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ABSTRACT 

 

 

 

EXLORING NEW APPROACHES TO UNDERSTANDING CHANNEL WIDTH AND EROSION 

RATES IN BEDROCK RIVERS, PUERTO RICO, USA 

 

 

 

Earth system dynamics produce constant adjustments to sea level, tectonics, and climate. Bedrock 

rivers communicate these changes throughout mountains by driving landscape and erosional responses 

that facilitate topographic change. It follows that an improved understanding of bedrock rivers can help us 

better model and reconstruct the interplay of changes to base level, uplift, and climate from landscapes. 

Although bedrock channel width plays a first-order role in river stream power and stream power-based 

landscape evolution models, because of the physical challenges associated with acquiring these data, 

channel width is often estimated and introduces uncertainty. In addition, the lack of bedrock channel 

width data has limited our understanding of what factors control channel width. In this dissertation 

(Chapter 2), I leverage high-resolution topographic data, Mean Annual Precipitation information, and use 

the HEC-RAS river modeling software to remotely derive bedrock channel width at desired flow 

scenarios. The accuracy of modeling results is verified for rivers in Puerto Rico using USGS gauging 

station field measurements, as well as my own channel width field measurements associated with 1-year 

recurrence interval discharges. As a next step, (Chapter 3) I implement the bedrock width modeling 

method derived in Chapter 2 to obtain >4,000 channel width measurements from reaches across Puerto 

Rico. I then compare these bedrock river width values to various factors (e.g. rock type and rock strength, 

drainage area, Ecozone, and grain size) that have been identified in the literature to scale with or influence 

channel width. My analyses indicate that, in Puerto Rico, rock type is a dominant control of bedrock 

channel width in small (6-10 km2) drainage areas. Contrary to patterns of rock strength and bedrock 

width documented in the literature (e.g. Montgomery and Gran, 2001), I find that width doesn't appear to 

correlate with proxies for bedrock channel strength. Strong granodiorites have the widest low-order 
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channels and the strong volcaniclastics and weak serpentinites have comparably narrow low-order 

channels. Analysis of limited grain size measurements shows a discernable difference in the coarse grain 

size distribution between the three rock types, with the volcaniclastic and serpentinite draining rivers 

having coarser sediment than granodiorite draining streams. These findings suggest that bedrock channel 

width may be influenced by unmeasured lithological parameters that impact the size of grains delivered to 

river channels from adjacent hillslopes (i.e. rock fracture density and spacing, as well as weathering). 

Lastly, (Chapter 4) I spatially analyze in-situ cosmogenic nuclide (10Be in quartz and 36Cl in magnetite) 

concentrations and find that bedrock erosion rates are higher in the central part of Puerto Rico than 

toward the east. Analysis of erosion rates compared to other parameters reveals that channel steepness, 

rather than precipitation or rock type, is positively associated with erosion rates. I further apply these 

erosion rate data to test the accuracy of four incision models of varying complexity. Model comparisons 

reveal that drainage area is a better predictor of incision rates in Puerto Rico than a precipitation-weighted 

drainage area parameter. In addition, whereas an increase in model complexity slightly improves model 

performance, the model only explains ~35% of the variability in erosion rates. It follows that current 

incision models are still missing many controlling factors of river incision rates in Puerto Rico. 
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CHAPTER 1: INTRODUCTION 

 

 

 

 Visiting Puerto Rico for the first time in 2019, I was surprised by the immense relief found in its 

mountainous interior. Known for its tropical beaches, I initially expected the topography on the island to 

be subdued relative to the steep Rocky Mountains that I was most familiar with. Yet as I walked up the 

trail to the top of Cerro de Punta (the highest point in Puerto Rico), breathing heavily as I sucked in the 

thick and humid air, I realized that I had underestimated the remarkably steep relief that characterizes its 

mountains.  

Even more humbling is the realization that bedrock rivers are responsible for carving out this 

steep topography, yet we still have a very limited understanding of how this occurs. Some studies have 

pointed toward variations in the frequency and magnitude of river discharge for setting the pace of 

incision (e.g. Baynes et al., 2015; Phillips and Jerolmack, 2016), whereas others have emphasized the 

significance of the sediment in the rivers that acts as a ‘tool’ or ‘cover’ to mediate the rate of incision (e.g. 

Sklar and Dietrich, 2004, Turowski, 2018). Others have identified even more controlling factors in river 

incision, including the influence of channel geometry, the climate, rock strength, slope, sediment supply, 

and the grain size of channel sediments (e.g. Montgomery and Gran, 2001; Lamb and Dietrich, 2009; 

Pfeiffer et al., 2017; Turowski et al., 2015; Neely and DiBiase, 2020). In this study, I focus on channel 

width because this is an above-water measurement that can be extracted using remote sensing imagery. 

With this dissertation, I provide a pathway toward enhancing our understanding of bedrock rivers 

and how they carve out the landscape. To achieve this goal, I begin (Chapter 2) by developing a method 

that enables me to efficiently and remotely extract bedrock channel width measurements of small (areas 

with channel widths <30 m) catchments from high-resolution Digital Elevation Models. This method is 

critical for the advancement of understanding bedrock rivers, as current data from bedrock rivers is sparse 

due to the expensive and logistically challenging nature of collecting field measurements in the steep, 

remote, and hard-to-access landscapes where bedrock rivers are typically found. Although satellite 
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imagery has become more available and is often used to remotely extract bedrock channel measurements 

(Allen et al., 2013; Yamazaki et al., 2019; Lin et al., 2020), the resolution and vegetation coverage in 

remote imagery often limits this method to large river systems and areas devoid of vegetation. In Chapter 

2, I utilize 1 m bare-earth LiDAR to extract a channel network, apply precipitation data to estimate river 

discharge at a desired location, and implement these data into the HEC-RAS flow modeling software to 

extract bedrock channel width of small catchments. I chose to perform this analysis and evaluate the 

method in Puerto Rico, as there exists high-resolution (~1 m) LiDAR across the island, it is located in a 

tropical landscape that is not impacted by snowfall, it contains a relatively high density of existing USGS 

gauging stations, and because its mountain rivers are generally sediment supply-limited bedrock rivers. 

My analysis in Puerto Rico enables me to efficiently glean hundreds of channel width measurements at 

desired locations along a stream network, across different bedrock types, and at various elevations. I 

verify this method by comparing modeled results to USGS field measurements at existing gauging 

stations, as well as field channel measurements. Through developing and validating a streamlined, open-

source, and freely available workflow of channel width extraction, I hope this method will be used in 

future research to improve the quantity of bedrock channel width measurements across the world, which 

can then be used to improve our understanding of bedrock channels. 

In Chapter 3, I apply my new bedrock channel width method to obtain > 4,000 channel width 

measurements from watersheds across Puerto Rico. Using these measurements, I analyze how river width 

changes across the landscape. As part of my analysis, I test the hypothesis that bedrock strength is a 

controlling factor of river width, with stronger bedrock producing narrower channels than weaker 

bedrock. Analytical results reveal that bedrock only appears to influence channel width at small (< 6-10 

km2) drainage areas, with a rather surprising result that the weaker rock is associated with narrower 

channels compared to the stronger rock. Interestingly, rock type does not appear to influence channel 

width at larger drainage areas. Grain size analyses show a lithological difference in bedload sediment size 

among the different rock types. I find that the narrower channels are associated with the rock types that 
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produce coarser bedload. This correlation suggests that even though bedrock channel strength does not 

have a direct influence on river width at larger (>10 km2) drainage areas, it may still have an indirect 

impact on channel geometry for lower order channels due to its influence on sediment grain sizes 

delivered to rivers. 

Lastly, Chapter 4 explores spatial differences in denudation rates across Puerto Rico and looks 

into the ability of simple bedrock incision models to predict these denudation rates. For this analysis, I 

perform in-situ cosmogenic nuclide analysis (10Be in quartz and 36Cl in magnetite) to derive catchment-

average erosion rates from river sands. I combine these results with existing cosmogenic-derived erosion 

rates to show that the central portion of Puerto Rico is associated with faster erosion rates than the east. I 

explore potential reasons for these erosional differences, finding that neither rock type nor precipitation 

appears to control erosion rates, but they may be tied to differences in the topographic steepness of 

bedrock river channels.  

Throughout this chapter, I also explore the importance of understanding bedrock rivers as a 

means to better predict erosion rates. This effort is important because it provides insight into how tectonic 

geomorphologists can improve landscape evolution models and better reconstruct past changes in 

tectonics and climate from topography. A breadth of models of various complexity have been developed 

to estimate incision rates, but few have been critically evaluated (Whipple, 2022). I thus end my 

dissertation (Chapter 4) by evaluating how well four existing bedrock incision models of various 

complexity predict erosion rates. As a culmination of the previous chapters, I calibrate the models by 

incorporating knowledge of bedrock channel width (derived in Chapter 3, using the method described in 

Chapter 2) and variations in precipitation. I apply the measured bedrock incision rates (Chapter 4) to the 

model results to evaluate whether added model complexity enhances prediction of erosion rates. 

Throughout the chapters of this dissertation, I explore ways to more efficiently extract bedrock 

channel width data, evaluate the potential factors that may control bedrock channel width, and evaluate 

how well models of different complexity and input parameters predict bedrock incision rates. It is my 
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hope that these developed methods and analyses spark ideas and discussion that will help to improve an 

understanding of bedrock rivers and enhance the performance of landscape evolution models. 
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CHAPTER 2: NEW REMOTE METHOD TO SYSTEMATICALLY EXTRACT BEDROCK 

CHANNEL WIDTH OF SMALL CATCHMENTS ACROSS LARGE SPATIAL SCALES 

 

 

 

2.1 Introduction 

River channel geometry measurements (e.g., slope and width) are essential in scientific and societal 

applications. Among other applications, channel geometry measurements are used in hydrologic models 

(Neal et al., 2015; Yanites, 2018), stream restoration studies (Kondolf et al., 2002; Nelson et al., 2015), 

and sediment transport models of alluvial rivers (Prosser et al., 2001; Merritt et al., 2003), used to explain 

bedrock channel sinuosity (Turowski, 2018), and implemented in bedrock-channel incision models to 

provide insight into the topographic, morphologic, tectonic and climatic history of an area (Finnegan et 

al., 2005; Allen et al., 2013; Fisher et al., 2012, 2013). Performing bedrock incision rate calculations, 

especially at a large spatial scale, requires knowledge of how channel geometry changes across the 

landscape. Whereas channel width is an important metric of channel geometry, many models simplify and 

account for this variable through a channel roughness parameter, and rather focus on estimating or 

measuring channel width and slope Analyses frequently assume spatial changes in channel width via 

scaling relationships between channel width and other more easily or typically measured proxies, such as 

drainage area or discharge (Knighton, 1998; Whipple and Tucker, 1999; Willett, 1999; DeLong et al., 

2007). Although empirical data support such scaling relationships, most measurements are from alluvial 

river systems, and the data used to derive the scaling relationships data show significant scatter (Whipple 

et al., 2022). 

Because of these limitations, researchers have recently taken advantage of the increasing accessibility 

to satellite imagery and remote sensing data to derive channel width measurements of large river 

(typically >30 m channel width) systems and some smaller river systems with minimal vegetation cover 

across broad spatial scales (e.g. Fisher et al., 2012, 2013; Allen et al., 2013; Allen and Pavelsky, 2018; 

Yamazaki et al., 2019; Lin et al., 2020). Although valuable, these data sets extract measurements from 
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one snapshot in time (not necessarily during comparable flow periods), typically use imagery that is 

limited in resolution (≥30 m), and are restricted to locations where vegetation cover does not impede the 

view of the river. Therefore, for all other scenarios—small river systems (e.g. areas with channel widths 

<30 m) and climates that allow for moderate to heavy vegetation growth—researchers largely rely on 

width measurements from field campaigns that are time-consuming, labor-intensive, often spatially 

limited in extent, and logistically challenging due to a lack of river access. As a result, field width 

measurements of bedrock channels, often found in steep, remote, and hard-to-access landscapes, are 

sparse, forcing researchers to generally embrace the use of scaling relationships derived from alluvial 

river systems to estimate channel width of bedrock rivers (Whipple et al., 2022). The use of such scaling 

relationships, however, might be inappropriate for bedrock channels. Bedrock channel width is a function 

of a multitude of factors beyond discharge (or, by proxy, drainage area), including rock uplift rate, 

bedrock lithology and rock strength, sediment supply, hydraulic roughness, vegetation, slope, and climate 

(Duvall et al., 2004; Finnegan et al., 2005, 2007; Whittaker et al., 2007; Walsh et al., 2012; Spotila et al., 

2015). Such studies highlight a current incomplete understanding in the literature of controls of bedrock 

channel width and the need to develop new remote sensing methods capable of measuring bedrock 

channel width across large spatial scales. 

Existing studies highlight the need for more field data on this parameter in bedrock channels, which 

would enable a better understanding of the factors that control channel width (Finnegan et al., 2005; 

Whipple et al., 2022). However, even when field channel width measurements exist, these data can be 

misleading for a number of reasons. As a dynamic stream variable, channel width changes according to 

the shape of the channel cross-section and the flow magnitude (i.e. discharge). As a result, field 

measurements of channel width must be acquired or referenced to the same flow magnitude. These flow 

conditions, however, can change in both space and time across a field campaign, limiting the ability to 

accurately correlate between the various measurements. Most bedrock channel studies do not know the 

reference flow conditions at the time of their field campaigns, and therefore turn to measuring “bankfull” 
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channel width—defined by Wohl and Merritt (2005) as the wetted channel width during “discharge that 

recurs on average every 1-2 years”. Because field data are typically not collected during such discharge 

conditions or streams are not gauged, and this reference discharge is unknown, the bedrock channel width 

is often measured using assumed “bankfull” indicators such as changes in bank geometry, a lack of 

vegetation, scour marks, or stains observed on clasts or bedrock (Wohl and Merritt, 2005; Lague, 2014; 

Turowski, 2018; Zondervan et al., 2020). However, where these “bankfull” measurements in bedrock 

channels can often be variable based on the subjective opinion of a particular observer or field personnel 

and differences in climate and speed of vegetation regrowth, likely leading to inconsistent results across 

different landscapes. Due to the ambiguities associated with collecting bedrock channel width field 

measurements, it becomes difficult to fully standardize, compare, and understand field measurements of 

channel width based on data derived from numerous field campaigns, researchers, and climates. These 

underlying limitations to the field measurements highlight the need to derive new methods for 

determining comparable values of bedrock channel width for moderate to small river systems across large 

spatial scales. 

In this research, I overcome these limitations by developing and presenting a new method to 

determine bedrock channel width that leverages the recent growth and availability of high-resolution 

bare-earth digital elevation products (e.g. LiDAR) to fill this data gap. I introduce a method for systematic 

(objective and under similar flow conditions), high-resolution bedrock channel width extraction. 

Recently, Bernard et al. (2022) implemented a similar method, employing a 2D morpho-hydrodynamic 

model to systematically extract channel width measurements from an approximately 17 km2 drainage 

basin using LiDAR. Although demonstrating promising results, the model output is effective flow width, 

which is not directly comparable to the reported wetted width of other studies, and the authors noted that 

results were not evaluated for accuracy nor compared to field measurements. 

In my  methodology, I employ TopoToolbox in Matlab in concert with a freely available and widely-

used hydrology modeling software (HEC-RAS) and a high-resolution Digital Elevation Model (DEM) to 
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perform this analysis in a way that does not require extensive coding experience from the end-user. To 

facilitate the application of this method, I present a general workflow of the analysis and a more in-depth 

user guide in the appendix (see User Manual). I validate this method by comparing model results with 

USGS gauging data and field measurements. Next, I automate this process in a case study of a watershed 

in Puerto Rico (Figure 2.1b and c). I chose to perform analysis in Puerto Rico due to the availability of 

high-resolution (~1 m) LiDAR across the island, because it is located in a tropical landscape that is not 

impacted by snowfall, the relatively high density of existing USGS gauging stations, and because its 

mountain rivers are generally sediment supply-limited bedrock rivers. My analysis in Puerto Rico enables 

me to efficiently glean hundreds of channel width measurements at desired locations along a stream 

network, across different bedrock types, and at various elevations. By validating this method and 

presenting its effective application, I hope to open avenues for researchers to extract bedrock channel 

width data more safely and efficiently from the watershed-to-landscape scale, and provide a process that 

can significantly increase the quantity of bedrock channel width measurements in small (<30 m wide) 

bedrock rivers. Although I acknowledge that deriving channel geometry from high-resolution DEMs has 

its limitations, this method provides a path forward to improving data richness and our understanding of 

bedrock channel width by taking advantage of the ever-increasing accessibility of global LiDAR data. 

2.2 Background 

2.2.1 Study Area 

The Caribbean Island of Puerto Rico is approximately located at 18°N and 66°W (~1,700 km 

southeast of Miami, Florida) and spans about 180 km from east to west and 60 km from north to south 

(Figure 2.1a-c). Its subtropical marine climate is relatively consistent year-round, with temperatures 

typically ranging between 70°F and 90°F (The Southeast Regional Climate Center, 2019). Northeast trade 

winds that cross the island generally determine precipitation and climate and are modified by tropical 

depressions, storms, and hurricanes (Ehlmann, 1968; Calvesbert, 1970). Precipitation patterns are 

orographically controlled, with the high-elevation northern portion of the island typically receiving the 
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most precipitation (mean annual precipitation of over 4,000 mm), whereas the flatter southwestern portion 

of the island tends to be the driest (with an average annual precipitation of approximately 732 mm) 

(Figure 2.1b; NOAA, 2011). 

