al., 2006), using the ncgative binomial would
require that individual heterogeneity always be included in the model, and the
incorporation of covariates would not be ncarly as straight-forward.

In deriving a joint likclihood that included N, McClintock et al. (2006) as-
sumed T, ad N[E(Tuj),var(Tuj)] and found this approximation useful (also see
Chapter 1). However, because T, > 0, I chose to modify this approximation to

md

a morc realistic T, ~ LTN [E(T ), Var(Tu])], where T, is lcft-truncated at zcro.

The approximate likelihood function for N; is then:

f(Ty,)
[ s,

L(Nj|a]~,(9]-,nj,TuJ)= (22)
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where f(T,,) is the normal density function with expectation

2
UJ

B(T.,,) = (N —nj)l:oxp(—Q— ej)+i] (2.3)

and variance

SIS

var(T,,) = (N; - ny) {Cxp( + 9]-) +exp(26;) [exp(?ajz-) - oxp(a]z)] + :l—j} (2.4)

where ¢, is the total number of marked individuals that were identified as marked,
but not identified to individual identity during primary interval j. The derivations
of the unconditional (on Z;) E(T,,) and var(7,,) formulac for this general case may
be found in Appendix B (for the less general case with no individual heterogeneity,
o; = 0). Combining (2.1) and (2.2) across the ¢ primary sampling occasions gives

the PNE likelihood of the general form:

t n; )\y’e /\s
L(N.o,8|y,n.T,) = H[ f Xp( ])¢(Zsj)d2’sj

j=1

o o)
= [T ),

(2.5)

If n; is unknown for any interval j, then only marked individuals sighted and
individually identified at least once are known to be in the population during this
interval, and y,; = 0 is no longer obscrvable. In this cvent, (2.5) may be modified
by replacing the contribution of any intervals where n; is unknown with the zcro-

truncated PNE (ZPNE). This requires modifying (2.1) to account for the fact that
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ys; = 0 is no longer observable:

o A op(-Ay)
L{o;,0:|ys;,nt)= f 2 ! 25 )d2g. 2.6
o) =11 | i =eptag ) ) 2

where y,; = {1,2,...}, n; is the number of marked individuals sighted at lcast once
during interval j, and 1 -cxp(-A,;) is the probability of being sighted at least once
during interval j. Equations (2.3) and (2.4) are then modified by replacing n; with
n;/ [1 - exp(—/\j‘s)].

Point and variance cstimates for (Z)PNE may be obtained using maximum
likelihood or Bayesian analysis methods. Because the integrals appearing in the like-
lihoods do not have closed form solutions, they must be computed numerically when
using maximum likclihood. The Poisson integrals in (2.1) and (2.6) can be approx-
imated using Gaussian-Hermite quadrature (Givens and Hoeting, 2005), whercby
integrals of the form [ e*h(v)dv may be approximated by Y wmh(v,,), where
M is the number of quadraturc points, and (v,,, w,,) are the evaluation nodes and

weights corresponding to M. For the Poisson integrals in (2.1),

exp (\/iajvm + Hj)ysj exp [— exp (\/iajvm + 9]-)}

i) = YT

For the zero-truncated Poisson integrals in (2.6),

exp (\/iajvm + Hj)y” exp [— exp (\/iajvm + Qj)}

h(vm) =
(V) ysj!ﬁ{l—eXp[CXP(\/—Q—UjUnz+9j)]}

Tables of (v,,, wn ) pairs for ascending valucs of M are available in texts on numcrical
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integration (Stroud and Sccrest, 1966) or in readily available statistical computing
software such as R (Smyth, 2006). The integral for left-truncation of the normal
distribution in (2.2) is equal to 1 - @7, (0). where &7, (0) is the normal cumulative

distribution function of Ty, evaluated at zcro.

2.3 Example: Black-tailed Prairie Dog

2.3.1 Example Methods

As part of the Colorado State University Plague Project (Antolin ct al., 2006),
mark-resight surveys were conducted on t = 8 black-tailed prairie dog (Cynomys
ludovicianus) colonics in the Pawnce National Grassland of north-central Colorado,
USA (40°35’N, 104°45'W). Four colonies (Towns 76a, 82, 83, and 84) in July -
Sceptember 2005 and four colonies (Towns 70, 76b, 81, and 88) in July — August
2006 were investigated. The colonics ranged in size from 71 acres (Town 76a) to
463 acres (Town 81). Imunediately prior to resighting surveys, traps were sct at
the nearcst burrow entrance to randomly sclected points within the range of each
colony. Captured dogs were fur-dyed on both sides of the midsagittal plane with a
unique two-character mark consisting of letters, numbers, and symbols. To aid in
the rapid identification of marked versus unmarked animals when only the head was
initially visible, a dye “helmet” was also applied to marked individuals. The mark-
ing periods gencrally lasted one week, and 10 — 12 sccondary resighting occasions

werc completed in 1 - 2 weeks on each colony. Resighting surveys were conducted
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from stations covering as much of the colony area as possible with the aid of 20x —
60x spotting scopes. Two obscrvers were assigned to each station, with a primary
observer tallying marked and unmarked dogs and a secondary obscrver recording
and aiding in individual identification of marked dogs detected by the primary ob-
scrver. The number of stations required to survey an entire colony ranged from
two for the smaller colonics to seven for the larger. The populations were assumed
closed during the marking and resighting period. Although the resighting surveys
were designed in an attempt to achieve sampling without replacement, on several
sccondary occasions a marked individual was recorded twice and suggests that, al-
though minimal, sampling of the unmarked individuals was also likely to have becn
with replacement.

For my maximum likclihood analysis of the combined data from the ¢ = 8
colonies using PNE, I evaluated a set of candidate models using both Akaike’s In-
formation Criterion adjusted for small sample sizes (AIC.) (Burnham and Anderson,
2002) and the Bayesian Information Criterion (BIC) (Schwarz, 1978). The effective
sample size for AIC,. and BIC calculation was defined as n = 23:1 n; +t. Param-
cterizations for mean resighting rate #; and individual heterogencity o; included
constancy across all colonics [represented as 6(.) and o(.)] and complete indepen-
dence between the cight colonies [§(t) and o(t)]. By fixing o; = 0, individual hetero-
geneity may also be ignored [0(0)]. Estimating separate N; for the cight colonics,
all combinations of thesc paramctcrizations yiclded six models, ranging from the
simplest 9-paramcter model, {#(.)a(0)N(t)}, with colony-constant mean resighting
rates and no individual heterogencity, to the 24-paramecter model, {8(¢t)a(¢t)N(t)},
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with completely independent mean resighting rates and individual heterogencity
levels for cach colony. I also investigated more parsimonious paramcterizations for
6, and o; using environmental covariates measured during the surveys. These were
modeled as 8 = X and log (0;) = z;3, where X is a t x (p+ 1) matrix composed
of p covariates (plus an intercept term), a = (ag. a1,.... @) isa (p+1) x 1 vector
of unobservable coefficients corresponding to X, z; is the jth row of a t x (¢ + 1)
matrix Z composed of g covariates, and 3 = (8, 51...., B,) is a (g+1) x 1 vector
of unobservable coefficients corresponding to z;. The colony-specific covariates that
were measured included area in acres x1072 (a), average temperature across surveys
(tp), average wind speed across surveys (w), average percent cloud cover across sur-
veys (cl), average prior 24-hour precipitation across surveys (pc), average start time
of surveys (s), average length of surveys (tm), and the number of stations required
for each colony (st). Other covariates included a linear time trend within years (#r)
and dummy variables for year (yr), the presence of cattle during surveys (cw), the
presence of predators during surveys (pd), non-research-related human disturbances
during surveys (ot), and several colonies (Towns 70, 76a, and 83) identified a priori
as particularly difficult to survey (df). Maximum likclihood point and variance es-
timates for R = 169 models were obtained using the NLMIXED procedure in SAS
9.1 for Windows (SAS Institute, 2002), and the integrals in (2.5) were programmed
within the NLMIXED procedure using the Gaussian quadrature formulac in Section
2.2 with M =10. I calculated model-averaged Nj and unconditional variances basced
on AIC,. and BIC weights of the R = 169 modcls and comparcd these to estimates

from BOWE. Confidence intervals for PNE model-averaged estimates were calcu-
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lated as 95% logarithm-transformed normal. Confidence intervals for BOWE were
calculated as in Bowden and Kufeld (1995).

I also performed an identical maximum likelihood analysis with ZPNE. Here, |
no longer assumed the numbers of marked individuals were known and accordingly
zero-truncated the marked individual resighting data. For model selection criteria,
the effective sample size for ZPNE was defined as n = Z;zl n: +t. Because the data
contained considerable numbers of marked individuals resighted but not identified
to individual (¢;), I did not believe it reasonable to analyze thesc data with ARNE
for comparative purposcs. To incorporate these into the modeling framework of
ARNE (thereby preventing overestimation of N;), one must assume that all ¢; werc
from marked individuals positively identified at least once. Given the relatively
large numbers of marked individuals sighted zero times, I did not belicve this to be

a reasonable assumption.

2.3.2 Example Results

Although not verified by radio-telemetry, the presumed known numbers of indi-
viduals captured, marked, and available during resighting surveys were nzg, = 80,
ngs = 66, ngg = 45, and ngg = 59 in 2005, and nyy = 66, nyg, = 85, ng; = 82, and ngg = 53
in 2006. Mcan numbers of marked individual resightings across all secondary oc-
casions were g, = 2.2 (SE = 0.3), Jey = 3.3 (SE = 0.3), Jy3 = 3.0 (SE = 0.3), and
Ygq = 5.2 (SE =0.4) in 2005, and Y., = 2.7 (SE =0.3), Jrg, = 3.5 (SE=0.3), Tg; =4.5

(SE =0.3), and Ygg = 6.8 (SE = 0.4) in 2006. Total numbers of unmarked individual

40



sightings were Ty, 76, = 1764, Ty g2 = 5553, T, 83 = 6543, and T, g4 = 4757 in 2005,
and T, 7o = 2820, T, 76, = 3150, T}, 81 = 6306, and T, g5 = 2184 in 2006. Numbers
of resightings that were identified as marked but not to individual were €zg, = 34,
€go =9, €33 = 6, and €54 = 1 in 2005, and €79 = 24, €75, = 19, €31 = 13, and €gg = 2 in
2006.

With 9% of the model weight, the minimum-AIC,. modecl, {f(w + pc + a +
cw)o(w+pc+a)N(t)}, had 17 estimated parameters (Table 2.1). For the mean re-
sighting rate @, this model contained a negative wind effect (&, = -1.13,SE =0.14),
a positive 24-hour precipitation effect (&,. = 0.20,SE = 0.02), a positive area ef-
fect (&, = 0.13,SE = 0.03), and a positive cattle effect (&e, = 0.22,SE = 0.12).
For individual heterogencity ¢ (on the log scale), the model cstimated a posi-
tive wind effect (Bw = 0.73,SE = 0.28). a negative 24-hour precipitation effect
(,f}pc = -0.24,SE = 0.09), and a negative area cffect (5, = —0.12,SE = 0.08). With
40% of the modecl weight, the minimum-BIC model was the 16-parameter model
{0(w + pc+a)o(w +pc+a)N(t)} (Table 2.1). For 6, the model included a neg-
ative wind effect (&, = -0.99,SE = 0.12), a positive 24-hour precipitation effcct
(dpe = 0.19,SE = 0.02), and a positive area effect (&, = 0.10.SE = 0.02). For
o, the model contained a positive wind effect (3w = 0.72,SE = 0.27), a ncgative
24-hour precipitation effect (ﬁpc = -0.25.SE = 0.10), and a negative area effect
(3, = -0.13,SE = 0.08). Becausc of the high degree of model sclection uncertainty
(Table 2.1), sclecting only the minimum-AIC, or -BIC modecl for inference on Nj is
difficult to justify. Point estimates for N; varicd between the AIC. model-averaged
PNE, the BIC model-averaged PNE, and BOWE, but they were not significantly
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different (Table 2.2). Across all eight colonies. average coefficients of variation were
7.0% for the BIC modcl-averaged PNE, 7.0% for the AIC, modecl-averaged PNE,
and 8.0% for BOWE. As a proportion of the point estimates, average confidence
interval lengths were 26.5% for the BIC model-averaged PNE, 26.6% for the AIC,
model-averaged PNE, and 32.6% for BOWE. Compared to those of BOWE, PNE
percent confidence intervals lengths were smaller for all Nj except Ngl.

After zero-truncating the data, the numbers of marked individuals resighted
at least once were nig, = 57, ng, = 55, ng; = 39, and ng, = 55 in 2005, and n3, = 56,
Nye, = 70, ng; = 75, and ngg = 53 in 2006. Mecan numbers of marked individual
resightings across all secondary occasions were 3z, = 3.1 (SE = 0.3), 75, = 3.9
(SE = 0.3). Jis = 3.4 (SE = 0.3), and Ty = 5.6 (SE = 0.4) in 2005, and T3, = 3.2
(SE = 0.3), T = 4.2 (SE = 0.3), 73, = 4.9 (SE = 0.3), and Js = 6.8 (SE = 0.4)
in 2006. With 11% of the model weight, the minimum-AIC, model was the 16-
paramcter {0(w +pc+s+df)o(pc+df)N(t)} (Table 2.3). For 6, the modcl included
a negative wind effect (&, = -0.43.SE = 0.11), a positive 24-hour precipitation ef-
fect (&, = 0.10,SE = 0.01), a negative start time effect (&, = -4.60,SE = 2.85),
and a negative difficult-colony effect (G4 = -0.46,SE = 0.12). For o, therc was a
negative 24-hour precipitation effect (ch =-0.13,SE = 0.24) and a positive difficult-
colony effect (Bdf =0.89,SE = 0.33). With 19% of the modcl weight, the minimum-
BIC model was the 13-paramcter {6(w + pc + df)o(()N(t)} (Table 2.3). For 6,
the model contained a negative wind effect (&, = —-0.46,SE = 0.11), a positive
24-hour precipitation effect (&, = 0.09,SE = 0.02), and a negative difficult-colony
effect (&g = -0.23.SE = 0.08). On the positive real scale, the estimated colony-
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Table 2.2: Comparisons of abundance (N) estimates, percent coefficients of variation
(% CV), 95% confidence intervals, and percent confidence interval lengths (% CIL)
for t = 8 black-tailed prairic dog colonics in north-central Colorado from the AIC,
model-averaged PNE (modAIC), BIC modcl-averaged PNE (modBIC), and Bow-
den’s estimator (BOWE). Models arc ordered from smallest to largest by average %
CV and % CIL across all colonics.

95% CI
Model Paramcter  Estimatc % CV ~ Lower  Upper % CIL
PNE modBIC Nrga 707.1 8.7 601.6 833.9 32.9
Nz 1698.9 6.4 1506.1 1917.5 24.2
Ng3 2131.4 7.4 1853.0 2452.7 28.1
Ngy 951.3 7.3 829.0 1093.2 27.8
N 923.6 6.9 811.3 1052.9 26.2
Nzgp 991.7 7.1 868.0 1134.9 26.9
Ngy 1470.2 6.8 1292.9 1673.4 25.9
Ngg 370.7 5.3 335.2 410.7 20.4
PNE modAIC Nrga 699.5 9.1 591.9 829.6 34.0
Ngy 1715.2 6.7 1511.9 1947.2 25.4
Ng3 2176.5 7.6 1887.0 25114 28.7
Ngy 959.5 7.2 838.6 1099.1 27.2
Nro 951.1 7.1 832.2 1088.6 27.0
Ny 966.6 7.1 846.0 1106.2 26.9
Ngy 1451.5 6.2 1291.2 1633.1 23.6
Ngs 370.5 5.3 335.2 410.2 20.2
BOWE Nrga 740.3 10.6 597.6 917.0 43.1
Ngo 1690.9 8.1 1436.2 1990.7 32.8
Ngs 2137.3 10.9 1712.1 2668.2 44.7
Ngy 965.7 6.8 841.6 1108.1 27.6
N 965.3 94 799.3 1165.7 38.0
Nrey 929.6 7.6 798.4 1082.3 30.5
Ny 1441.4 5.9 1282.1 1620.4 23.5
Ngg 370.0 5.1 334.0 409.9 20.5
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Table 2.4: Comparisons of abundance (V) cstimates, percent cocflicients of varia-
tion (% CV), 95% confidence intervals, and percent confidence interval lengths (%
CIL) for ¢t = 8 black-tailed prairic dog colonies in north-central Colorado from the
AIC, model-averaged ZPNE (modAIC) and BIC model-averaged ZPNE (inodBIC).
Modecls arc ordered from smallest to largest by average % CV and % CIL across all
colonies.

