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ABSTRACT OF DISSERTATION 

MATHEMATICAL METHODS FOR FLUID-SOLID INTERFACES: 

MEANDERING STREAMS AND SAND RIPPLES 

This thesis presents several mathematical methods for modeling free surfaces, interfaces, and 

fluid-solid interactions. This work is done in the context of two physical systems. 

In the first two sections, the focus will be to understand the the physics of streams flowing 

down inclined substrates. Models will be derived to investigate both steady state and dynamic 

meandering profiles. It will be shown that, through the right approximation techniques, many 

physical insights can be drawn about this system. These results include: a complete 

understanding of the steady states, transitions between steady states, mechanism of meandering, 

forces involved in meandering, and spectral scaling laws of long-time ensemble averaged 

meandering stream profiles. 

In the third section, the focus will shift to how one can model underlying physics when it 

becomes too complicated to address from first principles. Here, the power of symmetries and 

conservation laws are explored to derive an amplitude equation describing the interface between 

sand and water when the water is subjected to oscillatory flow. The thesis will then close by 

posing a novel way to study scaling laws with respect to parameters using Lie's prolongation 

algorithm. 

Through this work various tools will be combined from the fields of physics, engineering, 

applied and pure mathematics to develop approaches for reducing complex systems into 

tractable pieces which can be studied carefully. 

Keith Mertens 
Department of Mathematics 
Colorado State University 
Fort Collins, Colorado 80523 
Spring 2008 
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Chapter 1 

Introduction 

1.1 Outline 

Over the course of my graduate studies, I have worked on several problems which 

can all loosely be classified under the field of mathematical modeling of complex

ity, especially relating to evolution of free-surfaces and interfaces. In general, these 

types of problems are highly non-linear and can exhibit a great deal of sensitivity 

to parameters. Therefore, writing models can be challenging. In systems exhibiting 

a great deal of complexity, having real experimental data to rely on becomes im

perative. Hence, the types of systems I have studied are always coupled directly to 

experiments. 

The two experiments chosen for the focus of this thesis each have a rich history 

with over one-hundred years of study. Nonetheless, the complexity in these systems 

has allowed them to be a continued source of scientific contemplation. This work 

serves to add a few more pieces into the puzzles of understanding these phenomena, 

and creating mathematical tools by which to model such complexity. 

This introduction serves to outline the remaining text, giving a basic overview of 

the structure of this thesis. Section 1 is compromised solely of Chapter 1. It is meant 

to be an overview on the subject of gravity driven fluid flows down inclined surfaces. 
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Chapter 1. Introduction 

There is extensive literature on this subject, so it by no means meant to be an all 

inclusive account. However, it is meant to set the stage for the reader about what 

has been done related to this work, and what was known previous to this study, 

The second section is Chapters 2-6. Here, details of the current work concerning 

flows on inclined planes is developed. While, as stated above, there is extensive lit

erature on this subject, there is also a large amount of controversy and conflicting 

statements. Papers are focused on specific experimental conditions, which are not 

always stated clearly, and can (have) made generalizations difficult, and at times 

dangerous. Therefore, this section will at tempt to investigate the complexity of this 

problem in the broadest possible context, developing models and physical under

standing for how and why this system behaves as it does. 

Some of the major results found include: 

• The existence of steady states is proven experimentally. 

• A model of steady states is derived from first principles. 

• The stationary states are subjected to perturbations and the mechanism of 

meandering exposed. 

• The stationary state model is generalized. 

• Numerical and experimental work confirm the existence of a universal power-

law scaling for the long-time ensemble averages spectrum of stream profiles. 

• Analogous statistics are found to real river systems, including a "Hack's law" 

scaling, and an analytic way to recover the observed 1.1 scaling exponent as

sociated with the second structure function for river curvature. 

The third section contains Chapters 7-8. Here, another model is developed to try 

to explain the dynamics of underwater sand ripples which develop when a flat bed of 

sand is exposed to oscillatory flow above. Due to the complexity of the problem, an 

amplitude equation based on conservation laws and symmetries is derived. Then the 

2 



Chapter 1. Introduction 

use of Lie's prolongation algorithm is considered to investigate wavelength selection 

in this system. 

Some of the major results of study include: 

• The development of a ID model which describes much of the required dynamics. 

• Analysis of the ID model analytically and numerically. 

• A novel approach to studying non-linear wavelength selection. 

Lastly, section 4 is a series of appendices meant to: clarify notation, fill in details 

(which are necessary) but break the flow of reading, and help future students to 

understand some of the details underlying important calculations. 

In a more detailed and bullet form, the dissertation can be outlines as follows: 

• Section 1 Introduction to inclined plane flows. 

— Chapter 1: Brief history of problem and previous work. 

Including summary of Mertens et. al. Nature (2004) [7] and Mertens et. 

al. J. Fluid Mech. (2005) [8]. 

• Section 2 An account of our research on the inclined plane problem. Includes 

the relevant details of Birnir et. al. PRL (2008 under review) [9] and Birnir 

et. al. J. Fluid Mech. (2008 under review) [10]. 

— Chapter 2: Explanation of experiments performed and results 

— Chapter 3: Theoretical models are developed 

— Chapter 4: Numerical Results are presented 

— Chapter 5: Generalizations to rivers 

— Chapter 6: Future Work 

• Section 3 Underwater sand ripples and Lie prolongation. 

Including details of Schnipper et. al. PRL (2008 under review) [11]. 
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Chapter 1. Introduction 

— Chapter 7: Brief history of problem, model developed, numerics explored, 

coarsening discussed 

— Chapter 8: Lie Prolongation applied to ID amplitude equation. 

• Section 4 Appendices of additional sirpporting information including: 

— Additional Braids Derivation 

— Variational Derivative 

— Instabilities 

— Stochastic PDEs 

— Prolongation Calculation 

— Some additional notes and pictures about sand ripple experiments 

— References 
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Chapter 1. Introduction 

SECTION I. 

History, like a vast river, propels logs, vegetation, rafts, and debris; it 

is full of live and dead things, some destined for resurrection; it mingles 

many waters and holds in solution invisible substances stolen from distant 

soils. 

Jacques Barzun 

History does not unfold: it piles up. 

Robert M. Adams 
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Chapter 1. Introduction 

1.2 History 

Figure 1.1: Da Vinci, Newton, and turbulence (left to right) 

Fluid dynamics has been an important area of study since Newton in the early 

1700's. Even Da Vinci was compelled to contemplate turbulence in fluids before 

the vocabulary was invented. After the invention of calculus, some of the strongest 

minds in science (such as Euler, Cauchy, Laplace, Lagrange, Poincare, Navier, Stokes, 

Kolmogorov, and Einstein) dedicated time from their lives to consider this specific 

subject. Why? In addition to the fact that the world around us is replete with 

hydrodynamic processes, additionally it is the most common natural phenomenon 

which will not lend itself easily to linear theory. This is, of course, followed closely by 

the fact that fluid dynamics is one of the most natural situations in which to visualize 

non-linear systems and the rise to their complexity. While the area of fluid dynamics 

has this long history, with combined contributions from numerous great minds, it 

is still an area of active research and some of the most basic questions, such as 

whether or not a solution even exists to the general three-dimensional Navier-Stokes 

6 



Chapter 1. Introduction 

equations, still remain unanswered. 

Another fundamental question in fluid dynamics is that of flow stability and 

pattern formation under the influence of various types of boundaries when driven 

by gravity. The interest in this problem comes from the fact that this is a common 

setting in both nature and industry. Even a seemingly "simple" question gives rise 

to such complexity that , while much effort has been conducted towards a complete 

model, a full understanding of the phenomenon has thus far eluded the scientific 

community. 

Even answering the simple question of whether or not a flow could achieve a 

straight stationary state while flowing down an incline remained unanswered until 

recently, see for example Perazzo et. al. [12], Mertens et. al. [7], [8]. Many people 

believed it was an inherent instability of the flow itself, see for example Parker [13], 

Mizumura [14]. Much of the difficulty in this problem arises from the fact that a 

true understanding of these flows requires a complete model of turbulence, as well 

as of the delicate interactions between fluids and substrate boundaries. Even if the 

boundary is non-mobile (non-erosive), microscopic interaction can still give rise to 

complications including contact angle hysteresis. The true nature of the contact 

angle is quite complicated, for a fundamental reference see DeGennes [15]. Because 

theories on these subjects are still incomplete, a detailed model remains impossible. 

It will be shown through this thesis, however, that with the use of data collected 

with a highly controlled experiment, and the use of several valid approximation 

techniques, one can provide an accurate starting point towards the development 

of this theory. Further, even this simplified model can make accurate statistical 

predictions about not only the experiments performed but real natural flows as well. 

The models developed further correct several misconceptions on the subject (such as 

the notion of a preferred wavelength in these systems) and, for the first time, allow 

a more detailed comparison between flows on eroding versus non-eroding surfaces, 

characterizing seemingly universal characteristics between them (such as Hacks' law 

[16]). 

7 



Chapter 1. Introduction 

1.3 Previous Work 

The subject of studying meandering streams has a long history. One can trace 

literature back to at least 1876 with a paper by J. Thompson. On the windings 

of rivers in alluvial plains [17]. The primary mechanism driving this meandering 

instability has been the subject of much controversy over the last 130 years and, 

under different settings, different conclusions have been drawn. Even A. Einstein 

wrote on the subject in 1926, speculating the earth's rotation may play an important 

role [18]. Initially, meandering was studied in natural settings such as river systems. 

The uncanny visual similarities between river meanders and those observed on 

non-erosive substrates has drawn the community to attempt to make comparisons 

between these systems. However, the major conclusion drawn, previous to the current 

work, was that the mechanism for meandering on erosive substrates is the mobile-

boundary, Seminara [19], while in the case of non-erosive surfaces the mechanism 

is surface tension, see [1], [13]. This creates a distinct difference for the underlying 

physics and hence comparison between systems has been limited. 

Nonetheless, the rivulets became an active area of study through the 1980's 

[20],[21],[22], [23], [24], [25]. Many models for the non-erosive case were developed 

on these ideas, treating meandering as an intrinsic flow instability (see for example 

[1], [5], [14], [20], [26]). By creating models based on force-balance equations (be

tween inertia, gravity, friction, surface tension, and centrifugal forces) linearization 

methods were employed to look at short time dynamics in an attempt to predict the 

dominant wavelength for this instability. 

These models met with limited success and became quite difficult for further 

analysis. It is interesting to note that these models were generally built by using the 

river models previously developed, see [13], [27], [28], [29], but modifying them to 

include surface tension and neglect sediment transport. 

In the late 1990's, a largely unnoticed work appeared by Nakagawa [30] by which 

experimental evidence of stable flow patterns was found to exist in a region of space 

8 



Chapter 1. Introduction 
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Figure 1.2: Previous prediction on initial wavelength of instability theory vs experi
ment, x-axis observed wavelength y-axis predicted wavelength (from Mizumura 1997 

[1]) 

previously thought to be unstable. Later in 2004, analytic results for rivulets were 

published putting into further doubt the t ruth about when these flows were (and were 

not) actually stable to the meandering instability [12]. In 2006, further complexity 

was discovered by Le-Grand Piteira et. al. [5] where an experimental bifurcation 

diagram was presented showing transitions between stable flows, pinned meandering 

flows (meandering profiles not longer changing in time), and dynamic meandering 

flows (see Figure 6.1). Le-Grand Piteira et. al. began to address an additional flow 

structure where dynamic meandering gets pinned and becomes time independent. In 

Section 6.2, this specific point will be addressed in greater detail. 

1.4 Initial Results on Stationary States 

In 2002, the work of this thesis began as an experimental study to determine the 

governing parameters which control meandering instabilities. In particular, even 

before the knowledge of the work of Nakawaga et. al. [30], there were suspicions 

that certain flows could be made stable and straight if careful enough. A series of 

experiments were designed to observe the behavior in the immediate downstream 
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Chapter 1. Introduction 

Figure 1.3: Braids and Rivulets (left to right) 

flow of water (and water-glycerin mixtures) on flat acrylic plates under the influence 

of gravity. The choice of acrylic was based primarily on its availability, cost, and 

desirable surface properties. Acrylic is a partially wetting surface with a contact 

angle of roughly 57 degrees. As the contact angle is a measure of the surface-fluid 

interaction, this choice gives a moderately interacting surface. The experimental 

study was conducted across the parameter range shown in Table 1.1. 

The experimental apparatus is extremely simple and a schematic is found in 

Figure 2.2. The essential factors found to control meandering for this setup are 

fluctuations in the flow rate and contamination and/or irregularities on the surface. 

The primary difference separating this apparatus from those in previous work is 

the use of a tall upper reservoir which, through the use of overflow valves at cer

tain heights, ensures a constant hydrostatic pressure at the nozzle outlet. When 

the primary instability-causing mechanisms are removed, a stationary state is then 

observed. The details of the experimental setup are outlined carefully in Chapter 2. 

10 



Chapter 1. Introduction 

System Parameter 
variable 

Inclination Angle a 
Flow Rate Q 

Kinematic Viscosity v 
fixed 

Fluid Density p 
Contact Angle 0 

Surface Tension Coefficient 7 

Experimental Range 
15-60 degrees from horizontal 

100 ml-2 L/min 
1-5 centistokes 

Value 
l g / m l 

50 degrees 
70 dynes/cm 

Table 1.1: System Parameters 

It is important to note that even under ideal circumstances a transient stabi

lization time is always observed and can be substantial depending on the parameter 

choices and length of stabilization desired. For smaller flow rates, as well as increased 

viscosity, these transient times could be order of hours. 

At least one other paper does claim to use a constant hydrostatic pressure to 

prescribed flow [3]. It is unclear why they did not see the flow restabalize. The 

authors explicitly mention the use of a rotameter- it is possible this induced enough 

flow rate variation to explain their observations. Perhaps, they only collected data 

for a few hours after turning on the apparatus. In which case, for a long incline 

they may not have waited long enough to get through the transient. Perhaps, the 

aspect ratio A = ^ (where H is the fluid height in the upper reservoir and D is the 

diameter of the fluid jet) was too small and, therefore, there were still perturbations 

in the flow. 

For constant flow rates, after the transient time passes, two distinct steady state 

flow patterns were shown to be present. A rivulet regime where the mean downstream 

velocity is roughly constant and the edges of the stream remain straight, and a 

braiding regime where the mean downstream velocity is non-constant and the edges 

of the stream experience decaying oscillation as progressing downstream (see Figure 

1.3 and Figure 1.4). 

11 



Chapter 1. Introduction 

1.5 Braids and Rivulets 

n. 