Topography varies dramatically across the island and can be classified into three physiographic 

regions: the mountainous interior, the coastal lowlands, and the karst area (U.S. Geological Survey, 

1998). The mountainous interior is comprised of the Cordillera Central, which is characterized by highly 

deformed volcanic rocks and less deformed or undeformed plutonic rocks (mainly volcaniclastic and 

granodiorite, respectively) formed in the Cretaceous to Paleocene and early Eocene (U.S. Geological 

Survey, 1960) (Figure 2.1c). Towards the north and south of the island, the older volcanic rocks are 

overlain by younger (Tertiary in age), gently-dipping carbonates, and sedimentary rocks (Schellekens, 

1998). Reef Carbonates, deposited in the Oligocene to early Pliocene, which are generally located in the 

northern portion of the island, form the rugged and distinct karst topography (Moussa et al., 1987). In 

contrast, the coastal lowlands in the southern portion of the island are composed of Miocene to 

Quaternary sedimentary rocks that form a gentle topography (Volckmann, 1984). 

As noted above, I chose to test my new method in Puerto Rico for a variety of reasons. First, the 

island contains a high density of USGS monitoring stations (Figure 2.1b and c), with 73 gauging stations 

that monitor a cumulative drainage area of >7,000 km2 (equivalent to approximately 80% of the island 

area). Many of these stations further offer temporally continuous data, with some stations providing >60 

years records (Table A1). Second, Puerto Rico’s mild, subtropical climate offers an area devoid of snow. 

This was an important consideration, as snow can alter how precipitation is temporally and spatially 

received and processed by the landscape (e.g. water storage throughout the winter, and spring snowmelt 

discharges that are independent of the mean annual precipitation). Although Puerto Rico’s climate is 

characterized by a ‘dry’ and ‘wet’ season, the relatively consistent temperature across the year ensures 

minimal impact of a more extreme seasonality seen across different areas of the world. Finally, the 

crystalline rock types (the focus of this study) that comprise most of the mountainous topography on the 
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island are defined by predominantly bedrock channels where sediment transport capacity exceeds 

sediment supply. 

2.2.2 TopoToolbox in Matlab 

We used TopoToolbox v2—an open-source MATLAB-based software—to extract field-specific 

information and manipulate data inputs in preparation for flow simulations and river width measurements 

through HEC-RAS modeling. More specifically, TopoToolbox v2 (Schwanghart and Scherler, 2014), 

enables me to easily combine elevation data, geologic maps, and precipitation data into one set of layers, 

which in turn lets me systematically choose the specified modeling locations based on desired 

characteristics. Key TopoToolbox components used in Matlab included deriving the stream network from 

a LiDAR DEM by filling sinks in the DEM, calculating the drainage network at different locations, and 

calculating the steepness index of channel reaches. Through spatially extracting this information using 

TopoToolbox, my analysis is more flexible, as I can combine and overlay this data with existing USGS 

gauging discharge data, to better calculate parameters, such as discharge, that I then implemented into the 

HEC-RAS model. Lastly, TopoToolbox and Matlab were instrumental in automating our method, 

providing a base for me to develop a code that automatically created river network and cross-section 

shapefiles that could then be directly uploaded into HEC-RAS with limited user interference. 

2.2.3 HEC-RAS 

To efficiently route flows of desired discharges across channel networks derived from a LiDAR 

DEM of Puerto Rico, I turned towards the freely available HEC-RAS River Analysis System developed 

by the Hydrologic Engineering Center for the U.S. Army Corps of Engineers, and widely used across 

academic and professional river modeling fields. Due to minor bugs found in the more current version of 

HEC-RAS, I used version 5.0.7 (released in March 2019) for this analysis. Within HEC-RAS, I use a 1D 

Steady Flow hydraulic model rather than more computationally-expensive 2D models because (1) the 

streams I analyzed had a dominant flow direction with a known general flow path, (2) the streams are 

mainly characterized as steep bedrock channels with minimal overbank areas, and (3) my analysis lacked 
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detailed channel bathymetry information since I was using DEMs acquired through near-infrared LiDAR 

(1064 nm), which cannot penetrate through water. This reasoning and choice of employing a 1D 

hydraulic model is supported by the HEC-RAS 2D Modeling User Manual (Brunner, 2021). In addition, 

it is important to note that a 1D hydraulic model is substantially more computationally efficient and 

typically has fewer unconstrained parameters than the more complicated 2D models, allowing me to 

perform modeling simulations more efficiently across many locations in a larger landscape. Furthermore, 

as shown below, the simpler 1D model performs well in predicting observed data, suggesting that the 

additional computational expense of running a 2D model might not add much value. 

The 1D Steady Flow model in HEC-RAS generally uses the Energy equation to compute the 

energy grade line and water surface elevations across desired locations of interest under a given discharge 

scenario. Data requirements to run the model include geometric data and flow data. Geometric data are 

acquired by HEC-RAS through the input of a DEM (e.g. terrain model), river channel shapefiles 

(providing the river path, flow direction, reach length, river system schematic), and cross-sectional 

shapefiles (identifying the location and extent of desired cross-sections, drawn perpendicular to the flow 

lines). 

Flow data are entered into the program to establish the flow regime and boundary conditions. 

Because I am mainly modeling subcritical flow conditions, I define a water surface at the downstream end 

of the river network, which allows the hydraulic model to proceed with calculations in the upstream 

direction. When the downstream water surface is unknown—which is the case for my calculations—it is 

recommended to use an estimated water surface elevation above the channel bed. To avoid the impact of 

the downstream water surface boundary condition, it is recommended to extend the river network so that 

the study reach is well upstream (Figure 2.2; USACE, 2016). This allows model results to converge to a 

consistent answer once the computations reach the upstream study area (USACE, 2016). An additional 

model flow input includes the Manning’s n channel roughness coefficient, for which I used a n=0.05, 

representative of ‘normal’ values for mountain streams devoid of in-channel vegetation, characterized by 
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steep banks, and with channel bottoms comprised of mainly cobbles and large boulders (USACE, 2016). 

Based on field observations, I found this roughness value to best characterize bedrock channels in Puerto 

Rico, but also want to highlight the ability to easily modify this value based on variable types of river 

channels in different environments or locations (see User Manual). As a final flow input, I entered a 

desired water discharge for each river reach, which the 1D Steady flow model assumes remains constant 

across the length of the reach. 

A breadth of output parameters can be extracted from each model run, including channel width, 

average flow velocity, hydraulic radius, mean flow depth, shear stress, and total stream power. For this 

analysis, I mainly focused on the wetted channel width across a specific location of the reach, and thus 

primarily extracted this result (e.eg. reach-averaged width) across all cross sections and river reaches. 

2.3 Proof of Concept and Application in Puerto Rico 

In this paper, I explore a new method of obtaining channel width measurements remotely across a 

range of drainage areas. To demonstrate the method’s utility and accuracy, I first validate the method 

results by comparing these data with USGS channel measurements acquired at existing USGS gauging 

stations across different discharge scenarios. To bolster this analysis, I then conduct an island-wide 

comparison (providing for a large range in drainage areas) of channel width measurements from USGS 

gauging stations with modeled results under mean annual discharge scenarios. A third way that I validate 

my method is by comparing model results to my field measurements. Because these field measurements 

are not acquired near gauging locations, I explore the utility of a simple approach to estimate discharge of 

a given magnitude based on correlations with upstream mean annual precipitation. Having validated the 

method, I lastly examine the efficiency of the model by conducting analysis at a catchment scale, and 

perform first-order exploratory analysis of the results to demonstrate how these channel width 

measurements fit into the context of existing research of bedrock channels. 

2.3.1 Method Validation Using USGS Gauging Stations 
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To evaluate the accuracy and utility of the derived method, I compared modeled width 

measurements to USGS field measurements collected at 49 of the 73 gauging stations across Puerto Rico 

(Figure 2.1b and c). I eliminated stations draining carbonate bedrock to avoid areas potentially impacted 

by karst hydrology, and stations directly downstream of dams where flow is modulated and the mean 

annual discharge (MAQ) does not reflect natural changes in precipitation. I chose to use the USGS field 

measurements of channel width, as they are field data that have undergone a quality control process and 

are deemed of sufficient quality to be incorporated into the rating curve of the respective gauging station. 

In addition, these measurements included relevant data—namely channel width measurements—across 

different discharges. 

First, I used the mean daily discharge values across the time of record for each station to 

determine the MAQ at each gauged location that met my criteria. Next, I analyzed the USGS field width 

measurements, which provide insight into changes to the channel width at the same location across 

different discharge scenarios. Performing such verification across a range of discharge scenarios is an 

important aspect of validating the utility of the model, as width intrinsically varies with discharge; as 

discharge increases, so too does channel width. This relationship is expressed in the following power-law 

equation by Leopold and Maddock (1953). 

𝑤 = 𝑎𝑄𝑏    (Eq. 2.1). 

where w denotes channel width, Q is water discharge, and a and b are empirical constants. As a result, 

discharge has a first-order impact on the resulting modeled channel width. 

Because the USGS field measurements were collected both close to the gauge location and from 

distances of up to >215m from the gauging station, and my field observations at numerous gauging 

stations and rivers in Puerto Rico indicate that channel width often significantly varies across a ~215 m 

reach length, I decided to use the median modeled channel width values to compare the accuracy of width 

measurements between the USGS field measurements and the modeled results. Comparing the field 

measurements across different discharges and across various gauging station locations reveal that the 
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model did a reasonable job at predicting river width at different discharges (Figure 2.3a), with results 

generally mimicking Leopold and Maddock (1953)’s power-law behavior and often falling within one 

standard deviation of the binned field measurements at a comparable discharge (Figure 2.3b). 

To extract representative USGS field data at the MAQ across different stations, I calculated width 

measurements within ±0.5 m3/s of the calculated MAQ of each station (Figure 2.3c). From these data sets, 

I evaluated how well the median width field measurements (bounded by the maximum and minimum 

values) compared to the HEC-RAS model results (Figure 2.4a). Of the 49 stations that were analyzed, the 

median modeled channel width results fell within the USGS measurement range at 47 (or 96%) locations. 

At the two stations where the modeled result overestimated channel width, the modeled measurements 

were within 1 m of existing USGS channel width field measurements. The comparison of the USGS field 

measurements with the modeled results (Figure 2.4a and b) indicate that my method works well across 

different locations, discharges, and drainage areas that span over 3 orders of magnitude (~1 km2 to ~500 

km2). 

2.3.2 Model Validation with Field Measurements 

To further validate my method, I sought to compare my model results to field measurements that 

I collected across the island, largely at ungauged locations. During two field campaigns in March 2020 

and January 2022, I obtained 165 channel width measurements at 27 field locations, with an average of 6 

measurements at each location (Figure 2.1a and b). In the field, I used a laser rangefinder to measure the 

approximate bankfull channel width, which I assumed to be marked by a lack of vegetation along the 

channel banks. Considering the fast vegetation regrowth in Puerto Rico, I presume that my channel width 

field measurements reflect vegetative stripping and erosion that occurs during a discharge with a 1 to 2-

year reoccurrence interval (RI), and less frequently than the MAQ. 

Because discharge has a first-order impact on channel width, it is important to consider channel 

width across a similar reference flow. Deriving this reference flow, however, can be challenging at 

ungauged locations. Previous studies have used satellite-based measurements of mean annual 
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precipitation (MAP) as a proxy for calculating discharge at ungauged locations (Rossi et al., 2016; 

Desormeaux et al., 2022). Comparing MAP—calculated by averaging the mean annual precipitation 

obtained from the PRISM data set (PRISM Climate Group, 2022) across the respective location’s 

drainage basin—to the MAQ at the known USGS gauging locations reveals that MAP is a good proxy 

(r2=0.82) for predicting MAQ in Puerto Rico when assuming a power-law relationship (Figure 2.5, Figure 

A2). However, this strong positive relationship between the two parameters remains predictive but 

weakens when MAP is compared to the 1-year and 2-year return interval discharge magnitudes at these 

locations (Figure A1). As completed by Rossi et al. (2016), precipitation probability can be used with 

discharge frequency to improve this relationship, yet even in these scenarios, the strength of the 

relationship appears to degrade with increasing RI (Rossi et al. (2016) found an r2=0.48 for 2-year RI 

events). With this in mind, I may expect my 1 to 2-year RI discharge estimates derived from MAP to be 

underestimates of the true 1 to 2-year RI discharges at the field locations and the modeled channel widths 

using these estimated discharge data to produce lower channel width values. 

For comparison between modeled channel width and my field measurements, I chose to use the 

average channel width at the point of measurement because (1) field width measurements were collected 

close to one another (within an approximately 50 m reach, thus limiting large variations of channel width) 

and (2) measurements were largely normally distributed (Figure A3). 

A comparison between modeled (at MAQ, 1-year, and 2-year discharge scenarios) width and 

field width measurements shows that MAQ-based channel width modeling results are consistently lower 

than field measurements (Figure 2.6a and d). This supports my presumption that the field measurements 

reflect 1 to 2-year RI flow conditions rather than MAQ conditions. Although the modeled width 

measurements only fall within the range of field measurements at 18 of the 27 locations, there appears to 

be reasonable alignment between the modeled and measured width values when measurement error is 

considered (Figures 2.6b, c, e, and f). 
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Comparing modeled channel width with bankfull field measurements highlights the utility of this 

method in multiple ways. First, it emphasizes the subjectivity of bankfull field measurements, as these 

measurements can be delineated differently based on the subjective opinions of what bankfull looks like 

to various field personnel, disparities in the rates of vegetation regrowth, among others. In addition, the 

recurrence interval associated with these width measurements is largely unknown but is assumed to fall 

within a 1 to 2-year time frame. The discharge associated with such recurrence intervals is more difficult 

to predict at ungauged locations. However, analysis of the relationship between precipitation and 

discharge reveals that MAP can be used as a good predictor for MAQ (r2=0.82), but it does not predict the 

discharge of 1 and 2-year RI as well (r2=0.44 and 0.3, respectively). These results highlight the utility of 

using MAQ as a better predictor of the spatial pattern of discharge at ungauged stations. However, the 

comparison with my field measurements shows that the 1 and 2 year RI provides a better match to these 

data and suggests that my field measurements are consistent with typical bankfull definitions (Figures 

2.6b, c, e, and f). 

2.3.3 Automating the Method to Enhance the Quantity and Spatial Distribution of Bedrock Width 

Channel Measurements 

In the previous sections, I validated the accuracy of my method’s results by comparing modeled 

channel width measurements with both USGS gauging station data and my field measurements. These 

results show that my method, within 2 standard deviations of uncertainty, reproduces field-based width 

measurements at a given reference flow condition for a reasonable range of discharge magnitudes (Figure 

2.3a and b, Figure 2.4, and Figure 2.6). As a next step, I aim to use this method to gather channel width 

measurements remotely and efficiently with the intent of increasing the number of small (≤30 m width) 

bedrock channel width measurements obtained across the world. The general steps of modeling channel 

width are outlined in Figure 2.7. A more detailed and in-depth workflow designed to streamline the 

understanding of the modeling process and promote reproducibility of results is described in a User 

Manual with accompanying code found in supplemental files (Appendix A). The utility of the method to 
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produce unique analytical results of channel width is briefly explored below through a case study of the 

Caonillas watershed in central Puerto Rico (Figure 2.1b and c). 

Using my workflow (Figure 2.7), I extracted channel width measurements at 431 reaches across 

the Caonillas watershed (an approximately 125 km2 area; Figure 2.1a and b). In general, I systematically 

sample individual stream reaches that are 200 m in length and space out each analyzed reach in 500 m 

streamwise distance intervals. I eliminated reaches that were close to the Caonillas Reservoir or generated 

sampling locations that were less than 500 m in distance from one another. Four lithological units are 

encountered within the Caonillas watershed, including granodiorite (53%), volcaniclastics (36%), contact 

metamorphic rocks (2%), and sedimentary rocks/alluvial deposits (7%) (Figure 2.8a). The mean annual 

precipitation in the watershed appears to be closely linked to topography, with the highest precipitation 

values occurring in the areas of highest elevation (Figure 2.8b and c). 

For this analysis, I use MAQ as my reference discharge based on the relationship given in Figure 

2.5 and a map of mean annual precipitation, but I also ran similar simulations for the 1 and 2 year RI 

discharge magnitudes. It is important to note that my modeled width resolution is sensitive to the DEM 

resolution (~1 m2). Therefore, I consider width measurements that span twice the DEM resolution (~2 m) 

as reliable. For my MAQ reference flow condition, this width resolution corresponds to a drainage area of 

> ~1 km2, so I only analyzed river reaches ≥1 km2 after running the automated analysis. However, I note 

that higher magnitude reference discharges yield resolvable width results at lower upstream drainage 

areas. After filtering my results based on all of these considerations, 116 stream reaches remained for 

analysis in the watershed. 

Preliminary data analysis reveals interesting channel width trends and other metrics across the 

watershed. Analyzed channel measurements cover a large range of drainage areas, spanning two orders of 

magnitude (1 km2 to 104 km2). Results show a strong positive relationship between drainage area and 

channel width, with an increase in drainage area associated with a wider channel (Figure 2.9)—a trend 

that has consistently been recognized in the literature (e.g. Wohl et al., 2004; Duvall et al., 2004; DiBiase 
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and Whipple, 2011; Whipple et al., 2022).  Interestingly, the exponent of a power law regression through 

the data, ~0.47, is generally similar for the MAQ, 1 year, and 2 year recurrence interval reference 

discharges (Figure 2.9).  

