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The Model Building Approach
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• The main alternative to historical simulation is 
to make assumptions about the probability 
distributions of the return on the market 
variables and calculate the probability 
distribution of the change in the value of the 
portfolio analytically

• This is known as the model building approach 
or the variance-covariance approach

The Model-Building Approach
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• In VaR calculations we measure volatility “per 
day”

• Theoretically, sday is the standard deviation of 
the continuously compounded return in one 
day

• In practice we assume that it is the standard 
deviation of the percentage change in one day

Daily Volatilities

252
year

day

σ
=σ



Tianyang Wang FIN 670

• We have a position worth $10 million in 
Microsoft shares

• The volatility of Microsoft is 2% per day 
(about 32% per year)

• We use N=10 and X=99

Microsoft
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• The standard deviation of the change in 
the portfolio in 1 day is $200,000

• The standard deviation of the change in 
10 days is 

Microsoft

200 000 10 456, $632,=
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• We assume that the expected change in the 
value of the portfolio is zero (This is OK for 
short time periods)

• We assume that the change in the value of the 
portfolio is normally distributed

• Since N(–2.33)=0.01, the VaR is 

Microsoft

2 33 632 456 473 621. , $1, ,× =
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• Consider a position of $5 million in AT&T
• The daily volatility of AT&T is 1% (approx

16% per year)

• The S.D per 10 days is

• The VaR is

AT&T

50 000 10 144, $158,=

158 114 2 33 405, . $368,× =
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• Now consider a portfolio consisting of both 
Microsoft and AT&T

• Assume that the returns of AT&T and 
Microsoft are bivariate normal

• Suppose that the correlation between the 
returns

Portfolio
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• A standard result in statistics states that

• In this case sX = 200,000 and sY = 50,000 and r 
= 0.3. The standard deviation of the change in 
the portfolio value in one day is therefore 
220,227

S.D. of Portfolio

YXYXYX σρσ+σ+σ=σ + 222
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• The 10-day 99% VaR for the portfolio is

• The benefits of diversification are
(1,473,621+368,405)–1,622,657=$219,369

• What is the incremental effect of the AT&T 
holding on VaR?

VaR for Portfolio

657,622,1$33.210220,227 =××
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This assumes
• The daily change in the value of a 

portfolio is linearly related to the daily 
returns from market variables

• The returns from the market variables are 
normally distributed

Build The Model
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Markowitz Result for Variance of Return on Portfolio
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Variance of Return on Portfolio
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Covariance Matrix (vari = covii)
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covij = ρij σi σj where σi and σj are the SDs of the daily returns 
of variables i and j,  and ρij is the correlation between them
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Alternative Expressions for σP
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• Calculation of  1-day, 99% VaR for a Portfolio 
on Sept 25, 2008

Build The Model Example
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• Calculation of  1-day, 99% VaR for a Portfolio 
on Sept 25, 2008

Build The Model Example
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• Calculation of  1-day, 99% VaR for a Portfolio 
on Sept 25, 2008

Build The Model Example
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The Monte Carlo Simulation 
Approach
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Structured Monte Carlo
To calculate VaR using MC simulation we
• Value portfolio today

• Sample once from the multivariate distributions of the Dxi

• Use the Dxi to determine market variables at end of one 
day

• Revalue the portfolio at the end of day

Monte Carlo Simulation
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• Calculate DP

• Repeat many times to build up a probability 
distribution for DP

• VaR is the appropriate fractile of the distribution 
times square root of N

• For example, with 1,000 trial the 1 percentile is the 
10th worst case.

Monte Carlo Simulation
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• Equal Weight Model

Example : Calculation of  1-day, 99% VaR for a 
Portfolio on Sept 25, 2008
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• EWMA Model

Example : Calculation of  1-day, 99% VaR for a 
Portfolio on Sept 25, 2008
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• Overcomes some of the shortcomings of the normal 
distribution approach

• Overview
– Make assumptions about distributions for frequency and 

severity of individual losses
– Randomly draw from each distribution and calculate the 

firm’s total losses under alternative risk management 
strategies

– Redo step two many times to obtain a distribution for 
total losses under each of the alternative strategies

– Compare strategies (distributions)

Monte Carlo Simulation
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• Historical simulation lets historical data determine 
distributions, but is computationally slower 

• Model building approach assumes normal 
distributions for market variables. It tends to give 
poor results for low delta portfolios

• Monte Carlo approach overcomes some of the 
shortcomings of the normal distribution approach