: ; 

I M 1«-1 1*4 1M 1 « le-1 1ttH!«'tlr»JUi;r-*H'r'Me« 

Figure 1.4: JPG overlayed with solution to equations (1.1 , 1.2)(left bottom); Recre
ation of free surface profile (left top); Bifurcation diagram (right) 

The model for this steady state system was constructed from the boundary layer 

approximation of the Navier-Stokes equations parallel to the plane. After some ap

proximations, the system could be reduced to a pair of ordinary differential equations 

for the stream width and the average down stream velocity at each cross-section. 

(u • w')' = F(u, w) — 7TiV2w2w' 

U • u' = 1 — TT2U3W2 

(1.1) 

(1.2) 

where 

III 

n2 

3Qp2v(gsin(a)) 

ZQ p1 u{gsin(a) 

(1.3) 

(1.4) 

With the use of averaging techniques [31], lubrication approximation, and a fourth 

order polynomial approximation for the free surface profile this model is able to 

explain this physics of this phenomenon from first principles, incorporating surface 

tension and inertia under the influence of gravity. For a more detailed construction of 
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Chapter 1. Introduction 

this model and explanation of all analysis summarized here, see Appendix A and/or 

[7],[8] [32]. 

The physics of this phenomenon can be explained as follows: Braids are, in fact, 

decaying oscillation as the bulk of the fluid (traveling at the edges of the flow and 

separated by a thin film in between) are drawn together by surface tension and then 

bounce with decaying amplitude due to inertia, while driven by gravity. The model 

is able to predict the decaying oscillation as well as the free surface. Further, this 

model has the ability to explain the transition between the two distinct steady states 

(See Figure 1.4). 

Conducting a linearization around the constant mean downstream velocity and 

constant stream width, one arrives at a cubic polynomial for the associated eigen

value equation which can predict the bifurcation between flow regimes. This can be 

understood mathematically as a transition from one negative real, and two complex 

conjugate eigenvalues (braids) to three negative real eigenvalues (rivulets). The bi

furcation diagram is in terms of two dimensionless groups constructed from the five 

dimensional parameters and the dimensionless inclination angle 9 of this system. 

Because the bifurcation line represents the limit as the imaginary part of the 

eigenvalues goes to zero (i.e. the wavelength goes to infinity), this implies distin

guishing data near the line is impossible (i.e. it is hard to tell a straight stream from 

one with an almost infinitely long wavelength). Nonetheless, for parameter values 

which are clearly on either side of this line, it is in excellent agreement with the 

experimental observations. 

Now that the existence is established, and physics understood, for the stationary 

states a solid foundation is laid, both experimentally and theoretically, to begin a 

detailed study of meandering on non-erosive partially wetting surfaces. 

13 



Chapter 1. Introduction 

SECTION II. 

An excerpt from On the cause and characteristic scales of meandering and braiding 

in rivers [13] representing the fundamental philosophy on meandering which has 

influenced most work in the area of stream meandering. 

The thesis that meandering is an inherent property of the flow, and that 

sediment transport is necessary only in a kinematic way to impose flow 

pattern on the bed, must be discarded in so far as present theories applies. 

Rather, it is indicated that the existence of sediment transport is a dynam

ically necessary condition for the formation of instability leading to mean

dering either in the flow or on the bed. This conclusion must be reconciled 

with the fact that meandering in fluid streams occurs in circumstances in 

which sediment transport is not present; namely in oceanic currents such 

as the gulf stream, streams of meltwater on ice, and Gorycki 's streams a 

few milliliters wide on plastic plates. Common to all meandering streams 

are potential (inertial and gravitational) and friction effects; it is pro

posed here that an additional 'third effect' is required for meandering. 

This third effect is as follows: for alluvial streams, sediment transport; 

for oceanic currents, Coriolis acceleration; for glacial meltwater streams, 

heat difference, and for Gorycki's streams, surface tension. 

Parker 1976 
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Chapter 2 

Experimental Investigations 

2.1 Meandering 

Figure 2.1: Experimental Meandering (left); River Meandering (right)[2] 

Meandering in nature is obviously far more complex than in the lab due to the 

extreme turbulence in rivers, erosion and transport of the underlying landscape, 

flooding, anthropogenic influences, etc. Modeling river meandering has been an 
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active area of research among geomorphologists for many years [13], [27], [28], [29], 

[33], [34], [35], [36], [37], [38], [39] as just a few examples. In fact, one can find 

more than ninety publications in the Civil Engineering Database alone since 1990 

[40]. On the other side of this problem, more and more papers began to accumulate 

investigating non-erosive surfaces [3], [14], [20]. However, no one knew how accurately 

any comparison could be performed between these two different systems. Further, 

the types of questions they were trying to answer in their various settings were not 

suggestive of anything that could or should be quantitatively compared. No one 

knew exactly how the erosion was influencing the behavior compared to what they 

witnessed. It is clear that erosion and sediment transport must influence the flow 

behavior, but how? 

While this is an interesting question, which will be addressed in this work, the 

discussion will be postponed until the end of Chapter 3. For the remainder of Chap

ter 2 and the primary portion of Chapter 3 this thesis will focus on understanding 

meandering on non-erosive partially wetting surfaces such as acrylic and polypropy

lene. 

Due to the overwhelming complexity of this system, initially a set of goals was 

set for the current research. These points serve as the motivation for the remainder 

of Section 2. 

1. Identify the mechanism for sustained meandering. 

2. Measure the spectrum and investigate the existence of a preferred wavelength. 

3. Generalize the stationary state model to understand meandering statistics. 

4. Investigate any connections these flows share with those observed in nature. 

16 
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Flow control valve 

' -V-.. ŝSk 

open dosed" 

Stream 

Figure 2.2: Schematic of Experiment 

2.2 The Experimental Setup 

The experimental arrangement (Figure 2.2) provides a highly constant discharge 

rate from a tall cylindrical top reservoir through a hole in its bottom connected to 

a flexible plastic tube. The diameter of this tube, and the hole, is d = 3 mm. The 

diameter of the container is D — 15 cm. Thus d -C D, and the flow discharge 

rate Q is fairly well approximated by the formula originally introduced by Torricelli, 

Q = |^4 y/2gZ, where g is acceleration due to gravity and Z is the height differential 

between the location of the hole and the free surface [41] . Thus, if Z remains 

constant, Q is constant as well. For a fixed tube diameter, Q can be altered by 

changing Z. 

The flexible tube that carries the flow to the inclined plane is necessary to prevent 

any capillary instabilities that might form on the free surface of a water jet. The jet 

was introduced onto the plane in two different ways: 

• Perpendicular to the plane at a constant height of ~ 1 cm. 

• Parallel to the plane. 

17 
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Meandering System Parameter 
variable 

Inclination Angle a 
Contact Angle 8 

Flow Rate Q 
Kinematic Viscosity v 

pulse rate 

Experimental Range 
30,45 degrees 

57 ± 2, 74 ± 5, 99 ± 4 
3 flow rates used see Table 2.2 

pure water, 50-50 water/glycerin mixture 
l/3pps, lpps, 4pps; with duration of order milisec. 

Table 2.1: Meandering Data Collected 

An electronically controlled valve, which could alter the flow rate by squeezing the 

tube, was also introduced upstream of the discharge point. Initially, several ampli

tudes of the pulse were investigated, for several types of signals, at various frequen

cies. For all amplitudes inspected (between roughly 10 and 100 percent reduction), 

meandering was a persistent feature of the flow. Hence, all data collected for analysis 

use a fixed amplitude of volume contraction ("strength of squeeze"). Ranges can be 

found in Table 2.1 and Table 2.2. The inclined plane is produced by placing a large 

(2.4 m long and 1.2 m wide) sheet of acrylic plastic (3.2 mm thick) on top of a 2.4 m 

Flow Values Investigated 
for Meandering 

w/o pulses 
FLOW 1 
FLOW 2 
FLOW 3 

w/ .37 pulse/sec 
FLOW1 
FLOW 2 
FLOW 3 

w/ 1 pulse/sec 
FLOW 1 
FLOW 2 
FLOW 3 

w/ 4 pulses/sec 
FLOW 1 
FLOW 2 
FLOW 3 

WATER 

187.5ml/min 
315.8ml/min 
428.6ml/min 

181.2ml/min 
272.7ml/min 
375ml/min 

176.5ml/min 
271ml/min 
333ml/min 

50ml/min 
105ml/min 

157.9ml/38sec 

50-50MIX 

lOOml/min 
171.4ml/min 
222.2ml/min 

92.3ml/min 
150ml/min 

214.2ml/min 

85.8ml/min 
143ml/min 
200ml/min 

38ml/min 
65ml/min 
94ml/min 

Table 2.2: Meandering Flow Data Collected 
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x 1.2 m x 2.5 cm urethane slab, which in turn is mounted on a welded-steel frame. 

This frame is attached to two pivots with a screw arrangement controlling its angle 

of incline a with respect to the horizontal. 

After the flow exits the tube, it runs down the incline and into a long rectangular 

bottom reservoir, from which it is recirculated with an electric pump connected to 

the top reservoir. Note that the top and bottom reservoirs are also connected with 

an overflow tube, which ensures that the free surface of the top reservoir remains at 

a constant level. The stream of fluid in this setup is highly controllable. 

After some initial settling time, the stream flowing down the plane assumes a 

straight shape for all the flow regimes investigated. During the settling time, three 

distinct flow regimes could be observed (see Figure 2.5): 

• First, a region in the immediate downstream where stabilization had occurred, 

• Second, a region of continuous meandering, 

• Third, a region where the stream breaks up. 

In the third regime, stream splitting events usually occur at the inflection points of 

the stream. 

If the flow control valve remains open (no flow rate disturbances), the stream 

always stabilizes to the stationary non-meandering shape. Note that the long and 

narrow top reservoir stabilizing the flow is crucial for rivulet stabilization. If that 

reservoir is removed, or a flat and shallow reservoir is used (even having the same 

volume capacity), the meandering never stops due to the inherent disturbances intro

duced by the pump. Thus, careful attention to disturbances in the flow is imperative 

for this experiment. 
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Figure 2.3: Experiment used to inspect various perturbations to steady state flows 

2.3 Experimental Stability 

Having knowledge of the steady state flows, the next obvious question is, how robust 

are the stationary states to perturbation? The initial expectation was that flow 

stability should be extremely sensitive to any perturbation, after all these stationary 

states are almost never seen in nature. To be cautious of this possibility, the initial 

perturbations were done using a three-inch speaker held fixed approximately two 

inches above the plane immediately downstream of the nozzle. The tone was created 

using a sine wave generator and a pre-amp allowing variable power of up to roughly 10 

watts continuously. The range of frequencies investigated spanned from 0-4000kHz 

continuously. The results in all cases were similar. While the given perturbation 

may induce a temporary meandering state, the flow would always re-stabilize under 

the influence of any constant signal. 

The second set of experiments were then conducted by attaching the nozzle itself 

to a linear oscillator which was capable of introducing oscillations perpendicular 

to the flow direction ranging from 0.5cm to 5 cm discretely with frequencies less 

than 100 Hz continuously (see Figure 2.3). Note that when running at maximum 

capacity, the accuracy and linearity was very uncontrolled. It was more like a chaotic 

pendulum. Nonetheless, even under these extreme circumstances, stabilization was 
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observed. The conclusion of these experiments demonstrated that if a perturbation 

had time to be quenched by the downstream flow, then the flow would re-stabilize. 

Hence, only perturbations capable of traveling upstream could sustain meandering. 

The third set of experiments was then conducted using perturbations in the form 

of shocks, which are then capable of upstream travel. By a slight modification to the 

previous schematic, which is shown in Figure 2.2, namely inserting an electronic valve 

into the system which introduces controllable flow rate fluctuations, pulses to the flow 

could be introduced in a controlled way. This type of perturbation was found to lead 

to the immediate onset of indefinite meandering. Amazingly, even a small pulsation of 

this type is capable of sustaining meandering (tests ran for up to twenty-four hours). 

In a few instances, the meandering would seem to become stationary. However, in 

this experiment the cause was always attributed to surface contamination. While 

there may actually be something more complex happening here, one can say with 

certainty that cleaning the surface and restarting under the same conditions would 

not generate consistent pinned patterns. As the range of parameters investigated is 

well within the dynamic range given by Le Grande-Piteira tt. al. [5] (see Figure 2.3) 

this does not necessarily contradict the existence of stationary meandering for small 

flow rates. For small flow rates the effects of surface interactions become much more 

dominant and pinning does not seem unreasonable. 

For the entire parameter range investigated, switching on the pulses prompted 

almost immediate meandering. Switching off the pulses would yield stationary states 

after a transition period. While the transient meandering time may be on the order 

of several hours for slower flows, patience would always yield steady state flows 

the complete length of the acrylic sheet. For the meandering analysis conducted, 

several measurements were made varying surface contact angle, flow rate, pulsation 

rate, inclination angle, and viscosity. For the range of values studied, see Table 2.1 

and Table 2.2. Additionally Figure 2.4 shows the static contact angle for the three 

surfaces studied. Note that all the meandering data collected was under the influence 

of constant pulsation. 
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Figure 2.4: Contact angles for various surfaces studied, Acrylic, Coated Acrylic, 
Polypropylene (left to right) 

2.4 Meandering Regimes 

Figure 2.5: Three Regimes (left); Splitting (right) 

Through the work of this thesis, it has been shown that at any instant in time 

during the transient period of flow stabilization, there are three distinct regimes as a 

fluid flows down an incline plane (see Figure 2.5). Based on the choice of parameter 

values, one can adjust the size of these various regimes as desired. For a flow which 

is given all the necessary conditions for stability, one can follow the transition points 

between these regimes as they move down the plane. In the immediate downstream, 

the flow will become stable fairly quickly. At some point downstream a "tail" will 

appear where the stream begins to meander. Initially, the meandering stream will 

stay coherent and therefore there will exist a second regime for which the stream will 
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remain continuous as it writhes back and forth across the plane. 

Still further down the stream one will then observe a second point at which 

the stream will split, sometimes breaking into two streams other times into several. 

At this point the behavior becomes completely chaotic and is beyond the focus of 

the current work. While it has not been theoretically addressed, experimentally one 

seemed to observe a statistically regular velocity of these two transition points during 

stabilization. There is additional data collect for analysis of this behavior when time 

permits in the future. 

The present work only accounts for analysis of data under the influence of pul

sation. By increasing the viscosity in these flows, one can increase the size of the 

continuous meandering regime to the full extent of the acrylic plane used. By this 

method the current work was therefore able to obtain stream lengths long enough to 

begin consideration of statistical work. 

2.5 Splitting Regime 

Before leaving the topic of stream splitting and the third regime, a few important 

remarks concerning experimental observations should be addressed. A stream split

ting event in the lab will almost always occur as a consequence of one of two events, 

either; As the meandering stream fans across the plane it requires the flow further 

downstream to move faster and faster to "keep up". Eventually, at some distance 

downstream, this is impossible due to friction and the stream slides off itself. More 

typically one observes a "buckling" occur where a cusp forms at an inflection point 

of the stream. 

