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ABSTRACT OF DISSERTATION 

UNBIASED RATIO ESTIMATION FOR FINITE POPULATIONS 

In many sample surveys from finite populations, the value of an auxiliary vari­

able x is available (at least in aggregate form) for the entire finite population, and 

is correlated with the study variable of interest y. This auxiliary variable can be 

used to improve the precision of the estimator of the y-total. 

One method of improving precision is through finite population ratio estima­

tion, which has been extensively discussed in the literature, especially under simple 

random sampling without replacement (SI). Hartley and Ross (1954) obtained an 

exactly unbiased estimator for the finite population ratio under SI, and hence an 

unbiased ratio estimator of the y-total. Other authors have obtained an almost 

unbiased estimator for the finite population ratio, or have considered alternative 

sampling designs to obtain an unbiased or an almost unbiased estimator for this 

parameter. 

In this work, the Hartley and Ross (1954) estimator is generalized to unequal-

probability sampling designs, under the condition of measurability (strictly positive 

second-order inclusion probabilities). This results in generalized Hartley and Ross 

(GHR) estimation. Two distinct versions are considered. 

The first builds on the Horvitz and Thompson (1952) estimator. This GHR 

estimator is unbiased and an exact variance and an unbiased estimator for the exact 

variance are obtained. The computations for the exact variance and the unbiased 

variance estimator of the GHR require higher-order inclusion probabilities (up to 

fourth order), which are not easily obtained in general. To overcome this problem, 

two methods of approximation are given. 
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The GHR estimator is shown to be mean square consistent under mild condi­

tions. These conditions are met, for example, by simple random sampling without 

replacement, simple random cluster sampling, and stratified sampling designs. 

Central limit theorems (CLTs) are established for GHR under the SI design and 

under the Poisson sampling (PO) design. The asymptotic variance and a consistent 

estimator for the asymptotic variance are given under both designs. 

The GHR is evaluated under a super-population model, and it is shown that 

the Godambe and Joshi (1965) lower bound is attainable for GHR under SI and PO 

sampling designs. The GHR is compared to other estimators analytically and via 

simulation. 

The second version of GHR is derived using a Hansen and Hurwitz (1943) type 

estimator for with-replacement sampling. This estimator is unbiased. This estimator 

is discussed under two different asymptotic scenarios, when the population size 

N is fixed and number of independent draws m tends to infinity and when both 

m and N tend to infinity. Under each of the two CLT is established and 

the asymptotic variance and a consistent estimator for the variance are given. The 

Godambe and Joshi (1965) lower bound is shown to be attainable for the second 

case. 

An important problem in applications is estimation of the population total ty 

under a stratified sampling design when stratum rc-totals are known, particularly in 

the case of small stratum sizes. If biased estimators are used to estimate within-

stratum population y-totals, the bias may accumulate across strata. The unbiased 

GHR estimators can be used effectively in dealing with such situations by introduc­

ing a separate GHR estimator, analogous to the classic separate ratio estimator of 

survey statistics. A CLT is proven for the separate GHR estimator under a strat­

ified sampling design when the stratum sizes are fixed and the number of strata 
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tends to infinity. Simulation results show that GHR under different sampling de­

signs gives excellent results compared to other almost unbiased estimators proposed 

in the literature, even when the number of strata is not large. 

Jehad Al-Jararha 
Department of Statistics 
Colorado State University 
Fort Collins, Colorado 80523 
Spring 2008 
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Chapter 1 

INTRODUCTION 

1.1 Sampling Designs 

In surveys of finite populations, auxiliary information is often available for ev­

ery element in the population. Ratio estimators use variables that are correlated 

with the variable of interest. Population registers in some countries contain age and 

taxable income for all residents. Studies of labor force characteristics or household 

expenditure patterns might benefit from these auxiliary data. Geographic infor- , 

mation systems may contain measurements derived from satellite imagery for all 

locations. These spatially explicit data can be used in augmenting measurements 

obtained in agricultural surveys or natural resource inventories. 

Consider a finite population UN consisting of N units {1,2,... ,k,...,N}. A 

sample, denoted by s, is a subset from the population. Let us define the following 

concepts. 

Definition 1.1.1 Sampling design, p^ (•), is a function mapping the set of all sub­

sets of [/jv to [0, 1] , where p^ (S) is the probability of selecting the sample s. 

Example 1.1.1 A census is a sampling design with 

P"^ = { J; otherwise. (L1> 

Definition 1.1.2 First-order inclusion probability, n^i, is the probability that a 

sample s will include the ith element under the sampling design PN (•) '• 

Km = Pr{i<E s) = Y^PN (S) > 
sBi 
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where the sum is taken over all subsets s of U^. 

Definition 1.1.3 A probability sampling design is a sampling design such that 

irNi > 0, V i e UN. 

Definition 1.1.4 Second-order inclusion probability, itNij, is the probability that a 

sample ,s will include both ith, j t h elements under the sampling design PN (•), 

nmj = Pr (ij e s) = Y^PN (S) • 
sBij 

Remark 1.1.1 In similar manner, we can define third-order, fourth-order, and 

higher-order inclusion probabilities. 

Remark 1.1.2 It follows directly that the inclusion probability is invariant to per­

mutations of the indices in the subscript, and that the order is reduced if any indices 

are repeated. For example, irNijikkij = nNljhi = nNjkii-

Remark 1.1.3 In developing an asymptotic theory, we consider sequences of finite 

populations and associated sampling designs as N —> oo. Therefore, the first-order 

inclusion probabilities ixm, second-order inclusion probabilities TTNIJ, and higher-

order inclusion probabilities are actually sequences depending on N. For the sake of 

simplicity in notations, we will drop the subscript N. 

Definition 1.1.5 A measurable sampling design is a sampling design such that 

iTij > 0, Vij e U. 

Definition 1.1.6 In general, a mth-order measurable sampling design is a sampling 

design such that all m^-order inclusion probabilities are strictly positive. 

In the following examples, we will discuss different sampling designs. 
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Example 1.1.2 Simple random sampling without replacement design (SI) (e.g. 

( N V 1 

Sarndal et al. (1992)) assigns equal probability I 1 to every subset of U that 

contains exactly n distinct elements. SI can be implemented by drawing the first 

element from a uniform distribution on all N elements. Discard the first element 

and draw the second element from a uniform distribution on the remaining N — 1 

elements. Discard the second element and continue this process to select the nth 

element from a uniform distribution on the last N — n + 1 elements. 

Example 1.1.3 With-replacement sampling design (WR). Suppose that pk = 

Pr (selecting element k on a single draw) for A: = l , . . . , iV, and Y^keu Pk = •*•• 

The WR design is implemented by using the p^s to draw a first element. The 

selected element is replaced and the process is repeated until the mth element is 

drawn. The sample size in this case is n < m. 

Definition 1.1.7 The sample membership indicators are 

_ J 1 if i E s 
Hies} - j 0 xi#s. 

Example 1.1.4 Poisson sampling design, (PO). Let 7Tj be the first-order inclu­

sion probability for the ith element i — 1 , . . . , N. Under PO, I{ies} are independent 

Bernoulli random variables with 

Pr (l{ies} = l) = n-

To draw a random sample using the Poisson sampling design let Ui,...,u^ be 

independent Uniform(0, 1) random numbers; if Ui < 7Tj then the element i is selected 

(Sarndal et al. (1992)). 

Remark 1.1.4 In the Poisson sampling design, 

• The sample size ns — ^2U 7{,;6.,} is random with mean Epo (ns) = 

J2u EPO {Hies}) = Y,u ^i a n d variance varPO (n,) = J2u ^ i1 ~ ni) • 
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• Since the indicators are independent, 7rj?- = 7Tj7r, for i ^ j . In a similar manner, 

we can define higher-order inclusion probabilities. 

Example 1.1.5 Probability proportional-to-size sampling with-replacement design 

(pps). For given positive numbers x%,..., .xjv, define 

Pi = ^ * i i = l,...,N. 

Draw a random sample with the same arguments as in the with-replacement sam­

pling design of Example 1.1.3. 

Example 1.1.6 Probability proportional-to-size sampling without-replacement de­

sign (irps). For given positive numbers x\,...,%, the first-order inclusion proba­

bilities 7Tj are strictly proportional to x, (Sarndal et al. (1992)). Brewer and Hanif 

(1983) described a procedure to draw a 7rps sample of size n — 2. Define tx — 

J2u xk, Ck = xk (tx - xk) /tx (tx - 2xk), pk = cfc/ Ylu ck a n d assume xfe < tx/2. 

Use the set of probabilities pk {k = 1 , . . . , N) to draw a first element. Without 

replacing the first drawn element (say k\), give the element / the probability 

Pl\k! = Xl/ (tx - Xi) 

of being selected in the second draw. According to this scheme, 

7Tj = 2xi/tx for k = 1 , . . . , N 

and for i ^ j 

Remark 1.1.5 For sample size n > 2, SAS proc surveyselect uses a method due 

to Hanurav (1967) and Vijayan (1968) to draw a 7rps sample. The procedure also 

produces the first-order and second-order inclusion probabilities. 
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Example 1.1.7 Stratified sampling design (ST). The finite population Ufi = 

{ 1 , . . . , N} is divided into H disjoint sub-populations, U = U^=1Uh. For h = 1 , . . . , H 

draw a probability sample s/, from Uh according to a design p/i (•), where the selec­

tion in one stratum is independent of the selections in all other strata, (Sarndal et al. 

(1992)). 

Example 1.1.8 Simple random cluster sampling (SIC). The finite population UN = 

{ 1 , . . . , N} is divided into JV7 clusters, denoted by U\,..., U^j- The set of all clusters 

is a new finite population, denoted by U, — { 1 , . . . , N,} . A sample sr of fixed size n, 

is selected from Ut via SI sampling design and all elements in each selected cluster 

are observed, (Sarndal et al. (1992)). 

1.2 Unbiased Estimation of Finite Population Total 

One of the key interests in finite population sampling is to estimate the pop­

ulation total, ty = YlieuVi- ^ o r e a c n * G si a value j/j is observed for element i. 

Definition 1.2.1 The Horvitz-Thompson (HT) estimator (Horvitz and Thompson 

1952) for the population total ty, is defined by 

ty*= J2 ~ = £ -h^s}- (i-2) 
i€s l ieU % 

Remark 1.2.1 The Horvitz-Thompson estimator is an unbiased estimator for the 

population total ty under any probability sampling design since 

Ep [iyv] = ^ 2 ~EP iki^}) = Y l 7~ni = lv> 
ieu ni ieu n* 

where Ep [•] is the average over all possible samples under the design. Also, the 

variance of HT with respect to the sampling design is 

varp(ty7r) = X]-f"A^' (°) 
ijeu l i 
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where Ay = covp (/{ies}) I{j€s}) = ^ij ~ ^i^j- For a measurable sampling design, an 

unbiased estimator of var (tyit) is 

Vi Vj Ai_ 
* ™ P ( V ) = £ ^ ^ . (1.4) 

few* 

Under the with-replacement sampling design of example 1.1.3, 

7rfe = 1 - ( l - p f c ) m , 

which can be used in constructing the HT estimator. An alternative unbiased es­

timator can also be derived. Let /Cj denote the element selected in the ith draw, 

i = 1 , . . . , m. Define the indicator I{Ki=k) to be one if the kth element is selected in 

the ith draw, and zero otherwise. 

Definition 1.2.2 The Hansen and Hurwitz (1943) (HH) estimator for the popula­

tion total ty is defined by 

ttw = — 2_^ 2^ —1{ K,=k}-
i= l keU ^K 

Remark 1.2.2 The Hansen-Hurwitz estimator is unbiased for the population total 

ty, since 

Furthermore, note that because the sampling is done with replacement, the random 

variables Ylkeu ^K^{Ki=k) are independent and identically distributed (iid). See, for 

example, Section 2.9 of Sarndal et al. (1992). It follows easily that 

arp (iHH) = — V ( — - ty ) pfc, var 
keu 

and an unbiased estimator for this variance is 

2 

var„ 
1 V ^ (VKi 

(*«»)= ( n E \--tBH) • (1-5) 

file:///--tBH
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Since tun is the sample mean of iid random variables with finite variance, it 

follows from a standard CLT (Casella and Berger (2002) p.236) that 

tHH — ty £ /n -, -> 
(0, 1) as m —> oo. ^Jvarp {IUH) 

Remark 1.2.3 (with-replacement approximation). 

If pk is small then 

•Kk = 1 - (1 -pk)
m = mpk, 

so that the HT estimator under WR design becomes 

TO 

/] —I{k€s} = /] ->J^{«.=fc}' (L 6) 
keu k keu yk

 J=I 

since Pr (YALI h^=k} > l) is very small for pk small. But (1.6) is the HH estimator, 

so that HT and HH are expected to behave similarly under WR designs with small 

Pk-

It is common in practice to extend this approximation to without-replacement 

designs. Define pk = nk/m and "pretend" that the sample was drawn with re­

placement with these probabilities and with m — n. equation (1.5) then provides a 

convenient (approximate) variance estimator, implemented in SAS and other survey 

software. 

