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ABSTRACT OF DISSERATION 

GENERALIZED MIXED EFFECTS MODELS FOR ESTIMATING 

DEMOGRAPHIC PARAMETERS WITH MARK-RESIGHT DATA 

Mark-resight methods constitute a slightly different type of data than found 

in traditional mark-recapture, but they are in the same spirit of accounting for im­

perfect detection towards reliably estimating demographic parameters. Compared 

to mark-recapture, mark-resight can often be a less expensive and less invasive al­

ternative in long-term population monitoring programs. However, the mark-resight 

estimators developed to date do not provide a flexible framework allowing the ef­

ficient use of covariates in modeling the detection process, information-theoretic 

model selection and multimodel inference, and the joint estimation of abundance 

and related demographic parameters. Here I develop a scries of mark-resight mod­

els for the sampling conditions most often encountered in these studies that address 

this need for a more generalized framework. 

In Chapter 1, I introduce the the logit-normal mixed effects model (LNE) 

for estimating abundance when sampling is without replacement and the number of 

marked individuals in the population is known exactly. I compare the model to other 

mark-resight abundance estimators when applied to mainland New Zealand robin 

(Petroica australis) data recently collected in Eglinton Valley, Fiordland National 

Park. I also summarize its relative performance in simulation experiments. 
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It can often be difficult to achieve sampling without replacement or to know the 

exact number of marked individuals in a population. In Chapter 2, I address these 

limitations of LNE by introducing the (zero-truncated) Poisson-log normal mixed 

effects abundance model, (Z)PNE. I demonstrate the use and advantages of (Z)PNE 

using black-tailed prairie dog (Cynomys ludovicianus) data recently collected in 

Colorado. I also investigate the expected relative performance of the model in 

simulation experiments. 

In Chapter 3, I extend (Z)PNE to a full-likelihood robust design model analo­

gous to that used in mark-recapture for the simultaneous estimation of abundance, 

apparent survival, and transition probabilities between observable and unobserv-

able states. I illustrate the use of the model with additional New Zealand robin 

data collected in Fiordland National Park, New Zealand. I also report on a scries 

of simulation experiments evaluating the performance of the model under a variety 

of sampling conditions. 

Brett T. McClintock 
Department of Fish, Wildlife, and Conservation Biology 

Colorado State University 
Fort Collins, CO 80523 

Spring 2008 
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Chapter 1 

A generalized mixed effects model 

of abundance for mark-resight 

data when sampling is without 

replacement 

1.1 Introduction 

The mark-resight method for estimating population abundance when the number 

of marked individuals is known (White and Shcnk, 2001; McClintock and White, 

2007) may in many circumstances be considered a reliable, cost-effective alternative 

to traditional mark-recapture or index methods based on counts. Mark-resight is 

generally most useful for estimating relatively small, closed populations, and because 

animals only need to be physically captured and marked once prior to resighting sur-
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vcys, the method is typically less expensive and less invasive than mark-recapture. 

The various mark-resight estimators available include the Joint Hypergeometric esti­

mator (JHE) (Bartmann ct al., 1987), the Minta-Mangcl estimator (MME) (Minta 

and Mangel, 1989), the Immigrat ion/Emigrat ion Joint Hypergeometric estimator 

(IEJHE) (Neal et al., 1993), Bowden's estimator (BOWE) (Bowdcn and Kufeld, 

1995), and the Beta-Binomial estimator (BBE) (McClintock ct al., 2006). These 

primarily differ in their sampling protocols and means of modeling variability in 

resighting probabilities. Temporal variation in resighting probabilities is readily 

handled by all of the estimators, but individual heterogeneity (where sighting prob­

abilities vary among animals) is not. Similar to mark-recapture abundance models, 

individual heterogeneity has been particularly problematic and often causes biased 

estimates when not properly accounted for (Otis et al., 1978; Neal et al., 1993). 

JHE requires the standard assumptions of mark-resight estimators for the size 

of a closed population: 1) geographic and demographic closure; 2) no loss of marks; 

3) no errors in distinguishing marked and unmarked animals; 4) independently and 

identically distributed (iid) resighting probabilities for marked and unmarked an­

imals; 5) homogeneity of resighting probabilities within an occasion; and 6) sam­

pling without replacement within occasions (Neal et al., 1993; White and Shenk, 

2001). IEJHE requires the same assumptions of JHE, but geographic closure need 

not be met because the presence of marked animals on the area surveyed is deter­

mined explicitly (Neal et al., 1993). BOWE relaxes several assumptions of JHE 

by allowing temporary movement off the study area, individual heterogeneity, and 

sampling with replacement (Bowden and Kufeld, 1995). Some study designs, such 
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as those using camera traps or lacking a defined "occasion," may only be conducted 

with replacement and necessitate the use of BOWE. MME has similar assumptions 

to BOWE, but its performance in simulation experiments has proven inferior to 

the other models allowing individual heterogeneity and its use is not recommended 

(White, 1993; White and Shcnk, 2001). BBE has the same assumptions of BOWE, 

but sampling must be without replacement. Any heterogeneity model requires that 

marked animals be individually identifiable, but in some cases this is not feasible 

and necessitates the use of JHE. If individually identifiable marks are used, both 

BOWE and BBE tolerate less than 100% individual identification given that the 

animal is identified as marked (White and Shenk, 2001; Magic et al., 2007). This is 

a common occurrence in mark-resight studies, and failing to account for unidentified 

marks will generally result in ovcrcstimation of abundance due to underestimation 

of resighting probabilities. Heterogeneity models also allow demographic closure 

to be violated via mortality independent of mark status, but abundance estimates 

produced when this occurs become the population residing in the study area at the 

beginning of the resighting period. As with IEJHE, when geographic closure is vio­

lated via temporary movement off the study area, the interpretation of abundance 

estimates for the heterogeneity models becomes the total population using the study 

area, often termed a "super population" (Kendall et al., 1995). For all mark-resight 

estimators, the assumption of iid resighting probabilities for marked and unmarked 

individuals is typically considered acceptable when a sufficiently different method is 

used for selecting the marked individuals (e.g., via helicopter capture) than is used 

for resighting (e.g., via ground surveys on foot) (White and Shenk, 2001; McClintock 
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and White , 2007). 

JHE is generally contended to be the most precise when its assumptions hold, 

but confidence interval coverage can fall well below the nominal 95% when individual 

heterogeneity is moderate to high (Ncal ct al., 1993; McClintock et al., 2006). BOWE 

performs well when individual heterogeneity is present, but is not likelihood-based 

and therefore lacks the benefits of likelihood theory, including information-theoretic 

model selection and model averaging methods. BBE successfully combines likeli­

hood theory and the ability to model individual heterogeneity. The model may also 

incorporate a "robust" sampling design, which combines da ta from both closed and 

open sampling periods to estimate demographic parameters (Pollock, 1982; Kendall 

ct al., 1995). The "primary" sampling occasions consist of > 2 "secondary" sam­

pling occasions, and the time period for secondary sampling must be short enough 

for the assumption of closure to be acceptable. The open periods between primary 

occasions apply to longer intervals of time where closure need not be met. This 

approach has many advantages in long-term monitoring studies, including the abil­

ity to model detection probabilities similarly across time (or groups) for increased 

efficiency. Under the robust design, BBE has advantages over JHE in the presence 

of individual heterogeneity and over BOWE in cases where sighting probabilities are 

similar between primary occasions (McClintock et al., 2006). 

When sampling is without replacement, BBE will often outperform other es­

t imators and aid researchers in determining which model is most appropriate, but 

it is by no means a superlative mark-rcsight estimator for all situations. Due to the 

different assumptions and general rigidity of JHE, BOWE, and BBE, researchers 
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must commit to a particular model based on educated guesswork without rigorous 

quantitative justification for model selection based on the data. Because there is 

no quantitative criterion to choose between these estimators, there remains a need 

for a more generalized framework for mark-resight abundance estimation. Similar 

to those available for mark-recapture studies, this framework would allow a wide 

variety of sampling conditions to be parameterized efficiently and provide quantita­

tive justification for model selection regardless of the types and levels of variation 

encountered in the field. These parameterizations would include complex models 

utilizing covariates and simpler models where potential sources of variation such as 

individual heterogeneity may be ignored. By incorporating a more flexible model 

structure under a generalized framework, the uncertainty that remains in mark-

resight model selection would be reduced substantially. In the following section, 

I introduce a model addressing this need for a more generalized framework when 

sampling is without replacement. I then apply the model to Now Zealand robin 

(Petroica australis) data and compare its performance to the other estimators. Fi­

nally, I evaluate the performance of the model based on simulation experiments and 

discuss the implications for mark-resight model selection. 

1.2 The Model 

The logit-normal mixed effects mark-resight model (LNE) has the same assumptions 

of BBE and allows the data to be combined across /. primary sampling occasions 

in a robust sampling design. In order to incorporate heterogeneity parameters into 
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the model, I will assume marked individuals are individually identifiable. How­

ever, unlike BBE and BOWE, LNE does not require individually identifiable marks 

(although its utility is somewhat diminished without them). A known number of 

individuals (rij, j = {l,...,t}) must first be marked at the beginning of interval 

j , and resighting data arc collected during the t closed intervals consisting of k3 

(j = {l,...,t}) distinct secondary resighting occasions. The data consist of resight-

ings for marked individual s on secondary occasion i of primary occasion j (8sij) and 

the total number of unmarked sightings across all kj secondary occasions of primary 

occasion j (Tu.). The 6Sij are modeled as independent Bernoulli random variables, 

where 5SI] = 1 if individual s is seen on secondary occasion i of primary occasion 

j , and 6Sij = 0 otherwise. Individual sighting probabilities are approximated as the 

realization of a logit-normal random variable, where time is modeled as a fixed effect 

{(iij) a n d individual heterogeneity as a random effect, with mean zero and unknown 

variance a2. The marked individual resighting data have conditional expectation 

l-'KOsij \ & j i ^sj: Pij ) Psij 
1 + cxp(-(ajZsj + Pij)) 

where ZSj ~ 7V(0,1). Therefore, any randomly selected individual s from primary 

occasion j with latent sightability ZS] has the marginal probability of being seen on 

secondary occasion / 

Ez«M =P^ = f i + CXpr-fL„. + /3i-,))0(z' j )d^' 
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where (p(zSj) is the standard normal distribution. Time (Aj) could possibly be 

treated as a random effect, but I ehose not to investigate this approach because the 

number of occasions is generally too small for this to be useful. Under this frame­

work, resighting probabilities may be modeled with no time or heterogeneity effects 

within secondary occasions {15^ = 9j, a2 - 0). only time effects, only heterogeneity 

effects, or additive time and heterogeneity effects. Across all marked individuals 

and secondary occasions, an unconditional likelihood function for a3 and f3.Lj is 

L\aii Hij I "Sij, rij, kj) = | J / np^(i-^)(i" Ssij) {zsj)d S] J ""^SJ • :i.n 

Abundance (N) enters the equation by focusing on TUj and the number of 

unmarked individuals in the population {Uj = Nj-rij). Using the approach validated 

for BBE (McClintock ct a l , 2006), TU/
 ir~d N[E(TUj), var(T„.)] , the approximate 

likelihood function for Nj is: 

Slj 1 nj ; kj , TUj ) -
\/27rvax(%~) 

cxp 
•[TUi-E(TUj)Y 

2var(Tu . ) 

Combining the two likelihoods across the /. primary occasions yields the LNE likeli­

hood of the general form: 

t n 
L{N,a,(3\8,n,k1Tu mi k, 

i=\ 
np^ci-p-o-)^" i) 4>{zSJ)dz, S] J "'^S] 

n 
1 yj27TVai(TUj) 

exp 
-[TUj-E(TUj)f 

2var(TUi) 
(1.2) 
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For the simplest model, with no time or individual heterogeneity effects within 

secondary occasions, 

E(TUj) = (Nj-nj)kj 1 + exp(-0j ) ' 

and 

^- ' •w-^trSjp-

For the case of fixed time effects only within secondary occasions, 

kj 

E^> = < A ^ > § T 7 ^ W 

exp(Aj) ^'^-'^raw 
The individual heterogeneity model with no time effects within secondary occasions 

has unconditional 

E(TU.) = (Nj-nj)kjfij, 

and 

vax(Tu.) = (Nj - nrfkj [//,(! - ^ ) + (k3 - l ) ( 7 j - fij)], (1.3) 
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where 

/ij IT CXp(-((7JZJ +03)) 
<t>(zj)dzj, 

li -I 
n2 

[ 1 + exp(-(a"jZj + Oj)) 
[zj)dzj, 

and 4>(ZJ) is the standard normal distribution. For the heterogeneity mo 

fixed time effects within secondary occasions. 

kj 

E(TUj) = (Nj-nj)Y, V ni 

and 

var(TU j) = (Nj - rij) J /iy(l - IMJ) + Y, Z(7iy - VijIMj) 
i=\ l*i 

where 

Hij I- exp(-(aJzJ + 0ij)) <t>(zj)dzj, 

and 

lia f I 
J 1 +cxp(-Ccrlz1• + Bii)) 1 cxp(-(ajZj + Pij)) 1 + exp(-(ajZj + /%)) 

[Zj)dzj. 
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Interested readers may find the derivations of (1.3) and (1.4) in Appendix A. 

LNE may incorporate the number of marked individuals tha t were identified 

as marked, but not identified to individual (e^) . These da ta enter the likelihood 

in (1.2) via E(T„.) and var(Tu ). For the general case with fixed time effects and 

individual heterogeneity, 

E(TUi) = (Nj-nj)tf^i, 

and 

var(T u , ) = ( A r
j - n j ) 

.i 

E /4(! - A4O
 + E E(̂ 'y - wo) i=i l±i 

where 

*i = f Ll + e x p ( - ( c r J Z J + 0ij)) n J J 

(ZJ) dzj, 

and 

Uij I l+cxp(-(cr Jz J+f3ij)) 1 + exp(-(ajzj +/3ij)) n 3 1 

4>{zj) dzj 

Similar to BOWE and BBE, with high levels of individual heterogeneity the adjust­

ment to incorporate unidentified marks is reliable when the proportion of unidenti­

fied marks remains < 0.10. When > 0.10, the resulting underestimates of variances 

can cause confidence interval coverage of N to fall as low as 88% (White and Shenk, 
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2001; Magic et al., 2007). When individual heterogeneity is low to moderate, the 

proportion of unidentified marks can approach 0.20 and still achieve nominal 95% 

confidence interval coverage (Magle et al., 2007). 

Because the integrals in (1.2) do not have a closed form solution, they must 

be computed numerically. These can be approximated with relative case using 

Gaussian-Hermite quadrature (Givcns and Hocting, 2005), with 

/ fh&a-r'.., )"-'•"•' 
i=i 

M 

E Wm 11 

cp(zsj)dzsj 

1 1 

\FK r ^ i "l i=i \ 1 + exp(-(y/2ajVm + ,%)) 

x l l 
1 + exp(-(v /2cr Jvm + ptj)) 

1 M 1 
fcj ~ ~7= A wm y= • 

7T m = 1 1 + e x p ( - ( V 2 a J v m + p{j)) 

and 

M 

llij * "7= E I— / TfX /— I— 

Vvr m = 1 1 + exp(-(v2ojVm + (3U)) 1 + exp( - (V2oyu m + ;%)) 

for tabulated (vm,wm) pairs corresponding to M quadrature points (Abramowitz 

and Stcgun, 1964). 
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1.3 Example: New Zealand Robin 

1.3.1 Example Methods 

The New Zealand robin (Petroica australis) data were collected in March 2005 from 

t = 2 study sites in the Eglinton Valley of Fiordland National Park, New Zealand 

(44°58'S, 168°01'E). The two sites, Knobs Flat and Walker Creek, consisted of 100 ha 

grids and were part of an exploratory investigation by the Department of Conserva­

tion on the usefulness of this technique for estimating TV of endangered populations 

in the Chatham Islands. Prior to the rcsighting surveys, as many juvenile and adult 

birds as possible were captured within the study areas and given individually iden­

tifiable bands. Between September 2003 and March 2005. 80 and 79 birds were 

banded in Knobs Flat and Walker Creek, respectively. Immediately prior to col­

lecting resighting data in March 2005, an independent visual survey was conducted 

to sample a known "marked" subset (n^f = 23. nwc = 20) of the previously banded 

birds. This was necessary because banded birds could have died or emigrated during 

the extended capture period prior to the resighting surveys. The resighting effort 

was divided into 7 distinct secondary occasions where the entire area of both study 

sites was surveyed. Secondary sampling occasions were conducted in the morning 

and typically required four hours each. The populations were assumed closed dur­

ing the sampling intervals. On several occasions a marked or banded individual 

was seen more than once. However, because the extended capture period left few 

birds unbanded, the researchers believed they could identify double counts and sat­

isfy the assumption of sampling without replacement. Raw estimates of p from the 

12 



Tabic 1.1: LNE parametcrizations for ptj and Oj with t = 2 primary sampling oc­
casions both consisting of k secondary sampling occasions (?' = l,...,k,j = 1,2). 
Combining the six pi3 parameterizations with the five a3 parameterizations yields 
30 possible LNE models with A'i + Ar

2. The number of estimated parameters (not 
including A^) in the models range from K = 1 for model {/?(.)<r(0)} to K = 2k + 2 
for model {P(tl,t2)a(.,.)}. 

Model Notation 

/?(•) 
/?(-,.) 

P(tl =t2) 

P(th-) 
P{-t2) 

0(11, L2) 
a (0 ) 
a(.) 

v(,0) 
*(0 , . ) 
*(.,.) 

Parameterization 

Pa = Pi2 = 9 
Pa = &i, P%2 - @2 

Pi\ - Pa. 

Pa * Pi2 = $ 
&2 * Al = 0 

Al * A2 
o"i = a 2 = 0 

0"1 = Cf2 

a\ * °"2 = 0 
°"2 ^ CT1 = 0 

cri * a2 

K 

1 
2 
A; 

k + 1 

fc + 1 
2A: 
0 
1 
1 
1 
2 

marked populations were 0.40 (SE = 0.04) and 0.41 (SE = 0.04) for Knobs Flat 

and Walker Creek, respectively. Total unmarked sightings (Tu^f - 45, TUiWC = 54) 

included previously banded birds that were not included in the marked subset. 

With 1 = 2 primary occasions both consisting of 7 secondary occasions, there 

arc 30 possible LNE parameterizations with Nkj ± Nwc (Tabic 1.1). The models 

range in complexity from the simplest no heterogeneity model, {/3(.)<r(0)}, to the 

most general time and heterogeneity model, {P(tl,t.2)a(.,.)}. The models were 

easily implemented using the nonlinear mixed-effects model (NLMIXED) maximum 

likelihood procedure in the SAS System for Windows (SAS Insti tute, 2002). By 

default, NLMIXED computes the integrals in (1.1) using adaptive Gaussian quadra­

ture. The integrals in E(T„.) and var(Tu . ) must be programmed separately within 

the procedure, and I found Gaussian-Hcrmitc quadrature with M = 4 points to be 
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an adequate approximation. 

I used Akaike's Information Criterion (AICC ) (Burnham and Anderson, 2002) 

and the Bayesian Information Criterion (BIC) (Schwarz, 1978) as a basis for ranking 

the 30 LNE models and obtaining model-averaged point estimates and unconditional 

variances with AICC and BIC weights (Burnham and Anderson, 2002: Link and 

Barker, 2006). I defined the effective sample size for AICC and BIC calculation as 

n - Z*-=i^j^j + t. I compared the LNE model-averaged estimates to those of JHE, 

BOWE, and BBE. BBE estimates were also model-averaged using AICC and BIC 

weights. As "equivalents" to JHE and BOWE, I also compared estimates of the most 

general LNE and BBE models where all parameters were estimated independently. 

Logarithm-transformed 95% confidence intervals for BOWE were computed as in 

Bowden and Kufeld (1995). Confidence intervals for LNE, JHE, and BBE were 

computed similarly but with the lower bound constrained to be greater than the 

known number of marked individuals. In comparing the performance of the models, 

my results focus on the precision of the estimates. Bias is also an important issue, but 

I was unable to quantify this property because N is unknown for these populations. 

However, both AICC and BIC address the trade-off between bias and precision as a 

means of model selection. 

1.3.2 Example Results 

AICC and BIC model rankings differed, with AICC giving higher weights to the 

more complex additive models (Table 1.2). BIC rankings suggest mean resighting 
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Table 1.2: AICC and BIC weights for selected LNE models of New Zealand robin 
abundance in Knobs Flat and Walker Creek study areas in Fiordland National Park, 
New Zealand. Numbers of estimated parameters include N. 

Model AICC No. Est. Model BIC No. Est. 
Weight Parameters Weight Parameters 

/ 3 (*1 ,X . ,0 ) 

m,-)o 
3(>( . ,0 ) 

/3(£1. > ( . , . ) 
/?(>(.) 

P(tl,.)a(0) 
P(.)a(0) 

/?(.)*(.,.) 

)3(tl,t2)a(.,.) 

P(,t2)a(0,.) 

0.22 
0.14 
0.09 
0.08 
0.08 
0.06 
0.06 
0.04 

0.00 

0.00 

11 
11 
4 
12 
4 
10 
3 
5 

18 

11 

/3 (> (0 ) 
/ ? (> ( . , o ) 

P(M-) 
/3(>(0,.) 
/ j ( . ,>(0) 
3(.H„.) 

/?(.,>(.,o) 
0(.,.)<r(.) 

f3(th.)a(.,0) 

j3(tl.t2)o(.,.) 

0.61 
0.15 
0.14 
0.04 
0.03 
0.01 
0.01 
0.01 

0.00 

0.00 

3 
4 
4 
4 
4 
5 
5 
5 

11 

18 

probabilities did not differ between secondary occasions or between the two study 

areas, but AICC rankings provide some evidence of temporal variation in Knobs 

Flat resighting probabilities. The vast majority of AICC weight (85%) was given to 

models incorporating individual heterogeneity. BIC favored less complex models, 

with 36% of BIC weight given to those with hetcrogentiy parameters. The highest 

ranking BIC model estimates were therefore more precise than those of AICC . 

Estimates for the three-parameter minimum-BIC model, {/3(.)a(0)}, were 9 = -0.38 

(SE = 0.12), Nkf = 38.7 (SE = 2.11), and Nwc = 38.9 (SE = 2.37). Heterogeneity and 

abundance estimates for the 11-parameter minimum-AICc model, {(3(tl,.)a(.,0)}, 

were akf = 0.79 (SE = 0.28), Nkf = 38.7 (SE = 2.87), and Nwc = 38.8 (SE = 2.74). 