Of the analyzed reaches, 46 (40%), 22 (19%), 48 (41%) and 0 (0%) locations were underlain by 

granodiorite, volcaniclastics, sedimentary rocks/alluvial deposits, and metamorphic rocks, respectively. In 

general, reaches underlain by granodiorite were located at lower elevations (median elevation of 750 m), 

whereas reaches underlain by volcaniclastics were located at higher elevations (median elevation of 882 

m and maximum elevation of nearly 1,100 m) (Figure 2.10a). Despite these elevation differences, reaches 

underlain by granodiorite and volcaniclastic bedrock had similar average channel width measurements 

(Figure 2.10b), whereas reaches underlain by sedimentary rocks or alluvial deposits were associated with 

the highest measurements of channel width (Figure 2.10b). The maximum modeled width at MAQ was 36 

m and located in an area underlain by sedimentary rocks, with the average channel width at MAQ 

discharge scenarios across all the reaches remaining at 6.6 m. Because channel width values have been 

shown to be correlated to the drainage area (Wohl et al., 2004), I further compare channel width by using 

the normalized wideness index (kwn), which is calculated by using the equation below: 

𝑘𝑤𝑛 = 𝑊𝐴−𝑏𝑟𝑒𝑓    (Eq.2.2), 

where W is the channel width, A is the drainage area, and bref is the reference wideness exponent 

(set to 0.47 based on my data) (Allen et al., 2013). Accounting for drainage area through the normalized 

wideness index shows that channels in this drainage basin that are underlain by granodiorite had, on 

average, narrower channels than those underlain by volcaniclastics and sedimentary rocks. 

Comparing width to basin average elevation reaffirms that volcaniclastics are generally limited to 

the higher elevations of the watershed, whereas granodiorites and sedimentary rocks can be found in both 

low- and high-elevation areas (Figure 2.11a and b). Figure 2.11b reveals that the variability of channel 
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width is larger for rivers underlain by granodiorites and sedimentary rocks, whereas it is mostly confined 

to channel widths <10 m for areas underlain by volcaniclastics. 

Lastly, I can compare the drainage area to the average channel width measurements of the 

Caonillas watershed to other datasets found in the literature and collected from across the world (Figure 

2.12). The Caonillas watershed fit of w ~1.97A0.47 falls in line with other hydraulic geometry relations in 

the literature (see Table 1 in Wohl and David (2008)); most notably with Montgomery and Gran (2001) 

and Tomkin et al. (2003). Comparing my preliminary analysis of the Caonillas watershed to alluvial fits 

further suggests that, with an increase in drainage area, bedrock channels in Puerto Rico increase in width 

at a faster rate than both mixed bedrock-alluvial rivers and gravel-bedded rivers (Figure 2.12). 

2.4 Discussion 

2.4.1 Implications and Outlook 

The coupled use of TopoToolbox with HEC-RAS provides a straightforward and relatively 

simple approach to derive channel width measurements at comparable flow conditions. Although the 

applications of this method are extensive, it especially offers an opportunity to improve bedrock erosion 

and incision modeling capabilities. The stream-power model—by far the most commonly used method to 

model bedrock river incision—expresses river incision as a function of bedrock erodibility, river 

discharge, and slope (Whipple and Tucker, 1999; DiBiase and Whipple, 2011; Perron and Royden, 2012; 

Lague, 2014). Despite its widespread use, the typically-used form of the stream-power incision model 

does not explicitly include channel width—a channel geometry measurement that plays a first-order role 

in influencing energy dissipation, and thus sets the pace of bedrock incision and channel erosion of 

bedrock river systems (Lavé and Avouac, 2001; Yanites and Tucker, 2010; Whipple et al., 2013; Lague, 

2014; Spotila et al., 2015; Yanites, 2018). Instead, the bedrock incision model relies on a simple drainage 

area scaling relationship where the drainage area exponent is thought to account for power-law scaling 

between width and drainage area or discharge. Importantly, the assumed drainage area:width scaling 

relationship is largely derived from alluvial rivers. Until now, the dearth of bedrock data in the literature 
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(largely due to physical constraints to gathering field data of bedrock channels) has driven researchers to 

assume that these scaling relationships are the same in both alluvial and bedrock rivers. At the same time, 

many have noted that, where bedrock field measurements exist, a more complicated story that is shaped 

by sediment supply, bedrock, slope, discharge, rock strength, and climate emerges (Finnegan et al., 2005; 

Wohl and David, 2008; Whipple et al., 2022) and widespread application of this method has the potential 

to better define and understand these controls that might lead to improvements of bedrock incision 

models. 

Having validated this method across dozens of field locations in Puerto Rico, I find that my 

workflow provides promise for disentangling these relationships and developing a better understanding of 

bedrock channel width where high-resolution topographic data are available and sufficient stream gauging 

data exists to approximate a reference flow condition across the landscape. This method has even greater 

future potential for research across the continental United States, where the USGS’s 3D Elevation 

Program (3DEP) is working to accumulate freely-available high (1 m) resolution airborne LiDAR data 

across the country (Stoker, 2022). As of the end of the 2021 fiscal year, the 3DEP program has acquired 

86% LiDAR coverage across the continental United States, and is on track to complete its data acquisition 

of the entire United States by the end of the 2026 fiscal year (Stoker, 2022). 

An additional advantage is the affordability and simplicity of data acquisition—requiring 

remotely sensed data, rather than expensive, risky, and time-consuming field campaigns. Gathering these 

data, therefore, becomes much more accessible for researchers with a limited budget. At a minimum, an 

increased number of bedrock channel width measurements can improve incision modeling results by 

either tailoring the simple scaling relationships specifically to bedrock rivers, or directly incorporating 

channel width into an incision model. On a broader scale, the ability to compare channel width 

measurement across an array of parameters can produce a better overall understanding of what impacts 

channel width, and, therefore, bedrock river geometry. 

2.4.2 Method Limitations 
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In light of the promising data results, I recognize that my presented method has a number of 

intrinsic limitations. Most importantly, my method relies on a bare-earth high-resolution DEM derived 

from LiDAR to measure the properties of river geometry. The near-infrared wavelengths are most 

frequently used for topographic LiDAR DEM applications, however, they generally cannot penetrate 

through water and produce accurate measurements of the channel bottom (McKean et al., 2011). As a 

result, my method routes a given flow over the water surface of the river at the time that LiDAR was 

conducted. With this in mind, I need to (1) assume that LiDAR was not collected during high flows, (2) 

limit the analysis and interpretation of water depth in my modeling calculations, and (3) recognize that 

channel width measurements likely become less accurate for larger rivers, where bed roughness is much 

less than water depth at the time of acquisition. Although this method can still predict a reference channel 

width above the discharge during LiDAR acquisition, I cannot use it to accurately determine rating curves 

(such as shown in Figure 2.3) for these larger rivers. In addition, I recognize that the LiDAR DEM I used 

for my method has a resolution of ~1 m. As a result, I only considered modeled river width measurements 

of ≥2 m, limiting my ability to capture width measurements of narrower, low drainage-area (ca. 1 km2) 

bedrock channels that may have width measurements close to this resolution. Although my preliminary 

analysis suggests that the method does a reasonable job at these small drainage areas (Figures 2.4 and 

2.6), selecting for only channels ≥2 m wide may bias the channel width measurements of small (≲1 km2) 

drainage areas. However, with higher resolution DEMs and higher magnitude reference flow conditions, 

this method can extend to lower drainage areas, thereby reducing this bias. Lastly, I applied the MAP to 

estimate discharge for ungauged areas, but realize that data results can be improved by using field 

discharge measurement methods (i.e. installing dataloggers to establish a stage-discharge rating curve, 

utilizing current meters, or employing artificial tracers) (Tazioli, 2011) or implementing water routing 

algorithms (Perumal et al., 2007; Corato et al., 2011). 

2.5 Conclusions 
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Through validating this workflow against both USGS gauging station data and field data, I have 

demonstrated the possibility of efficiently acquiring comparable bedrock channel width measurements 

across a large area without the need for expensive, often dangerous, and time-consuming field campaigns. 

By the implementation of similar flow conditions (at Mean Annual Discharge) across an area of interest, I 

show that this method further offers a way to reduce the subjectivity of field measurements and produce 

comparable results across different reaches and locations. As a result, I present an avenue for researchers 

to efficiently garner landscape- and watershed-scale bedrock channel width measurements that allow for 

comparisons among locations across the world that span a breadth of climates, vegetation abundance, 

river types, and flow regimes. My preliminary analysis of the Caonillas Watershed demonstrates the 

breadth of data that can remotely be acquired and analyzed through this process. By presenting a simple 

workflow and user guide in light of the increasing availability of high-resolution LiDAR data, I hope that 

this method can be used in the future to push forward the understanding in the literature of bedrock 

channel width, as well as improve the modeling capabilities of models, such as the bedrock incision 

model, that rely on channel width to produce reliable results. 
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Figure 2.1. (a) The location of Puerto Rico in relation to Florida and Cuba. (b) A map of Puerto Rico showing changes in the Mean 

Annual Precipitation across the island (PRISM Climate Group, 2022). The locations of USGS gauging data and field observations used 

to verify this method are further illustrated, as well as the extent of the Caonillas watershed (analyzed in Part 3). (c) A simplified 

geologic map of Puerto Rico, showing changes in bedrock lithology across the island. 

Figure 2.2. A cartoon based off of Figure 3-1 in the HEC-RAS Hydraulic Reference Manual, showing the placement of the study 

reach location (e.g. data values used) upstream of the starting boundary conditions, thereby limiting the effect that initial boundary 

conditions (such as an incorrect water surface elevation estimate) can have on the used data values (USACE, 2016). 

a. b. c. 

Figure 2.3. :(a) and (b) show raw USGS field measurements indicating changes in river width at Stations 50026025 and 

50075500, respectively, across different discharges. HEC-RAS channel width measurements generally produce 

measurements comparable to the USGS data. (c) Shows the raw USGS field measurements at Station 50020500. Gray 

points indicate all field measurements, whereas the black points are the measurements collected within 0.5 m3/s of the 

MAQ at the station (xxx m3/s), and the green point and associated error bars reflect the median width measurements, as 

well as minimum and maximum measurement. 
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Figure 2.4. (a) A comparison of modeled HEC-RAS width values in relation to USGS field measurements collected at 

comparable discharge values (MAQ). Error bars indicate 2 standard deviations of error. Most HEC-RAS width measurements 

(including error) fall on the 1:1 line, indicating that the model generally does a good job at predicting channel width 

measurements across different locations at the MAQ. (b) A comparison of modeled HEC-RAS width values in relation to 

USGS field measurements collected at comparable discharge values (MAQ), shown in relation to drainage area. Error bars 

indicate the maximum and minimum USGS field measurement values at each station. Most HEC-RAS width measurements 

fall within the variability in USGS field measurements collected at a comparable discharge across a wide span of drainage 

areas. 

a. b. c. 

Figure 2.3. :(a) and (b) show raw USGS field measurements indicating changes in river width at Stations 50026025 and 

50075500, respectively, across different discharges. HEC-RAS channel width measurements generally produce 

measurements comparable to the USGS data. (c) Shows the raw USGS field measurements at Station 50020500. Gray 

points indicate all field measurements, whereas the black points are the measurements collected within 0.5 m3/s of the 

MAQ at the station (1.48 m3/s), and the green point and associated error bars reflect the median width measurements, as 

well as minimum and maximum measurement. 
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Figure 2.5. A comparison of the Mean Annual Precipitation in relation to the Average Specific Discharge across the 49 gauging 

stations in Puerto Rico. The shaded area represents the 95% confidence interval. 1-year and 2-year RI discharges are associated 

with a reduction in R-Squared value (Figure A1). 

Figure 2.6. (a-c) A comparison of modeled average width and measured average width under a MAQ, 1- and 2-year discharge 

scenario. Error bars represent two standard deviation uncertainty. Measurements that fall on the 1:1 line indicate good 

agreement between field measurements and modeled width measurements. (d-f) Modeled channel width compared to field 

measured values, shown across different drainage areas. These results indicate a systematic underestimation of channel width 

at MAQ discharges, and support the use of 1- or 2-year RI discharge estimates for bankfull channel width measurements. 
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Figure 2.7. A general overview of the steps required to model channel width measurements. Bullet points outline relevant data 

products obtained from different inputs, or outline the general steps within a larger process. The hourglass symbols indicate the 

steps that take significantly more time (on the order of 1-3 hours) to process. 
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Figure 2.8.  (a) An image displaying the extent of the Caonillas watershed, with the landscape hillshade overlain by the geologic 

map. Changes in color indicate different lithological units. (b) A map of the variability in the Mean Annual Precipitation across 

the Caonillas watershed, as well as a (c) digital elevation model indicating changes in elevation across the drainage area. Red 

points indicate locations removed in the ‘filtering’ process, and yellow points show the final sampling locations. 

 

Figure 2.9. Average channel width of crystalline bedrock (n=116) compared to the drainage area of reaches found in the 

Caonillas Watershed. There appears to be a strong relationship (r2=0.80) between drainage area and average channel width. 
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Figure 2.10. A comparison of the distribution of (a) analyzed reach elevation, (b) average channel width, and (c) the wideness 

index according to bedrock lithology in the Caonillas watershed. 

Figure 2.11. A preview of parameters that can be analyzed from this method. Here, we compare changes in basin average 

elevation to (a) the wideness index, and (b) the average channel width. 
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Figure 2.12. A modified figure from Whipple et al. (2022), overlain by data from the Caonillas watershed. These results suggest 

that channel width of bedrock rivers in the Caonillas watershed increase with drainage area at a slightly faster rate than alluvial 

rivers and other mountain stream measurements collected across the world. 
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CHAPTER 3: VARIATIONS AND CONTROLS ON CHANNEL WIDTH IN TROPICAL 

BEDROCK RIVERS, PUERTO RICO, USA  

 

 

 

3.1 Introduction 

Bedrock channel width is a critical measure of channel hydraulics, as it affects the magnitude of 

shear stress imparted by a flow on the channel bed and plays a first-order role in determining bedrock 

incision rates (e.g. Finnegan et al., 2005; Whittaker et al., 2007; Turowski et al., 2009; Yanites and 

Tucker, 2010). It is also relevant to understanding the long-term evolution of mountains because bedrock 

rivers form the “backbone” of these landscapes, encompassing ~80-90% of mountain relief, and they set 

the lower boundary condition on adjacent hillslopes (Whipple et al., 2022). Despite its importance to 

various fields, bedrock channel width is rarely measured because bedrock rivers are often found in rugged 

topography that is physically challenging to access. Although satellite imagery has become more 

available and has expanded remote access to visual channel width extraction of rivers worldwide (Lavé 

and Avouac, 2001; Fisher et al., 2012, 2013; Allen et al., 2013; Yamazaki et al., 2019; Lin et al., 2020), 

data obtained through imagery is often either limited in resolution (typically ≥30m) or affected by 

physical obstructions (e.g. cloud cover or vegetation cover). In part due to these data limitations, 

researchers often estimate the bedrock channel width throughout a river network based on a drainage 

area-width or discharge-width scaling relationship, typically defined by a global compilation of data from 

mainly alluvial rivers (e.g. Finnegan et al., 2005; Whipple et al., 2022). Despite the utility of these scaling 

relationships, the main factor that determines bedrock channel width is still debated, again stemming from 

the scarcity of measurements.  

A variety of factors have been shown to influence channel width, but some of the most commonly 

invoked are bedrock lithology and rock strength, spatial or temporal variation in rock uplift, sediment 

supply, rainfall and associated discharge, and sediment grain size distributions. Montgomery and Gran 

(2001) analyzed surveys of bedrock channels in Oregon and Washington and found that rock material 
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strength played an important role in determining channel width. Their data, as well as that of other field 

studies, have found that more erosion-resistant material produces narrower channels (Wohl and Ikeda, 

1998; Montgomery and Gran, 2001). Others have found that width is further influenced by temporal or 

spatial variation in rock uplift rates (Finnegan et al., 2005; Whittaker et al., 2007; Amos and Burbank, 

2007). Sklar and Dietrich (2004) introduced the concept of sediment clasts as ‘tools’ or ‘cover’ that 

increase or inhibit channel incision, respectively. More specifically, transported sediment can act to 

increase bedrock channel incision through abrasion and plucking of exposed bedrock, or can act as cover 

to inhibit vertical incision and promote channel widening (Turowski, 2018; Baynes et al., 2020). 

Turowski and Hodge (2017) highlighted the temporal importance of this sediment supply, finding that 

when the sediment supply is variable, the recent supply history has a primary control on the balance of the 

‘tools’ and ‘cover’ in channels.  

In addition to the volume of sediment in the river, others have emphasized the role of sediment 

grain size in bedrock channel erosion. Studying gravel-cobble streams, Eaton et al. (2020) found that the 

coarse tail of the bed sediment distribution (D90) was a better predictor of controls on channel geometry 

relative to finer fractions (i.e. D50). Nativ et al. (2022) also highlighted the importance that larger clasts 

have on bedrock river incision, with field data from Taiwan pointing to an association between a higher 

concentration of rarely-mobile boulders and a widening of bedrock streams.  