Remark 1.2.4 It is easy to establish asymptotic results when the Hansen-Hurwitz 

estimator is used, since under sampling with-replacement design the indicators 

I{Ki=k) are independent random variables, due to the fact that we have indepen­

dent draws. However, the asymptotic are not easy when a without-replacement 

sampling design and the Horvitz-Thompson estimator is used. The difficulties come 

from the fact that the indicator functions I{ies} are dependent random variables for 



most designs. An exception is Poisson sampling, under which I{i<=s} are indepen­

dent Bernoulli random variables each with with success probability 7Tj. A special 

case of Poisson sampling is the Bernoulli sampling design, with 7Tj = n € (0, 1) . 

Central limit theory for Poisson sampling has been established in Hajek (1960), and 

extended to central limit theory for SI in the same work. Additional results and 

references will be discussed later in this dissertation. 

Up to this point, the only randomness that has been discussed is that introduced 

through the sampling design; in particular, the yk values have been regarded as fixed, 

real numbers, not as random variables. To study further the properties of estimators, 

it is useful to introduce a probabilistic model for the y^s. This model is referred to 

as a superpopulation model, and commonly denoted by £. Suppose that X\,..., XN 

are known auxiliary vector values. Assume the relationship between yk and Xk is 

given by 

£ : yk = X'kf3 + ek (1.7) 

where E^ (ek) — 0, E$ (el) — o\ and for k •£ I E^ (t^i) — 0 where the expec­

tation E$ (•) is the average over all realizations from the superpopulation model. If 

ty is an estimator for ty, the estimation error iy — ty can be examined jointly under 

the model £ and the sampling design p(-). The anticipated variance (Sarndal et al. 

(1992)) of iy - ty is 

E^Ej, (ty - ty) - [E^Ej, (ty - ty)] . 

If E^Ep (ty — ty) = 0, the anticipated variance is 

E^Ep 

Result 1.2.1 Godambe and Joshi lower bound (GJLB). Under the model (1.7), if 

E^Ep (ty — ty) = 0 

[ty ty) 



9 

then 

EiEp{ty-ty)
2>J2(-^-l)al 

keu ^ k ' 

where ty is any estimator of the population parameter ty (Godambe and Joshi 

(1965)). 

1.3 Estimation of a Population Ratio 

In many survey applications, it is of interest to estimate the population ratio 

Example 1.3.1 Suppose the population consists of agricultural fields of different 

sizes. Let 

2/i = bushels of grain harvested in field i 

Xi = acreage of field % 

Therefore, we are interested in yield, which is the population ratio 9 — tyt~
l = 

bushels per acre. 

Example 1.3.2 The goal of studies of labor force is to estimate the employment 

rate 
ty number of employed persons 

tx number of persons in labor force 

The availability of auxiliary information can vary from population to popula­

tion. Consider the following situations: 

available only for i G s. 

• Aux\ : available only for i G s and XUN is known. 
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available only for i G s, and xyh is known for stratum h 

1,...,H where U = l)"=1Uh. 

• Aux* ', Xi QXG known for all % £ [/. 

Note that if >luxj holds the so does Auxk, k < j . Under Aux\, define 9naive 

ty„t~l as an estimator for 9. This is clearly an unbiased estimator for #, with 

varp (§naive) = ^J2 ~~^y (L8) 

This estimator is known to be relatively inefficient, in general. 

Under AUXQ, define the simple ratio estimator 

0 = i*L = | £ S i | L . (1.9) 

The estimator 9 is considered one of the most important estimators for the 

population ratio. This estimator is biased since it is a nonlinear function of the 

unbiased estimators iyv, ixv. It is often impossible to find exact bias or exact variance 

for this estimator. However, this estimator is asymptotically unbiased. Under a 

general sampling design, the properties of this estimator will be discussed. When 

this estimator is used in a separate ratio estimator under stratified sampling, the 

bias can accumulate, even for moderate numbers of strata. The estimator can then 

give very poor results as we will see in Section 3.4. 

To study the asymptotic properties of 9, linearize 8 by first order Taylor expan­

sion, 

a — yv 

ty 
. K-ylr -y, , 2 

= h + Lft -t)-hL(i -t) 
T \byir Vy) 2 y>xir ^x) 

= constant+ - ^ ( y i - f e i ) ^ ^ . (1.10) 
x ieu * 

file:///byir
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Therefore, the variance of 9 is given by 

var„ 
i,je{/ 

where A^ = 7r̂  — 7 1 ^ . Note that (1.11) should be smaller than (1.8) if Oxi explains 

some of the variation in y^. For a measurable sampling design, an approximately 

unbiased estimator for varp [9 ) is 

varp (9 
X7r i,j€s 

This estimator can be shown to be consistent for the true variance under fairly mild 

conditions on the design, the Xj's and j/j's. 

1.3.1 Bias of 9 

In order to find the bias for 9, expand 9 to second order by Taylor expansion, 

~p [txir — tx) + I -̂ 2" — , 1 , (tyir "y) ,2 I CT x) ' \ ±2 I v"E7r ^"/ vj/7r "3/J 
^x ^x 

1 „ 1 / X ,3 1 {txir tx) 
x / 

= = " ' T~ y'yir *y) ~Pz [^xir "x) I 7^ I ^XTT ^xj \ J/T !// 

Then the bias of 9 is approximated by 

Bias E(e-e\ 
1 r ~ , t. 

tl -varp 
lx 

K^xir) 

ty covp (txlT, ty7r) y/varP (£CT) varp (tyiT) ty vaTp (^) 

bxly + x \jvarp (4,r) varp (iy7r) 

{cvp(ix1x)) 
Ptxnityir^'^P \ XTTJ CVp [tyir) 

CVp [txir) — Pix-n,tyi,
CVP [tyn) cvp [txir) 

where cvp (•) denotes the coefficient of variation under the design. 

(1.12) 
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Remark 1.3.1 Under the model £ : yi are independent (Pxi}a
2Xi), it is an easy 

task to show that the right hand side of (1.12) is approximately zero, but this is not 

the general case. 

1.3.2 Godambe-Joshi Lower Bound for 9 

Under the model design £ : y, are independent (/?£j,of), and for probability 

sampling design, p (•). If we had the entire finite population, then the least squares 

estimate for /? is 9 = tyt~
l. Let 9 be any estimator of 9 satisfying 

E^Ep (e-e\= o. 

Godambe-Joshi (1965) showed that 

x ieu ^ * ' 

Assume that 7^ > 7TJJ > 7TJV» > 0. Then 

1 1 
GJLB< 

xfjN NnN* ^Ed-^o? N ieu 

which is order O ((NTTN*) ) under mild conditions. In particular, for SI of size n, 

GJLB^Oin-1). 

Under the model £ : yt = (3xi + et, where e; are independent (0, of), the 

Godambe and Joshi (1965) lower bound is asymptotically attained by 9. To see 

this, note that (3 — 9 — —x^ey, where Zu = N~l Ylieuei> an<^ s o fr°m equation 

(1.11), recall that 

(e) = ^yi~BxiVi~9xi^ 
\ / tt *—(. 7T,- 7T,-

x Kieu 

= 72 E — ~ (yi ~ @Xi + @Xi ~~ Bx^ (yi ~ @xi + @xi ~ ®xi x i,jeu ni7ri 

= hH — te + tf-v^te + v3-6)^) 
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L\j/i X 

Z^u^*"" 
"6f 

,jeu 

£* far, -°; 
4 E /LAjj X^Xj 

E-? 

- GJLB + O 

NHNt 

1 
NHNt 

NHN* 

(1.13) 

Since 

then 

GJLB = 4 X) ^—^ff-? oforder ^^ X 
t2*w ni Nn N* 

Ec AVr ' ' ( * ) 1 + O ( — ) - • 1 as JV -> oo. 
G J L 5 

Hence, Godambe and Joshi (1965) lower bound is asymptotically attainable. 

On the other hand, from equation (1.8), recall that 

VOVp I u-naive I — 
- . . TT 7Tj 7T7-x ijEU •> 

) - ? E 

= ?{E1^V+ E £**} 

£A VdTp I "naive 

i^j-.iji 

. 161 / * « « £ ( / ' ' ' 
<2. 

= ^ { E ^ + E ^ < 4 
= GJLB+^rY ^-Xix,, 

x i]€(J J 

= GJLB + O (1.14) 
.A^iv*, 

under mild conditions, so the reminder term is of the same order as GJLB, and the 

lower bound is not attainable asymptotically. 
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1.4 Ratio Estimation of a Finite Population Total 

Once we have an estimate of the population ratio, we can use this estimate to 

estimate the population total ty under Aux\. In other words, estimate ty by ty — tx9, 

where 9 is an estimate for 9. If 0 is unbiased for 9, then ty is unbiased for ty. 

Ratio estimation is often used in the case of stratified sampling in which the 

population of N units is divided into H non-overlapping strata Uh, with Nh = |[//,| 

units in the hth stratum. Under this scenario, the population total is 

H H 

ty — 2__, tyh — /_^ txh&hi (1.15) 
h=\ h=l 

where tyh = J2kec/h Vk, txh = Yjk^uh
 xk, &h = tyht~l, and Uh C U is the hih stratum, 

consisting of A^ units. 

Consider a measurable stratified sampling design, sampling n^ units from the 

hth stratum. To estimate the population total using ratio estimation, there are two 

approaches. The first one is is to combine all strata, estimate the population ratio 

and multiply by tx and the second approach is to estimate the hth stratum ratio, 

multiply by txh, and sum across all strata. 

Definition 1.4.1 The combined ratio estimatorior the population total ty is defined 

by 

W P W (L 1 6) 

where 9 is any estimator of 9. This estimator requires auxiliary information Auxi. 

Definition 1.4.2 The separate ratio estimator for the population total ty is defined 

by 

H 

ySep,6 = Yltxh®h (1-17) 

where 9h is any ratio estimator for the hth stratum ratio. This estimator requires 

auxiliary information Auxi-
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For example, using 0 as an estimator for the population ratio 8 in equation 

(1.16), we have the simple combined ratio estimator 

^ycomfi ~ txt (1.18) 

under Aux^. From equation (1.12), it follows that 

BiaSP (tycornft) = EP ijycomfi) ~ W 

= tx Ep 18) — 

= t. 

j ^ p 

cv, 'p [txir) PiXT,,iy„cvP (^yvrjj CVp {txn) 

Vi - dxi yj - OXJ 

and from equation (1.11), 

^ ( u , ) ^ £ ^ ^ . , ("») 
Further, under the super-population model 

£ : yi = (3x{ + €i, where e* are independent (0, of) > 

we have from earlier discussion that the Godambe-Joshi lower bound is asymptoti­

cally attainable for iycomj. 

As another example, using 6 as an estimator for the population ratio 0 in 

equation (1.17), we have the simple separate ratio estimator 

H 

•jsepfi = 2L/ xh h 

h=l 

under Aux-i-

Applying equation (1.12) in each stratum, we have 
H 

Biasp \tyseptgj = Ep \tyaepj) - 22 f'xh°h 
h=l 

H 

— 2^i ^xh ^ yh) — 0h 
h=i 
H 

= y~^txhBias {0hj (1.20) 
/ i= i 
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where 

Bias \6h) — t lyh < \txir,h) Pixr,,h,iy„ih
CVP {tyir,h)\ CVP \tx*,h) 

and, using the independence across strata and equation (1.11) within strata, 

ft \ • v ^ v ^ y* ~ ehXi yj - ohXj 

Remark 1.4.1 The use of stratification comes from our belief that there are dif­

ferences between strata and homogeneity within strata. To use the combined ratio 

estimator to estimate the population total ty will ignore much of the efficiency af­

forded by stratification. The variance in (1.21) is small in the case of a common 

ratio for all strata, so the simple common ratio estimator will work well only if the 

ratios do not vary much from stratum to stratum. When we have big differences 

in ratios from stratum to stratum, then the simple separate ratio estimator will be 

a better estimator of the population total ty as can be seen from its approximate 

variance in equation (1.21). 

On the other hand, if t s $ is used to estimate the population total ty, then 

as shown by equation (1.20), the biases of the within-stratum ratio estimates may 

accumulate across strata, leading to poor performance. To overcome this problem, 

it is useful to have an exactly unbiased estimator for the within stratum ratios. 

Therefore, in this work, we will propose an exactly unbiased estimator for Oh, which 

can be used for unbiased, efficient estimates of the within-stratum totals tyh. 

1.5 Ratio Estimators with Reduced Bias 

Ratio estimation has been studied in the literature for more than fifty years. 

Most of the discussions are under the simple random sampling design, and only 

approximate variances of the corresponding estimators are given. Under a general 
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sampling design, the population ratio estimators are typically biased, though almost 

unbiased, and asymptotically unbiased. To eliminate or reduce the bias of ratio es­

timation, authors have either modified the estimator, or have modified the sampling 

design. 

In particular, Lahiri (1951) proposed a sampling method that is an example of a 

rejective method. Start this method by choosing a number M > max (x i , . . . , £JV) • 

With equal probability draw one of the N population elements. Let rj be the se­

lected element. Draw u from a Uniform (0, 1). If uM < xv, then the selected 

element is included in the sample; otherwise, start over. This method gives 

TTfc = xk/ Ylkeu xk> iork — 1,... ,N, a probability proportional to size sampling de­

sign with n = 1, even though E u xk n e e d not be known. Note that under this design, 

EfcG, ('!Jk/xk) has expectation Efcec/ (yk/xk) (xk/ Efc6[/
 xk) = Efceu Vk/ Efcet/^-

the population ratio. That is, this particular combination of design and estimator 

gives an exactly unbiased estimator of the population ratio under Aux0. 