In comparing the various estimators, point estimates were very similar re­

gardless of the method used, but precision levels did vary (Table 1.3). The BIC 
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Table 1.3: Abundance estimates (N), percent coefficient of variation (% CV), 95% 
confidence intervals (CI), and percent confidence interval lengths (% CIL) for Knobs 
Flat (KF) and Walker Creek (WC) study areas when using the AICC model-averaged 
(modAIC) LNE and BBE, BIC model-averaged (modBIC) LNE and BBE, LNE and 
BBE with both areas estimated independently, BOWE, and JHE. Estimators are 
ordered by the smallest average % CV. 

Estimator 

LNE modBIC 

JHE 

BBE modBIC 

BBE modAIC 

LNE modAIC 

BBE 

LNE 

BOWE 

Study Area 

KF 
WC 

KF 
WC 

KF 
WC 

KF 
WC 

KF 
WC 

KF 
WC 

KF 
WC 

KF 
WC 

N 

38.7 
38.9 

38.4 
38.9 

38.7 
38.8 

38.7 
38.8 

38.7 
38.8 

38.7 
38.8 

38.7 
38.8 

38.7 
38.7 

%CV 

5.8 
6.4 

6.0 
7.1 

6.4 
7.1 

6.6 
7.2 

6.7 
7.2 

7.4 
7.6 

7.4 
7.6 

7.7 
7.9 

95% CI 
Lower 

34.9 
34.6 

34.5 
34.2 

34.6 
34.1 

34.5 
34.0 

34.4 
34.1 

34.1 
33.8 

34.1 
33.8 

33.0 
32.8 

Upper 

43.7 
44.4 

43.5 
45.1 

44.2 
45.0 

44.4 
45.1 

44.5 
45.2 

45.2 
45.4 

45.2 
45.4 

45.4 
45.6 

%CIL 

22.8 
25.4 

23.4 
27.9 

24.9 
28.1 

25.7 
28.5 

26.3 
28.6 

28.8 
29.9 

28.9 
29.9 

32.2 
33.1 
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model-averaged LNE and JHE had the highest precision, but given the AICC and 

BIC evidence that individual heterogeneity may be an issue with these data, I be­

lieve JHE is underestimating the uncertainty about TV and is therefore inappropriate. 

Model-averaged LNE and BBE results were very similar for these data because both 

incorporated a robust sampling design and estimated individual heterogeneity pa­

rameters. Even when compared to the "equivalent" BBE and LNE models with 

all parameters estimated independently, BOWE was the least precise of the estima­

tors. Although inferences in this simple example were quite similar regardless of the 

model used, the model-averaged LNE or BBE appear to be the most appropriate 

because they were more efficient. Had there been less evidence of heterogeneity, I 

suspect the AICC model-averaged LNE would also have been more efficient than its 

BBE counterpart because of its ability to incorporate these parameters as deemed 

necessary by the data. 

The use of AICC or BIC has received much attention in recent years (Burnham 

and Anderson, 2004: Link and Barker, 2006). Philosophical issues aside, this ex­

ample provides no information on the appropriateness of AICC or BIC for use with 

these models. Further, the results from this single data set arc not indicative of 

the expected relative performance of LNE. I therefore conducted simulation exper­

iments to assess the model's utility in a wide variety of sampling conditions using 

both A i a and BIC. 
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1.4 Simulation Experiments 

1.4.1 Simulation Methods 

Simulated da ta were generated under the assumptions of geographic and demo­

graphic closure within secondary resighting occasions, sampling without replace­

ment, iid sighting probabilities for marked and unmarked individuals, 100% mark 

identification, and no error in distinguishing marked versus unmarked individuals. 

Individual resighting probabilities were modeled as logit-normal random variables 

based on an underlying population p and individual heterogeneity level (07//), but 

additive temporal variation (arv) allowed pslJ to vary for each secondary occasion. 

Because resighting probabilities were modeled using this transformation, input val­

ues for p, (ijH, and aTy did not back-transform identically to their original values. 

McClintock et al. (2006) used the same methods and categorized the realized values 

for the data-generating parameters. For p, the categories were Low (0.15 < p < 0.16), 

Medium (0.30 < p < 0.38), and High (p = 0.50). The categories for a]H and aTV 

were Low (0.00 < a < 0.05), Medium (0.10 < a < 0.15), and High (0.16 < a < 0.26). 

I first generated simulated mark-resight da ta for t = 1 primary sampling oc­

casion. The input parameter values for generating resighting probabilities were all 

possible combinations of p = {Low, Medium, High} and am - OTV = {Low, Medium, 

High}. This limited the number of resighting probability scenarios to seven because 

when p = Low, only am ~ a^v = Low is theoretically possible. Applying these seven 

resighting probability scenarios to the four sample size classes with k = 3 or 5 and 

n = 25 (N = 100) or 75 (N = 500) totaled 28 simulation scenarios. These scenarios 
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Tabic 1.4: Data generating scenarios for simulation experiments with t = 2 primary 
sampling occasions. Number of secondary resighting occasions (k), marked sample 
size (n), and population abundance (N) were the same for both primary sampling 
occasions, but mean sighting probability p, individual heterogeneity (<JIH), and 
temporal variation (crTV) were allowed to vary. 

Scenario 

A 
B 
C 
D 
E 
F 

k 

3 
3 
5 
5 
5 
5 

n 

25 
75 
25 
25 
75 
75 

N 

100 
500 
100 
100 
500 
500 

Pi 

Low 
Med 
Med 
High 
Med 
High 

°7tf(i) 

Low 
None 
High 
Med 
Low 
Med 

0~TV(1) 

None 
High 
Med 
None 
High 
Low 

Vi 

Low 
Low 
Med 
Med 
High 
High 

(JIH(2) 

Low 
None 
High 
High 
None 
Med 

(7TV(2) 

None 
Low 
Med 
Med 
High 
Low 

ranged in sample size from smallest (k = 3, n = 25, N = 100, p = Low) to largest 

(k = 5, n = 75, Ar = 500, p = High) with the variation in p determined by the level of 

I next generated data for L = 2 primary sampling occasions. With so many 

possible input parameters determining resighting probabilities and sample sizes, I 

restricted these simulations to six pseudo-randomly selected scenarios fixing k\ = h?, 

nx = n2, and Nx = N2 (Table 1.4). I first designated "small" (k = 3, n = 25, N = 100, 

p = Low), "medium" (k = 5, n - 25, iV - 100, p = Medium), and "large" (k = 5, 

n = 75, N = 500, p = High) samples. I then randomly assigned (JIH(\) = aiH(2) 

and UTV(\) = (TTV(2) from {None, Low, Medium, High} to create three scenarios. 

For the other three scenarios, all values were randomly selected from k = {3,5}, 

n = {25,75}, pj = {Low, Medium, High}, CTIH(J) = {None, Low, Medium, High}, 

and (JTVU)
 = {None, Low, Medium, High} with Nj = 100 if n = 25, and Nj = 500 

otherwise. 

With t = 1 primary occasion, there are four possible LNE parameterizations: 
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1) no time or heterogeneity effects, {/3(.)a(0)}, with K = 3 parameters; 2) time 

effects only, {(3(t)a(Q)}, K = k + 2; 3) heterogeneity only, {/5(.)cr(.)}, K = 4; and 4) 

time and heterogeneity effects. {@(t)a(.)}} K = k + 3. With £ = 2 primary occasions 

and /ci = &2, there are 30 possible LNE parametcrizations (Table 1.1). If £4 * /c2, 

there are 25 parametcrizations because constraining (3n - fj^ is no longer possible. 

For each of the 1000 replications within a given simulation scenario, I compared 

the performance of LNE with JHE, BBE, and BOWE. For LNE, I examined both 

AICC and BIC modcl-avcragcd parameter estimates. For simulations with 2 primary 

occasions, I also examined the AICC and BIC modcl-avcraged parameter estimates 

for BBE. AICC , BIC, and confidence intervals were computed as in Section 1.3. 

Model performance was based primarily on percent confidence interval coverage 

of N, Bias/SE = E(A' - AQ/SE(A>), percent confidence interval length (%CIL = 

100(UCI-LCI)/A), and root mean squared error [ R M S E = \/Bias(A>)2 + var(JV)Y 

Bonferroni intervals with family confidence coefficient a = 0.05 (Hocking, 2003) were 

used to simultaneously compare average estimator coverage, Bias/SE, and % CIL 

across scenarios. All analyses were performed using NLMIXED as described above 

and the Interactive Matrix Language (IML) in SAS (SAS Institute, 2002). 

1.4.2 Simulation Results 

In simulations with 1 primary occasion, bias was not an appreciable problem for 

any of the estimators, with average Bias/SE across all 28 scenarios < 0.1 for all 

models (Cochran, 1977) (Table 1.5). BOWE had the highest average point estimate 
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Table 1.5: Average percent confidence interval coverage, percent confidence interval 
length (% CIL), and Bias/SE of abundance estimates for BBE, BOWE, JHE, AICC 

model-averaged (modAIC) LNE, and BIC model-averaged (modBIC) LNE across 
28 simulated scenarios with t = 1 primary sampling occasion. 

Estimator 

BBE 
BOWE 
JHE 
modAIC LNE 
modBIC LNE 

%C( 
Est. 

94.1 
94.8 
91.6 
93.4 
93.1 

weragc 
SE 

0.14 
0.13 
0.16 
0.15 
0.15 

%CIL 
Est. 

42.4 
43.3 
37.9 
41.1 
40.6 

SE 

0.11 
0.10 
0.10 
0.11 
0.11 

Bias/SE 
Est. SE 

0.06 0.01 
0.03 0.00 
0.10 0.01 
0.07 0.01 
0.07 0.01 

for coverage and JHE had the lowest % CIL across the seven resighting probability 

scenarios in all four sample size classes. However, BOWE also had the highest % 

CIL, and JHE had the lowest coverage across all four sample size classes. No sig­

nificant differences were observed between the AICC or BIC model-averaged LNE 

approaches. No significant differences in average coverage for the four sample size 

classes were observed between BOWE and LNE, but average % CILs were signifi­

cantly lower in all sample size classes for LNE than for BOWE. Overall coverage and 

% CIL for BBE did not significantly differ from BOWE or LNE. When aIH = Low, 

no significant difference in average coverage was observed between the approaches. 

However. JHE and the LNE approaches had significantly smaller % CILs, and the 

two were not significantly different from one another. BBE tended to have slightly 

higher RMSEs than the other heterogeneity models, but BOWE had the highest 

RMSEs with the largest sample sizes. Except with the largest sample sizes, BOWE 

generally had slightly smaller RMSEs than the LNE approaches. This is attributable 

to a slight positive bias for LNE with smaller sample sizes, but because Bias/SE 
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ratios remained small, the LNE approaches still achieved optimal coverage and % 

CILs. 

Across the six scenarios with 2 primary occasions (Table 1.4), BOWE again 

had the highest average coverage and largest average % CILs. JHE on average had 

lower coverage and smaller % CILs than the other approaches. Average coverage for 

the AICC model-averaged LNE and BBE were not significantly different than BOWE, 

but average coverage for the BIC model-averaged LNE and BBE were significantly 

lower than BOWE. Both LNE and BBE model-averaged approaches produced sig­

nificantly smaller % CILs than BOWE. Average Bias/SE was only > 0.1 for JHE 

(Table 1.6). The poorest performance for all approaches was in estimating N2 of sce­

nario D, where coverage was 87.7% (SE = 1.04) for the AICC model-averaged BBE, 

82.8% (SE = 1.20) for the BIC model-averaged BBE, 92.3% (SE = 0.84) for BOWE, 

80.7% (SE = 1.25) for JHE, 89.0% (SE = 0.99) for the AICC model-averaged LNE, 

and 81.6% (SE = 1.23) for the BIC model-average LNE. In this scenario, coverage 

was not significantly different between BOWE and the AICC model-averaged LNE 

or BBE, but all other approaches were significantly lower. When (?IH(J) ^ Low, no 

significant differences in average coverage or % CIL were detected between JHE and 

the AICC model-averaged LNE and BBE, but BBE had the highest point estimate 

for coverage (95.4%, SE = 0.27) and LNE had the smallest point estimate for % CIL 

(53.7%, SE = 0.46). BIC model-averaged LNE had significantly lower % CILs than 

JHE with no significant difference in coverage for these low heterogeneity scenarios. 

With the smallest sample size (scenario A), RMSE was largest for JHE and smallest 

for the BIC model-averaged BBE. With the largest sample size (scenario F), RMSE 
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Table 1.6: Average percent confidence interval coverage, percent confidence interval 
length (% CIL), and Bias/SE of abundance estimates for BOWE, JHE, AICC model-
averaged (modAIC) LNE and BBE, and BIC model-averaged (modBIC) LNE and 
BBE across six simulated scenarios with t = 2 primary sampling occasions. 

Estimator 

modAIC BBE 
modBIC BBE 
BOWE 
JHE 
modAIC LNE 
modBIC LNE 

% Coverage 
Est. 

94.4 
92.6 
94.5 
89.8 
93.7 
92.0 

SE 

0.21 
0.24 
0.21 
0.27 
0.22 
0.25 

%CIL 
Est. 

47.5 
45.0 
50.1 
43.7 
47.1 
43.8 

SE 

0.24 
0.21 
0.23 
0.26 
0.25 
0.21 

Bias/SE 
Est. 

0.07 
0.07 
-0.01 
0.13 
0.07 
0.06 

SE 

0.02 
0.04 
0.01 
0.03 
0.02 
0.04 

was largest for BOWE and smallest for the BIC model-averaged BBE. For the other 

scenarios, RMSE was generally largest for BOWE or BBE and smallest for JHE. 

Although average performance across all scenarios was very similar for LNE and 

BBE, LXE tended to be more efficient than BBE in scenarios with low levels of 

heterogeneity and BBE tended to be slightly more efficient when p = Low. 

1.5 Discussion 

With t = 1, little difference was observed in LNE performance when using AICC or 

BIC for model-averaged inference. When the number of occasions, marked individ­

uals, and rcsighting probabilities were all at the lowest levels (scenario A), BOWE 

did perform better than the maximum likelihood models. A non-parametric model 

such as BOWE (whose properties are not based on asymptotic theory) may be a less 

biased approach with such small sample sizes, but precision is so poor that none of 

the estimators are particularly useful for inferences. With sample sizes suitable for 
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producing useful levels of precision, LNE was generally a more precise estimator with 

no significant loss in coverage. Its higher efficiency compared to BBE and BOWE 

is attributable to LNE's ability to invest in estimating heterogeneity parameters as 

deemed necessary by the data. With low levels of heterogeneity, LNE had similar 

coverage and precision to JHE. 

With t = 2, the advantages of combining data in a robust sampling design 

were apparent in the increased precision of LNE and BBE. In the few scenarios with 

low levels of individual heterogeneity. LNE appeared to be more efficient than the 

other estimators, but not enough scenarios of this type were examined to detect a 

significant difference. However, based on these results and those from the simulations 

with 1 primary occasion, I expect that unlike BBE, the model-averaged LNE will 

be as or more efficient than JHE when heterogeneity levels are low. I also expect 

these advantages of LNE over the other estimators to be more pronounced with > 2 

primary sampling occasions. 

Although little difference was found in the use of AICC versus BIC with 1 

primary occasion, I found a slight advantage in the use of AICC in some cases with 

2 primary sampling occasions. The tendency of BIC to select less complicated 

models with small to moderate sample sizes (Burnham and Anderson, 2004; Link 

and Barker, 2006) was somewhat of a disadvantage in terms of coverage when the 

population mean resighting probabilities were different. Abundance estimates are 

particularly sensitive to biases in mean resighting probability estimators, and BIC's 

greater tendency to "split the difference"' in estimating fewer parameters can result 

in underestimation of N in one primary occasion and ovcrcstimation in the other. 
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I am not suggesting that AICC is not susceptible to similar problems with small 

marked sample sizes, but it did appear to alleviate them more than BIC. For ex­

ample, in scenario D the "true" generating model had different values for all of the 

resighting probability input parameters, and all of the estimators failed to achieve 

nominal coverage in estimating Ar
2. As evidence of the criterion "splitting the differ­

ence," Bias/SE for the LNE model-averaged estimates of Ni and A2 were 0.35 and 

-0.26 for BIC, but were 0.11 and 0.02 for AICC , respectively. For BBE, these were 

0.43 and -0.18 for BIC and 0.21 and 0.00 for AICC , respectively. Although coverage 

was close to nominal for A^, coverage for N2 using the BIC model-averaged approach 

was significantly lower than its AICC counterpart, and the problem appeared more 

severe for BBE than for LNE. However, this was not an appreciable problem for 

either approach in simulations with different population mean resighting probabili­

ties and larger sample sizes, such as scenarios B and E. Because the estimation of 

resighting probability parameters is so critical to estimates of A, I advise against the 

use of BIC model averaging under sampling conditions similar to those simulated in 

scenario D. I recommend as a general guideline that researchers carefully compare 

the estimates obtained via model averaging to those from the most general model 

where all parameters arc estimated independently. If the parameter estimates (par­

ticularly N) are quite different, a moderately conservative approach would be to use 

AICp model averaging for inferences. The most conservative approach would be to 

use the general model. As indicated by the simulations with 1 primary occasion, 

the use of the most general LNE will typically still be more efficient than BBE and 

BOWE. When compared with the BIC model-averaged results for scenario D, aver-
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age performances were better with the most general LNE and BBE models. Bias/SE 

for Ni and iV2 were 0.02 and 0.10 for LNE, and 0.02 and 0.12 for BBE, respectively. 

Coverage of JV2 was 90.9% (SE = 0.91) and 90.7% (SE = 0.92) with % CILs of 57.8 

(SE = 0.69) and 58.0 (SE = 0.68) for LNE and BBE, respectively. Similar to the 

AICC model-averaged results, these coverages were not statistically different from 

BOWE. Despite being slightly larger than when using AICC model averaging, % 

CILs for the general models were still significantly smaller than BOWE. Although I 

found it to be a problem with 2 primary occasions, I expect this small sample issue 

for BIC to be less of a concern in longer-term monitoring studies with > 2 primary 

occasions. 

1.6 Conclusions 

In terms of efficiency, I found LNE to be equivalent to or better than the other 

available mark-resight abundance estimators (with no appreciable loss in coverage) 

regardless of the sampling conditions. LNE provides researchers a more efficient 

alternative to JHE capable of incorporating a robust sampling design when individ­

ually identifiable marks are not feasible. LNE is more efficient than BOWE or BBE 

and equivalent to JHE when observed heterogeneity levels are low because it may 

ignore this variability as deemed appropriate by the data. When heterogeneity levels 

are high, LNE is more efficient than BOWE and equivalent to BBE because it may 

incorporate a robust sampling design. When sampling is without replacement, its 

flexible modeling framework provides quantitative justification for model selection 
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based on the data, thereby eliminating the need to determine which of JHE, BOWE, 

or BBE is most appropriate based on educated guesswork. Overlooking philosophi­

cal issues, I did identify some potential advantages and disadvantages of using AICC 

or BIC for these models, but little difference in inferences can generally be expected 

between the two approaches when using model averaging. Although computation­

ally more complicated than the other estimators, I believe the increased complexity 

that comes with the generalized modeling framework of LNE is justified by its in­

creased efficiency and rigorously defendable means of mark-resight model selection. 

While not investigated here, the ability of LNE to incorporate environmental or 

individual covariates in modeling resighting probabilities may further increase its 

efficiency. However, when sampling must be with replacement, BOWE is still the 

only reliable option available for these studies. A flexible structure similar to LNE 

allowing sampling with replacement is still desirable, and I develop such a model in 

Chapter 2. 
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Chapter 2 

Estimating abundance using 

mark-resight when sampling is 

with replacement or the number 

of marked individuals is unknown 

2.1 Introduction 

The mark-rcsight method for estimating closed population abundance (TV) has re­

cently received considerable attention (Bowdcn and Kufeld, 1995: Miller et al., 1997; 

White and Shcnk, 2001; McClintock et al., 2006; Magic et al., 2007). Compared to 

traditional mark-recapture (Otis ct al., 1978; McClintock and White, 2007), mark-

rcsight can often be a less expensive and less invasive alternative (Minta and Man­

gel, 1989). The primary advantage of these methods is that animals only need to 

28 



be physically captured and marked once, and subsequent data from both marked 

and unmarked individuals are used for estimating N. This can be appealing to re­

searchers because funds are often limited and capture is generally the most expensive 

aspect of these studies. Not only can the financial cost of mark-recapture be daunt­

ing for long-term population monitoring, but capture is also the most hazardous 

aspect for the animals. Mark-resight can substantially reduce stress to species be­

cause they can be observed at a distance with minimal disturbance after the initial 

capture. This is of particular importance when working with threatened, endan­

gered, or exceptionally sensitive species. 

Despite the possible advantages, one major drawback of mark-resight meth­

ods is that the number of marked individuals available for resighting usually needs 

to be known exactly. This can be difficult to accomplish. It is often believed to 

be reasonably achieved by capturing and marking individuals immediately prior to 

resightings and assuming closure between capture and the completion of resighting 

occasions. When the interval between marking and resighting is of long enough du­

ration for closure to be violated, a more rigorous method of determining the number 

of marked individuals in the population is through the use of radio-collars equipped 

with mortality signals (Miller ct al., 1997: McClintock and White, 2007). However, 

many smaller species cannot be fit with these devices, and even if the species is 

of adequate size, the cost can be prohibitive within the limited budgets typically 

found in wildlife studies. Even when fit with radio-collars, the battery life of these 

devices is often limited. This often results in field-readable marks still being present 

in the population, but without the ability to confirm the exact number of marked 
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individuals, the interval for application of these methods is essentially restricted to 

the lifc-expcctancy of the radios. By modifying the Minta-Mangel estimator (Minta 

and Mangel, 1989), Arnason et al. (1991) developed a mark-resight model for when 

the number of marked individuals is unknown (ARNE). However, the model has 

found little application (Casagrande and Beissinger, 1997; Loison et al., 2002) be­

cause of several key limitations. These include certain sample size requirements, the 

assumption of equal and independent sightabilities of individuals, the necessity of 

100% marked individual identification, and the inability to combine data across mul­

tiple closed sampling periods for more efficient parameter estimation. McClintock 

et al. (2006) and Magle et al. (2007) demonstrated problems associated with these 

limitations in other estimators (also see Chapter 1). White (1993) found the perfor­

mance of the Minta-Mangel estimator to be inadequate in simulation experiments, 

and I therefore suspect this also applies to ARNE. 

