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ABSTRACT OF DISSERTATION

MATHEMATICAL METHODS FOR FLUID-SOLID INTERFACES:
MEANDERING STREAMS AND SAND RIPPLES

This thesis presents several mathematical methods for modeling free surfaces, interfaces, and
fluid-solid interactions. This work is done in the context of two physical systems.

In the first two sections, the focus will be to understand the the physics of streams flowing
down inclined substrates. Models will be derived to investigate both steady state and dynamic
meandering profiles. It will be shown that, through the right approximation techniques, many
physical insights can be drawn about this system. These results include: a complete
understanding of the steady states, transitions between steady states, mechanism of meandering,
forces involved in meandering, and spectral scaling laws of long-time ensemble averaged
meandering stream profiles.

In the third section, the focus will shift to how one can model underlying physics when it
becomes too complicated to address from first principles. Here, the power of symmetries and
conservation laws are explored to derive an amplitude equation describing the interface between
sand and water when the water is subjected to oscillatory flow. The thesis will then close by
posing a novel way to study scaling laws with respect to parameters using Lie's prolongation
algorithm.

Through this work various tools will be combined from the fields of physics, engineering,
applied and pure mathematics to develop approaches for reducing complex systems into
tractable pieces which can be studied carefully.

Keith Mertens

Department of Mathematics
Colorado State University
Fort Collins, Colorado 80523
Spring 2008
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Chapter 1

Introduction

1.1 Outline

Over the course of my graduate studies, 1 have worked on several problems which
can all loosely be classified under the field of mathematical modeling of complex-
ity, especially relating to evolution of free-surfaces and interfaces. In general, these
types of problems are highly non-linear and can exhibit a great deal of sensitivity
to parameters. Therefore, writing models can be challenging. In systems exhibiting
a great deal of complexity, having real experimental data to rely on becomes im-
perative. Hence, the types of systems I have studied are always coupled directly to

experiments.

The two experiments chosen for the focus of this thesis each have a rich history
with over one-hundred years of study. Nonetheless, the complexity in these systems
has allowed them to be a continued source of scientific contemplation. This work
serves to add a few more pieces into the puzzles of understanding these phenomena,

and creating mathematical tools by which to model such complexity.

This introduction serves to outline the remaining text, giving a basic overview of
the structure of this thesis. Section 1 is compromised solely of Chapter 1. It is meant

to be an overview on the subject of gravity driven fluid flows down inclined surfaces.
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There is extensive literature on this subject, so it by no means meant to be an all
inclusive account. However, it is meant to set the stage for the reader about what

has been done related to this work, and what was known previous to this study,

The second section is Chapters 2-6. Here, details of the current work concerning
flows on inclined planes is developed. While, as stated above, there is extensive lit-
erature on this subject, there is also a large amount of controversy and conflicting
statements. Papers are focused on specific experimental conditions, which are not
always stated clearly, and can (have) made generalizations difficult, and at times
dangerous. Therefore, this section will attempt to investigate the complexity of this
problem in the broadest possible context, developing models and physical under-

standing for how and why this system behaves as it does.

Some of the major results found include:

e The existence of steady states is proven experimentally.
e A model of steady states is derived from first principles.

o The stationary states are subjected to perturbations and the mechanism of

meandering exposed.
o The stationary state model is generalized.

e Numerical and experimental work confirm the existence of a universal power-

law scaling for the long-time ensemble averages spectrum of stream profiles.

e Analogous statistics are found to real river systems, including a “Hack’s law”
scaling, and an analytic way to recover the observed 1.1 scaling exponent as-

sociated with the second structure function for river curvature.

The third section contains Chapters 7-8. Here, another model is developed to try
to explain the dynamics of underwater sand ripples which develop when a flat bed of
sand is exposed to oscillatory flow above. Due to the complexity of the problem, an

amplitude equation based on conservation laws and symmetries is derived. Then the
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use of Lie’s prolongation algorithm is considered to investigate wavelength selection

in this system.

Some of the major results of study include:

o The development of a 1D model which describes much of the required dynamics.
o Analysis of the 1D model analytically aund numerically.

e A novel approach to studying non-linear wavelength selection.

Lastly, section 4 is a series of appendices meant to: clarify notation, fill in details

(which are necessary) but break the flow of reading, and help future students to

understand some of the details underlying important calculations.

In a more detailed and bullet form, the dissertation can be outlines as follows:

e Section 1 Introduction to inclined plane flows.

— Chapter 1: Brief history of problem and previous work.
Including summary of Mertens et. al. Nature (2004) [7] and Mertens et.
al. J. Fluid Mech. (2005) [8].

e Section 2 An account of our research on the inclined plane problem. Includes
the relevant details of Birnir et. al. PRL (2008 under review) [9] and Birnir
et. al. J. Fluid Mech. (2008 under review) [10].

— Chapter 2: Explanation of experiments performed and results

— Chapter 3: Theoretical models are developed

— Chapter 4: Numerical Results are presented

Chapter 5: Generalizations to rivers

Chapter 6: Future Work

e Section 3 Underwater sand ripples and Lie prolongation.

Including details of Schnipper et. al. PRL (2008 under review) [11].
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— Chapter 7: Brief history of problem, model developed, numerics explored,

coarsening discussed

— Chapter 8: Lie Prolongation applied to 1D amplitude equation.
e Section 4 Appendices of additional supporting information including:

Additional Braids Derivation

— Variational Derivative

Instabilities

— Stochastic PDEs

— Prolongation Calculation

— Some additional notes and pictures about sand ripple experiments

— References
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SECTION 1.

History, like a vast river, propels logs, vegetation, rafts, and debris; it
is full of live and dead things, some destined for resurrection; it mingles
many waters and holds in solution invisible substances stolen from distant
soils.

Jacques Barzun

History does not unfold: it piles up.
Robert M. Adams
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1.2 History

“Observe the motion of the surface of the
water, which resembles that of hair, which
has two metions, of which one is caused by
the weight of the hair, the cther by the
direction of the curls; thus water has
eddying metions, one part which is due

o
to principle current, the other to the " o
random and reverse motion." Tl T gt 0 e
3 § o g N e oL PO T
L i at iy o

Figure 1.1: Da Vinci, Newton, and turbulence (left to right)

Fluid dynamics has been an important area of study since Newton in the early
1700’s. Even Da Vinci was compelled to contemplate turbulence in fluids before
the vocabulary was invented. After the invention of calculus, some of the strongest
minds in science (such as Euler, Cauchy, Laplace, Lagrange, Poincare, Navier, Stokes,
Kolmogorov, and Einstein) dedicated time from their lives to consider this specific
subject. Why? In addition to the fact that the world around us is replete with
hydrodynamic processes, additionally it is the most common natural phenomenon
which will not lend itself easily to linear theory. This is, of course, followed closely by
the fact that fluid dynamics is one of the most natural situations in which to visualize
non-linear systems and the rise to their complexity. While the area of fluid dynamics
has this long history, with combined contributions from numerous great minds, it
is still an area of active research and some of the most basic questions, such as

whether or not a solution even exists to the general three-dimensional Navier-Stokes
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equations, still remain unanswered.

Another fundamental question in fluid dynamics is that of flow stability and
pattern formation under the influence of various types of boundaries when driven
by gravity. The interest in this problem comes from the fact that this is a common
setting in both nature and industry. Even a seemingly “simple” question gives rise
to such complexity that, while much effort has been conducted towards a complete
model, a full understanding of the phenomenon has thus far eluded the scientific

community.

Even answering the simple question of whether or not a flow could achieve a
straight stationary state while flowing down an incline remained unanswered until
recently, see for example Perazzo et. al. [12], Mertens et. al. [7], [8]. Many people
believed it was an inherent instability of the flow itself, see for example Parker [13],
Mizumura [14]. Much of the difficulty in this problem arises from the fact that a
true understanding of these flows requires a complete model of turbulence, as well
as of the delicate interactions between fluids and substrate boundaries. Even if the
boundary is non-mobile (non-erosive), microscopic interaction can still give rise to
complications including contact angle hysteresis. The true nature of the contact
angle is quite complicated, for a fundamental reference see DeGennes [15]. Because

theories on these subjects are still incomplete, a detailed model remains impossible.

It will be shown through this thesis, however, that with the use of data collected
with a highly controlled experiment, and the use of several valid approximation
techniques, one can provide an accurate starting point towards the development
of this theory. Further, even this simplified model can make accurate statistical
predictions about not only the experiments performed but real natural flows as well.
The models developed further correct several misconceptions on the subject (such as
the notion of a preferred wavelength in these systems) and, for the first time, allow
a more detailed comparison between flows on eroding versus non-eroding surfaces,

characterizing seemingly universal characteristics between them (such as Hacks’ law

16]).
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1.3 Previous Work

The subject of studying meandering streams has a long history. One can trace
literature back to at least 1876 with a paper by J. Thompson, On the windings
of rivers in alluvial plains [17]. The primary mechanism driving this meandering
instability has been the subject of much controversy over the last 130 years and,
under different settings, different conclusions have been drawn. Even A. Einstein
wrote on the subject in 1926, speculating the earth’s rotation may play an important

role [18]. Initially, meandering was studied in natural settings such as river systems.

The uncanny visual similarities between river meanders and those observed on
non-erosive substrates has drawn the community to attempt to make comparisons
between these systems. However, the major conclusion drawn, previous to the current
work, was that the mechanism for meandering on erosive substrates is the mobile-
boundary, Seminara [19], while in the case of non-erosive surfaces the mechanism
is surface tension, see [1], [13]. This creates a distinct difference for the underlying

physics and hence comparison between systems has been limited.

Nouetheless, the rivulets became an active area of study through the 1980°s
[20],]21],[22], [23], [24], [25]. Many models for the non-erosive case were developed
on these ideas, treating meandering as an intrinsic flow instability (see for example
[1], [5], [14], [20], [26]). By creating models based on force-balance equations (be-
tween inertia, gravity, friction, surface tension, and centrifugal forces) linearization
methods were employed to look at short time dynamics in an attempt to predict the

dominant wavelength for this instability.

These models met with limited success and became quite difficult for further
analysis. It is interesting to note that these models were generally built by using the
river models previously developed, see [13], [27], [28], [29], but modifying them to

include surface tension and neglect sediment transport.

In the late 1990’s, a largely unnoticed work appeared by Nakagawa [30] by which

experimental evidence of stable flow patterns was found to exist in a region of space
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Figure 1.2: Previous prediction on initial wavelength of instability theory vs experi-
ment. x-axis observed wavelength y-axis predicted wavelength (from Mizumura 1997

1)

previously thought to be unstable. Later in 2004, analytic results for rivulets were
published putting into further doubt the truth about when these flows were (and were
not) actually stable to the meandering instability [12]. In 2006, further complexity
was discovered by Le-Grand Piteira et. al. [5] where an experimental bifurcation
diagram was presented showing transitions between stable flows, pinned meandering
flows (meandering profiles not longer changing in time), and dynamic meandering
flows (see Figure 6.1). Le-Grand Piteira et. al. began to address an additional flow
structure where dynamic meandering gets pinned and becomes time independent. In

Section 6.2, this specific point will be addressed in greater detail.

1.4 Initial Results on Stationary States

In 2002, the work of this thesis began as an experimental study to determine the
governing parameters which control meandering instabilities. In particular, even
before the knowledge of the work of Nakawaga et. al. [30], there were suspicions
that certain flows could be made stable and straight if careful enough. A series of

experiments were designed to observe the behavior in the immediate downstream
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5 AR

-

—

e

Figure 1.3: Braids and Rivulets (left to right)

flow of water (and water-glycerin mixtures) on flat acrylic plates under the influence
of gravity. The choice of acrylic was based primarily on its availability, cost, and
desirable surface properties. Acrylic is a partially wetting surface with a contact
angle of roughly 57 degrees. As the contact angle is a measure of the surface-fluid
interaction, this choice gives a moderately interacting surface. The experimental

study was conducted across the parameter range shown in Table 1.1.

The experimental apparatus is extremely simple and a schematic is found in
Figure 2.2. The essential factors found to control meandering for this setup are
fluctuations in the flow rate and contamination and/or irregularities on the surface.
The primary difference separating this apparatus from those in previous work is
the use of a tall upper reservoir which, through the use of overflow valves at cer-
tain heights, ensures a constant hydrostatic pressure at the nozzle outlet. When
the primary instability-causing mechanisms are removed, a stationary state is then

observed. The details of the experimental setup are outlined carefully in Chapter 2.

10
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System Parameter
variable Experimental Range
Inclination Angle a | 15-60 degrees from horizontal
Flow Rate Q 100 ml-2 L/min
Kinematic Viscosity v 1-5 centistokes
fixed Value
Fluid Density p 1 g/ml
Contact Angle 9 50 degrees
Surface Tension Coefficient 70 dynes/cm

Table 1.1: Systein Parameters

It is important to note that even under ideal circumstances a transient stabi-
lization time is always observed and can be substantial depending on the parameter
choices and length of stabilization desired. For smaller flow rates, as well as increased

viscosity, these transient times could be order of hours.

At least one other paper does claim to use a constant hydrostatic pressure to
prescribed flow [3]. It is unclear why they did not see the flow restabalize. The
authors explicitly mention the use of a rotameter- it is possible this induced enough
flow rate variation to explain their observations. Perhaps, they only collected data
for a few hours after turning on the apparatus. In which case, for a long incline
they may not have waited long enough to get through the transient. Perhaps, the
aspect ratio A = % (where H is the fluid height in the upper reservoir and D is the
diameter of the fluid jet) was too small and, therefore, there were still perturbations

in the flow.

For constant flow rates, after the transient time passes, two distinct steady state
flow patterns were shown to be present. A rivulet regime where the inean downstream
velocity is roughly constant and the edges of the stream remain straight, and a
braiding regime where the mean downstream velocity is non-constant and the edges
of the stream experience decaying oscillation as progressing downstream (see Figure

1.3 and Figure 1.4).