A paper has been published studying this third regime Schmuki et. al. [3] and 

this phenomena has been clearly connected to contact angle hysteresis. By studying 

the number of splitting events that occurred per unit time at each cross-section the 

authors were able to explain, using energy considerations, the scaling law observed 

which were in good agreement with their theory (see Figure 2.6). 
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Figure 2.6: Theory vs experiment for prediction of splitting events based on energy 
considerations Schmuki et. al. 1994 [3] 

2.6 Data Analysis 

Figure 2.7: Typical digital image acquired through experiment, grey-scaled and 
undistorted, stream center line found (in black) and overlayed on original jpg image 
(left to right) 

Figure 2.7 shows a typical image obtained in experiment. These images are 
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captured with a 4-megapixel grayscale digital camera mounted above the incline. The 

effective resolution of the images is about 1 mm per pixel. Any optical distortions 

are removed from these images as follows: An image of a rectangular grid is captured 

by the camera. This bitmapped image with any distortions is then mapped to the 

bitmap containing the undistorted image. The mapping procedure produces a bicubic 

spline mapping scheme which is then used to process the experimental images. Prior 

to each experimental run, a background image with no stream is captured, to be 

subtracted from the images showing the stream and the droplets left in the process 

of its meandering. Subsequently, the image is grey-scaled [42] and then, with the use 

of a Matlab code, the centerline of the stream is extracted from the processed images. 

The conservative estimate of the cumulative error of the extraction and distortion 

correction for the centerline coordinates is on the order of one pixel (about 20% of 

the characteristic stream width). 

The stream centerline profiles were then compiled into a list. After conducting 

experiments across the parameter space indicated in Tables 2 and 3, about 200 images 

were accumulated. Analysis was then done to look at ensemble average spectrum for 

various subsets of this data. It is important to note each image was taken at least 

5-10 minutes after the stream profile began to develop. The focus of this work is 

on fully developed stream profiles. Further, all images were taken far enough apart 

in time to be considered statistically independent. The results for each surface are 

plotted in Figure 2.8. A rescaled comparison is also plotted along with theory in 

Chapter 4. 

In addition to doing data analysis on the stream profiles themselves, it was also 

found that work would need to be performed to understand the distributions of 

droplets left by the stream on the plane. As a stream meanders, it leaves a thin film 

in its wake, which almost immediately breaks up into droplets. These droplets are 

then left to be later re-encountered by the stream. In Chapter 4 the inclusion of this 

effect must be addressed to obtain a physically reasonable model. In this section 

some of the basic information about these droplets is included. 

Each image was resolved using Imagetool ©[43] and a random sample size of 
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Figure 2.8: Unsealed Spectra (Green=acrylic,Red=RainX,Blue=Polypropylene) 

roughly 10,000 droplets. First, note that while the scaling of the spectra remains 

similar for all surfaces investigated (Figure 2.8), the amplitude does change. This is 

the first indication that there are still differences between the flows found on varying 

surfaces. In fact, observation shows that as the interaction with surface increases 

(i.e. contact angle decreases), the meandering increases in amplitude of deviation 

and the meanders themselves move slower. One can then ask to what extent is this 

behavior explained by these droplets'.'' 

Analysis of these distributions shows that , as one may expect, they are not identi

cal for all surfaces. Inspection of Figure (2.9) shows size distributions for the various 

surfaces and also the growth rate of deviation. The growth rate seems to be a func

tion of the contact angle ( i.e. increasing contact angle decreases the number of 

droplets and the growth rate of deviation of the streams center line). 

Unfortunately, there is insufficient data to feel confident looking at these devia

tions too far from downstream. Further work should include the collection of a much 

larger data set for study of such questions. Nonetheless, it gives the basic idea that 

the issues of contact angle are still looming in this problem. 
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Figure 2.9: Top: Growth rates of (\h\) vs downstream distance for various surfaces: 
Top Insert: Growth rates vs contact angle; Below: Distribution of drop sizes for 
various surfaces 
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Chapter 3 

Theoretical Model 

3.1 General Considerations 

Using the previous knowledge about the steady states it is fair to assume the same 

basic processes must be accounted for in the force balance equations. Hence, one 

should expect the influences of gravity, surface tension, friction, and inertia to be 

important. However, by inspection of Figure 2.7 (and as was addressed in the pre

vious section) one can see that when a fluid stream meanders on a partially wetting 

surface, another contribution becomes apparent. That is, as the fluid writhes back 

and forth across the plane it leaves a thin film in its wake which almost immediately 

breaks up into droplets. These droplets are then left to be later re-encountered by 

the stream. Upon this collision each droplet acts as an additional local transverse 

forcing mechanism on the stream. Therefore a model cannot be correct without 

explicitly taking this into account. 
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3.2 Starting with Navier-Stokes Equations 

^ + UVU = - V P + gsin(a)ex-|-i/V2U (3.1) 

at p 

As with the stationary state model, the model again starts from (3.1) and the in-

compressibility condition (See Appendix A). Now, however, the previous technique 

of approximating the free surface profile becomes much more challenging. Without 

an explicit function to characterize the free surface profile, the calculation of pressure 
(surface tension) term in 3.1 will have to be done using variational Calculus. 

Additionally, the influence of the droplets makes this problem stochastic. That is, 

until it is possible to predict the exact size and location of each droplet as a function 

of time, the best one can do is with the use of distribution functions. Obviously, 

the ability to predict these drops from first principles is a challenging problem and 

currently there is no complete theory for how to achieve this in even the simplest 

settings. For the current purposes, the use of stochastic modeling will not be a 

serious limitation. 

3.3 Surface Tension 

^--~^~~ 
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! 

Figure 3.1: Top: Fluid cross-section in yz plane; Bottom: Fluid cross-section in xy 
plane demonstrating two curvatures present 
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For the arbitrary stream volume element, there are two curvatures which must 

be considered when contemplating surface tension. See Figure (3.1). There is the 

curvature in the xy plane and that in the yz plane. Initially, for simplicity, consider 

only the curvature in the xy plane. To perform this calculation, approximate the cross 

sectional area in the yz plane by A — Iw where I is the average stream height and w 

is the average stream width. It is clear that this is an approximation. In Section 3.5, 

it will be addressed when this approximation is most valid. Further, in Section 6.1, 

how one could do better will be discussed, along with the difficulties encountered. 

For now, this choice will greatly simplify analysis and under this approximation it 

will still be possible to gain many insights into this problem. 

To calculate the surface tension force in the xy plane, consider the use of vari

ational methods. The basic procedure will be relied on twice in this manuscript 

and therefore an outline of how to calculate variational derivatives is found in the 

Appendix. 

By considering the functional, which represents energy per unit arclength 

E = jw y/1 + h\dx , 

the force/volume, due to curvature differences on the top and bottom edges of the 

stream, can then be found as roughly: 

liv PW
 16E 1 d ( h* \ 

Here, the relation A = wl has been used. Also, 7 is the coefficient of surface tension, 

and the subscripts t and b are the force felt by the top and bottom respectively as 

shown in Figure 3.1. 
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3.4 Colored Noise 

An important part of the subsequent discussion is the structure of the noise. There 

are two possibilities. First, one can take rj(x, t) as a white noise with the correlation 

{rj(x, t)r)(x', t')} — AS(x—x', t—t'). This assumption leads to an analytical solution (in 

a stochastic sense) for the system derived in Chapter 5 under the assumption that 

the friction coefficient A vanishes in the equations of motion presented in Section 

3.6. The solution, interestingly enough, provides a meandering exponent of 1/6 

corresponding to real-world rivers. This solution is presented later in Chapter 5. 

However, assuming r/(x, t) to be white noise is not adequate for explanation of the 

experimental results. Indeed, the white noise ansatz for rj(x, t) can only be assumed 

if there is a large number of droplets of random sizes distributed all over the length 

of the meandering stream, and acting at all times. This assumption is correct for 

large-scale flows like rivers, where there is continuous random forcing on all scales. 

Figure 3.2: Drop size distributions for various surfaces studied: Acrylic, Coated 
Acrylic, Polypropylene (left to right). 

When attempting to reconstruct droplet distributions, there are actually two 

types of distributions one might initially consider: those in size and in space. Figure 

3.3 shows typical 25cm2 patches of droplets for the various surfaces studied. Anal

ysis was performed to investigate size distributions as a function of surface contact 

angle. Figures 2.9 and 3.2 demonstrate that the choice of material does affect the 

distribution properties. 

In this experiment, at each given time instant, the stream encounters only a very 

limited number of droplets. Thus, it is most reasonable to use the assumption that 
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Figure 3.3: 25 cm2 sample patch of droplets for each surface (increasing contact angle 
left to right) 

r)(x, t) is a spike appearing at a random sequence of times i1; ...tn,.... At each time £&, 

the position of the spike Xk is also chosen at random. Several types of distributions 

have been tried for these droplets in space, and as long as they are not too skewed 

{i.e. , concentrated towards the beginning or the end of the stream), the results 

do not change for wavelengths corresponding to the scales larger than droplet size. 

In addition, the results do not change depending on the shape of each droplet as 

long as it is localized. In particular, a rectangular pulse function of width I, inverse 

Helmholtzian exp(— \x — xn\/l) and Gaussian exp(— (x — x\)/l2) distribution type 

were used. Because the exact, nature of the distribution was not critical, for the 

numerical results presented in Chapter 4, this function was approximated using the 

average drop size for each surface and a uniform distribution in space. This allowed 

the reduction to a single fitting parameter for the average force felt by the moving 

contact line each time it encountered a droplet. 

Hence, the nature of the noise in this problem is "colored" in that it is highly 

concentrated at a particular scale and localized. Note that all the modeling results 

presented here assume uniform distribution of droplet times ti,...tn; for each time 

i/t the distribution of droplets Xk is uniform in space. The shape of the forcing is 

Gaussian, with width / equal to the cross-section of the stream (2 mm). 
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3.5 Equations of Motion 

Consider the flow of fluid on an inclined plane at an angle a with the horizontal. 

Define the (x, y) Cartesian coordinate system in this plane so that its origin coin

cides with the origin of the stream, and the x axis is pointing straight downstream 

(i.e.l, the centerline of a non-meandering rivulet will follow the x axis). Then the 

momentum equation for the fluid in the rivulet can be written as 

^ + UVU = - V P + gsin(a)ex + ^V2U + H . 
at p 

The dominant contributions to the force balance come from the surface tension, 

friction on the bottom of the stream, and internal viscous dissipation, all of which 

work against fluid inertia and gravity. 

3.5.1 Lubrication Approximation for Frictional Force 

Here, consider a lubrication approximation to reduce the full three-dimensional equa

tions with boundary conditions (z axis being normal to the plane of the flow) to 

equations in two dimensions where the z dependence is averaged out and the no-

slip condition on the bottom is implicitly accounted for. A very similar technique 

has been described in detail in Appendix A. The lubrication approximation is based 

on the assumption that the vertical velocity profile in the fluid is parabolic due to 

the non-slip boundary condition on the bottom of the stream and the stress-free 

condition on the top (free surface). 

With these assumptions, one can show the x component of the friction force to 

be FjtX — 3vu/l2, where u is the value of the x component of velocity averaged in the 

z direction and, as before, I is the average stream depth. As the stream is narrow, 

one can safely assume that u does not vary much in the cross-stream direction. 

Similar parabolic-like velocity profile is expected in the cross-stream (y) direction 

with velocity vanishing at the contact lines (similar to theoretical results of Perazzo 

33 



Chapter 3. Theoretical Model 

et. al. [12]). The cross-stream dependence on y over the width w can then also be 

averaged out. The total friction terms in this direction are then FfiX = —3vu(l/l2 + 

l/w2) = Xu. Thus, introduce single values of the velocity components U = uex + vey 

in the x- and y- directions for a given cross-section of the stream. Let the stream 

Figure 3.4: Schematic of cross-section in yz-plane, demonstration connection between 
I w and 9 

discharge rate at a given location be Q = Au, where A is the cross-sectional area of 

the stream in the plane normal to the x-axis. Assume that the width of the stream 

is w. The area of this section is A = Iw. Now, using Q = Au = Iwu, write the 

equation for the friction force as FftX = 3 ^ p ( l + ^ ) . 

The simplest possible form of the equation describing the free surface £ in this 

plane is parabolic, £ = | /(1 — V The ratio w/l is actually related to the contact 

angle 6 as follows. By evaluating -^ at y = w/2 (the edge of the stream), one finds 

the value to be 61/w. But this slope equals tan 9. Thus w/l = 6/tan#. 

18i/u2 

This implies FLx = - 5 ^ ( 1 + ( ^ ) 2 ) . B y introducing a parameter A = 18^(1 + Qtantf 

l2/w2)/(Q tan9) = 18i/(l + (tan#/6)2)/(<5tanfl) « 18i//(Qtan0) and performing 

similar analysis for the y-component of the friction force, one can then write the 
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following expressions for the components of the friction force in the two-dimensional 

formulation of the problem: F^x — —Xu2 and Ff,y = —Xuv. 

3.5.2 Equations of Motion: First-Form 

Consider the pressure term, with the pressure to be inferred from the influence 

of surface tension. For this derivation, assume that the variation of the width of 

the stream w(x,t) is sufficiently small that the width can be represented by its 

characteristic value w. In reality, the shape of the cross-sectional area of the stream 

changes with time, and the contact angle is subject to hysteresis. However, if one is 

dealing with gradual movement of the stream (characteristic contact-line velocities 

associated with meandering are much lower than U — \U\), it is reasonable to assume 

that the variation of this shape is commensurately small, and so are the variations 

of w and /. For this, and the subsequent derivations, also regard the downstream 

velocity components as uniquely defined by the downstream distance x, as all the 

variations of velocity in the cross-section of the stream are either small enough to be 

irrelevant (in the y direction) or have been averaged out (in the z direction). 

Let the deviation of the centerline of the stream from the z-axis be h{x,t). 

For a straight rivulet, h(x, t) — 0. Then the length of the centerline of the stream 

between downstream locations x\ and x2 is L = f*2 \ / l + hxdx, where hx = ~. 

For a contact angle characterizing a partially wetting surface (0 < 90 ), the stream 

is shallow (I = wtap '). Thus the surface area of the stream between xi and x2 is 

approximately the same as the wetted area 

S = wL ~ w \ / l + hxdx . 
J X\ 

The surface tension will tend to minimize this surface area, thus the surface tension 

force per unit length is Fs — jj^. Thus, the corresponding capillary force per unit 

volume is 
1lt? F U l S E 1 8 I k* \ 
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as was derived previously in Section 3.3. The component form of the equations of 

motion then take the form: 

= 5 s i n ( a ) - A u + v— + ——cosip + r]x (3.2) 

d2v 1 SS , N 

= -Xuv + » W + J - p J K ^ + Vy (3-3) 

du 

~di 
dv 
~di 
dh 
~di 

du 

dx 
dv 
dx 
dh 
dx 

(3.4) 

The terms containing A are added as the result of the use of a lubrication approx

imation. Angle %(> in the terms representing the components of the pressure (i.e. , 

surface tension) force is the angle between the direction of the stream and the x-axis, 

in other words, tan ip = hx . The components of the random force H are r)x = r\ cos ip 

and r)y = rjsmip. The third equation is a kinematic condition for h(x, t). 