Mickey (1959) derived an estimator under simple random sampling without 

replacement of size n. Compute #;_ by removing each unit i in turn from the sample, 

so that Qi- = l^-p is computed over the remaining n — 1 members. Then the Mickey 

estimator is given by: 

« J , - L + ! l ( ^ ± i ) ( a i - U ) (,22, 

where #_ is the mean of n ratios #,_, and ya — n~1J2syk, %s — 

n~1J2s
xki and J[/w = N~lY^u%k- Mickey's estimator is an unbiased estimator 

for the population ratio 6 under Aux\. 

Nieto de Pascual (1961) proposed an almost unbiased estimator, in which the 

bias is of order n~2. This estimator is also under simple random sampling and Auxi, 

and is given by: 

eP = ^ + T J—— (ys - rsxs) (1.23) 
xs {n-\)xUN 
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where rk = yk/xk and rs = n x £ ] s
 rfc-

Murthy and Nanjamma (1959) proposed the following estimator, 

®MN = rs + 7 -r-zr- (ys - rsxs) (1.24) 
(n - l)xs 

under simple random sampling without replacement. This is an almost unbiased 

estimator for the population ratio under Aux\. 

Our work is directly motivated by that of Hartley and Ross (1954), who de­

rived an exactly unbiased estimator for the population ratio under simple random 

sampling and Aux\, Their estimator is given by 

n(N — 1) 
OHR = rs + —-r^——— (y. - faxa). (1.25) 

N (n- 1)XUN 

Hartley and Ross (1954) gave the asymptotic variance of this estimator as 

rp( varp VHR = -
1 ( Vu \ 2 \al °x _ ncovp(x, y) 

-,2 + ^2 l - -
n \xv. 

(1.26) 
M xuN VUXUN 

In this work, we will propose an exactly unbiased estimator under a general 

probability sampling design, which gives the Hartley and Ross (1954) estimator as a 

special case under SI. Furthermore, we will give an exact expression for the variance 

and an exactly unbiased estimator for the variance. Various extensions will be 

considered, including the stratified sampling case, in which the bias of ordinary 

ratio-type estimators is a serious issue. 

1.6 Contributions of This Dissertation 

We will give a brief description for the coming chapters. In Chapter 2, we will 

introduce the Generalized Hartley-Ross estimator, OGHR- We will show that this 

estimator is exactly unbiased under a general sampling design and that it gives the 

Hartley-Ross (1954) estimator under the special case of simple random sampling 

design without replacement (SI). As examples, we will investigate the properties of 
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OGHR under SI, random sampling with replacement (WR), Poisson sampling (PO), 

and stratified sampling designs. We derive the exact variance of OGHR and an ex­

actly unbiased variance estimator under a fourth-order measurable sampling design. 

We will give the first through fourth-order inclusion probabilities for different sam­

pling designs, which are needed to compute the variance and the unbiased variance 

estimator for OGHR- TO find the first through fourth-order inclusion probabilities 

for a general sampling design is not an easy task in general; therefore, we will give 

two methods to approximate the computations of the unbiased estimator for the 

variance of OGHR- The two methods of approximations will be tested via simulations 

under SI, proportional to size sampling design (7rps), and PO sampling designs. Fur­

thermore, OGHR will be written under stratified simple random without replacement 

sampling design (STSI) to estimate the population total ty. Also, OGHR is written 

under interpenetrating sub-samples, and under interpenetrating STSI by sampling 

one element from each strata via SI. 

Under a stratified sampling design and Aux2, OGHR can be used in a separate 

ratio estimator to estimate the population ratio 0 or to estimate the population total 

ty. 

An alternative unbiased ratio estimator OGHR under a with-replacement design 

using a Hansen and Hurwitz (1943) type estimator will be introduced. This estima­

tor will be used to estimate the population ratio 0 and the population total ty. An 

exact variance and an unbiased estimator of the variance of this estimator will be 

given. 

At the end of Chapter 2, we will introduce another estimator as a result of a 

linear combination between OGHR and 0. The GHR estimator is unbiased but may 

have large variance, while the simple estimator is biased but has small variance. The 

goal of the combination is to obtain an estimator with variance less than the variance 

of 0GHR- However, the new estimator is no longer unbiased (except in the trivial 
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special case when only OGHR is included). From this combination and under the SI 

sampling design, we can produce Murthy and Nanjamma (1959), Nieto de Pascual 

(1961), Hartley and Ross (1954), and simple estimators. 

In Chapter 3, asymptotic results involving the two unbiased estimators OGHR 

and OGHR will be discussed. Central limit theorems (CLTs) for OGHR will be dis­

cussed under SI and PO sampling designs. Further, a CLT for iysep,GHR under a 

general stratified sampling design will be established. In addition, CLT based on 

OGHR will be established; both for the case that the population size N is fixed and 

the number of independent draws tends to infinity, and for the case when both the 

population size and the number of independent draws tends to infinity. A con­

sistent estimator of the asymptotic variance under the second case will be given. 

Godambe and Joshi (1965) lower bound will be discussed for OGHR-,
 a n d OGHR- At 

the end of the Chapter 3, 8GHR and 0 are compared through simulation and results 

are given for unstratified and stratified sampling designs. Chapter 4 includes some 

concluding discussion and an appendix assembles some technical details. 



Chapter 2 

GENERALIZED UNBIASED ESTIMATION OF RATIOS AND 

RATIO ESTIMATION 

The need to find an exactly unbiased estimator for the population ratio is a 

serious issue especially in stratified sampling. In this chapter we will introduce an 

exactly unbiased estimator for the population ratio and derive its characteristics. 

2.1 General Measurable Designs 

The population ratio 9, is a non-linear function of two totals, the total of the 

study variable ty and the total of the auxiliary variable tx. In other words, 

0 = f(ty, tx) = ^ = 

We will assume Aux\ : the auxiliary values x» > 0 are available for all sampled 

elements i € s, and xuN is also available from some source external to the sample. 

A probability sample 5 is drawn from a finite population U according to a 

measurable sampling design p (•); for this general probability sampling design, our 

goal is to obtain an exactly unbiased estimator for 6. 

2.1.1 Generalized Hartley and Ross Estimator 

We will generalize Hartley-Ross estimator under a measurable sampling design. 

Theorem 2.1.1 Under a measurable sampling design and Aux\, the estimator 

^HH = ^ r i ^ + —- E ^ - A F E E ^ ^ : N^ts ni N*u» N 
(2.1) 
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where Ti — yiXt \ is an unbiased estimator for 9, andiy^HR — tx0GHR is an unbiased 

estimator for ty. 

Proof: Rewrite 9GHR as 

9GHR - -M + f V - ]^—J2Y^riXJ^^ 
1 

~N~ 

1 
U 

ieu jeu 
7T-

(2.2) 
n 

where trir = X^ie£/ r*~^F^- Therefore , 

E„ GHR 
1 . t„ 

N 

1 

~N 

w-Z^2^ r ^ 

tr + ^ 
t„ 1 

ig£/ j e t / 

1 
U 

(2.3) 

Hence, 9QHR is an unbiased estimator for 9, and IV<GHR is an unbiased estimator for 

In the following examples we will write 9QHR under different sampling designs. 

Example 2.1.1 Simple random sampling without replacement design (SI). 

Under SI design, 

7Ti = 
n 
~N 

(2.4) 

and 

1X13 N(N-l) ^%tJ-
(2.5) 
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Define Spt = {all distinct ^-tuples from s} . From (2.1), we have 

9GHR = rs + 

= rs + 

1 

f.+ 

NXUN 

1 
NXUN 

1 

~NxVN 

N-l v-^ 
n(n— 1) ^ ^ 

\n(N-l)_ n(N-l)__ 

~Va 

n — 1 n — 1 

n ( N - l ) , v , n „ , 
Â  ( n - l j x ^ 

which is the Hartley and Ross (1954) estimator. 

Example 2.1.2 With replacement sampling design (WR). 

In with-replacement sampling (WR), the selection is carried out by drawing a first 

element in such a way that 

Pr (selecting element k) — pk] k = 1 , . . . , N 

where J^uPk ~ 1- The selected element is replaced and the second element is inde­

pendently selected, continuing this process to the mih element. 

For m independent draws, the first-order inclusion probability is 

7Tfe = 1 - ( 1 -pk)m • 

The second-order inclusion probability TT^U for k,l E Sp2 is given by 

(2.7) 

7T f c ; = Pr{k,lesD2) 

— 1 — Pr (k $. s or I ^ s) 

= l-[Pr(k£s) + Pr (l$s)- Pr (k and I $ s) 

= i - [ ( i - p * ) m + ( i - w ) m - ( i - ( P f c + w))ra] (2.8) 

Expressions (2.7) and (2.8) can be plugged in to equation (2.1) to yield OGHB under 

WR. 
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Example 2.1.3 Poisson sampling design (PO). 

Let 7Tfc — Pr (l{kes} = l) be the predetermined positive inclusion probability for 

the kth element in the population, where k — 1 , . . . , N. The sampling membership 

indicators I{k£S} are independent; therefore, nki = i^k^i for any k ^ I. From equation 

(2.1), rewrite QGHR under PO as 

Example 2.1.4 Stratified sampling design. 

Under a general stratified sampling design, §GHR from equation (2.1) is 

i H i H i H 

G " « N Z-J L, n ^ NXUN ^ ^ 7T, N2XUN ^ ^ 7T« 

1 E E E ^ 
In particular, under stratified simple random sampling without replacement (STSI), 

we have 

« - £ (2.9) 

and 

^ for i = j and i,j e *//» 
^ ^ i for i ^ j and ij € % (2.10) 

Hence, 

^ ^ for i e Uh, j € Ufl, and h,h(E D2 

2 STSI v ^ f- , 1 (Nh-nh\ - - A . 1 V^ -
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where rh = nh
l J2iesh Vixi * a n d wh = NhN '"• 

Example 2.1.5 OGHR under interpenetrating sub-samples. 

The idea of interpenetrating sub-samples is to draw a sub-sample of size m via SI, 

then return the m observations into the population and independently repeat this 

process G times; in this case, the sample size is n < mG. The first order-inclusion 

probability is then 

TTi = Pr (' e s) 

= 1 — Pr (i <£ s) 

( G 

= 1-Priief] 
\ 9 

= l - [ P r ( t G * S ) 

= 1 -
m' G 

The second order-inclusion probability (i,j e D2) is 

7Ty = Pr(ijes) 

= I — Pr(i £ sorj <£ s) 

= 1 - [Pr (i <£ s) + P r (j £ s) - Pr (i <£ s and j <£ s)] 

= 1 - [2Pr (i <£s)- Pr(i<£s and ;' <£ s)] 

= 1 -

= 1 -

2Pr(ief)sc
g\ -PrUj€f]sc

g 

2(Pr( i<s^) ) G - (Pr( i , j e^) ) G ] 

m , m 77i (m — 1) 
1 - 2 — - v ' 

(2.12) 

(2.13) 
JV N(N-1), 

Expressions (2.12) and (2.13) can be plugged in to equation (2.1) to yield OGHR 

under this design. 
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Remark 2.1.1 For small p, expand (1 — p)m by first-order Taylor expansion to get 

(1 — p)m = 1 — mp. 

We use this fact to approximate the first-order and second-order inclusion probabil­

ities. From equation (2.12), we have 

Wi = 1 -
m~\G 

^-0-^)=^ 
and from equation (2.13), we have 

, ( ( , 1 _ { 2 ( 1 _ G « ) _ ( 1 _ G ( 2 ™ _ ^ ) ) ) } = G mm— I 
7fN-l' 

Therefore OGHR under this sampling design is 

TGHR 
m(N-l) 

G ^ ] \ m f^1" ) ' N (m - 1) xUf, 
Ji \ + 

m 

m(N-l) 
[Vg ~ T9r

S} f • (2.14) 
N (m - 1) £[/„ 

which is the average of OGHR under SI over G repetitions. 

2.1.2 Exact Variance of OGHR 

One of the interesting properties of 6GHR. is an exact variance expression under 

any measurable sampling design. 

Theorem 2.1.2 Assume Xi > 0 for all i e U. For a measurable sampling design, 

the variance of OGHR is given by 

var, 
(a \ _ l \^ yt y*i A , l sr nXj nxi A 

2 

!'t/. « ij,k,ieu 

E A, .*;/ (2.15) 
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where 

, 1 1 
Vi = [ - + 

Aij = COVp (I{its}, I{jes}) = TTy ~ ^i^j 

&ikl = C0VP (^{i€s}, I{kl€s}) - Tiki - Ki^kl 

\jkl = COVp {hijes}, I{kles}) = TTyftJ - TTyTTfci-

Further, the variance ofty^GHR is given by 

varp (ty,GHR) = t2
xvarp [0GHRj . 

Proof : From equation (2.1), rewrite OQHR
 a s 

n 1 V - Vi r 1 ST Y " TiXi i 
0GHR ~NIJ ^/{ie*}" N^TN I; I; ^-^^ 

The theorem follows directly by taking the variance of both sides of this equation. 

In the following examples, we will write the exact variance of OGHR- We need 

the following notation: 

Unt = {Set of all distinct ^-tuples (i\,i2, • • • ,h) from U} . 

Example 2.1.6 Variance of OGHR under SI sampling design. 