11
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1.5 Braids and Rivulets

g4
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Figure 1.4: JPG overlayed with solution to equations (1.1, 1.2)(left bottom); Recre-
ation of free surface profile (left top); Bifurcation diagram (right)

The model for this steady state system was constructed from the boundary layer
approximation of the Navier-Stokes equations parallel to the plane. After some ap-
proximations, the system could be reduced to a pair of ordinary differential equations

for the stream width and the average down stream velocity at each cross-section.

(u-w') = F(u,w)—mu?wy' (1.1)
u-u = 1 - mutw? (1.2)
where
3Qp*v(gsin(a
m, = Qp (52 (a)) (1.3)
3Q%p v (gsin(a)?
m = 297 (797 () (1.4)

With the use of averaging techniques [31], lubrication approximation, and a fourth
order polynomial approximation for the free surface profile this model is able to
explain this physics of this phenomenon from first principles, incorporating surface

tension and inertia under the influence of gravity. For a more detailed construction of

12
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this model and explanation of all analysis summarized here, see Appendix A and/or

[7],[8] [32].

The physics of this phenomenon can be explained as follows: Braids are, in fact,
decaying oscillation as the bulk of the fluid (traveling at the edges of the flow and
separated by a thin film in between) are drawn together by surface tension and then
bounce with decaying amplitude due to inertia, while driven by gravity. The model
is able to predict the decaying oscillation as well as the free surface. Further, this
model has the ability to explain the transition between the two distinct steady states

(See Figure 1.4).

Conducting a linearization around the constant mean downstream velocity and
constant stream width, one arrives at a cubic polynomial for the associated eigen-
value equation which can predict the bifurcation between flow regimes. This can be
understood mathematically as a transition from one negative real, and two complex
conjugate eigenvalues (braids) to three negative real eigenvalues (rivulets). The bi-
furcation diagram is in terms of two dimensionless groups constructed from the five

dimensional parameters and the dimensionless inclination angle 6 of this system.

Because the bifurcation line represents the limit as the imaginary part of the
eigenvalues goes to zero (i.e. the wavelength goes to infinity), this implies distin-
guishing data near the line is impossible (i.e. it is hard to tell a straight stream from
one with an almost infinitely long wavelength). Nonetheless, for parameter values
which are clearly on either side of this line, it is in excellent agreement with the

experimental observations.

Now that the existence is established, and physics understood, for the stationary
states a solid foundation is laid, both experimentally and theoretically, to begin a

detailed study of meandering on non-erosive partially wetting surfaces.

13



Chapter 1. Introduction

SECTION II.

An excerpt from On the cause and characteristic scales of meandering and braiding
in rivers [13] representing the fundamental philosophy on meandering which has

influenced most work in the area of stream meandering.

The thesis that meandering is an inherent property of the flow, and that
sediment transport is necessary only in a kinematic way to impose flow
pattern on the bed, must be discarded in so far as present theories applies.
Rather, it is indicated that the existence of sediment transport is a dynam-
ically necessary condition for the formation of instability leading to mean-
dering either in the flow or on the bed. This conclusion must be reconciled
with the fact that meandering in fluid streams occurs in circumstances in
which sediment transport is not present; namely in oceanic currents such
as the gulf stream, streams of meltwater on ice, and Gorycki’s streams a
few milliliters wide on plastic plates. Common to all meandering streams
are potential (inertial and gravitational) and friction effects; it is pro-
posed here that an additional ‘third effect’ is required for meandering.
This third effect is as follows: for alluvial streams, sediment transport;
for oceanic currents, Coriolis acceleration, for glacial meltwater streams,
heat difference, and for Gorycki’s streams, surface tension.

Parker 1976
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Chapter 2

Experimental Investigations

2.1 Meandering

Figure 2.1: Experimental Meandering (left); River Meandering (right)[2]

Meandering in nature is obviously far more complex than in the lab due to the
extreme turbulence in rivers, erosion and transport of the underlying landscape,

flooding, anthropogenic influences, etc. Modeling river meandering has been an
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Chapter 2. Experimental Investigations

active area of research among geomorphologists for many years [13], [27], [28], [29],
[33], [34], [35], [36], [37], [38], [39] as just a few examples. In fact, one can find
more than ninety publications in the Civil Engineering Database alone since 1990
[40]. On the other side of this problem, more and more papers began to accumulate
investigating non-erosive surfaces [3], [14], [20]. However, no one knew how accurately
any comparison could be performed between these two different systems. Further,
the types of questions they were trying to answer in their various settings were not
suggestive of anything that could or should be quantitatively compared. No one
knew exactly how the erosion was influencing the behavior compared to what they
witnessed. It is clear that erosion and sediment transport must influence the flow

behavior, but how?

While this is an interesting question, which will be addressed in this work, the
discussion will be postponed until the end of Chapter 3. For the remainder of Chap-
ter 2 and the primary portion of Chapter 3 this thesis will focus on understanding
meandering on non-erosive partially wetting surfaces such as acrylic and polypropy-

lene.

Due to the overwhelming complexity of this system, initially a set of goals was
set for the current research. These points serve as the motivation for the remainder

of Section 2.

1. Identify the mechanism for sustained meandering.

2. Measure the spectrum and investigate the existence of a preferred wavelength.

3. Generalize the stationary state model to understand meandering statistics.

N

. Investigate any connections these flows share with those observed in nature.
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Chapter 2. Experimental Investigations

Flow control vaive

\-;

Figure 2.2: Schematic of Experiment

2.2 The Experimental Setup

The experimental arrangement (Figure 2.2) provides a highly constant discharge
rate from a tall cylindrical top reservoir through a hole in its bottom connected to
a flexible plastic tube. The diameter of this tube, and the hole, is d = 3 mm. The
diameter of the container is D = 15 em. Thus d <« D, and the flow discharge
rate Q is fairly well approximated by the formula originally introduced by Torricelli,
Q= %\/Qg_Z , where ¢ is acceleration due to gravity and Z is the height differential
between the location of the hole and the free surface [41] . Thus, if Z remains
constant, () is constant as well. For a fixed tube diameter, ( can be altered by

changing Z.

The flexible tube that carries the flow to the inclined plane is necessary to prevent
any capillary instabilities that might form on the free surface of a water jet. The jet

was introduced onto the plane in two different ways:

e Perpendicular to the plane at a constant height of ~ 1 cm.

o Parallel to the plane.

17



Chapter 2. Experimental Investigations

Meandering System Parameter

variable

Experimental Range

Inclination Angle a
Contact Angle 0
Flow Rate Q
Kinematic Viscosity v
pulse rate

30,45 degrees
57+2,74+£5,99+4

3 flow rates used see Table 2.2

pure water, 50-50 water/glycerin mixture
1/3pps, 1pps, 4pps; with duration of order milisec.

Table 2.1: Meandering Data Collected

An electronically controlled valve, which could alter the flow rate by squeezing the

tube, was also introduced upstream of the discharge point. Initially, several ampli-

tudes of the pulse were investigated, for several types of signals, at various frequen-

cies. For all amplitudes inspected (between roughly 10 and 100 percent reduction),

meandering was a persistent feature of the flow. Hence, all data collected for analysis

use a fixed amplitude of volume contraction (“strength of squeeze” ). Ranges can be

found in Table 2.1 and Table 2.2. The inclined plane is produced by placing a large

(2.4 m long and 1.2 m wide) sheet of acrylic plastic (3.2 mm thick) on top of a 2.4 m

Flow Values Investigated
for Meandering WATER 50-50MIX
w/o pulses
FLOW 1 187.5ml/min 100ml/min
FLOW 2 315.8ml/min | 171.4ml/min
FLOW 3 428.6ml/min | 222.2ml/min
w/ .37 pulse/sec
FLOW 1 181.2ml/min | 92.3ml/min
FLOW 2 272.7ml/min 150ml/min
FLOW 3 375ml/min 214.2ml/min
w/ 1 pulse/sec
FLOW 1 176.5ml/min 85.8ml/min
FLOW 2 271ml/min 143ml/min
FLOW 3 333ml/min 200ml/min
w/ 4 pulses/sec
FLOW 1 50ml/min 38ml/min
FLOW 2 105ml/min 65ml,/min
FLOW 3 157.9ml/38sec 94ml/min

Table 2.2: Meandering Flow Data Collected
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Chapter 2. Experimental Investigations
x 1.2 m x 2.5 cm urethane slab, which in turn is mounted on a welded-steel frame.
This frame is attached to two pivots with a screw arrangement controlling its angle

of incline o with respect to the horizontal.

After the flow exits the tube, it runs down the incline and into a long rectangular
bottom reservoir, from which it is recirculated with an electric pump connected to
the top reservoir. Note that the top and bottom reservoirs are also connected with
an overflow tube, which ensures that the free surface of the top reservoir remains at

a constant level. The stream of fluid in this setup is highly controllable.

After some initial settling time, the stream flowing down the plane assumes a
straight shape for all the flow regimes investigated. During the settling time, three

distinct flow regimes could be observed (see Figure 2.5):

¢ First, a region in the immediate downstream where stabilization had occurred,

e Second, a region of continuous meandering,

e Third, a region where the stream breaks up.

In the third regime, stream splitting events usually occur at the inflection points of

the stream.

If the flow control valve remains open (no flow rate disturbances), the stream
always stabilizes to the stationary non-meandering shape. Note that the long and
narrow top reservoir stabilizing the flow is crucial for rivulet stabilization. If that
reservoir is removed, or a flat and shallow reservoir is used (even having the same
volume capacity), the meandering never stops due to the inherent disturbances intro-
duced by the pump. Thus, careful attention to disturbances in the flow is imperative

for this experiment.
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Chapter 2. Experimental Investigations

Figure 2.3: Experiment used to inspect various perturbations to steady state flows

2.3 Experimental Stability

Having knowledge of the steady state flows, the next obvious question is, how robust
are the stationary states to perturbation? The initial expectation was that flow
stability should be extremely sensitive to any perturbation, after all these stationary
states are almost never seen in nature. To be cautious of this possibility, the initial
perturbations were done using a three-inch speaker held fixed approximately two
inches above the plane immediately downstream of the nozzle. The tone was created
using a sine wave generator and a pre-amp allowing variable power of up to roughly 10
watts continuously. The range of frequencies investigated spanned from 0-4000kHz
continuously. The results in all cases were similar. While the given perturbation
may induce a temporary meandering state, the flow would always re-stabilize under

the influence of any constant signal.

The second set of experiments were then conducted by attaching the nozzle itself
to a linear oscillator which was capable of introducing oscillations perpendicular
to the flow direction ranging from 0.5cm to 5 cm discretely with frequencies less
than 100 Hz continuously (see Figure 2.3). Note that when running at maximum
capacity, the accuracy and linearity was very uncontrolled. It was more like a chaotic

pendulum. Nonetheless, even under these extreme circumstances, stabilization was

20



Chapter 2. Experimental Investigations
observed. The conclusion of these experiments demonstrated that if a perturbation
had time to be quenched by the downstream flow, then the flow would re-stabilize.

Hence, only perturbations capable of traveling upstream could sustain meandering.

The third set of experiments was then conducted using perturbations in the form
of shocks, which are then capable of upstream travel. By a slight modification to the
previous schematic, which is shown in Figure 2.2, namely inserting an electronic valve
into the system which introduces controllable flow rate fluctuations, pulses to the flow
could be introduced in a controlled way. This type of perturbation was found to lead
to the immediate onset of indefinite meandering. Amazingly, even a small pulsation of
this type is capable of sustaining meandering (tests ran for up to twenty-four hours).
In a few instances, the meandering would seem to become stationary. However, in
this experiment the cause was always attributed to surface contamination. While
there may actually be something more complex happening here, one can say with
certainty that cleaning the surface and restarting under the same conditions would
not generate consistent pinned patterns. As the range of parameters investigated is
well within the dynamic range given by Le Grande-Piteira et. al. [5](see Figure 2.3)
this does not necessarily contradict the existence of stationary meandering for small
flow rates. For small flow rates the effects of surface interactions become much more

dominant and pinning does not seem unreasonable.

For the entire parameter range investigated, switching on the pulses prompted
almost immediate meandering. Switching off the pulses would yield stationary states
after a transition period. While the transient meandering time may be on the order
of several hours for slower flows, patience would always yield steady state flows
the complete length of the acrylic sheet. For the meandering analysis conducted,
several measurements were made varying surface contact angle, flow rate, pulsation
rate, inclination angle, and viscosity. For the range of values studied, see Table 2.1
and Table 2.2. Additionally Figure 2.4 shows the static contact angle for the three
surfaces studied. Note that all the meandering data collected was under the influence

of constant pulsation.
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Figure 2.4: Contact angles for various surfaces studied, Acrylic, Coated Acrylic,
Polypropylene (left to right)

2.4 Meandering Regimes

Figure 2.5: Three Regimes (left); Splitting (right)

Through the work of this thesis, it has been shown that at any instant in time
during the transient period of flow stabilization, there are three distinct regimes as a
fluid flows down an incline plane (see Figure 2.5). Based on the choice of parameter
values, one can adjust the size of these various regimes as desired. For a flow which
is given all the necessary conditions for stability, one can follow the transition points
between these regimes as they move down the plane. In the immediate downstream,
the flow will become stable fairly quickly. At some point downstream a “tail” will
appear where the stream begins to meander. Initially, the meandering stream will

stay coherent and therefore there will exist a second regime for which the stream will
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remain continuous as it writhes back and forth across the plane.

Still further down the stream one will then observe a second point at which
the stream will split, sometimes breaking into two streams other times into several.
At this point the behavior becomes completely chaotic and is beyond the focus of
the current work. While it has not been theoretically addressed, experimentally one
seemed to observe a statistically regular velocity of these two transition points during
stabilization. There is additional data collect for analysis of this behavior when time

permits in the future.

The present work only accounts for analysis of data under the influence of pul-
sation. By increasing the viscosity in these flows, one can increase the size of the
continuous meandering regime to the full extent of the acrylic plane used. By this
method the current work was therefore able to obtain stream lengths long enough to

begin consideration of statistical work.