3.6 First Rescaling 

The system (3.4) can be further simplified by considering rescaling under the as

sumption that v <£L u. Then, hx <§C 1 and the surface tension term linearizes as 

follows: 
SS hxx 

Sh y/TTh* 

this reduces the system to 

-hr 

du du 
dt dx 
dv dv 
dt dx 
dh dh 
dt dx 

= gsin(a) — Aw2 

d2v 
- ~Xuv + vw 
- V . 

d2u , x 

u— + r,x (3.5) 

7 d2h 

JluV2+^ ^ 

(3.7) 
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This model is therefore accurate to order ~ 0(hx). All numerical analysis performed 

in Chapter 4 will use this set of equations. Notice at this point that the u equation 

has decoupled, while the remaining two equations for v and h are now linear. 

3.7 Stability Analysis 

The following subsections address various stability calculations which can be per

formed on the set of equations derived in the previous section. Some additional 

notes about conventions and notation can also be found in the appendix. 

3.7.1 Linearization and Spatial Instabilities 

With these equations one can now perform some standard linearization techniques 

to see what, if anything, can be said about the initial meandering instability. 

Consider 
Xu2 

ut + uux = g cos a + vuxx — := uuxx + F(u) . 

Consider stationary solutions ut = 0 about F(u*) — 0 i.e. F = 0 =*> 

I Qg cos a 

Now, linearize about u* by u = u* + eu dropping terms of order e2 and dropping (~) 

notation one arrives at 
u, 2Xu, 

uxx ux —— u = 0 
v Qv 

yielding the characteristic equation 

r2 - — r - -—^ = o 
v Qv 
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This gives eigenvalues of 

~ 2v 2 y v2 Qv • 

This shows that the Re(T) > implying it is unstable! What is worse is that this 

calculation carries over to the v equation in the same fashion. Consider 

vt + uvx = -—uv + vvxx + —nxx . 
Q pi 

coupled to 

ht + uhx = v 

but in the steady state h = 0, u roughly constant, and vt — 0 so this becomes 

ii, Xu 

vxx vx - —v = 0 
v Qv 

leading to eigenvalues 

„ u 1 u2 4Au 

~ 2v 2 y v2 Qv ' 

This result again suggests that the Re(T) > 0 implying it is also always unstable. 

Hence, these calculations can not be correct since they predict exponential growth 

for all values of constant flow, which is not what is seen in experiment! This will be 

attributed to limitations of linearization techniques. This point will become more 

apparent as the calculation proceeds. 

3.7.2 Temporal Meandering Stability- Constant Flux 

Now consider temporal stability of the M-equation. As has been seen previously, the 

coupling -between u and v in h means when u is stable so is v and vice-verse. This 

happens explicitly because of the one-way coupling between the u and v equations, 

i.e. v is coupled to u, but not the reverse. Physically, this makes sense since the 

linearization is about a straight rivulet. 
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Consider 

Ut + uux = g cos a + uuxx — := vuxx + b (u) . 

Consider solutions about F(u*) = 0 as before so the linearization becomes 

2Au* 

Then assuming solutions of the form u(x, t) = a(t)elkx one arrives at 

P(ik) = — uk2 —- — iujz . 

Because P(ik) < Oforall k, implying for constant Q the flow should be stable. This 

is a good result, and in agreement with observation, if the flux Q is constant, the 

flow is stable. However, to justify the claims that: 1. Flow rate perturbations 

cause the onset of meandering and 2. Noise is responsible for the amplification and 

sustainability, more is needed still. 

3.7.3 Temporal Meandering Stability-

Varying Flux with Constant Amplitude I 

Now, consider linearization of the u equation including fluctuations in Q (initially 

with constant amplitude) such that Q = Qo(l — esin(wt)). Then after substitution 

and dropping of e2 terms: 

\u*u 
ut + u*ux = — h vuxx , 

Qo 

which gives the equation for the transition function as 

a'(t) = - (iku* + -fr + k2v) a(l) • 

Thus, once again this gives a result of stability. While this result is somewhat 

physically reasonable, it says that pulsation alone cannot drive meandering. This still 
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does not account for the observation that the onset of pulsation induces a transient 

meandering state. 

3.7.4 Temporal Meandering Stability-

Varying Flux with Constant Amplitude II 

To demonstrate that the cause here is most likely non-linear, consider again lineariza

tion of the u equation including fluctuations in Q (initially with constant amplitude) 

such that Q = Qo(l — esin(wi)). However, this time further include the additional 

non-linearity: 
Au*u 

ut + u*ux = — — . , ^ + uuxx . 
Qo + esin(wi) 

After all, the actual pulsation was lost through the previous linearization (u). This 

leads to the equation for the transition function as follows: 

where 

o!(t) + ( iku* + ~ + k2v) a(t) = F(t) , 

F(t) 
-Xulesin(ujt) ikx 

<3o(l - esin(wt)) 

Also, let 

P(t) = iku* + -^1 + k2v 
Qo 

This equation can still be solved with the use of an integration factor. 

Define fi = exp(f P(t)dt). Then 

-r(/J.a) = fJ,F(t) =$> a(t) = - I fj,F(t)dt . 
ill JJJ J 

Here \i = e p ( i ) < =>• 

2 , 
a(t) _ e-P(t)t [ -AtfosinQjf) P(t)tikxdt 

[)~ J Q o ( l - e s i n M ) ) 
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This integral is obviously not an easy task, but making a small time approximation 

will be enough. Through experiment it is known that pulsation without noise will 

die out. All that is necessary is to see that for small time there is initial transient 

behavior. In practice, this means considering t small enough so that sin{uit) « tot 

and ep^1 « 1. Then the above integral expression for the transition function simply 

becomes 

= zAu^ e f c f *_ = Z ^ e * . f Zl + 1 ^ 
Qo J (1 - cut) Q0 J eu CLO{1 - tujt) 

= ^ e * 1 /(-l + TT^)dt = 7TeikX{t + - l n ( 1 - eut)) • Qo J (1 - tut) Q0 ttu 

So finally, after a little non-linear stability analysis, it is shown that initially the 

instability grows linearly, but the exponential will quench this linear growth pretty 

quickly and thus destroy this approximation. Further, in reality, it is known that the 

contact angle will be playing a very significant role on the dynamics in this stage of 

the stream development. Therefore, other than a somewhat weak confirmation that 

this model does agree with experimental observations, i.e. that pulsation starts the 

process, one cannot really take it much further. 
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Chapter 4 

Quantitative Analysis of 

Experiments and Comparison with 

Theory 

4.1 Spectral Scaling Law 

The presented here is based on approximately 200 flow images on various substrates 

acquired with a high-resolution computer-controlled digital camera. The time inter

vals between the pictures were random and long enough for the flow patterns to be 

statistically independent. From each image at time tm , the deviation of the stream 

from the centerline hm(x) was extracted as the function of down-stream distance x. 

From members of the ensemble hm(x), m = 1,..., 200, the power spectra Sm(k) was 

then computed, where wavenumber k = 2ir/\ corresponds to a spatial wavelength A. 

While the power spectra Sm(k), based on single images, are rather noisy, the 

spectrum produced by averaging over the ensemble S(k) manifests a smooth graph 

with apparent power-law scaling S(k) ~ k5^2 over the span of about two decades 

(Figure 4.1). Note that averaging over as few as 30 realizations from the ensemble 

produces a smooth graph with the same power-law exponent. Deviation from this 
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scaling is noticeable only for k > kmax ~ 5cm - 1 , corresponding to physical scales 

smaller than the characteristic stream width. The largest physical scale that can be 

acquired (and thus the smallest wavenumber) is constrained by the 2.4 m streamwise 

extent of the experimental arrangement. 

The scaling behavior is a persistent feature of all the experiments, representing a 

universal characteristic of the problem of the flow down a partially wetting incline. 

One important conclusion from the power law behavior is that the leading wavelength 

associated with meandering instability claimed by previous authors does not exist in 

the fully developed meandering state. The results were repeated for three surfaces: 

acrylic (contact angle 57 ± 2° ) , acrylic with hydrophobic coating (contact angle 

74 ± 5° ) and polypropylene (contact angle 99±4° ). The results for spectra and 

basin area (see below) for these surfaces appear indistinguishable. 

To compare the experimental results with the theory, numerical simulation of 

Equations. 3.7 were performed over a long time (t ~ 0(10,000)) and computed 

an average of the spectrum for the deviation of center line for an ensemble hm(x) — 

h(x, tm) using a sequence of time points tm. This spectrum is also presented in Figure 

4.1. The only fitting parameter is the normalization for noise strength rj(x, t), taken 

as a constant for all runs. This theory faithfully reproduces the scaling behavior up 

to the largest physically relevant values of k corresponding to the droplet forcing 

width. 
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Figure 4.1: Experimental and model comparison of scaling for ensemble average 
stream profile spectra, all converging to a -5/2power law 
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Chapter 5 

Further Generalizations and 

Comparison with Rivers 

While it is not the attempt of this thesis to provide a model of rivers, some comparison 

between systems will be addressed. Due to the striking visual similarity, many scien

tists have contemplated comparison between these two systems. The overwhelming 

consensus has been that the mobile boundary (erosion) causes meandering instabil

ities in rivers, and surface tension causes meandering on inclined planes, see ([27], 

[13], [14], as a few examples). Most previous work on the inclined plane problems 

makes this assumption and focuses on trying to understand initial stream behavior 

and predict the leading order wavelength for instabilities due to surface tension, see 

[20], [14], [1]. For these reasons, there has not been clearly defined quantities to com

pare between these two systems. Because this thesis considers the fully developed 

stream profiles, these models are more akin to rivers than previous work and have, 

therefore, provided potential quantities for comparison. This chapter will develop 

this framework in the context of stochastic analysis. 
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5.1 Second Rescaling 

The system introduced in Chapter 2 can be further simplified by a temporal rescaling. 

This is done by postulating that the meanders move slowly with respect to the 

velocity of the fluid. Letting h —> eh, the variation equation can be simplified to 

dh v 

dx u 

This allows one to calculate hxx in terms of u and v and eliminate h. 

For this first approximation, the lubrication terms proportional to A will also be 

neglected. Note that both these approximations are increasingly valid as Q increases, 

and are clearly valid at the scale of rivers. The final system becomes: 

du du 
-jl+u-f- = 9 cos(9) + vuxx 4- r/x (5.1) 

dv dv 7 , d . , ._ , 
- + u - = vv„ + (-)-(Wi) + rh. (5.2) 

5.2 Analytic Analysis of System (5.1, 5.2) 

In this section, analysis on the reduced system derived previously is summarized. 

The exact details of how one solves these problems is outlined more explicitly within 

the supplemental material found in the Appendix . Because all this work can be 

found explicitly derived in text books, I omit it from the main body of this thesis. 

For the purpose of the current work it is enough to know that: 

1. The equations derived in Chapter 2 reduce to a rather tractable system. 

2. There are solutions to these equations which can be found analytically. 

3. These solutions provide useful scaling laws. 

4. This approach lays a foundation for a novel method to compare the two systems 

(erosive versus nonerosive systems) and possibly a way to help model real river 

systems. 
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Another important part of the subsequent discussion is the structure of the noise 

term r\. For rivers, one should take r)(x, t) as white noise with the correlation < 

r)(x, t)r)(xo, to) > = AS(x — x0 , t — t0). The idea used in Chapter 3 (that the noise on 

the inclined plane is due to droplets) will no longer suffice. More likely, the forces 

felt by rivers are at all scales due to inhomogeneous underlying topology, not just 

some average drop size. This stochastic approach to addressing underlying topology 

has been used before, see [44]. The use of Brownian, or white, noise is actually good. 

Much work has been done studying integration against Brownian noise and therefore 

this will lead to an analytical solution (in stochastic sense) for the system (5.1, 5.2). 

The solution will be shown to yield a 1/6 meandering exponent. 

5.2.1 The Downstream Equation 

Rewriting the downstream equation 

du du 
— + M — + i/uxx = I (5.3) 
at ax 

This is simply a random forced Burger's equation where 

r = t\x - gcos(d). 

With the use of a Cole-Hopf transformation, see ([45] Chapter 3.2) and the Feynman-

Kac formula, see ([46] Chapter 8.2) The solution can be written as: 

«(M) = -A£ (-JL (/e^/(y)V) e-U<^ 

5.2.2 The Transverse Equation 

Recall the transverse equation 5.2: 

dv 4> dv , 4>ux 

l t + { U - u ) T x ~ { ^ ) V - V V - ^ ^ ( 5 - 4 ) 

where 4> = Q ) . 
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Note the terms multiplying v and vx are stochastic since the noise generated 

in the u equation is now coupled. Here again a Feynman-Kac technique plays a 

role, while additional complexity is encountered due to the term proportional to 

j - . Nonetheless, the solution to this equation can again be written in terms of the 

expectation value as 

v(x,t) = E(f(xt)e^^x^^-Uo^sfds-J^(xs)d,) 

where a = {u - £) and /3 = ( ^ ) . 

5.3 Second Structure Function and the Scaling 

Exponent 

Start by defining the second-order structure functions Sf = J \f(x +1) — f(x)\2dx as 

in [47], [33] and assume scaling s/,. ~ l2ph , su ~ l2pu, and sv ~ l2pv. Then the powers 

are related as p^ — pv — pu. 

As was seen previously, by disregarding the lubrication friction terms by setting 

A = 0 and setting r\ to be white noise then the u equation is simply a noise-driven 

Burger's equation which can be solved exactly, giving pu = 2/3 (See [45] Section 7.5 

with p=0 corresponding to white noise). On the other hand, the v equation can also 

be solved exactly under these assumptions, yielding pv = 3/4 (Birnir [33] Section 6). 

From the equation for p/,, one can conclude that p^ = 1/12. 

Sadly, in the current experimental case, setting any realistic value of A > 0 

destroys the scaling ph — 1/12. Also, numerics show that the characteristic time 

for the system to evolve ph = 1/12 scaling for any realistic initial conditions is so 

large that it can only be observed after several km downstream. It is nevertheless 

interesting that the meandering exponent ph + 1 — 1.16 agrees (within error bounds) 

with that of mature rivers (~ 1.1 Maritan [48]). 