95% CI
Model Parameter  Estimate % CV ~ Lower  Upper % CIL
ZPNE modBIC Nzga 588.0 6.7 518.6 667.9 25.4
Nsa 1399.4 8.6 1191.0 1646.1 32.5
Ngs 1947.3 7.5 1691.8 22424 28.3
Nsay 908.0 6.3 805.7 1024.1 24.0
Nro 838.8 6.6 741.2 950.3 24.9
Nage 793.5 5.2 718.9 876.7 19.9
Ngp 1403.5 5.9 1255.2  1570.5 22.5
Ngg 375.5 5.6 338.2 417.8 21.2
ZPNE modAIC Nr6q 581.3 7.9 501.3 675.7 30.0
Nso 1444.3 8.2 12394 16845 30.8
Nss 1988.1 7.4 1728.9  2287.0 28.1
Ngy 911.9 6.2 811.0 1026.3 23.6
N+ 859.3 6.8 756.1 977.8 25.8
Nop 789.4 5.5 711.8 876.4 20.9
Ng1 1364.4 54  1230.8 15134 20.7
Ngg 374.7 5.1 340.1 413.4 19.6

constant individual heterogencity level & = 0.28 (SE = 0.04). Again, the high de-
gree of model selection uncertainty warranted model-averaged point estimates and
unconditional vartances (Table 2.4). Across all eight colonies, average coefficients
of variation were 6.5% for the BIC model-averaged ZPNE and 6.6% for the AIC,
model-averaged ZPNE. Average confidence interval lengths were 24.8% for the BIC
modecl-averaged ZPNE and 24.9% for the AIC, modcl-averaged ZPNE. Point csti-
matcs for the modcl-averaged ZPNE tended to be lower than thosc from PNE and

BOWE, but no significant differences were detected.
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2.3.3 Example Discussion

In terms of meeting model assumptions, I belicve the study design was satisfactory.
Closure was likely met by the timing of the surveys and the inclusion of the entire
area of each colony. Resighting surveys were performed immediately after appli-
cation of dye marks such that any loss of marks was unlikely. The dye "helmet”
effectively prevented errors in distinguishing between marked and unmarked individ-
uals. Because marked individuals were fur-dyed and therefore differed in appearance
from unmarked individuals, the assumption that required careful attention was iid
resighting probabilitics for marked and unmarked animals. However, I found that
by first scanning at low magnification, marked individuals were virtually indistin-
guishable from unimarked individuals until after they were first sighted, when they
where then focused on at higher magnification for identification.

In this example, very little difference was found between (Z)PNE model-
averaged cstimates using AIC, or BIC weights. In terms of precision, PNE was
demonstrated to be an improvement over individual BOWE cstimates. The advan-
tages werc most pronounced for colonics such as Town 83, where the marked sample
size was lowest. Despite the data being zero-truncated, ZPNE cstimates were still
more precise than BOWE cstimates using the cntire data sct. It is noteworthy that
a significant population increase was detected with PNE and ZPNE for Town 76
from 2005 (76a) to 2006 (76b), but not with BOWE. This further demonstrates the
advantages of combining data from multiple primary sampling occasions and using

covariates to more easily dectect changes in NV for long-term monitoring programnis.

47



Based on the AIC, modcl-averaged PNE, the average density across all cight
colonics D = 7.5 (SE = 0.21) animals per acre, ranging from 3.1 (SE = 0.19) for
Town 81 to 11.2 (SE =0.75) for Town 82. These arc consistent with the estimated
densitics of other unfragmented colonies in South Dakota (Hoogland, 1995; Severson
and Plumb, 1998) and northern Colorado (Antolin et al., 2006). Although Town
76 showed considerable growth in arca from 2005 (71 acres) to 2006 (108 acres),
no significant change in density was observed with Dog, = 9.9 (SE = 0.90) and
Dagy = 9.0 (SE = 0.64). Within onc or two years of the resighting surveys, the
four colonies with densitics > 7 animals per acre (Towns 76, 82, 83, 84) experienced
sylvatic plague epizootics gencrally lasting up to threc months until all individuals
were dead. Despite having the lowest density, Town 81 also underwent a plaguc
cpizootic beginning August 2007. Town 81 was approximately 4 km from Town 76,
which may have been the source of the epizootic. Based on observations during the
summer of 2007, I further speculate that Town 81 may have increcased in density
prior to the plague cvent.

In both analyscs, cstimated resighting ratcs were generally lower during high
winds, higher following rain cvents, and higher for larger colonies. I suspect high
winds tended to make resightings of individuals more difficult due to shaking of
spotting scopes, but it is also possible that prairie dog activity levels were lower
during these periods. Rain events in the 24-hours prior to resighting surveys appear
to have produced more favorable conditions and increased prairie dog activity. I
am unsurc why larger towns tended to have higher individual resighting rates, but

suspect this may be an artifact of Town 81 having by far the largest arca but
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also cxhibiting the lowest density. This lower density may have resulted in fewer
individuals going undetected during survey scans. Although I a priori suspected
temperature would be an important predictor variable, I found little evidence to
support this. For every covariate examined, the direction of the effect was always
opposite for 8 and o, indicating that factors which correlated with mean resighting
rates were inversely correlated with individual heterogencity levels.

Although not significantly different, the point estimates for ZPNE tended to
be lower than those for PNE and BOWE. On average, ZPNE point cstimates were
10% lower than PNE or BOWE. I suspect this was due to more marked individuals
being resighted zero times than would be expected under a Poisson distribution.
For example, in Town 76a, 23 of nz, = 80 marked individuals werc never sighted.
Howcver, based on 1000 simulated draws of 80 marked individuals using resighting
rate parameter estimates from the minimum-AIC, ZPNE model, an average of only
10.3 (SE = 0.09) individuals would be expected to never be sighted. Such underesti-
mation of the number of marked individuals by ZPNE may recsult in overestimation
of individual resighting ratcs, which in turn may cause underestimation of N. Al-
though not serious in this example, it is important that researchers applying ZPNE
arc awarc of possible underestimation when a relatively large number of marked
individuals are suspected to have never been sighted as a result of substantial het-

erogeneity.
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2.4 Simulation Experiments

2.4.1 Simulation Methods

Because the prairie dog example provides no information on the relative expected
performance of PNE and ZPNE compared to BOWE and ARNE, I conducted a
limited set of simulation experiments. Data were gencrated for ({ = 3 primary occa-
sions under the assumptions of geographic and demographic closure within primary
sampling occasions, iid sighting probabilities for marked and unmarked individuals,
100% mark identification, and no error in distinguishing marked versus unmarked
individuals. The total number of sightings for individual s during primary inter-
val j (ys;) were first modeled as independent Poisson-log normal random variables
basced on an underlying population E (y;) = X]- and overdispersion due to individual
heterogencity (A,;) such that var (ys;) = Xj + Agj. In terms of XJ- and A,j,

log (/\Uj + Xj)

Qj:QIOg(Xj)f 5 )

and

g = \ﬁog(/\gj +X§) -2log (X]-).

When A,; =0, there is no overdispersion due to individual heterogeneity and o; = 0.
Bascd on the input values for X]- and \,;, the y,; o Poisson (Ay;) were drawn for

the NN, individuals in the population, with Ay; = cxp (0255 + 6;), 255 i N(0,1), and
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Table 2.5: Poisson data gencrating scenarios for simulation experiments with
t = 3 primary sampling occasions. For scenarios A, B, and C, all input pa-
rameters werc randomly selected for cach primary occasion from population size
N; = {50,250,500}, proportion of N; that is marked p; = {0.1,0.3,0.5}, mcan
resighting rate Xj = {1,3.5}, and overdispersion due to individual heterogeneity
Ao; = {0,2,;/2,),}. For scenarios D, E, and F, input parameter valucs werc ran-
domly selected for one primary occasion and used for all three primary occasions.

Scenario NV, P A A N De A A2 Ns /D VR Y
A 5 03 3 0 5 03 3 1.5 250 0.1 1 0.5
B 500 0.1 5 5 250 03 5 0 500 0.1 3 1.5
C 250 05 5 25 250 03 1 0.5 500 0.1 1 0.5
D 50 03 5 25 50 03 5 25 5 03 5 25
E 250 0.1 3 3 250 0.1 3 3 250 0.1 3 3
F 500 03 1 0 500 03 1 0 500 0.3 1 0

.
Nj-n;

Ty, = ZS:nJ_H Ys;. With so many possible input paramcters determining resighting
rates and sample sizes, I restricted these simulations to six pseudo-randomly selected
data gencrating scenarios. For three of the scenarios, all input parameters were
randomly selected for each primary occasions from N; = {50,250,500}, proportion
of N, that is marked p; = {0.1,0.3,0.5}, \; = {1,3,5}, and A,; = {0,),/2, \;}. For the
other three scenarios, input parameter values were randomly selected for one primary
occasion and uscd for all threc primary occasions (Table 2.5). When N; = 50, only
p; = 0.3 or 0.5 were allowed.

To examine the robustness of PNE and ZPNE to simulated data under a dis-
tribution other than Poisson, I also generated data by modeling resighting rates as
the sum of logit-normal random variables. Here, data were generated as if there were
k; distinct sccondary sampling occasions without replacement within cach primary
interval j. Based on an underlying population mean resighting probability 7z; and

individual heterogeneity level (o74;), additive temporal variation (ory;) allowed
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fsij to vary for the sth individual on the ith secondary resighting occasion, such
that y,; = ijl dsij, where dg; kS Bernoulli (y5;;). Because resighting probabilitics
were modeled using this transformation, input values for i;, oryy, and ory; did
not back-transform identically to their original values. McClintock et al. (2006)
used similar methods and categorized the realized valucs for the data-generating
parameters (also scc Chapter 1). For 7i;, the categories were Low (0.15 < 7, < 0.16),
Medium (0.30 <z, < 0.38), and High (7z; = 0.50). The categories for o7; and oy,
were None (o; = 0), Low (0.00 < g; < 0.05), Medium (0.10 < 0; < 0.15), and High
(0.16 < 0, < 0.26). Similar to the simulations using Poisson gencrated data, six
scenarios were pscudo-randomly selected. For three of the scenarios, input param-
cter values were randomly selected for all three primary sampling occasions from
N; = {50,250,500}, p; = {0.1.0.3,0.5}, k; = {3.5,7}, @, = {Low, Mcdium, High},
orgj = {None, Low, Medium, High}, and ory; = {None, Low, Medium, High}. For
the other three scenarios, input parameter values were randomly selected for one pri-
mary occasion and used for all three primary occasions (Table 2.6). When N; = 50,
only p; = 0.3 or 0.5 were allowed. When fi; = Low, oyy; and ory; must be < Low.
Each scenario consisted of 1000 sinulations where the entire generated data
set, was applied to PNE and BOWE, and the zcro-truncated data set was applied
to ZPNE and ARNE. For PNE and ZPNE, all possible time and individual hetero-
geneity models (R = 75, Table 2.7) were implemented using NLMIXED as outlined
in Scction 2.3. For PNE and ZPNE, AIC, and BIC model-averaged point estimates,
unconditional variances, and confidence intervals were calculated as in Section 2.3.
Confidence intervals for BOWE were calculated as in Bowden and Kufeld (1995).
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Table 2.6: Logit-normal data gencerating scenarios for simulation experiments with
t = 3 primary sampling occasions. For scenarios A, B, and C, all input param-
cters were randomly sclected for cach primary occasion from N; = {50,250, 500},
proportion of N; that is marked p; = {0.1,0.3,0.5}, number of sccondary resight-
ing occasions k; = {3.5,7}, mean sighting probability 7, = {Low, Medium, High},
individual heterogencity level o7y; = {None, Low, Medium, High}, and temporal
variation level opy; = {None, Low, Mediumn, High}. For scenarios D, E, and F, in-
put paramcter valucs were randomly selected for one primary occasion and used for
all three primary occasions.

o

Scenario j N; P ]- W OrHj oV
A 1 50 0.3 3 Low Low None
A 2 50 0.5 7 High Nonce High
A 3 50 0.3 3 Medium Medium Low
B 1 500 0.3 7 High Nonc High
B 2 500 0.1 7 High High High
B 3 500 0.1 5 Low Low None
C 1 500 0.1 5 Mecdium None Low
C 2 250 0.1 5 High Medium Medium
C 3 50 0.3 7 Medium Low None
D 1,2,3 250 0.1 3 Medium High Medium
E 1,2,3 500 0.1 7 Low None None
F 1,2,3 50 0.3 5 Mediuin Medium Low
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Table 2.7: All possible time and individual heterogeneity (Z)PNE parametcrizations
for §; and o; with ¢t = 3 primary sampling occasions. Combining all permutations
of the three #; parameterizations and the seven o; parameterizations yields 2 = 75
possible models with N} # Ny # N [represented as N(t)]. The combined number of
paramcters (including N;) in the models range from K =4 for model {8(.)c(0)N (1)}
to K =9 for model {#(1)a(t)N(t)}.

Modcl Notation Paramcterization K No. Permutations
6(.) B,=6,=6, 1 1
6(27) B, =0, = 8. 2 3
6(t) 8,+6,+0, 3 1
a(0) og=0c=05=0 0 1
o(.) 04=0,=0f 1 1
U(ljgzo) O’diO'EZO'fZO 1 3
o(1lj129) gg=0,%05=0 1 3
0(271-0) gg#0.#05=0 2 3
o(27) 04 =0,%0f 2 3
o(t) Og# 0. #0f 3 1

Confidence intervals for ARNE were calculated using the inverse cube root trans-
formation of Arnason ct al. (1991). The relative performances of the AIC. and BIC
model-averaged (Z)PNE, BOWE, and ARNE wecre cvaluated primarily on average
percent confidence interval coverage, average percent confidence interval length (%
CIL), and Bias/SE across each sccnario of 1000 simulations. Simulations where
PNE, ZPNE, or ARNE failed to converge werc rarc (< 0.6%) and omitted from
summary statistics. As described in Arnason ct al. (1991), when no marked individ-
ual is resighted more than a single time within primary interval j, N]- for ARNE is
infinite. This is also the case for ZPNE. but is somewhat alleviated by its ability to
combine data across multiple primary occasions. Simulations where ARNE or the
modcl-averaged ZPNE estimates were infinite were omitted from summary statistics

for these models.
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2.4.2 Simulation Results

Across the six scenarios with Poisson gencrated data (Table 2.8), BOWE (94.6,SE =
0.17) and ARNE (86.2,SE = 0.25) had the highest and lowest average percent cov-
crage, respectively. ARNE had the largest average % ClLs (49.0,SE = 0.28) and the
BIC model-averaged PNE had the smallest % ClLs (37.0.SE = 0.09). Compared
to BOWE, both PNE approaches achieved similar coverage but had considerably
smaller % CILs. BOWE was unbiased, and PNE gencrally exhibited a slight positive
bias, but Bias/SE for PNE never exceeded 0.25. Although less than the nominal
95%, both ZPNE approachcs achicved greater average coverage than ARNE. Av-
crage % CILs werc smaller for the ZPNE modcls than for ARNE. Both ARNE
and ZPNE gcnerally exhibited a negative bias, but was most scverc for ARNE
(average Bias/SE = -0.37,SE = 0.10). PNE average percent coverage was lowest
for N3 of Scenario A, at 89.1 (SE = 0.99) using AIC. modcl-averaging and 88.7
(SE =1.01) using BIC modcl-averaging. BOWE average coverage was lowest for Vg
of Scenario D (93.0,SE = 0.81). ZPNE average percent coverage was lowest for Ny
of Scenario C, at 66.9 (SE = 1.51) using AIC, model-averaging and 61.5 (SE = 1.56)
using BIC model-averaging. ARNE average percent coverage was also lowest for
N3 of Scenario C (64.4,SE = 1.53). For all models, average % CILs were largest
for N3 of Scenario A, at 83.4 (SE = 1.00) for the BIC model-averaged PNE, 84.3
(SE = 1.01) for the AIC, modcl-averaged PNE, 94.6 (SE = 1.17) for BOWE, 111.2
(SE = 2.77) for the BIC model-averaged ZPNE, 112.3 (SE = 2.79) for the AIC,

modcl-averaged ZPNE, and 134.9 (SE = 4.74) for ARNE. No inadmissible cases for
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Table 2.8: Average percent confidence interval coverage, percent confidence inter-
val length (% CIL), and Bias/SE of abundance estimates for AIC. modcl-averaged
(modAIC) PNE and ZPNE, BIC model-averaged (modBIC) PNE and ZPNE,
BOWE, and ARNE across six simulated scenarios with data generated under a
Poisson distribution.