2.5 Splitting Regime

Before leaving the topic of stream splitting and the third regime, a few important
remarks concerning experimental observations should be addressed. A stream split-
ting event in the lab will almost always occur as a consequence of one of two events,
either; As the meandering stream fans across the plane it requires the flow further
downstream to move faster and faster to “keep up”. Eventually, at some distance
downstream, this is impossible due to friction and the stream slides off itself. More
typically one observes a “buckling” occur where a cusp forms at an inflection point

of the stream.

A paper has been published studying this third regime Schmuki et. al. [3] and
this phenomena has been clearly connected to contact angle hysteresis. By studying
the number of splitting events that occurred per unit time at each cross-section the
authors were able to explain, using energy considerations, the scaling law observed

which were in good agreement with their theory (see Figure 2.6).
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Figure 2.6: Theory vs experiment for prediction of splitting events based on energy
considerations Schmuki et. al. 1994 [3]

2.6 Data Analysis

Figure 2.7: Typical digital image acquired through experiment, grey-scaled and
undistorted, stream center line found (in black) and overlayed on original jpg image
(left to right)

Figure 2.7 shows a typical image obtained in experiment. These images are
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captured with a 4-megapixel grayscale digital camera mounted above the incline. The
effective resolution of the images is about 1 mm per pixel. Any optical distortions
are removed from these images as follows: An image of a rectangular grid is captured
by the camera. This bitmapped image with any distortions is then mapped to the
bitmap containing the undistorted image. The mapping procedure produces a bicubic
spline mapping scheme which is then used to process the experimental images. Prior
to each experimental run, a background image with no stream is captured, to be
subtracted from the images showing the stream and the droplets left in the process
of its meandering. Subsequently, the image is grey-scaled [42] and then, with the use
of a Matlab code, the centerline of the stream is extracted from the processed images.
The conservative estimate of the cumulative error of the extraction and distortion
correction for the centerline coordinates is on the order of one pixel (about 20% of

the characteristic stream width).

The stream centerline profiles were then compiled into a list. After conducting
experiments across the parameter space indicated in Tables 2 and 3, about 200 images
were accumulated. Analysis was then done to look at ensemble average spectrum for
various subsets of this data. It is important to note each image was taken at least
5-10 minutes after the stream profile began to develop. The focus of this work is
on fully developed stream profiles. Further, all images were taken far enough apart
in time to be considered statistically independent. The results for each surface are
plotted in Figure 2.8. A rescaled comparison is also plotted along with theory in

Chapter 4.

In addition to doing data analysis on the stream profiles themselves, it was also
found that work would need to be performed to understand the distributions of
droplets left by the stream on the plane. As a stream meanders, it leaves a thin film
in its wake, which almost immediately breaks up into droplets. These droplets are
then left to be later re-encountercd by the stream. In Chapter 4 the inclusion of this
effect must be addressed to obtain a physically reasonable model. In this section

some of the basic information about these droplets is included.

Each image was resolved using Imagetool ©[43] and a random sample size of
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Figure 2.8: Unscaled Spectra (Green=acrylic,Red=RainX,Blue=Polypropylene)

roughly 10,000 droplets. First, note that while the scaling of the spectra remains
similar for all surfaces investigated (Figure 2.8), the amplitude does change. This is
the first indication that there are still differences between the flows found on varying
surfaces. In fact, observation shows that as the interaction with surface increases
(i.e. contact angle decreases), the meandering increases in amplitude of deviation
and the meanders themselves move slower. One can then ask to what extent is this

behavior explained by these droplets?

Analysis of these distributions shows that, as one may expect, they are not identi-
cal for all surfaces. Inspection of Figure (2.9) shows size distributions for the various
surfaces and also the growth rate of deviation. The growth rate seems to be a func-
tion of the contact angle ( i.e. increasing contact angle decreases the number of

droplets and the growth rate of deviation of the streams center line).

Unfortunately, there is insufficient data to feel confident looking at these devia-
tions too far from downstream. Further work should include the collection of a much
larger data set for study of such questions. Nonetheless, it gives the basic idea that

the issues of contact angle are still looming in this problem.
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Figure 2.9: Top: Growth rates of (|h|) vs downstream distance for various surfaces;
Top Insert: Growth rates vs contact angle; Below: Distribution of drop sizes for
various surfaces
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Chapter 3

Theoretical Model

3.1 General Considerations

Using the previous knowledge about the steady states it is fair to assume the same
basic processes must be accounted for in the force balance equations. Hence, one
should expect the influences of gravity, surface tension, friction, and inertia to be
important. However, by inspection of Figure 2.7 (and as was addressed in the pre-
vious section) one can see that when a fluid stream meanders on a partially wetting
surface, another contribution becomes apparent. That is, as the fluid writhes back
and forth across the plane it leaves a thin film in its wake which almost immediately
breaks up into droplets. These droplets are then left to be later re-encountered by
the stream. Upon this collision each droplet acts as an additional local transverse
forcing mechanism on the stream. Therefore a model cannot be correct without

explicitly taking this into account.
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3.2 Starting with Navier-Stokes Equations

1
%I_ +UVU = ;VP + gsin(a)é, + vV*U (3.1)

As with the stationary state model, the model again starts from (3.1) and the in-
compressibility condition (See Appendix A). Now, however, the previous technique
of approximating the free surface profile becomes much more challenging. Without
an explicit function to characterize the free surface profile, the calculation of pressure

(surface tension) term in 3.1 will have to be done using variational Calculus.

Additionally, the influence of the droplets makes this problem stochastic. That is,
until it is possible to predict the exact size and location of each droplet as a function
of time, the best one can do is with the use of distribution functions. Obviously,
the ability to predict these drops from first principles is a challenging problem and
currently there is no complete theory for how to achieve this in even the simplest
settings. For the current purposes, the use of stochastic modeling will not be a

serious limitation.

3.3 Surface Tension

3 - w y
i —_—
Ce - Ty
+ F, e

Figure 3.1: Top: Fluid cross-section in yz plane; Bottom: Fluid cross-section in zy
plane demonstrating two curvatures present
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For the arbitrary stream volume element, there are two curvatures which must
be considered when contemplating surface tension. See Figure (3.1). There is the
curvature in the zy plane and that in the yz plane. Initially, for simplicity, consider
only the curvature in the zy plane. To perform this calculation, approximate the cross
sectional area in the yz plane by A = lw where [ is the average stream height and w
is the average stream width. It is clear that this is an approximation. In Section 3.5,
it will be addressed when this approximation is most valid. Further, in Section 6.1,
how one could do better will be discussed, along with the difficulties encountered.
For now, this choice will greatly simplify analysis and under this approximation it

will still be possible to gain many insights into this problem.

To calculate the surface tension force in the zy plane, consider the use of vari-
ational methods. The basic procedure will be relied on twice in this manuscript
and therefore an outline of how to calculate variational derivatives is found in the

Appendix.

By considering the functional, which represents energy per unit arclength

T2
Esz/ V' 1+ hide,

the force/volume, due to curvature differences on the top and bottom edges of the

stream, can then be found as roughly:

E o~
%(Ft—ﬂ,)dle‘s _ /(’<_hz )

Aok = Toe \ Vit m

Here, the relation A = wl has been used. Also, 7 is the coefficient of surface tension,
and the subscripts t and b are the force felt by the top and bottom respectively as

shown in Figure 3.1.
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3.4 Colored Noise

An important part of the subsequent discussion is the structure of the noise. There
are two possibilities. First, one can take n(z,t) as a white noise with the correlation
(n(z,t)n(z',t)) = Ad(z—2',t—t). This assumption leads to an analytical solution (in
a stochastic sense) for the system derived in Chapter 5 under the assumption that
the friction coeflicient A vanishes in the equations of motion presented in Section
3.6. The solution, interestingly enough, provides a meandering exponent of 1/6
corresponding to real-world rivers. This solution is presented later in Chapter 5.
However, assuming n(z,t) to be white noise is not adequate for explanation of the
experimental results. Indeed, the white noise ansatz for n(x,t) can only be assumed
if there is a large number of droplets of random sizes distributed all over the length
of the meandering stream, and acting at all times. This assumption is correct for

large-scale flows like rivers, where there is continuous random forcing on all scales.

Figure 3.2: Drop size distributions for various surfaces studied: Acrylic, Coated
Acrylic, Polypropylene (left to right).

When attempting to reconstruct droplet distributions, there are actually two
types of distributions one might initially consider: those in size and in space. Figure
3.3 shows typical 25cm? patches of droplets for the various surfaces studied. Anal-
ysis was performed to investigate size distributions as a function of surface contact
angle. Figures 2.9 and 3.2 demonstrate that the choice of material does affect the

distribution properties.

In this experiment, at each given time instant, the stream encounters only a very

limited number of droplets. Thus, it is most reasonable to use the assumption that
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Figure 3.3: 25 cm? sample patch of droplets for each surface (increasing contact angle
left to right)

n{z,t) is a spike appearing at a random sequence of times t1, ...¢,, .... At each time #,
the position of the spike z; is also chosen at random. Several types of distributions
have been tried for these droplets in space, and as long as they are not too skewed
(i.e. , concentrated towards the beginning or the end of the stream), the results
do not change for wavelengthis corresponding to the scales larger than droplet size.
In addition, the results do not change depending on the shape of each droplet as
long as it is localized. In particular, a rectangular pulse function of width I, inverse
Helmholtzian ezp(—|z — z,|/!) and Gaussian ezp(—(x — x2)/I%) distribution type
were used. Because the exact nature of the distribution was not critical, for the
numerical results presented in Chapter 4, this function was approximated using the
average drop size for each surface and a uniform distribution in space. This allowed
the reduction to a single fitting parameter for the average force felt by the moving

contact line each time it encountered a droplet.

Hence, the nature of the noise in this problem is “colored” in that it is highly
concentrated at a particular scale and localized. Note that all the modeling results
presented here assume uniform distribution of droplet times ¢y, ...t,; for each time
tx the distribution of droplets xy is uniform in space. The shape of the forcing is

Gaussian, with width ! equal to the cross-section of the stream (2 mm).
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3.5 Equations of Motion

Consider the flow of fluid on an inclined plane at an angle a with the horizontal.
Define the (z,y) Cartesian coordinate system in this plane so that its origin coin-
cides with the origin of the stream, and the x axis is pointing straight downstream
(i.e.1, the centerline of a non-meandering rivulet will follow the z axis). Then the

momentum equation for the fluid in the rivulet can be written as

1
& iuvU= VP ¢ gsin(0)éx + VU + H.

The dominant contributions to the force balance come from the surface tension,
friction on the bottom of the stream, and internal viscous dissipation, all of which

work against fluid inertia and gravity.

3.5.1 Lubrication Approximation for Frictional Force

Here, consider a lubrication approximation to reduce the full three-dimensional equa-
tions with boundary conditions (z axis being normal to the plane of the flow) to
equations in two dimensions where the z dependence is averaged out and the no-
slip condition on the bottom is implicitly accounted for. A very similar technique
has been described in detail in Appendix A. The lubrication approximation is based
on the assumption that the vertical velocity profile in the fluid is parabolic due to
the non-slip boundary condition on the bottom of the stream and the stress-free

condition on the top (free surface).

With these assumptions, one can show the x component of the friction force to
be Fy, = 3vu/l?, where u is the value of the z component of velocity averaged in the
z direction and, as before, [ is the average stream depth. As the stream is narrow,

one can safely assume that u does not vary much in the cross-stream direction.

Similar parabolic-like velocity profile is expected in the cross-stream (y) direction

with velocity vanishing at the contact lines (similar to theoretical results of Perazzo
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et. al. [12]). The cross-stream dependence on y over the width w can then also be
averaged out. The total friction terms in this direction are then Fy, = —3vu(1/I*> +
1/w?) = Au. Thus, introduce single values of the velocity components U = ue, + ve,

in the z- and y- directions for a given cross-section of the stream. Let the stream

Figure 3.4: Schematic of cross-section in yz-plane, demonstration connection between
lwand 6

discharge rate at a given location be QQ = Au, where A is the cross-sectional area of
the stream in the plane normal to the z-axis. Assume that the width of the stream

is w. The area of this section is A = lw. Now, using ) = Au = lwu, write the

equation for the friction force as Fy, = 3‘”5;” (1+ 110—22)

The simplest possible form of the equation describing the free surface £ in this

432
w2

plane is parabolic, £ = %l (1 — =%). The ratio w/! is actually related to the contact
angle 6 as follows. By evaluating g—i at y = w/2 (the edge of the stream), one finds

the value to be 6//w. But this slope equals tan 6. Thus w/l = 6/tané.

This implies Fy, = —52‘;‘129 (1+ (*228)?) By introducing a parameter A = 18v(1+
/w?)/(Qtanf) = 18v(1 + (tan8/6)?)/(Qtand) ~ 18v/(Qtand) and performing

similar analysis for the y-component of the friction force, one can then write the
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following expressions for the components of the friction force in the two-dimensional

formulation of the problem: Fj, = —Au? and Fy, = —Auv.

3.5.2 Equations of Motion: First-Form

Consider the pressure term, with the pressure to be inferred from the influence
of surface tension. For this derivation, assume that the variation of the width of
the stream w(z,t) is sufficiently small that the width can be represented by its
characteristic value w. In reality, the shape of the cross-sectional area of the stream
changes with time, and the contact angle is subject to hysteresis. However, if one is
dealing with gradual movement of the stream (characteristic contact-line velocities
associated with meandering are much lower than U = |U|), it is reasonable to assume
that the variation of this shape is commensurately small, and so are the variations
of w and [. For this, and the subsequent derivations, also regard the downstream
velocity components as uniquely defined by the downstream distance x, as all the
variations of velocity in the cross-section of the stream are either small enough to be
irrelevant (in the y direction) or have been averaged out (in the z direction).

Let the deviation of the centerline of the stream from the z-axis be h(z,t).