While these results are somewhat heuristic, for the river system this is quite 
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suggestive. It says the disagreement between the Meandering exponent and the 

Hack's Law scaling might be understood as follows: The v equation is experiencing 

classical turbulent scaling due to the noise in this system. However, due to large 

scale flooding events the u equation is scaling like Burger's shocks. The meandering 

exponent is a competition between these two effects, i.e. hx u/v — 3/4 — 2/3 = 1/12, 

and hence s^ ~ 1/6. 

The reason this is a heuristic argument rather than a conclusive proof lies in the 

fact that, implicitly, this argument compares scaling related to time scales. When 

the kinematic condition is used to say hx scales like - , one assumes something that 

has not been derived rigorously. Namely, for the u equation this assumes a scaling 

like Burger shocks, see [45], which occur at the time scale of large flooding events. 

For the v equation, it is assumed the scaling is turbulence, Birnir [33], which is 

happening at a shorter time scale than the floods. 

In reality, this suggests a competition between two behaviors at two time scales 

is responsible for the observed meandering exponent. In the shorter time scale, the 

v equation propagates into the transverse direction with a 3/4 scaling, suggestive of 

the curves attempt to reach the limit of continuity (i.e. H'older continuous of order 

1/4 , Birnir [33]). However, on a longer time scale, floods scaling as Burger shocks 

with exponent 2 /3 , keep trying to straighten out the river and hence decreasing the 

meandering exponent from 3/4 to 3/4-2/3=1/12. This implies the second structure 

function should scale as 1/6. With the problem now well stated, one should go back 

and calculate these time scales explicitly to make this argument fully rigorous. 

5.4 Hack's Law 

As another test of the theory, Figure 4.1 plots the area enclosed between the mean

dering stream and its centerline as a function of downstream distance. The deviation 

of the model from the power law is likely due to the length scale associated with the 

forcing (characteristic droplet size 1-5 mm). The area grows as x7 /4 = x 1 7 5 with 
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Figure 5.1: Scaling law for model and experiment of area between stream center line 
and symmetry line versus stream length, both give a 3/4 power law 

the distance, consistent with the power law k5^2 of the spectrum. Surprisingly, it is 

the same growth law for the growth of the area of a river basin versus length of the 

river (discovered by Hack 1957 [16]). In the lab setting, there is clearly no basin per 

se and no side streams forming that basin. Figure 4.1 deliberately avoids plotting 

Hacks law data for rivers on the same graph here for fear of misleading readers into 

thinking that the experiment is describing river basin erosion. This is how it has 

appeared in publication, see [9] and this result should not be considered in any way 

questionable. 

However, as Figure 5.2 shows, an overlap of the properly scaled data for Hacks 

law in Figure 4.1 with the river data from Rigon et al. (1996) [4] is nearly perfect. 

The power law is the same but there is an extreme difference in the scales, the data 

is made to overlap by scaling both area and length by a large factor (red overlay on 

the plot). 

To avoid confusion, note that overlapping our data with those from real rivers 

is somewhat dangerous due to the variation reported in the exponent in Hacks law 

50 



Chapter 5. Further Generalizations and Comparison with Rivers 

100 

to 

01 

km 

o DI 

0001 

0.MC1 

0.00001 i 1 1 1 1 1 ! ! 1 r-
fs.13 lft-12 16-11 le-10 1B-9 16-8 1«-7 1 * * 1«-S 1«-4 1*-3 10-? 1«.1 1«+0 1**t 1e-»2 1*+3 

km 

Figure 5.2: Our Data (filled and hollow circles, left) versus data for Hack's Law (On 
Hack's Law, Rigon et al. , [4] right). 

depending on the river types, see [35]. Though this is mainly of concern at very large 

scales where plate techtonics become important. Also, the area spanned by rivulets 

and area of river basins are very different. Basins fan out from their outlet whereas 

the rivulets fan out from their source. There are no side streams on lab rivulets, nor 

are there multiple sources of water (like rain) in lab experiments. The coincidence 

in the scaling exponents is nevertheless interesting. 
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Chapter 6 

Works in Progress and Future 

Directions 

6.1 Building Back the Dynamics 

How does one correctly build the dynamics back into this model? At this point, 

it has been shown that the spectrum for all measured data was constant for long

time ensemble averages. However, the dynamics can be quite different as a function 

of surface. Explicitly, as the contact angle decreases, the amplitude of meanders 

increases while the time scale of meanders decreases. 

These are not properties which are captured through previous analysis, nor prop

erties which can currently be predicted with this model. Here is where the dynamic 

contact angle can no longer be neglected. 

When the previous derivation considered surface tension contributions in section 

3.3, the curvature in the xy-plane was considered, but that in the yz-plane was ne

glected, just using the average area A = Iw. This was clearly a crude approximation 

for the free surface profile, and indeed it is amazing this model could get as far as it 

did. Now, consider how one could build this feature back in. 

A similar idea (as was used in the xy-plane), based on variational methods, will be 
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used to calculate the free surface profile which minimizes the surface energy. With 

this one could more accurately predict cross-sectional areas and therefore at least 

implement better averaging strategies. 

This similarly to before implies finding a curve which minimizes the functional 

/

w 

yy/l + y2
zdy . 

•w 

With the use of Lagrange multipliers this means solving the Euler equation 

d(f> d d<fi 

9y dy dyz 

where 

/

w 

\y/TTy*dy 
•w The difficulty of this problem is not in solving the Euler equation above, rather it is 

with the boundary conditions which must satisfy 

!<-»)=».<«) g<«o=MO. 

Here 0a(t), 6r(t) represent the advancing and receding contact angles as a function of 

time. The choice of convention (which labeled advancing/receding) was completely 

arbitrary. One can now see the difficulty with further advancement. Until there is an 

established way to predict the complex contact angle dynamics, this analysis cannot 

continue. 

One possibility which has not been investigated carefully is that there may exist 

a relationship between the two components of curvature (i.e. that in xy versus yz 

planes). If it is possible to simply formulate how much the advancing and receding 

contact angles change from equilibrium, as a function of the xy curvature, there may 

still be hope of advancement. 
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6.2 Slow flows 

As has been mentioned previously in this paper, for slower flow rates observations 

are quite different. In particular, Le Grande-Pietera et al [5] provide a bifurcation 

diagram (Shown in Figure 6.1) showing where transitions should exist between sta

tionary meandering and dynamic meandering for flow rate as a function of inclination 

angle. Because the flows considered in this work are much higher than those, this 

anomalous pinning behavior was not of significant interest in the beginnings of this 

work. The fact that they claimed all large enough flows are unstable, however, was 

quite disturbing. As another plausible explanation of why streams might pin at low 

T ^ 
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Figure 6.1: Dynamic to Static Meandering Transition from Le Grande-Piteira et.al. 

[5] 

flow rates, rather than a balance of a destabilizing surface tension and stabilizing 

inertia, consider that plastics are highly susceptible to large static charge. With 

water being a polar molecule this may be important, especially for small flow rates. 

A series of preliminary tests have been conducted to verify this hypothesis and while 

the real work still remains, these results are worth mentioning now. 

First, Dr. Thompson at CSMATE [49] conducted some experiments where he let 

a small discharge of water run down a uniformly charged plastic surface. He then 
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waited for several weeks for the surface to be completely dry. Upon measuring the 

surface charge distribution, he found that it had been permanently deformed by the 

stream. These results have been reported indirectly elsewhere. After quite extreme 

efforts to clean their surfaces Schmuki [3] reports: 

... Additionally, an initially dry surface was found to be essential for 

reproducible measurements, otherwise the rivulet tended to follow the 

path that had already been wetted. 

Another test of this hypothesis was performed in the Mechanical Engineering De

partment at the University of New Mexico where the plastic surface was rubbed with 

a soft cloth to "charge it up" as much as possible. Then, flow rates were inspected 

much higher than those reported stationary by Le Grande-Pitiera ( lOOml/min). 

Amazingly, meandering patterns would pin after some small transient time, and 

then remain fixed (for up to 24 hours). This further put the influence of charge into 

the light as a possible additional mechanism required to explain pinning events. 

In the previously derived model, the boundary term, found through the lubrica

tion approximation, was inversely proportional to Q. Hence, as this value decreases 

one would expect this surface interaction to become more dominant and the approx

imation used less valid. 

What is exciting about this possibility is that if the hypothesis is true one should 

expect to be able to control stream flow through use of surface charges. Modeling this 

electrostatic coupling, however, is (while not impossible) a very challenging problem, 

and certainly beyond the scope of this dissertation. 

6.3 Slowly eroding surfaces 

The reported fact that erosion leads to a meandering instability is a well accepted 

result among geophysicists, see for example [13]. This belief is so strong that publica

tions reporting similar statistical properties between erosive and non-erosive systems 
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Figure 6.2: New surfaces being used, modeling clay, smooth joint compound, rough 
joint compound (left to right) 

have been severely attacked in the referee stages of peer review. While this point is 

clearly true for systems where there is substantial erosion per unit time, it is not so 

obvious for streams where the erosion rate becomes very slow compared to the mass 

flux of the stream. 

Consider the relevant forces. The two most important forces should be the shear 

experienced by the surface ~ ^ p f j , and the force between particles (chemical bonds, 

electro-static attraction, gravity, etc ), which gives a force per unit surface area CT*. 

Define a dimensionless number 

"PIT K : = - ^ . 

For K < 1 one would expect no erosion as inter-particle force is larger than the shear 

trying to tear them apart. 

One could then pose the question: will the meandering instability be present 

in streams for any K > 1? For materials like sand and dirt where there is minimal 

particle cohesion beyond that provided by gravity (K 3> 1) from physical observation 

one knows meandering occurs for large K. It is true, in general o% could be somewhat 
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complicated to calculate for many materials. Nonetheless, the question remains, will 

slowly eroding systems (moderate K > 1) meander under parameters which would 

yield steady states for non-eroding surfaces? 

A series of preliminary experiments has been built to address this question. By 

making 1 inch slabs of various semi-soft solids experiments will observe how the initial 

channels are formed under constant flow rates. The first series of investigations were 

done using a common joint compound [50] (limestone, plaster paris, perolite, and 

a polymer) (Figure 6.2). The results were somewhat encouraging. After two weeks 

of continuous constant flow, small perfectly straight channels had begun to form 

(approximately 0.5 mm deep). It was, however, also clear that the evolution process 

was well beyond reasonable timelines. No one wants to run experiments that take 

months to years per run. 

The second series of experiments, currently in progress, use modeling clay as 

the substrate. It is too early to make well informed comments about the erosion 

behavior, but the goal of these experiments should be clear. This work will continue 

into the future, and represents but one of the current directions this work is headed. 
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SECTION III. 

Figure 6.3: Underwater sand ripples in nature 

Nature uses only the longest threads to weave her patterns, so that each 

small piece of her fabric reveals the organization of the entire tapestry. 

Richard Feynman 
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Chapter 7 

Underwater Sand Ripples 

Figure 7.1: Example of Underwater Sand Ripples in the lab [6] 

Through the first two sections of this thesis several types of averaging and ap

proximation techniques were used to simplify physics enough to model it from nearly 

first principles. The next section of this work explores how to approach problems 

when the underlying physics is simply too difficult to write down from first principles 

in any reasonable way. 

Consider a flat bed of sand subjected to oscillating flow from above. This situation 

is very natural as it describes most sandy coastlines. One may even be intimately 

familiar with this from their experience of walking barefoot into the ocean on a sandy 

beach, and feeling the wave-like structure of the sand beneath their feet. 

There are many reasons why people would like to understand the evolution of the 

bottom of the ocean, especially near coastlines. Yet again, there is a vast amount of 
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complexity in such a system making it a challenging problem to model. 

If one considers the wave-like structure of the sand-water interface in nature, a 

large range of pattern formation possibilities can be observed, with beautiful tran

sitions between specific patterns, see Figure 6.3. The first work can be traced back 

to A. Hunt, On the formation of the ripplemark (1882) [51], and G. Darwin, On the 

formation of the ripple-mark in sand (1883) [52]. The foundation for studying such 

systems in a lab setting were pioneered by Ayrton and Bagnold [53], [54] almost 100 

years ago. Experimental work on this problem has continued until present day, some 

examples being [55], [56], [57]. 

Theory for this problem is however very difficult, and now lags far behind exper

imental data. The reason for this is that the interface dynamics are governed by the 

coupled phenomena of turbulent flow from above and non-locally conserved granular 

transport from below. Each of these two problems alone is quite challenging, let 

alone coupling the two. 

For this reason, the current work begans to develop an amplitude equation based 

on symmetry arguments and conservation laws, which provides another approach to 

modeling this system [58]. 

7.1 Problem Statement 

When a bed of sand is exposed to an oscillating flow from above with great enough 

force to lift sand grains, the bed becomes unstable. As individual grains become 

mobile, aggregation occurs and "rolling grain ripples" initially develop [54]. Given 

time to develop, these small rolling grain ripples begin to coarsen into stable "vortex 

ripples" [11], see Figure 7.2. The exact nature of this evolution process has been 

noted to be subject to the initial bed preparation. Two schools of thought have 

developed as to how to consider these structures. One approach is to consider this 

pattern development as an intrinsic instability of a flat bed to oscillatory flow, leading 

to a wavy bottom [59]. The second approach is to look at this as the tendency for 
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Water motion 
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Figure 7.2: Development of Underwater Sand Ripples [6] 

loose grains to lump together [60]. Either way, the flat bed is unstable to a certain 

band of wave vectors which are larger than that set by the initial instability. 

It has been shown that the final wavelength selected is set by the amplitude 

of the external flow with minimal dependency on frequency [61], [62]. Also worth 

noting is that the frequency can be shown to affect the final shape of a ripple as well 

as lead to secondary instabilities [57], though these effects are beyond the current 

considerations. 

The final wave length selection is governed by the separation vortex appearing 

in the trough on the lee side of the ripple crest, whose maximal size is set by the 

amplitude of the water motion near the bottom. The separation process is also what 

makes the hydrodynamics of sand ripples so difficult, since the only simple model 

for such flows (the boundary layer approximation) becomes singular at separation 

points. Currently no simple model exists which can predict separated flow along an 

arbitrary height profile short of solving the full Navier-Stokes equations. Work has 
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been done along this dirrection, for example, Restrepo et. al. [63] created a three-

dimensional model for the formation of off shore sand structures using non-linear 

weakly interacting shallow water wave theory. 

7.2 Experiments 

Though I was not directly involved in the design or data collection for these exper

iments, I was able to see these experiments run, and had a direct interaction with 

those running them while in Denmark [62]. For the sake of the reader, I will briefly 

outline these experiments. There were two independent experiments to study the 

ID system, as well as a third experiment for studying the 2D system. Figures of 

the various schematics, as well as actual apparati, can be found in the Appendix. 