Previous research on bedrock channel width has based their findings on limited (on the order of 

10s to 100s of river reaches) field and flume analyses. With the development of a new and remotely based 

bedrock channel width extraction method that combines high-resolution Digital Elevation Models 

(DEMs) with stream hydrology modeling software, I now have the opportunity to acquire a large number 

of bedrock channel width measurements across broad spatial scales (Chapter 2). Here I use this approach 

to extract bedrock channel width measurements across the tropical island of Puerto Rico to explore 

hypotheses regarding controls on bedrock channel width. Specifically, I seek to test the hypothesis that 

bedrock material strength plays a first-order role in determining bedrock channel width. In line with 
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Montgomery and Gran (2001)’s findings, I predict that in crystalline bedrock the stronger and more 

resistant rock type is associated with narrower channels, whereas the weaker and less resistant rock type 

is associated with wider channels. 

To test my hypothesis, I extract 4,184 individual bedrock channel width measurements from streams 

incising crystalline bedrock (predominately granodiorite, intermediate-to-mafic volcaniclastic, and 

ultramafic serpentinite units) using the method of Chapter 2. I then evaluate measured and normalized 

bedrock channel width across different physical parameters (i.e. by rock type, proxies for rock strength 

through Schmidt hammer measurements, drainage area, and sediment grain size) to explore whether 

lithology plays an important role in channel width, and to test the relationships between other properties 

identified as factors that can affect bedrock channel width. My analyses reveal that bedrock lithology 

appears to play a role in river width of small (<10 km2) drainage areas. At these small watersheds, the 

weaker rock is associated with narrower channels than the more resistant rock types. 

3.2 Setting 

In this study, I analyze channel width of crystalline bedrock rivers in Puerto Rico. Located in the 

Caribbean (18°N and 66°W; Figure 3.1a), Puerto Rico’s subtropical marine climate is defined by year-

round warm temperatures (typically ranging between 70°F and 90°F), ensures that precipitation is limited 

to rainfall (The Southeast Regional Climate Center, 2019)—thereby simplifying the potential influence of 

more extreme seasonal impacts of rain and snow. Puerto Rico is characterized by a dramatic variation in 

topography, with the crystalline bedrock forming the most rugged topography on the island (e.g. the 

central Cordillera Central mountain chain and the northeastern Luquillo Mountains), whereas sedimentary 

bedrock creates low-gradient topography toward the south, and carbonates form karst topography toward 

the north (Figure 3.1b and c). The steep and variable mountainous terrain associated with the crystalline 

bedrock makes Puerto Rico an ideal landscape for analyzing river width changes according to drainage 

area and channel slope. Lastly, Puerto Rico’s climate is characterized by highly variable precipitation that 

ranges from approximately 732 mm to over 4,000 mm of rain per year (Figure 3.1d; NOAA, 2011). The 
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volume of rainfall across the island is spatially modulated by an orographic effect of the mountains and 

temporally influenced by tropical depressions, storms, and hurricanes (Ehlmann, 1968; Calvesbert, 1970). 

With the mountains experiencing remarkable annual rates of rainfall, analyzing the crystalline bedrock 

rivers in this terrain provides an opportunity to test the influence of rainfall and discharge (identified as 

important factors in the literature) on channel width. Combining the topography, climate, and 

precipitation found on the island, the different parts of Puerto Rico can be simplified into 5 general 

classes of micro-climates or Ecozones (Figure 3.1e). 

3.3 Methods 

3.3.1. Channel Width Modeling 

The general method of modeling channel width for this analysis is detailed in Chapter 2. This 

approach uses high-resolution topography (preferably a LiDAR-derived DEM with ≤1 m resolution) and 

a one-dimensional backflow water equation solved in HEC-RAS (USACE, 2016). In this approach, one 

determines a stream reach of a given length (in this analysis, I used a length of approximately 200 m) and 

uses HEC-RAS to route flow through the stream segment at a given user-defined discharge and channel 

roughness. The stream reach is long enough to avoid edge effects associated with the downstream 

boundary conditions, and once the flow is modeled, channel width measurements (defined by the contact 

of the water surface and the channel walls) are extracted from the cross sections drawn along the stream 

segment. Cross-sectional channel width measurements located within approximately 50 m of the location 

of interest (typically 9-10 measurements, spaced 10 m apart) are combined to produce a mean or median 

channel width for each stream reach location. 

In this analysis, I model small (≥ two pixels wide) channels in Puerto Rico using a ~1m DEM 

derived from 2018 LiDAR campaigns (OCM Partners, 2022). Due to the large spatial extent (the island of 

Puerto Rico covers an area of  ~9,000 km2) of this analysis, paired with the high-resolution DEM, I 

divided the study area into smaller, more computationally digestible areas. Because I conducted my 

analysis using a stream-based approach, I decided to delineate the island based on the twelve-digit 
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hydrologic unit watersheds defined by the Watershed Boundary Dataset (U.S. Geological Survey, 2016). 

My emphasis is to compare bedrock channel width in crystalline bedrock, so I avoided estuaries and 

coastal rivers by imposing a 3 km buffer from the coastline. In addition, I also avoided carbonate bedrock 

that generally forms the karst topography on the island. Lastly, I did not analyze the watershed near the 

City of San Juan, as many rivers in this watershed appeared to be modified by urban development and 

would not be representative of unaltered bedrock rivers. 

We used a geologic map provided and digitized by the USGS (U.S. Geological Survey, 1998), as 

well as a raster data set of the modeled mean annual precipitation between 1963 and 1995 (PRISM 

Climate Group, 2022). To incorporate bedrock geology and isolate channels flowing over crystalline 

units, I used the unit descriptions to simplify lithology into 8 categories: carbonate, granodiorite, 

metamorphic, clastic sedimentary units, serpentinite, volcaniclastic, water, and other. Each of these 

datasets was aligned and resampled to the same resolution. 

In this analysis, I sought to analyze river width across a breadth of drainage areas. To balance my 

goal of including rivers with small (~1 km2) drainage areas with my DEM-based resolution limit of 

channels at least 2 m wide, I applied an estimated 1-year Recurrence Interval (RI) discharge to the model 

based on the results of Chapter 2. To estimate the 1-year RI at ungauged locations throughout Puerto 

Rico, I used (Chapter 2) an analysis of 47 USGS gauging stations in Puerto Rico with records spanning 

up to 60 years to define 1-yr RIs (Figure 3.2). They show that upstream average MAP at these stations is 

a reasonable proxy for the 1-yr RI (Figure 3.2). While simple, this scaling relationship between mean 

upstream MAP and 1-yr RI allows me to reasonably predict MAP at ungauged stations. See Chapter 2 for 

a detailed description of this approach. 

Once channel width was modeled and derived for each point, I conducted a series of post-

processing steps to filter out unwanted channels. First, I visually inspected the channels and channel 

networks in relation to satellite imagery and removed segments that appeared to be anthropogenically 

altered by development (for example, segments with 90-degree bends or straight segments bounded by 
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housing developments). Next, I only selected channel reaches that were located on crystalline bedrock 

(granodiorite, volcaniclastic, and serpentinite). I further only analyzed channels that received precipitation 

within the range of the USGS gauging stations that were used to calibrate the model—in my case, this 

limited me to areas that experience at least 1,500 mm precipitation per year. Due to the resolution 

constraints of the DEM, I chose to only analyze streams greater than 2 m in width at 1-year RI flow 

conditions. Because I did not want to directly modify the response variable, a preliminary analysis of 

channel width by drainage area allowed me to designate a minimum of 0.5 km2 drainage area for my data 

analysis where modeled channel widths are ≥2 m. 

Channel width systematically increases with upstream contributing drainage area (e.g. Wohl and 

David, 2008). To avoid this drainage area (or discharge) dependence and allow for comparison of channel 

width across different drainage areas (or discharge magnitudes), I calculate the normalized wideness 

index (kwn): 

𝑘𝑤𝑛 = 𝑊𝐴−𝑏𝑟𝑒𝑓    (Eq. 3.1) 

where W is the channel width, A is the drainage area, and bref is the reference wideness exponent (Allen et 

al., 2013; Lague, 2014). 

3.3.2. Field Methods 

We conducted pebble counts (Wolman, 1954) at 30 locations (12 granodiorite,13 volcaniclastic, 

and 5 serpentinite) to characterize grain size distributions (Table B1). From each pebble count, I counted 

a minimum of 100 pebbles at each site, and from these data, I extracted the clast size representative of the 

50th and 84th percentile, noted the bedrock lithology and calculated the predominate upstream rock type at 

each surveyed location. To estimate and compare the relative rock strength in the field, I used a Schmidt 

hammer—a small device that measures the approximate uniaxial compressive strength of bedrock 

(Goudie, 2006; Niedzielski et al., 2009; Zondervan et al., 2020). Using the Schmidt hammer rebound 

measurements as a proxy for rock hardness and erodibility, I collected relative rock hardness 
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measurements across 22 locations (7 granodiorite, 10 volcaniclastic, and 5 serpentinite) in unweathered 

bedrock channel outcrops (Table B1). Sites were selected to encompass a diversity of rock types, and at 

each site I took ~100 Schmidt hammer measurements to account for local variability of outcrops. I 

performed a total of 904 measurements of granodiorite bedrock, 821 measurements of volcaniclastic 

bedrock, and 473 measurements of serpentinite bedrock. 

Estimated biotic bankfull channel width measurements were collected in the field using a laser 

range finder. The channel width associated with 1-year RI discharges was estimated using field clues, 

including a lack of vegetation regrowth—an assumption that was validated through modeling channel 

width (see Chapter 2). For this analysis, all Schmidt hammer measurements were used to evaluate 

differences in rock strength based on lithology. Grain size distribution was only compared to channel 

width at field locations where these two methods overlapped (18 locations; Table B1). 

3.4 Results and Discussion 

3.4.1. Bedrock Strength, Erodibility, and Incision Process 

In this analysis, I evaluate whether bedrock channel width is primarily a result of lithological 

differences in rock strength. More specifically, I assess whether bedrock streams in Puerto Rico follow 

the trend found by Montgomery and Gran (2001)—where channels incised in more resistant bedrock were 

narrower than those in less resistant bedrock. In Puerto Rico, I focus on three primary types of crystalline 

bedrock: granodiorite, volcaniclastic, and serpentinite (Figure 3.1c).  

Median Schmidt hammer rebound values of 71 and 72 for granodiorites and volcaniclastics, 

respectively, suggest that the rock strength is not significantly different between the two rock types 

(Figure 3.3a). A much lower median rebound value of 25 in the serpentinite bedrock indicates that 

serpentinite is much weaker than both volcaniclastics and granodiorite (Figure 3.3a). While fracture 

density is not quantified in the field, the Schmidt hammer results are consistent with qualitative 

observations of fracture density, size and spacing among the three rock types (Figure 3.3b-d). Fracture 

characteristics are generally similar in bedrock channels in the granodiorites and volcaniclastics, although 



37 

there are more variable fracture patterns in the latter due to variations in bedding within these units 

(Figure 3.3b and c). The serpentinite units show much more pervasive fracturing than the granodiorites 

and volcanic clastic units (Figure 3.3b-d). In the field, I further observed that bedforms in the 

granodiorites and volcaniclastics largely consist of flutes and potholes, indicating a prevalence of abrasion 

as the dominant bedrock incision process relative to plucking (Figure 3.3b and c) (e.g. Whipple et al., 

2000; Whipple, 2004). The serpentines exhibit many of these same bedrock bedforms (indicating the 

dominance of abrasion), but also show more evidence of plucking in some locations (Figure 3.3d). 

Collectively, these measurements and observations suggest that the granodiorites and volcaniclastics have 

comparable bedrock strength and erodibility, whereas the serpentinites are weaker and more erodible. 

Furthermore, my observations suggest that the dominant incision process across all rock units is abrasion. 

3.4.2. Bedrock and Channel Width 

We compared modeled channel width by lithology across a range of drainage areas (0.5 km2 to 

>100 km2). The scaling for each bedrock unit shows that channel width changes differently with 

increasing drainage area across the units, where serpentinites and volcaniclastics show similar and higher 

sensitivity to drainage area, and granodiorite channel width is comparatively less sensitive to drainage 

area (Figure 4b-d). In addition, at small drainage areas <6-10 km2, reaches underlain by serpentinite are 

consistently narrower than those underlain by granodiorite and volcaniclastics (Figure 3.4a). These 

findings contradict my hypothesis that weaker lithological units would create wider channels. 

Because measured channel width can be correlated to drainage area, I further compared drainage 

area-normalized channel width by bedrock and found similar trends to the total channel width (Figure 

3.5a). These results can be statistically evaluated through a comparison of sample means. Analysis of 

variance (ANOVA) of channel width of drainage areas less than 10 km2 found that reaches underlain by 

granodiorites (n= 806) were significantly (p<0.001) wider than those underlain by volcaniclastics 

(n=2,603) and serpentinites (n= 124). The difference of means between reaches underlain by 
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volcaniclastics and serpentinites, however, was not significantly different. For drainage areas greater than 

10 km2, there did not appear to be a significant difference in average channel width across the population 

means (n=115 for granodiorites, n=530 for volcaniclastics, and n=6 for serpentinites). These results 

suggest that bedrock is an important factor in determining channel width at smaller (≤10 km2) drainage 

areas. 

Interestingly, my results show that in Puerto Rico, weaker bedrock is associated with the lowest 

normalized channel width index for rivers draining <10 km2, indicating that the weaker bedrock produces 

narrower channels. These results, therefore, contrast the findings of previous studies (e.g. Wohl and 

Ikeda, 1998; Montgomery and Gran, 2001). While the sample size is smaller for drainage areas >10 km2, 

the impact of rock type on the normalized wideness index is not clear, hinting at the potential of other 

controlling factors. 

3.4.3. Channel Width Across Ecozones 

Numerous studies have criticized the notion that bedrock channel width scales directly with one 

parameter, and suggest that width is rather the result of an interplay of multiple factors (for example 

sediment supply, hydraulic roughness, vegetation, slope, and climate) (e.g. Lague, 2014; Yanites, 2018). 

To account for covariation of rock type, topography, soil properties and vegetation—which can all impact 

geomorphic and hydrologic processes—we take a more generalized look at potential rock type controls on 

bedrock channel width by evaluating changes across microclimates or Ecozones (e.g. Holdridge 

Ecological Lifezones; (Holdridge, 1967; Ewel and Whitmore, 1973). The microclimates found in Puerto 

Rico encapsulate 5 Ecozones: dry forest, moist forest, subtropical wet forest, lower montane wet forest, 

and rain forest (Figure 3.1f). These Ecozones not only account for differences in precipitation (Table B2), 

but also differences in humidity and evapotranspiration (Figure B1), with the rain forest classification 

associated with areas of high rainfall and humidity, whereas the dry forest areas define sub-humid areas.  

A comparison of normalized channel width across different Ecozones and lithologies shows a 

similar trend to the aggregate dataset for small (<10 km2) drainage areas (Figure 3.6), where reaches 
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underlain by granodiorite are consistently significantly wider than those underlain by volcaniclastics and 

serpentinites. These results suggest that the lithological differences I identified previously persist across 

differences in precipitation and humidity, as well as elevation. The only Ecozone where there are no 

significant differences between granodiorite and the volcaniclastic and serpentinite lithologies is in the 

rain forest, which may suggest a precipitation and/or discharge threshold for defining the influence of 

lithology on channel width. However, limited data of channels within the rainforest limits conclusive 

analysis of a precipitation threshold influence on channel width. A comparison across the Ecozones 

further shows that, despite differences in measured rock strength, channels underlain by volcaniclastic 

bedrock are not significantly different than those underlain by serpentinites. Volcaniclastics and 

serpentinites, however, appear to generally be associated with significantly narrower channels than those 

underlain by granodiorite. 

3.4.4. Trends in Channel Width and Grain Size 

Above, I show that bedrock lithology influences channel width, and that the influence of lithology 

on this channel geometry measurement is the most pronounced for rivers draining ≤6-10 km2. In contrast 

to previous studies, however, I find that the weakest rock unit has the narrowest channels for a given 

drainage area, which generally persists across various Ecozones. Furthermore, the weaker serpentines and 

the stronger volcaniclastic bedrock show similar width characteristics, while the granodiorites with 

comparable strength to the volcaniclastic units have the widest channels for a given drainage area below 

~10 km2. As a result, bedrock channel rock strength alone does not appear to explain differences in 

channel width. Here, I explore other lithology-related factors that might influence bedrock channel width, 

namely the sediment grain size distribution. 

Other studies have noted that the grain size distribution of a river’s transported sediment can play 

an important role in bedrock channel incision and the resulting channel geometry (Turowski et al., 2015; 

Nativ et al., 2022). Although the explicit impact of grain size on channel width has not been resolved 

(Whipple, 2022), Nativ et al. (2022)’s analysis suggests that a larger proportion of large sediments (e.g. 
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boulders) may promote channel steepening and widening. To evaluate the possible role of grain size, I 

compared the median measured channel width to the grain size distributions at 18 locations throughout 

Puerto Rico, where both channel width measurements and pebble counts were conducted (Figure 3.1a, 

Table B1). 

Initial results that compare the median grain size diameter (D50) to channel width indicate a lack 

of correlation among both variables, as well as a lack of pattern between lithology and grain size (Figure 

B2). When comparing D84 grain size to the median channel width, the lack of correlation persists, yet a 

lithological pattern in grain size is revealed, reaches underlain by granodiorite have smaller grain sizes 

than reaches underlain by volcaniclastic and serpentinites (Figure 3.7c). The D84 grain size measurements 

clearly separate based on lithology, with volcaniclastics being associated with the largest grain sizes, 

whereas granodiorites are associated with the smallest grain sizes (Figure 3.7a). These results mirror the 

conclusions Pike (2008) discovered from their grain size analyses as well. 