For a straight rivulet, h(x,t) = 0. Then the length of the centerline of the stream
between downstream locations x; and z, is L = fzzf v/ 1+ h2dx, where h, = %.
For a contact angle characterizing a partially wetting surface (6§ < 90 ), the stream
is shallow (I = %“(9)). Thus the surface area of the stream between z; and z; is

approximately the same as the wetted area

T2
S:wL:w/ V1 + h2de .
1

The surface tension will tend to minimize this surface area, thus the surface tension
force per unit length is F; = vg—i. Thus, the corresponding capillary force per unit

volume is
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as was derived previously in Section 3.3. The component form of the equations of

motion then take the form:

ou ou ) 9 A%u 148

i = gsin(a) — Au® + vost Aoh cos Y + My (3.2)
v v 821) 148

i —/\uv—i—y8 Ry Ohsmw—i—ny (3.3)
Oh  Oh

E + Ua—x = v. (34)

The terms containing A\ are added as the result of the use of a lubrication approx-
imation. Angle 1 in the terms representing the components of the pressure (i.e. |,
surface tension) force is the angle between the direction of the stream and the z-axis,
in other words, tan ¥ = h, . The components of the random force H are n, = ncosy

and 7, = nsiny. The third equation is a kinematic condition for h(z,t).

3.6 First Rescaling

The system (3.4) can be further simplified by considering rescaling under the as-

sumption that v « u. Then, h, <« 1 and the surface tension term linearizes as

follows:
68 B he ~
(Sh /——1 T hz ~ TT
this reduces the system to
Ou ou } 0%u .
e + Uz = gsin(a) — Mu® + Vﬂ + 7 (3.5)
ov Ov v v 8%h
ot or TAuv+ s +  Ox? Ty (36)
oh oh
ot  or — (3.7)

36



Chapter 3. Theoretical Model
This model is therefore accurate to order ~ O(h2). All numerical analysis performed
in Chapter 4 will use this set of equations. Notice at this point that the « equation

has decoupled, while the remaining two equations for v and h are now linear.

3.7 Stability Analysis

The following subsections address various stability calculations which can be per-
formed on the set of equations derived in the previous section. Some additional

notes about conventions and notation can also be found in the appendix.

3.7.1 Linearization and Spatial Instabilities

With these equations one can now perform some standard linearization techniques
to see what, if anything, can be said about the initial meandering instability.

Consider
Au?

Q

Consider stationary solutions u; = 0 about F(u*) =0ie F=0=>

w = [Qgcosa
* — /\ .

Now, linearize about u, by u = u, + €& dropping terms of order ¢* and dropping (%)

Us + Uy = §COS ¥ + VUgy — = Vg + Fu) .

notation one arrives at

U 2du.,
Upy — —Ug — u=20
Qv
yielding the characteristic equation
pr_tep_ 2w
v Qv
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u, 1 Ju2  8lu,
I'=s —+ /= 4+ —.
2v 2 \/ V2 M Qv

This shows that the Re(I') > implying it is unstable! What is worse is that this

This gives eigenvalues of

calculation carries over to the v equation in the same fashion. Consider

A
Vp + Uy = ——UV + VU, + lhm .

Q pl

coupled to
ht + UhI =

but in the steady state h = 0, u roughly constant, and v, = 0 so this becomes

Upg — ~Vz — —v =0

v Qu

u 1 [u? 4
Y
v 2 1/2+ Qu

This result again suggests that the Re(I') > 0 implying it is also always unstable.

leading to eigenvalues

Hence, these calculations can not be correct since they predict exponential growth
for all values of constant flow, which is not what is seen in experiment! This will be
attributed to limitations of linearization techniques. This point will become more

apparent as the calculation proceeds.

3.7.2 Temporal Meandering Stability- Constant Flux

Now consider temporal stability of the u-equation. As has been seen previously, the
coupling between v and v in A means when u is stable so is v and vice-verse. This
happens explicitly because of the one-way coupling between the u and v equations,
t.e. v is coupled to u, but not the reverse. Physically, this makes sense since the

linearization is about a straight rivulet.
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Consider
2
Up + Uy = GCOS Q¥ + VUgy — 6 = Vg + F(u) .
Consider solutions about F'(u,) = 0 as before so the linearization becomes
2 .,
Up + UeUy = VUgy — TU

Then assuming solutions of the form u(z,t) = a(t)e?** one arrives at

2 AUy

P(ik) = —vk® — —ju.k .

Because P(ik) < Oforall &, implying for constant @ the flow should be stable. This
is a good result, and in agreement with observation, if the flux @ is constant, the
flow is stable. However, to justify the claims that: 1. Flow rate perturbations
cause the onset of meandering and 2. Noise is responsible for the amplification and

sustainability, more is needed still.

3.7.3 Temporal Meandering Stability-
Varying Flux with Constant Amplitude I

Now, consider linearization of the u equation including fluctuations in @ (initially
with constant amplitude) such that Q = Qo(1 — esin(wt)). Then after substitution

and dropping of €2 terms:
AU U

Up T UeUy = — + Vi,
0

which gives the equation for the transition function as

AUy
Qo

a(t) = — <zku + + k2u> a(t) .

Thus, once again this gives a result of stability. While this result is somewhat

physically reasonable, it says that pulsation alone cannot drive meandering. This still

39



Chapter 3. Theoretical Model
does not account for the observation that the onset of pulsation induces a transient

meandering state.

3.7.4 Temporal Meandering Stability-
Varying Flux with Constant Amplitude II

To demonstrate that the cause here is most likely non-linear, consider again lineariza-
tion of the u equation including fluctuations in @ (initially with constant amplitude)
such that Q@ = Qo(1 — esin(wt)). However, this time further include the additional

non-linearity:
Au,u

+ *u = e~ . 7 N
T e Q0+€blll(wt)

Vg .

After all, the actual pulsation was lost through the previous linearization (w). This

leads to the equation for the transition function as follows:

a'(t) + (iku* + 1/) a(t) = F(t),

0

where
—\ulesi )
F(t) = Auge sm(wt) iz
Qo(1 — esin(wt))
Also, let
P(t) = tku /\
"0

This equation can still be solved with the use of an integration factor.

Define p = exp([ P(t)dt). Then

%ma) = uFO = alt) = 5, [ wr@©ar.

Here p = Pt =

—u? t .
t)t/ uZe sin(wt) POt gike gy
Qo(1 — esin(wt))
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Chapter 3. Theoretical Model

This integral is obviously not an easy task, but making a small time approximation
will be enough. Through experiment it is known that pulsation without noise will
die out. All that is necessary is to see that for small time there is initial transient
behavior. In practice, this means considering ¢ small enough so that sin{wt) =~ wt

P(t)

and et ~ 1. Then the above integral expression for the transition function simply

becomes

—dutew 4 ¢ —Mulew -1 1
}) = T ik dt = * ke f -4 ° gt
alt) o ¢ / (1 — ewt) Qo € ew + ew(l — ewt)

—Au? . 1 u? o 1
= We /(—1 + m)dt = ae (t + c_w ln(l — ewt)) .

So finally, after a little non-linear stability analysis, it is shown that initially the
instability grows linearly, but the exponential will quench this linear growth pretty
quickly and thus destroy this approximation. Further, in reality, it is known that the
contact angle will be playing a very significant role on the dynamics in this stage of
the stream development. Therefore, other than a somewhat weak confirmation that
this model does agree with experimental observations, 7.e. that pulsation starts the

process, one cannot really take it much further.
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Quantitative Analysis of
Experiments and Comparison with

Theory

4.1 Spectral Scaling Law

The presented here is based on approximately 200 flow images on various substrates
acquired with a high-resolution computer-controlled digital camera. The time inter-
vals between the pictures were random and long enough for the flow patterns to be
statistically independent. From each image at time ¢,, , the deviation of the stream
from the centerline h,,(z) was extracted as the function of down-stream distance z.
From members of the ensemble A, (z), m = 1,...,200, the power spectra S,,(k) was

then computed, where wavenumber k£ = 27/ corresponds to a spatial wavelength .

While the power spectra S,,(k), based on single images, are rather noisy, the
spectrum produced by averaging over the ensemble S(k) manifests a smooth graph
with apparent power-law scaling S(k) ~ k%2 over the span of about two decades
(Figure 4.1). Note that averaging over as few as 30 realizations from the ensemble

produces a smooth graph with the same power-law exponent. Deviation from this
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Chapter 4. Quantitative Analysis of Experiments and Comparison with Theory

scaling is noticeable only for k > k.. ~ 5em™!, corresponding to physical scales
smaller than the characteristic stream width. The largest physical scale that can be
acquired (and thus the smallest wavenumber) is constrained by the 2.4 m streamwise

extent of the experimental arrangement.

The scaling behavior is a persistent feature of all the experiments, representing a
universal characteristic of the problem of the flow down a partially wetting incline.
One important conclusion from the power law behavior is that the leading wavelength
associated with meandering iustability claimed by previous authors does not exist in
the fully developed meandering state. The results were repeated for three surfaces:
acrylic (contact angle 57 & 2° ) | acrylic with hydrophobic coating (contact angle
74 + 5° ) and polypropylene (contact angle 99+ ). The results for spectra and

basin area (see below) for these surfaces appear indistinguishable.

To compare the experimental results with the theory, numerical simulation of
Equations. 3.7 were performed over a long time (¢t ~ O(10,000)) and computed
an average of the spectrum for the deviation of centerline for an ensemble h,,(z) =
h{(z,tn) using a sequence of time points ¢,,. This spectrum is also presented in Figure
4.1. The only fitting parameter is the normalization for noise strength 7(x,t), taken
as a constant for all runs. This theory faithfully reproduces the scaling behavior up
to the largest physically relevant values of k corresponding to the droplet forcing

width.
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10" n & Expenment

Normalized S5(k)

k'an,s

Figure 4.1: Experimental and model comparison of scaling for ensemble average
stream profile spectra, all converging to a -5/2power law
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Chapter 5

Further Generalizations and

Comparison with Rivers

While it is not the attempt of this thesis to provide a model of rivers, some comparison
between systems will be addressed. Due to the striking visual similarity, many scien-
tists have contemplated comparison between these two systems. The overwhelming
consensus has been that the mobile boundary (erosion) causes meandering instabil-
ities in rivers, and surface tension causes meandering on inclined planes, see ([27],
[13], [14], as a few examples). Most previous work on the inclined plane problems
makes this assumption and focuses on trying to understand initial stream behavior
and predict the leading order wavelength for instabilities due to surface tension, see
[20], [14], [1]. For these reasons, there has not been clearly defined quantities to com-
pare between these two systems. Because this thesis considers the fully developed
stream profiles, these models are more akin to rivers than previous work and have,
therefore, provided potential quantities for comparison. This chapter will develop

this framework in the context of stochastic analysis.
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Chapter 5. Further Generalizations and Comparison with Rivers

5.1 Second Rescaling

The system introduced in Chapter 2 can be further simplified by a temporal rescaling.
This is done by postulating that the meanders move slowly with respect to the

velocity of the fluid. Letting h — €h, the variation equation can be simplified to

dh v
dr  u
This allows one to calculate hg; in terms of v and v and eliminate A.

For this first approximation, the lubrication terms proportional to A will also be
neglected. Note that both these approximations are increasingly valid as @) increases,

and are clearly valid at the scale of rivers. The final system becomes:

du du

o + uo = gcos(8) + viugy + 1, (5.1)
dv dv v 0

_ - = Sy = . 5.2

5.2 Analytic Analysis of System (5.1, 5.2)

In this section, analysis on the reduced system derived previously is summarized.
The exact details of how one solves these problems is outlined more explicitly within
the supplemental material found in the Appendix . Because all this work can be
found explicitly derived in text books, I omit it from the main body of this thesis.
For the purpose of the current work it is enough to know that:

1. The equations derived in Chapter 2 reduce to a rather tractable system.

2. There are solutions to these equations which can be found analytically.

3. These solutions provide useful scaling laws.

4. This approach lays a foundation for a novel method to compare the two systems
(erosive versus nonerosive systems) and possibly a way to help model real river

systems.
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Chapter 5. Further Generalizations and Comparison with Rivers

Another important part of the subsequent discussion is the structure of the noise
term 7. For rivers, one should take n(z,t) as white noise with the correlation <
n(z, t)n(zo, to) >= Ad(z — xo,t — to). The idea used in Chapter 3 (that the noise on
the inclined plane is due to droplets) will no longer suffice. More likely, the forces
felt by rivers are at all scales due to inhomogeneous underlying topology, not just
some average drop size. This stochastic approach to addressing underlying topology
has been used before, see [44]. The use of Brownian, or white, noise is actually good.
Much work has been done studying integration against Brownian noise and therefore
this will lead to an analytical solution (in stochastic sense) for the system (5.1, 5.2).

The solution will be shown to yield a 1/6 meandering exponent.

5.2.1 The Downstream Equation

Rewriting the downstream equation

du du
r + u + vy, =T (5.3)

This is simply a random forced Burger’s equation where

I' =1, — gcos(h).

With the use of a Cole-Hopf transformation, see ([45] Chapter 3.2) and the Feynman-
Kac formula, see ([46] Chapter 8.2) The solution can be written as:

8 1 \Iry\z L rt
- — | —— a =% Jo wsds
u(z,t) )\‘irc <\/4_f (/e f(y)dy> e X ) .

5.2.2 The Transverse Equation

Recall the transverse equation 5.2:

d N Pu;
d—:—f-(u——)ﬁ_(ui)v VUgz = Ty (5.4)
where ¢ = ()
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Note the terms multiplying v and v, are stochastic since the noise generated
in the u equation is now coupled. Here again a Feynman-Kac technique plays a
role, while additional complexity is encountered due to the term proportional to
d

2. Nonetheless, the solution to this equation can again be written in terms of the

expectation value as

o(z,t) = E(f(xt)efot a(Xs)dBe—3 [ a(Xs)2ds—f§ A(Xa)ds)

where o = (u — 2) and 8 = (£%).

u

5.3 Second Structure Function and the Scaling

Exponent

Start by defining the second-order structure functions s¢ = [ |f(z +1) — f(z)[?dz as
in [47], [33] and assume scaling s, ~ {?P» | s, ~ [?P«, and s, ~ [?P*. Then the powers

are related as p, = p, — pu.