Thorough experimental accounts can also be found in [62], [64]. 

In all cases, the idea was similar: to oscillate a tank of water, with a bed of sand 

on the bottom, using a fixed amplitude and frequency and observe the dynamics of 

the interface and structure of the steady state. The primary difference between the 

two ID experiments was the circular version has true periodic boundary conditions. 

For the focus of this work, only the ID model and experiment will be addressed 

in detail. However, in closing, Section 7.6 will make a few last remarks concerning 

generalization to the 2D system. 

Some of the most important realizations that came through these experiments 

were: 

1. Steady states would develop. 

2. The maximal slope of the fully developed ripples is close to the angle of repose 

for wet sand, 23°. 

3. The final wavelength selected is related to the driving amplitude by the relation 

A ~ 1.3a and only minimally connected to frequency. 
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7.3 ID Amplitude Equation 

As discussed previously, currently no simple model exists which can predict sepa

rated flow along an arbitrary height profile (short of solving the full Navier-Stokes 

equations). When one adds to this the fact that the flow is turbulent and the com

plications of the granular dynamics, current understanding is far from a model for 

the dynamics that would make it possible to derive an amplitude equation from first 

principles. 

Even with such a model, understanding the ripple structures becomes a problem 

of keeping track of small long-time changes, resulting from differences, almost equal 

and opposite, occurring in each stroke. The best model currently available, Andersen 

[65], [66], does this by assigning to the ripples a transport function, which predicts 

the amount of transport in each half stroke, depending on the ripple size. This model 

has been successful in predicting certain properties of the ripple patterns, but relies 

on the representation of a height profile in terms of elementary ripples making the 

creation of new ripples somewhat artificial. 

In the amplitude equation developed here, the periodic forcing will not appear 

explicitly. The interest is in the long-time behavior in the sense that the model 

should try to reproduce experimental observation made on time scales that contain 

many periods. The height function h(x, t) appearing in the amplitude equation is 

thus equivalent to the height of the drive. 

7.3.1 Model Derivation 

The construction of this model will rely solely on symmetry considerations and con

servation laws. Hence, the equation developed must account for: 

1. Conservation: There should be a global conservation of sand. 

2. Symmetry: There should he horizontal symmetry of solution across any whole 

number of oscillation periods. 
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3. Asymmetry: Ripples in steady state often have noticeable top-bottom asym

metry. 

4. Instability: A flat bed should be unstable. 

5. Ripple Growth: The flat bed should grow via coarsening to a fixed wavelength 

based on angle of repose condition. 

7.3.2 Building in Angle of Repose Condition 

To address each of these requirements, this thesis will build up a PDE for the interface 

in a series of steps. First, this model must grow or decay based on the slope of the 

sand compared to that of the angle of repose. Let the angle of repose be defined as 

g. Hence, consider: 

ht = A{h\ - Q2)hxx . 

This starting point provides the necessary condition for growth or decay based on 

the sand pile slope compared to the angle of repose [67]. Positive points about this 

equation include: 

1. It grows or decays depending on the size of hx vs g as needed. 

2. It has a wave-structure solution (though triangular final states). 

This model lacks several requirements also: 

1. The solutions are triangles, which are not the desired final shape 

2. These solutions coarsen indefinitely, meaning the final steady state is always 1/2 

the domain length in the end. 

3. Since triangles have sharp points, this implies solutions are singular. 

7.3.3 Resolving Singularities 

Though the previous model is not perfect, it is a starting point. To remove the ab

solutely unnecessary singularities introduce a new term proportional to hxxxx (some-
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Figure 7.3: A steady state solution for equation (7.5) with B — 0 

times called hyperviscosity) the equation becomes 

ht — A(hx - g )hxx - uhx (7.1) 

Here the strength of v now controls the smoothness of the tips. This is not the first 

time 7.1 has been written down. Already in 1989 [68] this equation was posed for 

surface interface evolution in the context of Molecular Beam Epitaxy. 

7.3.4 Solving (7.1) 

Consider explicitly how the curvature of the tips is controlled by v. Given the steady 

state form of this equation: 

0 = A(hx - g2)hxx - vhx (7.2) 
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Re-writing this a little differently and setting A = 1, this is equivalent to 

d flL3 Q 
,2 

ht —h-r — Uhrrr = 0 . 
ftx V3 x 2 

Upon the substitution w — hx and setting the integration constant equal to zero 

w3 o2 

vwTr = w 
3 2 

Now, setting the right hand side to be minus the derivative of the "potential" 

dU w3 g2 

implies the "potential" 

ax 3 2W' 

U = h — w2 

12 4 

Hence, this implies J j ( f w\ + U) = -§^{K + U) = 0, a classic result of conservation 

of energy. Stated slightly differently, 

^ . W * - " ) 

The behavior near the tips should be triangle-like and v should be sen to somehow 

controls the strength. The "turn around point" for this system (i.e. the tips) are 

where U = 0. Near (7 = 0 the potential is dominated by the parabolic term in w. 

This approximation along with a binomial expansion to first order can be written 

/ 2 £ / , w2
e
2 

WT=\ 1 
AE 

Hence, for {—6,5} a small interval around zero 

2E fA 1 J 
v ; v J_A i + 2£V 
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which has the solution 

. , 2E _, [2VEw\ 
x(w) — — t a n 

QV \ Q J 

This shows that for non-zero v this is not singular, and further, near the tips the 

derivative looks like an inverse tangent, hence triangular. Therefore, as suggested 

previously, this additional term removes singularities and makes the tops of the curves 

look more like the experiment. 

However, there is still a top-bottom symmetry, and these solutions still coarsen 

indefinitely. The linear Fourier transformation gives the dispersion relation 

D{k) = g2k2 - uk4 . 

It is easy to see this gives a maximum value at kmax = y § ^ . This being the most 

unstable mode, implies initially this will be the wavelength first arrived at. From this 

point, ripples are then squeezed out one by one in a coarsening process as discussed 

in Politi [69] at a rate ~ ln(t). The method for finding coarsening laws is to study the 

phase diffusion equation. A general procedure, along with examples, can be found 

in Politi [70]. 

7.3.5 Top-Bottom Asymmetry 

To address the top-bottom asymmetry, consider the following contribution to 7.2 the 

previous equation so it has the form 

ht = A(h2
x - g2)hxx - vhxxxx + B(h2

x)xx . (7.3) 

The strength of the term B now controls the top-bottom asymmetry. While a rigor

ous mathematical justification is neglected as to why this is, simulation shows it is 

true, see Figure 7.4. This type of term has been looked at previously in the context of 

conserved KPZ equation Putkaradze [71]. Now, the only problem with this equation 
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Figure 7.4: Steady state solutions to (7.5) for various delta[6] 

is that the coarsening still continues indefinitely! 

Models incorporating different combinations of these terms have been looked at, 

see [69], [71], [72], [73]. The study of coarsening processes themselves have gained 

recent attention because this idea shows up in many unrelated systems. In fact, this 

behavior is not uncommon for any system with a local conservation law Politi [69], 

[70]. 

It is not clear however that there should be a local conservation law at work. 

Sand is picked up and carried by the flow. Globally, the sand does not leave the 

container, but locally, the sand is not conserved. 

Considering this system in terms of the linear dispersion relation (which is the 

same as the previous section since only a nonlinear term has been added), it is clear 

this solution should grow indefinitely because all these small /c-values are still positive 

(unstable). 
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7.3.6 Resolving Indefinite Coarsening 

Having unstable modes smaller than a sand grain, or larger than the domain itself, 

are clearly non-physical situations. This constraint sets a reasonable maximum band 

of unstable modes available to this system. Implementing this idea means adding an 

additional "Swift-Hohenberg type" [74] linear term to the equation: 

ht = A(h2
x - Q2)hxx - vhxxxx + B(h2

x)xx - ah . (7.4) 

The addition of such a term means there is no longer local conservation, but as was 

discussed previously, that is not necessarily incorrect. 

Again, consider what this does to the linear dispersion relation 

D(k) = g2k2 -vk4-e. 

Because the smallest k values are now negative (stable), it finally stops coarsening at 

a fixed wavelength. At this point, the equation has almost all the desired properties. 

This system should have global conservation of sand. To fix the last issue, simply 

subtract the average value of h from the linear term so that 

ht = A{h\ - g2)hxx - vhxxxx + B{h2
x)xx - a(h - h) (7.5) 

(7.5) is the equation now considered as a model for ID sand ripple dynamics. 

7.3.7 Proof of Global Conservation 

A local conservation law would imply that 

dh _ dJ_ 

dt dx 
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where J is the mass flow, or in this case the surface current. In other words: 

fX2 8h , fX2 dJ , 
/ -77-dx = / -^z-dx =>• 

JXl
 df JX1 ox 

Q rx2 

— / hdx = J(x2) - J(xi) 

i.e. the way mass is changing within the region {x\, x2) is dictated by the difference 

of what is flowing in at X\ vs out at x2. In the case that e = 0, (7.5) can be written 

explicitly with 

J = - ( ̂ {K)3 - g2hx J - vhxxx - S(h2
x)x 

and the local conservation law holds. However, as has been seen previously, the 

model requires a non-zero e to stop indefinite coarsening. Further, in this problem 

there is not local conservation as was discussed above. However, to ensure global 

conservation implies: 

J ~dt J -£(h-h) + —dx 
dx 

d_ rL 

dt 
I hdx = - e / (h- h)dx + J|„ => 

Jo Jo 

Bh - -
L— = -e(Lh - Lh) = 0 

which is satisfied, since there is no mass flux outside the domain i.e. J\Q = 0. 

7.4 Numerical Results 

After the models development, a new student, Teis Schnipper, began working on 

this system. In particular, he performed extensive numerical investigations of (7.5). 

For more details concerning this work see [64]. The goals were to do an exhaus

tive investigation across parameter space, to look at final wavelength selection, and 

consider dynamic transitions between different steady states of model compared to 

experiment. 
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Figure 7.5: Left: Time evolution of an initially flat bed to ripples (bottom to top); 
Right: Spectral evolution of this same process. [6] 

For any study across parameter space, it is always best to reduce the system as 

much as possible with non-dimensionalization. In this case, non-dimensionalizing 

this system leads to 

ht = {h2
x ~ l)hxx + hxxxx + S(h2

x)xx - e(h - h) (7.6) 

where e = avA 2g 4 and 5 = Bv 2 A 2, corresponding to the time-scale T = -^-^ 

and length-scale X = - ( 7 ) 2 . Figure 7.5 shows snapshops of the numeric evolution 

Figure 7.6: Left: Numerical simulation; Right: Experimental evolution [6] 

of an initially flat bed perturbed by 10% random fluctuations. As one can see, this 

profile does grow to a steady state with the required profile properties. 

As another test of the dynamics, Figure 7.6 shows the side by side comparison 
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of the numeric and experimental dynamic evolution of the interface profile. As one 

can see, qualitatively the behavior is quite similar. 

10' 

TV 

10 

I I I I I I 

—•-
—A-
—•-

-6 = 0 
-6=1 
-6 = 5 
~ -L*lim 

-Int(Nlim) 

10 10 10 10 

Figure 7.7: Numerical Scaling of the steady state wavelength (N) as a function of e 
and 6 [6] 

Another interesting, but unexpected result, given by this equation is the scaling 

law for the steady state wavelength as a function of the dimensionless parameters 

e and 5, see Figure 7.7. Understanding this point analytically is actually quite 

nontrivial and will be further addressed in Chapter 8. 
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7.5 Modeling Bifurcations 

Simulations were also run to inspect the profile, h(x,t), evolution when the wave

length chosen as the initial condition was different from the preferred choice of steady 

state. It is easy to enter this type of initial condition into a numeric solver and watch 

it evolve back to the correct steady solution. These dynamics have also been stud

ied carefully in experiment, and therefore they offer another immediate place for 

comparison. 
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Figure 7.8: Left: Numeric simulation of evolution in time, Right: Experimental 
evolution of sand ripple in time [6] 

As one can see from Figure 7.8, the doubling transition can be modeled. However, 

in many cases the model has a large decay of amplitude associated with this transition 

[64] which is not seen in true experiments. The models' ability to take ripples out 

easier than it puts them back in is not understood. It may be a consequence of the 

model itself, or perhaps it is a finite domain length effect? Nonetheless, it shows an 

obvious limitation with need of further consideration. 

7.6 2D Models, Experiments, and Future Work 

As was stated previously, in the context of this problem, experiments and data run far 

ahead of theory. While there is no fully developed ID model, extensive experiments 

have been done that look at ID, 2D and 2D-skew driven ripple formation processes. 

Obviously, the 2D systems are far more realistic for modeling nature. However, they 
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are also far more complicated. Additional schematics, experimental pictures and a 

few remarks about the 2D system can be found in the Appendix. These experiments 

were the primary focus of [62]. 

While the ID amplitude equation does provide a nice first approach to the prob

lem, generalization into 2D is not obvious. In the case of the 2D experiments (which 

were the focus of [62]), many secondary types of instabilities have been reported, see 

Figure (7.9). Notice, in the 2D system instabilities are found as a function of both 

frequency and amplitude. While beautiful to observe, these additional complexities 

pose their own challenges to modeling. 
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Figure 7.9: Experimental Stability Diagram in 2D, frequency vs amplitude 

Consider the simple addition of a passive term into the second dimension such 
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that 7.6 becomes: 

ht = (h2
x - l)hxx + hxxxx + S(h2

x)xx - e(/i - h) + hyy . 

Unfortunately, this equation cannot provide the rich complexity of secondary insta

bilities observed in the real physical system. One should actually not be surprised 

that the addition of a passive term in y is not enough. The true coupling must be 

taken into account much more carefully. Figure 7.10 shows a snapshot in time of a 

2D simulation in response to a "forcing frequency" different from the initial condition 

(a fixed wavelength skew to the x-axis, while the "drive" is along the x-axSs). This 

image demonstrates the only type of instability into the second dimension possible 

for the given system as it changes shape. 

Figure 7.10: Snapshop of numerical two dimensional ripple evolution under skew 
drive 
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Lie Prolongation and Wavelength 

Selection 

The wavelength selection process in non-linear systems can be quite complicated. 

Therefore, Figure 7.7 presents an interesting challenge to try and understand an

alytically. Clearly, in the asymptotic limit as 5 3> 1 the steady state wavelength 

converges to A;,, but as 5 decreases there is significant difference in the scaling law 

for e versus the final wavelength. 

In this problem, as has been seen, linear stability analysis fails to predict the 

correct final wavelength. Further, the non-linear integrals required to transform the 

full equation prove exceedingly tough. Therefore, a new approach is necessary. 