Model % Coverage % CIL Bias/SE
Est. SE Est. SE Est. SE
BOWE 94.6 0.17 46.7 0.11 0.00 0.01
PNE modAIC 93.7 0.18 38.9 0.09 (.10 0.02
PNE modBIC 93.2 0.19 37.0 0.09 0.09 0.02
ARNE 86.2 0.25 49.0 0.28 -0.37 0.10
ZPNE modAIC 89.6 0.22 451 0.18 -0.18 0.09
ZPNE modBIC 88.3 0.23 42.5 0.18 -0.21 0.11

ARNE or the model-averaged ZPNE where all marked individuals were sighted <1
time occurred in these scenarios.

Across the six scenarios with logit-normal generated data (Table 2.9), ARNE
had the largest average coverage (95.8,SE = 0.15), and the BIC model-averaged
ZPNE had the lowest (91.8.SE =0.21). Average % CILs were smallest and largest
for the BIC model-averaged PNE (53.7,SE = 0.32) and ARNE (192.3,SE = 4.16),
respectively. Compared to BOWE, both PNE approaches achicved similar coverage
but had smaller % CILs. BOWE was again unbiased, and PNE again cxhibited
a slight positive bias, but Bias/SE for PNE ncver exceeded 0.25. Compared to
ARNE, both ZPNE approaches achicved slightly lower average coverage, but av-
crage % CILs were considerably smaller for the ZPNE models. ARNE and ZPNE
generally exhibited a positive bias, but was most severc for the BIC modecl-averaged
ZPNE (avecrage Bias/SE = 0.32,SE = 0.09). Both the AIC. model-averaged PNE

and BOWE had their lowcest average percent coverage for Ny of Scenario A, at 88.0
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(SE = 1.03) and 93.0 (SE = 0.81), respcctively. The BIC model-averaged PNE
had its lowest average percent coverage for Ny of Scenario B (85.7,SE = 1.11).
ZPNE avcrage percent coverage was lowest for N3 of Scenario A using AIC. model-
averaging (89.6,SE = 0.97) and for N; of Scenario D using BIC modcl-averaging
(87.9,SE = 1.04). ARNE average percent coverage was lowest for Ny of Scenario
C (91.6,SE = 0.88). Average % CILs werce largest for N; of Scenario A for BOWE
(127.0,SE = 2.58), the BIC model-averaged PNE (127.5, SE = 5.23), the AIC. model-
averaged PNE (134.2,SE = 5.23), and ARNE (1196.1.SE = 47.40). ZPNE avcrage
% CILs were largest for N3 of Scenario A, at 273.6 (SE = 10.41) using AIC. modecl-
averaging and 274.9 (SE = 10.48) using BIC model-averaging. For N; of Scenario
A, the combination of k; = 3 and 71, = Low resulted in 35% and 29% of simula-
tions producing inadmissible estimates for ARNE and the model-averaged ZPNE,
respectively.  For Scenario D, less than 0.2% of simulations produced inadmissi-
ble estimates for ARNE or the model-averaged ZPNE. No other inadmissible cases

occurred in the logit-normal scenarios.

2.4.3 Simulation Discussion

When the number of marked individuals was known, PNE gencrally cexhibited ad-
vantages over BOWE in terms of coverage and precision regardless of the method
used to generate the data. As cxpected, the advantages were greater with data
gencrated under a Poisson distribution, but PNE performance proved robust with

logit-normal data. Because its propertics arc not based on asymptotics, BOWE
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Table 2.9: Average percent confidence interval coverage, percent confidence inter-
val length (% CIL), and Bias/SE of abundance cstimates for AIC, model-averaged
(modAIC) PNE and ZPNE, BIC model-averaged (modBIC) PNE and ZPNE,
BOWE, and ARNE across six simulated scenarios with data gencrated under a
logit-normal distribution.

Model % Coverage % CIL Bias/SE
Est. SE Est. SE Est. SE
BOWE 94.6 0.17 58.6 0.21 -0.01 0.01
PNE modAIC 95.5 0.15 59.9 0.32 0.11 0.03
PNE modBIC 94.2 0.17 93.7 0.32 0.11 0.04
ARNE 95.5 0.15 192.3 4.16 0.19 0.08
ZPNE modAIC 93.5 0.19 93.2 0.79 0.31 0.08
ZPNE modBIC 91.8 0.21 89.1 0.78 0.32 0.09

exhibited some advantage in terms of coverage and precision with the poorest logit-
normal data scts such as for V; in Scenario A where %y = 3 and 7, = 0.15. I found
little difference between AIC. and BIC model-averaged results for PNE when us-
ing the Poisson or logit-normal data. Despite the slight advantages demonstrated
for PNE with data generated under a logit-normal distribution, if onc suspects the
underlying sampling process is truly without replacement within distinct secondary
occasions, the logit-normal mixed effects model (LNE, see Chapter 1) would be
the morc appropriate choice. Based on simulation cxperiments (see Chapter 1), I
cexpeet LNE to be more precise than PNE when sampling is without replacement,
but PNE would perform well and be the more appropriate choice if sampling with
replacement were possibly suspected and not confirmed. This may oceur when there
arc rclatively few marked individuals, none of which werce resighted more than once
on a given secondary occasion, but it is unknown whether this is also true for the

unmarked individuals.
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When the number of marked individuals was unknown, ZPNE exhibited greater
coverage and precision than ARNE with the Poisson generated data, but average
coverage for both models was less than nominal. With the logit-normal data, ZPNE
was considerably more precisc than ARNE with ncar-nominal coverage. Relative to
PNE and BOWE, ARNE and ZPNE were less precise with the logit-normal data
than with the Poisson data. I found little difference between AIC, and BIC modcl-
averaged results for ZPNE when using the Poisson data, but did find the AIC,
model-averaged results to be slightly more robust in terms of coverage when using
the logit-normal data. With the Poisson data, both ARNE and ZPNE coverage was
less than nominal duc to a tendency towards negative bias when sample sizes were
particularly small. This bias was considerably worse for ARNE when individual
heterogeneity was present. With the logit-normal data, ARNE and ZPNE exhibited
a positive bias in most scenarios, but were negatively biased when there were high
levels of individual hetcrogeneity. The positive bias was typically morc severe for
ZPNE, and the negative bias was more scevere for ARNE. For the logit-normal sce-
narios, these biases usually did not cause coverage to fall below nominal for either
estimator. However, while the relatively large confidence intervals for ARNE in the
logit-normal scenarios allowed the model to achicve adequate coverage when indi-
vidual hetcrogencity levels werc high, the poor precision exhibited by ARNE under
these circumstances would not be particularly useful for inference.

Overall performance for ARNE and ZPNE was poorest in sccnarios containing
primary sampling occasions with individual heterogeneity and low numbers of re-
sightings. This occurred in the Poisson simulations for primary occasions where both
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Xj =1 and A,; = 0.5, and in the logit-normal simulations where k; = 3. In the former
case, these input paramecter values resulted in relatively large numbers of marked
individuals never being resighted. This caused an underestimation of the number of
marked individuals and, therefore, N. In the latter case, both overestimation and
undcrestimation of N was observed. Ovcerestimation occurred for Nz of Scenario
A and was likely a result of the highly skewed resighting probability distribution
generating fewer marked individuals with y,; = 0 than would be expected (based on
the resighting frequencies of individuals with ys; > 1). For /Vy of Scenario A and all
primary occasions of Scenario D, the small number of secondary sampling occasions
combined with low resighting probabilitics or high levels of individual heterogene-
ity, respectively, resulted in morc marked individuals being sighted zero times than
would be expected (and underestimation of N'). However, average coverage only fell
slightly in these scenarios because of large confidence interval lengths. The slight
loss in coverage was greater for ZPNE, but the precision of ARNE was extremecly
poor for these cstimates.

When the primary sampling occasions where both E(y,;) = 1 and var(y,;) = 1.5
were omitted from summary statistics for the Poisson simulations, average confi-
dence interval coverage across all simulations was improved for the AIC, modcl-
averaged ZPNE (93.3,SE = 0.20), the BIC modcl-averaged ZPNE (92.6,SE = 0.21),
and ARNE (89.2,SE = 0.25). Average percent confidence interval lengths were re-
duced for the AIC, modcl-averaged ZPNE (39.6. SE = 0.10), the BIC model-averaged
ZPNE (37.4,SE = 0.10), and ARNE (42.0,SE = 0.09). The negativc average Bias/SE

was reduced slightly for ARNE (-0.23,SE = 0.07), but morc substantially for the
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AIC. modcl-averaged ZPNE (-0.04,SE = 0.05) and the BIC model-averaged ZPNE
(-0.05,SE = 0.05). Even with these occasions omitted, the overall performance of
ARNE was not greatly improved rclative to ZPNE because ARNE estimates tended
to be negatively biased when individual heterogeneity levels were moderate to high.

When primary sampling occasions of the logit-normal simulations with k; =3
were omitted from summary statistics, the average performance of ARNE and ZPNE
were both improved, but a considerable advantage in terms of precision was still
demonstrated for ZPNE. Average percent coverage was now 94.4 (SE = 0.20) for the
AIC, modcl-averaged ZPNE, 92.9 (SE = 0.23) for the BIC model-averaged ZPNE,
and 95.5 (SE = 0.18) for ARNE. Average % CILs were lowered to 69.2 (SE =0.37)
for the AIC. model-averaged ZPNE, 66.2 (SE = 0.36) for the BIC modcl-averaged
ZPNE, and 89.5 (SE = 1.36) for ARNE. Average Bias/SEs were still greater than
0.25, at 0.45 (SE = 0.07) for the AIC. model-averaged ZPNE, 0.46 (SE = 0.08)
for the BIC model-averaged ZPNE, and 0.30 (SE = 0.09) for ARNE. Despite a
larger Bias/SE after omitting these occasions, ZPNE still achicved greater precision
than ARNE with little loss in coverage. In both sets of simulations, the nominal
performance of ZPNE when these cases were omitted reiterates the importance of
carcful study design to help cnsurc that distributional assumptions and minimal

sample size requirements are reasonably satisfied in application.
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2.5 Conclusions

Both the black-tailed prairie dog example and the simulation experiments demon-
strated clear advantages in the use of PNE or ZPNE when compared to BOWE or
ARNE. The generalized modeling framework of (Z)PNE incorporates scveral key ad-
vancements when sampling is with replacement or the number of marks is unknown.
Thesc include the usc of covariates in modeling resighting rate and individual hetecro-
geneity parameters, information-theoretic model sclection and multimodel inference,
and the inclusion of unidentified marks towards achieving greater precision with lit-
tle or no loss in coverage. In these limited simulations, I found PNE and ZPNE to be
robust to the data generating process and generally reliable alternatives to BOWE
and ARNE, but I notc that it is important for researchers to address the possible
limitations of small sample sizes or relatively many marked individuals never being
resighted when applying (Z)PNE. Similar to the logit-normal mixed effects model
(LNE, sce Chapter 1), (Z)PNE is computationally more intensive than other esti-
mators. However, I believe this added complexity is justified by the advantages its
generalized structure can provide. Further, users not wishing to program the mod-
els using standard statistical computing software may implement both LNE and
(Z)PNE in the frecly available mark-recapturc software package Program MARK
(available for download at http://welcome.warnercnr.colostate.edu/ gwhite).
Instructions for implementing the models in MARK may be found in Appendix D.

With the recent introduction of LNE and (Z)PNE, a more flexible and efficient

framework for mark-resight abundance estimation is now available for the sampling
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conditions most commonly cncountered in these studies. I forcsce the next logical
step for modecl development in this area to be its extension to a full robust design
(Kendall et al., 1995, 1997). By so doing, mark-resight may then be utilized not
only for abundance estimation, but also as a lcss invasive and less expensive mcthod
of estimating demographic parameters, such as state-specific survival and transi-
tion rates, that help explain the fluctuations in population size commonly observed

through long-term monitoring programs. This extension is explored in Chapter 3.
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Chapter 3

A less field-intensive robust design
for estimating demographic

parameters with mark-resight data

3.1 Introduction

Although abundance (V) is invariably of interest in wildlife studies, it provides little
information on the forces that drive changes in population size that arc commonly
observed in long-term monitoring programs. The robust design of Kendall et al.
(1995, 1997) provided a means for estimating /V, apparent survival probabilities (¢),
and transition probabilities between observable and unobservable states (¢, ypV0)
from mark-recapture data by combining multinomial likelihoods of the Cormack-
Jolly-Seber open population model (Seber, 1982) and closed population abundance

models (Otis et al., 1978; Pledger, 2000; Huggins, 1991). Under this framework, N
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is estimated for the observable population, the transition probabilities pertain to
some super population moving between observable and unobservable states, and ¢
does not differ by state. Sampling consists of ¢ “primary” sampling intervals, each
consisting of k; (j = {1,...,t}) “secondary” sampling occasions. Abundance of the
observable population is estimated for the closed period of secondary sampling dur-
ing cach primary interval, and this length of time must be of short enough duration
for the assumption of closure to be acceptable. The primary periods between these
closed intervals arc considercd open and usced to estimate survival and transition
probabilitics. Because this “full-likelihood” approach simultaneously utilizes infor-
mation from the open and closed sampling periods, it possesses advantages in terms
of bias and precision over implementing the models separately (Kendall et al., 1995,
1997).

Despite its numerous advantages over other methods (Thompson ct al., 1998;
Anderson, 2003), two drawbacks of mark-recapture studies are their financial cost
and disturbance to animals. Compared to traditional mark-rccapture, the mark-
resight method (Arnason ct al., 1991; Neal ct al., 1993; Bowden and Kufeld, 1995;
White and Shenk, 2001; McClintock ct al., 2006) can often be a less expensive and
less invasive alternative (Minta and Mangel, 1989; McClintock and White, 2007).
The primary advantage of these methods is that animals only need to be physically
captured and marked once, and subsequent sighting data from both marked and
unmarked individuals arc used for estimation. With limited funds and resources,
mark-resight can be appealing to researchers because costs associated with capture
arc gencerally the most expensive aspects of mark-recapture studies. Not only can
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the financial burden of mark-recapture be discouraging for long-term population
monitoring, but capture is also the most hazardous aspect for the animals. If ficld-
rcadable marks arc feasible, mark-resight can substantially reduce stress to specics
because they can be observed at a distance with minimal disturbance after the
initial capturc. This can be of particular concern when working with threatened,
endangered, or sensitive species.