As was seen previously, by disregarding the lubrication friction terms by setting
A = 0 and setting n to be white noise then the u equation is simply a noise-driven
Burger’s equation which can be solved exactly, giving p, = 2/3 (See [45] Section 7.5
with p=0 corresponding to white noise). On the other hand, the v equation can also
be solved exactly under these assumptions, yielding p, = 3/4 (Birnir [33] Section 6).

From the equation for py, one can conclude that p, = 1/12.

Sadly, in the current experimental case, setting any realistic value of A > 0
destroys the scaling p, = 1/12. Also, nuinerics show that the characteristic time
for the system to evolve p, = 1/12 scaling for any realistic initial conditions is so
large that it can only be observed after several km downstream. It is nevertheless
interesting that the meandering exponent p, + 1 = 1.16 agrees (within error bounds)

with that of mature rivers (~ 1.1 Maritan [48]).

While these results are somewhat heuristic, for the river system this is quite
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suggestive. It says the disagreement between the Meandering exponent and the
Hack’s Law scaling might be understood as follows: The v equation is experiencing
classical turbulent scaling due to the noise in this system. However, due to large
scale flooding events the u equation is scaling like Burger’s shocks. The meandering
exponent is a competition between these two effects, i.e. h, u/v =3/4-2/3 =1/12,

and hence s, ~ 1/6.

The reason this is a heuristic argument rather than a conclusive proof lies in the
fact that, implicitly, this argument compares scaling related to time scales. When
the kinematic condition is used to say h, scales like , one assumes something that
has not been derived rigorously. Namely, for the u equation this assumes a scaling
like Burger shocks, see [45], which occur at the time scale of large flooding events.
For the v equation, it is assumed the scaling is turbulence, Birnir [33], which is

happening at a shorter time scale than the floods.

In reality, this suggests a competition between two behaviors at two time scales
is responsible for the observed meandering exponent. In the shorter time scale, the
v equation propagates into the transverse direction with a 3/4 scaling, suggestive of
the curves attempt to reach the limit of continuity (i.e. H ‘older continuous of order
1/4 , Birnir [33]). However, on a longer time scale, floods scaling as Burger shocks
with exponent 2/3, keep trying to straighten out the river and hence decreasing the
meandering exponent from 3/4 to 3/4-2/3=1/12. This implies the second structure
function should scale as 1/6. With the problem now well stated, one should go back

and calculate these time scales explicitly to make this argument fully rigorous.

5.4 Hack’s Law

As another test of the theory, Figure 4.1 plots the area enclosed between the mean-
dering stream and its centerline as a function of downstream distance. The deviation
of the model from the power law is likely due to the length scale associated with the

forcing (characteristic droplet size 1-5 mm). The area grows as 7/ = '™ with
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10°
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Figure 5.1: Scaling law for model and experiment of area between stream center line
and symmetry line versus stream length, both give a 3/4 power law

the distance, consistent with the power law k%2 of the spectrum. Surprisingly, it is
the same growth law for the growth of the area of a river basin versus length of the
river (discovered by Hack 1957 [16]). In the lab setting, there is clearly no basin per
se and no side streams forming that basin. Figure 4.1 deliberately avoids plotting
Hacks law data for rivers on the same graph here for fear of misleading readers into
thinking that the experiment is describing river basin erosion. This is how it has
appeared in publication, see [9] and this result should not be considered in any way

questionable.

However, as Figure 5.2 shows, an overlap of the properly scaled data for Hacks
law in Figure 4.1 with the river data from Rigon et al. (1996) [4] is nearly perfect.
The power law is the same but there is an extreme difference in the scales, the data
is made to overlap by scaling both area and length by a large factor (red overlay on

the plot).

To avoid confusion, note that overlapping our data with those from real rivers

is somewhat dangerous due to the variation reported in the exponent in Hacks law
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Figure 5.2: Our Data (filled and hollow circles, left) versus data for Hack’s Law (On
Hack’s Law, Rigon et al. , [4] right).

depending on the river types, see [35]. Though this is mainly of concern at very large
scalcs where plate techtonics become important. Also, the area spanned by rivulets
and area of river basins are very different. Basins fan out from their outlet whereas
the rivulets fan out from their source. There are no side streams on lab rivulets, nor
are there multiple sources of water (like rain) in lab experiments. The coincidence

in the scaling exponents is nevertheless interesting.
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Chapter 6

Works in Progress and Future

Directions

6.1 Building Back the Dynamics

How does one correctly build the dynamics back into this model? At this point,
it has been shown that the spectrum for all measured data was constant for long-
time ensemble averages. However, the dynamics can be quite different as a function
of surface. Explicitly, as the contact angle decreases, the amplitude of meanders

increases while the time scale of meanders decreases.

These are not properties which are captured through previous analysis, nor prop-
erties which can currently be predicted with this model. Here is where the dynamic

contact angle can no longer be neglected.

When the previous derivation considered surface tension contributions in section
3.3, the curvature in the zy-plane was considered, but that in the yz-plane was ne-
glected, just using the average area A = [w. This was clearly a crude approximation
for the free surface profile, and indeed it is amazing this model could get as far as it

did. Now, consider how one could build this feature back in.

A similar idea (as was used in the zy-plane), based on variational methods, will be
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used to calculate the free surface profile which minimizes the surface energy. With
this one could more accurately predict cross-sectional areas and therefore at least

implement better averaging strategies.

This similarly to before implies finding a curve which minimizes the functional

E:W/ yv 1+ y2dy .

With the use of Lagrange multipliers this means solving the Euler equation

99  d0p _
dy  dydy,

0

where
w

A1+ y2dy .

The difficulty of this problem is not in solving the Euler equation above, rather it is

MMZE—V/

with the boundary conditions which must satisfy

@(—w) = 0,(t) @(w) =6,(t) .

dz dz

Here 6,(t), 0,(t) represent the advancing and receding contact angles as a function of
time. The choice of convention (which labeled advancing/receding) was completely
arbitrary. One can now see the difficulty with further advancement. Until there is an
established way to predict the complex contact angle dynamics, this analysis cannot

continue.

One possibility which has not been investigated carefully is that there may exist
a relationship between the two components of curvature (i.e. that in zy versus yz
planes). If it is possible to simply formulate how much the advancing and receding
contact angles change from equilibrium, as a function of the zy curvature, there may

still be hope of advancement.
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6.2 Slow flows

As has been mentioned previously in this paper, for slower flow rates observations
are quite different. In particular, Le Grande-Pietera et al [5] provide a bifurcation
diagram (Shown in Figure 6.1) showing where transitions should exist between sta-
tionary meandering and dynamic meandering for flow rate as a function of inclination
angle. Because the flows considered in this work are much higher than those, this
anomalous pinning behavior was not of significant interest in the beginnings of this
work. The fact that they claimed all large enough flows are unstable, however, was

quite disturbing. As another plausible explanation of why streams might pin at low

a)

Figure 6.1: Dynamic to Static Meandering Transition from Le Grande-Piteira ef.al.

[5]

flow rates, rather than a balance of a destabilizing surface tension and stabilizing
inertia, consider that plastics are highly susceptible to large static charge. With
water being a polar molecule this may be important, especially for small flow rates.
A series of preliminary tests have been conducted to verify this hypothesis and while

the real work still remains, these results are worth mentioning now.

First, Dr. Thompson at CSMATE [49] conducted some experiments where he let

a small discharge of water run down a uniformly charged plastic surface. He then
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waited for several weeks for the surface to be completely dry. Upon measuring the
surface charge distribution, he found that it had been permanently deformed by the
stream. These results have been reported indirectly elsewhere. After quite extreme

efforts to clean their surfaces Schmuki [3] reports:

Additionally, an initially dry surface was found to be essential for
reproducible measurements, otherwise the rivulet tended to follow the

path that had already been wetted.

Another test of this hypothesis was performed in the Mechanical Engineering De-
partment at the University of New Mexico where the plastic surface was rubbed with
a soft cloth to “charge it up” as much as possible. Then, flow rates were inspected
much higher than those reported stationary by Le Grande-Pitiera ( 100ml/min).
Amazingly, meandering patterns would pin after some small transient time, and
then remain fixed (for up to 24 hours). This further put the influence of charge into

the light as a possible additional mechanism required to explain pinning events.

In the previously derived model, the boundary term, found through the lubrica-
tion approximation, was inversely proportional to @). Hence, as this value decreases
one would expect this surface interaction to become more dominant and the approx-

imation used less valid.

What is exciting about this possibility is that if the hypothesis is true one should
expect to be able to control stream flow through use of surface charges. Modeling this
electrostatic coupling, however, is (while not impossible) a very challenging problem,

and certainly beyond the scope of this dissertation.

6.3 Slowly eroding surfaces

The reported fact that erosion leads to a meandering instability is a well accepted
result among geophysicists, see for example [13]. This belief is so strong that publica-

tions reporting similar statistical properties between erosive and non-erosive systems
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Figure 6.2: New surfaces being used, modeling clay, smooth joint compound, rough
joint compound (left to right)

have been severely attacked in the referee stages of peer review. While this point is
clearly true for systems where there is substantial erosion per unit time, it is not so
obvious for streams where the erosion rate becomes very slow compared to the mass

flux of the stream.

Consider the relevant forces. The two most important forces should be the shear
experienced by the surface ~ up%, and the force between particles (chemical bonds,
electro-static attraction, gravity, etc ), which gives a force per unit surface area o,.

Define a dimensionless number
du
_ sz?z

Ox

K :

For K <1 one would expect no erosion as inter-particle force is larger than the shear

trying to tear them apart.

One could then pose the question: will the meandering instability be present
in streams for any K > 17 For materials like sand and dirt where there is minimal
particle cohesion beyond that provided by gravity (K > 1) from physical observation

one knows meandering occurs for large K. It is true, in general o, could be somewhat

56



Chapter 6. Works in Progress and Future Directions
complicated to calculate for many materials. Nonetheless, the question remains, will
slowly eroding systems (moderate K > 1) meander under parameters which would

yield steady states for non-eroding surfaces?

A series of preliminary experiments has been built to address this question. By
making 1 inch slabs of various semi-soft solids experiments will observe how the initial
channels are formed under constant flow rates. The first series of investigations were
done using a common joint compound [50] (limestone, plaster paris, perolite, and
a polymer) (Figure 6.2). The results were somewhat encouraging. After two weeks
of continuous constant flow, small perfectly straight channels had begun to form
(approximately 0.5 mm deep). It was, however, also clear that the evolution process
was well beyond reasonable timelines. No one wants to run experiments that take

months to years per run.

The second series of experiments, currently in progress, use modeling clay as
the substrate. It is too early to make well informed comments about the erosion
behavior, but the goal of these experiments should be clear. This work will continue

into the future, and represents but one of the current directions this work is headed.
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SECTION III.

Figure 6.3: Underwater sand ripples in nature

Nature uses only the longest threads to weave her patterns, so that each
small piece of her fabric reveals the organization of the entire tapestry.

Richard Feynman
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Underwater Sand Ripples

Figure 7.1: Example of Underwater Sand Ripples in the lab [6)

Through the first two sections of this thesis several types of averaging and ap-
proximation techniques were used to simplify physics enough to model it from nearly
first principles. The next section of this work explores how to approach problems
when the underlying physics is simply too difficult to write down from first principles

in any reasonable way.

Consider a flat bed of sand subjected to oscillating flow from above. This situation
is very natural as it describes most sandy coastlines. One may even be intimately
familiar with this from their experience of walking barefoot into the ocean on a sandy

beach, and feeling the wave-like structure of the sand beneath their feet.

There are many reasons why people would like to understand the evolution of the

bottom of the ocean, especially near coastlines. Yet again, there is a vast amount of
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complexity in such a system making it a challenging problem to model.

If one considers the wave-like structure of the sand-water interface in nature, a
large range of pattern formation possibilities can be observed, with beautiful tran-
sitions between specific patterns, see Figure 6.3. The first work can be traced back
to A. Hunt, On the formation of the ripplemark (1882) [51], and G. Darwin, On the
formation of the ripple-mark in sand (1883) [52]. The foundation for studying such
systems in a lab setting were pioneered by Ayrton and Bagnold [53], [54] almost 100
years ago. Experimental work on this problem has continued until present day, some

examples being [55], [56], [57].

Theory for this problem is however very difficult, and now lags far behind exper-
imental data. The reason for this is that the interface dynamics are governed by the
coupled phenomena of turbultent flow from above and non-locally conserved granular
transport from below. Each of these two problems alone is quite challenging, let

alone coupling the two.

For this reason, the current work begans to develop an amplitude equation based
on symmetry arguments and conservation laws, which provides another approach to

modeling this system [58].

7.1 Problem Statement

When a bed of sand is exposed to an oscillating flow from above with great enough
force to lift sand grains, the bed becomes unstable. As individual grains become
mobile, aggregation occurs and “rolling grain ripples” initially develop [54]. Given
time to develop, these small rolling grain ripples begin to coarsen into stable “vortex
ripples” [11], see Figure 7.2. The exact nature of this evolution process has been
noted to be subject to the initial bed preparation. Two schools of thought have
developed as to how to consider these structures. One approach is to consider this
pattern development as an intrinsic instability of a flat bed to oscillatory flow, leading

to a wavy bottom [59]. The second approach is to look at this as the tendency for
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Waler motion

.

Figure 7.2: Development of Underwater Sand Ripples [6]

loose grains to lump together [60]. Either way, the flat bed is unstable to a certain

band of wave vectors which are larger than that set by the initial instability.

It has been shown that the final wavelength selected is set by the amplitude
of the external flow with minimal dependency on frequency [61], [62]. Also worth
notiug is that the frequency can be shown to affect the final shape of a ripple as well
as lead to secondary instabilities [57], though these effects are beyond the current

considerations.