For a population of size N > 3 and under SI, the third-order inclusion probability 

for i, j , k € UD3 is 

n n — 1 n — 2 
nijk = iV i V ^ T i V ^ (2-16) 

and the fourth-order inclusion probability for i, j , k, I G UDi is 

n n — I n — 2 n — 3 

^ = NN-1N-2N-3' { ' 

The inclusion probabilities (2.16) and (2.17), along with (2.4) and (2.5), can then be 

plugged in to Theorem 2.1.2 to yield on exact variance. Note that Hartley and Ross 

(1954) provided only a variance approximation. 
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Example 2.1.7 Variance ofOGHR under WR sampling design. 

For i, j , k € UD3, and i, j , k, I € Uo4 it is possible to derive the third-order and 

fourth-order inclusion probabilities, using argument like those in Example 2.1.2 re­

sulting in 

nijk - i - [ ( i - p . ) " ' + ( i_p.)"» + ( i - p f c ) ' » _ ( i _ ( p . + p . ) ) -

- (1 - (p,( + Pk))
m - (1 - (Pj + pk))

m + (1 - (p( + Pj + pk))
m] (2.18) 

and for ijkl € D4, 

%fc/ - i - [ ( i - P i )
m + ( i - P i ) m + ( i - p f e r + ( i - p o m - ( i - ( f t + p , ) r 

- (1 - fe + Pk))
m - (1 - (Pi + p,))m - (1 - fa + Pfc))

m - (1 - (PJ + vi)T 

- (1 - (?*+Pi)r+(1 - fe+P,-+pfc)r+(i - (K+p,+pi)r 

+ (1 - ( P i + P f c + P o r + (1 - (P,+Pk+p0)m 

- ( 1 - (Pi+pj+Pfc+po)"1]-

Alternatively, these higher-order inclusion probabilities can be approximated by zero 

using the second order Taylor expansion. In either cases, Theorem 2.1.2 can be used 

to compute the variance of OGHR under this design, either exactly or approximately. 

Example 2.1.8 Variance of OGHR under PO sampling design. 

The independence of sampling membership indicators I{kes) enables us to define 

easily the third-order and the fourth-order inclusion probabilities. For i, j , k € UQ3, 

the third-order inclusion probability for PO is 

and for i, j , k, I G UDi, the fourth-order inclusion probability is 

KijU = TTiTTj7rkni. 

With these inclusion probabilities, Theorem 2.1.2 can be used to yield an exact 

variance of OGHR-
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Example 2.1.9 Variance of OGHR under stratified sampling design. 

Under a general stratified sampling design, 

H * - .* -i H 

h=l i,j£(/h J ^ h=l iJ,k,leUh
 %3 

r%Xj r^xi , 

Kkl 

by Theorem 2.1.2. 

In particular, under STSI, for i, j , k G £/D3,
 a n d i, j , k, I G f/p4 it is possible to 

derive the third-order and fourth-order inclusion probabilities, using arguments like 

those in Example 2.1.4, equation (2.19) can then be used to compute the variance 

of OGHR.' 

2.1.3 Unbiased Variance Estimation 

The existence of an exactly unbiased estimator of varp ( OGHR ) is another useful 

result for OGHR-

Theorem 2.1.3 For a fourth-order measurable sampling design, an unbiased esti­

mator for varp ( OGHR ) is given by 

(a \ = l V^^i i 1 V ^ TiXj rkxi A j I k^l t-±ijkl 

2 v ^ y*rkXiK 
NHU« rt^es ** ^ nM 

Further, an unbiased estimator for varp (tVtGHR) is given by 

varp (iytGHR.) = t2
ryarp \0GHRj . 

Proof: The proof of this theorem follows directly from Theorem 2.1.2, using fourth-

order measurability to ensure that (2.20) is well-defined. 
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Though an exactly unbiased estimator for varp ( 6GHR ) exists if the conditions 

of Theorem 2.1.3 are satisfied, it is in general difficult to obtain the third-order 

and the fourth-order inclusion probabilities under general sampling designs. It is 

an easy task, however, to obtain these higher-order inclusion probabilities under SI 

(with n > 4 for fourth-order measurability) and PO sampling designs. For Brewer's 

method a special case of 7rps with n = 2, the third-order and fourth-order inclusion 

probabilities are zero when at least three of the indices are distinct. For n > 4, 

other 7rps methods exist as implemented, for example, in SAS proc surveyselect. 

This procedure will produce first and second -order inclusion probabilities, but not 

higher-order, a common limitation. It will be therefore be useful to consider approx­

imate variance estimators that do not require higher-order inclusion probabilities. 

We begin however, with the case when the first through fourth-order inclusion prob­

abilities are available. Let us return to our earlier examples. 

Example 2.1.10 varp ( OGHR ) under SI design 

Let us rewrite the first through fourth-order inclusion probabilities under SI and 

for N > 3. 

The first-order inclusion probability is 7Ti = ~j, 

the second-order inclusion probability is 7 -̂ — jfj^, for i, j G SD2, 

the third-order inclusion probability is 7Tyfc = jjj^jjz^i f°r h j , k € SD3, 

the fourth-order inclusion probability is TTijki = | / /^ /7r |7v3§i f°r h h k.l (E SD4, 

where sDt is the set of all distinct f-tuples {i\,i2, • • • ,h) fr°m s- Therefore, the 

computations of varp (OGHR) in Theorem 2.1.3 can be done to yield an unbiased 

variance estimator. 

Remark 2.1.2 As previously noted, OGHR is exactly the Hartley and Ross (1954) 

estimator under SI. But what is new and not given by Hartley and Ross (1954) 
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are the exact variance of OGHR arid an exactly unbiased estimator for the variance. 

Hartley and Ross (1954) gave only an asymptotic result for the variance. 

Example 2.1.11 varP ( OQHR ) under WR design. 

Under WR sampling design, the first through fourth-order inclusion probabilities 

can be computed (as given in Examples 2.1.2 and 2.1.7). Note that even a second-

order Taylor approximation for such inclusion probabilities would not be sufficiently 

precise since the approximation of the third-order and fourth-order inclusion prob­

abilities would be zero in this case. 

Example 2.1.12 varp (OGHR) under PO design. 

Under PO sampling design, the first through fourth-order inclusion probabilities are 

available. Therefore, the computations of varp ( OGHR ) can be done directly from 

Theorem 2.1.3. 

Example 2.1.13 varp (OGHR) under stratified sampling design. 

Assuming a general fourth-order measurable stratified sampling design, an unbiased 

estimator of varp ( OGHR ) is given by 

h=\ i,jesh
 l J %:> UN h=l i,j,k,lesh

 n Kl tJKl 

In particular, under STSI with n^ > 4 in every stratum, it is easily to derive the 

third-order and fourth-order inclusion probabilities, using arguments like those in 

Example 2.1.4, equation (2.21) can then be used to compute varp (OGHR) under 

STSI. 
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2.2 Separate Ratio Estimation for Stratified Sampling Designs 

We now consider estimation of the population total or population ratio under 

Aux2- The finite population is divided into H non-overlapping strata and 8QHR 

can be applied to each stratum since xUh is known for h = 1,..., H. As noted in 

Chapter 1, this estimator is motivated by the fact that the classic separate ratio 

estimator may suffer from accumulation of bias across strata, so substitution of 

unbiased estimators within each stratum is warranted. 

2.2,1 Separate Ratio Estimation Using 9GHR 

We apply OQHR within each stratum to obtain a separate ratio estimator. Define 

0GHRA = ^ 2 ^ - + — - l^Vi- ~ W L, r ^ ~ 
iesh - - °h 

H 

iesh vesh
 lJ. 

Nh 7^ Ki NhXUl 

and 

tySep,GHR — / ^txh^GHR,h-
h=l 

is estimating the population total. 

Theorem 2.2.1 Under a measurable stratified sampling design and Aux2, 

(2.22) 

H 

3 _ V^ ixh a 
'GHR,Sep — 2_j ~r~tjGHR.r 

h 

h=\ tj-

is an unbiased estimator of the population ratio 6, and 

H 

tySep.GHR ~ /_^ f'xh^GHR,h 
h=l 

is an unbiased estimator of the population total ty. 

Proof: The proof follows directly by applying §GHR to each stratum under a mea­

surable sampling design p (•), and using Theorem 2.1.1. 
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Remark 2.2.1 Many real surveys are stratified surveys, such as the National Re­

sources Inventory (NRI). The sample design is based on a stratified two-stage area 

sample of all US lands. Strata are subtownship-level geographic subdivisions in the 

areas of the country covered by the public Land Survey and analogous geographic 

subdivisions elsewhere, amounting to tens of thousands of strata. Two primary 

sampling units are selected in most strata in the first stage of sampling. In the sec­

ond stage of sampling, three points per Primary Sampling Unit are selected (Breidt 

(2002)). 

The US Current Population Survey (CPS) is a multistage stratified sam­

ple. The first stage of the CPS sample design is the selection of counties (see 

http://www.census.gov/prod/2006pubs/tp-66.pdf). There are approximately 3,000 

counties in the US. 

From the above two examples, NRI and CPS are highly stratified, and such 

large numbers of strata enable us to use asymptotic results in which the number of 

strata goes to infinity. 

In the following example, OGHR,H will be derived under stratified simple random 

sampling. 

Example 2.2.1 0GHR,Sep under stratified simple random sampling without-

replacement (STSI). 

Assuming n^ > 2 in each stratum, estimate the population ratio 9 by 

t, STSI sr^txh(_ nh{Nh-l) _ _ \ 

and the population total ty by 

i STSI v-% / - , nh{Nh-l) _ _ \ 
^T[ I Nh[nh- i)XUh ) 

where fSh = % x X^GS r*' This result follows directly from applying the Hartley-

Ross estimator of Example 2.1.1 to the hth stratum. 

http://www.census.gov/prod/2006pubs/tp-66.pdf
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2.2.2 Exact Variance for Separate Ratio Estimation Using GHR 

Assuming a measurable stratified sampling design, the variance of 6cHR,sep and 

tySep.GHR is given in the following theorem. 

Theorem 2.2.2 Under a measurable stratified sampling design, 

H , x 2 

Varp \0GHR,Sep) = Yl ( T1 ) VarP \®GHR,h) 
h=\ 

and 

where 

n 

p {tySep,GHR) — /_^ txhVarP \^GHR,h) , 

r (ft \ - l V y*y*jA i 1 V TiXirkXlA 
rP{VGHR,h) - JH 2^ V-V lj WW ?-< n- 7Tw '• 

y- vtnxiA 

and 

y*i = \ - + ~)yi 

Aij - covp (l{iesh}, I{jesh}) = ""ij - T^i^j 

&ikl = c°Vp {l{i€sh}, I{kl€sh}) — T^ikl - T^i^kl 

&ijkl = COVp (l{ijeshy, 7{fc/6Sh}) = TTijki - KijTtkl-

Proof: The proof follows from Theorem 2.1.2 using the definition of &GHR,Sep and 

tySep,GHR and the fact that the strata are independent. 

• 

Example 2.2.2 varp (9GHR,Sep) and varp (iysep,GHR) under STSI. 
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Note that 

nh nh-\ . . 

nh nh - 1 nh - 2 . 

nh nh-l nh-2 nh-3 . 

Plugging these expressions into Theorem 2.2.2 yields varp (0GHR,SeP) and 

Varp (iySep,GHR) • 

2.2.3 Unbiased Variance Estimation for Separate Ratio Estimators Using 
8GHR 

For fourth-order measurable stratified sampling designs, unbiased estimators 

for varp (OGHR^P) and varp (iySep,GHR) exist. 

Theorem 2.2.3 For a fourth-order measurable stratified sampling design, an un­

biased estimator of varp (0GHR,Sep) is 

H , s. 2 

varp [9GHR,SepJ = J ^ ( j M varv [9GHR,hj 

and an unbiased estimator of varp (tysep,GHR) is 
H 

i)arp (iySep,GHR) = ^2 t2xhParV (®GHR,h) 
h=l 

where 

varp\0GHR,h) - J ^ l ^ - - - r + ^ r 1^ 

2 V - y*rkxiAm E 
Proof: The proof follows from Theorem 2.2.2 and Theorem 2.1.3. 
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Example 2.2.3 varp (0GHR,SeP) and varp(iySeP,GHR) under STSI. 

If nh > 4 for h = 1 , . . . , H, then STSI is fourth-order measurable. Using the in­

clusion probabilities denned in Example 2.2.2, varp {0GHR,Sep) and varp (iysep,CHR) 

can be computed from Theorem 2.2.3. 

2.3 Alternative Unbiased Ratio Estimation for With-Replacement De­
signs 

We now consider another version of unbiased ratio estimation for the spe­

cial case of with-replacement designs, using the Hansen and Hurwitz (1943) es­

timation idea. This alternative estimator is of interest of its own right, but 

is also of interest for producing an approximate variance estimator for &GHR 

that does not require higher-order inclusion probabilities. We consider this ap­

proximation in Section 2.4. Recall that for a with-replacement design, pk = 

Pr (selecting element A: on a single draw) > 0 for k = 1 , . . . , N, and Ylk^u Pk ~ 

1. 