In Chapters 1 and 2, I introduced gencralized mark-resight modeling frame-
works in the spirit of traditional mark-recapture (Otis ct al., 1978; Coull and Agroesti,
1999: Pledger. 2000), including the efficient use of covariates in modeling detection
rate and individual heterogencity parameters, information-theorctic model sclection
and multimodel inference, and the ability to borrow information across primary
intervals for data collected under the robust design. Howcver, the focus of mark-
resight methods has to this point been overwhelmingly on the cstimation of N. To
my knowledge, nonc of the mark-resight models devcloped to date have tried to
utilize the information these data may contain about demographic parameters in a
fashion analogous to mark-recapture. Building on the gencralized framework devel-
oped in Chapter 2, I extend the model to a full-likelihood robust design, thereby
providing a less expensive and less invasive alternative to its mark-recapture prede-
cessor (Kendall et al., 1995, 1997). After introducing the model in the next section,
I demonstrate its use in Scction 3.3 using New Zealand robin (Petroica australis)
data collected in Fiordland National Park, New Zcaland. In Section 3.4, I report on
simulation experiments evaluating the performance of the model under a variety of
sampling conditions. In Section 3.5, [ summarize my findings in terms of their impli-
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cations for demographic paramcter cstimation in long-tcrm population monitoring

programs.

3.2 The Model

The robust design Poisson-log normal mixed effects mark-resight model (RDPNE)
has the same basic assumptions of the abundance model developed in Chapter 2, but
it utilizes information from the open sampling periods to estimate apparent survival
and transition probabilitics between observable and unobservable states. These as-
sumptions are: 1) geographic and demographic closure during sccondary sampling
within primary intervals; 2) no loss of marks; 3) no errors in distinguishing marked
and unmarked animals; and 4) independently and identically distributed (iid) re-
sighting probabilitics for marked and unmarked animals. The usual assumptions of
the Cormack-Jolly-Seber model also apply (Seber, 1982). Marks must be individu-
ally identifiable and field-readable. Because marks must be individually identifiable.
it is possible to account for overdispersion due to resighting rate hetcrogencity or
lack of independence. The number of marked individuals in the population during
sampling may be known exactly or unknown. Given that an individual is identified
as marked, RDPNE may incorporate less than 100% marked individual identification
by assuming such events occur randomly within the marked population.

I will assume some number of individuals with permanent field-readable marks
arc available for resighting during ( scquential primary sampling intervals of in-

tercst. Each primary sampling interval consists of secondary sampling occasions
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during which the population is assumed closed. Sampling within sccondary occa-
sions may be with or without replacement (i.c., individuals may be sighted morc
than once within a secondary occasion). This differs from the traditional mark-
recapture model of Kendall ct al. (1995, 1997) because secondary occasions nced
not be distinet, and consideration is given only to some closed period of sampling
for each primary interval. If the number of marked individuals in the population
(n;) is known cxactly during primary interval j (j = {1,...,¢}), the rcsighting data
for this interval consist of the total number of sightings for marked individual s
(ys; = {0,1.2,...}, s = {1,...,n;}) and the total number of unmarked sightings (7, ).
Typically, the number of marks is known cxactly only when radio-collars are used
(McClintock and White, 2007) or all marking occurs immediately prior to the on-
sct of secondary sampling. In the latter case, it is often rcasonable to assume
no mortality or movement between marking and the closed resighting period (sce
Chapter 2). If the exact number of marks is unknown during primary interval
7, then some number of marked individuals are resighted at least once (n;), and
the resighting data consist of the total number of sightings for these individuals
(ys; = {1,2....}, s = {1, ..., n]*}) and T,;. Often times a marked individual is sighted,
but not identified to individual identity. Because ignoring these data would gen-
crally result in overestimation of N, the total number of times this occurs during
interval j (e; = {0.1,2,...}) is also incorporated into the model.

When the number of marks in the population is known cxactly during pri-
mary interval j, the ys;’s (s = {1,...,n;}) arc modecled as realizations of independent
Poisson-log normal random variables. If the number of marks is unknown, the ys;’s
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(s ={1,...,n}}) arc modeled as realizations of independent zero-truncated Poisson-
log normal random variables. On the log scale, mcan resighting rate (6;) is treated
as a fixed effect and individual heterogeneity (a source of overdispersion) as a ran-

2

dom effect with mean zero and unknown variance os. The ys;’s have conditional

cxpectation
E(ysj | O']',ZSJ',HJ') = )\sj = CXp (Ostj + 6)]'),

where Zg; b N(0,1). For increased efficiency, §; and o; may be modeled with fixed
environmental or individual covariates believed to affect the resighting process, as
is demonstrated in Scction 3.3 and in Chapter 2. By taking the product across the
n; or n; marked individuals for cach primary interval, an unconditional likelihood

function for 8;, o;, and N; is

L(N1079Iy>n7Tu)

t /\st CXp( /\é]) f /\ys, CXp( /\5])( )
E{ _/ (]5( s])(l’Zs]+Hf ysj —CXp(—/\S])] d)(/,s])dzs]}
! Ty,
SROS (i j)

j=1 —/Ooof(Tuj)dTuj‘

(3.1)

where /; is an indicator for when the the number of marks is known (/; = 1) or

unknown (/; = 0) for primary interval j, ¢(z,;) is the standard normal density,
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f(T,,) is the normal density with cxpectation

BT, - [Nj_nj[j_ ni(1-1;) ]

1 —exp(=Ay)
2
% G
X exp( 5 +0; |+ . (1) (3.2)
Mydi * 1 —exp(=Ajjs)

and variance

ni(l-1;
var(Ty,) = [Nj -n,l; - i ) ]

1- exp(—/\j|s)

o2 .
X { exp (7] + 0]-) +exp(26;) [eXp(ECT]Z) - cxp(af ] + ne*J(l A
n;l; + T exp(=,p)
(3.3)
and
o?
Ajis = Bz, (ys5) = / exp (0255 + 0;) (255 )dzs; = exp (—2]- + 9]-) )

Full details on the derivation of this likelihood may be found in Chapter 2, with the
only difference being that the data are no longer considered independent between
primary intervals under RDPNE. It remains that the data nced not be independent
with respect to paramecters.

To model the sampling process for the open periods between primary sampling

intervals, I combine (3.1) with the first-order Markovian emigration likelihood “L;,”
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introduced by Kendall et al. (1997):

L(N,o,08.¢,9°Y ¢Y° |y.n,T,)=L(N,0,0|y.n,T,) Ly (3.4)

As in the models of Kendall et al. (1995, 1997), the open Ly, portion of this full like-
lihood ignores the timing and frequencies of encounters during sccondary sampling
occasions, considering only whether or not the individual was cncounterced at any
time during primary interval j. By utilizing information from both open and closed
sampling periods, this provides a means for jointly estimating /V;, 6;, o, the proba-
bility that an individual alive and in the super population during interval j survives
and remains in the super population to interval j+1 (¢;, j = {1,...,t = 1}), and the
transition probabilitics between obscrvable and unobscrvable states for individuals
alive and in the super population from interval j to j +1 (ijU, j=A{1,....,t-1} and
'z/;JUO, j={2.....,t -1}). Thesc transition probabilitics arc the samc as v and 1 -+,
respectively, of Kendall et al. (1997) when used in the context of temporary emi-
gration from a single study arca, but they don’t necessarily need to describe state
transitions in spacc. They may describe any transitions betwecn obscrvable and
unobscrvable states, such as observable “breeding” and unobservable “nonbreed-
ing” states (Kendall and Nichols, 2002). However, a fundamental assumption of
this modeling approach is that apparent survival probabilities arc the same for all
individuals in the super population and, therefore, do not differ by state.

Even with modest ¢, the multinomial cell probabilities under Ly, in (3.4) can

become quite complicated, and intcrested readers are referred to Appendix C and
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Kendall et al. (1997) for a more detailed explanation of the likelihood. Suffice it
to say that the Ly, in (3.4) is identical to that of Kendall et al. (1997), but in
my modcl the open and closed portions of the full likelihood are linked via the
probability of being encountercd at lecast once during primary interval j (p]*) under
the Poisson-log normal model. This contrasts with the p7 derived from the closed
capture multinomial model in Kendall et al. (1995, 1997) or the loglinear model in
Rivest and Daigle (2004). Here I use the term encounter (instead of resight) because
in mark-resight methodology, marked or unmarked individuals may be encountered
through sightings, but individuals may also be cncountered through captures (e.g.,
for marking) during the open periods. If a capture cvent were to occur immediately
prior to the onsct of a closed primary interval, any of the captured individuals that
were not subsequently resighted may be reasonably assumed to have been present.
When n; is known, these individuals constitute the marked individuals with y,; = 0.
However, when n; is unknown these individuals do not contribute to the Poisson
portion of the likelihood, but because they were known to have been present, this
information can be used in the open portion of the likelihood. I define ¢; as the
total number of individuals captured immediately prior to primary interval j (and
therefore assumed to be present in the population during this interval), but not
resighted. Then ¢ = n} +¢; is the total number of marked individuals encountered

at lcast once (via capture or resighting) for primary occasion j, and
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Thus, if n; is known exactly, then all available marked individuals have been cn-
countered and pj = 1. Otherwise, n; = nj/ [1 —CXp(—)\J-'S)]. If n; is unknown and
therc arc no encounters from capturce cvents immediately prior to closed interval j
(i.e., ¢j = nj) then pj = 1 —exp (~Aj;), the probability of being resighted at least
once during primary interval j§ under the zero-truncated Poisson-log normal modcl.

Point and variance cstimates for RDPNE may be obtained using maximum
likelihood or Bayesian analysis mcthods. Becausc the integrals appearing in the
likelihood do not have closed form solutions, they must be computed numerically
when using maximum likelihood (sce Chapter 2). The model may be implemented
using standard statistical computing software, but this can become quite compli-
cated and tedious as thce number of primary intervals increases. The model has
therefore been incorporated into the freely available mark-recapture softwarc pack-
age Program MARK (White and Burnham, 1999). Instructions for implementing
the model in MARK may be found in Appendix D.

I note that in application, if the number of marked individuals is known exactly
for all primary intervals, there is no advantage to using the full-likelihood approach
proposed here. This would apply if all marked individuals were fit with radio-collars.
and the fates of these individuals were thercfore known. Under these circumstances,
it would be better to ignore temporary emigration and apparent survival altogether
by using the known fate data from the marked individuals to estimate survival rates
directly (Pollock et al., 1989). This could be donc in conjunction with an analysis
using the Poisson-log normal (sce Chapter 2) or logit-normal (sce Chapter 1) models

to obtain abundance estimates.
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3.3 Example: New Zealand Robin

3.3.1 Example Methods

Between March 2005 and August 2007, the New Zealand Department of Conser-
vation investigated the utility of mark-resight methodology for monitoring New
Zealand robin (Petroica australis) populations on three study areas in the Eglin-
ton Valley of Fiordland National Park, New Zealand (44°58’S, 168°01°E). This cx-
ploratory investigation was initiated to assess whether the technique may be used to
monitor the endangered populations of the closely rclated species ( Petroica traversi)
inhabiting the Chatham Islands. The three sites (Knobs Flat, Smithy, and Walker
Creek) consisted of 100ha grids and were visited in March (post-breeding) and
August (pre-breeding) of cach year, but data collection did not begin in Smithy
until August 2005. Thercfore, there were 6 primary intervals for both Knobs Flat
and Walker Creck, but only 5 primary intervals for Smithy. Between Scptember
2003 and August 2007, as many juvenile and adult birds as possible were captured
within the sites and given individually identifiable bands. These capture events
took place continuously throughout the breeding season and intermittently prior to
primary sampling intervals. Because banded birds could have died or permanently
cmigrated during this extended capture period, the exact number of marked indi-
viduals in cach population was unknown for cvery primary interval. At the time of
capture, the sex and age class of cach individual was recorded. ‘The primary inter-
vals were divided into 8 — 10 distinct secondary occasions where the entire area of

cach sitc was surveyed. Secondary sampling was conducted in the morning and typ-
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ically required four hours for cach occasion. The populations were assumed closed
during primary sampling intervals. Sampling was with replacement because marked
individuals werc resighted more than once on several secondary occasions. Stoat
(Mustela erminea) and possum ( Trichosurus vulpecula) control occurred at low lev-
cls on all three study areas for the duration of the study. Additionally, ship rat
(Rattus rattus) control was conducted on Walker Creck from June 2006 until April
2007, thereby overlapping two primary sampling intervals (August 2006 and March
2007).

To aid in evaluating the relative performance of the mark-resight abundance
estimates, intensive territory mapping was conducted during most primary intervals
of cach site to produce an independent estimate of the minimum number known alive
(MNA). These MNAs were believed to be reasonably closc to the actual population
sizes within each site, but they required considerably greater field effort to obtain
rclative to the mark-resight methodology. The Department of Conservation was
primarily intcrested in determining whether mark-resight may be a reliable and
more cost-cfficient alternative to territory mapping.

I perforined a joint RDPNE maximum likelihood analysis for these three
groups using Program MARK (Whitc and Burnham, 1999). Covariates cxamined
included scx, age class at time of capture (juvenile or adult), study arca, time, breed-
ing scason, and rat control on Walker Creck. Three covariate models for rat control
on Walker Creek were examined: 1) an immediate and constant effect during the
entire program (rat;); 2) no immediate effect with a delayed effect thereafter (rat,);
and 3) an immediate effect with a variable effect thereafter (rat),). I also investi-
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gated modecls under completely random emigration, ¥V = 1 -¢V9  (Kendall ct al.,
1997) and modecls ignoring individual heterogeneity (o = 0) or temporary emigration
(YOU =1 -4V9 = 0) altogther. Becausc the duration of the open periods was four
months between March and August surveys and seven months between August and
March surveys, the open period parameters refer to four-month intervals. [ first
modeled the resighting rate parameters under the most general (but identifiable)
time- and group-dependent structure for N and the open period paramecters. To
make all parameters identifiable, I followed the suggestion of Kendall et al. (1997)
and constrained the final 24 = ¢¥27 and ¢U§ = pU9 for each site. I then investi-
gated various modecls for § and 0. As a means for model selection, Program MARK
by default utilizes Akaike's Information Criterion adjusted for small sample sizes
(AIC,) (Burnham and Anderson, 2002). This allows multimodel inference based on
AIC,. weights using an effective sample size 1 defined as Z§'=1 {nj I+ n]*.(l - []-)} +1.
For the combined data set, ¢ = 17 and /; = 0. I proceeded by first selecting the
model structure for # and ¢ best supported by AIC, and then using only this struc-
ture for investigating morc parsimonious modecls for ¢, 99V, and ¥V°. Lastly, I
investigated various combinations of the best supported structurcs for the open pe-
riod paramcters with any other structures for 8 and ¢ that had received relatively
strong AIC, support. I computed model-averaged paramecter estimates and uncon-
ditional varianccs based on AIC. weights and calculated confidence intervals as 95%
logarithm-transformed normal for N and 95% logit-transformed normal for the open

period parameters. The minimum lower bound for all N; was n}.
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3.3.2 Example Results

Across the 6 primary intervals for Knobs Flat and Walker Creek, 65 and 45 marked
individuals, respectively, were resighted at least once. Across the 5 primary intervals
for the Smithy site, 39 marked individuals were resighted at least once. Across the t =
17 total primary intervals, the effective sample size 23‘=1 {nj I+ n;(l - Ij)} +t=378.
Across all primary intervals, the average numbers of resightings for the n; marked
individuals observed at least once were 2.9, 2.6, and 3.0 for Knobs Flat, Smithy, and
Walker Creek, respectively. The total numbers of unmarked individuals resighted
across all secondary occasions of cach primary interval ranged from 7, = 4 to 45 for
Knobs Flat, 6 to 28 for Smithy, and 1 to 57 for Walker Creck, with the lower numbers
typically occurring during winter (August). Small numbers of marked individuals
were identified as marked but not to individual identity, ranging from ¢; = 0 to 6
across all sites and primary intervals.