Another drawback of most mark-resight estimators is that sampling must be 

without replacement within distinct resighting surveys that comprise the closed sam­

pling interval of interest (see Chapter 1). Adopting the terminology of the robust 

sampling design (Kendall ct al., 1995), this requires that every individual in the pop­

ulation be sighted at most once within each of the secondary sampling occasions of 

the closed primary intcrval(s). In many circumstances, secondary sampling must be 

with replacement and necessitates the use of Bowdcn's estimator (BOWE) (Bowdcn 

and Kufeld, 1995), the Minta-Mangel estimator, or ARNE. These situations arise 

when closed primary sampling intervals cannot be divided into distinct secondary 

occasions where individuals can only be sighted once, such as when studying a highly 
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mobile species or using camera traps. Although BOWE is a consistent estimator 

when sampling is with replacement, it is particularly inefficient for long-term mon­

itoring because each TV must be estimated independently, i.e., information cannot 

be borrowed or smoothed across multiple primary sampling occasions. 

When sampling is without replacement, I found advantages in the use of the 

logit-normal mixed effects model (LNE) when compared to the Joint Hypergeomet-

ric estimator (Bartmann et al., 1987), BOWE, and the Beta-Binomial estimator 

(McClintock et al., 2006) by allowing more efficient parameter estimation when 

combining data across multiple primary sampling occasions (see Chapter 1). Here I 

develop a model analogous to LNE when sampling is with replacement, the Poisson-

log normal mixed effects model (PNE). But unlike LNE, PXE may be modified for 

when the number of marked individuals is not known exactly, and it therefore ad­

dresses two key limitations of other mark-resight estimators. After I introduce the 

model in the next section, I demonstrate its use on black-tailed prairie dog (Cyno-

mys ludovicianus) colonics of north-central Colorado in Section 2.3. In Section 2.4, 

I report on simulation experiments evaluating the relative performance of the model 

compared to other estimators. In Section 2.5, I summarize my findings in terms of 

their implications for abundance estimation in mark-resight studies. 

2.2 The Model 

The Poisson-log normal mixed effects mark-resight model (PNE) has the same as­

sumptions as BOWE, but data may be combined across t primary sampling occa-

31 



sions in a robust sampling design (Kendall ct al., 1995). These assumptions arc: 

1) geographic and demographic closure during secondary sampling within primary 

intervals; 2) no loss of marks within each primary interval: 3) no errors in dis­

tinguishing marked and unmarked animals; and 4) independently and identically 

distributed (iid) resighting probabilities for marked and unmarked animals. Marks 

must be individually identifiable and field-readable. Because marks must be indi­

vidually identifiable, overdispersion due to resighting rate heterogeneity or lack of 

independence (e.g., clustering) may be accounted for. The number of marked in­

dividuals in the population during sampling may be known exactly or unknown. 

Given that an individual is identified as marked. PXE may incorporate less than 

100% marked individual identification by assuming such events occur randomly 

within the marked population. 

I will first assume a known number of individuals (n}, j = {1,...,/.}) are in­

dividually marked with field-readable marks and available for resighting at least 

once during the j th interval of interest. Resighting data arc then collected dur­

ing t primary intervals, each of which is of short enough duration for the assump­

tion of demographic and geographic closure to be satisfied. The resighting data 

consist of the total number of sightings for marked individual s within interval j 

(ysj = {0,1. 2,...}, s = {1, ...,rij}) and the total number of unmarked sightings during 

each interval (T„,.). Because PNE does not condition on distinct secondary resight­

ing occasions within the t closed intervals, sampling may occur with or without 

replacement within secondary occasions. With some similarity to the approach of 

Rivest and Daiglc (2004) for the traditional mark-recapture robust design, the ySJ 
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are modeled as realizations of independent Poisson-log normal random variables, 

where (on the log scale) the jth mean resighting rate is treated as a fixed effect (Oj) 

and individual heterogeneity (a source of overdispersion) as a random effect with 

mean zero and unknown variance a2. The ySJ have conditional expectation 

E(ySJ | a,, ZSJ, Oj) = XSJ = exp {a,ZS] +6j), 

where Zsj '~ N(0,1). Therefore, any randomly selected individual s from sampling 

occasion j with latent sightability ZSJ has resighting rate with marginal expectation 

Ez, ; (ysj) = Xj\s = J exp {<TjZsj + 63)(p(zSJ)dzSJ = exp I y + ^ h 

where 4>(zsj) is the standard normal density. I stress that the primary intervals 

need not be independent with respect to parameters, but they are independent with 

respect to data. The t primary intervals may therefore be treated as groups if they 

do not pertain to sequential periods in time (as shown in Section 2.3). Under this 

generalized framework, resighting rates may be modeled with no time (or group) 

and no heterogeneity effects between sampling occasions {Oj = 0, Oj - 0), only time 

effects, only heterogeneity effects, or additive time and heterogeneity effects. For 

increased efficiency, these parameters may also be modeled with fixed environmental 

or individual covariates believed to affect the resighting process, as is demonstrated 

in Section 2.3. By taking the product across the rtj marked individuals, an uncon-
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ditional likelihood function for 63 and a2 is 

" l r A^' j 'exp(-A6 j) 
L((Tj,6j\y3j,nj) = Y[ j <j>(zaj)dzsj. (2.1) 

s=lJ Vsj-

For the sake of generality (and at the expense of some additional complexity), I 

chose to use this formulation instead of the more standard negative binomial model. 

Under this framework, covariates describing 9 and a may be modeled in a relatively 

meaningful and intuitive manner. Further, because there is often no detectable 

individual heterogeneity in mark-rcsight data, my formulation allows this additional 

source of variation to be ignored (a = 0) for increased efficiency. Similar to the Beta-

Binomial estimator (McClintock ct ah, 2006), using the negative binomial would 

require tha t individual heterogeneity always be included in the model, and the 

incorporation of covariates would not be nearly as straight-forward. 

In deriving a joint likelihood that included N, McClintock et al. (2006) as­

sumed Tu. '~ N [E(TU j) , var(TU;)J and found this approximation useful (also see 

Chapter 1). However, because Tu > 0, I chose to modify this approximation to 

a more realistic TUj '" LTN [E(TU . ) ,var(T„.)J , where Tu. is left-truncated at zero. 

The approximate likelihood function for Nj is then: 

f(T ) 
L{N3 | avevn3,TU]) = J U]J . (2.2) 

Jo f(TUi)dTUj 
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where f(Tu,) is the normal density function with expectation 

E(TUj) = (N]-nJ) exp 
n,-

(2.3) 

and variance 

var(Tu.) = (Nj - n,) jcxp I°j- + 6A+ exp(20j) [exp(2a|) - cxp(a?)] 
n,-

(2.4) 

where e0 is the total number of marked individuals that were identified as marked, 

but not identified to individual identity during primary interval j . The derivations 

of the unconditional (on ZSJ) E(TU.) and var(T„..) formulae for this general case may 

be found in Appendix B (for the less general case with no individual heterogeneity, 

(Tj = 0). Combining (2.1) and (2.2) across the t primary sampling occasions gives 

the PNE likelihood of the general form: 

L(N.a,f3\y,n,Tu) 
t 

n As
y"J exp( -A s j ) 

Vs]]-
<p(Zf,j)dz, Sjju^gj 

t f(TUi) 
XU roc 

i*JQ f(TU])dTUj 

(2.5) 

If rij is unknown for any interval j , then only marked individuals sighted and 

individually identified at least once are known to be in the population during this 

interval, and ySJ = 0 is no longer observable. In this event, (2.5) may be modified 

by replacing the contribution of any intervals where n3 is unknown with the zero-

truncated PNE (ZPNE). This requires modifying (2.1) to account for the fact that 
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ySj = 0 is no longer observable: 

x 2l r A^cxp(-AS 7) 
L (a.,9, | ySJ, n)) = Y\ J , ' " 3'Mzai)d*.y (2-6) 

where ySJ• = {1, 2 , . . . } , n* is the number of marked individuals sighted at least once 

during interval j , and 1 - cxp(-ASj) is the probability of being sighted at least once 

during interval j . Equations (2.3) and (2.4) are then modified by replacing rij with 

n*/[ l -exp(-A j | . , ) ] . 

Point and variance estimates for (Z)PNE may be obtained using maximum 

likelihood or Baycsian analysis methods. Because the integrals appearing in the like­

lihoods do not have closed form solutions, they must be computed numerically when 

using maximum likelihood. The Poisson integrals in (2.1) and (2.6) can be approx­

imated using Gaussian-Hermite quadrature (Givens and Hoeting, 2005), whereby 

integrals of the form / ^ e~v2h(v)dv may be approximated by £m=i wmh(vm), where 

M is the number of quadrature points, and (vm,wm) are the evaluation nodes and 

weights corresponding to M. For the Poisson integrals in (2.1), 

exp (\Z2<jjvm + 6j) SJ exp [-exp (\f2ojvm + 9j)] 

VsjWn 

For the zero-truncated Poisson integrals in (2.6), 

exp (y2crjVm + #j) *J exp [- exp (\/2<7jVm + 6?j)j 
h{vm) 

ysj\s/n {l - exp [exp [\f2ojVm + #,)]} 

Tables of (vm, wm) pairs for ascending values of M are available in texts on numerical 
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integration (Stroud and Sccrcst, 1966) or in readily available statistical computing 

software such as R (Smyth, 2006). The integral for left-truncation of the normal 

distribution in (2.2) is equal to 1 -<&T„. (0): where $ru . (0) is the normal cumulative 

distribution function of Tu, evaluated at zero. 

2.3 Example: Black-tailed Prairie Dog 

2.3.1 Example Methods 

As part of the Colorado State University Plague Project (Antolin ct al., 2006), 

mark-rcsight surveys were conducted on t = 8 black-tailed prairie dog (Cynomys 

ludovicianus) colonics in the Pawnee National Grassland of north-central Colorado, 

USA (40°35'N, 104°45'W). Four colonies (Towns 76a, 82, 83, and 84) in July -

September 2005 and four colonies (Towns 70, 76b, 81, and 88) in July - August 

2006 were investigated. The colonics ranged in size from 71 acres (Town 76a) to 

463 acres (Town 81). Immediately prior to resighting surveys, traps were set at 

the nearest burrow entrance to randomly selected points within the range of each 

colony. Captured dogs were fur-dyed on both sides of the midsagittal plane with a 

unique two-character mark consisting of letters, numbers, and symbols. To aid in 

the rapid identification of marked versus unmarked animals when only the head was 

initially visible, a. dye "helmet'" was also applied to marked individuals. The mark­

ing periods generally lasted one week, and 10 - 12 secondary resighting occasions 

were completed in 1 - 2 weeks on each colony. Resighting surveys were conducted 
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from stations covering as much of the colony possible with the aid of 20x -

60x spott ing scopes. Two observers were assigned to each station, with a primary 

observer tallying marked and unmarked dogs and a secondary observer recording 

and aiding in individual identification of marked dogs detected by the primary ob­

server. The number of stations required to survey an entire colony ranged from 

two for the smaller colonics to seven for the larger. The populations were assumed 

closed during the marking and resighting period. Although the rcsighting surveys 

were designed in an a t tempt to achieve sampling without replacement, on several 

secondary occasions a marked individual was recorded twice and suggests that , al­

though minimal, sampling of the unmarked individuals was also likely to have been 

with replacement. 

For my maximum likelihood analysis of the combined da ta from the t = 8 

colonies using PNE, I evaluated a set of candidate models using both Akaikc's In­

formation Criterion adjusted for small sample sizes (AICC) (Burnham and Anderson, 

2002) and the Bayesian Information Criterion (BIC) (Schwarz, 1978). The effective 

sample size for AICC and BIC calculation was defined as n = Y,%inj +t- Param-

ctcrizations for mean rcsighting rate 6j and individual heterogeneity <TJ included 

constancy across all colonies [represented as #(.) and <r(.)] a n d complete indepen­

dence between the eight colonies [0(t) and cr(t)]. By fixing Oj = 0, individual hetero­

geneity may also be ignored [<r(0)]. Estimating separate Nj for the eight colonics, 

all combinations of these parametcrizations yielded six models, ranging from the 

simplest 9-paramcter model, {9(.)a(0)N(t)}, with colony-constant mean resighting 

rates and no individual heterogeneity, to the 24-paramcter model, {6(t)a(t)N(t)}, 
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with completely independent mean resighting rates and individual heterogeneity 

levels for each colony. I also investigated more parsimonious paramcterizations for 

6j and a3 using environmental covariates measured during the surveys. These were 

modeled as 6 = Xa and \og(aJ) - ZjP, where X is a t x ( p+ 1) matrix composed 

of p covariates (plus an intercept term), a = ( Q 0 . « I , . . . . ap) is a (p + 1) x 1 vector 

of unobservable coefficients corresponding to X, Zj is the j t h row of a t x (q + 1) 

matrix Z composed of q covariates, and (3 = ((30,l3i,..., (3q) is a (q + 1) x 1 vector 

of unobservable coefficients corresponding to Zj. The colony-specific covariates that 

were measured included area in acres xl(T2 (a), average temperature across surveys 

(tp), average wind speed across surveys (w), average percent cloud cover across sur­

veys (cl), average prior 24-hour precipitation across surveys (pc), average start t ime 

of surveys (s), average length of surveys (tm), and the number of stations required 

for each colony (si) . Other covariates included a linear time trend within years (tr) 

and dummy variables for year (yr), the presence of cattle during surveys (cw), the 

presence of predators during surveys (pd), non-rcsearch-rclated human disturbances 

during surveys (ot), and several colonies (Towns 70, 76a, and 83) identified a priori 

as particularly difficult to survey (df). Maximum likelihood point and variance es­

timates for R - 169 models were obtained using the NLMIXED procedure in SAS 

9.1 for Windows (SAS Institute, 2002), and the integrals in (2.5) were programmed 

within the NLMIXED procedure using the Gaussian quadrature formulae in Section 

2.2 with M = 10. I calculated model-averaged Nj and unconditional variances based 

on AICC and BIG weights of the R = 169 models and compared these to estimates 

from BOWE. Confidence intervals for PNE model-averaged estimates were calcu-
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lated as 95% logarithm-transformed normal. Confidence intervals for BOWE were 

calculated as in Bowden and Kufeld (1995). 

I also performed an identical maximum likelihood analysis with ZPNE. Here, I 

no longer assumed the numbers of marked individuals were known and accordingly 

zero-truncated the marked individual resighting data. For model selection criteria, 

the effective sample size for ZPNE was defined as n = £j=i n* + t. Because the data 

contained considerable numbers of marked individuals resighted but not identified 

to individual (e^), I did not believe it reasonable to analyze these data with ARNE 

for comparative purposes. To incorporate these into the modeling framework of 

ARNE (thereby preventing overestimation of Nj), one must assume that all t3 were 

from marked individuals positively identified at least once. Given the relatively 

large numbers of marked individuals sighted zero times, I did not believe this to be 

a reasonable assumption. 

2.3.2 Example Results 

Although not verified by radio-telemetry, the presumed known numbers of indi­

viduals captured, marked, and available during resighting surveys were n-j§a = 80, 

r*82 = 66, n83 = 45, and n84 = 59 in 2005, and n70 = 66, n7ob - 85, n8i = 82, and n88 = 53 

in 2006. Mean numbers of marked individual resightings across all secondary oc­

casions were y7Qa = 2.2 (SE = 0.3), y82 = 3.3 (SE = 0.3), yH3 = 3.0 (SE = 0.3), and 

y84 = 5.2 (SE = 0.4) in 2005, and y70 = 2.7 (SE = 0.3), y76b = 3.5 (SE = 0.3), y81 = 4.5 

(SE = 0.3), and yS8 = 6.8 (SE = 0.4) in 2006. Total numbers of unmarked individual 

40 



sightings were Tujea = 1764, Tu,82 = 5553, TUiS3 = 6543, and Tu 8 4 = 4757 in 2005, 

and T„,70 = 2820, TuJ6b = 3150, r„ i8i = 6306, and T„,88 = 2184 in 2006. Numbers 

of resightings that were identified as marked but not to individual were e76o = 34, 

£82 - 9, e83 = 6, and e84 = 1 in 2005, and e70 = 24, e76b = 19, e8i = 13, and e88 = 2 in 

2006. 

With 9% of the model weight, the minimum-AICc model, {9(w + pc + a + 

cw)a(w + pc + a)N(t)}, had 17 estimated parameters (Table 2.1). For the mean re-

sighting rate 8, this model contained a negative wind effect (aw - -1.13, SE = 0.14), 

a positive 24-hour precipitation effect (apc = 0.20,SE = 0.02), a positive area ef­

fect (aa = 0.13, SE = 0.03), and a positive cattle effect (acw = 0.22, SE = 0.12). 

For individual heterogeneity a (on the log scale), the model estimated a posi­

tive wind effect (dw = 0.73, SE = 0.28). a negative 24-hour precipitation effect 

0pc = -0.24, SE = 0.09), and a negative area effect (& = -0.12, SE = 0.08). With 

40% of the model weight, the minimum-BIC model was the 16-paramctcr model 

{9(w + pc + a)a(w + pc + a)N(t)} (Table 2.1). For 6, the model included a neg­

ative wind effect (aw - -0.99, SE = 0.12), a positive 24-hour precipitation effect 

(QPC = 0.19, SE = 0.02), and a positive area effect (aa = 0.10. SE = 0.02). For 

a, the model contained a positive wind effect (3W = 0.72, SE = 0.27), a negative 

24-hour precipitation effect {(3pc = -0.25, SE = 0.10), and a negative area effect 

(,;3a = -0.13, SE = 0.08). Because of the high degree of model selection uncertainty 

(Table 2.1), selecting only the minimum-AICc or -BIC model for inference on Â - is 

difficult to justify. Point estimates for N3 varied between the AICC model-averaged 

PNE, the BIC model-averaged PNE, and BOWE, but they were not significantly 
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different (Table 2.2). Across all eight colonies, average coefficients of variation were 

7.0% for the BIC modcl-avcragcd PNE, 7.0% for the AICC modcl-avcragcd PNE, 

and 8.0% for BOWE. As a proportion of the point estimates, average confidence 

interval lengths were 26.5% for the BIC model-avcragcd PNE, 26.6% for the AICC 

model-averaged PNE, and 32.6% for BOWE. Compared to those of BOWE, PNE 

percent confidence intervals lengths were smaller for all Nj except JV8i. 

After zero-truncating the data, the numbers of marked individuals rcsightcd 

at least once were n£6a = 57, ?ig2 = 55, Tig3 = 39, and n*M = 55 in 2005, and n^Q = 56, 

n76b ~ 70, TI^ - 75, and Tig8 = 53 in 2006. Mean numbers of marked individual 

resightings across all secondary occasions were y^6a = 3.1 (SE - 0.3), y~l2
 = 3-9 

(SE = 0.3), yg3 = 3.4 (SE = 0.3), and TfM = 5.6 (SE = 0.4) in 2005, and y*7[) = 3.2 

(SE = 0.3), y*?6b = 4-2 (SE = 0.3), y*Hl = 4.9 (SE = 0.3), and y*88 = 6.8 (SE = 0.4) 

in 2006. With 11% of the model weight, the minimum-AICc model was the 16-

parameter {9(w + pc + s + df)a(pc + df)N'(£)} (Table 2.3). For 6, the model included 

a negative wind effect (aw = -0.43. SE = 0.11), a positive 24-hour precipitation ef­

fect (a,pc = 0.10, SE = 0.01), a negative start time effect (as = -4.60, SE = 2.85), 

and a negative difficult-colony effect (a^/ = -0.46,SE = 0.12). For a, there was a 

negative 24-hour precipitation effect (/3pc = -0.13, SE = 0.24) and a positive difficult-

colony effect {3dj - 0.89, SE = 0.33). With 19% of the model weight, the minimum-

BIC model was the 13-paramctcr {6(w + pc + df)a(.)N(t)} (Table 2.3). For 9, 

the model contained a negative wind effect (aw = -0.46, SE = 0.11), a positive 

24-hour precipitation effect (dpc = 0.09,SE - 0.02), and a negative difficult-colony 

effect (adf = -0.23. SE = 0.08). On the positive real scale, the estimated colony-
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Table 2.2: Comparisons of abundance (N) estimates, percent coefficients of variation 
(% CV), 95% confidence intervals, and percent confidence interval lengths (% CIL) 
for t = 8 black-tailed prairie dog colonics in north-central Colorado from the AICC 

model-averaged PNE (modAIC), BIC modcl-averagcd PNE (modBIC), and Bow-
den's estimator (BOWE). Models arc ordered from smallest to largest by average % 

Vo CV and % CIL across all colonics. 

Model 

PNE modBIC 

PNE modAIC 

BOWE 

Parameter 

N76a 

N82 

^ 8 3 

Ar84 

N70 

Nm 

N61 

N88 

N76a 

N82 

N63 

^ 8 4 

N70 

N76b 

N*I 
^ 8 8 

AV6a 
N82 

N83 

NS4 
N70 

N76b 

Nai 

N8S 

Estimate 

707.1 
1698.9 
2131.4 

951.3 
923.6 
991.7 

1470.2 
370.7 

699.5 
1715.2 
2176.5 
959.5 
951.1 
966.6 

1451.5 
370.5 

740.3 
1690.9 
2137.3 
965.7 
965.3 
929.6 

1441.4 
370.0 

% CV 

8.7 
6.4 
7.4 
7.3 
6.9 
7.1 
6.8 
5.3 

9.1 
6.7 
7.6 
7.2 
7.1 
7.1 
6.2 
5.3 

10.6 
8.1 

10.9 
6.8 
9.4 
7.6 
5.9 
5.1 

95% CI 
Lower 

601.6 
1506.1 
1853.0 
829.0 
811.3 
868.0 

1292.9 
335.2 

591.9 
1511.9 
1887.0 
838.6 
832.2 
846.0 

1291.2 
335.2 

597.6 
1436.2 
1712.1 
841.6 
799.3 
798.4 

1282.1 
334.0 

Upper 

833.9 
1917.5 
2452.7 
1093.2 
1052.9 
1134.9 
1673.4 
410.7 

829.6 
1947.2 
2511.4 
1099.1 
1088.6 
1106.2 
1633.1 
410.2 

917.0 
1990.7 
2668.2 
1108.1 
1165.7 
1082.3 
1620.4 
409.9 

%CIL 

32.9 
24.2 
28.1 
27.8 
26.2 
26.9 
25.9 
20.4 

34.0 
25.4 
28.7 
27.2 
27.0 
26.9 
23.6 
20.2 

43.1 
32.8 
44.7 
27.6 
38.0 
30.5 
23.5 
20.5 

44 



ni
es

 i
n 

:o
lo

 

00 

II 
so 

o 
OS 

^ 

ne
e 

( 

<a 

3 
ITi 

do
g 

; 

CD 

.jr! 
o3 

ai
le

d 
p;

 
la

ck
-t

 

- Q 

<4W 

o 

od
el

s 

a 

d 
Z

P
N

E
 

CD 
4-^ 
o 

JD 
"5 

en 

h
ts

 f
o 

'oC 

w
ei

 

O 

n
d 

B
I'

 

< 
CO 

CN 

T
ab

le
 

ba
nc

es
 

5 
th

er
 

d
is

 

o 
_̂_̂  
«-*—i 

3 

"o cj 

cu
li

 
, 

di
ff

i 

IT 
o 

f 
ca

tt
le

 
ne

e 
o 

CD 

in 
a> s-i 
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Tabic 2.4: Comparisons of abundance (TV) estimates, percent coefficients of varia­
tion (% CV), 95% confidence intervals, and percent confidence interval lengths (% 
C1L) for t = 8 black-tailed prairie dog colonics in north-central Colorado from the 
AICC model-averaged ZPNE (modAIC) and BIC model-averaged ZPNE (modBIC). 
Models arc ordered from smallest to largest by average % CV and % C1L across all 
colonies. 