Because results from my grain size analysis are based on a small sample size (n=18), I 

acknowledge that the results and interpretations that stem from them are preliminary and do not provide 

conclusive evidence. However, assuming the differences in grain size persist among the rock types and 

assuming that these grain size distributions impact sediment transport and channel incision thresholds, 

they may help explain the differences in channel width that I observed. Recognizing that my results are 

preliminary, I begin to consider how bedrock lithology indirectly impacts channel width by influencing 

the sediment grain size. 

Pulling from the concept of self-forming channels of alluvial rivers where channel hydraulics 

adjust to accommodate bed material entrainment, I might expect bedrock channel width to reflect the 

bedload grains that are transported by the river. Studying alluvial reaches, Brummer and Montgomery 

(2003) found that rivers with coarser sediment were associated with narrower and steeper channels. If 

bedrock rivers behave similar to alluvial rivers and all else (e.g. slope and discharge) is equal, it follows 
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that the coarser bedload in the volcaniclastic and serpentinite units would result in narrower channels than 

those carved out of the granodiorite units and associated with a finer grain size distributions. The basic 

idea is that the bedrock channels adjust their geometry to generate shear stress high enough to mobilize 

the bedload during typical flood conditions, albeit over longer timescales than alluvial rivers. Although 

more data is needed, these findings suggest that grain size properties may affect channel width. 

3.4.5. Other Possible Impacts on Bedrock Channel Width 

Although my dataset is limited, my preliminary results suggest that there is a rock type control on 

grain size that is unrelated to intact rock strength (measured with a Schmidt hammer). This finding 

suggests that differences in grain size based on lithology may be a consequence of other physical (e.g. 

fracture density and spacing) or chemical (e.g. weathering) parameters that I did not measure in this 

study. Previous research has found that differences and variability in fracture density and orientation may 

be responsible for controlling differences in the initial grain size of sediment that is added to the river by 

hillslope processes (Sklar et al., 2017; DiBiase et al., 2018), as well as the overall speed of erosion rates 

(Whipple, 2004; Molnar et al., 2007). As a result, a higher density of fractures is assumed to produce a 

faster-eroding rock (Becker et al., 2014; Scott and Wohl, 2019), which might also affect channel width. 

Our field observations found that the serpentinite units were more highly fractured than the granodiorite 

and volcaniclastic units, which would lead to faster eroding and wider rivers within the serpentinite units. 

However, our results reveal the opposite trend, with rivers underlain by serpentinites being narrower than 

the less fractured granodiorites, and not being significantly different than the less fractured 

volcaniclastics. Although this result suggests that fracture density may not play a first-order role in 

channel width in Puerto Rico, we recognize that we did not quantify fracture density in this analysis, and 

that more detailed observations are required to fully explore the impact of fracture density on channel 

width. 

In addition, future research should further investigate the feedback between fracture density, 

sediment grain size, and channel width. Previous research has found that fracture density directly controls 
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sediment grain size, with a higher fracture density associated with enhanced vertical channel incision 

(Lamb and Dietrich, 2009; Neely and DiBiase, 2020). Pfeiffer et al. (2017) moreover emphasized not just 

the sediment distribution of the transported sediment but also the importance of linking hydraulic 

geometry and grain size to sediment supply. Whereas my analyses point to a lithological control on grain 

size, which in turn may affect channel width, more measurements are required to prove this association 

and improve our understanding of the nuances of how lithology affects river width. 

Although many studies highlight the role that bedrock lithology and sediment grain size play in 

directly determining bedrock channel incision and width, others have emphasized the importance of the 

magnitude and frequency of the water that moves the sediment. Baynes et al. (2015) studied the exposure 

ages of a canyon in northeastern Iceland, which tied high-magnitude and low-frequency floods to 

significant bedrock incision in the canyon. Phillips and Jerolmack (2016), however, argued that moderate 

transport events—rather than floods—produce the most bedrock incision. Despite their contrasting 

conclusions, both studies emphasize how streamflow might play an important role in the timing and 

frequency of the ‘tools’ that act on the channel as to modify channel width. Although limited analysis of 

the recession curves of discharge records from stream gauges in Puerto Rico suggests a difference in the 

hydrograph (e.g. water discharge) based on rock type (Eidmann and Gallen, 2020), insight into the impact 

that water discharge has on bedrock channel width has yet to be explored in future analyses. 

One notable component of my results is the limited impact of lithology on larger (>6-10 km2) 

drainage areas. Studying five watersheds within the Luquillo Experimental Forest, Pike et al. (2010) 

found a similar trend at larger drainage areas. In their analysis, they attributed the lack of lithologic 

control at larger drainage areas to a transition to strong fluvial forces that they argued overrode boundary 

resistance and produced broader, basin-scale patterns (Pike et al., 2010). Another possible reason for the 

transition from rock-type dependent channel width to a less prominent lithological impact may be a 

change in proximity to landslides. Lower order streams will be more heavily affected by landsliding and 

the coarse grain sizes they carry with them. Studying debris flows in the tropical mountains of Brazil, 
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Lopes et al. (2016) found that river sediment was directly influenced by debris flows in drainage areas up 

to 6 km2 in size. Considering that landslides are the primary sediment delivery mechanism to rivers in 

Puerto Rico (Simon et al., 1990; Larsen and Parks, 1997; Larsen and Santiago-Roman, 2001), it follows 

that the grains they deliver will impact lower drainage area channels (i.e. hillslope dominated regimes) 

more so than those at higher drainage areas (i.e. fluvial dominated regimes) (see Figure 1 of Brummer and 

Montgomery, 2003).  

3.5 Conclusions 

In my analysis, I find that bedrock plays a first-order role in dictating channel width in small (≤6 

km2) drainage areas. In contrast to conventional thinking about the influence of rock strength on channel 

width, I find that the narrowest channels are associated with the weakest rocks (e.g. lowest Schmidt 

hammer rebound measurements), and the widest channels are found in the reaches underlain by the 

stronger granodiorite bedrock. Although the granodiorite and volcaniclastic bedrock had similar 

measurements of rock strength, there appears to be a significant difference in channel width across the 

reaches underlain by these rock types that prevails across different Ecozones.  

Although I find that the direct influence of lithology on bedrock channel width appears to become 

weaker as drainage area increases, grain size analyses indicate that lithology does influence the grain size 

distribution of sediment found in the rivers. Considering the role that sediment grain size and water 

discharge may have in creating self-formed bedrock channels, my analysis suggests a more nuanced 

influence of lithology on bedrock geometry at larger drainage areas. Future grain size analyses at both 

smaller and larger watersheds across different bedrock types may provide insight into the relationship 

between grain size, bedrock lithology, and channel width. 
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Figure 3.1. (a) a map of the Caribbean Islands and Florida, indicating in red the relative location of Puerto Rico. (b) A digital 

elevation model of the island shows that the topography of Puerto Rico is characterized by generally low-gradient terrain near 

the coast, and rugged mountainous terrain near the center. (c) The more mountainous terrain is largely comprised of 

Granodiorites, Volcaniclastics, and Serpentinites, whereas the low-gradient terrain is generally made up of carbonates and 

sedimentary bedrock. Black dots in each figure indicates the locations of modeled channel widths. 
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Figure 3.1(continued) (d) Precipitation across the island varies significantly, with the mountainous interior experiencing the 

highest rates of precipitation, whereas the southern part of the island is characterized by the driest areas. (e) Using the Mean 

Annual Precipitation values and gauging records from USGS gauges, we can derive the Average Specific Discharge associated 

with a 1-year Recurrence Interval (RI). These values can be multiplied by the upstream drainage area to estimate the 1-year RI 

discharge at a given location. (f) The  Holdridge Ecological Lifezones (e.g. Ecozones) that make up the micro-climates found 

in Puerto Rico (Ewel and Whitmore, 1973). Black dots in each figure indicates the locations of modeled channel widths. 
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Figure 3.3 (a) A boxplot comparing the distribution of Schmidt hammer rebound values for the crystalline bedrock 

found in Puerto Rico. Field measurements indicate that Serpentinite is significantly weaker than Granodiorite and 

Volcaniclastics, whereas the similar rebound values of Granodiorites and Volcaniclastics suggest that these two rock 

types have a similar rock strength. (b-d) Images of the three main types of crystalline rocks analyzed in this study. (b) 

Granodiorites were generally light in color and often rounded through abrasion. (c) Volcaniclastics appear darker 

than the granodiorites, with an uneven surface, as well as many observable flutes and potholes. (d) Serpentinites are 

medium gray in color and show evidence of fracturing as well as rounding through abrasion. 

Figure 3.2. (a) Using the Mean Annual Precipitation values and gauging records from USGS gauges, we can derive the Average 

Specific Discharge associated with a 1-year Recurrence Interval (RI). These values can be multiplied by the upstream drainage 

area to estimate the 1-year RI discharge at a given location.(b) A map of the locations of USGS gauging stations used to estimate 

of the discharge associated with a 1-year Recurrence Interval. 
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Figure 3.4. (a) A comparison of trends in channel width with drainage area. At drainage areas below 6 km2, channels 

underlain by Granodiorite are systematically wider than those underlain by Volcaniclastics and Serpentinite. (b-d) A 

comparison of channel width to drainage area, distinguished by bedrock type. R2 values of 0.99 reflect a high fit between the 

log-binned data points and the linear trendline. 

Figure 3.5. (a) A comparison between the drainage-area normalized channel width and drainage area. When channel width is 

normalized, channels underlain by granodiorite are still consistently wider than those underlain by serpentinites at drainage 

areas less than ~6-10 km2. The normalized channel width is further compared across (b) drainage areas equal to or less than 

10 km2 and (c) drainage areas greater than 10 km2. There does not appear to be a significant difference in normalized channel 

width within a lithological unit across different sizes of drainage area. 
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Figure 3.6. A comparison of drainage area-normalized channel width measurements across the different Ecozones in Puerto Rico. Asterisks indicate levels of significance 

between the population means, with * indicating a significance level of <0.05, and *** indicating a significance level of <0.001. Volcaniclastics and granodiorites appear to 

have significantly different channel widths across all Ecozones apart from the Rain Forest. 
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Figure 3.7. (a) A compilation of the grain size distribution according to bedrock, where thin lines represent individual sampling 

locations and thick lines include the entire data set for each rock type. Volcaniclastics appear to have the highest distribution of 

larger rocks, whereas channels that incise into granodiorite and serpentinite appear to have similar proportions of large grains. 

There appears to be a lack of association between grain size and both (b) drainage area and (c) measured channel width. 

Nevertheless, there appears to be a distinct difference between the clast sizes of the 84th percentile grain size distribution. 
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CHAPTER 4: NEW INSIGHTS INTO SPATIAL DIFFERENCES IN EROSION RATES AND 

PREDICTIVE INCISION MODELS IN PUERTO RICO, USA 

 

 

 

4.1 Introduction 

Changes in tectonic and climate conditions drive adjustments in landscape topography by 

changing erosion rates in space and time. In mountainous landscapes, these modifications are imposed by 

bedrock rivers, which process changes in uplift rates and base level elevation and transmit the signal of 

these changing boundary conditions throughout the landscape (Whipple and Tucker, 1999; Wobus et al., 

2006). Understanding the factors that affect erosion rates governed by bedrock rivers in mountainous 

settings and testing existing models that predict these erosion rates is a fundamental goal of many 

landscape evolution studies. One technique that has been used to determine centennial-to-millennial scale 

erosion rates in mountainous landscapes is through dating in-situ cosmogenic nuclides of sediments found 

in bedrock rivers.  

The application of in-situ cosmogenic nuclides to determine erosion rates is built on the premise 

that cosmic rays from the sun bombard the Earth’s surface, which interact with particles in the 

atmosphere and surface materials to produce cosmogenic nuclides. With knowledge of the production rate 

(modulated by latitude and erosion), attenuation length scales in earth materials and half-life of a given 

nuclide, I can use the concentration of a nuclide to derive the exposure age or the denudation rate of a 

given sample; the surface concentration being inversely proportional to the erosion rate (Granger et al., 

2014; von Blanckenburg and Willenbring, 2014; Schaefer et al., 2022). In river systems with minimal 

storage and geologically rapid sediment transport times, such as in mountainous settings, and assuming a 

well-mixed sample that evenly reflects hillslope denudation of the upstream catchment, analysis of 

nuclide concentrations in river sediments can thus provide insight into the catchment-average erosion rate 

of a watershed (Bierman and Steig, 1996; Granger et al., 1996). 
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In this study, I compile existing- and generate new in-situ cosmogenic nuclide-derived basin 

average erosion rate in the subtropical island of Puerto Rico in fluvially-dominated bedrock catchments to 

explore spatial patterns of erosion and lithologic, climatic and topographic controls on erosion and test the 

ability of several commonly used river incision models to predict these erosion rates. Located at the 

boundary between the North American and Caribbean plates, Puerto Rico is tectonically active and has a 

diverse suite of basement rock types and climates. Several studies using cosmogenic nuclides have been 

published in Puerto Rico (Brown et al., 1995; Riebe et al., 2003; Brocard et al., 2015). Although these 

analyses have produced several erosion rates (n=16 samples), most of the samples are spatially limited to 

the El Yunque National Forest of the Luquillo Mountains (Figure 4.1). In addition, these studies all use 

10Be in-situ cosmogenic nuclide to derive catchment-average erosion rates, which limits sampling 

locations to areas underlain by quartz-rich granodiorites and prohibits analysis of areas with lithologies 

devoid of sufficient concentrations of quartz. It follows that spatial variations in erosion rates across 

Puerto Rico remain largely unknown, and that data is limited to erosion rates of only the granodiorites 

found on the island. With these limitations, an understanding of what controls erosion rates in Puerto Rico 

remains largely unknown. 

Bedrock river incision models are often used to better understand and reconstruct topographic 

change and relate them to tectonic and climate signals. Although several mathematical river incision 

models exist, the detachment-limited stream-power incision model is the most frequently used method to 

approximate river incision (Whipple and Tucker, 1999; DiBiase and Whipple, 2011; Perron and Royden, 

2012; Lague, 2014). This model calculates incision, I, as: 

𝐼 = 𝐾𝐴𝑚𝑆𝑛    (Eq. 4.1), 

where K is erodibility, A is upstream contributing drainage area (a proxy for river discharge, Q), S is the 

slope, and m and n are empirically-derived exponents where m/n falls near 0.5 (0.35 ≤ m/n ≤ 0.60) 

(Howard and Kerby, 1983; Whipple and Tucker, 1999). 
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The detachment-limited stream-power incision model is widely used across landscape evolution 

analyses, as it is grounded on simplicity—requiring three input parameters (K, m, and n)—and 

incorporates simple geometric constraints (e.g. drainage area and slope) that are easily obtained from 

Digital Elevation Models (DEMs). Whereas the simplicity of the model is a quality that led to its 

widespread application, this aspect of the model also becomes its largest weakness. A breadth of studies 

have shown that incision rates are determined by an interplay of multiple dynamic processes, and is 

sensitive to variations in factors such as channel geometry, sediment supply, grain size, sediment flux, 

threshold effects, and discharge dynamics (Lavé and Avouac, 2001; Finnegan et al., 2007; Turowski et 

al., 2008; Lague, 2014). These factors, moreover, can vary both in time (e.g. stochasticity of floods and 

mass wasting events across thousands of years) and space (e.g. differences in river roughness and 

lithology). Because it is difficult to capture this variability through two geometric constraints (drainage 

area and slope), two empirical exponents (m and n), and one erodibility value (K), the predictive 

capabilities of this model are not necessarily universally suited for analysis across all fluvially-dominated 

bedrock landscapes (Lague, 2014). As a result, many have suggested the use of more complex versions of 

the detachment-limited stream-power incision model that include many of the dynamics named above 

(e.g. grain size, sediment supply, channel geometry, weathering, stochasticity of extreme floods) (Benda 

and Dune, 1997; Whittaker et al., 2007; Attal et al., 2011; DiBiase and Whipple, 2011; Lague, 2014). 

From this discussion stems the questions: is the basic stream power incision model too simple; does 

added complexity improve incision rate predictions at a landscape scale, or does it unnecessarily 

overparameterize the relationship between channel attributes and catchment incision rates?  

In this paper, I conduct analysis of in-situ terrestrial cosmogenic nuclides (10Be in quartz and 36Cl 

in magnetite) from Puerto Rico to expand spatial coverage of basin average erosion rates in fluvially-

dominated bedrock catchments on the island. With these data I (1) evaluate spatial patterns of potential 

controls (e.g. lithology, precipitation, and topography) on erosion to better understand what drives erosion 

in Puerto Rico, and (2) test four versions of varying degrees of complexity of the stream power incision 
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model to explore whether more complex models produce better estimates of incision rates. Although I 

compare model results to cosmogenic nuclide concentrations, it should be noted that these results are 

similar but can be fundamentally different, as the model predicts bedrock incision, whereas the 

cosmogenic concentrations measure hillslope denudation rates. In this analysis, we, therefore, assume that 

bedrock incision is directly coupled with hillslope erosion. 

4.2. Setting 

 I chose to perform this analysis in Puerto Rico—an island ~9,000 km2 in area that is located in the 

Caribbean, approximately 1,700 km southeast of Miami, Florida (Figure 4.1a). Puerto Rico is 

characterized by a notable variety in landscape topography; its northern landscape is composed of 

carbonates (Oligocene to early Pliocene in age) that form a karst topography (Moussa et al., 1987; 

Schellekens, 1998), whereas both deformed and undeformed plutonic rocks (mainly volcaniclastic and 

granodiorite rocks Cretaceous to Paleocene and early Eocene in age) make up the steep mountains found 

in the central and northeastern parts of the island (U.S. Geological Survey, 1960) (Figure 4.1). 