A general approach to studying symmetries of differential equations has been 

developed, see Olver [75]. Through this process one derives explicitly the infinitesimal 

generators for the group action which transforms solutions to solutions. A novel idea 

for the application of this algorithm is now presented in an attempt to understand 

Figure 7.7. The advantage to this approach is the ease with which it can be expanded 

to include parameters, as well as its ability to deal with non-linear terms without 

any approximations or loss of terms. 
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8.1 Selection and Interrupted Coarsening 

As was mentioned previously, an interesting, but not expected, additional complex 

behavior of this equation is found in the selected wavelength for a given (e, 5). For 

linear theory this problem is clearly determined, simply find the maximum value of 

k (i.e. kmax) for the unstable band. For many nonlinear systems, one will see that 

eventually the smallest positive value of k (i.e. kt) becomes the steady state. When 

all values of k > 0 are positive, the system will find kmax first, and then coarsen in 

time squeezing out one ripple at a time until the final state is one-half period of the 

domain length. 

In such systems, one can in many instances predict the scaling of how these 

ripples will come together in time Politi [69], [70]. In some instances of nonlinear 

systems, such as this one, the final selected wavelength is neither k* nor kmax. Rather, 

it starts out like a coarsening process and then stops at some intermediate value 

K < k < kmax. This process is known as interrupted coarsening. Figure 7.7 shows 

that the final wavelength, as a function of e, for various values of 8 changes the 

scaling dramatically. For the limit 5 3> 1 it does converge to kmax. However, for 

moderate values of 5, it does not. 

Interupted coarsening is not uncommon in many other amplitude equations. Be

cause there is immediate access to this numeric data, this model provides an inter

esting "toy model" to probe for an understanding of this phenomena. 

8.2 Lie Prolongation Algorithm 

The details of this algorithm, along with examples, are presented in Olver [75], 

and details of this calculation for the ripple evolution equation can be found in the 

Appendix. Here the outline will be layed for how this algorithm works in general 

and the novel idea for applying it to non-linear wavelength selection. 
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Given a scalar PDE of the form 

ut — f(xi t) u) ux-, uxxi ••) j 

one would like to calculate the group actions Ge : (u\ —> M2) where U\, U2 are 

symmetry solutions of the given PDE. One must, of course, assume solutions exist. 

Let the above PDE be defined as A. To do this calculation one then postulates 

that the infinitesimal generator of this transformation, an element of the Lie algebra, 

should have the form: 

v = a\(x, t, u)dx + a2(x, t, u)dt + cf>(x, t,u)du . 

Now, with the use of Lie's prolongation method, one calculates the n-th order pro

longation of v where n corresponds to the highest degree derivative in the PDE. For 

example: 

pr^v = v + ct>xdUx + tfdut . 

The n-th order prolongation is then applied to the system A to arrive at the symme

try equation in terms of the unknown coefficients. Using total derivatives (again see 

Olver [75]) one expands these coefficients and impose the condition provided by A 

(i.e. equate ut — f everywhere ut appears). This yields a system of ODEs to solve 

by matching the coefficients, called the determining system. Once solved, it provides 

the infinitesimal generator of the symmetries. 

Integrating against the one parameter group (provided by the exponential map) 

one transforms the infinitesimal generator (i.e. the element of the Lie algebra) to 

the group action (i.e. similarity transformation) itself. In principle this approach 

will always work to find symmetries (provided they exist), though in practice it can 

become quite challenging to get through this procedure. 
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8.3 Application to ID Amplitude Equation 

In the ID amplitude equation, the interest is in the final wavelength as a function of 

e and S. Hence, the novel idea here is to expand this system with e and S considered 

as independent continuous variables in addition to x and t. Therefore, ultimately 

one looks for the group action G : hi(x,t,e,6) —»• h2(x,t,e,5) where hi and h2
 a r e 

two solutions to (7.6) as a function of e and 5. 

This implies looking for a generator of the form: 

v = di(x,t, e,S)dx + a2(x,t, e,6)dt + a3(x,t, e,S)de + a4(x,t. e, S)dg + <j>(x, t, e,S)dh 

where a*, i = 1,2,3,4 and </> are the unknown coefficients left to find. 

Upon applying the fourth order prolongation of v onto (7.6) (i.e. pr^v[A}) one 

arrives at the symmetry equation 

ft = 2(jfhxh
2
xx + 4>xx(h2

x -l)-£<j>- a3h + <j>xxxx + 2a4h
2

xx + 

±5<t>xxhxxhxxx + 26<\>xhxxx + 26<f>xxxhx . (8.1) 

The details of calculating cjf- (fixxxx, substituting them into above, and equating 

the coefficients are left as calculations for the Appendix. 

While the solution to this system is beyond the scope of this manuscript, the 

outline is now layed for how this calculation can be done. The hope is that after 

solving this system one should be able to determine the similarity transformations 

given by the group action. This would allow for a understanding of how a steady 

state solution h scales as a function of the parameters e and 5. The only remaining 

obstacle from here is actually solving this system. 

Because there is a relation between hmax (height of ripple top) and A (wavelength), 

set by the angle of repose, once these solution scalings are known one can deduce 

the scaling analytically which are presented numerically in Figure 7.7 
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This is a somewhat tedious calculation in general. Nonetheless, the potential to 

use this algorithm in such a setting could provide very useful in a similar way for 

many other problems. Further, if this type of calculation proved useful, the algorithm 

for deriving these determining systems could be automated fairly easily. 
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8.4 Conclusion 

In conclusion, this work presents many new and interesting methods for addressing 

the complexity of fluid-solid interactions and interfacial dynamics. In the context of 

two physical systems, it has been shown averaging techniques, stochastic methods, 

variational calculus, amplitude equations, and prolongations can be useful tools in 

modeling and analyzing these systems. 

Through the first two Sections of this work, models were developed to explain 

the steady states, as well as some of the statistical properties of the dynamic flows. 

Experimentally, the existence of steady states was proven. The mechanism of mean

dering was found to be perturbations in flow rate. Analysis of fully developed stream 

profiles showed the existence of a universal power-law scaling for the spectrum of 

long-time ensemble averaged stream profiles. This power-law was confirmed both 

experimentally and numerically. Consideration of the scaling between the length of 

stream and the area between its symmetry line and stream center line gave a 3/4 

power law, similar to that found for rivers by Hack [16]. Further, using rescaling 

arguments this model was able to reduce to a system which shares many of the same 

features of river systems, including the scaling of the second structure function for 

stream curvature. This result suggests a possible explanation for the observed data 

about real world rivers and a connection between erosive and non-erosive meandering 

systems. 

This work has opened the door to many future directions of study also. One 

should go on to consider the limits with respect to both surface contact angle and 

flow rates. The dynamic contact angle should be incorporated into the model to 

understand temporal dynamics of meandering. Further, more studies should be 

conducted to investigate the connections between erosive and non-erosive surfaces. 

In the third Section of this work, focus shifted to another type of problem where 

modeling from first principles becomes impossible. In this context an amplitude 

equation was derived from conservation and symmetry considerations. It was shown 

that such modeling can produce reasonable results. In deriving this model, the 
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question of nonlinear wavelength selection became important. In closing this thesis, 

a novel approach to studying such behavior was presented. 

Throughout the third Section, again many open questions have been posed. Gen

eralizations into the second dimension should now be considered. Further, the calcu

lation set up in Chapter 8 for the determining system for the ID amplitude equation 

must be solved. If this calculation is shown to work, it has great potential to work 

similarly in many other circumstances. 

In closing, the ideas presented within this work give a solid foundation for many 

years of future study, as well as nice advancements to a pair of complicated 100+ 

year old problems. 
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Appendix A 

Outline of the Braids Model 

While it is not the intention of this thesis to reproduce every detail of the analysis 

preformed on the braids model, the reader should be able to understand these under

lying idea's without having to depart from this text. Some of these ideas are relied 

on heavily in the later derivations of meandering streams. For more explicit details 

see [7], [8], [32]. 

^ + U V U = - V P + gsin(a)ex + i/V2U 
at p 

To begin a model, start with the boundary layer approximation (BLA) parallel to 

the plane along with the incompressibility condition V • u = 0. To begin reduction 

on this system, make the following assumptions: 

1. Stationary states have zero time derivatives, i.e. §-t = 0 

2. In steady state these exists a symmetry condition, i.e. p(x,y) = p{—x,y) 

3. Transverse dependency of x-velocity is negligible, i.e. U(x,y) ~ U(x) 

4. Downward flux conserved, i.e. U(x)A(x) = Q = constant 

5. Contact angle is constant, i.e. -£(±w) = =Ftan(#) 
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Appendix A. Outline of the Braids Model 

Along with these five assumptions, also consider that to fairly good accuracy the free 

surface profile at any cross-section in x can be described by a fourth order polynomial 

of the form 

p{x,y) = (w2 - y2)(a - by2) . 

At this point the parameters a and b can be found using conditions 1-5 above. 

a = '-^1 + bw2 (A.l) 

15 (Q tan(f l )W
2 \ 6 = ̂ [m-—r- J (A-2) 

Additionally, with the use of this polynomial free surface approximation, one can 

calculate the average force due to surface tension at each cross-section. In this 

situation, the surface tension contributions are far larger than those of hydrostatic 

pressure, hence this will allow calculation of the pressure term in 3.1. One finds that: 

F(u,w) = / jp(x,y)'"p(x,y)dS (A.3) 
JdS 

= 3 M a n ( 6 V 3 + 4&V; 6 • (A-4) 

Substituting this information into (3.1), in component form the system becomes: 

r r dUx . . d2Ux . , . 
U'~te = sMa)-,-^- (A.5) 

{PA)Uxj-Uv = F(w,Ux)-v
C^(pA). (A.6) 

Now using Lubrication theory one can average over z contributions approximating 

the second derivatives in A equations and therefore reducing the system to coupled 

ODEs. Lubrication theory is valid when one length scale is much smaller than the 

others in a fluid problem. In this case the height of the stream is small compared to 

length or width, therefore approximate the z component of velocity such that: 
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Appendix A. Outline of the Braids Model 

1. No slip is satisfied at substrate boundary 

2. Shear stress is zero on free surface boundary 

Additionally, enforce the average (i.e - JJ Ux(z)dz = Ux). With this, A becomes: 

Ux—^- = gsm(o)-2,u^- (A.7) 
dx p; ,2 

avg 

, ,wT d . dw. „ , ,T , t / , dw . A. 
{»A)U'TZ

{U-TJ - F^U->-VA,T^A)- (A-

Now, non-dimensionalizing these equations, one arrives at 

(u-w')' = F(U1W)-TT1U
2W2W' (A.9) 

u-u = l - T r a t t V (A.10) 

where 

n, = 3 ( W f M) (A11) 

n2 = m^m, (A.12) 
7 

Further, solution analysis may be done to determine critical points, look at lin

earization around these points, and determine the associated eigenvalue equation. 

This information may then be used to assess the solution stability and analyze the 

bifurcation diagram of the system. 

For linearization conducted about the constant downstream velocity and constant 

stream width, the system has two critical points corresponding to: 

IIi u>2tan0 

nS = " a " (A"13) 
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Appendix A. Outline of the Braids Model 

III w2 tan 6 

Uuu 15 
(A.14) 

It can be shown however that equation (A.14) leads to instability. Thus, from 

(A. 13) with IT2, for the stable critical point one has 

w. 

tan(6) 
3n2 

tan{6) 
n2«? 

(A.15) 

Consider linearization near the stable critical 

u» = uc + ui exp(Xy) 

w* = wc + wx exp(Ay) 

where u\ and Wi are small. 

Now, to determine the eigenvalues define 

G. 

16 
Hi 1 

15— — otanft n2 u«wl 
1 - n 2 ^ 

15 
nr 1 
n2 u*u^ 

+ tan I (A.16) 

(A.17) 

where F* is the non-dimensionalized surface tension force in terms of F„, G,, and 

their derivatives. The eigenvalue problem can be formulated as 

det 

(uA2 

dG. 

8F, 
dw* 4UlU

2
cw

2
cX) - § £ 

urX 8G. 

0 . (A.18) 

To find the eigenvalues implies solving a cubic equation in A. 

9 > •} / ,-n •? 9 dG*. n , <zF 9 . . d G , . , dF dG * dF dG* u2
c\

3+(m1u
3

cw
2

c-^ic-—)x2-{Uc--+m1u
2

cw
2

c)-—)x+-—~—-1-^— = ° • 
du* aw* du* dw* au* aw* dw„ 

(A.19) 

The real part of all A is negative for all parameter values. A pair of complex conjugate 
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Appendix A. Outline of the Braids Model 

eigenvalues corresponds to a solution with oscillating width, i.e. braiding. After 

equation (A. 19) is solved numerically, the braid length can be determined as 27r/I'mA. 

When the braid length goes to infinity, i.e., I'mA —> 0, the stream approaches the 

rivulet solution. 
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Appendix B 

Variational Methods 

In this section the variational derivative is derived which is used in Sections 3.3 and 

6.1. Here the thesis strays from the standard notation. Let (•) denote the inner 

product here. Given a functional of the form: F[p(r)] = J f(r, p(r), Vp(r)) dr , with 

p vanishing at the boundaries of r the functional derivative can be written 

{SF\p],> = £ff{r,p + e4>,Vp + eV(t>)dr 
£ = 0 

= / ( dp*! + avp V^>) dr 

/ [ ^ + V - ( ^ ) - ( v - ^ ) 0 ] d r 

/ dr 

U-v SVp 

(B.l) 

(B.2) 

(B.3) 

(B-4) 

(B.5) 

where (f> 6 C1 is an arbitrary function such that, in the third line explicitly, 

assumed at the integration boundaries. Thus, 

Ois 

SF = df y df 

8p dp dVp 

This is for the particular case when the functional depends on the function p(r) 

and its first derivative -^p- Gradient notation was used because the generalization 
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Appendix B. Variational Methods 

to r = (r!,r2,r3) follows immediately. For a more detailed review with higher order 

contributions and mulit-variable vector functions a fundamental reference is Methods 

of Mathematical Physics, [76]. 
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Appendix C 

Spatial and Temporal Instabilities 

In this section, the thesis makes a digression to define some notation and the basic 

approach taken for performing stability analysis. Spatial stability analysis is straight 

forward. These systems are ODEs and so it is enough to find the eigenvalues and 

look at real and imaginary parts, as is the standard technique in any dynamical 

systems book (for example Perko [77]). 

To consider temporal stability is also quite standard. However, notation, and 

word choices, can make it appear different from book to book. For current purposes 

the following conventions will be used and demonstrated via example: 

Consider the forward/backward Helmholtz equation : 

Ut — uxx i u . 

This problem can be posed as ut = P u where P = D2 ± 1 is defined as the symbol 

of P. Further, to consider solutions of the form u(x, t) = a(t)elkx implies solving an 

ODE for the transition function for a(t): 

a'{t) = Pa(t) . 
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Appendix C. Spatial and Temporal Instabilities 

In this example, P(ik) = — k2 ± 1. If one assumes a(0) = 1. this implies 

a(t) = ePt => u(x, t) = eptelkx . 