95% CI 
Model Parameter Est imate % CV Lower Upper % CIL 

588.0 
1399.4 
1947.3 
908.0 
838.8 
793.5 

1403.5 
375.5 

581.3 
1444.3 
1988.1 
911.9 
859.3 
789.4 

1364.4 
374.7 

6.7 
8.6 
7.5 
6.3 
6.6 
5.2 

5.9 
5.6 

7.9 
8.2 
7.4 
6.2 

6.8 
5.5 
5.4 
5.1 

518.6 
1191.0 
1691.8 
805.7 
741.2 
718.9 

1255.2 
338.2 

501.3 
1239.4 
1728.9 
811.0 
756.1 
711.8 

1230.8 
340.1 

667.9 
1646.1 
2242.4 
1024.1 
950.3 
876.7 

1570.5 
417.8 

675.7 
1684.5 
2287.0 
1026.3 
977.8 
876.4 

1513.4 
413.4 

25.4 
32.5 
28.3 
24.0 
24.9 
19.9 
22.5 
21.2 

30.0 
30.8 
28.1 
23.6 
25.8 
20.9 
20.7 
19.6 

constant individual heterogeneity level a - 0.28 (SE - 0.04). Again, the high de­

gree of model selection uncertainty warranted model-averaged point estimates and 

unconditional variances (Table 2.4). Across all eight colonies, average coefficients 

of variation were 6.5% for the BIC model-averaged ZPNE and 6.6% for the AICC 

model-averaged ZPNE. Average confidence interval lengths were 24.8% for the BIC 

modcl-avcraged ZPNE and 24.9% for the AICC modcl-avcragcd ZPNE. Point esti­

mates for the model-averaged ZPNE tended to be lower than those from PNE and 

BOWE, but no significant differences were detected. 

ZPNE modBIC 

ZPNE modAIC 

N76a 

Ns2 

^ 8 3 

A^84 

N70 

^766 

iV8i 

N88 

N76a 

NS2 

N83 

N8i 

N70 

N76b 

Nsi 

N8& 
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2.3.3 Example Discussion 

In terms of meeting model assumptions, I believe the study design was satisfactory. 

Closure was likely met by the timing of the surveys and the inclusion of the entire 

area of each colony. Resighting surveys were performed immediately after appli­

cation of dye marks such that any loss of marks was unlikely. The dye "helmet" 

effectively prevented errors in distinguishing between marked and unmarked individ­

uals. Because marked individuals were fur-dyed and therefore differed in appearance 

from unmarked individuals, the assumption that required careful attention was iid 

resighting probabilities for marked and unmarked animals. However, I found that 

by first scanning at low magnification, marked individuals were virtually indistin­

guishable from unmarked individuals until after they were first sighted, when they 

where then focused on at higher magnification for identification. 

In this example, very little difference was found between (Z)PNE model-

averaged estimates using AICC or BIC weights. In terms of precision, PNE was 

demonstrated to be an improvement over individual BOWE estimates. The advan­

tages were most pronounced for colonics such as Town 83, where the marked sample 

size was lowest. Despite the data being zero-truncated, ZPNE estimates were still 

more precise than BOWE estimates using the entire data set. It is noteworthy that 

a significant population increase was detected with PNE and ZPNE for Town 76 

from 2005 (76a) to 2006 (76b), but not with BOWE. This further demonstrates the 

advantages of combining data from multiple primary sampling occasions and using 

covariates to more easily detect changes in N for long-term monitoring programs. 

47 



Based on the AICC model-averaged PNE, the average density across all eight 

colonics D = 7.5 (SE = 0.21) animals per acre, ranging from 3.1 (SE = 0.19) for 

Town 81 to 11.2 (SE = 0.75) for Town 82. These arc consistent with the estimated 

densities of other unfragmented colonies in South Dakota (Hoogland, 1995; Scvcrson 

and Plumb, 1998) and northern Colorado (Antolin et al., 2006). Although Town 

76 showed considerable growth in area from 2005 (71 acres) to 2006 (108 acres), 

no significant change in density was observed with D 7 6 Q = 9.9 (SE = 0.90) and 

D766 = 9.0 (SE = 0.64). Within one or two years of the rcsighting surveys, the 

four colonies with densities > 7 animals per acre (Towns 76, 82, 83, 84) experienced 

sylvatic plague epizootics generally lasting up to three months until all individuals 

were dead. Despite having the lowest density, Town 81 also underwent a plague 

epizootic beginning August 2007. Town 81 was approximately 4 km from Town 76, 

which may have been the source of the epizootic. Based on observations during the 

summer of 2007, I further speculate that Town 81 may have increased in density 

prior to the plague event. 

In both analyses, estimated resighting rates were generally lower during high 

winds, higher following rain events, and higher for larger colonies. I suspect high 

winds tended to make resightings of individuals more difficult due to shaking of 

spotting scopes, but it is also possible that prairie dog activity levels were lower 

during these periods. Rain events in the 24-hours prior to resighting surveys appear 

to have produced more favorable conditions and increased prairie dog activity. I 

am unsure why larger towns tended to have higher individual rcsighting rates, but 

suspect this may be an artifact of Town 81 having by far the largest area but 
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also exhibiting the lowest density. This lower density may have resulted in fewer 

individuals going undetected during survey scans. Although I a priori suspected 

temperature would be an important predictor variable, I found little evidence to 

support this. For every covariate examined, the direction of the effect was always 

opposite for 9 and a, indicating that factors which correlated with mean resighting 

rates were inversely correlated with individual heterogeneity levels. 

Although not significantly different, the point estimates for ZPNE tended to 

be lower than those for PNE and BOWE. On average, ZPNE point estimates were 

10% lower than PNE or BOWE. I suspect this was due to more marked individuals 

being rcsighted zero times than would be expected under a Poisson distribution. 

For example, in Town 76a, 23 of n76a = 80 marked individuals were never sighted. 

However, based on 1000 simulated draws of 80 marked individuals using resighting 

rate parameter estimates from the minimum-AICC ZPNE model, an average of only 

10.3 (SE = 0.09) individuals would be expected to never be sighted. Such underesti­

mation of the number of marked individuals by ZPNE may result in overestimation 

of individual resighting rates, which in turn may cause underestimation of N. Al­

though not serious in this example, it is important that researchers applying ZPNE 

arc aware of possible underestimation when a relatively large number of marked 

individuals are suspected to have never been sighted as a result of substantial het­

erogeneity. 
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2.4 S imu la t i on E x p e r i m e n t s 

2.4.1 Simulation Methods 

Because the prairie dog example provides no information on the relative expected 

performance of PNE and ZPNE compared to BOWE and ARNE, I conducted a 

limited set of simulation experiments. Data were generated for I = 3 primary occa­

sions under the assumptions of geographic and demographic closure within primary 

sampling occasions, iid sighting probabilities for marked and unmarked individuals, 

100% mark identification, and no error in distinguishing marked versus unmarked 

individuals. The total number of sightings for individual s during primary inter­

val j (ySj) were first modeled as independent Poisson-log normal random variables 

based on an underlying population E (ySj) = \j and ovcrdispersion due to individual 

heterogeneity (ACTJ) such that var (ySJ) = Xj + Xa]. In terms of Xj and Xaj, 

._ logfA^ + A ) 
eJ = 2\og(\J)--^—2 L, 

and 

17i = \ / l o g (x*j + \ 2 ) " 2log (A,). 

When Xaj - 0, there is no over dispersion due to individual heterogeneity and Oj = 0. 

Based on the input values for Â  and \ „ n the yS] '~ Poisson (XSj) were drawn for 

the Nj individuals in the population, with XSj = cxp(o~jZsj + 9j), zSj ~ N(0,1), and 
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Tabic 2.5: Poisson data generating scenarios for simulation experiments with 
t = 3 primary sampling occasions. For scenarios A, B, and C, all input pa­
rameters were randomly selected for each primary occasion from population size 
Nj = {50,250,500}, proportion of Nj tha t is marked pd = {0.1,0.3,0.5}, mean 
rcsighting rate Xj = {1 ,3 .5} , and overdispcrsion due to individual heterogeneity 
X„j = {0,Xj/2,Xj}. For scenarios D, E, and F, input parameter values were ran­
domly selected for one primary occasion and used for all three primary occasions. 

Scenario 

A 
B 
C 
D 
E 
F 

Nx 

50 
500 
250 
50 
250 
500 

Pi 

0.3 
0.1 
0.5 
0.3 
0.1 
0.3 

Ai 

3 
5 
5 
5 
3 
1 

A<xl 

0 
5 
2.5 
2.5 
3 
0 

A'r
2 

50 
250 
250 
50 
250 
500 

Vi 

0.3 
0.3 
0.3 
0.3 
0.1 
0.3 

A2 

3 
5 
1 
5 
3 
1 

Ao-2 

1.5 
0 
0.5 
2.5 
3 
0 

A3 

250 
500 
500 
50 
250 
500 

P3 

0.1 
0.1 
0.1 
0.3 
0.1 
0.3 

A3 

1 
3 
1 
5 
3 
1 

Ao-3 

0.5 
1.5 
0.5 
2.5 
3 
0 

Tu. = H^n +\Vsy With so many possible input parameters determining resighting 

rates and sample sizes, I restricted these simulations to six pseudo-randomly selected 

data generating scenarios. For three of the scenarios, all input parameters were 

randomly selected for each primary occasions from Nj = {50,250,500}, proportion 

of Nj tha t is marked pj = {0.1,0.3, 0.5}, Xj = {1, 3, 5}, and Xaj = {0, Aj/2, Xj}. For the 

other three scenarios, input parameter values were randomly selected for one primary 

occasion and used for all three primary occasions (Table 2.5). When Nj = 50, only 

Pj = 0.3 or 0.5 were allowed. 

To examine the robustness of PNE and ZPNE to simulated da ta under a dis­

tribution other than Poisson, I also generated da ta by modeling resighting rates as 

the sum of logit-normal random variables. Here, da ta were generated as if there were 

kj distinct secondary sampling occasions without replacement within each primary 

interval j . Based on an underlying population mean resighting probability /L and 

individual heterogeneity level (CTIHJ), additive temporal variation (CFTVJ) allowed 
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fiSij to vary for the sth individual on the i th secondary rcsighting occasion, such 

that ySj - T,iii^sij, where 5slJ '" Bernoulli (//.^j). Because rcsighting probabilities 

were modeled using this transformation, input values for /L, CTJHJ, and crTVj did 

not back-transform identically to their original values. McClintock et al. (2006) 

used similar methods and categorized the realized values for the data-generating 

parameters (also sec Chapter 1). For /!•, the categories were Low (0.15 < Jlj < 0.16), 

Medium (0.30 < JL3 < 0.38), and High (Jij = 0.50). The categories for aIHj and crTVj 

were None (cr, = 0), Low (0.00 < a3 < 0.05), Medium (0.10 < a, < 0.15), and High 

(0.16 < a3 < 0.26). Similar to the simulations using Poisson generated data , six 

scenarios were pscudo-randomly selected. For three of the scenarios, input param­

eter values were randomly selected for all three primary sampling occasions from 

Nj = {50,250,500}, p3 = {0.1.0.3,0.5}, kj = {3 ,5 ,7} , ^ = {Low, Medium, High}, 

aiHj = {None, Low, Medium, High}, and <7TVj = {None, Low, Medium, High}. For 

the other three scenarios, input parameter values were randomly selected for one pri­

mary occasion and used for all three primary occasions (Table 2.6). When Nj = 50, 

only pj = 0.3 or 0.5 were allowed. When /7 = Low, (TIHJ and crTvj must be < Low. 

Each scenario consisted of 1000 simulations where the entire generated data 

set was applied to PNE and BOWE, and the zero-truncated da ta set was applied 

to ZPNE and ARNE. For PNE and ZPNE, all possible time and individual hetero­

geneity models (R = 75, Tabic 2.7) were implemented using NLMIXED as outlined 

in Section 2.3. For PNE and ZPNE, AICC and BIC model-averaged point estimates, 

unconditional variances, and confidence intervals were calculated as in Section 2.3. 

Confidence intervals for BOWE were calculated as in Bowden and Kufeld (1995). 
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Table 2.6: Logit-normal data generating scenarios for simulation experiments with 
t = 3 primary sampling occasions. For scenarios A, B, and C, all input param­
eters were randomly selected for each primary occasion from Nj = {50,250,500}, 
proportion of Nj that is marked pj = {0.1,0.3,0.5}, number of secondary resight-
ing occasions kj = {3.5,7}, mean sighting probability 71 = {Low, Medium, High}, 
individual heterogeneity level aIHj = {None, Low, Medium, High}, and temporal 
variation level (JTVJ = {None, Low, Medium, High}. For scenarios D, E, and F, in­
put parameter values were randomly selected for one primary occasion and used for 
all three primary occasions. 

nario 

A 
A 
A 
B 
B 
B 
C 
C 
C 
D 
E 
F 

3 

1 
2 
3 
1 
2 
3 
1 
2 
3 

1,2,3 
1,2,3 
1,2,3 

N-

50 
50 
50 

500 
500 
500 
500 
250 
50 
250 
500 
50 

Pj 

0.3 
0.5 
0.3 
0.3 
0.1 
0.1 
0.1 
0.1 
0.3 
0.1 
0.1 
0.3 

kj 

3 
7 
3 
7 
7 
5 
5 
5 
7 
3 
7 
5 

»j 

Low 
High 

Medium 
High 
High 
Low 

Medium 
High 

Medium 
Medium 

Low 
Medium 

aIHj 

Low 
None 

Medium 
None 
High 
Low 
None 

Medium 
Low 
High 
None 

Medium 

aTVj 

None 
High 
Low 
High 
High 
None 
Low 

Medium 
None 

Medium 
None 
Low 
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6{.) 

em 
0(t) 
a(0) 
o(.) 

^(1J2=0) 
<7(ljl=o) 
<7(2jl=o) 

<r(2j) 
cr(f) 

6a = Qb = 9C 

da = @b± &c 

6a + 6b ± 9C 

°d = °e = &f = 0 
<7d = CTe = CT/ 

CTd * ae = of = 0 
od = oe t aj = 0 
crd * oe * o-/ = 0 

od = oe ± Of 
Odt Oe± Of 

1 
2 
3 
0 
1 
1 
1 
2 
2 
3 

Table 2.7: All possible time and individual heterogeneity (Z)PNE parametcrizations 
for Oj and o} with t = 3 primary sampling occasions. Combining all permutations 
of the three Oj parameterizations and the seven o} parameterizations yields R = 75 
possible models with N\ ± N2 * N3 [represented as N(t)]. The combined number of 
parameters (including Nj) in the models range from K = 4 for model {9(.)o(0)N(t)} 
to K = 9 for model {6»(/,)t7(»Ar(0}-

Model Notation Parameterization K No. Permutations 

1 
3 
1 
1 
1 
3 
3 
3 
3 
1 

Confidence intervals for ARNE were calculated using the inverse cube root trans­

formation of Arnason ct al. (1991). The relative performances of the AICC and BIC 

model-averaged (Z)PNE, BOWE, and ARNE were evaluated primarily on average 

percent confidence interval coverage, average percent confidence interval length (% 

CIL), and Bias/SE across each scenario of 1000 simulations. Simulations where 

PNE, ZPNE, or ARNE failed to converge were rare (< 0.6%) and omitted from 

summary statistics. As described in Arnason ct al. (1991), when no marked individ­

ual is rcsightcd more than a single time within primary interval j , N3 for ARNE is 

infinite. This is also the case for ZPNE, but is somewhat alleviated by its ability to 

combine da ta across multiple primary occasions. Simulations where ARNE or the 

model-averaged ZPNE estimates were infinite were omitted from summary statistics 

for these models. 
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2.4.2 S imula t ion R e s u l t s 

Across the six scenarios with Poisson generated data (Table 2.8), BOWE (94.6, SE = 

0.17) and ARNE (86.2, SE = 0.25) had the highest and lowest average percent cov­

erage, respectively. ARNE had the largest average % CILs (49.0, SE = 0.28) and the 

BIC model-averaged PNE had the smallest % CILs (37.0, SE = 0.09). Compared 

to BOWE, both PNE approaches achieved similar coverage but had considerably 

smaller % CILs. BOWE was unbiased, and PNE generally exhibited a slight positive 

bias, but Bias/SE for PNE never exceeded 0.25. Although less than the nominal 

95%, both ZPNE approaches achieved greater average coverage than ARNE. Av­

erage % CILs were smaller for the ZPNE models than for ARNE. Both ARNE 

and ZPNE generally exhibited a negative bias, but was most severe for ARNE 

(average Bias/SE = -0.37, SE = 0.10). PNE average percent coverage was lowest 

for N3 of Scenario A, at 89.1 (SE = 0.99) using AICC model-averaging and 88.7 

(SE = 1.01) using BIC model-averaging. BOWE average coverage was lowest for N3 

of Scenario D (93.0, SE = 0.81). ZPNE average percent coverage was lowest for N2 

of Scenario C, at 66.9 (SE = 1.51) using AICC model-averaging and 61.5 (SE = 1.56) 

using BIC model-averaging. ARNE average percent coverage was also lowest for 

iV2 of Scenario C (64.4, SE = 1.53). For all models, average % CILs were largest 

for Ar
3 of Scenario A, at 83.4 (SE = 1.00) for the BIC model-averaged PNE, 84.3 

(SE = 1.01) for the AICC model-averaged PNE, 94.6 (SE = 1.17) for BOWE, 111.2 

(SE = 2.77) for the BIC model-averaged ZPNE, 112.3 (SE = 2.79) for the AICC 

model-averaged ZPNE, and 134.9 (SE = 4.74) for ARNE. No inadmissible cases for 
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Table 2.8: Average percent confidence interval coverage, percent confidence inter­
val length (% CIL), and Bias/SE of abundance estimates for AICC model-averaged 
(modAIC) PNE and ZPNE, BIC model-averaged (modBIC) PNE and ZPNE, 
BOWE, and ARNE across six simulated scenarios with data generated under a 
Poisson distribution. 

Model 

BOWE 
PNE modAIC 
PNE modBIC 

ARNE 
ZPNE modAIC 
ZPNE modBIC 

% Coverage 
Est. 

94.6 
93.7 
93.2 

86.2 
89.6 
88.3 

SE 

0.17 
0.18 
0.19 

0.25 
0.22 
0.23 

%CIL 
Est. 

46.7 
38.9 
37.0 

49.0 
45.1 
42.5 

SE 

0.11 
0.09 
0.09 

0.28 
0.18 
0.18 

Bias/SE 
Est. 

0.00 
0.10 
0.09 

-0.37 
-0.18 
-0.21 

SE 

0.01 
0.02 
0.02 

0.10 
0.09 
0.11 

ARNE or the model-averaged ZPNE where all marked individuals were sighted < 1 

time occurred in these scenarios. 

Across the six scenarios with logit-normal generated data (Table 2.9), ARNE 

had the largest average coverage (95.8, SE = 0.15), and the BIC model-averaged 

ZPNE had the lowest (91.8.SE = 0.21). Average % CILs were smallest and largest 

for the BIC model-averaged PNE (53.7, SE = 0.32) and ARNE (192.3, SE = 4.16), 

respectively. Compared to BOWE, both PNE approaches achieved similar coverage 

but had smaller % CILs. BOWE was again unbiased, and PNE again exhibited 

a slight positive bias, but Bias/SE for PNE never exceeded 0.25. Compared to 

ARNE, both ZPNE approaches achieved slightly lower average coverage, but av­

erage % CILs were considerably smaller for the ZPNE models. ARNE and ZPNE 

generally exhibited a positive bias, but was most severe for the BIC model-averaged 

ZPNE (average Bias/SE = 0.32, SE = 0.09). Both the AICC model-averaged PNE 

and BOWE had their lowest average percent coverage for Ni of Scenario A, at 88.0 
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(SE = 1.03) and 93.0 (SE = 0.81), respectively. The BIC mo del-averaged PNE 

had its lowest average percent coverage for N% of Scenario B (85.7,SE = 1.11). 

ZPNE average percent coverage was lowest for A3 of Scenario A using AICC model-

averaging (89.6, SE = 0.97) and for A^ of Scenario D using BIC model-averaging 

(87.9, SE = 1.04). ARNE average percent coverage was lowest for N\ of Scenario 

C (91.6, SE = 0.88). Average % CILs were largest for Nl of Scenario A for BOWE 

(127.0, SE = 2.58), the BIC mo del-averaged PNE (127.5, SE = 5.23), the AICC model-

averaged PNE (134.2, SE = 5.23), and ARNE (1196.1, SE = 47.40). ZPNE average 

% CILs were largest for N3 of Scenario A, at 273.6 (SE = 10.41) using AICC model-

averaging and 274.9 (SE = 10.48) using BIC model-averaging. For N\ of Scenario 

A, the combination of k\ = 3 and Jl1 = Low resulted in 35% and 29% of simula­

tions producing inadmissible estimates for ARNE and the model-averaged ZPNE, 

respectively. For Scenario D, less than 0.2% of simulations produced inadmissi­

ble estimates for ARNE or the model-averaged ZPNE. No other inadmissible cases 

occurred in the logit-normal scenarios. 

2.4.3 Simulation Discussion 

When the number of marked individuals was known, PNE generally exhibited ad­

vantages over BOWE in terms of coverage and precision regardless of the method 

used to generate the data. As expected, the advantages were greater with data 

generated under a Poisson distribution, but PNE performance proved robust with 

logit-normal data. Because its properties are not based on asymptotics, BOWE 
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Table 2.9: Average percent confidence interval coverage, percent confidence inter­
val length (% CIL), and Bias/SE of abundance estimates for AICC model-averaged 
(modAIC) PNE and ZPNE, BIC model-averaged (modBIC) PNE and ZPNE, 
BOWE, and ARNE across six simulated scenarios with data generated under a 
logit-normal distribution. 