Sedimentary rocks (Miocene to Quaternary in age) comprise the low-relief and low-elevation southern 

areas of the island (Volckmann, 1984). In addition, due to its location along the North American and 

Caribbean plate boundary, Puerto Rico has a tectonically active geologic history. Most recently, it is 

thought that Puerto Rico experienced a pulse of uplift ~4-5 million years ago (Brocard et al., 2015). As a 

result, the landscape reflects a state of dynamic equilibrium, with areas of low-relief relict surfaces 

(incised prior to the latest pulse of uplift) and areas that have been actively incised within the past 4-5 

million years (Brocard et al., 2015). 

 The mild, subtropical climate in Puerto Rico is defined by annual ‘dry’ and ‘wet’ seasons that 

occur from December to March and April to November, respectively (Murphy et al., 2017). In addition, 

precipitation across the island is closely tied to topography: the high-elevation mountainous regions 

generally receive the highest annual rates of precipitation (up to over 4,000 mm/year), whereas the low-

lying southern portion of the island tends to be driest (NOAA, 2011). Despite these topographic 
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differences in precipitation, northeast trade winds, tropical depressions, storms, and hurricanes determine 

the overall precipitation patterns at a larger, island-wide scale (Ehlmann, 1968; Calvesbert, 1970). 

4.2.1. Existing Cosmogenic Nuclide Catchment Average Erosion Rate Studies 

 In this paper, I use cosmogenic nuclides to estimate catchment average erosion rates. Prior to my 

study, numerous other research efforts (e.g. Brown et al., 1995; Riebe et al., 2003; Brocard et al., 2015) 

provided 10Be concentrations from catchments mostly located in the El Yunque National Forest of the 

Luquillo Mountains (Figure 4.1). In their analyses, Brown et al. (1995) highlighted differences in 

cosmogenic nuclide concentrations associated with different grain sizes, finding that results from large 

(>2 mm) grain sizes reflected erosion rates from landslide material, whereas results from the fine (<2mm) 

sediment fractions expressed long-term erosion rates (further supported through work by Belmont et al., 

2007). With this in mind, I compiled 16 existing 10Be cosmogenic nuclide concentrations derived from the 

sand-size fraction (<2 mm grain size diameter) of fluvial sand samples and recalculated basin average 

erosion rates to standardize calculations across these studies (see detailed methods below) (Brown et al., 

1995; Riebe et al., 2003; Brocard et al., 2015). Because these existing samples are largely spatially 

limited to the northeastern mountainous portion of the island that is underlain by granodiorite bedrock 

(rich in 10Be-bearing quartz), in this analysis, I seek to expand our understanding of erosion rates both 

spatially and lithologically. To achieve this goal, I analyzed 23 additional samples (at a grain size of 250-

710 μm) obtained in both the central and western portions of Puerto Rico and collected from both 

granodiorite- and volcaniclastic-draining river catchments. Although the quartz-rich samples obtained 

from granodiorite catchments enabled me to perform 10Be analysis on most (n=21) samples, I turned 

towards 36Cl analysis of magnetite to derive catchment average erosion rates of samples (n=2) 

predominantly draining volcaniclastic bedrock (Bierman and Steig, 1996; Moore and Granger, 2019). 

4.3 Methods 

4.3.1 Empirically Calibrating the Model 
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4.3.1.1. An Evaluation of Detachment-limited Bedrock Incision Rate Models of Various Complexities 

In this analysis, I seek to compare and evaluate the effectiveness of four stream-power bedrock 

incision models—each of which presents a variation in the detail and complexity of the basic model (Eq. 

4.1). The first model (Model 1) incorporates Flint’s Law (Flint, 1974), which states that local channel 

slope scales with drainage area: 

𝑆 = 𝑘𝑠𝑛𝐴−𝜃   (Eq. 4.2), 

where ksn is the channel steepness index, A is the upstream contributing drainage area, and Ɵ is the 

channel concavity index (equivalent to m/n in Eq. 4.1). Rearranging Eq. 4.2 to solve for ksn as a function 

of slope and area and assuming the concavity index equals the ratio of m to n, my first model uses channel 

steepness and erodibility to estimate incision: 

𝐼 = 𝐾 𝑘𝑠𝑛𝑛     (Eq. 4.3; Model 1) 

Whereas the channel steepness index (ksn) is typically derived by normalizing slope by the drainage area 

(Eq. 4.2), channel steepness can also be expressed as a function of stream discharge, often assumed to be 

approximated by upstream drainage area weighted by the distribution of mean annual precipitation (e.g. 

Pederson and Tressler, 2012; Yang et al., 2015; Adams et al., 2020). Model 2 is a variant of Model 1, but 

uses a discharge-normalized steepness index (ksnq) rather than the traditional drainage area-normalized 

version of this metric given by Eq. 4.2. 

In Model 1, the shear stress imposed on the bed is estimated through the channel steepness index, 

ksn. As a result, the simplified model assumes that channel steepness and shear stress are both directly 

proportional to the incision rate. Others (e.g. Tomkin et al., 2003; Lague et al., 2005; Gallen and 

Fernandez-Blanco, 2021; Turowski, 2021), however, have noted that the shear stress imposed on the bed 

is better parametrized by directly including measurements of channel geometry and basin characteristics. 

Chaplin (2005) found that discharge scaled with drainage area, and (Whipple et al., 2013) demonstrated 
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that drainage area also scales with river width. As a result, an alternate method of estimating incision 

would be to include drainage area rather than discharge: 

𝐼 =  𝐾𝑤((𝐴𝑤)𝛼𝛽 𝑆)𝑛𝑤   (Eq. 4.4; Model 3). 

Lague et al. (2005) suggested a similar model, but included characteristics of river discharge—rather than 

drainage area—into the landscape evolution model: 

𝐼 =  𝐾𝑤((𝑄𝑤)𝛼𝛽 𝑆)𝑛𝑤     (Eq. 4.5; Model 4), 

where Kw is the long-term efficiency coefficient, Q is discharge, w is channel flow width, α and β are 

hydraulic friction law parameters, and nw is the slope exponent (typically estimated to be about 0.7) 

(Lague et al., 2005). Assuming a Darcy-Weisbach relation α and β are both 2/3, and the ratio of these two 

parameters is typically assumed to be ~1 (Howard et al., 1994; DiBiase and Whipple, 2011).  

4.3.1.2. Discharge Estimation  

Because discharge measurements are not available in the areas of interest, I use the Mean Annual 

Precipitation (MAP) (PRISM Climate Group, 2022) as a proxy for estimating discharge in the models 

(Allen et al., 2013, Chapter 2). Previous analysis in Puerto Rico that compares the MAP-based estimates 

of mean annual discharge (MAQ) to that of existing USGS gauging stations reveals a power-law scaling 

relationship between precipitation and measured discharge values. The high r2 value (r2=0.82) of this 

relationship demonstrates that such MAP-based estimates are a good proxy for mean annual discharge at 

ungauged locations (Figure 4.2). 

4.3.1.3. Channel Width Measurements 

Although all models may produce theoretically valid approximations of incision rates, Whipple et 

al. (2022) highlighted a need for such models to be tested through new data and observations. In addition, 
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model performance can be altered not only by the addition or omission of specific variables, but is also 

dependent on the quality of the data that is incorporated into the variables. In this analysis, I use a channel 

width estimate of W ~3.76A0.44—a model width estimate based on an analysis of 4,184 modeled channel 

widths (Chapter 3) derived from a new automated approach (Chapter 2). Once this data is incorporated, I 

test how well these four models predict erosion rates by comparing the model outputs to measured basin-

average erosion rates (derived from cosmogenic 10Be and 36Cl concentrations in river sediments) in Puerto 

Rico.  

4.3.1.4. Calculating Model Parameters 

 Parameters included in the tested models include an erodibility constant (K), the channel 

steepness index (ksn), and n. To perform model calculations, I first evaluated the concavity index (m/n) by 

minimizing the variance of elevation values (acquired from the DEM) along the stream network. Through 

this method I achieved a concavity index (or m/n value) of 0.46, which is close to the typically used value 

of 0.45 (Wobus et al., 2006; Kirby and Whipple, 2012), which I use in all subsequent analyses. Using this 

value, I calculated χ, which integrates the inverse of drainage area over a stream-wise distance: 

𝜒 = ∫ ( 𝐴𝑜𝐴(𝑥))−𝑚 𝑛⁄  𝑑𝑥𝑥′𝑥𝑏      (Eq. 4.6), 

where xb and x’ are distance at an arbitrary based level and at the channel head, respectively, Ao is the 

reference drainage area, here taken as 1 m2, A(x) is the drainage area at a given stream position, and m and 

n are the same exponents as in Eq. 4.1. Through transforming the stream distance by calculating χ, I am 

then able to obtain channel steepness index values by regression of elevation versus χ data from the river 

network (Perron and Royden, 2012). Similarly, I can calculate ksnq by calculating χq, which is similar to 

above but done by integrating the inverse of my discharge proxy rather than drainage area.  

In Model 1, I calculated ksn by first deriving elevation and χ values within a given window size (in 

my case a window size of 500 m), and performing a linear regression of these data. The Model 2 ksnq was 

calculated similar to ksn for Model 1, but instead of using the drainage area, I used a precipitation-
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weighted drainage area (obtained from the MAP raster) (PRISM Climate Group, 2022). In Model 3, 

(𝐴𝑤)𝛼𝛽 𝑆 represents a width-normalized channel steepness value. To calculate this value, I extracted 

upstream drainage area and the smoothed river elevations using a 500 m moving window average before 

calculating local slope. I calculated width using the method detailed above (see Section 4.2.3). For Model 

4, I performed the same width-normalized steepness calculations used in Model 3, but replaced drainage 

area with the precipitation-weighted drainage area discharge proxy, Q. Once these parameters were 

obtained for each method, I performed a power-law regression between the channel steepness value and 

measured erosion rates to obtain values for erodibility (K) and n values associated with each model.  

4.3.2. Measuring Cosmogenic Nuclide Catchment Average Erosion Rates 

For this analysis, I sought to expand upon the existing cosmogenic nuclide data set to obtain a 

better understanding of how erosion rates change both spatially across the island and across differences in 

lithology. Because the in-situ cosmogenic nuclides are derived from quartz grains, existing measurements 

are lithologically confined to the granodiorite bedrock that covers only ~10% of the island (Figure 4.1). In 

this analysis, re-analyze existing 10Be concentrations from the literature along with 23 new samples 

presented in this study. I obtain additional erosion rates using two methods, 1) through the 10Be 

cosmogenic nuclides found in the quartz grains of the granodiorite bedrock, and 2) through the 36Cl 

concentrations found in the magnetite minerals of the volcaniclastic units (Moore and Granger, 2019). By 

using both dating methods, I am able to extend our understanding of erosion rates both spatially across 

the island, and also to the volcaniclastic rocks that comprise a significant (~40%) portion of Puerto Rico’s 

land area (Figure 4.1). 

To obtain samples for cosmogenic nuclide analysis, I sieved (250-710 micron grain size) and 

collected approximately 0.5 kg of sand at each sampling location (Figure 4.1). For this research, 8 

samples (KSH-01 to KSH-08) were collected by K. Stephen Hughes, and both processed and analyzed by 

the Purdue Rare Isotope Measurement (PRIME) laboratory, 12 samples (PR-05, PR-14, PR-16, PR-18, 
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PR-19, PR-23, PR-25, PR-27, PR-29, PR30, PR-37, and PR-39) were processed at CSU and the 

University of Vermont (UVM) and analyzed at PRIME, and 5 samples (PR-21, PR-23, PR-31, PR-39, 

and PR-42) were processed at the PRIME laboratory for 36Cl. All samples were first dried in the oven, 

and a Frantz Isodynamic Laboratory Separator was used to split magnetic grains from non-magnetic 

grains. For samples analyzed for 36Cl, the magnetic grains were then sent to the Purdue cosmogenic lab 

for processing and analysis. For samples analyzed for 10Be, the non-magnetic grains were used. 

Sample preparation of the magnetic grains to be analyzed for 36Cl followed the process outlined 

by Moore and Granger (2019). Magnetite is extracted from the aggregate sand using a magnet. A known 

mass of 35Cl is initially added to the magnetite separate for each sample, which is then dissolved in oxalic 

acid. As a next step, HNO3 and AgNO3 are added to the solution to form a precipitate of AgCl. Once 

centrifuged and separated, AgCl is dried, placed into a cathode, and measured by the Accelerator Mass 

Spectrometer (AMS) at the Purdue Rare Isotope Measurement Laboratory (PRIME).  

The non-magnetic samples to be analyzed for Be10 underwent a series of purification steps to 

incrementally separate quartz grains from other lithologies. To remove any non-quartz grains from the 

samples, each sample underwent two rounds of 6N HCl etches, three rounds of HF/HNO3 etches, and a 

final cleansing etch of HF/HNO3 (see Kohl and Nishiizumi (1992) for more details on the sample 

preparation process). Following the purification process, samples were sent to the University of Vermont 

Cosmogenic Laboratory to extract 10Be. 

Once samples were designated to have sufficient pure quartz grains for analysis, each sample 

underwent a series of procedures at the University of Vermont Comogenic Laboratory to extract Be and 

Al from purified quartz. In this process, the initial sample mass was measured, and a known mass of Be9 

was added to each sample. Next, the samples were digested into a liquid over four days using HF, and 

then divided into two aliquots—one (termed Subsample 1) that would be processed to verify that the 

samples are not contaminated (i.e. that the quartz samples don’t contain more Be9 than was originally 

added, which is a verification needed to quantify the accuracy of the Be10/Be9 ratio), and another (termed 
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Subsample 2) used to measure the concentration of Be10. H2SO4 was added to Subsample 1 to avoid 

drying off the sample, then spiked with Ga/Y, and analyzed in the Inductively coupled plasma mass 

spectrometer (ICP-MS). Subsample 2 underwent four perchloric treatments and three HClO4 treatments to 

eliminate fluoride compounds. As a next step, a series of hydrochloric acid treatments followed by a 

centrifuging to redissolve the sample, off-gas hydrogen, and remove titanium from the sample. Samples 

then were processed in column tubes to remove iron from the solution, and chemically separate the 

samples into titanium, beryllium, and aluminum concentrations. To purify the remaining beryllium, the 

tubes containing beryllium concentrations were then further processed in a series of precipitation and 

dissolution steps, and finally turned into a gel substance. This gel was then processed into a pellet, which 

was converted to BeO using an air gas flame mixed with Nb, which was then further packed into cathodes 

that were sent to PRIME for beryllium analysis measured by the AMS. 

AMS measurements of 10Be were normalized to Nishiizumi et al. (2007) standard ratio of 

10Be/9Be, whereas measurements of 36Cl were normalized against Sharma et al. (1990) standard ratio of 

36Cl/Total Cl. These normalized measurements were used to calculate erosion rates based on equations 

from Brown et al. (1995). To calculate local 10Be production, the sea level high-latitude (SLHL) 10Be 

production of nucleons and slow and fast muons were scaled based on Stone (2000). I use the nucleonic 

SLHL production rate of 3.9 ± 0.1 at g-1 yr-1 from Balco et al. (2009), and I use Braucher et al. (2011)’s 

production rates for the slow and fast muonic components. As part of this analysis, I assumed a rock 

density of 2.7 g/cm3 and attenuation lengths for neutrons and slow and fast muons from Braucher et al. 

(2011). No topographic shielding correction was calculated for the basin average erosion rates following 

DiBiase (2018). From this analysis, I derived catchment average erosion rates (mm/yr) at each sampling 

location. 

4.4. Results 

4.4.1. Measured Bedrock Erosion Rates Across Puerto Rico 
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 Existing 10Be measurements in Puerto Rico are largely spatially limited to the Luquillo Mountains 

located in the northeastern portion of the island, with a few measurements in a granodiorite pluton to the 

south of the Luquillo Mountains (Figure 4.1; Brown et al., 1995; Riebe et al., 2003; Brocard et al., 2015). 

My new measurements expand this spatial coverage westward (Figure 4.1). An assessment of the existing 

and new data in the sand size fraction shows that erosion rates vary by nearly an order of magnitude, 

ranging from a rate of 8.5 m/My to 97.1 m/My (Figure 4.3; Table 4.1). When analyzed spatially, the 

results generally show that erosion rates on the central-western portion of the island are faster than those 

in the east (Figure 4.3). 

 In Chapter 3, I used a Schmidt hammer to obtain rebound measurements—a proxy for rock 

strength—in the field. From these data, I found that granodiorite bedrock and volcaniclastic bedrock were 

not significantly different in rock strength (Figure 4.4a). Cosmogenic erosion rate results, however, show 

a significant difference between erosion rates across bedrock lithology, with areas draining granodiorite 

watersheds associated with a much lower erosion rate than those draining volcaniclastic watersheds 

(Figure 4.4b). Similarly, I find that ksn values systematically differ across rock types, with locations 

sampled within watersheds underlain by granodiorite being significantly shallower (median ksn value of 

19) than those underlain by volcaniclasitcs (median ksn value of 58). These results suggest that, even 

though erosion rates may initially appear to be associated with differences in lithology, when differences 

in topography (e.g. channel steepness) are considered, the control of rock type on erosion rate becomes 

less clear. In other words, it appears that differences in landscape steepness correlate with lithology and 

might be able to explain the variations in erosion rate alone. 