The model structure for resighting rate parameters best supported by AIC,
included breeding scason, age, scx, and rat; terms for 4, and a breeding season
term for o. No other structures for 8 and o were an improvement when combined
with the open period parameter structure best supported by AIC. . With 19%
of the AIC, weight, the 29-parameter minimum-AIC, model included an age effect
with a delayed effect of rat control (raty) on apparent survival, and a season ef-
fect under completely random cmigration for ¥©Y and ¢¥V¢ (Table 3.1). For mean
resighting rate 6, negative effects (on the log scale) were found for pre-breeding

primary intervals in August (-0.21,SE = 0.09), individuals first capturcd as adults
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Table 3.1: AIC, weights for sclected RDPNE models of apparent survival and tran-
sition rates for New Zealand robin populations on three study arcas in Fiordland
National Park, New Zealand. Covariates include age class, study arca, rat control,
season, sex, and intercept only (.). Three covariate models for rat control were
examined, including an immediate and constant effect during the entire program
(rat;), no immediate effect with a delayed effect thereafter (raty), and an immedi-
ate effect with a variable effect thereafter (rat,;). Models where certain parameters
were assumed to have no effect (0) were also investigated. Model specific covari-
ates were included for apparent survival only (¢), transition rates under completely
random temporary cmigration only (¢), transition rates under unconstrained tem-
porary emigration only (#,), or both apparent survival and transition rates under
completely random temporary emigration (e). All modecls include scparate abun-
dance (V) estimates for each primary interval of each study area. Unless otherwise
noted, all modecls include age, rat, season, and sex effects on mean resighting rate
(6). and season effects on individual heterogeneity (o). The number of estimated
parameters (K) includes NV, 8, g, and intercept terms.

Model AIC, K

age area  rat; raty ratyp season sex . 0 Weight
b b W 0.19 29
1) ) ) Y 0.15 31
10) ) W 0.13 30
10 ) W 0.08 29
o) 10 Y 0.07 30
1) ) ¢ Y 0.06 30
1) 1) P 0.06 28
1) P 0.06 28
o) @ Wy 0.03 31
. 1) 0.02 29
o @ Yy 0.02 29
10) 1) (A 0.02 29
o . 0.02 29
¢ 1) Y 0.02 27
10) W 10) 0.02 30
) W 0.01 28
P 10) 0.01 28
P 0] 0.01 27
¢ 1) Y o 0.00 27
1) ) 0.00 28
1) P 0.00 29
. 0.00 26
. 0.00 28
1) Y 0.00 29
¢ @ (0 0.00 30
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(-0.16,SE = 0.08), and females (-0.43,SE = 0.10). An immediate and constant
positive effect (on the log scale) was found on 6 for Walker Creck during rat control
(0.34,SE = 0.10). For all three study areas, & = 0.47 (SE = 0.09) during pre-breeding
primary intervals in August and & = 0.00 (SE = 0.02) during post-breeding primary
intervals in March. Virtually no support (0% of AIC, weight) was given to the same
minimum-AIC, model assuming no individual heterogeneity (Table 3.1).
Model-averaged parameter and unconditional variance estimates suggest fluc-
tuating population sizes (Figurc 3.1) and relatively constant apparent survival rates
for adults and juvecniles on the threc study arcas until rat control was initiated on
Walker Creek (Figure 3.2). During the period of rat control on Walker Creek, a
significant increase in population size was detected. Both Knobs Flat and Smithy
exhibited significant population declines through the course of the study. With the
exception of Knobs Flat from August 2006 to March 2007, all study areas exhib-
ited increases in population size from pre-breeding to post-breeding. Confidence
intcrvals for abundance cstimates were greater than or included the MNAs from
territory mapping in every case cxcept for Knobs Flat and Walker Creek in August
2006 (Figurc 3.1). The weight of evidence strongly favored the completely random
emigration hypothesis with very little support for the same minimum-AIC, modcl
assuming no temporary emigration or unconstrained temporary emigration, both
with < 3.5% of the AIC. weight (Table 3.1). Using the mean values for individual
covariates, model-averaged cstimates of transition rates for Smithy and Knobs Flat
were YOV = 0.10 (SE = 0.05) and Y0 = 0.86 (SE = 0.18) post- to pre-breeding, and
YOV =0.02 (SE =0.05) and YVO = 0.98 (SE = 0.17) pre- to post-breeding. For Walker
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Figure 3.1: Mark-resight abundance estimates and 95% confidence intervals between
March 2005 and August 2007 for three New Zealand robin populations (Knobs Flat,
Smithy, and Walker Creek) in Fiordland National Park, New Zealand. Point symbols
(v = Knobs Flat, 0 = Smithy, & = Walker Creck) indicate the minimum number
known alive based on territory mapping that was independent of the mark-resight
methodology. Vertical hashed lines indicate a period of rat control on the Walker
Creek study area.

Creck, OV = 0.10 (SE = 0.06) and 4U° = 0.87 (SE = 0.18) post- to pre-breeding,

and 10U = 0.02 (SE = 0.04) and 9Y° = 0.98 (SE = 0.17) pre- to post-breeding.

3.3.3 Example Discussion

As also found in Chapter 2, covariates that correlated with € were inversely corre-
lated with ¢ when both were included in a given model. Mcan resighting rates were
typically lower with higher levels of individual heterogeneity during pre-breeding.
Regardless of breeding interval, females exhibited lower mean resighting rates. In-
dividuals captured as juveniles tended to have higher mean resighting rates than
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Figure 3.2: Four-month apparent survival estimates and 95% confidence intervals
between March 2005 and August 2007 for threc New Zealand robin populations
(Knobs Flat, Smithy, and Walker Creck) in Fiordland National Park, New Zcaland.
Estimates are a function of age at time of first capture (adult or juvenile). Vertical
hashed lines indicate a period of rat control on the Walker Creek study area.
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individuals captured as adults. Mean resighting ratcs were higher during rat control
on Walker Creek. Thc population increasc cxhibited by Walker Creek during the
rat control program (during which ncither Knobs Flat or Smithy showed increascs)
suggests rat control on the Chatham Islands may be effective and warrants further
investigation.

With average four-month apparent survival estimates near 0.78 (SE = 0.02)
for the three study arcas until rat control was initiated on Walker Creck, the popu-
lations tended to decline over the winter months post- to pre-breeding, but usually
cxhibited increases pre- to post-breeding. I found some cvidence of lower survival
for individuals first captured as juveniles compared to those first captured as adults.
The evidence for an increase in apparent survival for the Walker Creek population
during and immediately following the rat control program suggests the population
increase pre- to post-breeding and the less dramatic decrease post- to pre-breeding
during this period may be attributable not only to increcased recruitment, but also to
higher survival or lower permancnt cmigration of the juvenile and adult population.
For all three study areas, individuals were more likely to temporarily emigrate from
post- to pre-breeding. Still, temporary emigration rates were relatively low, sug-
gesting that any other cmigration from the study areas was permanent. Fstimates

YO, were the least precise of all parameters.

of transition rates, particularly for
This lower precision is consistent with the findings of Kendall et al. (1997).

When compared to the independent MNAs obtained through territory map-
ping, the mark-resight cstimates were closely correlated and provide a degree of vali-

dation for this methodology. Based on these data, it appears mark-resight would be a
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reliable and more cost-efficient alternative to territory mapping (or mark-recapture)
for monitoring the endangered populations inhabiting the Chatham Islands. How-
ever, in August 2006, the mark-resight cstimates for Knobs Flat and Walker Creek
were significantly lower than the MNAs. This may be a result of breeding starting
carlier than usual in this particular ycar. With mostly breeding and non-breeding
malecs being detected while breeding females remained on nests, [ suspect some scvere
undetected heterogencity may have been introduced, thereby causing the RDPNE
to undcrestimate abundance. Becausc of this potential risk when using the modcl,
the timing of studics should always be designed to maximizc resighting rates and
minimize individual hetcrogeneity whenever possible. These issues arc addressed in

greater detail in Chapter 2 and in the next section.

3.4 Simulation Experiments

3.4.1 Simulation Methods

In Chapter 2, I investigated the propertics of the (zero-truncated) Poisson-log normal
model for abundance cstimation and gencrally found its performance to be nominal
(or near-nominal) under a varicty of simulated sampling conditions. Kendall et al.
(1995, 1997) performed simulations evaluating their mark-recapturc robust design
model and also found its performance to be satisfactory. Given these results, it fol-
lows that the component of RDPNE that deserves special attention is its ability to

adequately estimatc the probability of being encountered at least once during pri-
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mary intervals, p7, and therefore properly model the open period sampling process.
I therefore performed a scries of simulation cxperiments examining the large-sample
properties of RDPNE for comparison to the simulations of Kendall et al. (1995,
1997).

Data were generated for a single population with ¢ = 4 primary sampling
occasions under the assumptions of geographic and demographic closure within pri-
mary intervals, iid sighting probabilities for marked and unmarked individuals, 100%
mark identification, and no error in distinguishing marked versus unmarked individ-
uals. I assumed an initial super population of 500 observable individuals with time-
dependent ¢; (5 = {1,...,(-1}), 'c/;jOU (j={1,..,t-1}), and ’l/}]UO (j={2...t-1}). 1
also assumed no additions to the super population through births or immigration so
that the population (and marked sample) size would decline through time. For the
members of the super population that were observable, the total number of sightings
for individual s during primary interval j (y,;) were modeled as independent Poisson-
log normal random variablcs based on an underlying population E (ys;) = X]- and
overdispersion due to individual heterogeneity (A,;) such that var (ys;) = X]- + Agj.
In terms of Xj and A, ;,

log(/\aj +Xj)

Hj=210g(X]')— 2

and

o; = \/log(/\(,j +X]2) - 2log (X])
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When A;; =0, there is no overdispersion due to individual heterogencity and o; = 0.
Based on the input values for X]- and A,;, the y; nd Poisson (As;) were drawn
for the N; observable individuals in the population, with Ay; = exp (0;zs; +6;),
2sj u N(0,1), and Ty, = Z;V:n,q Ysj-

To facilitate comparisons with the simulations of Kendall ct al. (1997) where
p; = 0.64, individuals in the super population were marked immediately prior to the
first primary interval with probability m = 0.64. No marking occurred thereafter,
so as the overall population size decreased, the proportion of marked individuals
available for resighting remained approximately equal to m for each interval. The
number of marks was known for the first primary interval but unknown for the
other intervals. The generating model was fully time-dcpendent for cach of the
model parameters, and threc transition conditions werce investigated. As in Kendall
et al. (1997), these conditions were /L/)?U =1- ’(/)]UO (completely random cmigration),
¥ > 1-979 and v§Y < 1 -4, To aid in assessing the relative performance
of the model (without loss of generality under the fully time-dependent model),

the set of paramcter values for A, A, ¥;, 1/}],OU

, and wéjo were kept the same for
each primary interval. I specified a relatively high mean resighting rate (/_\]- = 5),
and a scenario with (A,; = 2.5) and without (A,; = 0) individual heterogeneity was
examined for cach of the three conditions. The other data-gencrating values were
0; =08, WPV =1- I/JJUO = 0.2 (under random cmigration), z/JJOU = (.3 and 1/)JUO =08
(when ¥9U > 1-4V9) and z/)]OU =0.2 and $¥? = 0.7 (when ¥9Y < 1 - w]UO). Each
of these six scenarios was independently replicated 1000 times.

I performed a maximum likelihood analysis of cach gencrated data set using
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the NLPQN subroutine in the SAS System for Windows (SAS Institute, 2002). Be-
cause ¢,_1, Y2V, and ¥¥§ are confounded under the fully time-dependent model, 1
followed the suggestion of Kendall et al. (1997) to make all estimated parameters
identifiable by constraining ¥4 = ¢¥P7 and ¥Y§ = ¢V9 with all other estimated
parameters fully time-dependent. To investigate the effects of unmodeled hetero-
geneity on parameter estimates, I also analyzed the data gencrated with individual
heterogeneity under this constrained model assuming no heterogeneity (o; =0). I
evaluated model performance primarily on Bias/SE and percent coefficient of varia-
tion for the parameters of interest. I also examined percent confidence interval cov-
crage of the truc parameter values. Confidence intervals for N; were calculated as
95% logarithm-transformed normal with the minimum lower bound sct at the mini-
mum number of marked individuals known to be in the population during interval j.
Confidence intervals for ¢, ¥V, and Y9 wecre calculated as 95% logit-transformed

normal.

3.4.2 Simulation Results and Discussion

In terms of Bias/SE, precision, and confidence interval coverage, the performance of
N, ¢, YOV, and ¥V cstimators varied between the transition and individual hetero-
geneity scenarios (Table 3.2). Because the number of marks was only known for the
first primary interval, N; cstimates tended to be the least biased and most precise
relative to the other abundance estimates. The relative precision of abundance esti-

mates decreased through time as the marked sample size decrcased. Because of the
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way the data were generated. the transition conditions had no effect on Ni, but the
other abundance cstimates tended to be slightly less precise when 0V > 1 - V0.
No trends were found for the effects of the three transition conditions on bias and
coverage of abundance estimates. All abundance estimates werc relatively unbiased
with nominal coverage when there was no individual heterogeneity in resighting
rates. Estimates for Np remained relatively unbiased with nominal coverage when
individual heterogeneity was present and included in the model, but a slight negative
bias was found for the other abundance estimates. This resulted in lower coverage
for these paramecters, but never falling below 91.4%. When individual heterogencity
was present but not included in the model, N; estimates remained relatively un-
biased, but variance underestimation resulted in lower coverage of this parameter.
When the number of marks was unknown, unmodeled heterogencity caused abun-

dance estimates to be more negatively biased with coverage falling as low as 84.3%.

Apparent survival estimates were relatively unbiased with nominal coverage
across all transition conditions and individual heterogencity scenarios. Under com-
pletely random emigration (¢wOU =1 -¢V9), survival estimates tended to be most
precise. Little difference was generally found between survival estimates when ¥V <
1-9Y0 or 9OV > 1 - U0 but ¢s was noticeably less precisc when 10U > 1 — U0,
Transition probability cstimates were gencrally less precise than the other estimated
paramcters, particularly when 40V < 1 -4VY9. These findings are consistent with
thosc in the previous section and those of Kendall et al. (1997). Individual het-

erogeneity did not appear to affect the precision and coverage of ¥°V and ¢VO,
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Table 3.2: Average bias divided by standard error (B/SE), percent coeflicient of
variation (CV), and percent confidence interval coverage (Cover) for estimates of
abundance (), apparcnt survival (¢), and transition probabilities between observ-
able and unobscrvable states (¢°Y and ¥Y?) from simulation experiments consisting
of t =4 primary intervals under three conditions for transitions (): ¥V <1 - V@
(<), YOV > 1 - 4V% (>), and completely random emigration 9V = 1 - V0 (=).
Thesc threc conditions include scenarios without individual heterogeneity, with in-
dividual heterogeneity, and with unmodeled individual heterogeneity. To make all
estimated parameters identifiable, I constrained ¢&Y = QY (¥$9) and 97§ = 9
(¥Y9) with all other parameters fully time-dependent.