The final wave length selection is governed by the separation vortex appearing
in the trough on the lee side of the ripple crest, whose maximal size is set by the
amplitude of the water motion near the bottom. The separation process is also what
makes the hydrodynamics of sand ripples so difficult, since the only simple model
for such flows (the boundary layer approximation) becomes singular at separation
points. Currently no simple model exists which can predict separated flow along an

arbitrary height profile short of solving the full Navier-Stokes equations. Work has
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been done along this dirrection, for example, Restrepo et. al. [63] created a three-
dimensional model for the formation of off shore sand structures using non-linear

weakly interacting shallow water wave theory.

7.2 Experiments

Though I was not directly involved in the design or data collection for these exper-
iments, I was able to see these experiments run, and had a direct interaction with
those running them while in Denmark [62]. For the sake of the reader, I will briefly
outline these experiments. There were two independent experiments to study the
1D system, as well as a third experiment for studying the 2D system. Figures of
the various schematics, as well as actual apparati, can be found in the Appendix.

Thorough experimental accounts can also be found in [62], [64].

In all cases, the idea was similar: to oscillate a tank of water, with a bed of sand
on the bottom, using a fixed amplitude and frequency and observe the dynamics of
the interface and structure of the steady state. The primary difference between the
two 1D experiments was the circular version has true periodic boundary conditions.
For the focus of this work, only the 1D model and experiment will be addressed
in detail. However, in closing, Section 7.6 will make a few last remarks concerning

generalization to the 2D system.

Some of the most important realizations that came through these experiments
were:
1. Steady states would develop.
2. The maximal slope of the fully developed ripples is close to the angle of repose
for wet sand, 23°.
3. The final wavelength selected is related to the driving amplitude by the relation

A =~ 1.3a and only minimally connected to frequency.
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7.3 1D Amplitude Equation

As discussed previously, currently no simple model exists which can predict sepa-
rated flow along an arbitrary height profile (short of solving the full Navier-Stokes
equations). When one adds to this the fact that the flow is turbulent and the com-
plications of the granular dynamics, current understanding is far from a model for
the dynamics that would make it possible to derive an amplitude equation from first

principles.

Even with sucli a model, understanding the ripple structures becomnies a problem
of keeping track of small long-time changes, resulting from differences, almost equal
and opposite, occurring in each stroke. The best model currently available, Andersen
[65], [66], does this by assigning to the ripples a transport function, which predicts
the amount of transport in each half stroke, depending on the ripple size. This model
has been successful in predicting certain properties of the ripple patterns, but relies
on the representation of a height profile in terms of elementary ripples making the

creation of new ripples somewhat artificial.

In the amplitude equation developed here, the periodic forcing will not appear
explicitly. The interest is in the long-time behavior in the sense that the model
should try to reproduce experimental observation made on time scales that contain
many periods. The height function A(z,t) appearing in the amplitude equation is

thus equivalent to the height of the drive.

7.3.1 Model Derivation

The construction of this model will rely solely on symmetry considerations and con-

servation laws. Hence, the equation developed must account for:

1. Conservation: There should be a global conservation of sand.

2. Symmetry: There should he horizontal symmetry of solution across any whole

number of oscillation periods.
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3. Asymmetry: Ripples in steady state often have noticeable top-bottom asym-

metry.
4. Instability: A flat bed should be unstable.

5. Ripple Growth: The flat bed should grow via coarsening to a fixed wavelength

based on angle of repose condition.

7.3.2 Building in Angle of Repose Condition

To address each of these requirements, this thesis will build up a PDE for the interface
in a series of steps. First, this model must grow or decay based on the slope of the
sand compared to that of the angle of repose. Let the angle of repose be defined as
o. Hence, consider:

hy = A(R2 = 0®)hys -

This starting point provides the necessary condition for growth or decay based on
the sand pile slope compared to the angle of repose [67]. Positive points about this
equation include:

1. Tt grows or decays depending on the size of h; vs p as needed.

2. It has a wave-structure solution (though triangular final states).

This model lacks several requirements also:

1. The solutions are triangles, which are not the desired final shape

2. These solutions coarsen indefinitely, meaning the final steady state is always 1/2
the domain length in the end.

3. Since triangles have sharp points, this implies solutions are singular.

7.3.3 Resolving Singularities

Though the previous model is not perfect, it is a starting point. To remove the ab-

solutely unnecessary singularities introduce a new term proportional to Ay, (some-
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Figure 7.3: A steady state solution for equation (7.5) with B =0
times called hyperviscosity) the equation becomes
he = A(hE — 0*)her — Vhazes - (7.1)

Here the strength of v now controls the smoothness of the tips. This is not the first
time 7.1 has been written down. Already in 1989 [68] this equation was posed for
surface interface evolution in the context of Molecular Beam Epitaxy.

7.3.4 Solving (7.1)

Consider explicitly how the curvature of the tips is controlled by v. Given the steady

state form of this equation:
0= A(h2 — 0*)hyz — Vhezar - (7.2)
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Re-writing this a little differently and setting A = 1, this is equivalent to

o (1., o
o\ 5 - _“ha: - hzzz =0.
Bz (3}‘1 gt Y )

Upon the substitution w = h, and setting the integration constant equal to zero

w3
3

VWgy = w .

o,

Now, setting the right hand side to be minus the derivative of the “potential”

oUu  w PP
—_— = — — —Ww
or 3 2
implies the “potential” ) \
w 0
U=——+>uw?.
2 g

Hence, this implies %(%wg +U) = a%(K + U) =0, a classic result of conservation

of energy. Stated slightly differently,

The behavior near the tips should be triangle-like and v should be sen to somehow
controls the strength. The “turn around point” for this system (i.e. the tips) are
where U = 0. Near U = 0 the potential is dominated by the parabolic term in w.

This approximation along with a binomial expansion to first order can be written

[2FE w? g?
=4/ — {1 .
w » ( + 1E )

Hence, for {—9,6} a small interval around zero

2FE & 1
z(w) = —/ ——dw,
vJ-al+ g
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which has the solution

z(w) = Etan_1 (2\/@11)) .

ov 0

This shows that for non-zero v this is not singular, and further, near the tips the
derivative looks like an inverse tangent, hence triangular. Therefore, as suggested
previously, this additional termn removes singularities and makes the tops of the curves

look more like the experiment.

However, there is still a top-bottom symmetry, and these solutions still coarsen

indefinitely. The linear Fourier transformation gives the dispersion relation
D(k) = 0*k* — vk*

It is easy to see this gives a maximum value at kpq, = % This being the most
unstable mode, implies initially this will be the wavelength first arrived at. From this
point, ripples are then squeezed out one by one in a coarsening process as discussed
in Politi [69] at a rate ~ In(¢). The method for finding coarsening laws is to study the
phase diffusion equation. A general procedure, along with examples, can be found

in Politi [70].

7.3.5 Top-Bottom Asymmetry

To address the top-bottom asynunetry, consider the following contribution to 7.2 the

previous equation so it has the form
hy = A(h2 — 0*)hay — Vhgzee + B(h2),. . (7.3)

The strength of the term B now controls the top-bottom asymmetry. While a rigor-
ous mathematical justification is neglected as to why this is, simulation shows it is
true, see Figure 7.4. This type of term has been looked at previously in the context of
conserved KPZ equation Putkaradze [71]. Now, the only problem with this equation
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Figure 7.4: Steady state solutions to (7.5) for various delta[6]

is that the coarsening still continues indefinitely!

Models incorporating different combinations of these terms have been looked at,
see [69], [71], [72], [73]. The study of coarsening processes themselves have gained
recent attention because this idea shows up in many unrelated systems. In fact, this
behavior is not uncommon for any system with a local conservation law Politi [69)],

[70].

It is not clear however that there should be a local conservation law at work.
Sand is picked up and carried by the flow. Globally, the sand does not leave the

container, but locally, the sand is not conserved.

Considering this system in terms of the linear dispersion relation (which is the
same as the previous section since only a nonlinear term has been added), it is clear
this solution should grow indefinitely because all these small k-values are still positive

(unstable).
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7.3.6 Resolving Indefinite Coarsening

Having unstable modes smaller than a sand grain, or larger than the domain itself,
are clearly non-physical situations. This constraint sets a reasonable maximum band
of unstable modes available to this system. Implementing this idea means adding an

additional “Swift-Hohenberg type” [74] linear term to the equation:
hy = A(R: — 0*)hot — Vhgyey + B(h2)ze — ah . (7.4)

The addition of such a term means there is no longer local conservation, but as was

discussed previously, that is not necessarily incorrect.

Again, consider what this does to the linear dispersion relation
D(k) = 0*k* — vk* — €.

Because the smallest k values are now negative (stable), it finally stops coarsening at

a fixed wavelength. At this point, the equation has almost all the desired properties.

This system should have global conservation of sand. To fix the last issue, simply

subtract the average value of h from the linear term so that

hi = A(h® — 0*)hyy — VhAgper + B(h2)ze — a(h — B) (7.5)

(7.5) is the equation now considered as a model for 1D sand ripple dynamics.

7.3.7 Proof of Global Conservation

A local conservation law would imply that

oh 0J

s
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where J is the mass flow, or in this case the surface current. In other words:

22 9 =)
Mdr = Y
ar % / 02" 7

Tl 1

5 [
2 / hdz = J(zs) — J(z)

i.e. the way mass is changing within the region (z1, ) is dictated by the difference
of what is flowing in at x; vs out at x3. In the case that € = 0, (7.5) can be written
explicitly with

7= = (30 = 8he) = vheoe = 802,

and the local conservation law holds. However, as has been seen previously, the
model requires a non-zero ¢ to stop indefinite coarsening. Further, in this problem
there is not local conservation as was discussed above. However, to ensure global
conservation implies:

L oh

L
,—dmz/ —e(h—i_z)+?—de:>
o Ot 0

ox

d L L _
—/ hdm:—e/ (h — h)dz + J|§ =
0 0

L%  (Lh— LR) =0

which is satisfied, since there is no mass flux outside the domain .e. J|§ = 0.

7.4 Numerical Results

After the models development, a new student, Teis Schnipper, began working on
this system. In particular, he performed extensive numerical investigations of (7.5).
For more details concerning this work see [64]. The goals were to do an exhaus-
tive investigation across parameter space, to look at final wavelength selection, and
consider dynamic transitions between different steady states of model compared to

experiment.

70



Chapter 7. Underwater Sand Ripples

§ & & 3 &

DTy Y
[
)
H

£ 2 B
i
|
r
i
R
i
T

Figure 7.5: Left: Time evolution of an initially flat bed to ripples (bottom to top);
Right: Spectral evolution of this same process. [6]

For any study across parameter space, it is always best to reduce the system as
much as possible with non-dimensionalization. In this case, non-dimensionalizing

this system leads to

ht = (hi - l)hz:c + hzzzz + 5(hi)zz - 5(h - h) (76)

where ¢ = avA™2p™* and § = Bu~3 A"z, corresponding to the time-scale T = e

and length-scale X = i(%)% Figure 7.5 shows snapshops of the numeric evolution

Figure 7.6: Left: Numerical simulation; Right: Experimental evolution [6]

of an initially flat bed perturbed by 10% random fluctuations. As one can see, this

profile does grow to a steady state with the required profile properties.

As another test of the dynamics, Figure 7.6 shows the side by side comparison
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of the numeric and experimental dynamic evolution of the interface profile. As one

can see, qualitatively the behavior is quite similar.
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Figure 7.7: Numerical Scaling of the steady state wavelength (N) as a function of €
and ¢ [6]

Another interesting, but unexpected result, given by this equation is the scaling
law for the steady state wavelength as a function of the dimensionless parameters
¢ and 0, see Figure 7.7. Understanding this point analytically is actually quite

nontrivial and will be further addressed in Chapter 8.
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7.5 Modeling Bifurcations

Simulations were also run to inspect the profile, h(z,t), evolution when the wave-
length chosen as the initial condition was different from the preferred choice of steady
state. It is easy to enter this type of initial condition into a numeric solver and watch
it evolve back to the correct steady solution. These dynamics have also been stud-

ied carefully in experiment, and therefore they offer another immediate place for

comparison.
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Figure 7.8: Left: Numeric simulation of evolution in time, Right: Experimental
evolution of sand ripple in time [6]

As one can see from Figure 7.8, the doubling transition can be modeled. However,
in many cases the model has a large decay of amplitude associated with this transition
[64] which is not seen in true experiments. The models’ ability to take ripples out
easier than it puts them back in is not understood. It may be a consequence of the
model itself, or perhaps it is a finite domain length effect? Nonetheless, it shows an

obvious limitation with need of further consideration.

7.6 2D Models, Experiments, and Future Work

As was stated previously, in the context of this problem, experiments and data run far
ahead of theory. While there is no fully developed 1D model, extensive experiments
have been done that look at 1D, 2D and 2D-skew driven ripple formation processes.

Obviously, the 2D systems are far more realistic for modeling nature. However, they
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are also far more complicated. Additional schematics, experimental pictures and a
few remarks about the 2D system can be found in the Appendix. These experiments

were the primary focus of [62].

While the 1D amplitude equation does provide a nice first approach to the prob-
lem, generalization into 2D is not obvious. In the case of the 2D experiments (which
were the focus of [62]), many secondary types of instabilities have been reported, see
Figure (7.9). Notice, in the 2D system instabilities are found as a function of both
frequency and amplitude. While beautiful to observe, these additional complexities

pose their own challenges to modeling.
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Figure 7.9: Experimental Stability Diagram in 2D, frequency vs amplitude

Consider the simple addition of a passive term into the second dimension such
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that 7.6 becomes:

he = (h2 — Dhay + hagae + 6(h2)ee — €(h — B) + hy, .

Unfortunately, this equation cannot provide the rich complexity of secondary insta-
bilities observed in the real physical system. One should actually not be surprised
that the addition of a passive term in y is not enough. The true coupling must be
taken into account much more carefully. Figure 7.10 shows a snapshot in time of a
2D simulation in response to a “forcing frequency” different from the initial condition
(a fixed wavelength skew to the z-axis, while the “drive” is along the z-axis). This
image demonstrates the only type of instability into the second dimension possible

for the given system as it changes shape.