Model 

BOWE 
PNE modAIC 
PNE modBIC 

ARNE 
ZPNE modAIC 
ZPNE modBIC 

% Coverage 
Est. 

94.6 
95.5 
94.2 

95.5 
93.5 
91.8 

SE 

0.17 
0.15 
0.17 

0.15 
0.19 
0.21 

%CIL 
Est. 

58.6 
55.9 
53.7 

192.3 
93.2 
89.1 

SE 

0.21 
0.32 
0.32 

4.16 
0.79 
0.78 

Bias/SE 
Est. 

-0.01 
0.11 
0.11 

0.19 
0.31 
0.32 

SE 

0.01 
0.03 
0.04 

0.08 
0.08 
0.09 

exhibited some advantage in terms of coverage and precision with the poorest logit-

normal data sets such as for N\ in Scenario A where k\ = 3 and ~jix = 0.15. I found 

little difference between AICC and BIC model-averaged results for PNE when us­

ing the Poisson or logit-normal data. Despite the slight advantages demonstrated 

for PNE with data generated under a logit-normal distribution, if one suspects the 

underlying sampling process is truly without replacement within distinct secondary 

occasions, the logit-normal mixed effects model (LNE, see Chapter 1) would be 

the more appropriate choice. Based on simulation experiments (sec Chapter 1), I 

expect LNE to be more precise than PNE when sampling is without replacement, 

but PNE would perform well and be the more appropriate choice if sampling with 

replacement were possibly suspected and not confirmed. This may occur when there 

arc relatively few marked individuals, none of which were resightcd more than once 

on a given secondary occasion, but it is unknown whether this is also true for the 

unmarked individuals. 
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When the number of marked individuals was unknown, ZPNE exhibited greater 

coverage and precision than ARNE with the Poisson generated data, but average 

coverage for both models was less than nominal. With the logit-normal data, ZPNE 

was considerably more precise than ARNE with near-nominal coverage. Relative to 

PNE and BOWE, ARNE and ZPNE were less precise with the logit-normal da ta 

than with the Poisson data. I found little difference between AICC and BIC model-

averaged results for ZPNE when using the Poisson data, but did find the AICC 

model-averaged results to be slightly more robust in terms of coverage when using 

the logit-normal data. With the Poisson data, both ARNE and ZPNE coverage was 

less than nominal due to a tendency towards negative bias when sample sizes were 

particularly small. This bias was considerably worse for ARNE when individual 

heterogeneity was present. With the logit-normal data, ARNE and ZPNE exhibited 

a positive bias in most scenarios, but were negatively biased when there were high 

levels of individual heterogeneity. The positive bias was typically more severe for 

ZPNE, and the negative bias was more severe for ARNE. For the logit-normal sce­

narios, these biases usually did not cause coverage to fall below nominal for either 

estimator. However, while the relatively large confidence intervals for ARNE in the 

logit-normal scenarios allowed the model to achieve adequate coverage when indi­

vidual heterogeneity levels were high, the poor precision exhibited by ARNE under 

these circumstances would not be particularly useful for inference. 

Overall performance for ARNE and ZPNE was poorest in scenarios containing 

primary sampling occasions with individual heterogeneity and low numbers of re-

sightings. This occurred in the Poisson simulations for primary occasions where both 
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Xj = 1 and Xaj = 0.5, and in the logit-normal simulations where k3 = 3. In the former 

case, these input parameter values resulted in relatively large numbers of marked 

individuals never being resighted. This caused an underestimation of the number of 

marked individuals and, therefore, N. In the latter case, both overestimation and 

underestimation of N was observed. Overestimation occurred for 7V3 of Scenario 

A and was likely a result of the highly skewed resighting probability distribution 

generating fewer marked individuals with ysj - 0 than would be expected (based on 

the resighting frequencies of individuals with ysj > 1). For Ari of Scenario A and all 

primary occasions of Scenario D, the small number of secondary sampling occasions 

combined with low resighting probabilities or high levels of individual heterogene­

ity, respectively, resulted in more marked individuals being sighted zero times than 

would be expected (and underestimation of N). However, average coverage only fell 

slightly in these scenarios because of large confidence interval lengths. The slight 

loss in coverage was greater for ZPNE, but the precision of ARNE was extremely 

poor for these estimates. 

When the primary sampling occasions where both E(ySJ) = 1 and va,r(ySJ) = 1.5 

were omitted from summary statistics for the Poisson simulations, average confi­

dence interval coverage across all simulations was improved for the AICC model-

averaged ZPNE (93.3,SE = 0.20), the BIC model-averaged ZPNE (92.6,SE = 0.21), 

and ARNE (89.2, SE = 0.25). Average percent confidence interval lengths were re­

duced for the AICC model-averaged ZPNE (39.6. SE = 0.10), the BIC model-averaged 

ZPNE (37.4, SE = 0.10), and ARNE (42.0, SE = 0.09). The negative average Bias/SE 

was reduced slightly for ARNE (-0.23, SE = 0.07), but more substantially for the 
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AICC model-averaged ZPNE (-0.04, SE = 0.05) and the BIC model-averaged ZPNE 

(-0.05, SE = 0.05). Even with these occasions omitted, the overall performance of 

ARNE was not greatly improved relative to ZPNE because ARNE estimates tended 

to be negatively biased when individual heterogeneity levels were moderate to high. 

When primary sampling occasions of the logit-normal simulations with kj = 3 

were omitted from summary statistics, the average performance of ARNE and ZPNE 

were both improved, but a considerable advantage in terms of precision was still 

demonstrated for ZPNE. Average percent coverage was now 94.4 (SE - 0.20) for the 

AICC model-averaged ZPNE, 92.9 (SE = 0.23) for the BIC model-averaged ZPNE, 

and 95.5 (SE = 0.18) for ARNE. Average % CILs were lowered to 69.2 (SE = 0.37) 

for the AICC model-averaged ZPNE, 66.2 (SE = 0.36) for the BIC modcl-avcragcd 

ZPNE, and 89.5 (SE = 1.36) for ARNE. Average Bias/SEs were still greater than 

0.25, at 0.45 (SE = 0.07) for the AICC model-averaged ZPNE, 0.46 (SE = 0.08) 

for the BIC model-averaged ZPNE, and 0.30 (SE = 0.09) for ARNE. Despite a 

larger Bias/SE after omitting these occasions, ZPNE still achieved greater precision 

than ARNE with little loss in coverage. In both sets of simulations, the nominal 

performance of ZPNE when these cases were omitted reiterates the importance of 

careful study design to help ensure that distributional assumptions and minimal 

sample size requirements are reasonably satisfied in application. 
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2.5 Conclusions 

Both the black-tailed prairie dog example and the simulation experiments demon­

strated clear advantages in the use of PNE or ZPNE when compared to BOWE or 

ARNE. The generalized modeling framework of (Z)PNE incorporates several key ad­

vancements when sampling is with replacement or the number of marks is unknown. 

These include the use of covariates in modeling resighting rate and individual hetero­

geneity parameters, information-theoretic model selection and multimodcl inference, 

and the inclusion of unidentified marks towards achieving greater precision with lit­

tle or no loss in coverage. In these limited simulations, I found PNE and ZPNE to be 

robust to the da ta generating process and generally reliable alternatives to BOWE 

and ARNE, but I note that it is important for researchers to address the possible 

limitations of small sample sizes or relatively many marked individuals never being 

resighted when applying (Z)PNE. Similar to the logit-normal mixed effects model 

(LNE, see Chapter 1), (Z)PNE is computationally more intensive than other esti­

mators. However, I believe this added complexity is justified by the advantages its 

generalized structure can provide. Further, users not wishing to program the mod­

els using s tandard statistical computing software may implement both LNE and 

(Z)PNE in the freely available mark-recapture software package Program MARK 

(available for download at h t t p : / / w e l c o m e . w a r n e r c n r . c o l o s t a t e . e d u / ~ g w h i t e ) . 

Instructions for implementing the models in MARK may be found in Appendix D. 

Wi th the recent introduction of LNE and (Z)PNE, a more flexible and efficient 

framework for mark-resight abundance estimation is now available for the sampling 
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conditions most commonly encountered in these studies. I foresee the next logical 

step for model development in this area to be its extension to a full robust design 

(Kendall ct al., 1995, 1997). By so doing, mark-resight may then be utilized not 

only for abundance estimation, but also as a less invasive and less expensive method 

of estimating demographic parameters, such as state-specific survival and transi­

tion rates, that help explain the fluctuations in population size commonly observed 

through long-term monitoring programs. This extension is explored in Chapter 3. 
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Chapter 3 

A less field-intensive robust design 

for estimating demographic 

parameters with mark-resight data 

3.1 Introduction 

Although abundance (N) is invariably of interest in wildlife studies, it provides little 

information on the forces that drive changes in population size that arc commonly 

observed in long-term monitoring programs. The robust design of Kendall et al. 

(1995, 1997) provided a means for estimating N, apparent survival probabilities ((f)), 

and transition probabilities between observable and unobservable states (Tpou.if)uo) 

from mark-recapture data by combining multinomial likelihoods of the Cormack-

Jolly-Sebcr open population model (Seber, 1982) and closed population abundance 

models (Otis et a l , 1978; Pledger, 2000; Huggins, 1991). Under this framework, Ar 
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is estimated for the observable population, the transition probabilities pertain to 

some super population moving between observable and unobservablc states, and (p 

does not differ by state. Sampling consists of t "primary" sampling intervals, each 

consisting of kj (j = {1,...,£}) "secondary" sampling occasions. Abundance of the 

observable population is estimated for the closed period of secondary sampling dur­

ing each primary interval, and this length of time must be of short enough duration 

for the assumption of closure to be acceptable. The primary periods between these 

closed intervals arc considered open and used to estimate survival and transition 

probabilities. Because this "full-likelihood" approach simultaneously utilizes infor­

mation from the open and closed sampling periods, it possesses advantages in terms 

of bias and precision over implementing the models separately (Kendall et al., 1995, 

1997). 

Despite its numerous advantages over other methods (Thompson ct al., 1998; 

Anderson, 2003), two drawbacks of mark-recapture studies are their financial cost 

and disturbance to animals. Compared to traditional mark-recapture, the mark-

resight method (Arnason ct al., 1991; Neal ct al., 1993; Bowden and Kufeld, 1995; 

White and Shcnk, 2001; McClintock ct al., 2006) can often be a less expensive and 

less invasive alternative (Minta and Mangel, 1989; McClintock and White, 2007). 

The primary advantage of these methods is that animals only need to be physically 

captured and marked once, and subsequent sighting data from both marked and 

unmarked individuals arc used for estimation. With limited funds and resources, 

mark-resight can be appealing to researchers because costs associated with capture 

are generally the most expensive aspects of mark-recapture studies. Not only can 
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the financial burden of mark-recapture be discouraging for long-term population 

monitoring, but capture is also the most hazardous aspect for the animals. If field-

readable marks are feasible, mark-resight can substantially reduce stress to species 

because they can be observed at a distance with minimal disturbance after the 

initial capture. This can be of particular concern when working with threatened, 

endangered, or sensitive species. 

In Chapters 1 and 2, I introduced generalized mark-resight modeling frame­

works in the spirit of traditional mark-recapture (Otis ct al., 1978; Coull and Agrcsti, 

1999: Pledger. 2000), including the efficient use of covariates in modeling detection 

rate and individual heterogeneity parameters, information-theoretic model selection 

and multimodcl inference, and the ability to borrow information across primary 

intervals for data collected under the robust design. However, the focus of mark-

resight methods has to this point been overwhelmingly on the estimation of N. To 

my knowledge, none of the mark-resight models developed to date have tried to 

utilize the information these data may contain about demographic parameters in a 

fashion analogous to mark-recapture. Building on the generalized framework devel­

oped in Chapter 2, I extend the model to a full-likelihood robust design, thereby 

providing a less expensive and less invasive alternative to its mark-recapture prede­

cessor (Kendall ct al., 1995, 1997). After introducing the model in the next section, 

I demonstrate its use in Section 3.3 using New Zealand robin (Petroica australis) 

data collected in Fiordland National Park, New Zealand. In Section 3.4, I report on 

simulation experiments evaluating the performance of the model under a variety of 

sampling conditions. In Section 3.5, I summarize my findings in terms of their impli-
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cations for demographic parameter estimation in long-term population monitoring 

programs. 

3.2 The Model 

The robust design Poisson-log normal mixed effects mark-resight model (RDPNE) 

has the same basic assumptions of the abundance model developed in Chapter 2, but 

it utilizes information from the open sampling periods to estimate apparent survival 

and transition probabilities between observable and unobservable states. These as­

sumptions are: 1) geographic and demographic closure during secondary sampling 

within primary intervals; 2) no loss of marks: 3) no errors in distinguishing marked 

and unmarked animals; and 4) independently and identically distributed (iid) re-

sighting probabilities for marked and unmarked animals. The usual assumptions of 

the Cormack-Jolly-Seber model also apply (Seber, 1982). Marks must be individu­

ally identifiable and field-readable. Because marks must be individually identifiable, 

it is possible to account for overdispersion due to resighting rate heterogeneity or 

lack of independence. The number of marked individuals in the population during 

sampling may be known exactly or unknown. Given that an individual is identified 

as marked, RDPNE may incorporate less than 100% marked individual identification 

by assuming such events occur randomly within the marked population. 

I will assume some number of individuals with permanent field-readable marks 

are available for resighting during /, sequential primary sampling intervals of in­

terest. Each primary sampling interval consists of secondary sampling occasions 
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during which the population is assumed closed. Sampling within secondary occa­

sions may be with or without replacement (i.e., individuals may be sighted more 

than once within a secondary occasion). This differs from the traditional mark-

recapture model of Kendall ct al. (1995, 1997) because secondary occasions need 

not be distinct, and consideration is given only to some closed period of sampling 

for each primary interval. If the number of marked individuals in the population 

(rij) is known exactly during primary interval j (j = {1, ...,£}), the rcsighting da ta 

for this interval consist of the total number of sightings for marked individual s 

(Vsj = {0,1 . 2 , . . .} , s = {1 , . . . , rij}) and the total number of unmarked sightings (Tu,). 

Typically, the number of marks is known exactly only when radio-collars are used 

(McClintock and White, 2007) or all marking occurs immediately prior to the on­

set of secondary sampling. In the latter case, it is often reasonable to assume 

no mortality or movement between marking and the closed resighting period (see 

Chapter 2). If the exact number of marks is unknown during primary interval 

j , then some number of marked individuals are rcsightcd at least once (n*), and 

the resighting da ta consist of the total number of sightings for these individuals 

(ysj = {1 ,2 . . . .} , s = {1, ...,n*}) and TUj. Often times a marked individual is sighted, 

but not identified to individual identity. Because ignoring these da ta would gen­

erally result in overestimation of N, the total number of times this occurs during 

interval j (e.j - {0. 1,2,...}) is also incorporated into the model. 

When the number of marks in the population is known exactly during pri­

mary interval j , the ySJ 's (s = {1, ...,Tij}) arc modeled as realizations of independent 

Poisson-log normal random variables. If the number of marks is unknown, the y s / s 
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(s = {l,...,n*}) arc modeled as realizations of independent zero-truncated Poisson-

log normal random variables. On the log scale, mean resighting rate (#_,) is treated 

as a fixed effect and individual heterogeneity (a source of overdispersion) as a ran­

dom effect with mean zero and unknown variance <r? The ys:j's have conditional 

expectation 

E(ysj | aj,ZsjJj) = Xsj = cxp (a^Z^ + 9j), 

where ZSj "~ N(0,1). For increased efficiency, 6j and <x, may be modeled with fixed 

environmental or individual covariates believed to affect the resighting process, as 

is demonstrated in Section 3.3 and in Chapter 2. By taking the product across the 

rij or n* marked individuals for each primary interval, an unconditional likelihood 

function for 9V o\, and N} is 

L(N,(T,e\y,n,Tu) 

^ f e r \vj exp(-\M ^ £ f \v
a? axp(-\aj) (1 - Ij) 1 

=U\UJ — ^ — « * * ) * * * + n j ^![1_cxp(_^)] *(«*)** j 
*fl rJ

iTui) • 0.1) 
i-iJQ f(TUj)dTUi 

where I} is an indicator for when the the number of marks is known (Ij = 1) or 

unknown (Ij = 0) for primary interval j , <f)(zSj) is the standard normal density, 
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f(Tu.) is the normal density with expectation 

E(T t t . ) = 
nUl-Ij) 

Nj-Tljlj- 3 

l - c x p ( - A j | s ) 

exp | -j- + Oj ] + 
n]{l-h) 

1 - e x p ( - A j | s ) . njlj 

(3.2) 

and variance 

var(T„ ) 

and 

^ ( 1 - / , ) 
3 3J l - e x p ( - A J > ) J W J 

cxp I — + 9j 1 + exp(20j) [exp(2cr?) - cxp(crj)] + 
n I ] T t ; ( i - j j ) 

J J l - e x p ( - A j 1 s ) ^ 

(3.3) 

Vj|s = E Z s . (y s j ) = y exp (a3zSJ + Oj)(p(zSj)dzSj = exp ( y + 6>, J 

Full details on the derivation of this likelihood may be found in Chapter 2, with the 

only difference being that the da ta are no longer considered independent between 

primary intervals under RDPNE. ft remains that the data need not be independent 

with respect to parameters. 

To model the sampling process for the open periods between primary sampling 

intervals, I combine (3.1) with the first-order Markovian emigration likelihood "Lib" 
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introduced by Kendall et al. (1997): 

L (N, tr, e. 0, i>ou, ^uo I y, n, Tu) = L(N,v,0\ y. n, TU) Llb. (3.4) 

As in the models of Kendall et al. (1995, 1997), the open Lu portion of this full like­

lihood ignores the timing and frequencies of encounters during secondary sampling 

occasions, considering only whether or not the individual was encountered at any 

time during primary interval j . By utilizing information from both open and closed 

sampling periods, this provides a means for jointly estimating Nj, 9j, &j, the proba­

bility that an individual alive and in the super population during interval j survives 

and remains in the super population to interval j + 1 (4>j, j = {1,..., t - 1}), and the 

transition probabilities between observable and unobscrvablc states for individuals 

alive and in the super population from interval j to j + 1 {ip°v', j = {1 ^ _ 1 } a n d 

i,Vj°i j = {2. . . . .£- l}) . These transition probabilities arc the same as 7" and 1 - 7 ' , 

respectively, of Kendall et al. (1997) when used in the context of temporary emi­

gration from a single study area, but they don't necessarily need to describe state 

transitions in space. They may describe any transitions between observable and 

unobscrvablc states, such as observable "breeding" and unobservable "nonbreed-

ing" states (Kendall and Nichols, 2002). However, a fundamental assumption of 

this modeling approach is that apparent survival probabilities are the same for all 

individuals in the super population and, therefore, do not differ by state. 

Even with modest t, the multinomial cell probabilities under Lib in (3.4) can 

become quite complicated, and interested readers are referred to Appendix C and 
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Kendall et al. (1997) for a more detailed explanation of the likelihood. Suffice it 

to say that the Lu in (3.4) is identical to that of Kendall ct al. (1997), but in 

my model the open and closed portions of the full likelihood are linked via the 

probability of being encountered at least once during primary interval j (p*) under 

the Poisson-log normal model. This contrasts with the p* derived from the closed 

capture multinomial model in Kendall et al. (1995, 1997) or the loglinear model in 

Rivest and Daigle (2004). Here I use the term encounter (instead of resight) because 

in mark-resight methodology, marked or unmarked individuals may be encountered 

through sightings, but individuals may also be encountered through captures (e.g., 

for marking) during the open periods. If a capture event were to occur immediately 

prior to the onset of a closed primary interval, any of the captured individuals that 

were not subsequently resightcd may be reasonably assumed to have been present. 

When n.j is known, these individuals constitute the marked individuals with ySJ = 0. 

However, when n3 is unknown these individuals do not contribute to the Poisson 

portion of the likelihood, but because they were known to have been present, this 

information can be used in the open portion of the likelihood. I define c.j as the 

total number of individuals captured immediately prior to primary interval j (and 

therefore assumed to be present in the population during this interval), but not 

resighted. Then c* = n* + c3 is the total number of marked individuals encountered 

at least once (via capture or rcsighting) for primary occasion j , and 
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Thus, if rij is known exactly, then all available marked individuals have been en­

countered and p* = 1. Otherwise, rij = n*/[l - cxp(-A..s)J. If n3 is unknown and 

there arc no encounters from capture events immediately prior to closed interval j 

(i.e., c* = n*) then p* = 1 -exp(-Ajj s) , the probability of being rcsightcd at least 

once during primary interval j under the zero-truncated Poisson-log normal model. 

Point and variance estimates for RDPNE may be obtained using maximum 

likelihood or Bayesian analysis methods. Because the integrals appearing in the 

likelihood do not have closed form solutions, they must be computed numerically 

when using maximum likelihood (see Chapter 2). The model may be implemented 

using standard statistical computing software, but this can become quite compli­

cated and tedious as the number of primary intervals increases. The model has 

therefore been incorporated into the freely available mark-recapture software pack­

age Program MARK (White and Burnham, 1999). Instructions for implementing 

the model in MARK may be found in Appendix D. 