Define 

Zm (y) = jf Efcet/ j£'{*=*} ZNi (x) = jf Ekeu fj{*i=k} ) 
\ (2.23) 

ZNi (r) = jf Y,keu fji^k} ZNi (y) = ± £ f c€£ / fJ{Kl=k} J 

where yk — y^/ (Npk) andr^ — yu/xk- Note that Z^i (a) is a random variable with 

a discrete distribution assigning probability Pk to the values N~1au/pki k G U. It 

follows from the WR sampling scheme that Zm (a) are iid for i = 1 , . . . , m, with 

mean 

EP[ZNda)} = ^j:aj^-% (2 '24) 

and variance 

N ^ pk N 

~>"" wl^fefe)V(§^)} (2'25) 
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2.3.1 Unbiased Ratio Estimation Using Hansen-Hurwitz Estimators 

Under a with-replacement sampling design and using Hansen and Hurwitz 

(1943) estimation ideas, define 

QGHR = ZNm {r) + z—ZNm (y) + - ——Z N m (y) 
XVN {m-l)xUN 

Tfl — — 

-—ZNm(r)ZNm(x) (2.26) (m- 1)XUN 

where 

2jVra (•) = — / J ZN-1 (•) , m *—• 

and ZNi (•) are given by (2.23). 
m 

Theorem 2.3.1 Under a with-replacement sampling design, OGHR defined in equa­

tion (2.26) is unbiased for the population ratio 6. Further, 

ty,GHR = tx0GHR 

is unbiased for the population total ty. 

Proof: First note that 
.. mm 

EP [ZNm (r) ZNm (x)] = jp-^Yl/ZzZzZ~~EpiI{^=k}h^=i}] 
i=i j=i keu leu Pk Pl 

i=\ keu yK 

+JP^ Z2Z2T:^EP ik^k}} EP [i{Kj=t}] 
' i^tj k, leu yK 11 

{NmtyN + m (m — 1) tr^tXN} 
N2m2 

t$N + ~M2 trNtxN- (2.27) 
Nm y N2m 

Also, Ep [ZNm(a)] = jftaN by (2.24). Hence, from (2.26) and (2.27), we have 

(a \ l 1 1 

Ep I OGHR ) = TT^N + TTZ— t y N + — —— t y N 

v / N Nxu„ N(m-l)xrj„ m 1 m — 1 
-77 ^ M -\ -jrp; trNtXN 
Nm N2m 

N(m-l) XUN 

tyN = 8, (2.28) 
Nxn 
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and Ep {J^GHR) = V 

• 

Remark 2.3.1 The exact variance of 1V)GHR is not readily available. In Chapter 

3, we will give an asymptotic variance and a consistent estimator of the asymptotic 

variance. 

2.4 Simple Ways to Approximate varp \0GHR) 

First through fourth-order inclusion probabilities are readily available for SI, 

PO, and WR sampling designs, but are not generally available. Standard software 

like SAS proc surveyselct will compute first and second-order inclusion probabil­

ities under various designs, but not higher-order. In this section, we will introduce 

two methods of variance estimation that not require higher-order inclusion proba­

bilities. 

The first method, which we call the uncorrelated variance estimation method, 

treat the sample membership indicators as approximately uncorrelated, so that 7r.y = 

WiTtj for i 7̂  j . This method is discussed in Section 2.4.1. It requires first and second-

order inclusion probabilities. 

The second method, discussed in Section 2.4.2,approximates the sampling de­

sign as a with-replacement sampling design. This method requires only first-order 

inclusion probabilities. 

2.4.1 Uncorrelated Variance Estimation 

Assume 

Kij > 7T*/v > 0 

and 

lim sup UN max \ni3 — 7Tj7r, | = 0 (1). 
JV-+00 ijeUN:i^j 

file:///0ghr
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This assumption enable us to approximate 7Ty by n^j. Such an assumption holds 

exactly under PO sampling, and approximately under SI, WR sampling designs. 

Under this assumption, 

|diff| 
l ^ l l ^ 1 

XUN ijes-.&j V UN ijea:i& ' 3 

< 
N2XUN 

E •> Ttij'Ki'Kj 

< -prz—njvmax|7ri7Tj -7Ty-| -TT- y^\n\ y~]xj 
nNN2xUN w nlNJ7t ^ ies jes 

nN^lN 

(2.29) 

which goes to zero under mild additional assumptions. Thus, from equation (2.1), 

we have 

1 
7GHR 

N^rdr/1™1
 N>XUN 

'{ies} 
ieu 

E I{i,j€*} , y ^ hi^} 

1 E * Hies} 

Nw" ni N2xu» 

iieuD2 **i Tel} ** 

J2 riXi
I{l€s}I{j"s} - Y: K % * + E *— 

bjet/ eu ni let ni 

lieu ni ieu ni 

1 - T V - 1 , 1 

7T; 

TV 
1 

TV 
1 

tyir "T A r . I^.ir 
T V ^ T V i , TVL 

"ZxTT^r (2.30) 

T V - 1 - 1 - 1 r r \ r M 
NU Ntr Nt, 

1 v -
^ + w:E TV ' TVL 

ieu 

Vi (TV - l ) y i + * L - trx. 
I. {ies} 

(2.31) 

The variance of OGHR can be approximated by taking the variance of the right 

hand side of equation (2.31), we have 

I{ies} \ 
var, apj) ( W ) = varl^tr + j^-Y, 

ieu L 

(TV - 1 ) 3/i H- — - trXi 
Vi 
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= wEf3 (2.32) 

where 

wi = {N-l)yi + ^--trxi. 

An unbiased estimator for VQ,Tapp \0GHRJ is 

VQiTapp (M = w £ - ^ <2'33) 
ijes 

where 

Wi = (N - 1) J/i + — - trvr^-

Note that (2.33) requires first and second-order inclusion probabilities. 

Remark 2.4.1 In Chapter 3, we will show that varapp (QGHR) is consistent for 

P ( @GHR ) under SI and PO sampling. var, 

2.4.2 With-Replacement Approximation 

This method requires the first-order inclusion probabilities to be known and 

"pretends" that sampling is done via a with-replacement design. 

Define pk =: m~Xjnk where irk are the first-order inclusion probabilities for the 

original design. 

We now construct a with-replacement version of the approximation (2.31). De­

fine 

Zi =—£ 
keu 

erwise. Now, 

N-l + —)yk- trxk 
Pk 

where IiK.-k\ is one when the kth element is selected in the ith draw and zero oth-

EZi ™ _ L y 
x keu 

N - H )yk- trxk 
TTfc 

file:///0ghrj


41 

= tz 

variZi) W^ EiZt-tz)2 

E wX 
keu 

- £fefe 
\keu 

Nt 

N - 1 + — 1 yk - tTxk 
TTfc 

N -l-\ 1 j/fe - trxk 
7T/c 

Pk keu 
{«t=fc} 

Pk 
tz \ I{Ki=k} 

= £{M"-i+£)*-Hs-*-} 
i 

Nt 

rl-
iV - 1 + - y, - frx, 

7TJ 

fce/7 
Nt, 

N-l + — )yk- trxk 
TTfe 

tz\ EIiKi=k\Iui=n 
Pi J 

2 

Pk 
tz } Pk 

(2.34) 

Since Zi are iid (iz, Vi), then 

i n 

f - 7 - i V 7 
"pwr 

n 1 = 1 

is an unbiased estimator, under WR, for tz and varpwr {tjmir') = n lV\. Therefore, 

var pwr . ( n - l ) f ^ 
v ' «=i 

1 n 

(tpwr) = } TT / , (Zi — Z) 
K n(n — 1) t-^ 

ia an unbiased estimator for var 

1 /v/-. Z-^ 

(2.35) 

feef 

pwr (iptur)- Estimate Zi by 

N - 1 + — ) Vk ~ UirXk 
^{*;,=fc} 

Pfc 

and compute varpwr {ipwr) as a with-replacement approximation to the variance of 

(2.31), and hence as a WR approximation to the variance of OGHR-

2.4.3 Simulation Results 

We will compare the two methods of variance approximation through sim­

ulations. Let Xi be iid Gamma(a = 3, /? = 2) with mean 6 and variance 
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12, ti iid N(0,25xi), and yi — 3XJ + e*. The entire population consists of 

{xi, V\),..., (xiooo. J/iooo). 

Define the following terms 

varemp ( ^GHR ) is the empirical (simulation) variance of 8GHR 

varapp [QGHR] is defined in equation(2.33) 

varjmir (OGHR) is defined in equation (2.35) 

and 

%RVB = mE{var{.))-var (^ 
varemp (•) 

Table 2.1 shows the simulation performance of the two methods as defined in 

equations (2.33) and (2.35) based on 1500 replications of SI and different sample 

sizes. The values of %RVB when the second method is used are higher consistently 

than the values of VoRVB when the first method is used. For both methods, the 

values of the approximate variance estimators are fairly conservative, but track the 

actual variance well. 

n 

[QGHRJ 

i>arapp [9GHR] 

%RVB 

varpur \6GHR) 

%RVB 

10 15 20 25 30 35 40 75 

0.456 0.290 0.218 0.178 0.137 0.122 0.108 0.047 

0.567 0.341 0.246 0.190 0.156 0.130 0.113 0.056 

24.342 17.586 12.844 6.742 13.869 6.557 4.630 19.149 

0.573 0.347 0.251 0.195 0.161 0.134 0.118 0.061 

25.658 19.655 15.138 9.551 17.518 9.836 9.259 29.787 

Table 2.1: Performance of two variance estimation approximations under SI 
Based on 1500 simulated simple random samples from a fixed finite population. 

We next consider the performance of the two approximations under 7rps sam­

pling. Let Zi = 10+Xi+rji, where e, and rji are independent and rji are iid iV (0, 1), 

file:///6ghr


43 

be the size variable to be used in the probability proportional to size sampling de­

sign. The first and second-order inclusion probabilities are obtained from the out= 

JTPROBS option in SAS proc surveyselect. Table 2.2 shows the simulation per­

formance of the same two methods of approximations of varp ( OGHR 1 , but in this 

case under 7rps sampling. In this case, the two methods perform similarly through­

out, tracking the true variance fairly well throughou, through non-conservatively at 

higher sample sizes. 

n 

VarEmp [OGHR) 

{0GHRJ 

%RVB 

Varpwr [OGHR) 

%RVB 

10 

0.428 

0.520 

21.495 

0.523 

22.196 

15 

0.271 

0.325 

19.926 

0.326 

20.295 

20 

0.211 

0.233 

10.427 

0.235 

11.374 

25 

0.176 

0.184 

4.546 

0.186 

5.682 

30 

0.145 

0.153 

5.517 

0.151 

4.138 

35 

0.141 

0.132 

-6.383 

0.129 

-8.51 

40 

0.117 

0.114 

-2.564 

0.112 

-4.274 

75 

0.066 

0.059 

-10.606 

0.058 

-12.121 

Table 2.2: Performance of two variance estimation approximations under 7rps 
sampling, based on 1500 simulated 7rps samples from a fixed finite population. 

Finally, we consider the performance of the two variance estimation approxi­

mations under PO. The first-order inclusion probabilities are computed from 

exp (1.5x0 
7Tj — o— for b > .0 

1 + exp (1.5XJ) 

Because sample size is random for PO, choose b such that NbE — 10, 15, . . . , 40, 75, 

where E = 1500"1 £j£fj° {exp (1.5x0 (1 + exp (1.5xi))-1} . Furthermore, under PO 

sampling design, we have -K^ = n^j. Therefore, one can expect especially the first 

method of approximation will give excellent results. Table 2.3 shows the values 

of %RVB. In all cases, both methods of approximate variance estimation work 

extremely well. 
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E{na) 

VarEmp(OGHR) 

Varapp [OGHR) 

%BVB 

Varpwr (0GHR) 

%RVB 

10 15 20 25 30 35 40 75 

0.267 0.173 0.125 0.095 0.078 0.066 0.056 0.026 

0.270 0.166 0.119 0.092 0.075 0.063 0.054 0.026 

1.124 -4.046 -4.8 -3.158 -3.846 -4.546 -3.571 0 

0.259 0.164 0.120 0.094 0.078 0.066 0.058 0.030 

-2.996 -5.202 -4 -1.053 0 0 3.571 15.385 

Table 2.3: Performance of two variance estimation approximations under PO 
sampling, based on 1500 simulated PO samples from a fixed finite population. 

The first method of approximation of varp ( OGHR ) will De used under stratified 

sampling in Section 3.4. 

2.5 Combining OGHR and 0 

The estimator OGHR is exactly unbiased but may have large variance, while 

the estimator 0 is asymptotically unbiased and has variance less than the variance 

of OGHR- It is natural to consider convex combinations of the two estimators, to 

produce asymptotically unbiased estimator with potentially smaller mean square 

error than either OGHR or 0. Furthermore, under SI sampling design, it turns out 

that the estimators for Murthy and Nanjamma (1959), Nieto de Pascual (1954), and 

other estimators can be obtained from such combinations. 