 Lastly, I compare trends in erosion based on both rock type and precipitation (Figure 4.5). Results 

indicate a lack of correlation between precipitation, with both high and low erosion rates found in areas of 

relatively high and low precipitation (Figure 4.5). This lack of correlation is further shown by the very 

low R2 values when samples are subset by rock type—granodiorite and volcaniclastic samples are 

associated with an R2 value of 0.08 and 0.06, respectively.  

4.4.2. Models of Bedrock Erosion Rates 
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 Through a power-law fit of my erosion rate results and topographic derivatives (i.e. ksn, ksnq, 

(A/w)α/βS, and (Q/w)α/βS), I empirically derived model parameter values (e.g., K and n) (see Figure 4.6 for 

the regressions and model parameter values). The data were relatively scattered, producing weak-to-

moderate model fits to the data. The R2 values range between 0.15 and 0.35 (Figure 4.6). 

 Applying the empirically-derived parameter values for each model with channel and basin 

geometry measurements (e.g. channel width, estimated discharge, slope, and drainage basin area), I then 

calculated modeled erosion rates using Eq. 4.3-4.5. As a final step, I compared modeled erosion rates to 

measured erosion rates (Figure 4.7). Results indicate that measured and modeled erosion rates show a 

positive trend, but the strength of the correlation, however, is relatively weak to moderate (with R2 values 

between 0.16 and 0.35). From this analysis, I determined that Model 3 (the more complex model that 

utilizes drainage area and width) was associated with the best fit (R2=0.35) and lowest residual error of 

0.0290, followed closely by Model 1 (the simpler model that utilizes drainage area) that had the same fit 

value and a slightly higher residual error of 0.0292. Whereas Models 1 and 3 differ in complexity, the 

nearly equivalent residual error (a difference of 0.0002 in residual error, corresponding to a difference of 

0.2 m/My incision rate estimate) shows that model complexity does not appear to have a significant 

difference in the modeled incision rates. 

4.5. Discussion 

4.5.1. Measured Bedrock Erosion Rates Across Puerto Rico 

 A spatial analysis of variations in erosion rates shows that granodiorites in the central part of the 

island generally have much higher erosion rates than that of granodiorites towards the east. Whereas 

initial analysis may suggest a lithological control on erosion rates (Figure 4.4b), I find that higher erosion 

rates are also associated with steeper channels, and that the volcaniclastics sampled in this analysis were 

generally characterized by steeper watersheds (Figure 4.4c). As a result, the impacts of lithology versus 

channel steepness on erosion becomes difficult to disentangle due to the covariation with topography for 

the sampled drainage basins. Previous research has found a positive correlation between erosion rates and 
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ksn (Safran et al., 2005; Wobus et al., 2006; Ouimet et al., 2009), suggesting that erosion rates are likely 

dependent on topography rather than rock type. To verify this conclusion, however, I would need to 

compare samples from different lithologies but comparable values of channel steepness. 

 Climatic differences, namely in precipitation, are another possible reason for differences in 

erosion rate. Studying the San Gabriel Mountains, DiBiase and Whipple (2011), found that the discharge 

distribution played a large role in the relationship between channel steepness and the erosion rate. It 

follows that differences in precipitation—and the resulting discharges in Puerto Rico, may thereby 

influence this relationship and the resulting erosion rates, and explain the observed spatial changes in 

erosion (Figure 4.3). To test this idea, I compared erosion rates by precipitation (Figure 4.5). In this 

comparison, I found that nearly the entire range of erosion rates measured was found in basins that were 

characterized by both high and lower levels of precipitation (Figure 4.5). Moreover, I find no lithological 

differences across both discharge and erosion rates. These findings suggest that rock type and 

precipitation don’t correlate well with incision, and that the influence of topography—namely channel 

steepness—may be a dominant factor in determining erosion rates. To disentangle the impact of 

precipitation and rock type further, more samples that differ by rock type but have similar topographic 

characteristics (i.e. steepness) need to be collected and compared, highlighting future data needs. In 

addition, repeat sampling at more locations can further improve measurement uncertainties (e.g. bias due 

to proximity to a recent landslide or due to an uneven distribution of sediment that represents only a 

portion, rather than an average, of the catchment area (Grande et al., 2021). 

In Luquillo, spatial variations in erosion rates have been attributed to active landscape adjustment 

to a change in tectonic rock uplift rate that occurred ~4-5 Myr ago that is still affecting parts of the Puerto 

Rican landscape today (Brocard et al., 2015). Brocard et al. (2015) found that erosion rates above fluvial 

knickpoints thought to have been formed as a result of this pulse of uplift are lower than erosion rates 

below them. The spatial pattern of the existing and new erosion rates and the channel steepness – erosion 

rate trends presented here support this conclusion (Figures 4.3 and 4.6a). Temporal variations in erosion 
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rate have been documented in the landscape above knickpoints that are associated with local landslides 

(Grande et al., 2021); however, this variation only affects low drainage areas (<6 km2), and the system 

recovers to a stable background concentration within a year after a landslide event. Therefore, I do not 

think that intermittent landsliding can explain the variations seen in my data.  

Lastly, my analysis extends a spatial understanding of changes in erosion rates across the island. 

Previous analyses have largely only covered areas within the Luquillo National Forest, in addition to one 

sample from the dryer southeastern portion of the island underlain by granodiorite (Brown et al., 1995). 

From these analyses, I find that erosion rates in the central part of the islands are much higher than those 

previously published towards the eastern part of Puerto Rico. This result suggests that there are 

differences in the local base level lowering rate among these different locations, perhaps related to 

different rates of tectonically-driven rock uplift. 

4.5.2. Models of Bedrock Erosion Rates 

In this research, I compare incision rates derived from four detachment-limited stream power 

equations that vary in both complexity and modeling parameters. In Models 1 and 3, I apply drainage area 

as a proxy for shear stress or stream power, whereas in Models 2 and 4 I apply a precipitation-based 

discharge value as a proxy for shear stress or stream power. By comparing modeled results with 

laboratory-measured erosion rates results, I find that Models 1 and 3 better predict actual erosion rates 

better than Models 2 and 4 (Figure 4.7). These results suggest that in Puerto Rico, drainage area appears 

to be a better predictor of incision rates than the weighted discharge proxy (Figures 4.6 and 4.7). As 

discussed in Section 4.4.1, there appears to be minimal association between erosion rates and precipitation 

(Figure 4.5) it follows that adding a precipitation-weighted drainage area parameter does not improve 

model performance—something that is shown in the erosion models as well. 

In addition, I find that an increase in model complexity only slightly improves model 

performance (e.g. Model 3 had a residual error only 0.002 mm/yr lower than Model 1). One of the largest 

differences between these two models is the incorporation of channel width. In the model, however, 
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channel width is largely compared as a ratio to drainage area—a much larger value. It follows that 

whereas incorporating channel width does appear to improve model performance, the relatively low 

impact of comparing drainage area (a large number) to channel width (a small number typically <10 m in 

Puerto Rico, as found by modeled channel measurements in Chapter 3) only has a minimal effect on 

model performance. With this in mind, I conclude that when modeling landscape erosion in Puerto Rico, 

only using DEM-derived input parameters is sufficient to produce a rough estimate of catchment-area 

erosion rates, but that there is still a great deal of scatter in the modeled and predicted estimates (e.g. 

Model 1) (Figure 4.7). 

The finding that the simplest model does a reasonable job fitting the data, and that none of the 

models fit the data very well is an important finding in its own right. The reasonably good performance of 

Model 1 suggests that erosion rates in Puerto Rico are largely controlled by variations in topography (i.e., 

steepness), which perhaps isn’t too surprising. While my limited dataset did not clearly indicate that 

lithology, precipitation, and channel width are not first-order factors controlling erosion patterns in Puerto 

Rico, they may play an important role in explaining the scatter in the data. For example, my treatment of 

all of these variables is quite simple; I look for correlations among the variables and erosion. Lithology 

might play a role by impacting grain size distributions and thus incision thresholds in ways that spatially 

vary in ways unaccounted for here (e.g. Neely and DiBiase, 2020). Precipitation alone does not affect 

river incision, but it is how it gets translated into floods, and the frequency and magnitude of flood 

distributions are ultimately what controls bedrock river incision rates (e.g. Lague, 2014). My treatment of 

channel width here is based on a simple scaling relationship, but incorporating measured spatial variations 

in this hydraulic parameter might result in an improved fit to the data. Finally, it is possible that the 

scatter in the data is the result of comparing basin average erosion rates to models that predict basin 

average incision rates. In circumstances where the channels and hillslopes are not fully coupled, there can 

be discrepancies between erosion and incision rates. Regardless, the moderate positive trends of Models 1 

and 3 give confidence that these simple models yield some predictive behavior of the system albeit 
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imprefectly. I note that assessing all of these possibilities for model fit quality is beyond the scope of this 

particular study, but they highlight clear and likely fruitful future research directions.  

4.6. Conclusions 

In this study, I analyzed 23 cosmogenic nuclide samples, substantially increasing the spatial 

understanding of erosion rates across Puerto Rico. My analyses indicate spatial differences in erosion 

rates, with the dryer southeastern portion of Puerto Rico generally having slower erosion rates than the 

wetter mountainous central-western portion of the island. In addition, samples located in the very wet 

mountainous region of the Luquillo National Forest had variable erosion rates, which are a result of 

samples collected above- and below- the relict landscape topography (Brocard et al., 2015). Analysis of 

cosmogenic 36Cl in magnetite in addition to 10Be analysis in quartz, allows me to compare erosion rates 

across the granodiorite and voclaniclastic bedrock lithologies that comprise the mountainous interior of 

Puerto Rico. Although initial analyses appear to suggest that rock type plays a role in determining erosion 

rates, sampled granodiorite basins have systematically gentler topography than volcaniclastics making it 

difficult to isolate a lithologic control if one exists. When controlling for differences in steepness, the 

influence of rock type becomes less clear. Additional analysis of samples derived from different rock 

types but similar topography is required to disentangle this relationship. 

Our research indicates that the simple stream-power incision model generally predicts trends in 

incision rates across Puerto Rico. Residual errors from the models demonstrate that drainage area appears 

to be a better predictor of incision rates than discharge (expressed through a precipitation-weighted 

drainage area parameter). Models 1 and 3 varied in model complexity—with Model 3 incorporating 

channel geometry measurements such as channel width—but had very similar residual errors. This 

indicates that in Puerto Rico, an increasing model complexity has minimal impact on model performance 

and variables derived from DEMs are adequate for predicting landscape incision rates. Although Models 

1 and 3 performed best, a moderate R2 value of 0.35 indicates that I am not fully explaining trends in 

erosion rates, and are likely missing other important variables in the model. Characteristics that may 
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improve model performance may be an incorporation of rock type, an improvement of an incorporation of 

channel width into the model, and/or a parameterization that takes into account channel and hillslope 

coupling relationships. 

 

Figure 4.1. A map of Puerto Rico showing (a) its location relative to other islands in the Caribbean. The locations of existing 

and new samples in relation to (b) precipitation and (c) bedrock lithology. The new sampling locations significantly enhance 

the spatial coverage of erosion rates across the island. 
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Figure 4.2. A comparison of the Mean Annual Precipitation in relation to the Average Specific Discharge across the 49 

gauging stations in Puerto Rico. The shaded area represents the 95% confidence interval. 

Figure 4.3. A geologic map of Puerto Rico overlain by the cosmogenic nuclide sample locations. Colors at each sample 

locations reflect the measured erosion rates at each location. 
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Figure 4.4. (a) A comparison of Schmidt Hammer Rebound values, which reflect the rock strength of both Granodiorite 

and Volcaniclastic lithological units. Results show comparable rock strength values across both bedrock types. (b) 

Cosmogenic nuclide erosion rate values indicate that areas draining Granodiorite bedrock are associated with a lower 

basin-average erosion rates than areas draining Volcaniclastic bedrock. (c) Channel steepness index values (ksn) according 

to lithology show that sample locations of granodiorites are located in shallower topography than volcaniclastics. 

Figure 4.5. A comparison of changes in erosion rate with precipitation, colored by bedrock. This 

indicates a lack of correlation between precipitation and erosion rates across analyzed bedrock units. 
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Figure 4.6. (a-d) To model erosion rates across Puerto Rico, we first calibrated the model parameters by regressing the erosion rate 

by the channel steepness index (ksn).  
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Figure 4.7. (a-d) A comparison of modeled erosion rates to erosion rates derived from cosmogenic Be10 and Cl36 concentration 

measurements. Models 1 and 4 are associated with the lowest residual errors, indicating the best model performances for estimating 

erosion rate 

a. b. 

c. d. 
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Table 4.1. A compilation of in-situ cosmogenic nuclide results of samples analyzed for 10Be and 36Cl. 

ID UTM (X) UTM (Y) 10Be (104 atoms/g) Denudation rate (mm/year) 

PR-05 740803.2483 2019545.386 22170 ± 3065 0.14752 ± 0.02322 

PR-14 758383.2482 2012915.386 35580 ± 4039 0.11730 ± 0.01593 

PR-16 757783.2482 2015225.386 37490 ± 3488 0.10326 ± 0.01218 

PR-18 753133.2482 2014325.386 34590 ± 3963 0.09050 ± 0.01230 

PR-19 749923.2482 2017205.386 32590 ± 3824 0.10483 ± 0.01452 

PR-23 751393.2482 2017565.386 42740 ± 7369 0.07701 ± 0.01487 

PR-25 825883.2477 1999385.386 89230 ± 5949 0.02841 ± 0.00280 

PR-27 822043.2477 2001875.386 123700 ± 7080 0.01992 ± 0.00187 

PR-29 824233.2477 2004185.386 99470 ± 5548 0.02537 ± 0.00232 

PR-30 819133.2477 2006855.386 40100 ± 3620 0.06919 ± 0.00793 

PR-37 720373.2483 2019665.386 72320 ± 6604 0.04272 ± 0.00503 

PR-39 839953.2475 2020505.386 71770 ± 5474 0.04465 ± 0.00471 

KSH-01 753493.2482 2004485.386 42342 ± 2255 0.07653 ± 0.00671 

KSH-02 753013.2482 2008175.386 67819 ± 2814 0.05371 ± 0.00445 

KSH-03 751663.2482 2009435.386 51923 ± 1805 0.07541 ± 0.00597 

KSH-04 749353.2482 2016485.386 27521 ± 1316 0.12509 ± 0.01048 

KSH-05 739813.2483 2019695.386 28657 ± 1853 0.10567 ± 0.00994 

KSH-06 736933.2483 2020175.386 91736 ± 2045 0.03375 ± 0.00252 

KSH-07 730063.2483 2025065.386 73934 ± 3270 0.03829 ± 0.00319 

KSH-08 729943.2483 2025125.386 92019 ± 3550 0.03018 ± 0.00245 

Brown-GUA 840043.2475 2023385.386 138000 ± 14000 0.02281 ± 0.00295 

Brown-CAY 822073.2477 2009645.386 80300 ± 11400 0.03113 ± 0.00515 

Riebe-RI-8 838843.2475 2022935.386 66000 ± 4000 0.05003 ± 0.00469 

Riebe-RI-6 839923.2475 2023715.386 108000 ± 6000 0.02954 ± 0.00272 

Brocard-ES-

UK 837793.2475 2026025.386 225100 ± 2900 0.01432 ± 0.00110 

Brocard-IC-

UK 839923.2475 2023685.386 170500 ± 5500 0.01821 ± 0.00148 

Brocard-SAB-

UK 838453.2475 2023595.386 221000 ± 14000 0.01438 ± 0.00145 

Brocard-CUY-

UK 837793.2475 2022605.386 115200 ± 7800 0.02929 ± 0.00296 

Brocard-PRI-

UK 841183.2475 2021675.386 152000 ± 10000 0.02143 ± 0.00216 

Brocard-SAB-

TDK1 838783.2475 2023025.386 97200 ± 12500 0.03349 ± 0.00510 

Brocard-SAB-

TDK2 838573.2475 2023205.386 77300 ± 7700 0.04332 ± 0.00542 

Brocard-SAB-

TDK3 838813.2475 2022965.386 98300 ± 8300 0.03300 ± 0.00373 

Brocard-IC-

TDK1 840163.2475 2022965.386 132700 ± 3800 0.02375 ± 0.00187 

Brocard-IC-

TDK2 840043.2475 2022275.386 107200 ± 3600 0.02980 ± 0.00238 
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Brocard-IC-

TDK3 840103.2475 2021825.386 118000 ± 3000 0.02678 ± 0.00206 

Brocard-CUY-

TDK 838633.2475 2022215.386 108800 ± 5200 0.03052 ± 0.00267 

ID UTM (X) UTM (Y) 36Cl (105 atoms/g) Denudation rate (mm/yr) 

PR-21 758504.5697 2012471.043 30642 + 3935 0.07428 + 0.01094 - 0.008454 

PR-23 751393.2482 2017565.386 8824 ± 1697 0.12648 + 0.03012 - 0.020403 

PR-31 779683.5867 2001621.545 27507 ± 2562 0.05933 + 0.00609 - 0.005056 

PR-39 839953.2475 2020505.386 17469 ± 8718 0.05169 + 0.05149 - 0.017208 

PR-42 839899.8385 2023780.274 10181 ± 3484 0.08955 + 0.04659 - 0.022833 
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CHAPTER 5: CONCLUSION 

 

 

 

5.1 Key Findings 

 Throughout this dissertation, I explore different ways to improve our knowledge of landscape 

evolution. Bedrock channel width plays a first-order role in many landscape evolution models, yet a 

scarcity of bedrock channel width data often causes researchers to use a drainage area:width or discharge: 

width scaling relationship to estimate bedrock width. To improve the calibration of this parameter, I 

developed a method in Chapter 2 to remotely extract channel width through the paired use of a Digital 

Elevation Model in Topotoolbox with the HEC-RAS river analysis software. I verified this method using 

both USGS field measurements as well as field measurements that I collected in the field. 