Figure 7.10: Snapshop of numerical two dimensional ripple evolution under skew
drive
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Lie Prolongation and Wavelength

Selection

The wavelength selection process in non-linear systems can be quite complicated.
Therefore, Figure 7.7 presents an interesting challenge to try and understand an-
alytically. Clearly, in the asymptotic limit as 6 > 1 the steady state wavelength
converges to k., but as § decreases there is significant difference in the scaling law

for € versus the final wavelength.

In this problem, as has been seen, linear stability analysis fails to predict the
correct final wavelength. Further, the non-linear integrals required to transform the

full equation prove exceedingly tough. Therefore, a new approach is necessary.

A general approach to studying symmetries of differential equations has been
developed, see Olver [75]. Through this process one derives explicitly the infinitesimal
generators for the group action which transforms solutions to solutions. A novel idea
for the application of this algorithm is now presented in an attempt to understand
Figure 7.7. The advantage to this approach is the ease with which it can be expanded
to include parameters, as well as its ability to deal with non-linear terms without

any approximations or loss of terms.
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8.1 Selection and Interrupted Coarsening

As was mentioned previously, an interesting, but not expected, additional complex
behavior of this equation is found in the selected wavelength for a given (¢, §). For
linear theory this problem is clearly determined, simply find the maximum value of
k (i.e. kpqr) for the unstable band. For many nonlinear systems, one will see that
eventually the smallest positive value of &k (i.e. k) becomes the steady state. When
all values of k > 0 are positive, the system will find k,,,, first, and then coarsen in
time squeezing out one ripple at a time until the final state is one-half period of the

domain length.

In such systems, one can in many instances predict the scaling of how these
ripples will come together in time Politi [69], [70]. In some instances of nonlinear
systems, such as this one, the final selected wavelength is neither k, nor k.. Rather,
it starts out like a coarsening process and then stops at some intermediate value
k. < k < ks This process is known as interrupted coarsening. Figure 7.7 shows
that the final wavelength, as a function of €, for various values of § changes the
scaling dramatically. For the limit § > 1 it does converge to k... However, for

moderate values of §, it does not.

Interupted coarsening is not uncommon in many other amplitude equations. Be-
cause there is immediate access to this numeric data, this model provides an inter-

esting “toy model” to probe for an understanding of this phenomena.

8.2 Lie Prolongation Algorithm

The details of this algorithm, along with examples, are presented in Olver [75],
and details of this calculation for the ripple evolution equation can be found in the
Appendix. Here the outline will be layed for how this algorithm works in general

and the novel idea for applying it to non-linear wavelength selection.

77



Chapter 8. Lie Prolongation and Wavelength Selection
Given a scalar PDE of the form

Uy = f(x,t,u, Ugy Ugr,s ) y

one would like to calculate the group actions G, : (u; — wug) where u;, u, are
symmetry solutions of the given PDE. One must, of course, assume solutions exist.
Let the above PDE be defined as A. To do this calculation one then postulates
that the infinitesimal generator of this transformation, an element of the Lie algebra,

should have the form:
7 = ay(x,t,u)0; + az(x, t,u)0; + ¢z, t,u)d, .

Now, with the use of Lie’s prolongation method, one calculates the n-th order pro-
longation of ¥ where n corresponds to the highest degree derivative in the PDE. For
example:

pr(l)l_) =0+ ¢"0, + ¢t8ut .

The n-th order prolongation is then applied to the system A to arrive at the symme-
try equation in terms of the unknown coefficients. Using total derivatives (again see
Olver [75]) one expands these coefficients and impose the condition provided by A
(i.e. equate u; = f everywhere u, appears). This yields a system of ODEs to solve
by matching the coefficients, called the determining system. Once solved, it provides

the infinitesimal generator of the symmetries.

Integrating against the one parameter group (provided by the exponential map)
one transforms the infinitesimal generator (i.e. the element of the Lie algebra) to
the group action (i.e. similarity transformation) itself. In principle this approach
will always work to find symmetries (provided they exist), though in practice it can

become quite challenging to get through this procedure.
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8.3 Application to 1D Amplitude Equation

In the 1D amplitude equation, the interest is in the final wavelength as a function of
¢ and 6. Hence, the novel idea here is to expand this system with € and 0 considered
as independent continuous variables in addition to  aud f. Therefore, ultimately
one looks for the group action G : hy(z,t,€,0) — ha(z,t,€,0) where hy and ho are

two solutions to (7.6) as a function of € and 6.

This implies looking for a generator of the form:
T=ay(z,t,6,06)0; + as(z,t,€,0)0; + az(z,t,€,0)0. + ag(z,t,€,0)05 + ¢p(z,t,€,0)0,

where a;, 1 = 1,2,3,4 and ¢ are the unknown coeflicients left to find.
Upon applying the fourth order prolongation of ¥ onto (7.6) (i.e. pr%[A]) one

arrives at the symmetry equation

O = 267h R2, + ¢ (R — 1) — e — azh + 67 + 2ash2, +
4567 haghyzs + 20shshzs + 2007 hyyy + 266" %hy . (8.1)

The details of calculating ¢*- ¢****, substituting them into above, and equating

the coefficients are left as calculations for the Appendix.

While the solution to this system is beyond the scope of this manuscript, the
outline is now layed for how this calculation can be done. The hope is that after
solving this system one should be able to determine the similarity transformations
given by the group action. This would allow for a understanding of how a steady
state solution % scales as a function of the parameters ¢ and J. The only remaining

obstacle from here is actually solving this system.

Because there is a relation between h,,,, (height of ripple top) and A (wavelength),
set by the angle of repose, once these solution scalings are known one can deduce

the scaling analytically which are presented numerically in Figure 7.7
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This is a somewhat tedious calculation in general. Nonetheless, the potential to
use this algorithm in such a setting could provide very useful in a similar way for
many other problems. Further, if this type of calculation proved useful, the algorithm

for deriving these determining systems could be automated fairly easily.
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8.4 Conclusion

In conclusion, this work presents many new and interesting methods for addressing
the complexity of fluid-solid interactions and interfacial dynamics. In the context of
two physical systems, it has been shown averaging techniques, stochastic methods,
variational calculus, amplitude equations, and prolongations can be useful tools in

modeling and analyzing these systems.

Through the first two Sections of this work, models were developed to explain
the steady states, as well as some of the statistical properties of the dynamic flows.
Experimentally, the existence of steady states was proven. The mechanism of niean-
dering was found to be perturbations in flow rate. Analysis of fully developed stream
profiles showed the existence of a universal power-law scaling for the spectrum of
long-time ensemble averaged stream profiles. This power-law was confirmed both
experimentally and numerically. Consideration of the scaling between the length of
stream and the area between its symmetry line and stream center line gave a 3/4
power law, similar to that found for rivers by Hack [16|. Further, using rescaling
arguments this model was able to reduce to a system which shares many of the same
features of river systems, including the scaling of the second structure function for
stream curvature. This result suggests a possible explanation for the observed data
about real world rivers and a connection between erosive and non-erosive meandering

systems.

This work has opened the door to many future directions of study also. One
should go on to consider the limits with respect to both surface contact angle and
flow rates. The dynamic contact angle should be incorporated into the model to
understand temporal dynamics of meandering. Further, more studies should be

conducted to investigate the connections between erosive and non-erosive surfaces.

In the third Section of this work, focus shifted to another type of problem where
modeling from first principles becomes impossible. In this context an amplitude
equation was derived from conservation and symmetry considerations. It was shown

that such modeling can produce reasonable results. In deriving this model, the
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question of nonlinear wavelength selection became important. In closing this thesis,

a novel approach to studying such behavior was presented.

Throughout the third Section, again many open questions have been posed. Gen-
eralizations into the second dimension should now be considered. Further, the calcu-
lation set up in Chapter 8 for the determining system for the 1D amplitude equation
must be solved. If this calculation is shown to work, it has great potential to work

similarly in many other circumstances.

In closing, the ideas presented within this work give a solid foundation for many
years of future study, as well as nice advancements to a pair of complicated 100+

year old problems.
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Appendix A

Outline of the Braids Model

While it is not the intention of this thesis to reproduce every detail of the analysis
preformed on the braids model, the reader should be able to understand these under-
lying idea’s without having to depart from this text. Some of these ideas are relied
on heavily in the later derivations of meandering streams. For more explicit details

see [7, [8], [32].

U 1
idt_ +UVU = ;VP + gsin(a)é, + vV*U

To begin a model, start with the boundary layer approximation (BLA) parallel to
the plane along with the incompressibility condition V - u = 0. To begin reduction

on this system, make the following assumptions:

1. Stationary states have zero time derivatives, i.e. % =0
2. In steady state these exists a symmetry condition, i.e. p(z,y) = p(—z,y)
3. Transverse dependency of x-velocity is negligible, i.e. U(z,y) =~ U(z)

4. Downward flux conserved, i.e. U(z)A(z) = Q = constant

5. Contact angle is constant, i.e. Z—;’(iw) = Ftan(6)
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Appendix A. Outline of the Braids Model
Along with these five assumptions, also consider that to fairly good accuracy the free
surface profile at any cross-section in z can be described by a fourth order polynomial

of the form

p(z,y) = (W* — y*)(a —by?) .

At this point the parameters a and b can be found using conditions 1-5 above.

_ tan(0)
= 2u + bw? (A1)
15 (Q tan(f)u®

b = S (E - ) (A.2)

Additionally, with the use of this polynomial free surface approximation, one can
calculate the average force due to surface tension at each cross-section. In this
situation, the surface tension contributions are far larger than those of hydrostatic

pressure, hence this will allow calculation of the pressure term in 3.1. One finds that:

F(u,w)

i

/d JP@y) (e, y)dS (A3)
3bytan(f)w? + 4b%yw® . (A.4)

Substituting this information into (3.1), in component form the system becomes:

oU, , 02U,
UI% = gsin{a) —v 5,7 (A.5)

0 52U,
(pA)UzaUy = FlwU,)—-v 822y (pA) . (A.6)

Now using Lubrication theory one can average over z contributions approximating
the second derivatives in A equations and therefore reducing the system to coupled
ODEs. Lubrication theory is valid when one length scale is much smaller than the
others in a fluid problem. In this case the height of the stream is small compared to

length or width, therefore approximate the z component of velocity such that:
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Appendix A. Outline of the Braids Model
1. No slip is satisfied at substrate boundary

2. Shear stress is zero on free surface boundary

Additionally, enforce the average (i.e %fop U.(z)dz = U,). With this, A becomes:

dU, Uy
UI£ = gsin(a) —3v (A7)
dz Pivg
d dw U, dw
Az (Un) = F(w,Us) —v gng(pA) : (A-8)
Now, non-dimensionalizing these equations, one arrives at
(u-w') = F(u,w)—muwu' (A.9)
u-u = 1—mutw? (A.10)
where
2,0
Hl — BQ/) l/(g;ln(a)) (All)
Y
5,7 : 4
m — 2@ V(gfm(a) ) (A12)
Y

Further, solution analysis may be done to determine critical points, look at lin-
earization around these points, and determine the associated eigenvalue equation.
This information may then be used to assess the solution stability and analyze the

bifurcation diagram of the system.

For linearization conducted about the constant downstream velocity and constant

stream width, the system has two critical points corresponding to:

I; w?tan 6
= A.13
HHU 3 ( )
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Appendix A. Outline of the Braids Model

2
I __w tanH' (A.14)
HIIU 15

It can be shown however that equation (A.14) leads to instability. Thus, from
(A.13) with IIy, for the stable critical point one has

u, = tan(6)
GlL (A.15)

_ tan(6)
We = 4/ Tpud -

Consider linearization near the stable critical

U = U+ uyexp(Ay)
we = w,+ wyexp(Ay)

where u; and w; are small.

Now, to determine the eigenvalues define

1 [ M 1 3 m 1
. = — 15— —5tand| | 15— Al
F, T [ 51_[2 o 5tan ] { I, v, +tan#d ’ (A.16)
. = 1 —Thubw? (A.17)

where F, is the non-dimensionalized surface tension force in terms of F,, G,, and

their derivatives. The eigenvalue problem can be formulated as

(ueA? — g—i: + 4llu?w?i) —g%: —l
det ~0. (A.18)

To find the eigenvalues implies solving a cubic equation in A.

dG.,
du,

dF

dw,

dG, dF dG, dF dG,.
du, B

w2 A3+ (A b w? — ue——) A% — (e — + 4T uw?)

c e

The real part of all A is negative for all parameter values. A pair of complex conjugate
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Appendix A. Outline of the Braids Model

eigenvalues corresponds to a solution with oscillating width, ¢.e. braiding. After
equation (A.19) is solved numerically, the braid length can be determined as 27 /I'mA.
When the braid length goes to infinity, i.e., I'mA — 0, the stream approaches the

rivulet solution.
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Appendix B

Variational Methods

In this section the variational derivative is derived which is used in Sections 3.3 and
6.1. Here the thesis strays from the standard notation. Let (-) denote the inner
product here. Given a functional of the form: F(p(r)] = [ f(r, p(r}, Vp(r))dr , with

p vanishing at the boundaries of r the functional derivative can be written

(OFlpl,¢) =4 [f(r,p+e,Vp+eVe)dr| (B.1)
=/ (%§¢> + 2L V¢) dr (B.2)

= [ o+ V- (&Ko) - (V- %) 0| ar (B.3)

=J %o (V- 3&)¢] ar (B.4)

(v ) o

where ¢ € C! is an arbitrary function such that, in the third line explicitly, ¢ = 0 is

assumed at the integration boundaries. Thus,

0F _0f . 0f
Sp  Op oVp

This is for the particular case when the functional depends on the function p(r)

and its first derivative d’;—(;). Gradient notation was used because the generalization
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Appendix B. Variational Methods
to r = (ry,19,13) follows immediately. For a more detailed review with higher order
contributions and mulit-variable vector functions a fundamental reference is Methods

of Mathematical Physics, [76].
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Appendix C

Spatial and Temporal Instabilities

In this section, the thesis makes a digression to define some notation and the basic
approach taken for performing stability analysis. Spatial stability analysis is straight
forward. These systems are ODEs and so it is enough to find the eigenvalues and
look at real and imaginary parts, as is the standard technique in any dynamical

systems book (for example Perko [77]).