Temporal stability is found by investigation of ept, namely if $t(P(ik)) < 0 Vfc, 

which corresponds indirectly to finite energy. Hence for these simple Helmholtz 

examples, one can see depending on the sign, they give ei-~k ±1'*, so the plus choice 

is unbounded or unstable. 
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Appendix D 

Stochastic PDEs 

In this section, the basic solution techniques and relevant references which go with 

Section 5.2 are outlined. The starting point of this section will be the stochastic heat 

equation under Brownian motion: 

dr] 
ut = °uxx + — 

at 

u(x,0) = f(x). 

The equivalent Ito's representation of this equation as a stochastic PDE is, 

du = auxxdt + dr\ 

u(x,0) = / ( * ) . 

It is well-known, see for example Oksendal [46], that the solution for rj = 0 can be 

written in the form 

u(t,x) = E[f(Bt)} 

where the E denotes the expectation in the probability space (Q,,J-,V) where Q is 

a set of probabilities, !F a sigma algebra of sets in Q and P the law of Brownian 

motion Bt. Here the initial condition f(x) is evolved with the classical heat kernel. 
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Appendix D. Stochastic PDEs 

This obviously leaves questions of existence and uniqueness. For detailed proofs 

on these subjects, (see Oksendal [46] Chapter 9). 

If the operator A is the generator of an Ito process Xt, then similarly 

u(t,x) = E[f(Xt)] 

solves the initial value problem 

ut = Au (D.l) 

u(0,a;) = f{x). (D.2) 

Now, consider the following generalization of this problem 

ut = Au — qu (D.3) 

u(0,x) = f{x) (D.4) 

where A is a linear operator on u, q is lower bounded, and again the problem is 

stochastic implicitly. In this case, the problem can be solved by using the Feynman-

Kac formula, which can be understood as a generalization of the integration factor. 

An outline of the proof is as follows. Let Yt = fiXt), Zt = e~ ti «(*»)ds Then 

dZt - -ZtqiXt)dt (D.5) 

diYtZt) = YtdZt + ZtdYt = -qiXt)YtZt + ZtdYt (D.6) 

or 

du = Au — qu 

where u = YtZt because dE[Yt] = E[AYt}. Hence, with u = E[YtZt] this gives the 
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Appendix D. Stochastic PDEs 

Feynman-Kac formula: 

u(t,x) = E{e-ti"^dsf(Xt)}. 

This proof is copied from Oksendal [46] Chapter 8. With this as a foundation, now 

consider the downstream equation derived in section 5.2 

du du 
——h u- vuxx = r . (D.7) 
dt dx v ' 

What is nice here is that this equation is actually just the equation solved previously 

in disguise. 

Consider the Cole-Hopf transformation 

u = -\JLin(w) = - A ^ (D.8) 
ox w 

where v — | . Then 

ut = -\(—wxwt + —wxt) (D.9) 
u r w 

ux = - A ( — I U ^ + —wxx) (D.10) 
wz w 
2 3 1 

uXx = -H—>wl ^wxwxx -i wxxx) . (D.H) 
w6 w2 w 

Substituting (D.9)-(D.ll) into (D.7) results in 

(—wxwt wxt) + (T~^WXWXX + —wxxx) = r 

With a little rearrangement 

A A . A d . A . _, 
—w x {w t - -wxx) -z-{wt - -wxx) = r 
ur 2 w ox 2 
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Thus, if u satisfies (D.7) then w satisfies 

dw A d2w Fxw _ ., „. 

W-2W——- im2) 

This is the Feynman-Kac equation which is stochastic since F has noise. With this, 

one can then write the solution as 

w(x,t) = E{f(xt)e-$ $*•*'). 

Now combining this with (D.8) 

d , 1 , ; \xt-y\ 
u{x,t) = -\—(-—(e^f(y)dy)e-*fo*.*>) . 

ox y/4nt J 

Again, for a rigorous proof see Woyczynski [45] Chapter 3. With this solution for 

the downstream equation now outlined consider the cross-stream equation. It will 

be necessary to generalize the previous ideas further to solve this equation. To solve 

the transverse equation uses the method of Cameron-Martin [78]. Consider 

dv 4>dv <fwx 

M+{u-u)Tx-{^)v-UVx^° ( ° - 1 3 ) 

where <j) = ("^)- Note the terms multiplying v and vx are stochastic since the noise 

generated in the u equation is now coupled multiplicatively in v. The transverse 

equation can be written as 

dv dv d2v 

dt dx dx2 

where a = (u — 2) and j3 = ( ^ f ) . Ito's formulation of this equation as a stochastic 

P D E i s 
7 ( dv d2v\ , 

du — I —a-—\- pv + v—^ I dt . 

As has been shown previously, the term involving /3 is just a Feynman-Kac type term 

which can be accounted for with the generalized integration factor. This mean that 
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the solution can be written as 

v(x,t) = E[f(Xt)] 

where Xt is the Ito process defined by the equation 

dXt = a{Xt)dt + y/udBt . 

By Cameron-Martin the solution can then be written as 

v(x,t) = E(f(Bt)eti«B')dB--itiaW'u) . 

Combining contributions of terms of the form of Cameron-Martin and Feynman-Kac 

gives: 

v(x,t) = E(f(xt)eti "te'^'-h So a(xrfds-fo PM*11) 

where xt = Bt is Brownian motion. For a rigorous analysis of this equation, including 

uniqueness results and derivation of the invariant measure, see Birnir [33]. 
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Appendix E 

Details of Prolongation Calculation 

The details of the prolongation algorithm are rather straight forward though incredi

bly tedious. The essence lies in expanding out <j>x — (jfxxx and substituting them back 

into the symmetry equation (8.1). To do this involves taking derivatives and chain 

rules repeatedly. In reality, at this level of computation one should write a symbolic 

program to save time and energy. However, the necessary time and motivation hinge 

on showing it is worth doing i.e.that it can succeed in answering some otherwise 

difficult question such as that posed in by Figure (7.7). 

For simplicity,consider transformations of steady state solutions only, after all 

this enough for the question posed by Figure 7.7. The equation becomes 

(ux - l)uxx - uxxxx -eu + 5(u2
x)xx = 0 . (E.l) 

Hence upon applying the fourth prolongation onto (E.l) , as was done in Chapter 8 

but now without the time-derivative, one arrives at 

0 - 2<pxhxh
2
xx + <f>xx(h2

x -\)-e<j>- a3h + <t>xxxx + 2a4h
2
xx + 

\Hxxhxxhxxx + 2a4hxhxxx + 25(/)xhxxx + 25(pxxxhx . (E.2) 

In this calculation, there are three independent variables and one dependent variable. 
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Appendix E. Details of Prolongation Calculation 

This implies the coefficients in equation (E.2) are 

<f = <t>x - 4>uUx ~ ux(aix + aiuux) - ue{a-Ax + a^uux) - us(aAx + aAuux) (E.3) 

<7>xx = <Pxx + ux(2(j)xu — a\xx — asux — aAux) + 

UxWuu ~ 2aiux — a^uu — aAuu) + uxx(—2a\x — azuaAu) 

uxuxx(-?>alu) - uxaluu - uta3xx - uxe(2a3x) - utux(2a3ux) 

-2uxSa4x - u6aixx - uxusa4ux - uxtuxa3u - uxSuxaAu (E.4) 

xxu ^lxxx &3UXX ^Auxx) ~~> 

^xxV-^r'ux "J^lxx •^Q'3iix ^Aux) ~t~ ^jA'J'Puux '-'O'luxx ^Suux ^Auux) T 

V'x'U'xx\£(Puu " f t lu i •->0''iuu ~~ "JCtouJ "T '^xlv'r '""" "flluua: 0>3uuu &Auuu)j ~r 

^xxx(-3aix - a3u - a4u) + u ^ ( - 3 a l u ) + u xu x x x(-4a l u) + t4-uxx(-6a luu) + 

ux\~~aiuuu)uex{—3a3xx) + we(—fltoxx) + wxue(—2a3xxu) + uxxe(—3a3x) + 

uxuX({-Aa-ixu) + uxxut(-a-ixu) + u2
xut(-a-ixuu) + uxxS{-3aAx) + uxS(-3a4xx) + 

UxsUx(—4a4xM) + u^(a4:c ix) + usiix(—2a4 ( -04x«) + WxM,s(-

(-2a3u) + ^ « M ( - a 3 r a ) + ^uX(5(-a4u„) + 

uxxuxS(-a4u) + uxuxxS{-2aAu) (E.5) 
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xxxu ^lxxxx ^Sxxxu &4xxxu) 

.2/ 
^xxydfyxxu ^^Ixxx ^^3xxu ^^4xxu) ~r ^cV^'riczuu ^^lxxxu ^^Zxxuu 0(l^Xxuu) T 

'U'xxx\^'<Pxu Q&lxx ^^3xu ^^4xu)) r ^xx^xy^^xuu ^^lxxu •3&3xuu ^^4xuu) ~r 

^x l ^ r IUK ^^lxxuu ^O'Sxuuu ^^4xuuu) i ^xxK ^uu J-^^lxu ^^3ut( *J&4mi/ i 

(20uu — 16ai3;U — 4a3tm — 4a4 tm) + 

^xV<ru u u 'u Q&lxuuu (I'duuu @,4uuu) ~r ^xxxx\ ^ ^ l x ^3u ®4u) r ^xx^xxxv -LU^lu/ ' 

+ u xx u x(-15a l t i U ) + uxwx : r x ; c(-5a l u) + u x u x x x ( - 1 0 a l u u ) + ^ x u x x ( - 1 0 a i u u ) + 

^x\ &luuuu) ~r ^exxl, ^^3xxJ ~r ^ex \ ^^3xxxJ i ^ex^xl, ^^'Sxxu) i ^el, ^Sxxxx) ~r 

^ e ^ i ( ^ ^ x x x u j i ^xx^ev *^^3xxuJ i % \ ^^3xx?iuJ ~r ^xxxel, ^&3xJ ~r ^xxe^xl^ "^3xuJ T 

^xe^xxV ^^3xu/ i Xlxt^xK ^^Sxuu) ~r "'XXx^eV ^3xu/ ~r 'Wx^xx^'eV ""'SxmiJ ' 

cV ^3xmxuJ ~r ^xxxd" 

(—40^) + uX3:A"(—6a>4XX) + uxxsux(—9a4ux) + wX($(—ka4xxx) + 

Ux6'U'x{ y^4xxuj 4" uxsuxx(—6a4xu) + uxsux(—6a4XUU) + us(—a4xxxx) + ugux(-

~\~U^UXx\ 3Q,4xxu) i ^ W ^ v oU^xxuu) ' ^xxx^<H ^4xu) ' ^ x ^ x x ^ J \ ^ ^ x t m j T" 

^x^<H ^4xuuu) i ^xxx^xel. ^3u/ ' ^xx^xxel, "^^3uJ ~r~ ^xx^xeV ^3xuJ ~r U 7 1 ( i i cwxe( — 3&3uu) + w x^xxxe( —3fl3u) + ^ 'xUzze( — 3 f t 3uu) -+- ^xWxe( — a 3 n u u ) + 

^x ^xx 1^x5 V t^^,4uu) ~r ^x'^ca^v ^^4uuJ ' ^x^^^V ^4uuu) > ^xxx^x<5V ^4u) i 

UixWaifC —3a 4 u) + '"x«a :Tx<5(-3a4„) ( E . 6 ) 

Substituting these coefficients into (E.2) one must then impose the constraint given 

by the equation itself; namely solving for uxxxx in (E.l) and replacing it by the right 

hand side everywhere it appears in (E.2). Doing this enforces the solution itself. Now, 

each coefficient in (E.2) (such as ux or uxx) give a system of coefficient equations for 

the infinitesimal generator. 

With the solution to this system, one can then obtain the symmetry generator for 

the Lie algebra. Then integrating, one arrive at the group actions themselves. These 

group actions represent the symmetry transformations which take solutions for a 
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given (x, e, 8) to other solutions for different (x, e', 5'). As can hopefully be seen, it is 

also quite straight forward to add the temporal dependence back into the calculation, 

though this adds another independent variable and makes the calculations even more 

robust. 

In concluding this section, while the work on this subject is still relatively new 

and unfinished, the idea is promising and the general approach applicable to any 

non-linear wavelength selection problem. Hence, an outline is presented for future 

readers interested in continuing this research. 
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Appendix F 

Photos of Experiments 

F. l Meandering System 

Figure F.l: The large meandering experiment set up in the Mechanical Engineering 
lab at the University of New Mexico 
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F.2 ID and 2D Sand Ripple Systems 

Q 

A 

B 

Figure F.2: Schematic of circular set up. [6] 

Maw 

Figure F.3: Linear System [6] 

While the experimental aspects and generalizations are not the work of this thesis, 

these results motivate the current work. Therefore, this section gives the reader a 

feeling for some of that work. 

In all instances the idea is similar. Drive a bed of initially flat sand with a 
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Figure F.4: The 2D Ripple Experiment [6] 

fixed wavelength and amplitude and look at the evolution and final wavelength of 

the steady state solution. Also, for dynamics, studies were conducted observing 

transitions from one wavelength to another. 

As is discussed in Section 7.6, there are several types of secondary instabilities 

which can occur in 2D. Experimental demonstrations of these instabilities are also 

presented to give the reader a picture of what this model must try to incorporate in 

the future. 
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Figure F.5: The Bulging Instability: time evolution left to right, evolution of spec-
trum below [6] 

Figure F.6: Pearling Instability [6] 

Figure F.7: Doubling Instability: time evolution left to right, evolution of spectrum 
below [6] 
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t I ^ ! M 

\MMv 

Figure F.8: Ripples driven at a skew angle to length: 
top to bottom [6] 

time evolution left to right and 
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Glossary 

Mathematical Variables 

U : 2D fluid velocity vector (components = (u, v)T) 

p : polynomial free surface profile 

h : Section 2. deviation from stream symmetry line to the center 

line 

Section 3. Interface profile between sand and fluid. 

P : Pressure 

ii : unit normal vector in direction % 

H : stochastic distribution (components 7?j, % = {x,y}) 

Xt : Stochastic Process (also Yt, Zt ) 

Physical Constants 

/ : Average stream height 

w : stream width 

g : gravity 

v : kinematic viscosity 

p : fluid density 

7 : coefficient of surface tension 

Physical Variables 

Q : volume flow rate 
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Glossary 

a : inclination angle 

9 : contact angle 

i\) : angle between stream vector and x -axis 

Q : angle of repose; angle of a sandpile before it avalanches 

Standard Conventions 

< (•) > : ensemble average of (•) 

E(-) : Expectation value of (•) 
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