I note that in application, if the number of marked individuals is known exactly 

for all primary intervals, there is no advantage to using the full-likelihood approach 

proposed here. This would apply if all marked individuals were fit with radio-collars, 

and the fates of these individuals were therefore known. Under these circumstances, 

it would be better to ignore temporary emigration and apparent survival altogether 

by using the known fate data from the marked individuals to estimate survival rates 

directly (Pollock et al., 1989). This could be done in conjunction with an analysis 

using the Poisson-log normal (see Chapter 2) or logit-normal (sec Chapter 1) models 

to obtain abundance estimates. 
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3.3 Example: New Zealand Robin 

3.3.1 Example Methods 

Between March 2005 and August 2007, the New Zealand Department of Conser­

vation investigated the utility of mark-resight methodology for monitoring New 

Zealand robin (Petroica australis) populations on three study areas in the Eglin-

ton Valley of Fiordland National Park, New Zealand (44°58'S, 168°01'E). This ex­

ploratory investigation was initiated to assess whether the technique may be used to 

monitor the endangered populations of the closely related species (Petroica traversi) 

inhabiting the Chatham Islands. The three sites (Knobs Flat, Smithy, and Walker 

Creek) consisted of 100 ha grids and were visited in March (post-breeding) and 

August (prc-breeding) of each year, but da ta collection did not begin in Smithy 

until August 2005. Therefore, there were 6 primary intervals for both Knobs Flat 

and Walker Creek, but only 5 primary intervals for Smithy. Between September 

2003 and August 2007, as many juvenile and adult birds as possible were captured 

within the sites and given individually identifiable bands. These capture events 

took place continuously throughout the breeding season and intermittently prior to 

primary sampling intervals. Because banded birds could have died or permanently 

emigrated during this extended capture period, the exact number of marked indi­

viduals in each population was unknown for every primary interval. At the time of 

capture, the sex and age class of each individual was recorded. 'The primary inter­

vals were divided into 8 - 1 0 distinct secondary occasions where the entire area of 

each site was surveyed. Secondary sampling was conducted in the morning and typ-
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ically required four hours for each occasion. The populations were assumed closed 

during primary sampling intervals. Sampling was with replacement because marked 

individuals were rcsightcd more than once on several secondary occasions. Stoat 

(Mustela erminea) and possum (Trichosurus vulpecula) control occurred at low lev­

els on all three study areas for the duration of the study. Additionally, ship rat 

(Rattus rattus) control was conducted on Walker Creek from June 2006 until April 

2007, thereby overlapping two primary sampling intervals (August 2006 and March 

2007). 

To aid in evaluating the relative performance of the mark-resight abundance 

estimates, intensive territory mapping was conducted during most primary intervals 

of each site to produce an independent estimate of the minimum number known alive 

(MNA). These MNAs were believed to be reasonably close to the actual population 

sizes within each site, but they required considerably greater field effort to obtain 

relative to the mark-resight methodology. The Department of Conservation was 

primarily interested in determining whether mark-resight may be a reliable and 

more cost-efficient alternative to territory mapping. 

I performed a joint RDPNE maximum likelihood analysis for these three 

groups using Program MARK (White and Burnham, 1999). Covariates examined 

included sex, age class at time of capture (juvenile or adult), study area, time, breed­

ing season, and rat control on Walker Creek. Three covariatc models for rat control 

on Walker Creek were examined: 1) an immediate and constant effect during the 

entire program (rati); 2) no immediate effect with a delayed effect thereafter (rat2); 

and 3) an immediate effect with a variable effect thereafter (rati2). I also investi-
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gated models under completely random emigration, ^>ou = 1 - ipuo, (Kendall ct al., 

1997) and models ignoring individual heterogeneity [a = 0) or temporary emigration 

(ijjou = 1 - ibuo = 0) altogther. Because the duration of the open periods was four 

months between March and August surveys and seven months between August and 

March surveys, the open period parameters refer to four-month intervals. I first 

modeled the resighting rate parameters under the most general (but identifiable) 

time- and group-dependent structure for N and the open period parameters. To 

make all parameters identifiable, I followed the suggestion of Kendall et al. (1997) 

and constrained the final tp™ = V^Y a R d ^ ^ = ^ ? f ° r e a c n site. I then investi­

gated various models for 9 and a. As a means for model selection, Program MARK 

by default utilizes Akaike's Information Criterion adjusted for small sample sizes 

(AICC) (Burnham and Anderson, 2002). This allows multimodel inference based on 

AICC weights using an effective sample size I defined as ^=1 {nj^j + n]0- ~ h)} + '•• 

For the combined da ta set, t = 17 and Ij - 0. I proceeded by first selecting the 

model structure for 6 and a best supported by AICC and then using only this struc­

ture for investigating more parsimonious models for cp, \\PU, and ii)vo. Lastly, I 

investigated various combinations of the best supported structures for the open pe­

riod parameters with any other structures for 9 and a tha t had received relatively 

strong AICC support. I computed model-averaged parameter estimates and uncon­

ditional variances based on AICC weights and calculated confidence intervals as 95% 

logarithm-transformed normal for N and 95% logit-transformed normal for the open 

period parameters. The minimum lower bound for all Â 7 was n*. 
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3.3.2 Example Results 

Across the 6 primary intervals for Knobs Flat and Walker Creek, 65 and 45 marked 

individuals, respectively, were resighted at least once. Across the 5 primary intervals 

for the Smithy site, 39 marked individuals were resighted at least once. Across the t = 

17 total primary intervals, the effective sample size £*-=1 {rijlj + n*(l - Ij)j + t - 378. 

Across all primary intervals, the average numbers of rcsightings for the n* marked 

individuals observed at least once were 2.9, 2.6, and 3.0 for Knobs Flat, Smithy, and 

Walker Creek, respectively. The total numbers of unmarked individuals resighted 

across all secondary occasions of each primary interval ranged from Tu. = 4 to 45 for 

Knobs Flat, 6 to 28 for Smithy, and 1 to 57 for Walker Creek, with the lower numbers 

typically occurring during winter (August). Small numbers of marked individuals 

were identified as marked but not to individual identity, ranging from Ej = 0 to 6 

across all sites and primary intervals. 

The model structure for resighting rate parameters best supported by AICC 

included breeding season, age, sex, and rati terms for 0, and a breeding season 

term for a. No other structures for 9 and a were an improvement when combined 

with the open period parameter structure best supported by AICC . With 19% 

of the AICC weight, the 29-parameter minimum-AICC model included an age effect 

with a delayed effect of rat control (rat2) on apparent survival, and a season ef­

fect under completely random emigration for ipou and ipuo (Table 3.1). For mean 

resighting rate 6, negative effects (on the log scale) were found for pre-breeding 

primary intervals in August (-0.21,SE = 0.09), individuals first captured as adults 
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Table 3.1: AICC weights for selected RDPNE models of apparent survival and tran­
sition rates for New Zealand robin populations on three study areas in Fiordland 
National Park, New Zealand. Covariatcs include age class, study area, rat control, 
season, sex, and intercept only (.). Three covariate models for rat control were 
examined, including an immediate and constant effect during the entire program 
(rati), no immediate effect with a delayed effect thereafter (rat2), and an immedi­
ate effect with a variable effect thereafter (rati2). Models where certain parameters 
were assumed to have no effect (0) were also investigated. Model specific covari-
ates were included for apparent survival only (0), transition rates under completely 
random temporary emigration only (tp), transition rates under unconstrained tem­
porary emigration only (tl>u), or both apparent survival and transition rates under 
completely random temporary emigration (•). All models include separate abun­
dance (N) estimates for each primary interval of each study area. Unless otherwise 
noted, all models include age, rati, season, and sex effects on mean resighting rate 
(8). and season effects on individual heterogeneity (a). The number of estimated 
parameters (K) includes N, 0, a, and intercept terms. 

Model 

age area rati rat2 rat 12 season sex 
Aia 

0 Weight 
K 

cp <p 
4> 

<? 

4> 

<f> 

<P ^ 

0 

0 
0 

*Pu 

i>u 

ifj 

4> 

a 

0.19 

0.15 

0.13 

0.08 

0.07 

0.06 

0.06 

0.06 

0.03 

0.02 

0.02 

0.02 

0.02 

0.02 

0.02 

0.01 

0.01 

0.01 

0.00 
0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

29 
31 
30 
29 
30 
30 
28 
28 
31 
29 
29 
29 
29 
27 
30 
28 
28 
27 
27 
28 
29 
26 
28 
29 
30 
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(-0.16,SE = 0.08), and females (-0.43,SE = 0.10). An immediate and constant 

positive effect (on the log scale) was found on 0 for Walker Creek during rat control 

(0.34, SE = 0.10). For all three study areas, a = 0.47 (SE = 0.09) during pre-breeding 

primary intervals in August and a = 0.00 (SE = 0.02) during post-breeding primary 

intervals in March. Virtually no support (0% of AICC weight) was given to the same 

minimum-AICC model assuming no individual heterogeneity (Table 3.1). 

Model-averaged parameter and unconditional variance estimates suggest fluc­

tuating population sizes (Figure 3.1) and relatively constant apparent survival rates 

for adults and juveniles on the three study areas until rat control was initiated on 

Walker Creek (Figure 3.2). During the period of rat control on Walker Creek, a 

significant increase in population size was detected. Both Knobs Flat and Smithy 

exhibited significant population declines through the course of the study. With the 

exception of Knobs Flat from August 2006 to March 2007, all study areas exhib­

ited increases in population size from pre-breeding to post-breeding. Confidence 

intervals for abundance estimates were greater than or included the MNAs from 

territory mapping in every case except for Knobs Flat and Walker Creek in August 

2006 (Figure 3.1). The weight of evidence strongly favored the completely random 

emigration hypothesis with very little support for the same minimum-AICc model 

assuming no temporary emigration or unconstrained temporary emigration, both 

with < 3.5% of the AICC weight (Table 3.1). Using the mean values for individual 

covariatcs, model-averaged estimates of transition rates for Smithy and Knobs Flat 

were ^ou = 0.10 (SE = 0.05) and tpuo = 0.86 (SE = 0.18) post- to pre-breeding, and 

i)ou = 0.02 (SE = 0.05) and ij)uo = 0.98 (SE = 0.17) pre- to post-breeding. For Walker 
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Figure 3.1: Mark-resight abundance estimates and 95% confidence intervals between 
March 2005 and August 2007 for three New Zealand robin populations (Knobs Flat, 
Smithy, and Walker Creek) in Fiordland National Park, New Zealand. Point symbols 
(v = Knobs Flat, • = Smithy, O = Walker Creek) indicate the minimum number 
known alive based on territory mapping that was independent of the mark-resight 
methodology. Vertical hashed lines indicate a period of rat control on the Walker 
Creek study area. 

Creek, ipou = 0.10 (SE = 0.06) and i)uo = 0.87 (SE = 0.18) post- to prc-brceding, 

and IJJOU = 0.02 (SE = 0.04) and IJJUO = 0.98 (SE = 0.17) pre- to post-breeding. 

3.3.3 Example Discussion 

As also found in Chapter 2, covariatcs that correlated with 9 were inversely corre­

lated with a when both were included in a, given model. Mean rcsighting rates were 

typically lower with higher levels of individual heterogeneity during pre-breeding. 

Regardless of breeding interval, females exhibited lower mean resighting rates. In­

dividuals captured as juveniles tended to have higher mean resighting rates than 
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Figure 3.2: Four-month apparent survival estimates and 95% confidence intervals 
between March 2005 and August 2007 for three New Zealand robin populations 
(Knobs Flat, Smithy, and Walker Creek) in Fiordland National Park, New Zealand. 
Estimates are a function of age at time of first capture (adult or juvenile). Vertical 
hashed lines indicate a period of rat control on the Walker Creek study area. 
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individuals captured as adults. Mean resighting rates were higher during rat control 

on Walker Creek. The population increase exhibited by Walker Creek during the 

rat control program (during which neither Knobs Flat or Smithy showed increases) 

suggests rat control on the Chatham Islands may be effective and warrants further 

investigation. 

With average four-month apparent survival estimates near 0.78 (SE = 0.02) 

for the three study areas until rat control was initiated on Walker Creek, the popu­

lations tended to decline over the winter months post- to pre-breeding, but usually 

exhibited increases pre- to post-breeding. I found some evidence of lower survival 

for individuals first captured as juveniles compared to those first captured as adults. 

The evidence for an increase in apparent survival for the Walker Creek population 

during and immediately following the rat control program suggests the population 

increase pre- to post-breeding and the less dramatic decrease post- to pre-breeding 

during this period may be attributable not only to increased recruitment, but also to 

higher survival or lower permanent emigration of the juvenile and adult population. 

For all three study areas, individuals were more likely to temporarily emigrate from 

post- to pre-breeding. Still, temporary emigration rates were relatively low, sug­

gesting that any other emigration from the study areas was permanent. Estimates 

of transition rates, particularly for il)uo, were the least precise of all parameters. 

This lower precision is consistent with the findings of Kendall et al. (1997). 

When compared to the independent MNAs obtained through territory map­

ping, the mark-rcsight estimates were closely correlated and provide a degree of vali­

dation for this methodology. Based on these data, it appears mark-resight would be a 
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reliable and more cost-efficient alternative to territory mapping (or mark-recapture) 

for monitoring the endangered populations inhabiting the Chatham Islands. How­

ever, in August 2006, the mark-resight estimates for Knobs Flat and Walker Creek 

were significantly lower than the MNAs. This may be a result of breeding starting 

earlier than usual in this particular year. With mostly breeding and non-breeding 

males being detected while breeding females remained on nests, I suspect some severe 

undetected heterogeneity may have been introduced, thereby causing the RDPNE 

to underestimate abundance. Because of this potential risk when using the model, 

the timing of studies should always be designed to maximize resighting rates and 

minimize individual heterogeneity whenever possible. These issues arc addressed in 

greater detail in Chapter 2 and in the next section. 

3.4 Simulation Experiments 

3.4.1 Simulation Methods 

In Chapter 2,1 investigated the properties of the (zero-truncated) Poisson-log normal 

model for abundance estimation and generally found its performance to be nominal 

(or near-nominal) under a variety of simulated sampling conditions. Kendall et al. 

(1995, 1997) performed simulations evaluating their mark-recapture robust design 

model and also found its performance to be satisfactory. Given these results, it fol­

lows that the component of RDPNE that deserves special attention is its ability to 

adequately estimate the probability of being encountered at least once during pri-

83 



mary intervals, p*, and therefore properly model the open period sampling process. 

I therefore performed a scries of simulation experiments examining the large-sample 

properties of RDPNE for comparison to the simulations of Kendall et al. (1995, 

1997). 

Data were generated for a single population with t = 4 primary sampling 

occasions under the assumptions of geographic and demographic closure within pri­

mary intervals, iid sighting probabilities for marked and unmarked individuals, 100% 

mark identification, and no error in distinguishing marked versus unmarked individ­

uals. I assumed an initial super population of 500 observable individuals with time-

dependent^ (J = { 1 , . . . , / - 1 } ) , 0 ^ 0 = { l , . . . , i - l } ) , and V f ° 0 ' = {2 i -1}) . I 

also assumed no additions to the super population through births or immigration so 

that the population (and marked sample) size would decline through time. For the 

members of the super population that were observable, the total number of sightings 

for individual s during primary interval j (ySJ) were modeled as independent Poisson-

log normal random variables based on an underlying population E(ySJ) = Xj and 

overdispersion due to individual heterogeneity (Xaj) such that va.r (ySj) = Xj + X„0. 

In terms of Xj and Xaj, 

«'i = 2 1 o g ( A J - ) - — ^ '-, 

and 

u3 = \ / l o g (AffJ + ^ ) ~ 2 l o g ^ ) • 
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When \aj = 0, there is no overdispersion due to individual heterogeneity and a3 = 0. 

Based on the input values for A., and Xaj, the ySJ ~ Poisson(ASJ) were drawn 

for the Nj observable individuals in the population, with XSj = exp (crjZSj + 93), 

zSJ '- N(0 ,1) , and TUj = E ^ n . + 1 ysj. 

To facilitate comparisons with the simulations of Kendall et al. (1997) where 

p* = 0.64, individuals in the super population were marked immediately prior to the 

first primary interval with probability m = 0.64. No marking occurred thereafter, 

so as the overall population size decreased, the proportion of marked individuals 

available for rcsighting remained approximately equal to m for each interval. The 

number of marks was known for the first primary interval but unknown for the 

other intervals. The generating model was fully time-dependent for each of the 

model parameters, and three transition conditions were investigated. As in Kendall 

et al. (1997), these conditions were %lPv = 1 -'i\P° (completely random emigration), 

you y i _ xjjUO ^ a n ( j yjOu < i _ ipuo _ ^ 0 ajj-j m a s s e s s m g the relative performance 

of the model (without loss of generality under the fully time-dependent model), 

the set of parameter values for Aj, \aj, i/jj, \lPu, and V ;f° were kept the same for 

each primary interval. I specified a relatively high mean resighting rate (Xj = 5), 

and a scenario with (ACTJ = 2.5) and without (X„.j = 0) individual heterogeneity was 

examined for each of the three conditions. The other data-generating values were 

4>j = 0.8, ijjfu = 1 - 1^° = 0.2 (under random emigration), xj)fu = 0.3 and i/P° = 0.8 

(when <ijjfu > 1 - i/f ° ) , and ^ u = 0.2 and tf° = 0.7 (when ij>9u < 1 - ^°). Each 

of these six scenarios was independently replicated 1000 times. 

I performed a maximum likelihood analysis of each generated da ta set using 
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the NLPQN subroutine in the SAS System for Windows (SAS Institute, 2002). Be­

cause 0t_i, V;f̂ n a n d iltfSy a r e confounded under the fully time-dependent model, I 

followed the suggestion of Kendall et al. (1997) to make all estimated parameters 

identifiable by constraining ip°J£ = tp*^ and tp^o _ ^uo w ^ h all other estimated 

parameters fully time-dependent. To investigate the effects of unmodeled hetero­

geneity on parameter estimates, I also analyzed the data generated with individual 

heterogeneity under this constrained model assuming no heterogeneity (<7j =0) . I 

evaluated model performance primarily on Bias/SE and percent coefficient of varia­

tion for the parameters of interest. I also examined percent confidence interval cov­

erage of the true parameter values. Confidence intervals for Nj were calculated as 

95% logarithm-transformed normal with the minimum lower bound set at the mini­

mum number of marked individuals known to be in the population during interval j . 

Confidence intervals for 4>, %\)ov, and tjiuo were calculated as 95% logit-transformed 

normal. 

3.4.2 Simulation Results and Discussion 

In terms of Bias/SE, precision, and confidence interval coverage, the performance of 

N, (p, ipou, and ipuo estimators varied between the transition and individual hetero­

geneity scenarios (Table 3.2). Because the number of marks was only known for the 

first primary interval, Ni estimates tended to be the least biased and most precise 

relative to the other abundance estimates. The relative precision of abundance esti­

mates decreased through time as the marked sample size decreased. Because of the 
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way the data were generated, the transition conditions had no effect on N\, but the 

other abundance estimates tended to be slightly less precise when ijiou > 1 - ij)uo. 

No trends were found for the effects of the three transition conditions on bias and 

coverage of abundance estimates. All abundance estimates were relatively unbiased 

with nominal coverage when there was no individual heterogeneity in resighting 

rates. Estimates for N\ remained relatively unbiased with nominal coverage when 

individual heterogeneity was present and included in the model, but a slight negative 

bias was found for the other abundance estimates. This resulted in lower coverage 

for these parameters, but never falling below 91.4%. When individual heterogeneity 

was present but not included in the model, N\ estimates remained relatively un­

biased, but variance underestimation resulted in lower coverage of this parameter. 

When the number of marks was unknown, unmodclcd heterogeneity caused abun­

dance estimates to be more negatively biased with coverage falling as low as 84.3%. 

Apparent survival estimates were relatively unbiased with nominal coverage 

across all transition conditions and individual heterogeneity scenarios. Under com­

pletely random emigration (ipou = 1 -'tl>uo), survival estimates tended to be most 

precise. Little difference was generally found between survival estimates when ipou < 

1 - tl>uo or %l)ou > 1 - ij)uo, but (ps was noticeably less precise when ipou > 1 - ipuo. 

Transition probability estimates were generally less precise than the other estimated 

parameters, particularly when i];ou < 1 - i])uo. These findings are consistent with 

those in the previous section and those of Kendall ct al. (1997). Individual het­

erogeneity did not appear to affect the precision and coverage of ipou and ipuo, 
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Table 3.2: Average bias divided by standard error (B/SE), percent coefficient of 
variation (CV), and percent confidence interval coverage (Cover) for estimates of 
abundance (N), apparent survival ((f)), and transition probabilities between observ­
able and unobscrvable states (i>ou and TJ)UO) from simulation experiments consisting 
of t = 4 primary intervals under three conditions for transitions (ip): ipou < 1 - tyuo 

(<), 'i\Pv > 1 - ijjuo (>), and completely random emigration 'iJjou = 1 - %j)uo (=). 
These three conditions include scenarios without individual heterogeneity, with in­
dividual heterogeneity, and with unmodeled individual heterogeneity. To make all 
estimated parameters identifiable. 
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although it may have induced a slight positive and negative bias for these estimates, 

respectively (Table 3.2). 

Based on these large-sample simulations, it appears p* works adequately in 

modeling the open periods for estimating 4>, tl>ou, and ipuo. As expected, I found 

little effect of individual heterogeneity on these estimates, but (as more thoroughly 

investigated in Chapter 2) severe heterogeneity can result in underestimation of 

abundance estimates when the number of marks is unknown, and it is important 

that heterogeneity be modeled under these circumstances for more reliable inferences 

on abundance. I suggest that individual heterogeneity models always be investigated 

and compared to those that do not include individual heterogeneity, as demonstrated 

in Section 3.3. I further stress that practitioners carefully design studies to minimize 

severe individual heterogeneity whenever possible. 

3.5 Conclusions 

When permanent field-readable marks are feasible, I have proposed a full-likelihood 

approach for estimating abundance, apparent survival, and transition rates between 

observable and unobservablc states for mark-resight data that is analogous to that 

using traditional mark-recapture data. I found the model to perform similarly to 

its mark-recapture counterpart in large-sample simulation experiments. However, 

as with the mark-recapture model, the proposed approach is "data-hungry" and re­

quires that practitioners employ careful study design in order to meet minimum sam­

ple size requirements for useful estimation of parameters. To facilitate this practice, 
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the simulation capability for this model has been implemented in Program MARK 

(White and Burnham, 1999). Practitioners may therefore design and analyze stud­

ies under RDPNE using MARK and circumvent computer programming altogether. 

MARK is downloadable at h t t p : //welcome. warnercnr. c o l o s t a t e . edu/~gwhite, 

and documentation for implementing the model may be found in the help files that 

accompany the program (see Appendix D). 

I envision this full-likelihood approach to be utilized when the number of 

marked individuals may only be known for the first (or first several) primary inter­

vals. Under this scenario, some known number of marks may first be introduced 

into the population, but after sufficient time some marks will no longer be in the 

population and the exact number would thereafter be unknown. A second scenario 

where this approach would be particularly useful would be when continuous marking 

has been occurring over a long period of time and the exact number of marks in the 

population is never known (as was the case for the New Zealand robin example in 

Section 3.3). Under either of these two scenarios, this full-likelihood mark-resight ap­

proach enables researchers to design long-term monitoring programs that minimize 

expenses and disturbances associated with capture while still providing a means for 

simultaneously estimating abundance, apparent survival, and transition rates that 

was previously only available using traditional mark-recapture methods. Further 

developments in this area include extending the model to multiple states (Brownie 

et al., 1993) or to incorporate both live and dead encounters (Barker, 1997). 
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Appendix A 

Derivation of the variances for 

total unmarked sightings under 

the logit-normal model 

If by definition the sightings of the N-n unmarked individuals (any primary occasion 

j) are independent over individuals and conditionally (on Zs) independent over 

occasions, then 

N-n k N-n 
T"= E EJ«= E r«-

S = l 1 = 1 .5 = 1 
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Hence, 

var(T„) = (N - n)var ( £ Ssl J = (TV - n)var(Ts). 