2.5.1 Optimal Combination 

For A G [0, 1] define 

0 = X0 + (1 - A) OGHR-

Therefore, 

Ep0 = 0 + Xbias (o) 
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MSEp(e\ = EP(6-9Y 

= E, p 

VOLT; 

+ E„e-(e - Epe) 

($) + X2bias2
p (fl) 

X2varp (<?) + (1 - A)2 varp (§GHR) + 2A (1 - A) covp (§, 0GHR) 

+X2bias2 (§) . (2.36) 

Differentiate (2.36) with respect to A, equate to zero, and solve for A, we have 

varp [BGHRJ - covp [0, 9GHR 

A = (2.37) 

varn 
rP [OGHRJ + varp (§) - 2covp (§, 0GHR) + bias2 (Oj 

Since the equation (2.36) is quadratic in A and the coefficient of A2 is positive 

(varp (§ - 9GHR) = varp \0GHR) + varp (§) - 2covp (§, dGHRj\ , it follows that 

the given value of A in (2.37) minimizes equation (2.36). This optimal value of 

A is unknown in practice but might be estimated from the sample. 

2.5.2 Relationship to Earlier Literature 

Under SI design and for different choices of A we can obtain different estimators 

given in the literature: 

n(N-l) 
0 = ^ A + ( l - A ) rs + N (n - 1) XUN 

n(N-l) . 
= rs + -^77- 77^— {ys - rsxs) + A 

(ys - rsxs 

rs + 

N(n- 1)XUN 

n(N-l) 
N(n- 1)XUN 

^ ~ ( r* + W7 1 \ - (V' ~ TsXs 

xs \ N(n-l)xUN 

(ys - rsxs) + A 
n(N-l) 

xs N {n-l)xUN_ 
rsxs). (2.38) 

The estimator due to Murthy and Nanjamma (1959) can be obtained from (2.38) 

by taking 

A = 
n(xUN -xs) 

(n - 1)XUN - nxs 

and using the approximate (AT — 1) TV-1 = 1. 
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Furthermore, the estimator due to Nieto de Pascual (1961) can be obtained 

from (2.38) by taking 

N{n-l)xUN-n(N-l)xs' 

Of course, the Hartley and Ross (1954) estimator is obtained by letting A = 0, 

and the simple estimator is obtained by letting A = 1. 



Chapter 3 

ASYMPTOTIC RESULTS 

In this chapter we will discuss the asymptotic properties for estimators derived 

in earlier sections, including results on mean square consistency, central limit theory, 

and the Godambe and Joshi (1965) lower bound. 

3.1 Asymptotic Results for OQHR 

To study asymptotic properties of estimators in finite populations, we can 

imagine that we have sequences of finite populations and associated probability 

samples (eg., Hajek (1960), Breidt and Opsomer (2000), Isaki and Fuller (1982), 

Krewski and Rao (1981), Bickel and Freedman (1984)). We will assume that the 

Nth finite population, UN — {1, • • •, N} , contains N elements. Therefore, the first-

order, second-order, and higher order inclusion probabilities are sequences that de­

pend on N. For simplicity of notation, we will drop the index N. 

Definition 3.1.1 Given sequences of finite populations, the estimator 9 is design 

consistent for the finite population parameter 9 if for every e > 0 

lim Pr( 9-0 > e) = 0 
N->oo \ ) 

where the probabilities are computed with respect to the sequence of sampling de­

signs. 

Definition 3.1.2 Given sequences of finite populations, the estimator 9 is mean 

square consistent (MSC) under the design for the finite population parameter 6 if 

lim EP (e-e) = o, 
JV->oo V \ ) 
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where the expectations are computed with respect to the sequence of sampling 

designs. 

Remark 3.1.1 By Chebychev's inequality, 

/ - \ Ep(§-e) 
Prie-6 > ej < ^ — ' — . 

Therefore, if 6 is MSC for the population parameter 0 then it is a design 

consistent estimator for 6. 

Consider the following conditions, 

v4i— 7Ti > iTij > 7Tjv* > 0 for all ij 6 UN 

A2~ Eitjeu Ati = ° (Nnl f o r s o m e V*<2 

M~ Eid,k,ieu *ijki = O {N«) for some r, < 4 

A4- N^^'^'^TTN* -» oo as N -» oo 

A6- l i m s u p ^ ^ i Eiet/%2 < °° 

A6- lira s u p ^ ^ jf J2ieu A < °° 
2 

A7- limsupJV_00 jf J2iau Vft < °° 

A8- ]JmBupN_too jf Y^ieU ( | ) < oo 

A9- lim infiv^oo jf Ylieu xi > °-

Since we have sequences of finite populations, the first-order and second-order 

inclusion probabilities are sequences based on sequences of sampling designs. To 

keep OQHR defined through all the sequences of finite populations, condition A\ is 

assumed and simply says that the first and second-order inclusion probabilities are 

bounded away from 0, ensuring that the designs are all measurable. 

Since |Ay| < 2, the highest order for Ylijeu A% ls ® (N2). Therefore, Condition 

Ai is assumed to exclude this case and ensure weaker dependence among sample 

membership indicators. For similar reasons we have condition A$. 
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The expected sample size is Ylitu ^ — ̂ nN* i a n d we need to guarantee that 

this expected sample size will tend to infinity as N —* oo, even if the minimum 

sampling rate TIN* —» 0. If 77 or n* are large, meaning strong dependence in the 

design, then we need the sample size to go to infinity even more rapidly. Therefore, 

we assume condition A4. Assumptions A5 — Ag are moment conditions for the finite 

population. They will be satisfied, for example, if we assume 0 < lx < Xi < ux < 00 

and Vi <uy < 00. Later, we will demonstrate that conditions A\ — A4 hold for simple 

random sampling without replacement, simple random cluster sampling (SIC) and 

general stratified sampling designs. 

Theorem 3.1.1 Under Ai — Ag, QQHR is a mean square consistent estimator for 

Proof : Since the design is measurable under Ai, OQHR is unbiased for 9 by The­

orem 2.1.1. It suffices to show that varp [6GHR) -* 0 as N —> 00. Rewrite 

P \6GHR) = BN + CN - DN, where 

-y BN 

DN 

and 

Vi 

A,: 

UN i,j,k,leU lJ Kl 

AyfcJ 

Vi rkxt 

N3Xr/M 7Tj TTkl 
UN i,k,l€U l Kt 

£ A. ikl 

1 1 

— + -

It is enough to show that BN —> 0 and CN 

1/2 1/2 

&N ^N ^ the Cauchy-Schwarz inequality. Now 

B N 
_1_ £ ViVi 

i - ^ IT, TT, J 
IX; 7T,-

i,j€UD2 1 

(3.1) 

(3.2) 

(3.3) 

(3.4) 

0 as N —» 00, since ID^l < 

file:///6ghr
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— (±rA+—( T *Y ( Y yttf 

< J - i r v « + — FAM r & 
i 

2 „*2 \ 2 

ieu / 'v* \i,jeu / \i,jeu 

\ ieu / N* \t,]eu / \ ieu 

2 \ 2 

E«f) + 7^r-r £ & ^ E ^ 2 • (»•») 
"* \ ieu / JV 2 ^/v* \i,jeu / \ ieu 

By assumptions Ai — A9, B^ —> 0 as iV —> oo. 

Furthermore, 

CW < 4 2 2 J ^ |ria;jrfcx,A i jW| 
i V nN*xUN idM&J 

2 / i \ 2 / 1 \ 2 

i / \ A 
2 / 1 \ 2 x 4 £ r * (TFE*? 

v feet/ / \ lee/ 

l ^ ^ y is:(i) to •('•« A7-2-2 2 - 2 

By assumptions /li — A9, CN -> 0 as iV -> 00. This concludes the proof. 

There are a lot of cases in the quadruple sum of condition A3. To reduce the number 

of cases to be checked in determining the value of 77, consider the following results. 

Result 3.1.1 Consider 

(3.7) 
2̂.2 : ^ ( ^ - W = 0 ( ^ ) . 

/ / both A2.1 and A2.2 hold, then A2 holds, where Dt is the set of all distinct t-tuples 

(i1,i2,---Jt) • 
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Proof: The result follows from the fact that (1 - -Ki)2 ~ O (1) and the definition of 

Ay. 

Result 3.1.2 Consider 

^3.2 : J2meuDi (nW - KijKkif = O (N*). 

If both ^3.1 and A3.2 hold, then A3 holds. 

(3.8) 

Proof: Consider all possible cases under condition A3. 

1. If i = j = k = l£U then this case is covered under condition A2. 

2. If i = j ; ikl e UD3, then 

ikleUp3 ikleUDa 

— z_^ (nkl ~ 7r»7rw) 

ikleUDa 

< N J2 *«• (3'9) 
fc/Gf/D2 

This is covered by A$,\. 

3. If i = j , k — I; ik € £/o2 then Ankk — ^%k — n^k, and this case is covered 

under condition A2. 

4. If i = k; ijl G UDs then 

< TTij ( 1 - TTu) 



52 

and 

£ Ku< E 4 < ^ E i (3.io) 
ijleuD3 ijieuD2 ijzuD3 

This is covered by A$.i. 

5. If i — k; j = l; ij G UD2 then A ^ - = 7^ (1 — irtj). This is covered by A$,\. 

6. If i = I; j = k; ij G Uo2 then A ^ — n^ (1 - 7Ty). This is covered by ^3.1. 

7. If i = J; ijfc G UD3 then 

< TTij (1 - Trik) . (3.11) 

This is covered by ^3.1. 

8. If j = k; ijl G UD3 then 

A j j j ; = TTiji - TTijTTji 

< 7 T « ( l - 7 t y ) . (3.12) 

This is covered by A3,i. 

9. If j = I; ijk G UD3 then 

< TTij (I - 7Tjk) . (3.13) 

This is covered by A3.1. 

10. lik = l; ijk G C/D3 then 

^ijkk = TTijk TTijTTk 

< 7Ty(l-7r f c ) . (3.14) 

This is covered by A3^. 
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11. lfi=j: 

12. Iii = j : 

13. If i = k 

14. If j = k 

15. If ijkl e 

Consider the following examples. 

E x a m p l e 3.1.1 Assume n ~ O (N6) , for | < 5 < 1. Then # G # H is a mean square 

consistent estimator for 0 under SI sampling design. If 5 = 1, then the finite popu­

lation correction [fpc = 1 — -^) cannot be ignored and we can ignore it if 5 < 1. 

E x a m p l e 3.1.2 Consider simple random cluster sampling design (SIC). Under 

this design, M is the number of clusters, C is the cluster size, N = MC is the 

population size, and we draw m clusters from the M clusters via SI design and 

observe all elements in each selected cluster. Assume m ~ O (Af5) , for | < 8 < 1, 

then OGHR is mean square consistent for 9. 

E x a m p l e 3.1.3 For 0 < 5 < 1, OGHR is a mean square consistent estimator for 

0 under stratified sampling design, assuming that H^ ~ O (Ns) is the number of 

strata and Nh ~ O (N1'6) is the hth s tratum size if N 4^N* ~~* oo. Consider ST SI 

sampling design. Then 

. ( nh n h - l \ 
7T/v* = mm < —-——— > . 

h [NhNh-lj 

If N^TTIM* —> oo, where N = Ylh=i^h, then ST SI is a mean square consistent 

estimator. 

= k; il € UD2 then Ami = ^u (1 ~ TTJ) • This is covered by j43t l. 

= 1; i,k <= UD2 : Aiiki = -rtik (1 - m). This is covered by A3.i. 

— I] ij € UD2 then AJJJJ = n-ij (1 — 7Tj). This is covered by A3,i. 

— l\ ij € UD2 then Ai,-,-7- — 7Tjj (1 — 7Tj). This is covered by A3.1 

f/n4 then Aijki = nijkt - 'n^u- This is condition A3,2. 
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Details for Examples 3.1.1, 3.1.2, and 3.1.3 will be given in technical details 

appendix. 

In the following sections, we will discuss the asymptotic distribution of 9GHR 

under SI and PO sampling designs. 

3.1.1 CLT for §GHR Under Simple Random Sampling Without Replace­
ment 

Under 31 sampling design, we will show that 0GHR is asymptotically nor­

mal. Further, we will give a consistent variance estimator and show that the 

Godambe and Joshi (1965) lower bound is asymptotically attainable. Consider the 

following assumptions: 

D\ : 0 < lx < Xi < ux < oo and |i/j| < uy < oo, 

D2 : limAr-̂ oo r ^ = /ir, \imN^oo yuN = Uy, and l im^oo ££/* = px- (3.15) 

' 3 

where 

D3 : limyv->oo ^Ufl = a\ > 0 

(3.16) 

ieuN 

It follows by using Fuller (1996) Corollary 5.1.1.1 p. 220 that 

y5JV - vuN = op ( n - 1 / 2 ) , 

fSN - fUN = Op (n'1'2) 

where xSN = n~1^2sXk- It follows from Stuart and Ord (1987) p. 422, Exercise 

12.11, and and straightforward computations that 

varp [SWtSN\ = Ep [SWiSN — SW<UN\ 

cN < aN 
— Y^ {wi-wUNf 

ieuN 

-b N N 4^ Wi ~ WUN for n > 4 (3.17) 

ieuN 
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where 

^ A ^ — f Z ) ("'*-"'<'" ̂  
*€SJV 

— (>-H-^-^)('-^)-°(1» 

, . 3 6 3 3 
6 j V = = 1 " n + ^ V " A ^ ~ ^ ^ = ° ( 1 ) ' 

and 

C/v 
iV3 (AT - n) 

(n-l){N -l)2(N -2)(N -

i yv4 
-3) 

n-l(N-lY(N-2)(N-3) (}-v) 
= G > ( ± ) . (3.18) 

It follows from Fuller (1996) Corollary 5.1.1.1 p. 220 

Sw,sN - Sw,uN
 = °P [ 77^ 

Now we are ready for the following theorems, 

Theorem 3.1.2 Under Dx — D^ and simple random sampling without-replacement, 

AVsi (eGHR) = -^- ( I - £ ) s2
y_fsXtl 

is a consistent estimator for 

-ri/x,U' 
buN 
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Proof: First note that 

Sv-fUNx,uN = jj-—[ £ ^Vi ~ yvN) - ruN Oi - XUN)}2 

ieuN 

ieuN 

- fuN (Vi ~ VuN) {xi ~XUN)} 

= Sy,UN + ^UN^x,UN ~ ^UNSXy,UN 

i 

Sy-rSNx,sN
 = ~ ^ /^[(Vi ~ VSN) ~ fSN [Xi - X(jN)\ 

~ y,SN "^ rsN x,sN ~ ^rsN^>xy,sN + _ i rsJV V^sjv — XUN) 

so that 

Sy-r,Nx,aN ~ ^y-fuNx,UN ~ \^y,aN ~~ ̂ y,UNJ + V*N ~ ^UN) VaN + fuN) bx,aN 

^UN \px,sN ~ SX,UNJ + ^UN \SXy,UN — SXyySN) 

n _ _ _ 2 
— £ \JaN ~ rUN) ^xy,sN + _ 1 r«JV V-̂ s/v — XUN) 

^ 0 a s ^ n ^ o o . (3.19) 

Note that (Sxy:uN — SXViSN) —> 0 as A/", n —> oo by Cauchy-Schwarz inequality. 