Comparison of Approaches
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Stress Testing 
• This involves testing how well a portfolio 

performs under extreme but plausible market 
moves

• Scenarios can be generated using
– Historical data
– Analyses carried out by economics group
– Senior management
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Back-Testing 
• Tests how well VaR estimates would have 

performed in the past

• We could ask the question: How often was 
the actual 1-day loss greater than the 
99%/1- day VaR? 
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Regulatory Capital
• Basel II
• Internal markets
• Cushion/Buffer for unexpected losses
• Traditional: Rigid, based on asset classifications
• Modern: Based on internal risk models such as 

VaR

• Externalities/systemic risk
• Deposit insurance
• Moral hazard problems 
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Volatility Term Structures 
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Return as Random Variable
• Think of return as a random variable 
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• Define σn as the volatility per day between day n-1 
and day n, as estimated at end of day n-1

• Define Si as the value of market variable at end of day 
i

• Define ui= ln(Si/Si-1)

Estimating Volatility
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• Define ui as (Si-Si-1)/Si-1

• Assume that the mean value of ui is zero
• Replace m-1 by m

This gives

Simplifications Usually Made

σn n ii

m

m
u2 2

1

1
= −=∑



Tianyang Wang FIN 670

Instead of assigning equal weights to the 
observations we can set

Weighting Scheme
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• In an Exponentially Weighted Moving 
Average (EWMA) model, the weights 
assigned to the u2 decline exponentially as we 
move back through time

• This leads to

EWMA Model 

2
1

2
1

2 )1( −− λ−+λσ=σ nnn u

Thomas Bayes
(1702–1761)



Tianyang Wang FIN 670

• Relatively little data needs to be stored
• We need only remember the current estimate 

of the variance rate and the most recent 
observation on the market variable

• Tracks volatility changes
• RiskMetrics uses λ = 0.94 for daily volatility 

forecasting

Attractions of EWMA
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ARCH Model 
ARCH: AutoRegressive Conditional 

Heteroskedasticity
In an ARCH(q) model (Engle 1982) we also 
assign some weight to the long-run variance rate, 
VL:
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Robert Engle
(1942- )

Presenter
Presentation Notes
Anchor: long term trend

Robert Engle
Professor of Finance
New York University
- See more at: http://bfi.uchicago.edu/people/robert-engle#sthash.XVXRhcuk.dpuf
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ARCH Model 
• An ARCH(q) model can be estimated using ordinary least squares. 
• A methodology to test for the lag length of ARCH errors using the Lagrange 

multiplier test was proposed by Engle (1982). This procedure is as follows:
– Estimate the best fitting AutoRegressive model AR(q) .

– Obtain the squares of the error and regress them on a constant and q 
lagged values: where q is the length of ARCH lags. 

– The null hypothesis is that, in the absence of ARCH components, we 
have αi = 0 for all . The alternative hypothesis is that, in the presence of 
ARCH components, at least one of the estimated αi coefficients must be 
significant. 
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GARCH Model
 If an AutoRegressive Moving Average model (ARMA 

model) is assumed for the error variance, the model is a 
Generalized AutoRegressive Conditional 
Heteroskedasticity (GARCH, Bollerslev(1986)) model.

 In GARCH (1,1) model we assign some weight to the 
long-run average variance rate

Since weights must sum to 1
γ + α + β =1

2
1

2
1

2
−− βσ+α+γ=σ nnLn uV

Tim Bollerslev
(1958- ) 

Presenter
Presentation Notes
Tim Bollerslev 
Professor of Economics
Duke University
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GARCH Model
Setting ω = γV the GARCH (1,1) model is

and
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Example
• Suppose

• ω=0.000002, α=0.13, β =0.86, γ=1−α−β=0.01

• The long-run variance rate is 0.0002 so that the 
long-run volatility per day is 1.4%= 0.0002
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Example continued

• Suppose that the current estimate of the 
volatility is 1.6% per day and the most recent 
percentage change in the market variable is 
1%.