To consider temporal stability is also quite standard. However, notation, and
word choices, can make it appear different from book to book. For current purposes
the following conventions will be used and demonstrated via example:

Consider the forward/backward Helmholtz equation :
U = Ugpe T U .

This problem can be posed as u; = Pu where P = D2 £ 1 is defined as the symbol

of P. Further, to consider solutions of the form u(z,t) = a(t)e?** implies solving an

ODE for the transition function for a(t):



Appendix C. Spatial and Temporal Instabilities
In this example, P(ik) = —k2 + 1. If one assumes a(0) = 1, this implies

a(t) = eft = u(z,t) = Ptk

Temporal stability is found by investigation of ef, namely if R(P(ik)) < 0 V&,
which corresponds indirectly to finite energy. Hence for these simple Helmholtz

(—k2£1)t

examples, one can see depending on the sign, they give ¢ , o the plus choice

is unbounded or unstable.
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Appendix D

Stochastic PDEs

In this section, the basic solution techniques and relevant references which go with
Section 5.2 are outlined. The starting point of this section will be the stochastic heat

equation under Brownian motion:

u(z,0) = f(z) .

The equivalent Ito’s representation of this equation as a stochastic PDE is,
du = ctgdt + dn

u(z,0) = f(z) .

It is well-known, see for example Oksendal [46], that the solution for n = 0 can be

written in the form

u(t,x) = E[f(B)]

where the E denotes the expectation in the probability space (2, F,P) where Q is
a set of probabilities, F a sigma algebra of sets in 2 and P the law of Brownian

motion B;. Here the initial condition f(z) is evolved with the classical heat kernel.
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Appendix D. Stochastic PDEs
This obviously leaves questions of existence and uniqueness. For detailed proofs

on these subjects, (see Oksendal [46] Chapter 9).

If the operator A is the generator of an Ito process X;, then similarly
u(t, z) = E[f(X,)]

solves the initial value problem

uw(0,z) = f(z). (D.2)

Now, consider the following generalization of this problem

w = Au-—qu (D.3)
u0.2) = f(@) (D.4)

where A is a linear operator on u, ¢ is lower bounded, and again the problem is
stochastic implicitly. In this case, the problem can be solved by using the Feynman-
Kac formula, which can be understood as a generalization of the integration factor.

An outline of the proof is as follows. Let Y; = f(X}), Z; = e~ Jo a(Xs)ds Then

or

du = Au — qu

where u = Y,Z, because dE[Y;] = E[AY,]. Hence, with u = E[Y,Z,] this gives the
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Appendix D. Stochastic PDEs

Feynman-Kac formula:
u(t,z) = Bl aX0% f(x,)]

This proof is copied from Oksendal [46] Chapter 8. With this as a foundation, now

consider the downstream equation derived in section 5.2

du du

— —_ = =T. D7
dt+udx Vigy (D.7)

What is nice here is that this equation is actually just the equation solved previously
in disguise.

Consider the Cole-Hopf transformation

u= AL in(w) = -2 (D.8)
or w

where v = % Then

-1 1
Uy = —/\(—w—Qwth + wat) (Dg)
-1 1
: = —AN—uw+ —w,, D.10
u (w2t tu) (0.10)
2 , 3 1
Ugy = —/\(Ewr 3 WeWaz + Ewmz) . (D.11)

Substituting (D.9)-(D.11) into (D.7) results in

A A —\? A2
(ﬁwrwt - u_)w::t) + (mw:wz: + %wnz) =T
With a little rearrangement
A A A0 A
)2wz(wt §w:c:c) Ea( t §wzz) =T
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Appendix D. Stochastic PDEs
Thus, if u satisfies (D.7) then w satisfies

Lz __ D.12
ot 2 0x? A ( )
This is the Feynman-Kac equation which is stochastic since I' has noise. With this,

one can then write the solution as
w(z,t) = B(f(z;)e”x o=y

Now combining this with (D.8)

J 1 e Tt
u(z,t :—/\——/e 4 dy)e™x Jo zsds) |
(1) 52 \/ﬁ( fy)dy) )

Again, for a rigorous proof see Woyczynski [45] Chapter 3. With this solution for
the downstream equation now outlined consider the cross-stream equation. It will
be necessary to generalize the previous ideas further to solve this equation. To solve
the transverse equation uses the method of Cameron-Martin [78]. Consider

dv 10)

a-l—(u

dv duy
dz u?

) )’U = VVgr = 0 (D13)

u
where ¢ = (—;’7) Note the terms multiplying v and v, are stochastic since the noise
generated in the u equation is now coupled multiplicatively in v. The transverse
equation can be written as

v
dz?

d d
—v-l—a—v—ﬂv—y
dz

0
dt

where o = (u — %) and § = (%) Ito’s formulation of this equation as a stochastic
PDE is

dv d*v
du = (—a% + Bv + 1/@> dt .

As has been shown previously, the term involving /3 is just a Feynman-Kac type term

which can be accounted for with the generalized integration factor. This mean that
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Appendix D. Stochastic PDEs

the solution can be written as
v(z,t) = E[f(Xe)]
where X, is the Ito process defined by the equation
dX; = a(X;)dt + /vdB; .
By Cameron-Martin the solution can then be written as
v(z,t) = B(f(By)edo *(B)aBs—3 5 o(Bs)?dsy |
Combining contributions of terms of the form of Cameron-Martin and Feynman-Kac

gives:

'U(.T,I‘,) _ E(f(It)efot olzs)dzs—3 Ota(Is)2dS—fotﬂ(Is)ds)

where z; = B, is Brownian motion. For a rigorous analysis of this equation, including

uniqueness results and derivation of the invariant measure, see Birnir [33].
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Appendix E

Details of Prolongation Calculation

The details of the prolongation algorithm are rather straight forward though incredi-
bly tedious. The essence lies in expanding out ¢* — ¢™*** and substituting them back
into the symmetry equation (8.1). To do this involves taking derivatives and chain
rules repeatedly. In reality, at this level of computation one should write a symbolic
program to save time and energy. However, the necessary time and motivation hinge
on showing it is worth doing i.e.that it can succeed in answering some otherwise

difficult question such as that posed in by Figure (7.7).

For simplicity,consider transformations of steady state solutions only, after all

this enough for the question posed by Figure 7.7. The equation becomes
(U2 — V) Upy — Upgzr — €t + 8(u2)gz =0 . (E.1)

Hence upon applying the fourth prolongation onto (E.1), as was done in Chapter 8

but now without the time-derivative, one arrives at

0= 2¢"h h% + ¢"(h2 — 1) — €¢p — ash + ¢™™* + 2a4h> +

466" hghpss + 20shohoss + 206 hasy + 206%°h,, . (E.2)

In this calculation, there are three independent variables and one dependent variable.
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Appendix E. Details of Prolongation Calculation

This implies the coefficients in equation (E.2) are

¢I = ¢y — ¢uu1 — Ug (alz + aluuz) - ue(aiiz + a3uuz> - ud(a4m + a4uuz> (ES)

dfw = ¢Ia: + Ug <2¢Iu ~ Qlgz — Q3uz — a4ux) +
ui((buu — 201uz — Q3yy — a4uu) + “zz("zalz - (LSuallu)
Upzz(—3a1y) ~ ’ILi(Lluu — Uelzzr — Uze(2a3z) — Uz (2a3,,)

—2Upsay — Uslazy — UpU§Uayr — Upellp A3y — UpslzQay (E.4)

T = Przr + Uz (30200 — Crzzr — Qsuzs — Qduzz) T+
Uz (20u — 301z — 203us — 204uz) + U2 (BPuuz ~ 301uzs — 203uus — 20uyuz) +
Uz lUaz (20uy — 1ue — 33uu — 304un) + US((Pune — 301uuz — A3uun — Gauun)) +
Uzar(—301z — Gzu — Q) + U (—3010) + Uslpar (—4a14) + Vs (—6a14u) +
U (— Ay ) Uer (—30322) + Ue( ~A3g5z) + Ugle(—2a3550) + Ugze(—3as;) +
Uplige (—4@30y) + UppUe(—a32u) + uiue(_aiizuu) + Upzs(—34z) + Uzs{—304zz) +
Ugstiz(—40s0u) + Us(Gazzs) + Usta(~20s00m) + Uzsls(—Qar) + USUG(—Qizun) +
Uz Uze(@3u) T Uslaze(—203,) + UUoe(— Q3uu) + USULs(~Cgun) +

uzzuzé(_a4u) + Uzuza:é(—204u) (ES)
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Appendix E. Details of Prolongation Calculation
qSIIII —

bezze + Uz(4Przzu — Olzzzz ~ O3zzeu — Gazzzu) +

Uze (5Pzeu — 401222 — 30320y — 3azzn) + U2 (6@rpuy — 4012200 — 3W3zzun — 30dszun) +
Uzez (200u — 60122 ~ 30350 — 30azu)) + UzgUs (10dzuy — 1801200 — 983z0n — Vazun) +
U (4B — 6@ 1zzun — 33zuuy — Szuun) + Uy 20wy — 120120 — 3300 — 30auu) +
Uplzzg (20w — 160120 — 40300 — 404u) + UWotang (5Buuy — 2401200 — 683u0n — 6Qanun) +
Us (Punn — 401 2uun — Q3usn — Cduna) + Usgza(—4015 — A3y — Ggu) + Usollzze(—10a1,) +
+u2 U (—15a10y) + UgUzzza(—5010) + UlUzer(—10a1yy) + Udtze(—10a14,) +

s (= G1uuun) + Uezz(—60322) + Uez(—4320z) + UeaUe (—903zzu) + Ue(—a3zzes) +

Utz (—33zazu) + Uste(—3szen) + Uz (—33szua) + Uszre(—4a30) + Uzzctiz (—~9a3zu) +
Up U (—5a300) + Usets(—603zuu) + Uszale (—a3zu) + UsUizUe(—3aszun) +

U (—Q3puun) + Uszzs(—404z) + Uzes(—604zz) + Usestia(—90aus) + Uos(—404aes) +
Ul (—0zon) + Usslizs(—64rn) + Uzstif(—60arun) + Us(—azraz) + UsUe(—3C1uses)
+FUslr(—Buzzn) + UsUs (—30uzzun) + Uorrls(—Aazu) + Uzlizztts(—3azun) +
U5 (— Qazuun) F UsarUoc(—asu) + UszUore(—3asu) + UsglUoe(—3e0) +

Utz te(—33un) + Uglizze(—303u) + U tipze(—3a3uy) + Utz (— 3w ) +

Uz Uz las(—30sun) + UaUszs(—3auu) + UStz6(—Cauun) + UszrUes(—aan) +

uzz“zz&(_3a4u) + “171'1116(_3(1411.) (Eﬁ)

Substituting these coefficients into (E.2) one must then impose the constraint given
by the equation itself; namely solving for u,,,, in (E.1) and replacing it by the right
hand side everywhere it appears in (E.2). Doing this enforces the solution itself. Now,
each coefficient in (E.2) (such as u, or u,,) give a system of coefficient equations for

the infinitesimal generator.

With the solution to this system, one can then obtain the symmetry generator for
the Lie algebra. Then integrating, one arrive at the group actions themselves. These

group actions represent the symmetry transformations which take solutions for a
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Appendix E. Details of Prolongation Calculation

given (z,€,d) to other solutions for different (z,€',4’). As can hopefully be seen, it is
also quite straight forward to add the temporal dependence back into the calculation,
though this adds another independent variable and makes the calculations even more

robust.

In concluding this section, while the work on this subject is still relatively new
and unfinished, the idea is promising and the general approach applicable to any
non-linear wavelength selection problem. Hence, an outline is presented for future

readers interested in continuing this research.
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Appendix F

Photos of Experiments

F.1 Meandering System

Figure F.1: The large meandering experiment set up in the Mechanical Engineering
lab at the University of New Mexico
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Appendix F. Photos of Experiments

F.2 1D and 2D Sand Ripple Systems

Figure F.3: Linear System [6]

While the experimental aspects and generalizations are not the work of this thesis,
these results motivate the current work. Therefore, this section gives the reader a

feeling for some of that work.

In all instances the idea is similar. Drive a bed of initially flat sand with a
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Appendix F. Photos of Experiments

Figure F.4: The 2D Ripple Experiment [6]

fixed wavelength and amplitude and look at the evolution and final wavelength of
the steady state solution. Also, for dynamics, studies were conducted observing

transitions from one wavelength to another.

As is discussed in Section 7.6, there are several types of secondary instabilities
which can occur in 2D. Experimental demonstrations of these instabilities are also
presented to give the reader a picture of what this model must try to incorporate in

the future.
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Appendix F. Photos of Experiments

Figure F.5: The Bulging Instability: time evolution left to right, evolution of spec-
trum below [6]

Figure F.6: Pearling Instability [6]

Figure F.7: Doubling Instability: time evolution left to right, evolution of spectrum
below [6]
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Appendix F. Photos of Experiments

Figure F.8: Ripples driven at a skew angle to length: time evolution left to right and
top to bottom [6]
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Glossary

Mathematical Variables

U : 2D fluid velocity vector (components = (u,v)T)

: polynomial free surface profile

|=ae}

:Section 2. deviation from stream symmetry line to the center
line

Section 3. Interface profile between sand and fluid.

P : Pressure

é; . unit normal vector in direction ¢

H : stochastic distribution (components n;, 1 = {z,y})

X : Stochastic Process (also V3, Z; )

Physical Constants

[ : Average stream height
w : stream width
g : gravity
v : kinematic viscosity
p : fluid density

v : coefficient of surface tension

Physical Variables

@ : volume flow rate
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Glossary

a : inclination angle
# : contact angle
¥ : angle between stream vector and z -axis

o : angle of repose; angle of a sandpile before it avalanches

Standard Conventions

< (+) > : ensemble average of (-)

E(-) : Expectation value of (-)
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