Now 

J.M1 (-1 _ «.\ <?2 Q2 _ o2 
*2 n V N / "y-r,x,a _ °y~fsx,s Jy-fux,U - 1 = ^ " " l ^ ^ A 0 asA/,n->oo. i M h _ i 1 ! <?2 Q2 

*2 „ \ x N/ °y-fux,U V~rvx,U 

• 
Theorem 3.1.3 Assume D\ — D% and assume that n, N —> oo and TV — n —> oo. 

TTterc under simple random sampling without replacement 

6GHR-6 C \rm -W AT 

- = = = = —> N (0, 1) as N —> oo, 

where 

AVSI (eGHR) - ^-- (I - £ ) ^-f^x,^-
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Proof: From Example 2.1.1, 0GHR is the Hartley and Ross (1954) estimator and is 

given by 
- _ n(N-l) , , 
OGHR. = rSN + -TTj- ^—— {ySN - rSffxaN) • 

Define 

Now 

'GHR 

d 

N(n-1) XUN 

n(N-l) 
N i V ( n - l ) 

O 
n 

(3.20) 

XUN 

d 
xuN 

N VuN rSN + z — {(ySN ~VuN) + VuN - rSN ((xa„ - XUN) + XUN)) - ^ 
XJJN XUJ\ 

(1 - dN) rs + (dN -1)J- (ySN - yUN) + (dN - 1) ^ 

V 1 
- (dN - 1) ~ - (xSN - XUN) + -— (ySN - yUN) 

XUfi X^N 
ruN + rUN 

xu* 
[XsN X(jN) 

(1 - dN) rSN + {dN - 1) - — (ySN ~ yUN) + (dN - 1) -J^-
XUN XUN 

fs 1 
- (dN - 1) ^ (xSN -XUN)~ -— (fSN - fUN) (xSN - XUN) 

+-— {ySN -VUN)--^- (XSN - XUN) 
XUN xuN 

= K£)o'( i)+o(£M"~')+oG)°»( i) 

+0 U)"' (""*)+ °>(n~">+ E T <5» w* 
fU« (x. 

= MO + r E 
kes 

oP (n-1) + — V 
XUN ^ kes 

XJJM X*UN 

yNk - yuN - fUN (xNk - XUN) 

n/N 

yNk - yuN - fUN (xNk - xUr 

n 

xvN) 

(n *) + - — w N . 
XUN 

(3.21) 
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Since 

\VNk ~ VuN - rUN (xNk ~xuN)\ < \VNk\ + \yuN\ + \ruN\[\^Nk\ + \xuN\] 

11 

< 2uy + 2-pUj; < oo Vfc, 
I'X 

it follows that the Lindeberg-type condition, 

lim ^ ^ * 7 < l ^ l > ^ > = Q f o r a l l e > 0 . ( 3 . 2 2 ) 

N->°° EkeuN
 wNk 

holds (Ash (2000)). Hence, by Hajek (1960) Theorem 3.1, WN has an asymptotic 

normal distribution and so 

v^(6 7GHB. - , c 

_ L _ (l _ JL\ C2 
£?, V N) uy-fux,U 

UN 

AT(0, 1), 

where 

~Vk-VuN -fuN(xk-XuN) 
AVsi [QGHRJ = varSI < — y^ 

t 

1 1 
xuN 

n/N 

Corollary 3.1.1 Under conditions of Theorem 3.1.3, 

9GHR~ 0 c 

JAVSI (0GHR) 
M{0, 1) N - » o o , as i V ^ o o (3.24) 

Proof: Since 

l /, i ; ^ 4 ^ 5 / ( 6 G H R ) ^ /a 

JAVSI (§GHR) JAVSJ (eGHR) JAVSI (eGHR) 

then the result follows from Theorems 3.1.2 and 3.1.3. 
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Result 3.1.3 Under the model, 

Ee AVSI( 

£ : yi are independent (/fa^of) of > 0, Vi, 

asymptotically attains the Godambe and Joshi (1965) lower 

bound. 

Proof: It follows from the model that 

Et(yuN) = P*uN Ei{ru) = P 

var$ {yUN) = -fa J2ieu °i varZ (fu) = w Eieu % 

Recall that, Wi = yi — y~uN — ^u {x% — xuN), then E^ (wi) = 0, and 

Y^ ( \ N~l 

2_^ var^ (Wi) = 

(3.25) 

N •£•? 
ieu ieu J L jeu • 

Therefore, the model expectation of the approximate design variance is given by 

1 1 
Ef t2, n 

(l - - \ S2 
Ee 

buN ieU 

UN {, ieu 

— ^{xi-xUNf 
N - 1 

= GJLB + O 
nN 

Since GJLB is of exact order O (n l) , it follows that 

Et tl 
11 h _ H) C<2 
n I1 N) *V TlJX,U 

GJLB 

and so OQHR asymptotically attains the GJLB. 

= 1 + 0(N~1)^1 as N-4QO, 
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From Section 2.4.1, recall the discussions of approximating varp {OGHR) • It was 

given that 

1 v-v Wi vbj An 
var, app [VGHRJ NH2 2_^ (3.26) 

where 

tbi = (N - 1) yi + — - ir„xi 

will be used to approximate varp (9GHR) • Under SI, this method of approximation 

is asymptotically equivalent to AVsi ( OGHR ) • 

Result 3.1.4 Under conditions of Theorem 3.1.3, 

1 1 

UN |_ i£s 

= AvSI(eGHR)+op^y 

Proof: Since 

- si AT 
Wi — W = J\ 

(Vi ~ VsN) - (xi - xSN)rSN + - ( l - -^J (yt - ySN) 

therefore, 

^2 {'>J)i ~w) = N2^2i(yi-ysN) - ^i - xSN) r, 

N2 / n \ 2 

Hence, 

varapp I 6^;? 
5 / 1 1 

N2*lN n V NJ n- 1 ^ v y 
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+ 
1 1 

x2uN
n3 

1 2 / H N 2 
+ — — ^ (1 xlN v? V N 

*uN
 n2 

7 Y. (Vi - VsN) {Xi - XSN) 
n — I z—' 

rSN 2 / H N 2 

V N 

AVS, {BGHR) + Ov ( ± \ + Op 

= AV sr [OGHR] +o: M n 2 

<M* 

i)++^U 

In the following sections we will discuss the asymptotic results of OGHR under 

PO; OQHR is asymptotically normal. Also, a consistent variance estimator is given, 

and the Godambe and Joshi (1965) lower bound is asymptotically attainable for the 

asymptotic design variance. 

3.1.2 CLT for OGHR Under Poisson Sampling 

From Example 2.1.3, recall the definition of OGHR under PO sampling design, 

1 - 1 . W - l . 1 . 
OGHR - ^ + - j ^ - ^ + — t * ^ ''r-K''XTJ (3.27) 

where y^ = y^j (NiTk) • Consider the following assumptions 

E2 

E4 

0 < lx < Xi < ux < oo and \yi\ < uy < oo. 

0 < 7TjV* < 7Tj < TC*N < 1. 

NnlN (1 - n*N)2 -> oo as AT -> oo. 

liminfjv^oo jf Y,keuN (Vk ~ fUNxkf > 0. 

The term N~lty„ in (3.27) asymptotically is ignorable as we will see in the 

following lemma. 
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Lemma 3.1.1 Under E\ — E\ and under Poisson sampling, 

1* -nf-1 
N* 

Proof: Since 

En 
_1_ y ^ Vk 

N .4^ Nnk 

< 

keuN 

1 
NnNt 

0. 

-T 
N ^ 

Vk 
keuN 

1 
P\NTT jV* 

var, N .frf Nnk nk 

= — ŷ  ( Vk V1 ~ ̂  
keuN 

< 
N**%. N z2 vl 

keuN 

= O 
NH3

m 

Therefore, 

•^n 

n2 

var„ 
J_ V^ yk h^s) 

keuN 
+ E„ 

1 . n2 

(3 

= o. p l (A^*) 2 

The Lemma follows by using Fuller (1996) Corollary 5.1.1.1 p. 220. 

Lemma 3.1.2 Under E\ — E4 and under Poisson sampling design, 

AVpo \0GHRJ p 

AVPO d GHR 0 
as N —> 00, 

where 

AVPO (0GHR) = 2 Y](yi- -fiinrXi ) — - ^ (3 
UN ieuN 

file:///0GHRJ
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and 

AVPO (OGHR) = j ^ z - Y, (V* ~ fvNXi) 
1-7T, iN 

Proof: Since 

ieuN 
KiN 

(3.30) 

N2xlNAVPO (t GHR Ei^-l^y1-^1^ 
sec/AT 

= E 
i€UN 

N 

Vi - rUNXi 

KiN KiN 

N ^TT\ '"t/jV I •£'• 

n2 1 ~ KiN I{i€s} 

(yi-ruNxi) — — 
7 T - t i 7 T - > T 

ieuN 
TTiN TTjAT 

+ ' ^ *V* . E 2 1 ~ ^iJV ^{i6s} 

ieuN 
KiN niN 

1 — 7i"iiv I{ies} 
ATtrJr -rUN) V (y,; - rUNXi) xt-
Jv / f-rf iriN iriN 

Therefore, 

AVpo [OGHR) — AVpo [OGHR 
N2 

KiN 

. , I f _ \ 2
l~'KiN I{ies} 

+ T T U - TUN xt— — 

- 2 ( — £r7r - fUN ) (yi - fUNXi) Xi— %N 

Hence 

AVpo [OGHR] 

AVpo I OGHR) 

< 
z^iet/jv '2/' ruN

x'i 
\ 2 1-TTi, ^{ie«} - 1 

Z îec/jv ^ ruNXi) v.^ 

21-7Ti.IV ^{i£s} 

Ntr*~fUN) E^JVi-ru^)2^ 

+2 tr-n TUN 

l^ieuN\Vi ruNXi)Xi ^l
N

N
 niN 

ZsieUN \Vi r'UNXi) mx" 

= AM + BM + CM. (3.31) 

http://21-7Ti.IV
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Now, 

EP{A2
N) = 

varr, 

Eie£/„ (Vi rUN
xi) -*N 

< 
YsieuAVi-ruNXif IN 

N^Al-^fiEieuJyi-ru^/NY 

0 as i V - * o o , by E3 

since Ep (A%) -> 0 => Ep \AN\ —> 0 as TV —> 00. Next, 

(3.32) 

B N N ru. 
E 

< 

l^iEUN \Vi rUNXi) ^ 

< . (1 - **) [Efe^ (Vi - fv^f IN] \N 
ruN 

EP{BN) < Eieu, *VN 

0 as iV-> 00, 

2-, Varp y - t-r7r 

since 

vo,rp ^ ur7r 

< 

N2 ^ ITiTti V 

NnN 

- O 

ieu 

Nir N* 

and 

Nn3
N,(l-n*N)2<NK3

NAl-v*N) 

Since £ p ( / l^ ) 

Ep (CN) —* 0 as N —> 00, and £p 

0 as iV —> 00. 

(3.33) 

0, Ep (BN) 
AVPO(eGHR) _ 

H R ) 

0, then by Cauchy-Schwarz inequality 

AVP 

n , ;4V>o(0Gff«) 1 P 
0, hence ——f-- f — 1 —» 

' 4Vpo(0GWfl) 
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Theorem 3.1.4 Under conditions E\ — E4 and Poisson sampling design, 

JGHB, — 

AV PO \6GHR) 

A/"(0, 1) as N -> 00. 