The general variance formula for any individual s is 

var(Ts) = E z[var(T, \ Z)]+varz[ETs(Ts\ Z)] 

Vz 

E z 

£ p « ( i - P s i ) 

£ P s t ( l - P s i ) 
i = l 

vai'z £ p 
J=I 

k k 

1=1 «=i 

(A.i; 

For (1.3), with no fixed time effects (A.I) becomes 

var(Ts) = E z [kps (1 - ps)] + £2varz (ps) 

= A;/x-A;Ez(^) + A ; 2 [ E z ( ^ ) - / i 2 ] , 

where 

7 = Ez(p
2
s) = f 1 

1 +exp(-(crzs + 9)) 
<p(zs)dzs 

Hence, 

var(T s) = k/j - kj + k2(j -/J2) 

= A;[/ i( l-^) + ( f c - l ) ( 7 - / " 2 ) ] 
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and 

var(Tu) = (N - n)k [/i(l - //) + (A; - 1)( 7 - /z2)] 

For (1.4), with fixed time effects (A.l) becomes 

k k k 

var(Ts) = £ E z [ p s i ( l -pst)] + YlTl\.
Ez(Psi-.PSi) ~ LhlM] 

1 = 1 ( = 1 4 = 1 

k 

= Eft(i-ft) + EE(Aft-w)-
i = i Hi 

and 

var(Tu) = ( iV-n ) £^i(l - /̂ ) + ]£ E(T« " / ^ ) 
2 = 1 i*i 
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Appendix B 

Derivation of the expectation and 

variance for total unmarked 

sightings under the Poisson-log 

normal model 

If by definition the sightings of the N-n unmarked individuals (any primary interval 

j ) are independent, then Tu = Y,1=il Vs- Hence, E(TU) - (N-n)E(ys), and var(Tu) = 
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(TV-n)var(y6.). The general formulae, unconditional on Zs for any individual s, arc 

Ez(ys) = / \s<p(zs)dzs = I cxp (azs + 6) <p(zs)dzs = expl — +0J , 

and 

varz(y s) = E z [var(ys | Z)] + varz [E(ys \ Z)] 

= EZ(AS)+varz(A s) 

= EZ(A.S) + E^(A2)-EZ(AS)2 

/ [exp(<T2s + 9) + exp(<7z6. + #)2] cp(zs)dzs - \ cxp(azs + 9)(f>(zs)dz 

= exp( — + e) + cxp(26 + 2a2)-exp(2d + a 

where <p(zs) is the standard normal density. Therefore, after inflating E z(y s) and 

varz(y s) by the (average) number of times the n marked individuals were sighted 

but not identified to individual identity ((.), 

E(Tu) = (N-n) exp I 2 + ) + n 

and 

r(Tu) = (N- n) jcxp (— + o) + exp(2<?) [cxp(2a2) - exp(cr2)] + -
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Appendix C 

The first-order Markovian 

temporary emigration likelihood 

of Kendall et al. (1997) 

Building on the notation of Kendall ct al. (1995, 1997) and that introduced in 

Chapter 3, let 

rrihi = the number of animals encountered (via capture or resighting) in primary 

interval i (/ = {2,3, ...,£}) that were last encountered in primary interval h 

(h = {l,2,...,i-l}), and 

rj = the number of the c* marked individuals encountered during primary interval 
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j tha t were encountered again in some subsequent primary interval. 

Likelihood Lu in Equation (3.4) becomes quite complex with large t, but usin£ 

matrix notation with 

ou </> 

( l - ^ ) ( l - p * ) 

tP uo 

1-v ou 

and 

Gi = 
l - ^ ' o 

,OC/ 

< ° ( l - P * + l ) 

^ r ( l - ^ ) ( l _ p * + i ) 

the general pat tern for arbitrary h < i < t is 

L 16 

X [0 Jf J0 J + 1 G J + i0 J+2G J+20j+3dj+3Pj+4]mj ' J+4 ••• 

X [0 jf70 J + i G J + 1<p J +2G J + 2---^4-2G t_20 t-1d t_iP t*]mj ' (1 - n j ) C j " r j 

m , ' j + 2 
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where IL, is the sum of the t - j multinomial cell probabilities (in square brackets) 

corresponding to m, j J + 1 , ...,mJt. 
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Appendix D 

Estimating demographic 

parameters using the mark-resight 

data type in Program MARK 

Mark-resight methods constitute a slightly different type of data than found in 

traditional mark-recapture, but they are in the same spirit of accounting for imper­

fect detection towards reliably estimating demographic parameters (see White and 

Slienk, 2001 for a thorough explanation of how these data arc collected and Chapters 

1-3 for full details of the models). Like the other mark-recapture models in MARK, 

this approach models encounters (resightings) of marked individuals, but they also 
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incorporate additional data via sightings of unmarked individuals into the estima­

tion framework. Mark-resight da ta may be used to estimate abundance (N) in a 

fashion analogous to the closed capture models of Otis et al. (1978). When sampling 

is under the robust design, mark-resight da ta may be used to estimate abundance, 

apparent survival, and transition rates between observable and unobservable states 

in a fashion analogous to the closed capture robust design models of Kendall ct al. 

(1995, 1997). These models assume some individuals have been marked prior to 

sampling, and sampling occasions consist of resighting surveys (instead of capture 

periods). The main advantage of this approach is that it is generally less invasive 

and less expensive than traditional mark-recapture, but it requires that the number 

of marked individuals in the population during rcsightings be known exactly or can 

at least be reliably estimated. Adopting the same terminology of the robust design 

(Kendall et al., 1995, 1997), the approach may combine da ta from both closed and 

open sampling periods. The open periods refer to the resighting process between 

primary intervals, where each primary interval consists of secondary resighting oc­

casions. The time periods between the secondary resighting occasions of a primary 

interval must be of short enough duration for the assumption of closure to be satis­

fied. Marks may be added to the population at any time during the open periods, but 

no marks may be added during the closed periods. If sampling within the secondary 

occasions is without replacement (i.e., any single individual may only bo sighted 

once per distinct secondary occasion) and the number of marked individuals in the 

population available for resighting is known exactly, then the mixed logit-normal 

mark-resight models may be employed (see Chapter 1). Alternatively, if sampling 
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within secondary occasions is with replacement or the exact number of marked in­

dividuals in the population is unknown, the Poisson-log normal mark resight model 

may be used (see Chapter 2). If permanent field-readable marks are used but the 

number of marks is not known for all primary intervals, then mark-resight data col­

lected under the closed robust design may be analyzed with the Poisson-log normal 

model in a fashion analogous to the regular mark-recapture robust design for esti­

mating apparent survival (0), transition rates between observable and unobscrvablc 

states (7" and 7'), and N (sec Chapter 3). 

These models were developed as reliable and more efficient alternatives to the 

mark-resight models previously available in Program NOREMARK (White, 1996). 

Similar to other mark-recapture models, they provide a framework for information-

theoretic model selection and multimodel inference based on AIC (Burnham and 

Anderson, 2002), and the utilization of individual or environmental covariates on 

parameters. However, because the nature of mark-resight data is somewhat different 

than that of mark-recapture, a different format for the input files has been developed 

to address this. Explanations of the various models and their MARK input file 

formats are detailed below. The input and results files referenced here accompany 

the program (available at h t tp : / /welcome.uarnercnr .co los ta te .edu/~gwhi te ) . 

Following the explanations of the models and their MARK input files, some general 

suggestions are provided for performing an analysis with these models in MARK. 
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D.l The mixed logit-normal mark-resight model 

To be used when sampling is without replacement within secondary sampling occa­

sions and the number of marked individuals in the population available for resighting 

is known exactly. Marks may or may not be individually identifiable. See Chapter 

1 for full details. 

Data : 

t = the number of primary sampling intervals 

kj = the number of secondary sampling occasions (without replacement) during pri­

mary intervalj 

rij = the exact number of marked individuals in the population during primary in­

terval j 

mij = Ss=i $sij = total number of marked individual sightings during secondary oc­

casion i of primary interval j 

TUj = total number of unmarked individual sightings during primary interval j 

8SIJ = Bernoulli random variable indicating sighting (5sij = 1) or no sighting (Ssij = 0) 

of marked individual s on secondary occasion i of primary interval j (this only 

applies when individually identifiable marks are used) 

€ij = total number of marks seen that were not identified to individual during sec­

ondary occasion i of primary interval j (this only applies when individually 

identifiable marks are used) 
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Parameters: 

Nj = population size or abundance during primary interval j 

Pi3 = intercept (on logit scale) for mean resighting probability of secondary occasion 

i during primary interval j . Note that this parameter was referred to as 

Pij in Chapter 1. If there is no individual heterogeneity (OJ = 0), once back-

transformed from the logit scale the real parameter estimate can be interpreted 

as the mean resighting probability 

a1- = individual heterogeneity level (on the logit scale) during primary interval j 

(i.e., the variance of a random individual heterogeneity effect with mean zero) 

D . l . l No individually identifiable marks 

If a known number of marks arc in the population, but the marks are not individu­

ally identifiable, then the data for the mixed logit-normal model are t, kj, rij, rriij, 

and TUj. These arc the same data as for the Joint Hypergeometric estimator (JHE) 

previously available in Program NOREMARK (White, 1996), but the mixed logit-

normal model can be a more efficient alternative because it can borrow information 

about resighting probabilities across primary intervals (see Chapter 1). Note that 

because no information is known about individual identities, individual heterogene­

ity models cannot be evaluated with these data (i.e., <x, = 0) and the probability of 

any individual being resighted on secondary occasion i of primary interval j is ptj. 

Suppose there is only one group and t = 3, kj = 4, n\ = 30, n2 = 33, n3 = 32, 

•nin = 8, rn2i = 9, m3i = 10, m41 = 5, mi2 = 11, ni22 = 10, m32 = 18, m42 = 9, m13 = 5, 
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m 2 3 = 10, m 3 3 = 13, m 4 3 = 8, Tul = 96, Tu2 = 68, and Tu3 = 59. 

Although no individual identities are known, these da ta may be summarized 

into artificial individual encounter histories similar to those of the mark-recapture 

robust design. The total number of unmarked individuals seen (TUj) must be entered 

after the encounter histories under the heading "Unmarked Seen G r o u p = l " such 

that the resulting input file would be: 

/ * No I n d i v i d u a l Marks 1 group */ 

/ * 12 o c c a s i o n s , 3 p r i m a r y , 4 secondary each */ 

/ * Begin Inpu t F i l e * / 

111111111111 5; 
111011110111 3 ; 
011011110110 1; 
001011100110 1; 
000010100010 1; 
000000100010 2; 
000000100000 5; 
000000000000 12; 

00000000 2; 
0000 1; 

Unmarked Seen Group=l; 
96 68 59; 

/ * End Inpu t F i l e * / 

Notice the sums of the encounter history columns (when multiplied by the corre­

sponding frequency) equal mtj and the sums of the frequencies with non-missing 

entries (i.e., not "....") for each primary interval equals nr If this single group data 

were split into two groups, such that n\ = 17, n2 = 19, n 3 = 18, ni\\ = 6, m2 1 = 6, 

m3 i = 7, m 4 1 = 4, m1 2 = 5, m2 2 = 5, m3 2 = 11, m4 2 = 5, m1 3 = 3, m 2 3 = 7, m 3 3 = 7, 

m4 3 = 7, Tul = 48, Tu2 = 40, and Tu3 = 20 for the first group, and n\ = 13, n2 = 14, 

n3 = 14, mn = 2, m2\ = 3, m 3 1 = 3, rn^ = 1, m1 2 = 6, m2 2 = 5, m3 2 = 7, m42 = 4, 
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m13 = 2, m 2 3 = 3, m 3 3 = 6, m43 = 1, Tul = -to, ±u2 

group, a possible input file would be: 

/* No Individual Marks 2 groups */ 

/* 12 occasions, 3 primary, 4 secondary each */ 

/* Begin Input File */ 

111111111111 3 0 

111111110111 1 0 

111011110111 1 0 

111000100111 1 0 

001000100111 1 0 

000000100000 4 0 

000000000000 6 0 

00000000 1 0 

1111 1 0 

111111111111 0 1 

111011111110 0 1 

011011110110 0 1 

000011110010 0 1 

000011100010 0 1 

000010100010 0 1 

000000100000 0 1 

000000000000 0 6 

00000000 0 1 

T,,,o = 28, and T,,3 = 39 for the second 

Unmarked Seen Group=l; 
48 40 20; 

Unmarked Seen Group=2; 
48 28 39; 

/* End Input F i l e */ 

Notice here that the single group data has simply been split up into two group data. 

The encounter histories are followed by group frequencies just as in other MARK 

input files for mark-recapture encounter histories. The twist is that the unmarked 

data must be entered separately for each group. Again, the sums of the encounter 

history columns (when multiplied by the corresponding group frequencies) equals 
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rriij for each group, and the sums of the frequencies with non-missing entries (i.e., 

not "....") for each primary interval equals n3 for each group. 

The analysis using these input data (Logit_NoIndividualMarks.OncGroup.inp) 

yielded the following results for the time-constant (p.. = p, Uj - 0) model in MARK: 

Real Function Parameters of {p(.) sigma(.)=0 NCt)} 

95*/, Confidence Interval 

Parameter Estimate Standard Error Lower Upper 

l:p Session 1 0.3052632 0.0236241 0.2610167 0.3534229 
2:sigma Session 1 0.0000000 0.0000000 0.0000000 0.0000000 Fixed 
3:N Session 1 108.62069 9.0417052 92.800732 128.42580 
4:N Session 2 88.689653 7.0894111 76.435814 104.40047 
5:N Session 3 80.318964 6.4400883 69.253239 94.671659 

Note that a3 must be fixed to zero for these data because heterogeneity models do not 

apply when marks are not individually identifiable. This is because no information 

is known about individual resighting rates, and the above encounter histories are 

artificial in that they don't actually refer to a real individual's encounter history 

(these artificial encounter histories are just a convenient and consistent way to enter 

the data into MARK). Because there is no individual heterogeneity in the model, 

the real parameter estimate of p may be interpreted as the overall mean resighting 

probability (0.31 in this case). 

D.1.2 Individually identifiable marks 

If marks are individually identifiable, encounter histories are constructed just as for 

robust design mark-recapture data with the tkj possible encounters representing Ssij 

for individual s during secondary occasion i of primary interval j . However, now it 

is possible to have an individual identified as marked, but not to individual identity. 

A marked individual may be encountered but not be identified to individual when 

the mark was seen but the unique pattern or characters that identify the individual 

were obscured or too far away to read. These arc the same data as could be used for 
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Bowden's estimator (Bowden and Kufeld, 1995) in Program NOREMARK (White, 

1996), but the logit-normal model can be more efficient because information about 

rcsighting probabilities may be borrowed across primary intervals, and it does not 

require investment in individual heterogeneity parameters unless deemed necessary 

by the da ta (see Chapter 1). If an individual was not known to be in the popula­

tion during any primary interval j , then missing values (.) are included for all kj 

secondary occasions of that interval in the encounter history. The total number of 

marks seen but not identified to individual during secondary occasion i of primary 

interval j (e^) are entered sequentially ( e u . e 2 i , . . . . efcxi...., e\u £24,... , e^ t) with 

each entry separated by a space. Using the data from the previous single group 

example but with e = ( 0 , 0 , 0 , 0 , 1 , 1 , 1 , 0 , 0 , 3 , 0 , 1 ) entered after the unmarked data 

under the heading "Marked Unidentified Group= l ; " , one possible input file would 

be: 

/ * I n d i v i d u a l Marks 1 Group * / 
/ * 12 o c c a s i o n s , 3 p r i m a r y , 4 secondary each * / 

/ * Begin Inpu t F i l e * / 

001001000011 1; 
000000100110 1; 
010000000110 1; 
0000 1; 

01101101 1; 
000010000000 1; 
001100100000 1; 
001011100011 1; 
000010000010 1; 
010001100000 1; 
000000000010 1; 
001010010110 1; 
101000100000 1; 

01001110 1; 
010000100000 1; 

11001000 1; 

000100000000 1; 

100000101011 1; 
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000011010000 1; 

000100000000 1; 

111000100001 1; 

010000111001 1; 

101000110000 1; 

100001100010 1; 

00010000 1; 

101000010010 1; 

0000 1; 

010000101000 1; 

000110100000 1; 

011000000000 1; 

010011110010 1; 

000010110000 1; 

101100000001 1; 

00010110 1; 

11100100 1; 

Unmarked Seen Group=l; 

96 68 59; 

Marked Unidentif ied Group=l; 
0 0 0 0 1 1 1 0 0 3 0 1; 

/* End Input F i l e */ 

Note that the sums of each column ^3
=1 5slJ = m%3 - e^. The last two encounter 

histories are for individuals that were not marked and known to be in the population 

until immediately prior to the second primary interval. The fourth encounter history 

from the top represents an individual who was marked and known to be in the 

population during the first primary interval (when it was resighted 0 times), but 

known to have not been marked and in the population during the second or third 

primary intervals. This could be because the individual was known to have died, 

emigrated, or lost its mark. Similar to other MARK input files, the encounter 

histories may pertain to multiple groups and include individual covariatcs. Splitting 

the above data into two groups, the above input file could look like: 

/* Individual Marks 2 Groups */ 
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/* 12 occasions, 3 primary, 4 secondary each */ 

/* Begin Input File */ 

001001000011 0 1; 
000000100110 1 0; 
010000000110 1 0; 
0000 1 0; 

01101101 1 0; 
000010000000 0 1; 
001100100000 1 0; 
001011100011 0 1; 
000010000010 0 1; 
010001100000 0 1; 
000000000010 0 1; 
001010010110 1 0; 
101000100000 1 0; 

01001110 1 0; 
010000100000 1 0; 
11001000 10; 
000100000000 1 0; 
100000101011 1 0; 
000011010000 1 0; 
000100000000 0 1; 
111000100001 1 0; 
010000111001 0 1; 
101000110000 1 0; 
100001100010 0 1; 

00010000 0 1; 
101000010010 0 1; 
0000 0 1; 
010000101000 0 1; 
000110100000 1 0; 
011000000000 1 0; 
010011110010 1 0; 
000010110000 0 1; 
101100000001 1 0; 

00010110 1 0; 
11100100 0 1; 

Unmarked Seen Group=l; 
48 40 20; 

Unmarked Seen Group=2; 
48 28 39; 
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Marked Unidentif ied Group=l; 
0 0 0 0 0 1 1 0 0 1 0 1; 

Marked Unidentif ied Group=2; 
0 0 0 0 1 0 0 0 0 2 0 0; 

/* End Input F i l e */ 

Notice the encounter histories are followed by group frequencies the same way as 

they are in all other MARK input files. 

Because marks are individually identifiable, individual heterogeneity models 

may be explored with these data. Here, individual heterogeneity is modeled as 

a random effect with mean zero and unknown variance a2.. These input data 

(Logit_IndividualMarks_OneGroup.inp) yielded the following results for the time-

constant individual heterogeneity {p%] = p,<yJ = cr) model in MARK: 

Real Function Parameters of {p(.) sigma(.) N(t)} 

Parameter Estimate Standard Error 

95°/. Confidence Interval 
Lower Upper 

1:p Session 1 
2:sigma Session 1 
3:N Session 1 
4:N Session 2 
5:N Session 3 

0.2754701 
0.5272687 
113.66936 
87.914774 
78.370038 

0.0276547 
0.2579346 
10.635869 
7.1303186 
6.1915138 

0.2246760 
0.2126915 
95.282220 
75.621226 
67.733970 

0.3328182 
1.3071155 
137.23536 
103.75424 
92.171887 

The time-constant model with no heterogeneity (p.. = p, Oj - 0) yields: 

Real Function Parameters of {p(.) sigma(.)=0 N(t)} 

Parameter Estimate Standard Error 
957. Confidence Interval 
Lower Upper 

1:p Session 1 
2:sigma Session 1 
3:N Session 1 
4:N Session 2 
5:N Session 3 

0.2868421 
0.0000000 
113.66972 
92.266052 
83.422016 

0.0232018 
0.0000000 
9.8898399 
7.7342427 
7.0187109 

0.2435938 
0.0000000 
96.420546 
78.939944 
71.400363 

0.3343745 
0.0000000 
135.39844 
109.45775 
99.111660 

Fixed 

As before, when a^ = 0. the real parameter estimate of p may be interpreted as 

the overall mean rcsighting probability ignoring unidentified marks (0.29 in this 
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case). Notice that these results are different than the results from the same model 

when there were no individually identifiable marks. This is because the two versions 

(individually identifiable marks or not) of the mixed-logit normal model are only 

comparable when all marks are correctly identified to individual and Oj is fixed to 

zero. Further, if one finds very little support for individual heterogeneity models 

(based on AICC ) and has relatively many unidentified marks, it may be better to 

analyze the data as if there were no individually identifiable marks to begin with. 

D.2 The Poisson-log normal mark-resight model 

For use when the number of marked individuals in the population may be unknown 

or sampling is with replacement within secondary sampling occasions (or there is 

no concept of a distinct secondary sampling occasion without replacement). Marks 

must be individually identifiable. See Chapters 2 and 3 for full details. 

Data : 

t = the number of primary sampling intervals (may be through time, groups, or time 

and groups) 

n,j = the exact number of marked individuals in the population during primary in­

terval j 

n* = total number of marked individuals rcsightcd at least once and known to be in 

the population 

Cj = total number of individuals captured (e.g., for marking) immediately prior to 

primary interval j and therefore assumed to be present in the population 

during primary interval j , but not resighted during primary interval j 

c* = n* + Cj = total number of marked individuals captured immediately prior to 

primary interval j or resighted at least once during primary interval j . When 
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the number of marks is known exactly, c* = nr When the number of marks is 

unknown this is the minimum number of marked individuals known to be in 

the population 

yS] = Poisson random variable for the total number of times individual s was re-

sightcd during primary interval j 

€j = total number of times an individual was sighted and identified as marked, but 

not identified to individual identity during primary interval j 

TUj = total unmarked individual sightings during primary interval j 

Parameters: 

N = population size or abundance 

aj = intercept (on log scale) for mean resighting rate during primary interval j . 