• The new variance rate is

The new volatility is 1.53% per day

0 000002 013 0 0001 086 0 000256 0 00023336. . . . . .+ × + × =
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GARCH (p,q)
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Estimate the variance of observations from a 
normal distribution with mean zero: 

We choose parameters that maximize

Application to EWMA
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Define xi=(Xi-Xi-1)/Xi-1 and yi=(Yi-Yi-1)/Yi-1

Also
σx,n: daily vol of X calculated on day n-1
σy,n: daily vol of Y calculated on day n-1
covn: covariance calculated on day n-1
The correlation is covn/(σu,n σv,n)

Correlations and Covariances
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• We can use similar models to those for 
volatilities

• Under EWMA
covn = λ covn-1+(1-λ)xn-1yn-1

Updating Correlations
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DJIA FTSE CAC 40 Nikkei 225
DJIA 1
FTSE 0.489 1
CAC 40 0.496 0.918 1
Nikkei 225 −0.062 0.201 0.211 1

Volatilities and Correlations for Four-Index on 
Sept 25, 2008 with Equal Weights

DJIA FTSE CAC 40 Nikkei 225
Vol. per day (%) 1.11 1.42 1.40 1.38
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Volatilities and Correlations for Four-Index on 
Sept 25, 2008 for EWMA and λ=0.94

DJIA FTSE CAC 
40

Nikkei 
225

DJIA 1
FTSE 0.611 1
CAC 40 0.629 0.971 1
Nikkei 
225

−0.113 0.409 0.342 1

DJIA FTSE CAC 40 Nikkei 
225

Vol. per day 
(%)

2.19 3.21 3.09 1.59
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Example : Calculation of  1-day, 99% VaR for a 
Portfolio on Sept 25, 2008
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Example : Calculation of  1-day, 99% VaR for a 
Portfolio on Sept 25, 2008
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Maximum Likelihood Methods 

Presenter
Presentation Notes
Metallgesellschaft�s Mistake�The German firm, Metallgesellschaft, had repeated many of the same mistakes of LTCM. Back in 1993 a subsidiary of the firm, MGRM in the U.S., made an aggressive move to become a major player in the U.S. oil market. They sold long-term oil contracts to independent dealers at fixed prices. MGRM hoped to make money through arbitrage between the spot oil market and the long-term market for oil. The firm sold contracts of oil to independent dealers at fixed prices going out ten years. These financial maneuvers resulted in a mismatch between supply and demand, making the firm vulnerable to the vicissitudes of the market. MGRM�s customers went long while the firm went short. MGRM covered its position by buying near-term contracts in the futures market and rolling them over each month. This was their undoing. 
Their strategy worked as long as the markets remained in normal backwardation. The firm was selling long-term contracts at higher prices while hedging with short-term prices. However, in 1993, the oil markets reversed into contango. (See graph for visual explanation.) The firm made money as long as the markets remained in normal backwardation. The moment they went into contango, the firm began to lose money. MGRM's traders were betting that the market structure would remain stable and that prices would follow historical patterns. They were also counting on maintaining their hedging practice. The problem arose because in futures markets, losses and gains are immediate. A firm must mark its positions to market. Losses require cash payments to maintain margin. However, gains or losses on delivery contracts appear only at the time of delivery.
The problem for MGRM was that they were covering their long-term commitments with short-term hedges. Their traders made a sophisticated bet that markets in oil would remain in a constant pattern. In other words, the markets they were betting on would fall within the normal probability of the existing state of the market or backwardation. As long as these conditions remained, MGRM made money from the spreads between the expectations of the long and short end of the market.
However, the markets didn�t remain the same. In fact, because MGRM�s short-term hedges were so large, they in effect contributed to the contango. At one point, they made up close to 20% of all open interest outstanding on the NYMEX. By taking such a large position and having to roll it over each month, the firm created its own death warrant. The firm�s position was so large, it began to work against itself. Like vultures swarming to the bloodbath, traders took advantage of MGRM vulnerability. By November of the following year, the firm�s trading losses mounted to $1.75 billion wiping out all of its capital. By February, those losses grew to $2.2 billion. The parent company pulled the plug. Ironically, had the firm enough capital to weather the storm, the markets eventually went back into normal backwardation.
MGRM became a victim of its own circumstances. A large long position contributes to backwardation of the markets. A large net-short position turns the markets into contango. The very size and nature of its position flipped the markets from the position they were betting on into a position that was bet against them. Like LTCM that would come after it, the traders at MGRM were relying on predictable patterns. When exogenous events surface, markets turn upside down, patterns change, and large bets are turned into large losses.

The term originated in mid-19th century England[12] and is believed to be a corruption of "continuation", "continue"[13] or "contingent". In the past on the London Stock Exchange, contango was a fee paid by a buyer to a seller when the buyer wished to defer settlement of the trade they had agreed. The charge was based on the interest forgone by the seller not being paid.
The purpose was normally speculative. Settlement days were on a fixed schedule (such as fortnightly) and a speculative buyer did not have to take delivery and pay for stock until the following settlement day, and on that day could "carry over" their position to the next by paying the contango fee. This practice was common before 1930, but came to be used less and less, particularly after options were reintroduced in 1958. It was prevalent in some exchanges such as Bombay Stock Exchange (BSE) where it is still referred to as Badla.[14] Futures trading based on defined lot sizes and fixed settlement dates has taken over in BSE to replace the forward trade, which involved flexible contracts.[citation needed]
This fee was similar in character to the present meaning of contango, i.e., future delivery costing more than immediate delivery, and the charge representing cost of carry to the holder.