 In Chapter 3, I implemented the methods of Chapter 2 to explore what factors control bedrock 

channel width. My analyses of ~4,000 river reaches in Puerto Rico reveal a first-order lithologic control at 

small (< 6-10 km2) catchment areas, but show that a direct control by bedrock is less obvious at larger 

drainage areas. Although grain size analyses hit at a potential indirect control of rock type through 

lithological differences in sediment grain size, more sample locations are required to draw further 

conclusions. 

  In Chapter 4, I analyzed in-situ cosmogenic nuclide concentrations to find spatial differences in 

erosion rates across Puerto Rico. These differences appear to be mostly related to differences in channel 

steepness, and are not as clearly influenced by rock type or precipitation. To definitively tease these 

variables apart, however, I cite the need to collect samples of different bedrock types but at similar 

channel steepness values. Lastly, I applied the measured erosion rate results to evaluate bedrock incision 

models of various complexity. My results revealed that drainage area is a better predictor of incision rates 

than a precipitation-weighted drainage area parameter. The close performance between Models 1 and 

Models 3 suggest that an increase in model complexity has minimal improvements on model 
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performance. The moderate R2 value of 0.35 of the best performing model indicates that even the more 

complex model is missing parameters and information that better explain erosion rates in Puerto Rico. 

5.2 Opportunities for Future Research 

 I hope that this research provides methods and ideas that will promote more research into what 

shapes bedrock rivers, which in turn will help advance the fields of tectonic geomorphology and 

landscape evolution. From this research, in Chapter 2, I developed a method of efficiently extracting 

channel width using DEMs produced from high-resolution (~1 m) LiDAR. With the development of the 

3DEP program across the United States that will make high-resolution DEMs of the entire United States 

freely accessible to the public, this method can help extract bedrock channel width measurements across 

the entire United States. This additional data can thus help us form a better understanding of what factors 

control channel geometry. In Chapter 3, grain size analyses suggest a lithological difference in the coarse 

grain size fraction of river sediments. These differences in grain size may help explain observed 

differences in channel width found in the different rock types in Puerto Rico. However, further grain size 

and field measurements are required to fully explore this trend. Lastly, in Chapter 4, I found that erosion 

rates in Puerto Rico appear to be associated with river channel steepness. There does appear to be an 

association between erosion rate and rock type, yet the impact of rock type cannot be disentangled from 

channel steepness, as samples from each rock type have systematically different channel steepness as 

well. To distinguish between the role that channel steepness and rock type have in erosion rates, future 

sampling locations must cover areas of similar steepness values and different rock types. 
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APPENDIX A: SUPPLEMENTARY FIGURES, TABLES, AND USER MANUAL TO CHAPTER 2 

 

 

 

User Manual: The user manual, and all relevant files associated with it, can be found at the following 

link: https://drive.google.com/drive/folders/1Z5W-n2irvWqYGoc_cH8ZXB2_DMHegzFl?usp=sharing 

 

Currently, all files are located in a private Google Drive link. The files will be moved to a publicly-

available repository once the manuscript has undergone peer review and has been approved for 

publication. 

 

Please refer to the User_Manual_Document.docx to walk through each step of the method. The manual is 

designed to support the user while they run through the Matlab and HEC-RAS programs. All necessary 

files to run through the sample are included in the User Manual folder. In addition, the user needs to have 

Matlab, the Matlab spatial analyst package, and HEC-RAS installed. 

 

Figures: 

 

Figure A1. There exists a positive relationship between Mean Annual Precipitation and estimated specific discharge. Here, 

we present the (a) Mean Annual Precipitation in relation to estimated 1-year RI and (b) 2-year RI discharge values. The 

relatively low r2 values of both graphs indicate that the variability of the data is poorly explained by the regression. As a 

result, we use the Mean Annual Precipitation: Mean Annual Discharge relationship (r2=0.82) to estimate specific discharge 

at given locations. 

a. b. 

https://drive.google.com/drive/folders/1Z5W-n2irvWqYGoc_cH8ZXB2_DMHegzFl?usp=sharing
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Figure A2. The Mean Annual Specific Discharge is compared to the Mean Annual Precipitation. Above, we compare (a) the fit 

of a linear regression versus (b) a power regression. For this analysis, we chose to use the power regression, as this model had a 

better fit (r2=0.82), and estimated specific discharge values at the low end of the Mean Annual Precipitation range were not 

predicted to be negative. 

a. b. 

Figure A3. Q-Q plots of the modeled channel width at the various field sampling locations (blue dots in Figure 2.1c). These plots 

indicate that the data at most field locations follow a normal distribution. 
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Tables: 

Table A1. A summary of the USGS gauging stations that were analyzed. The table includes the USGS gauging station ID, its 

location, the length of the gauging data record, as well as the calculated drainage area, mean annual discharge, and the estimated 

Mean Annual Precipitation. 

Station 

ID Longitude Latitude 

Years 

of 

Record 

Drainage 

Area 

(km2) 

Mean 

Annual 

Discharge 

(m3/s) 

Mean Annual 

Precipitation 

(mm/year) 

50020500 -66.7363 18.1797 10 48.2 1.5 2050 

50021700 -66.7219 18.2422 17 93.2 3.3 1991 

50024950 -66.7037 18.3001 18 185.7 5.6 1964 

50025155 -66.5628 18.2108 27 23.0 0.9 2204 

50025850 -66.6456 18.2139 7 17.9 0.6 2036 

50026025 -66.6367 18.2294 20 98.4 2.6 2005 

50027000 -66.6206 18.3241 16 81.6 2.6 1912 

50028000 -66.7826 18.2987 57 46.6 1.5 2107 

50034000 -66.4544 18.2340 41 43.3 1.1 2019 

50035000 -66.4596 18.3224 64 347.1 7.2 1985 

50043800 -66.2242 18.2202 28 303.0 5.2 1564 

50044810 -66.2282 18.2994 16 20.9 0.6 1880 

50047535 -66.1216 18.1672 23 1.1 0.0 1603 

50047850 -66.1391 18.3323 35 108.3 1.2 1663 

50050900 -65.9882 18.1180 26 15.5 0.9 2245 

50051310 -65.9563 18.1519 39 26.2 1.3 2350 

50051800 -65.9611 18.1837 26 106.4 3.1 2191 

50053025 -66.0396 18.1602 27 18.5 0.7 1865 

50055000 -66.0092 18.2407 58 232.6 6.4 1965 

50055225 -66.0272 18.2467 26 429.9 1.0 1584 

50055380 -66.0439 18.2563 14 12.3 0.3 1586 

50055750 -65.8849 18.2322 27 57.8 1.2 2561 

50056400 -65.9258 18.2141 45 42.5 1.4 2049 

50057000 -65.9677 18.2565 57 155.9 3.8 2176 

50059210 -65.9901 18.3485 5 33.4 0.6 1983 

50061800 -65.8885 18.3165 49 26.4 0.8 3520 

50063800 -65.8136 18.3579 50 22.3 1.7 3611 

50064200 -65.8416 18.3434 40 18.9 1.2 3792 

50065500 -65.7504 18.3268 39 17.8 1.6 3685 

50067000 -65.7306 18.3290 37 10.3 0.6 3084 

50070900 -65.7007 18.2808 13 28.5 1.1 2973 

50071000 -65.6934 18.2970 55 38.6 1.9 2856 

50075000 -65.7854 18.2752 45 3.3 0.4 3941 

50081000 -65.8690 18.1721 33 17.2 0.7 2232 

50090500 -65.9396 18.0252 37 13.9 0.6 1924 

50092000 -66.0321 18.0322 51 47.4 1.7 1800 
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50093000 -66.0093 18.0358 15 10.6 0.4 1760 

50093120 -66.0232 18.0144 11 66.5 1.5 1746 

50106100 -66.3544 18.0815 29 112.7 0.8 1492 

50110900 -66.4574 18.1245 27 36.8 0.5 1732 

50112500 -66.5627 18.0845 51 25.1 0.5 1814 

50113800 -66.6045 18.1148 27 30.8 0.9 1927 

50114900 -66.6425 18.0979 19 18.8 0.5 1938 

50124200 -66.7978 18.0423 32 49.0 0.7 1623 

50126150 -66.8415 18.0472 22 83.1 0.7 1667 

50136400 -67.0854 18.1581 31 47.4 1.5 2190 

50138000 -67.1484 18.1407 44 310.8 5.6 1605 

50144000 -67.0506 18.2822 53 347.1 10.3 2012 

50147800 -67.0922 18.3597 49 184.4 8.4 2190 
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APPENDIX B: SUPPLEMENTARY FIGURES, TABLES, AND USER MANUAL TO CHAPTER 3 

 

 

 

 

Supplemental Data: The raw data used for this analysis will be temporarily available via Google Drive: 

https://docs.google.com/spreadsheets/d/1tfqILHEVVhTUWPR39XZvRNUR9z-

afIPa/edit?usp=sharing&ouid=114783226087131503142&rtpof=true&sd=true 

 

Data will be moved to a data repository upon publication. 

 

Figures: 

 

  

Figure B1. A diagram (from Ewel and Whitmore, 1973) of the of the Holdridge Ecological Life Zone (e.g. Ecozone) 

classification (Holdridge, 1967), according to changes in humidity, altitude, precipitation, and the potential evapotranspiration 

ratio. The Ecozones found in Puerto Rico (highlighted in blue) are generally located at low to lower montane elevations, medium 

to high precipitation and subhumid to superhumid conditions. 

https://docs.google.com/spreadsheets/d/1tfqILHEVVhTUWPR39XZvRNUR9z-afIPa/edit?usp=sharing&ouid=114783226087131503142&rtpof=true&sd=true
https://docs.google.com/spreadsheets/d/1tfqILHEVVhTUWPR39XZvRNUR9z-afIPa/edit?usp=sharing&ouid=114783226087131503142&rtpof=true&sd=true
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Figure B2. A plot of the measured median grain size diameter (D50) in relation to the median measured channel width. Colors 

indicate a lack of a discernable trend between the median grain size diameter and the lithologic unit that is being eroded. 
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Tables: 
Table B.1. A table of the field sample locations, the bedrock found at each location, as well as the measurement types that were 

performed at each location. 

Location ID Lat Long Measurement Type Rock Type 

PR-0122-01 18.10375 -65.8825 -- Grain Size Width Granodiorite 

PR-0122-02 18.09285 -65.8965 Schmidt Hammer Grain Size Width Granodiorite 

PR-0122-03 18.08908 -65.902 Schmidt Hammer Grain Size Width Granodiorite 

PR-0122-04 18.09042 -65.9119 Schmidt Hammer Grain Size Width Granodiorite 

PR-0122-07 18.25329 -66.7317 Schmidt Hammer Grain Size Width Granodiorite 

PR-0122-08 18.25763 -66.7587 -- Grain Size Width Granodiorite 

PR-030720-01 18.21661 -66.6427 Schmidt Hammer Grain Size -- Granodiorite 

PR-030720-02 18.19737 -66.65 Schmidt Hammer Grain Size -- Granodiorite 

PR-031020-

05A 18.21529 -66.6045 -- Grain Size -- Granodiorite 

PR-0310200-

5B 18.21529 -66.6045 -- Grain Size -- Granodiorite 

PR-031020-06 18.20886 -66.6143 -- Grain Size -- Granodiorite 

PR-033120-07 18.22443 -66.6422 Schmidt Hammer Grain Size -- Granodiorite 

PR-0122-14 18.11628 -66.9358 Schmidt Hammer Grain Size Width Serpentinite 

PR-0122-15 18.1045 -66.9781 Schmidt Hammer Grain Size Width Serpentinite 

PR-0122-16 18.10341 -66.9704 Schmidt Hammer Grain Size Width Serpentinite 

PR-0122-17 18.11019 -66.9863 Schmidt Hammer Grain Size Width Serpentinite 

PR-0122-18 18.1365 -67.0076 Schmidt Hammer Grain Size Width Serpentinite 

PR-0122-05 18.11374 -66.6042 Schmidt Hammer Grain Size Width Volcaniclastic 

PR-0122-06 18.1853 -66.7357 Schmidt Hammer Grain Size Width Volcaniclastic 

PR-0122-09 18.10198 -66.5698 Schmidt Hammer Grain Size Width Volcaniclastic 

PR-0122-10 18.11827 -66.5716 Schmidt Hammer Grain Size Width Volcaniclastic 

PR-0122-11 18.13455 -66.5779 Schmidt Hammer Grain Size Width Volcaniclastic 

PR-0122-12 18.13633 -66.5822 -- Grain Size Width Volcaniclastic 

PR-0122-13 18.09925 -66.5433 -- Grain Size Width Volcaniclastic 

PR-030820-03 18.20218 -66.5573 Schmidt Hammer Grain Size -- Volcaniclastic 

PR-030920-04 18.23262 -66.6217 Schmidt Hammer Grain Size -- Volcaniclastic 

PR-031020-08 18.20146 -66.5802 Schmidt Hammer Grain Size -- Volcaniclastic 

PR-031020-09 18.21082 -66.5628 Schmidt Hammer Grain Size -- Volcaniclastic 

PR-031120-10 18.18937 -66.5569 Schmidt Hammer Grain Size -- Volcaniclastic 

PR-031220-11 18.20124 -66.6236 -- Grain Size -- Volcaniclastic 
 

Table B2. A comparison of the average and median annual precipitation across the different Ecozones identified in Puerto Rico. 

Ecozone Precipitation Average (mm/yr) Precipitation Median (mm/yr) 

Dry Forest 1,664 1,655 

Moist Forest 1,981 1,909 

Subtropical Wet Forest 2,156 2,074 

Lower Montane Wet Forest 3,136 2,392 

Rain Forest 3,902 3,926 
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APPENDIX C: AN EVALUATION OF UNCERTAINTIES 

 

 

 

Intrinsic to any field observation and modeling are uncertainties in the analyses. Below, I cover some 

uncertainties and possible sources of error that are inherent to this research. 

Chapters 2 and 3: Collecting Field Data and Modeling Channel Width 

• Accuracy of field measurements of channel width due to the use of a laser range finder, rather 

than a measuring tape. 

• Difference of field measurements of channel width based on personnel, and the ‘biotic bankfull’ 

indices that they use to determine channel width. 

• Limitations to DEM accuracy and the resulting modeled channel width due to the limit of 

resolution in the LiDAR, as well as the uncertainties of LiDAR measurements. 

• Error associated with estimating discharge based on precipitation. Error may stem from 

inaccuracies in precipitation estimates (based on PRISM model inaccuracies or limitations of 

precipitation resolution), or can also stem from an imperfect fit between precipitation and 

discharge. 

• In this analysis, a Manning’s n value of 0.05 was assumed for all models. However, results may 

have differed through the assignment of a different Manning’s n value. In addition, determining 

Manning’s n is an inherently ambiguous process, and relies on the analyst to determine its value 

based on fitting the channel characteristics to a given picture. The Manning’s n value may 

therefore be different across different locations in Puerto Rico, and may also be different based on 

the analyst conducting the modeling process. 

• Measured channel width error by USGS personnel for the gauging station data. Channel width 

measurements by USGS personnel were also spread out in both space and time. Measurements 

can therefore vary based on personnel and the equipment used to make the measurements. In 
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addition, some measurements further away from the gauging station may not be the best 

representation of channel width at the actual gauging station. 

• As discussed in the chapter, there may be greater uncertainty when modeling larger streams, as 

the LiDAR does not penetrate through water. As a result, the routed flow may be inaccurate—

especially at larger rivers where the ‘bottom of the stream’ in the HEC-RAS model is actually the 

top of the water surface at the time of LiDAR collection. 

• Channel width was only obtained in HEC-RAS at the delineated cross section locations. Width 

measurements at the cross sections were characterized through an average or median value. This 

resulting value, however, may not be the best representation of channel width at the location of 

interest. 

Chapter 4: 

• With cosmogenic nuclides, it is assumed that the sand in the river is well-mixed, and represents 

the average of the denudation rate of the area upstream. However, sediment can be variable based 

on rock density and grain size. With this in mind, the sediment we collected may be biased 

towards the erosion rate of a particular area of the upstream watershed or rock type. 

• For samples analyzed for beryllium, the uncertainties of cosmogenic nuclide concentrations may 

be modulated based on the quantity of quartz and beryllium in the sample. If there is more 

material/quartz sand, we have a larger sample to work with. In addition, the higher the beryllium 

concentration, the lower the sensitivity and error of the measurements and results. 

• Inherent instrument measuring error of the accelerated mass spectrometer that measures the 

concentration of cosmogenic nuclides. In addition, to derive denudation rates from this 

concentration, we assume a density of the rock/sediment. This density, however, was never 

measured for my particular samples and may have been inaccurate. 

• Care was used to prepare the samples in the laboratory for cosmogenic nuclide analysis. 

However, during this process, solution was often either decanted or transferred. With this in 
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mind, analytical results can vary in concentration and/or accuracy if sample is accidentally lost 

during these processes. 

• In this section we compare modeled incision rates to the measured denudation rates. These two 

measurements are inherently different, and do not necessarily equal one another. As a result, it 

may be inaccurate to assume that incision rates and denudation rates are equivalent. 

• As discussed in Chapter 4, there are likely many other factors that affect incision rates. As a 

result, modeled results may be improved through including more variables that influence incision 

rates. 

 