Parm. o No Ind. Het. With Ind. Het. Unmodcled Ind. Het.
B/SE CV Cover B/SE CV Cover B/SE CV  Cover

N < 00 15 947 00 18 945 01 15  89.2
> 00 15 947 00 18 948 01 15 883
= 00 15 945 00 18 952 00 15 893
N: < 00 19 948 04 24 920 -05 19 845
> 00 21 941 -03 25 927 -04 21 876
= 00 19 955 -03 24 925 -05 19 843
Ny < 01 22 945 -02 27 914 -03 22 851
> 01 23 941 02 28 934 -05 23 868
= 00 22 949 -02 26 928 -03 22  87.3
Ny < 00 24 935 -02 30 925 -04 24 859
> 00 25 953 -03 31 926 -03 26  87.9
= 00 24 940 -02 29 925 -04 24  86.9
$r < 02 40 972 01 41 970 01 40 971
> 01 39 955 00 40 954 00 40 956
= 01 35 957 00 36 961 00 3.6 953
¢» < 01 59 959 01 60 939 01 59 958
> 00 57 952 01 59 966 00 59 963
= 00 49 960 00 51 957 00 51 952
¢s < 01 71 956 01 71 956 00 71 953
> 00 74 946 00 76 951 00 7.6 947
= 01 65 963 00 66 950 01 66 965
U <01 167 960 03 163 948 03 163  95.1
> 00 115 963 02 113 947 02 113 945
= 0.0 15.2 95.2 0.3 1438 94.0 0.3 14.9 95.0
v9% < 01 212 966 02 207 958 0.2 207 951
> 00 132 941 02 131 938 02 131 944
= 01 181 954 02 180 953 03 177 948
vi9 < -01 179 985 -01 178 979 -0.1 174 979
> 00 94 980 -02 99 965 -02 98 967

0.0 11.7 99.1 -0.1 119 98.5 -0.1 12.0 97.9
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although it may have induced a slight positive and negative bias for these estimates,
respectively (Table 3.2).

Based on these large-sample simulations, it appears p; works adequately in
modcling the open periods for estimating ¢, ¥©V, and V0. As expected, I found
little effect of individual heterogeneity on these estimates, but (as more thoroughly
investigated in Chapter 2) severe heterogencity can result in underestimation of
abundance cstimates when the number of marks is unknown, and it is important
that heterogeneity be modeled under thesc circumstances for more reliable inferences
on abundance. I suggest that individual heterogencity models always be investigated
and compared to thosc that do not include individual heterogencity, as demonstrated
in Scction 3.3. I further stress that practitioncrs carefully design studics to minimize

scvere individual heterogencity whenever possible.

3.5 Conclusions

When permanent field-readable marks are feasible, I have proposed a full-likelihood
approach for estimating abundance, apparcent survival, and transition rates between
obscrvable and unobservable states for mark-resight data that is analogous to that
using traditional mark-recapture data. I found the model to perform similarly to
its mark-recapturc counterpart in large-sample simulation cxperiments. However,
as with the mark-recapture model, the proposed approach is “data-hungry” and re-
quires that practitioners cmploy careful study design in order to meet minimum sam-

ple size requirements for uscful estimation of parameters. To facilitate this practice,
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the simulation capability for this model has been implemented in Program MARK
(White and Burnham, 1999). Practitioners may thereforc design and analyze stud-
ies under RDPNE using MARK and circumvent computer programming altogether.
MARK is downloadable at http://welcome.warnercnr.colostate.edu/ gwhite,
and documentation for implementing the model may be found in the help files that
accompany the program (sce Appendix D).

I envision this full-likelihood approach to be utilized when the number of
marked individuals may only be known for the first (or first several) primary inter-
vals. Under this scenario, some known number of marks may first be introduced
into the population, but after sufficient time some marks will no longer be in the
population and the exact number would thereafter be unknown. A sccond scenario
where this approach would be particularly useful would be when continuous marking
has been occurring over a long period of time and the exact number of marks in the
population is never known (as was the case for the New Zcaland robin example in
Section 3.3). Under either of these two scenarios, this full-likelihood mark-resight ap-
proach cnables researchers to design long-term monitoring programs that minimize
expenscs and disturbances associated with capture while still providing a mecans for
simultancously estimating abundance, apparcnt survival, and transition rates that
was previously only available using traditional mark-recapture methods. Further
developments in this arca include extending the model to multiple states (Brownic

et al., 1993) or to incorporate both live and dead encounters (Barker, 1997).
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Appendix A

Derivation of the variances for
total unmarked sightings under

the logit-normal model

If by definition the sightings of the N -n unmarked individuals (any primary occasion
j) are independent over individuals and conditionally (on Z;) independent over

occasions, then
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Hence,

k
var(T,) = (N —n)var (Z 551) = (N - n)var(Ty).

i=1

The general variance formula for any individual s is

var(7Ty) Ez [var(Ts | Z)] + varz [Er,(Ts | Z)]

5 DI R

) 1=1

i=1 =1 i=

For (1.3), with no fixed time effccts (A.1) becomes

var(Ty) Ez [kps(1 - ps)] + k*varz(ps)

I

1

where

~ 1 >
n/:EZ(ps)—[[1+Cxp(_(gZS+9))] #(2,) dzs.

Hence,

var(T,) = kp—ky+k (v -u?)

k(- p) + (k= 1)(v - u?)],
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EZ [Zpsz(]- _psz)J + Z ZCOVZ(pslapm .

ku - kEz(p?) + k* [Ez(pf) - ﬂz} ;

(A.1)



and
var(T,) = (N = n)k [u(1 - ) + (k- 1) (v - )]

For (1.4), with fixed time effects (A.1) becomes

k k

k
var(75) Z Ez [psi(1 - psi)] + Z Z [Ez(Pst:Pei) — Hapti]

It

[=1 =1

i=1
= Z;m(l — i) + Z Z(”/u - Huphi),

l#i

and

k
var(7,) = (N -n) ;Mz‘(l =)+ 0 > (Vi ) |-

(£33
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Appendix B

Derivation of the expectation and
variance for total unmarked
sightings under the Poisson-log

normal model

If by definition the sightings of the N —-n unmarked individuals (any primary interval

j) are independent, then T, = ¥V 1" y,. Hence, E(T,) = (N -n)E(y,), and var(T,) =
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(N —n)var(ys). The general formulac, unconditional on Z, for any individual s, arc

2

Ez() = [ Ao(z)dz = [ exp(oz,+0) d)(zs)dzszexp(%+9),

and

varz(ys) = Ez[var(ys|Z)]+varz [E(ys | Z)]
= Ez(X;) +varz(\,)
= Ez(As) +Ez(A2) - Ez(A,)?
= [ [exp(oz+0) +0Xp(azs+9)2]<p(zs)dzs—[ [ oxp(azs+9)q§(zs)dzs]2

2
= exp(% + 0) +oxp(260 + 20%) - exp(26 + 0?),

where ¢(z;) is the standard normal density. Therefore, after inflating Ez(y,) and
varz(ys) by the (average) number of times the n marked individuals were sighted

but not identified to individual identity (c),
o2 ¢
B(T,) = (N - n) [exp(— N 9) N _]7
2 n

and

var(T,) = (N - n) {cxp (%2— + 6) +exp(20) [exp(207) - exp(0?)] + (;}
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Appendix C

The first-order Markovian
temporary emigration likelihood

of Kendall et al. (1997)

Building on the notation of Kendall et al. (1995, 1997) and that introduced in

Chapter 3, let

mp; = the number of animals encountered (via capture or resighting) in primary
interval 7 (¢ = {2,3,...,t}) that were last encountered in primary interval A

(h={1,2,...,i-1}), and

r; = the number of the c; marked individuals encountered during primary interval
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j that were cncountered again in some subscquent primary interval.

Likelihood Ly, in Equation (3.4) becomes quite complex with large ¢, but using

matrix notation with

$ou
f] = ¢ B

(1 - w]OU)(l - p;+1)

Uo
¥;

1-yfv

7

and

L-yl0  Qlo(1-p;,))
Gj _ J J Jj+l 7

vP (1= 4P) (A -phy)

the genceral pattern for arbitrary A <2 <t is

t-1 *
C. . mj s ) " My
Ly, = ] ( / ) [ij(l - ¢?U)Pj+1] 2 [¢jfj@j+1dj+1pj+2:| .
g=1 N5 5415 oy Mt
]7YLJ,_7+3

x [¢jfj¢j+1Gj+1@j+2dj+2p;+3

mjjva

% [0,£0;41G1410542G 12053 14374

x[01£10,11G105:2G a3 2Groady 1 dyap )™ (1-TL)
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where II; is the sum of the ¢ - j multinomial ccll probabilitics (in square brackets)

corresponding to m; .1, ..., M.
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Appendix D

Estimating demographic
parameters using the mark-resight

data type in Program MARK

Mark-resight methods constitute a slightly difterent type of data than found in
traditional mark-recapture, but they are in the same spirit of accounting for imper-
fect detection towards reliably estimating demographic parameters (sce White and
Shenk, 2001 for a thorough explanation of how these data arc collected and Chapters
1-3 for full details of the models). Like the other mark-recapture models in MARK,

this approach modecls encounters (resightings) of marked individuals, but they also
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incorporatce additional data via sightings of unmarked individuals into the cstima-
tion framework. Mark-resight data may be used to cstimate abundance (N) in a
fashion analogous to the closed capture models of Otis et al. (1978). When sampling
is under the robust design, mark-resight data may be used to estimate abundance,
apparent survival, and transition rates between observable and unobservable states
in a fashion analogous to the closed capture robust design models of Kendall et al.
(1995, 1997). These models assume some individuals have been marked prior to
sampling, and sampling occasions consist of resighting surveys (instead of capture
periods). The main advantage of this approach is that it is gencrally less invasive
and less expensive than traditional mark-recapture, but it requires that the number
of marked individuals in the population during resightings be known exactly or can
at least be reliably estimated. Adopting the same terminology of the robust design
(Kendall et al., 1995, 1997), the approach may combine data from both closed and
open sampling periods. The open periods refer to the resighting process between
primary intervals, where each primary interval consists of secondary resighting oc-
casions. The time periods between the secondary resighting occasions of a primary
interval must be of short cnough duration for the assumption of closurc to be satis-
fied. Marks may be added to the population at any time during the open periods, but
no marks may be added during the closed periods. If sampling within the secondary
occasions is without replacement (i.c., any single individual may only be sighted
once per distinct secondary occasion) and the number of marked individuals in the
population available for resighting is known exactly, then the mixed logit-normal
mark-resight models may be cmployed (see Chapter 1). Alternatively, if sampling
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within sccondary occasions is with replacement or the cxact number of marked in-
dividuals in the population is unknown, the Poisson-log normal mark resight model
may be used (see Chapter 2). If permanent field-readable marks are used but the
number of marks is not known for all primary intcrvals, then mark-resight data col-
lected under the closed robust design may be analyzed with the Poisson-log normal
model in a fashion analogous to the regular mark-recapture robust design for csti-
mating apparent survival (¢), transition rates between observable and unobscrvable
states (7" and 7'), and N (scc Chapter 3).

These models were developed as reliable and more efficient alternatives to the
mark-resight models previously available in Program NOREMARK (White, 1996).
Similar to other mark-recapture models, they provide a framcwork for information-
theoretic model selection and multimodel inference based on AIC (Burnham and
Anderson, 2002), and the utilization of individual or environmental covariates on
parameters. However, because the nature of mark-resight data is somewhat different
than that of mark-recapture, a different format for the input files has been developed
to address this. Explanations of the various models and their MARK input file
formats are detailed below. The input and results files referenced here accompany
the program (available at http://welcome.warnercnr.colostate.edu/ gwhite).
Following the explanations of the models and their MARK input files, some general

suggestions are provided for performing an analysis with these models in MARK.
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D.1 The mixed logit-normal mark-resight model

To be used when sampling is without replacement within sccondary sampling occa-
sions and the number of marked individuals in the population available for resighting
is known exactly. Marks may or may not he individually identifiable. Sec Chapter
1 for full details.

Data:
t = the number of primary sampling intervals

k; = the number of secondary sampling occasions (without replacement) during pri-

mary interval j

n; = the exact number of marked individuals in the population during primary in-

terval j

mij = S02) 0y = total number of marked individual sightings during sccondary oc-

S=

casion ¢ of primary interval j

T, ; = total number of unmarked individual sightings during primary intcrval j

Lj

dsi; = Bernoulli random variable indicating sighting (d,;; = 1) or no sighting (d5; = 0)
of marked individual s on secondary occasion ¢ of primary interval j (this only

applies when individually identifiable marks are used)

€¢;; = total number of marks seen that were not identified to individual during sec-
ondary occasion i of primary interval j (this only applies when individually

identifiable marks are used)
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Parameters:

N; = population sizc or abundance during primary interval j

i

pi; = intercept (on logit scale) for mean resighting probability of secondary occasion
¢ during primary interval j. Notc that this parameter was referred to as
f;; in Chapter 1. If there is no individual heterogencity (o; = 0), once back-

transformed from the logit scale the real parameter estimate can be interpreted

as the mean resighting probability

ajz = individual hcterogencity level (on the logit scale) during primary interval j

(i.e., the variance of a random individual heterogeneity effect with mean zero)

D.1.1 No individually identifiable marks

If a known number of marks arc in the population, but the marks arc not individu-
ally identifiable, then the data for the mixed logit-normal model are ¢, k;, n;, m,;,
and T,;. These arc the same data as for the Joint Hypergeometric estimator (JHE)
previously available in Program NOREMARK (White, 1996), but the mixed logit-
normal model can be a more efficient alternative because it can borrow information
about resighting probabilities across primary intervals (see Chapter 1). Note that
because no information is known about individual identities, individual heterogenc-
ity models cannot be evaluated with these data (i.e., o; = 0) and the probability of
any individual being resighted on secondary occasion ¢ of primary interval j is p;;.
Suppose there is only onc group and ¢t = 3, k; = 4, n; = 30, ny = 33, ng = 32,
miy =8, Moy =9, mgy =10, myy =5, myg =11, Moy = 10, 1mgs = 18, 149 =9, 113 =5,
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Moz = 10, ma3 = 13, my3 =8, Ty, =96, T,5 = 68, and T},5 = 59.