In that era on the London Stock Exchange, backwardation was a fee paid by a seller wishing to defer delivering stock they had sold. This fee was paid either to the buyer, or to a third party who lent stock to the seller.
The purpose was normally speculative, allowing short selling. Settlement days were on a fixed schedule (such as fortnightly) and a short seller did not have to deliver stock until the following settlement day, and on that day could "carry over" their position to the next by paying a backwardation fee. This practice was common before 1930, but came to be used less and less, particularly since options were reintroduced in 1958.
The fee here did not indicate a near-term shortage of stock the way backwardation means today, it was more like a "lease rate", the cost of borrowing a stock or commodity for a period of time.
In more recent years, a backwardation in equities quoted on the London Stock Exchange has come to signify the unusual occurrence of an individual equities quote whereby the bid appears to be higher than the offer. This (of course) cannot occur for electronically traded stocks via SETS or SETS MM but only for quote-driven stocks (SEAQ)
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Maximum Likelihood Methods

• In maximum likelihood methods we choose 
parameters that maximize the likelihood of 
the observations occurring

Presenter
Presentation Notes
Loaded dice

P value
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Example 1
• We observe that a certain event happens one 

time in ten trials. What is our estimate of the 
proportion of the time, p, that it happens?

• The probability of the event happening on one 
particular trial and not on the others is

• We maximize this to obtain a maximum 
likelihood estimate. Result:  p=0.1
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Example 2
Estimate the variance of observations from a normal 
distribution with mean zero: 
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Application to EWMA
Estimate the variance of observations from a 

normal distribution with mean zero: 

We choose parameters that maximize
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Estimate EWMA with S&P 500 Data

Date Day Si ui=(Si−Si-1)/Si-1 vi =si
2 −ln(vi ) −ui

2 /vi

18-Jul-2005 1 1221.13

19-Jul-2005 2 1229.35 0.006731

20-Jul-2005 3 1235.20 0.004759 0.00004531 9.5022

21-Jul-2005 4 1227.04 −0.006606 0.00004389 9.0395
……. ….. ……. ……….. …………. …………

13-Aug-2010 1279 1079.25 −0.004024 0.00016813 8.5945
Total 10192.5104
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Estimate EWMA with S&P 500 Data
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The EWMA Volatility Chart 
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Estimate the variance of observations from a 
normal distribution with mean zero: 

We choose parameters that maximize

Application to GARCH
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• Start with trial values of ω, α, and β
• Update variances
• Calculate

• Use solver to search for values of ω, α, and β that 
maximize this objective function

• Important note: set up spreadsheet so that you are 
searching for three numbers that are the same order of 
magnitude
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Estimate GARCH with S&P 500 Data60
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Estimate GARCH with S&P 500 Data

Date Day Si ui=(Si−Si-1)/Si-1 vi =si
2 −ln(vi ) −ui

2 /vi

18-Jul-2005 1 1221.13

19-Jul-2005 2 1229.35 0.006731

20-Jul-2005 3 1235.20 0.004759 0.00004531 9.5022

21-Jul-2005 4 1227.04 −0.006606 0.00004447 9.0393

……. ….. ……. ……….. …………. …………

13-Aug-2010 1279 1079.25 −0.004024 0.00016327 8.6209

Total 10,228.2349
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Estimate GARCH with S&P 500 Data
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The GARCH Volatility Chart 
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• One way of implementing GARCH(1,1) that 
increases stability is by using variance 
targeting

• We set the long-run average volatility equal to 
the sample variance

• Only two other parameters then have to be 
estimated

Variance Targeting
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• Variance Targeting
Estimate GARCH with S&P 500 Data
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• Variance Targeting
The GARCH Volatility Chart 
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• Akaike Information Criterion (AIC)
AIC = -2 ln(L) + 2k

• Akaike Information Criterion correction (AICc)

AICc is AIC with a correction for finite sample sizes:

AICc = AIC+ 2𝑘𝑘(𝑘𝑘+1)
𝑛𝑛−𝑘𝑘−1

where n denotes the sample size. Thus, AICc is AIC with a 
greater penalty for extra parameters.