Note that this parameter was referred to as 6j in Chapters 2 and 3. If there is 

no individual heterogeneity (<jj = 0), once back-transformed from the log scale 

this parameter can be interpreted as the mean resighting rate for the entire 

population 

a1, - individual heterogeneity level (on the log scale) during primary interval j , i.e., 

the additional variance due to a random individual heterogeneity effect with 

mean zero 

(j)j = apparent survival between primary intervals j and j + 1, j = {1, ...,t - 1} 

7" = probability of transitioning from an observable state at time j (e.g., on the 

study area) to an unobservable state at time j + 1 (e.g., off the study area). 

j = {l,...,t - 1}. This is equivalent to transition probability ijj^u of Kendall 

and Nichols (2002) 
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7' = probability of remaining at an unobscrvable state at time j + 1 (e.g., off the 

study area) when at an unobservable state at t ime j , j = {2, ...,t - 1}. This is 

equivalent to 1 - -</f ° of Kendall and Nichols (2002) 

D.2.1 Closed resightings only 

If interest is only in abundance estimates for t groups (or t t ime intervals for a single 

group with few or no marked individuals in common across the intervals), then the 

mark-resight Poisson-log normal model may be used in a fashion analogous to the 

closed mark-recapture models of Otis et al. (1978). In contrast to the closed mark-

recapture models of Otis ct al. (1978), individual covariates may be used in modeling 

rcsighting rates. However, because the da ta consist of the total number of times each 

marked individual in group j was resighted, the encounter histories must be modified 

to reflect this different type of encounter data. If the number of marks is known 

exactly, then rij, ySJ, e3 and TU] arc the same data used for Bowden's estimator 

(Bowdcn and Kufeld, 1995) in NOREMARK (White, 1996), but the Poisson-log 

normal model will generally be more efficient because information about resighting 

rates may be borrowed across groups (see Chapter 2). The number of marks available 

for each of the t groups may be known or unknown. The input file must contain 

the encounter histories containing the ySJ resightings, the frequencies and group(s) 

to which each encounter history pertains, the TUJ unmarked sightings and group(s) 

to which they pertain, the tj unidentified marks and the group(s) to which they 

pertain, and whether or not the number of marks is known exactly for each group. 

Instead of the familiar 0's and l 's of other MARK encounter histories, these histories 

simply contain the ysj for each marked individual s in group j . Two character spaces 

arc allocated to allow ySJ > 9. Note that this coding does not allow ySj > 99. For 

reasons that will become clear in the next section covering the robust design Poisson-

log normal model, entries for which ySJ = 0 are entered using ' + 0 ' instead of '00'. 
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Further, (unlike the logit-normal model and mark-recapture robust design), because 

the Poisson-log normal model docs not condition on distinct secondary resighting 

occasions, the number of encounter occasions entered into MARK when creating 

a new analysis is the number of primary occasions (1 in this case). For instance, 

suppose in a very simple example that there were t = 2 groups with known rii = n2 = 3 

and yn = 2, y2l = 3, y31 = 0, y12 = 0, y22 = 0, 7/32 = 12, TUl = 11, TU2 = 5, tx = 2, and 

e2 = 3. The resulting input file would be: 

/ * P o i s s o n l og -no rma l m a r k - r e s i g h t * / 
/ * Occas ions= l groups=2 * / 

/ * Begin Inpu t F i l e * / 

02 1 0; 
03 1 0; 
+0 1 0 ; 
+0 0 1; 
+0 0 1; 
12 0 1; 

Unmarked Seen Group=l; 

11; 

Unmarked Seen Group=2; 

5; 

Marked Unidentified Group=l; 

2; 

Marked Unidentified Group=2; 

3; 

Known Marks Group=l; 

3; 

Known Marks Group=2; 

3; 

/* End Input File */ 
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The columns following the encounter histories are the frequencies for the two groups, 

just as would be done in other MARK encounter history files. Under "Unmarked 

Seen", the TUJ are entered separately for each group. The "Marked Unidentified" 

data (tj) are entered in the same fashion separately for each group. Similarly, the 

"Known Marks" headings contain the rij for each group. 

Using the same example, but now with the number of marks being unknown 

for the second group, the input file must be modified to reflect tha t n2 is unknown 

and ys2 = 0 is no longer observed: 

/ * P o i s s o n l og -no rma l m a r k - r e s i g h t * / 
/ * o c c a s i o n s = l groups=2 * / 

/ * Begin Inpu t F i l e */ 

02 1 0; 
03 1 0; 
+0 1 0 ; 
12 0 1; 

Unmarked Seen Group=l; 

11 ; 

Unmarked Seen Group=2; 

5; 

Marked Unidentified Group=l; 

2; 

Marked Unidentified Group=2; 

3; 

Known Marks Group=l; 

3; 

Known Marks Group=2; 

0; 

/* End Input File */ 
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Here, the encounter histories for y12 = 0 and j/22 = 0 have been removed because 

they cannot be observed if the number of marked individuals in the population (n 2 ) 

is unknown. Further, under "Known Marks;" there is now a "0" for the second 

group. By including a "0" for the second group's "Known Marks", MARK knows 

the number of marks is unknown and will use the zero-truncated Poisson-log normal 

model. 

It is possible that the number of marks may be unknown for a given group, but 

some marking was conducted immediately prior to the primary sampling interval 

of interest. Here, some additional information is known about the minimum num­

ber of marks in the population because those (previously marked or newly marked) 

individuals captured during the marking period are known to have been present 

and available for resighting (even if they were not rcsightcd during the interval of 

interest). Suppose this were the case in the above example, such that the second 

individual of the second group was captured and marked immediately prior to re-

sighting surveys but never resighted. This information (although not used in the 

zero-truncated likelihood) may be included in the encounter history file to make the 

lower bound for Af
2 > c\: 

/* P o i s s o n l og -no rma l m a r k - r e s i g h t * / 
/ * o c c a s i o n s = l groups=2 * / 

/ * Begin Inpu t F i l e */ 

02 1 0; 
03 1 0; 
+0 1 0 ; 
+0 0 1; 
12 0 1; 

Unmarked Seen Group=l; 

U ; 

Unmarked Seen Group=2; 

5; 
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Marked U n i d e n t i f i e d Group=l; 

2; 

Marked U n i d e n t i f i e d Group=2; 

3 ; 

Known Marks Group=l; 

3 ; 

Known Marks Group=2; 

0; 

/ * End Inpu t F i l e * / 

Because the "Known Marks;" is still "0" for the second group, MARK knows the 

actual number of marks is unknown and to use the zero-truncated model for the 

second group, but c*2 = 2 (instead of n2 = 1) will be used in establishing the lower 

bound for N2- When the number of marks is unknown, the information provided by 

such encounters via capture events will become more useful when considering the 

robust design Poisson-log normal model in the next section. 

Now to analyze a more realistic 1 = 2 da ta set where the number of marks was 

known for the first group but not for the second. No marking occurred immediately 

prior to resighting surveys for the second group, so c2 = n2, and therefore no ' + 0 ' 

encounter histories are included for the second group. For these data, ri\ = 60, 

TUl = 1237, ei = 10, n* = 33, TU2 = 588,and e2 = 5: 

/ * P o i s s o n l og -no rma l m a r k - r e s i g h t * / 
/ * Occas ions= l groups=2 * / 

/ * Begin Inpu t F i l e * / 

02 1 0; 
03 1 0; 
03 1 0; 
01 1 0; 
01 1 0; 
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1237; 

Unmarked Seen Group=2; 
588; 

Marked U n i d e n t i f i e d Group=l; 

10; 

Marked U n i d e n t i f i e d Group=2; 
5; 

Known Marks Group=l; 
60; 

Known Marks Group=2; 

0; 

/ * End Inpu t F i l e * / 

The analysis for these data (Poisson_TwoGroups.inp) yielded the following results 

for the most general model: 

Real Function Parameters of {alpha(g) sigma(g) N(g)} 

Parameter Estimate Standard Error 
95'/, Confidence Interval 
Lower Upper 

1:alpha 
2:alpha 
3:Sigma 
4:sigma 
5:N 
6:N 

2.6200091 
2.3579937 
0.2909827 
0.2694048 
486.55517 
260.59714 

0.2495220 
0.3661278 
0.1386550 
0.2560261 
37.472530 
30.369020 

2.1309460 
1.6403831 
0.0990465 
0.0279997 
353.10901 
168.07386 

3.1090722 
3.0756042 
0.6050691 
0.8251843 
500.00133 
287.12042 

Here are the results for the model with no group effects on a3 or ay 

Parameter 

Real Function Parameters of {alphaC.) sigma(.) N(g)} 

Estimate Standard Error 
95'/, Confidence Interval 
Lower Upper 

1:alpha 
2:sigma 
3:N 
4:N 

2.5330927 
0.2857660 
500.94650 
244.56021 

0.2049978 
0.1216583 
32.963465 
17.524220 

2.1312970 
0.1284121 
440.92617 
212.90589 

2.9348883 
0.6359386 
570.42389 
281.78407 

Here are the results for the model with no group effect on ctj and a2 =0 : 
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Real Function Parameters of {alphaO sigma(.)=0 N(g)} 

95°/, Confidence Interval 
Parameter Estimate Standard Error Lower Upper 

1:alpha 2.6488893 0.1731506 2.3095142 2.9882644 
2:sigma 0.0000000 0.0000000 0.0000000 0.0000000 Fixed 
3:N 499.34483 29.766676 444.76851 561.66238 
4:N 243.77627 15.823866 214.97302 277.13858 

Note that to run models without individual heterogeneity, Oj must be fixed to zero. 

When <7j = 0, then the real parameter estimate for a may be interpreted as the mean 

rcsighting rate for all individuals. In this case, the marked individuals for both 

groups were resightcd an average of 2.65 times during the single primary interval. 

D.2.2 Full-likelihood robust design 

If interest is in apparent survival, transition rates, and abundance for one or more 

groups through time, then a mark-resight robust design analogous to the mark-

recapture robust design of Kendall et al. (1995, 1997) may be employed. In contrast 

to the modeling of recapture probabilities in the mark-recapture robust design uti­

lizing the closed capture models of Otis ct al. (1978), the mark-resight robust design 

may incorporate individual covariates in modeling resighting rates. The input files 

are similar to those from the previous Closed Resightings model, but now individ­

uals with permanent field-readable marks may be encountered through time across 

t primary sampling intervals in a robust design. For instance, if an individual s 

was encountered ysl = 4 times during the first primary interval and yS2 = 2 times 

during the second primary interval, then the encounter history would be '0402'. 

Each encounter history will contain 2t characters, again allowing two characters for 

each ySj. Because the number of marks can be known or unknown for any given 

primary interval, the primary intervals must again be identified as such under the 

"Known Marks" heading in the input file. In the individual encounter histories, a 

'+0' indicates that the individual was known to be a marked individual available for 
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rcsighting during primary interval j but never rcsightcd. Therefore, when the num­

ber of marks is unknown, the total number of '+0' entries during primary interval j 

is equal to c3 as defined above. A '-0' indicates a previously encountered individual 

that was not encountered (via capture OR rcsighting) during primary interval j , 

and only applies when the number of marks is unknown (i.e., when the number of 

marks is known a '-0' is impossible). Lastly, a '..' indicates a marked individual 

who has not yet been encountered prior to and during primary interval j OR an 

individual that is known to no longer be in the marked population (due to removal, 

mortality, or permanent emigration) during and after primary interval j . As in the 

regular CJS model in MARK, any '..' contributes no information to the estimation 

of parameters. When v,j is known, '+0' contributes information towards estimation 

of survival, transition rates, resighting rates, and abundance. When n, is unknown, 

'+0' contributes information towards estimating survival and transition rates, but 

makes no contribution to the estimation of resighting rates or abundance (but it 

does affect the minimum lower bound for Nj as described in the previous section). 

A '-0' contributes no information to the estimation of rcsighting rates or abundance 

(it is only a valid entry when the number of marks is unknown), and is equivalent to 

a '0' in the regular CJS encounter history for MARK. It therefore only contributes 

to the estimation of survival and transition rates. As before, the encounter histories 

are followed by group frequencies in the usual MARK input file. The entries for 

"Unmarked Seen", "Marked Unidentified", and "Known Marks" are the same as 

described earlier and arc entered separately for each group. In the following exam­

ple input file with a single group and t = 4 primary intervals, the number of marks 

are known for the first and second primary intervals, but unknown for the third and 

fourth. Because the model docs not condition on distinct secondary rcsighting occa­

sions, the number of encounters that are input into MARK is equal to the number of 

primary occasions (t = 4 in this case). Capturing for marking occurred immediately 
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i n4 = c.\. prior to the first, second, and third occasion, but not the fourth occasion, so 

Here, nL = 45, TUl = 1380, tx = 8, n2 = 67, TU2 = 1120, e2 = 10, n* = 56, TU3 = 1041, 

t3 = 9, n* = 52, T„4 = 948, and c4 = 11: 

/* Poisson log-normal Mark-resight */ 

/* 4 occasions, 1 group */ 

/* Begin Input File */ 

+002 1 

..06-0-0 1 

04060202 1 

+0010402 1 

070602-0 1 

04020606 1 

..020101 1 

060602-0 1 

1 

1 

1 

1 

1 

1 

1 

1 

06060103 1 

1 

1 

1 

020202-0 1 

..050201 1 

02010103 1 

031002-0 1 

+0+00704 1 

01030102 1 

01010302 1 

..02-0-0 1 

..020210 1 

020301-0 1 

02+00503 1 

02+0+0-0 1 

02020302 1 
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The first encounter history indicates this individual was not captured for marking 

until immediately prior to the third primary occasion, and the '+0' for the third 

occasion indicates that it was not rcsighted (although known to be a marked individ­

ual available for rcsighting during this occasion). This individual was then resighted 

twice during the fourth occasion. The second encounter history from the top indi­

cates that this individual was only known to be marked and in the population during 

the second primary occasion (when it was rcsighted 6 times). Because the number of 

marks is known for the first primary interval, this individual must have been marked 

between the first and second primary intervals. As indicated by '-0', this individual 

was never encountered again when the number of marks was unknown during the 

third and fourth primary intervals. The third encounter history from the top indi­

cates an individual who was known to be marked and available for rcsighting for all 

t = 4 occasions. The '+0' entry for the first primary occasion indicates that it was 

known to be marked and available for rcsighting, but never resighted. This individ­

ual was then rcsighted one, four, and two times during the second, third, and fourth 

intervals, respectively. The final encounter history describes an individual that was 

not marked until immediately prior to the second primary occasion, and during the 

second occasion it was resighted one time. It was then captured immediately prior 

to (but never resighted during) the third occasion. Because the number of marks 

was unknown for the third occasion, this '+0' primarily contributes information to 

the estimation of survival and transition rates (as described in the previous section). 

As indicated by '-0' this individual was then never resighted during the fourth occa­

sion (and could not have been captured immediately prior to the occasion because 

no capturing took place). Because no individuals were captured (e.g., for marking) 

immediately prior to the fourth occasion (and the number of marked individuals 

was unknown), no '+0' appears in the entries for this occasion. Because no marked 
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individuals were known to have left the population (due to removal, mortality, or 

permanent emigration), no '..' entries appear after an individual's first encounter. 

The "Unmarked Seen;" entry tells MARK that 1380 unmarked sightings occurred 

during the first primary interval, 1120 during the second, 1041 during the third, and 

948 during the fourth. The "Marked Unidentified" entry follows the same pat tern. 

The "Known Marks" entry tells MARK that rij is known for the first and second 

primary intervals (rii = 46, n2 = 60), but unknown for the third and fourth (as 

indicated by '0' for these occasions). 

As a simple two group example, suppose for the first group tha t rii = 10, 

TU1 = 800, £ l = 4, n2 = 14, TU2 = 950, c2 = 2, n* = 11, TU3 = 500, e3 = 6, n* = 8, 

TU4 = 1201, and e4 = 3. For the second group, n^ = 11, TUl = 459, ei = 2, n*2 = 14, 

TU2 = 782, e2 = 5, n* = 15, TU3 = 256, e3 = 0, n\ = 11, T„4 = 921, and e4 = 1. With 

capturing (e.g., for marking) occurring for both groups immediately prior to the 

first and second occasions, a possible input file would be: 

/ * P o i s s o n log -no rma l M a r k - r e s i g h t * / 
/ * 4 o c c a s i o n s , 2 groups * / 

/ * Begin Inpu t F i l e */ 
04060202 1 0; 
. . 0 6 - 0 - 0 1 0; 
+0010402 1 0; 
070602-0 1 0; 
04020606 1 0; 
. . 020101 1 0; 
060602-0 1 0; 
. . 0 4 - 0 0 4 1 0; 
040401-0 1 0; 
03010103 1 0; 
02030503 1 0; 
. . 0 3 - 0 - 0 1 0; 
070503-0 1 0; 
04+00104 1 0; 
01010401 0 1; 
06060103 0 1; 
02010602 0 1; 
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. .0403-0 

..020306 

020202-0 

..050201 

02010103 

031002-0 

+0-00704 

01030102 

01010302 

..02-0-0 

..020210 

020301-0 

02+00503 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 

Unmarked Seen Group=l; 

800 950 500 1201; 

Unmarked Seen Group=2; 

459 782 256 921; 

Marked Unidentified Group=l; 

4 2 6 3; 

Marked Unidentified Group=2; 

2 5 0 1; 

Known Marks Group=l; 

10 14 0 0; 

Known Marks Group=2; 
11 0 0 0; 

/* End Input F i l e */ 

Here, the encounter histories are followed by two columns for group frequencies in 

the usual MARK input file maimer. The entries for "Unmarked Seen", "Marked 

Unidentified", and "Known Marks" are entered separately for each group. The 

entries under "Known Marks" tell MARK that the number of marks was known for 

the first and second primary occasions of the first group {ri\ = 10, n2 = 14) and for 

only the first primary occasion of the second group (n\ = 11). Again, no '-0' can 
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appear for a primary occasion where the number of marks is unknown. Notice that a 

'+0' appears in the encounter history for the last individual of the second group, but 

that the number of marks for this primary occasion was unknown. This indicates 

that this individual happened to be caught (e.g., during marking) immediately prior 

to the second primary occasion, but was never resighted. Hence, for the second group 

during the second primary interval , n*2 = 14 and c*2 = 15. 

An analysis using the single group data (Poisson_RobustDesign_OneGroup.inp) 

yielded the following results for the random emigration model {</>(.)7"(-) = Y(.)a(t) 

a(t)N(t)}: 

Real Function Parameters of {Phi(.) gamma''(.)=gamma'(.) alpha(t) sigma(t) N(t)} 

Parameter Estimate 

2.7533589 
2.6391370 
2.1023124 

2.1101662 
0.2552927 
0.4688073 
0.4099264 
0.5489796 
501.60001 
428.88089 
489.22506 
410.18201 
0.9857400 
0.0552755 

Standard Error 

0.2906413 
0.2712789 
0.2757290 
0.3295252 
0.1727985 
0.1132659 

0.1555193 
0.1274057 
43.560257 
35.134127 
46.107464 
45.453163 
0.0182539 
0.0364728 

95"/. Conf 
Lower 

2.2400523 
2.1587110 
1.6275392 

1.5566457 
0.0766079 
0.2939316 
0.1997845 
0.3504234 
423.88945 
366.30696 
407.96411 
331.58621 
0.8443149 
0.0146651 

idence Interval 
Upper 

3.3842895 
3.2264830 
2.7155828 

2.8605104 
0.8507524 
0.7477258 
0.8411045 
0.8600414 
595.24906 
504.53669 
589.51777 
510.87225 
0.9988663 
0.1870013 

1:alpha 
2:alpha 
3:alpha 
4:alpha 
5:sigma 
6:sigma 
7:sigma 
8:sigma 
9:N 

10:N 
11:N 
12:N 
13:Phi 
14:Gamma' 

For model {</>(.h"(.) = Y(.)a(.)a(.)N(t)}: 

Real Function Parameters of {Phi(.) gamma''(.)=gamma'(.) alphaC.) sigma(.) N(t)> 

Parameter Estimate Standard Error 

957, Confidence Interval 

Lower Upper 

1:alpha 
2:sigma 
3:N 
4:N 
5:N 
6:N 

7: Phi 
8:Gamma' 

2.4536985 
0.4376083 
524.49384 
460.04989 
426.24093 
379.16926 

0.9858690 
0.0751540 

0.1478956 
0.0655452 
28.499239 
24.370049 
23.102678 
20.875980 

0.0178497 
0.0287552 

2.1805245 
0.3268107 
471.81002 
415.11342 
383.69402 
340.74421 

0.8499082 
0.0348592 

2.7610956 
0.5859693 
583.68075 
510.78703 
474.39761 
422.70778 

0.9988380 
0.1545672 

Here, AICC indicates much more support for the simpler model (1012.6 versus 

1020.4). Notice that a significant population decline would be inferred from the 
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latter model (but not the former), one of the advantages of borrowing informa­

tion across primary intervals that the Poisson-log normal model provides over other 

previously available mark-rcsight estimators. 

D.3 Suggestions for mark-resight analyses in MARK 

1. To start an analysis from scratch (after an input file has been created), select 

the "Mark-Resight" da ta type. The option will then be given to select "Logit-

Normal" or "Poisson-log normal." For "Logit-Normal" one doesn't specify 

whether or not individual marks were used. This is left to the user to keep 

track of (by not running any individual heterogeneity models). For "Poisson-

log normal" one doesn't need to specify robust design or not. If there arc 

multiple primary occasions for the group(s), then MARK will automatically 

set up an analysis that includes the open period parameters (4>, 7", and 7') . 

2. Because convergence with these models is sensitive to the start ing values (par­

ticularly for N), initial values (on the log scale) must always be manually 

provided in the Run window when using the design matrix. This means that 

if Ar = 100, then log(Ar) = 4.6 should be provided as an initial value. MARK 

provides its own initial values that usually work when running a model from 

the PIMs, so I suggest that an analysis begin with simple PIM models from 

which the initial values may then be provided for running more complex mod­

els and for when utilizing the design matrix. If convergence issues remain after 

following this strategy, I suggest trying a scries of initial values covering the 

suspected range of the paramcter(s) and possibly other Run window options 

such as "Do not standardize design matrix." The "Use Alt. Opt. Method" 

option is currently not working for the models. 

3. The a parameter must be fixed to zero in the Run window to examine a model 
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that ignores individual heterogeneity in resighting probabilities. 

4. When using the logit-normal model, MARK by default assigns the log link to 

a and N, and applies whatever link is specified in the Run window to p. 

5. When using the Poisson model, MARK by default assigns the log link to a, 

a, and N, and applies whatever link is specified in the Run window to 0, 7", 

and 7' (if using the robust design). 
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