Although no individual identities are known, these data may be summarized
into artificial individual encounter histories similar to those of the mark-recapture
robustdeﬁgn”'Thetomﬂlnnnbcrofunnunkcdindhdduabseen(YLj)nuwtbeenuxed
after the cncounter histories under the heading “Unmarked Seen Group=1" such
that the resulting input file would be:

/* No Individual Marks 1 group */
/* 12 occasions, 3 primary, 4 secondary each */

/* Begin Input File */

111111111111
111011110111
011011110110
001011100110
000010100010
000000100010
000000100000 b5;
000000000000 12;
....00000000 2;

....0000.... 1

N = = = WO,

B

Unmarked Seen Group=1;
96 68 59;

/* End Input File */

Notice the sums of the cncounter history columns (when multiplied by the corre-
sponding frequency) cqual m;; and the sums of the frequencies with non-missing
entries (i.e., not “....”) for cach primary interval equals n;. If this single group data
were split into two groups, such that ny; = 17, ng = 19, ng = 18, my; = 6, mo, = 6,
May =7, My =4, Mg =5, Mgy =5, M3g =11, Myp =5, M3 =3, Ma3 =7, Mm3a3 =7,
maz = 7, Tyy =48, Ty = 40, and T3 = 20 for the first group, and n; = 13, ny = 14,

ng =14, myy =2, mgy =3, m31 =3, mygy =1, myg =6, ngg =5, mgg =T, myy = 4,

104



Mz = 2, Moz =3, maz =6, myg =1, T,y =48, T, = 28, and T3 = 39 for the sccond

group, a possible input file would be:

/* No Individual Marks 2 groups */
/* 12 occasions, 3 primary, 4 secondary each */

/* Begin Input File */

111111111111
111111110111
111011110111
111000100111
001000100111
000000100000
000000000000
....00000000
R s B A
111111111111
111011111110
011011110110
000011110010
000011100010
000010100010
000000100000
000000000000
....00000000

s me s e e e

s e e we we wr wr e s

P O, P PR R R PR OO0 00000 OO

-

el el ol olNel el el eReRN e N N s

Unmarked Seen Group=1;
48 40 20;

Unmarked Seen Group=2;
48 28 39;

/* End Input File */

Notice here that the single group data has simply been split up into two group data.
The encounter histories are followed by group frequencics just as in other MARK
input files for mark-recapture encounter histories. The twist is that the unmarked
data must be entercd separately for each group. Again, the sums of the encounter

history columns (when multiplied by the corresponding group frequencies) equals

105



m; for cach group, and the sums of the frequencies with non-missing entries (i.e.,
not “....”) for each primary intcrval equals n; for each group.
The analysis using thesc input data (Logit_NolndividualMarks_OneGroup.inp)

yiclded the following results for the time-constant (p;; = p,0; = 0) model in MARK:

Real Function Parameters of {p(.) sigma(.)=0 N(t)}

95% Confidence Interval

Parameter Estimate Standard Error Lower Upper
1:p Session 1 0.3052632 0.0236241 0.2610167 0.3534229
2:sigma Session 1 0.0000000 0.0000000 0.0000000 0.0000000 Fixed
3:N Session 1 108.62069 9.0417052 92.800732 128.42580
4:N Session 2 88.689653 7.0894111 76.435814 104.40047
5:N Session 3 80.318964 6.4400883 69.263239 94.671659

Note that o; must be fixed to zero for these data because heterogeneity models do not
apply when marks are not individually identifiable. This is because no information
is known about individual resighting rates, and the above encounter histories are
artificial in that they don’t actually refer to a real individual’s encounter history
(these artificial encounter histories are just a convenient and consistent way to enter
the data into MARK). Because there is no individual hetcrogeneity in the model,
the rcal parameter estimate of p may be interpreted as the overall mean resighting

probability (0.31 in this casc).

D.1.2 Individually identifiable marks

If marks are individually identifiable, encounter histories are constructed just as for
robust design mark-recapturc data with the £; possible cncounters representing o5
for individual s during secondary occasion ¢ of primary interval j. Howcver, now it
is possible to have an individual identified as marked, but not to individual identity.
A marked individual may be encountered but not be identified to individual when
the mark was secn but the unique pattern or characters that identify the individual

were obscured or too far away to rcad. These arc the same data as could be used for
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Bowden'’s estimator (Bowden and Kufeld, 1995) in Program NOREMARK (White,
1996), but the logit-normal model can be more efficient because information about
resighting probabilities may be borrowed across primary intervals, and it does not
requirc investment in individual heterogencity parameters unless deemed necessary
by the data (sce Chapter 1). If an individual was not known to be in the popula-
tion during any primary interval j, then missing values (.) are included for all
sccondary occasions of that interval in the encounter history. The total number of
marks seen but not identified to individual during secondary occasion ¢ of primary
interval j (e;;) are entered scquentially (eqy.€21,.. . €hy1ovy €14, €20 ... €kye) With
each entry scparated by a space. Using the data from the previous single group
example but with € = (0,0,0.0,1,1,1,0,0,3,0,1) entered after the unmarked data
under the heading “Marked Unidentified Group=1,;", one possible input file would
be:

/* Individual Marks 1 Group */
/* 12 occasions, 3 primary, 4 secondary each */

/* Begin Input File */

001001000011 1;
000000100110 1;
010000000110 1;
0000........ 1;
....01101101
000010000000
001100100000
001011100011
000010000010
010001100000
000000000010
001010010110
101000100000
....01001110
010000100000
11001000. . . .
000100000000
100000101011

e e e wae e we

I T T e e S e O e e SN S T S Gy SN Sy
M
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000011010000 1
000100000000 1
111000100001 1
010000111001 1;
101000110000 1
100001100010 1
....00010000 1
101000010010 1

o
o
o
(@
—

010000101000 1
000110100000 1
011000000000 1
010011110010 1;
000010110000 1
101100000001 1
....00010110 1
....11100100 1

Unmarked Seen Group=1;
96 68 59;

Marked Unidentified Group=1;
000011100301,

/* End Input File */

Note that the sums of each column Z:il dsij = my; — €. The last two encounter
histories are for individuals that were not marked and known to be in the population
until immediatcly prior to the sccond primary interval. The fourth encounter history
from the top represents an individual who was marked and known to be in the
population during the first primary interval (when it was resighted 0 times), but
known to have not been marked and in the population during the second or third
primary intervals. This could be because the individual was known to have died,
emigrated, or lost its mark. Similar to other MARK input files, the encounter
histories may pertain to multiple groups and include individual covariates. Splitting

the above data into two groups, the above input file could look like:
/* Individual Marks 2 Groups */
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/* 12 occasions, 3 primary, 4 secondary each */
/* Begin Input File */

001001000011 O
000000100110 1
010000000110

[N
P O O R, OO O0ORr P FHRPEPFPOFOFRFROOODODODO OO FH FHF P OFOOO O =

(@]
(@]
(@]
(@]
—

....01101101
000010000000
001100100000
001011100011
000010000010
010001100000
000000000010
001010010110
101000100000
....01001110
010000100000
11001000. ...
000100000000
100000101011
000011010000
000100000000
111000100001
010000111001
101000110000
100001100010
....00010000
101000010010

v s s e e e e tes e s s

. e

O OO R, O, O F H H FHEH K FFPRPRRFPROOO O R O

o
(@
o
(@
(@

010000101000
000110100000
011000000000
010011110010
000010110000
101100000001
....00010110
....11100100

O kP O P P, O

Unmarked Seen Group=1;
48 40 20;

Unmarked Seen Group=2;
48 28 39;
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Marked Unidentified Group=1;
00000110010 1;

Marked Unidentified Group=2;
00001000020 0;

/* End Input File x/

Notice the cncounter histories are followed by group frequencics the same way as
they are in all other MARK input files.

Because marks arc individually identifiable, individual heterogencity models
may be cxplored with these data. Here, individual heterogeneity is modeled as
a random effect with mean zero and unknown variance 0]2.. These input data
(Logit _IndividualMarks_OneGroup.inp) yielded the following results for the time-
constant individual heterogencity (p;; = p,0; = o) model in MARK:

Real Function Parameters of {p(.) sigma(.) N(t)}

95% Confidence Interval

Parameter Estimate Standard Error Lower Upper
1:p Session 1 0.2754701 0.0276547 0.2246760 0.3328182
2:sigma Session 1 0.5272687 0.2579346 0.2126915 1.3071155
3:N Session 1 113.66936 10.635869 95.282220 137.23536
4:N Session 2 87.914774 7.1303186 75.621226 103.75424
5:N Session 3 78.370038 6.1915138 67.733970 92.171887

The time-constant model with no heterogencity (pi]. =p,o; =0) yields:

Real Function Parameters of {p(.) sigma(.)=0 N(t)}

95% Confidence Interval

Parameter Estimate Standard Error Lower Upper
1:p Session 1 0.2868421 0.0232018 0.2435938 0.3343745
2:sigma Session 1 0.0000000 0.0000000 0.0000000 0.0000000 Fixed
3:N Session 1 113.66972 9.8898399 96.420546 135.39844
4:N Session 2 92.266052 7.7342427 78.939944 109.45775
5:N Session 3 83.422016 7.0187109 71.400363 99.111660

As before, when o; = 0, the rcal parameter cstimate of p may be interpreted as

the overall mean resighting probability ignoring unidentified marks (0.29 in this
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case). Notice that these results are different than the results from the same model
when there were no individually identifiable marks. This is because the two versions
(individually identifiable marks or not) of the mixed-logit normal model are only
comparable when all marks are correctly identified to individual and o; is fixed to
zero. Further, if one finds very little support for individual heterogeneity models
(based on AIC. ) and has relatively many unidentified marks, it may be better to

analyze the data as if there were no individually identifiable marks to begin with.

D.2 The Poisson-log normal mark-resight model

For use when the number of marked individuals in the population may be unknown
or sampling is with replaccment within secondary sampling occasions (or there is
no concept of a distinct secondary sampling occasion without replacement). Marks
must be individually identifiable. See Chapters 2 and 3 for full details.

Data:

t = the number of primary sampling intervals (may be through time, groups, or time

and groups)

n; = the exact number of marked individuals in the population during primary in-

terval j

n; = total number of marked individuals resighted at least once and known to be in

the population

¢; = total number of individuals captured (c.g., for marking) immediatcly prior to
J p g g ybp
primary interval j and thercfore assuined to be present in the population

during primary interval j, but not resighted during primary interval j

¢j = n; +¢; = total number of marked individuals captured immediately prior to

primary interval j or resighted at least once during primary interval ;. When
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the number of marks is known exactly, ¢; =n;. When the number of marks is
unknown this is the minimum number of marked individuals known to be in

the population

Ys; = Poisson random variable for the total number of times individual s was re-

sighted during primary interval j

¢; = total number of times an individual was sighted and identified as marked, but

Tuj =

not identified to individual identity during primary interval j

total unmarked individual sightings during primary interval j

Parameters:

N = population sizc or abundance

Oljz

0 =

" _

intercept (on log scale) for mean resighting rate during primary interval j.
Note that this parameter was referred to as 6; in Chapters 2 and 3. If there is
no individual heterogeneity (o; = 0), once back-transformed from the log scale
this parameter can be interpreted as the mean resighting rate for the entire

population

individual heterogeneity level (on the log scale) during primary interval j, i.c.,
the additional variance due to a random individual heterogeneity effect with

mean zero
apparent survival between primary intervals j and j+1, y={1,...,t -1}

probability of transitioning from an observable statec at time j (e.g., on the
study arca) to an unobservable state at time j +1 (c.g., off the study arca).
Jj={1,..,t = 1}. This is equivalent to transition probability ijU of Kendall
and Nichols (2002)
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7§ = probability of remaining at an unobscrvable state at time j + 1 (e.g., off the
study arca) when at an unobservable state at time j, j = {2,...,t —1}. This is

equivalent to 1 - ’l/}]UO of Kendall and Nichols (2002)

D.2.1 Closed resightings only

If interest is only in abundance estimates for ¢ groups (or ¢ time intervals for a single
group with few or no marked individuals in common across the intervals), then the
mark-resight Poisson-log normal modecl may be used in a fashion analogous to the
closed mark-recapture models of Otis et al. (1978). In contrast to the closed mark-
recapture models of Otis ¢t al. (1978), individual covariates may be used in modeling
resighting rates. However, becausc the data consist of the total number of times each
marked individual in group j was resighted, the encounter histories must be modified
to reflect this different type of encounter data. If the number of marks is known
cxactly, then n;, ys;, ¢; and T,; arc the same data uscd for Bowden’s estimator
(Bowden and Kufeld, 1995) in NOREMARK (White, 1996), but the Poisson-log
normal model will generally be more efficient because information about resighting
rates may be borrowed across groups (sce Chapter 2). The number of marks available
for each of the ¢ groups may be known or unknown. The input file must contain
the encounter histories containing the y,; resightings, the frequencies and group(s)
to which cach encounter history pertains, the 7, ; unmarked sightings and group(s)
to which they pertain, the ¢; unidentified marks and the group(s) to which they
pertain, and whether or not the number of marks is known cxactly for cach group.
Instead of the familiar 0’s and 1’s of other MARK encounter historics, these histories
sitply contain the y,; for each marked individual s in group j. Two charactcr spaccs
arc allocated to allow y,; > 9. Notc that this coding does not allow y,; > 99. For
rcasons that will become clear in the next section covering the robust design Poisson-

log normal model, entries for which y,; = 0 are entercd using ‘40’ instead of ‘00’.
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Further, (unlike the logit-normal model and mark-recapturc robust design), because
the Poisson-log normal modcl docs not condition on distinct secondary resighting
occasions, the number of encounter occasions entered into MARK when creating
a ncw analysis is the number of primary occasions (1 in this case). For instance,
suppose in a very simple example that there were t = 2 groups with known ny =ng = 3
and y11 =2, yn =3, Y31 =0, y12=0, yao =0, Y30 =12, T}, =11, T}, = 5, ¢, = 2, and

¢ = 3. The resulting input file would be:

/* Poisson log-normal mark-resight */
/* Occasions=1 groups=2 */

/* Begin Input File =/

02
03
+0
+0
+0
12

O O O = = =
= = = O OO O

Unmarked Seen Group=1;
11;

Unmarked Seen Group=2;
5;

Marked Unidentified Group=1;
2;

Marked Unidentified Group=2;
3;

Known Marks Group=1;
3;

Known Marks Group=2;
3;

/* End Input File */
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The columns following the encounter histories are the frequencies for the two groups,
just as would be done in other MARK encounter history files. Under “Unmarked
Seen”, the T,,; are entered separately for each group. The “Marked Unidentified”
data (¢;) are cntered in the same fashion separately for each group. Similarly, the
“Known Marks” headings contain the n; for each group.

Using the same example, but now with the number of marks being unknown
for the second group, the input file must be modified to reflect that n, is unknown

and s = 0 is no longer observed:

/* Poisson log-normal mark-resight */
/* occasions=1 groups=2 */

/* Begin Input File */

02 1
03 1
+0 1
12 0

b
)

B

_, O O O

3

Unmarked Seen Group=1;
11;

Unmarked Seen Group=2;
5;

Marked Unidentified Group=1;
23

Marked Unidentified Group=2;
3;

Known Marks Group=1;
3;

Known Marks Group=2;
0;

/* End Input File */
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Here, the encounter historics for y12 = 0 and ys2 = 0 have been removed because
they cannot be observed if the number of marked individuals in the population (ns)
is unknown. Further, under “Known Marks;” therc is now a “0” for the second
group. By including a “0” for the second group’s “Known Marks”, MARK knows
the number of marks is unknown and will use the zero-truncated Poisson-log normal
model.

It is possible that the number of marks may be unknown for a given group, but
some marking was conducted immediately prior to the primary sampling interval
of interest. Here, some additional information is known about the minimum num-
ber of marks in the population because those (previously marked or newly marked)
individuals captured during thc marking period arc known to have been present
and available for resighting (even if they were not resighted during the interval of
interest). Supposce this werc the case in the above example, such that the sccond
individual of the second group was captured and marked immediately prior to re-
sighting surveys but never resighted. This information (although not used in the
zero-truncated likelihood) may be included in the encounter history file to make the

lower bound for N, > ¢3:

/* Poisson log-normal mark-resight */
/* occasions=1 groups=2 */

/* Begin Input File */

02
03
+0
+0
12

-

O O = = =
= = O O O

Unmarked Seen Group=1;
11;

Unmarked Seen Group=2;
S5;
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Marked Unidentified Group=1;
2;

Marked Unidentified Group=2;

3;

Known Marks Group=1;
3;

Known Marks Group=2;
0;

/* End Input File */

Because the “Known Marks;” is still “0” for the sccond group, MARK knows the
actual number of marks is unknown and to use the zero-truncated model for the
sccond group, but ¢j = 2 (instead of nj = 1) will be used in establishing the lower
bound for N;. When the number of marks is unknown, the information provided by
such encounters via capture cvents will become more useful when considering the
robust design Poisson-log normal model in the next section.