Ideally, the AIC and AICc should be as small as possible

Model Selection Criteria

Hirotugu Akaike
(1927-2009)

Presenter
Presentation Notes
Hirotugu Akaike (赤池 弘次 Akaike Hirotsugu?) (IPA: [akaike hiɽotsu͍ɡu͍]; November 5, 1927 – August 4, 2009) was a Japanese statistician. In the early 1970s he formulated an information criterion for model identification which has become known as the Akaike information criterion.

Burnham & Anderson (2002) strongly recommend using AICc, rather than AIC, if n is small or k is large. Since AICc converges to AIC as n gets large, AICc generally should be employed regardless.[4] Using AIC, instead of AICc, when n is not many times larger than k2, increases the probability of selecting models that have too many parameters, i.e. of overfitting. The probability of AIC overfitting can be substantial, in some cases.[5]
Brockwell & Davis (1991, p. 273) advise using AICc as the primary criterion in selecting the orders of an ARMA model for time series. McQuarrie & Tsai (1998) ground their high opinion of AICc on extensive simulation work with regression and time series.
AICc was first proposed by Hurvich & Tsai (1989). Different derivations of it are given by Brockwell & Davis (1991), Burnham & Anderson, and Cavanaugh (1997). All the derivations assume a univariate linear model with normally distributed errors (conditional upon regressors); if that assumption does not hold, then the formula for AICc will usually change. Further discussion of this, with examples of other assumptions, is given by Burnham & Anderson (2002, ch. 7). In particular, bootstrap estimation is usually feasible.
Note that when all the models in the candidate set have the same k, then AICc and AIC will give identical (relative) valuations. In that situation, then, AIC can always be used.

Often, one wishes to select amongst competing models where the likelihood functions assume that the underlying errors are normally distributed (with mean zero) and independent. This assumption leads to model fitting.
For fitting, the likelihood is given by
, where C is a constant independent of the model used, and dependent only on the use of particular data points. i.e. it does not change if the data do not change.
The AIC is therefore given by . As only differences in AIC are meaningful, the constant C can be ignored, allowing us to take for model comparisons.
Another convenient form arises if the σi are assumed to be identical and the residual sum of squares (RSS) is available. Then we get AIC = n ln(RSS/n) + 2k + C, where again C can be ignored in model comparisons.[6]

The AIC penalizes the number of parameters less strongly than does the Bayesian information criterion (BIC). A comparison of AIC/AICc and BIC is given by Burnham & Anderson (2002, §6.4). The authors show that AIC and AICc can be derived in the same Bayesian framework as BIC, just by using a different prior. The authors also argue that AIC/AICc has theoretical advantages over BIC. First, because AIC/AICc is derived from principles of information; BIC is not, despite its name. Second, because the (Bayesian-framework) derivation of BIC has a prior of 1/R (where R is the number of candidate models), which is "not sensible", since the prior should be a decreasing function of k. Additionally, they present a few simulation studies that suggest AICc tends to have practical/performance advantages over BIC. See too Burnham & Anderson (2004).
Further comparison of AIC and BIC, in the context of regression, is given by Yang (2005). In particular, AIC is asymptotically optimal in selecting the model with the least mean squared error, under the assumption that the exact "true" model is not in the candidate set (as is virtually always the case in practice); BIC is not asymptotically optimal under the assumption. Yang further shows that the rate at which AIC converges to the optimum is, in a certain sense, the best possible.


http://tswww.ism.ac.jp/kitagawa/HomePage/akaike.html
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• Bayesian Information Criterion (BIC)/Schwartz 
Bayesian Criterion (SBC)

SBC = -2 ln(L) + k (ln(n) + ln(2π))

L = likelihood function
k = number of parameters,
n = number of observations.

Model Selection Criteria

Often Omitted for large n

Gideon E. Schwarz

Presenter
Presentation Notes
In statistics, the Bayesian information criterion (BIC) or Schwarz criterion (also SBC, SBIC) is a criterion for model selection among a finite set of models. It is based, in part, on the likelihood function and it is closely related to the Akaike information criterion (AIC).

When fitting models, it is possible to increase the likelihood by adding parameters, but doing so may result in overfitting. Both BIC and AIC resolve this problem by introducing a penalty term for the number of parameters in the model; the penalty term is larger in BIC than in AIC.

The BIC was developed by Gideon E. Schwarz, who gave a Bayesian argument for adopting it.[1] Akaike was so impressed with Schwarz's Bayesian formalism that he developed his own Bayesian formalism, now often referred to as the ABIC for "a Bayesian Information Criterion" or more casually "Akaike's Bayesian Information Criterion".[2]
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