Now to analyze a more realistic [ = 2 data set where the number of marks was
known for the first group but not for the sccond. No marking occurred immediately
prior to resighting surveys for the sccond group, so ¢; = nj, and thercfore no ‘40’
encounter histories are included for the second group. For these data, n; = 60,

T,, =1237, ¢ =10, n} = 33, T,,, = 588,and € = 5:

/* Poisson log-normal mark-resight */
/* Occasions=1 groups=2 */

/* Begin Input File */

02
03
03
01
01

e
O O O O O
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01 1 0;

02 1 0;
06 1 0;
02 1 0;

01 1 0;
03 1 0;

01 1 0;
02 1 0;
09 1 0;
05 1 0;
01 1 0;
01 1 0;
03 1 0;

O OO OO O0OO0OOO0OOOO OO OO0 OO0
e e e B B T I I I I e I I B B I
O AN TN ANNWH OO - I~ O
O O + OO OO OO0 OO0 OO0 OoO OO0 O +
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1237;

Unmarked Seen Group=2;
588;

Marked Unidentified Group=1;
10;

Marked Unidentified Group=2;
5; :

Known Marks Group=1;
60;

Known Marks Group=2;
0;

/* End Input File */

The analysis for thesc data (Poisson_TwoGroups.inp) yielded the following results

for the most general model:

Real Function Parameters of {alpha(g) sigma(g) N(g)}

95% Confidence Interval

Parameter Estimate Standard Error Lower Upper
1:alpha 2.6200091 0.2495220 2.1309460 3.1090722
2:alpha 2.3579937 0.3661278 1.6403831 3.0756042
3:sigma 0.2909827 0.1386550 0.0990465 0.6050691
4:sigma 0.2694048 0.2560261 0.0279997 0.8251843
5:N 486.55517 37.472530 353.10901 500.00133
6:N 260.59714 30.369020 168.07386 287.12042

Here are the results for the model with no group effects on a; or o;:

Real Function Parameters of {alpha(.) sigma(.) N(g)}

95% Confidence Interval

Parameter Estimate Standard Error Lower Upper
1:alpha 2.5330927 0.2049978 2.1312970 2.9348883
2:sigma 0.2857660 0.1216583 0.1284121 0.6359386
3:N 500.94650 32.963465 440.92617 570.42389
4:N 244 .56021 17.524220 212.90589 281.78407

Here are the results for the model with no group effect on a; and ¢; = 0:
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Real Function Parameters of {alpha(.) sigma(.)=0 N(g)}

95% Confidence Interval

Parameter Estimate Standard Error Lower Upper
1:alpha 2.6488893 0.17315086 2.3095142 2.9882644
2:sigma 0.0000000 0.0000000 0.0000000 0.0000000 Fixed
3:N 499.34483 29.766676 444.76851 561.66238
4:N 243.77627 15.823866 214.97302 277.13858

Note that to run models without individual heterogeneity, o; must be fixed to zero.
When o = 0, then the rcal parameter cstimate for o may be interpreted as the mean
resighting rate for all individuals. In this case, the marked individuals for both

groups were resighted an average of 2.65 times during the single primary interval.

D.2.2 Full-likelihood robust design

If interest is in apparent survival, transition rates, and abundance for onc or more
groups through time, then a mark-resight robust design analogous to the mark-
recapture robust design of Kendall et al. (1995, 1997) may be cmployed. In contrast
to the modeling of recapture probabilities in the mark-recapture robust design uti-
lizing the closed capture models of Otis ct al. (1978), the mark-resight robust design
may incorporate individual covariates in modeling resighting rates. The input files
are similar to those from the previous Closed Resightings model, but now individ-
uals with permanent field-readable marks may be encountered through time across
¢t primary sampling intervals in a robust design. For instance, if an individual s
was cncountered y,; = 4 times during the first primary interval and yg = 2 times
during the second primary interval, then the encounter history would be ‘0402’
Each encounter history will contain 2¢ characters, again allowing two characters for
each y,;. Because the number of marks can be known or unknown for any given
primarv interval, the primary intervals must again be identified as such under the
“Known Marks” heading in the input file. In the individual encounter histories, a

‘“+( indicates that the individual was known to be a marked individual available for
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resighting during primary interval j but never resighted. Therefore, when the num-
ber of marks is unknown, the total number of ‘+0’ entrics during primary interval j
is equal to ¢; as defined above. A -0 indicates a previously encountered individual
that was not cncountered (via capture OR resighting) during primary interval j,
and only applies when the number of marks is unknown (i.c., when the number of

4 i

marks is known a ‘-0’ is impossible). Lastly, a indicates a marked individual
who has not yect been encountered prior to and during primary interval ;7 OR an
individual that is known to no longer be in the marked population (due to removal,
mortality, or permanent cmigration) during and after primary interval j. As in the
regular CJS modcl in MARK, any ‘..” contributes no information to the estimation
of parameters. When n; is known, ‘4+0’ contributes information towards cstimation
of survival, transition rates, resighting rates, and abundance. When n; is unknown,
‘+0’ contributes information towards estimating survival and transition rates, but
makes no contribution to the estimation of resighting rates or abundance (but it
does affect the minimum lower bound for N; as described in the previous section).
A -0’ contributes no information to the estimation of resighting rates or abundance
(it is only a valid entry when the number of marks is unknown), and is equivalent to
a ‘0’ in the regular CJS encounter history for MARK. It therefore only contributes
to the estimation of survival and transition rates. As before, the encounter historics
are followed by group frequencies in the usual MARK input file. The entries for
“Unmarked Seen”, “Marked Unidentified”, and “Known Marks” are the same as
described carlier and arc entered separately for each group. In the following cxam-
ple input file with a single group and ¢ = 4 primary intervals, thc number of marks
are known for the first and second primary intervals, but unknown for the third and
fourth. Becausc the model docs not condition on distinct sccondary resighting occa-
sions, the number of encounters that are input into MARK is equal to the number of

primary occasions (¢ =4 in this casc). Capturing for marking occurred immediatcly
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prior to the first, second, and third occasion, but not the fourth occasion, so nj = ¢;j.
Here, n, = 45, T,, = 1380, ¢; = 8, ny = 67, T,,, = 1120, ¢, = 10, n} = 56, T,,, = 1041,

¢3=9,n; =52, T, =948, and ¢4 = 11:

/* Poisson log-normal Mark-resight */
/* 4 occasions, 1 group */

/* Begin Input File */

...+002
..06-0-0
04060202
+0010402
070602-0
04020606
..020101
060602-0
..04-004
040401-0
03010103
02030503
..03+0-0
070503-0
04+00104
01010401
06060103
02010602
..0403-0
..020306
020202-0
..050201
02010103
031002-0
+0+00704
01030102
01010302
..02-0-0
..020210
020301-0
02+00503
02+0+0-0
02020302
..080201

e er e me e e e wr wa ee w we wr e s

M e wr M we M we we M e we we wes s s e

T T T = T e e R e N e T T e e e e e e
M
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..040603
030304-0
02020202
..030107
04050402
+0050101
..030605
05+00101
..04-003
06020204
..03-004
..010201
04+00303
04040204
01+00201
0403-004
01+00103
..020307
01060701
..040101
03040301
..0404-0
03050101
05040202
03010202
05+00302
01020202
01+0+0-0
01070202
..050105
02040205
02010301
..03-010
..01+0-0

Mo wr e M M M e wr e we we we e s e

PR

“r me wr M Ms Me M s we v we s e e we s

e e e e e e i e e T e e e S T e e S T T e T Sy T O e N S S A SIS N

-

Unmarked Seen Group=1;
1380 1120 1041 948;

Marked Unidentified Group=1;
8 10 9 11;

Known Marks Group=1;
45 67 0 0;

/* End Input File */
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The first encounter history indicates this individual was not captured for marking
until immediatcly prior to the third primary occasion, and the ‘+0’ for the third
occasion indicates that it was not resighted (although known to be a marked individ-
ual available for resighting during this occasion). This individual was then resighted
twice during the fourth occasion. The sccond cncounter history from the top indi-
cates that this individual was only known to be marked and in the population during
the sccond primary occasion (when it was resighted 6 times). Because the nunber of
marks is known for the first primarv interval, this individual must have been marked
between the first and second primary intervals. As indicated by ‘-0’, this individual
was never encountered again when the number of marks was unknown during the
third and fourth primary intervals. The third encounter history from the top indi-
cates an individual who was known to be marked and available for resighting for all
t = 4 occasions. The ‘+0’ entry for the first primary occasion indicates that it was
known to be marked and available for resighting, but never resighted. This individ-
ual was then rcsighted one, four, and two times during the sccond, third, and fourth
intervals, respectively. The final encounter history describes an individual that was
not marked until immediately prior to the sccond primary occasion, and during the
sccond occasion it was resighted one time. It was then captured immediately prior
to (but never resighted during) the third occasion. Because the number of marks
was unknown for the third occasion, this ‘+0" primarily contributes information to
the estimation of survival and transition rates (as described in the previous section).
As indicated by ‘-0’ this individual was then never resighted during the fourth occa-
sion (and could not have been captured immediately prior to the occasion because
no capturing took place). Becausc no individuals were captured (c.g., for marking)
immediately prior to the fourth occasion (and the number of marked individuals

was unknown), no ‘+0’ appears in the entries for this occasion. Because no marked
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individuals werc known to have left the population (duc to removal, mortality, or
permanent emigration), no ‘.. entries appear after an individual’s first encounter.
The “Unmarked Seen;” cntry tells MARK that 1380 unmarked sightings occurred
during the first primary interval, 1120 during the second, 1041 during the third, and
948 during the fourth. The “Marked Unidentified” entry follows the same pattern.
The “Known Marks” entry tells MARK that n; is known for the first and second
primary intervals (n; = 46, ny = 60), but unknown for the third and fourth (as
indicated by ‘0’ for these occasions).

As a simple two group example, suppose for the first group that n; = 10,
Ty, =800, ¢ =4, ng =14, T, = 950, ¢o = 2, ny = 11, T,,, = 500, ¢3 = 6, n; = 8§,
T., = 1201, and ¢4 = 3. For the second group, n, = 11, T, = 459, ¢ = 2, nj = 14,
T,, =782, ¢ =5 n} =15 T,, =256, ¢ =0, n; =11, T, =921, and ¢ = 1. With
capturing (c.g., for marking) occurring for both groups immediatcly prior to the

first and second occasions, a possible input file would be:

/* Poisson log-normal Mark-resight */
/* 4 occasions, 2 groups */

/* Begin Input File */
04060202 1 0;

..06-0-0
+0010402
070602-0
04020606
..020101
060602-0
..04-004
040401-0
03010103
02030503
..03-0-0
070503-0
04+00104
01010401
06060103
02010602

e M e Nee e e
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..0403-0 0
..020306 0
020202-0 0
..050201 0O
02010103 0
031002-0 0
+0-00704 O
0
0
0
0
0
0

e e e we e

01030102
01010302
..02-0-0
..020210
020301-0
02+00503

e e mr we e

[ e e T o T i o N =

Unmarked Seen Group=1;
800 950 500 1201;

Unmarked Seen Group=2;
459 782 256 921;

Marked Unidentified Group=1;
4 2 6 3;

Marked Unidentified Group=2;
2501;

Known Marks Group=1;
10 14 0 O;

Known Marks Group=2;
11 0 0 0;

/* End Input File */

Hcre, the encounter histories are followed by two columns for group frequencies in
the usual MARK input file manner. The entries for “Unmarked Seen”, “Marked
Unidentified”, and “Known Marks” are entered separately for each group. The
entries under “Known Marks” tell MARK that the number of marks was known for
the first and second primary occasions of the first group (n; = 10, ny = 14) and for

only the first primary occasion of the second group (n; = 11). Again, no ‘-0’ can
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appecar for a primary occasion wherc the number of marks is unknown. Notice that a
‘+0’ appears in the encounter history for the last individual of the sccond group, but
that the number of marks for this primary occasion was unknown. This indicatcs
that this individual happened to be caught (c.g., during marking) immediately prior
to the second primary occasion, but was never resighted. Hence, for the sccond group
during the second primary interval , nj = 14 and ¢} = 15.

An analysis using the single group data (Poisson_RobustDesign_OneGroup.inp)
yiclded the following results for the random cmigration model {¢(.)y"(.) = v'(.)a(t)

a(t)N()}:

Real Function Parameters of {Phi(.) gamma’’(.)=gamma’(.) alpha(t) sigma(t) N(t)}

95% Confidence Interval

Parameter Estimate Standard Error Lower Upper
l:alpha 2.7533589 0.2906413 2.2400523 3.3842895
2:alpha 2.6391370 0.2712789 2.1587110 3.2264830
3:alpha 2.1023124 0.2757290 1.6275392 2.7155828
4:alpha 2.1101662 0.3295252 1.5566457 2.8605104
5:sigma 0.2552927 0.1727985 0.0766079 0.8507524
6:sigma 0.4688073 0.1132659 0.2939316 0.7477258
7:sigma 0.4099264 0.1555193 0.1997845 0.8411045
8:sigma 0.5489796 0.1274057 0.3504234 0.8600414
9:N 501.60001 43.560257 423.88945 595.24906

10:N 428.88089 35.134127 366.30696 504.53669
11:N 489.22506 46.107464 407.96411 589.51777
12:N 410.18201 45.453163 331.58621 510.87225
13:Phi 0.9857400 0.0182539 0.8443149 0.9988663
14:Gamma’’ 0.05652755 0.0364728 0.0146651 0.1870013

For model {¢(.)7"(.) = v'()a()o()N(t)}:

Real Function Parameters of {Phi(.) gamma’’(.)=gamma’(.) alpha(.) sigma(.) N(t)}

95% Confidence Interval

Parameter Estimate Standard Error Lower Upper
1:alpha 2.4536985 0.1478956 2.1805245 2.7610956
2:sigma 0.4376083 0.0655452 0.3268107 0.5859693
3:N 524.49384 28.499239 471.81002 583.68075
4:N 460.04989 24.370049 415.11342 510.78703
5:N 426.24093 23.102678 383.69402 474.39761
6:N 379.16926 20.875980 340.74421 422.70778
7:Phi 0.9858690 0.0178497 0.8499082 0.9988380
8:Gamma’’ 0.0751540 0.02875562 0.0348592 0.1545672

Here, AIC, indicates much more support for the simpler model (1012.6 versus

1020.4). Notice that a significant population decline would be inferred from the
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latter model (but not the former), onc of the advantages of borrowing informa-
tion across primary intervals that the Poisson-log normal modecl provides over other

previously available mark-resight estimators.

D.3 Suggestions for mark-resight analyses in MARK

1. To start an analysis from scratch (after an input file has been created), select
the “Mark-Resight” data type. The option will then be given to select “Logit-
Normal” or “Poisson-log normal.” For “Logit-Normal” one doesn’t specify
whether or not individual marks were used. This is left to the user to keep
track of (by not running any individual heterogencity models). For “Poisson-
log normal” one doesn’t need to specify robust design or not. If there arc
multiple primary occasions for the group(s), then MARK will automatically

sct up an analysis that includes the open period parameters (¢, ¥, and +/).

2. Because convergence with these models is sensitive to the starting values (par-
ticularly for N), initial values (on the log scalc) must always be manually
provided in the Run window when using the design matrix. This mecans that
if N =100, then log(/N) = 4.6 should be provided as an initial valuc. MARK
provides its own initial values that usually work when running a model from
the PIMs, so I suggest that an analysis begin with simple PIM models from
which the initial values may then be provided for running more complex mod-
els and for when utilizing the design matrix. If convergence issues remain after
following this strategy, I suggest trying a scries of initial values covering the
suspected range of the paramecter(s) and possibly othier Run window optious
such as “Do not standardize design matrix.” The “Use Alt. Opt. Method”

option is currently not working for the models.

3. The ¢ paramcter must be fixed to zero in the Run window to examine a model
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that ignores individual heterogeneity in resighting probabilities.

4. When using the logit-normal model, MARK by dcfault assigns the log link to

o and N, and applies whatever link is specified in the Run window to p.

5. When using the Poisson model, MARK by dcfault assigns the log link to «,
o, and N, and applics whatever link is specified in the Run window to ¢, +",

and ' (if using the robust design).
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