Proof: Recall the definition of 9GHR under PO sampling design from equation 

(3.27); therefore, 

'GHR 
i lyir Zy 

XUN N NXUN \N 

XUN N 

xvN \N yV XUN N N 

o„ 
1 

+ 
i lV7V J,v 1 TJ., lX7T 1 JV X7T l'X 

"\NnN,J x,j„ N xUri N 

°>{lki) + Nk^ ruNXi) 
l{ies} 

- 1 (3.34) 

Note that (y, — ruNXi) (I^^n^ — l ) are independent with mean 0 and variance 

(Vi ~ ruNXi) (1 - 7riN) n~x. Define 

CN = var 

1 - TTjAT 

Y\ (Vi ~ ruNXi) ( - i 
l&J N 

ruNXk) 

> hm mf — > (v*; 
\ keuN 

ruNXk) Nir%* (1 - ir*N) 

00 as AT —> co (3.35) 

by £3 and £'4. Now, 

Y] EP (Vi - ruNXi) ( - ^ - 1 ) = V (yi - r ^ X j ) 4 < ( 1 ) niN 

•77? L \ niN / j .77? \niN J 

+ I • 1 ) (1 - niN) 

file:///6ghr
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X^ (y* - rvN
xi 

+ (1 - -KiN)} , 

4 J (1 - 7rijv) 

HN 

< ^2(Vi- rUNXif \ - 3 - + 1 !• 

ieuN 

< 
rH — '" N* (1 - n*Ny [lim inf „_« , i J\eUff (Vi - rUflXiY /N 

so that 

T,ieuNEP[{yl-fuNxi)(^-i)_ 
< 

Nn3
NAl-n*N) * \2 

2 E i 6 i / w ( y i - ^ A , a : t ) /N 

lim inf jv_oo Eiet/jy (y< ~ ruNXi) / # ] 

0 as N -> 00, (3.36) 

the Lyapunov condition holds for 5 = 2. Using Ash (2000) p.309, Lyapunov's con­

dition implies that 

< # £ (Vi - rUNxt) ( f e _ 1) ^ jV (0, 1 ) as N —> 00. 

From Lemma 3.1.2 

^ p o ( 0 G * f l ) = ; ^ ^ X > < 
"c/w iet/jv 

2 1 - KiN I {it*) 

is a consistent estimator for 

AVPO (OGHR) = ^ 2 - £ & ~ fu*Xi)7 

u» ieuN 

1 - 7 T , i/V 

TTiiV 

and hence the theorem follows. 
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Result 3.1,5 Under the model 

Ee 

£ : Vi = @Xi + et, where et are independent (0, of) , 

AVpo \QGHR) asymptotically attains the Godambe and Joshi (1965) lower 

bound. 

Proof: Prom (3.30), recall the definition of 

AVPo (OGHR) = j ^ ~ E (^ ~ Jj^xA 
UN ieuN

 v ' 

Since 

E{ (yi - fUNXi) = 0 

1 ~ niN 

then the model expectation of the approximate design variance is given by 

Ef AV, PO [QGHRJ 
1 1 - 7!"iJV 

+2 2s 
f"i^N ^ 

1 - KlN J 2
 2

 2 1 2 

< "* ~ NC< + NXi 

jeuN i J J 

= -y 1 - TTiAf 2 

w4„ 
1 T 

iV 

1 - KiN 2 
0; 

+ 
1 

*4„ -̂E 1 - TTiJV 2 
X~ 

N ^ NnlN ieuN "v 

N %f NniN 

/V Z ^ -,.2 yv <-- xt 
jeuN J 

< GJLB + 

1 

N2TTN*X2 

UN 
jj E *<2 

+ NH^xfj 
ieuN 

jeuN 3 J 

= GJLB + O 
NHN, 

(3.37) 

Since 

GJLB = -r > — a; 
y-2 Z _ / T T ^ , rr ie(7jv 

2 has order O I — 

file:///Qghr
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then 
Ef AVPo 

GJLB 
l + O 

N 
1 as N —> oo. 

From equation 3.26, 

varapp[9CHR) = ^ E ^ 
i&j t&j A y 

t a j / i j j 

PO 

N4a E 1 - 7 T , 

, f /w ies * 

i - 2 

where 

wt = N 

Result 3.1.6 Under Ex - EA 

_ It \, 1-ni 

yi Ntr7rxt + N yi 

var, app (eGHR) p=° AvPO(eGHR)+o(-^ 

Proof: Since 

var. aj)j) ( w ) P~ -N^T,— 
i - 2 

1 - 7T,; 

N2Xj, '—* IT, 

N2x\ 

tea 

, E 

2 
i 

1-TTi 

_ 1; W 1-7r< 

N2x), *—' 7L 

1 
AT 

TV '" 7 A%; 

2 

2 ( ^ JrvXi) + N2-2 ^ N2X X2 ^ 
(i - nr 

4 » i 
JV i g j 

2 V - (1 " 7T,()
2 / 1 

JN ies 
Nn: •3 \ ^* prtrnZi J Ui 

AVPO (OOHR) + jj^r- £ ^ v ^ - I / ? ^ . } 
UN teuN

 l 

0. ^ (1 - TTjf ( 1 f \ 

yv2 ̂ 2 
' ^ ieŷ - W 

< AvFO{eB„K)+ ' E ^ . ! 
"£/jv ie t /^ 
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+ N2 xuN ieuN 

< AVPO[0GHR) + 

^ (1 - TTjf f ± . 

ieuN 
0 N3*ixlN 

N2^xlN 

1 

~N 

°(*fc) 

3.2 CLT of Separate G H R Est imator for Stratified Sampling Des ign 

We consider the asymptotic distribution of tySepsGHR. Consider a sequence of 

stratified finite populations UH — { 1 , 2 , . . . ,NH} — u"=1UhH, \UHH\ = ^hH > 4, 

NH — Ylh=x NhH, where H —> oo. From the hth. population, a stratified probabil­

ity sample s # = U%=1ShH is selected, where in stratum h, S^H C UUH is selected 

via a probability sampling design PhH (•), independently of the sample selected in 

any other stratum h. Let {7Tj/f} , {TT^H} , {^^^1 i and {iiijkiH} be the first, second, 

third, and fourth-order inclusion probabilities respectively. 

Consider the following assumptions: 

Si • NhH <N*<oo for all h = l,...,H and all H. 

Si : Tim > KijH > 7T* > 0 for all i, j E UH and for all /f. 

£3 : E f = i t2xhvarP \0GHR,seP,h) -> 00, as # -> 00. 

54 : 0 < fc < Xj < ux < 00, and |yj| <uy<oo\/jE UH-

Theorem 3.2.1 Under assumptions Si — £4, 

tySep,GHR — ty C 

J £ f c = l ^ ^ p \eGHR,Sep,h) 

A/"(0, 1) as H-^oo. 



70 

Remark 3.2.1 An unbiased estimator of varp (0GHR,SeP,h) is discussed in theorem 

2.2.3. 

Proof: Since 0, GHR,Sep,h IS applied to each stratum separately 

and sampling is independent across strata then the sequence 

txiOGHR,SeP,i, tx2&GHR,SeP,2, • • •, txH0GHR,SeP,H is an independent sequence. 

For a measurable sampling design txh9GHR>SePjh is an unbiased estimator for tx\fih-

By triangular inequality and from equation (2.22), we have for all h = 1 , . . . , H 

that 

txh.6GHRtSep,h = t xh\ 0GHR,Sep,h 

< 

< 

^Xk J My 

I, + I. + 
'•X ''X 

N*ux y y y x 

(3.38) 

Using (Ash p.308), in this uniformly bounded case Lindeberg's condition holds, and 

the result follows. 

Remark 3.2.2 The condition Ylh=i^xhvarp \^GHR,Sep. 

where varp (txh®GHR,Sepyh) — 0 for infinitely many strata. 

oo excludes the case 

Example 3.2.1 Under stratified simple random sampling without replacement 

sampling design, 

Z^h=l txh \t ?GHR,Sep,h 

EhLl tlhvarP (®GHR,Sep,h 

Af(0, 1) as H -* oo. 

Under this sampling design, n^n > IT^H = minft j ^ ^ I * > 0, Also, the 

varp ltxh,0GHR,Sep,h) can be computed from Theorem 2.1.2, and we have to exclude 

the case where this variance is zero for infinitely many strata. 
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3.3 Central Limit Theory for OGHR 

The with-replacement GHR estimator OGHR was introduced in Section 2.3.1 and 

given by equation (2.26). In this section, we will discuss the asymptotic distribution 

of OGHR. under two different cases where OGHR is asymptotically normal with a given 

mean and a given variance. The two cases are that the population size TV is fixed 

and the number of independent draws, m, tends to infinity, and when both iV and m 

tend to infinity. From equation (2.23) recall the definition of Zm (•), 

Zm (y) = jf Efcec/ fj{^=k} zm (x) = ± £ fceC/ fJ{Ki=k} ] 
\ (3.39) 

Zm (r) = jf Ekeu fji^k) ZNi (y) = £ £ f cei/ fJ{Kt=k} ) 

where yk = ykj' (Npk) andrfe = yk/xk. Also, recall the definition of QQHR. from 

equation (2.26), 

1 - 1 -
&GHR = ZNm (r) + -—ZN m (y) + ——Z N m (y) 

xuN (m - 1) XUN 
TTi — — 

ZNm (r) ZNm (x). (3.40) ( m - 1)XUN 

Consider the following conditions, 

^i : 0 < /x < Xj < ux < oo and |j/j| < uy < oo, 

F2 : 0<p*<pk<p*<l and pk = iV"1 + ckN^1+T\ ck G [-c, c], 

for some c, r > 0, V k € U, 

F3 : limN-,^ fUN = [xr, \\mN^0OyUN = /j,y, and l im^oo %„ = fxx > 0, 

F4 : liminfyy^oo Slv > 0, where wk = yk - rUtfxk. 

It follows under F3 and by using Fuller (1996) Corollary 5.1.1.1 p. 220 that 

ZNm (X) - X U N = Op (77T1 / 2) , 

ZNm (y) - yuN = Op (m"1/2) , (3.41) 

ZNm (r) - fUN = Op (m"1/2) . 

Consider the following lemmas 
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Lemma 3.3.1 Assume F\ — F4. For fixed N, as m —> oo, 

-, T\ZNm (y) = Op[ — 
(m — 1) \m 

Proof: Since 

E„ 
( m - 1 ) 

ZNm (y) _J LF 
( ro- l )mW p 

2/*; ^"{Ki=fc} 

(m — 1) 

= 0 [ -
m 

1 y ^ Vk 
N ^ NPk 

(3.42) 

and 

var, 
1 

( m - 1 ) 
ZNm (y) rvar„ 

i= l keU yK r K . 

2/fe \ l - P k 

m-l)2m2N2 

m-l)2mN^\NpJ 

^h\Nvk) 
i i 

o 

m-lym 

1 

iVpfc 
(3.43) 

it follows that 

1 
E„ 

(m — 1) 
Z Nm — var„ 

m1-

1 
( m - 1 ) 

Z/vm (y) F„ 
m 2 

(m — 1) 
^wm (y) 

o 
rrf 

(3.44) 

The Lemma follows by using Fuller (1996) Corollary 5.1.1.1 p. 220. 

Lemma 3.3.2 Assume /*\ — F4. As N —+ oo and m —> oo, 

7 TTZNTU (y) = Op ( — ) . 

(m — 1) \ " V 
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Proof: From equation (3.42), we have 

E„ 
1 

p[(m-l) 
ZNm (y) < 

l l 

(m — 1) Npt 
xr 2-^i ^k 
N 

keuN 

= o 
m 

(3.45) 

and from equation (3.43), we have 

var„ 
1 

(m — 1) 
zNm (y) < 

l l l 

(m - l)2 m (Np*f N Z^Vk 
keuN 

m6 

Therefore, 

E„ 
[(m-1) 

zNm (y) varv [(m-1) 
ZNm (y) + En 

( m - 1 ) 
zNm (y) 

n2 

= o 
m' 

(3.46) 

The Lemma follows by using Fuller (1996) Corollary 5.1.1.1 p. 220. 

Under conditions F\ — F4, rewrite 9QHR as 

/ 1 \ 1 _ m — 1 + 1 -
OGHR = Op — + ZNm (r) + 3—Z N m (y) - -——Z N m (r) ZNm (x) 

\mj XUN (m-l)xUN 

Therefore, 

>GHR = Ov 

m 

m 
(m- 1)XUN 

{ZNm (r) - rUff) (ZNm (x) - XUN) 

m — 1 

— TTh — Tfi 
ZNm (r) - - -——fUNZNm (x) + —fUN 

(m-l)xUN " m - 1 

, i < 7 / \ yuN 
+ -—ZN m (y) - ^ L 

xuN XUN 

= 0T, 
1 

m 

m, 
(m- 1)XUN 

m 

(ZNm (r) - rUN) {ZNm (x) - XUN) 

m — 1 

1 
+ : xuN 

ZNm (r) - -, . 
(m - 1) xu, 

{ZNm(y) -yuN) 

-TUN (ZNm(x) -XUN) 

= Op I - ) + Ov (- ) + Ov 1 ml \m, m 

1 \ 1 -
+ -— {zNm(y)-yuN) XUN 

m -ruN (ZNm(x) - XUN) 
(m- 1)XUN 

Op [ — ) + -— (ZNm (y) - yUN) - -—TUN (2Nm (x) - XUN) 
\mj XUN XUN 
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Hence, 

/ 1 \ 1 m l{Ki=k} 

Pk 
- 1 

m / m,NxuN 

where vj\. = (yk — ryNXk) • Note that 

^2> 
keu 

are iid with mean 0 and variance 

{Ki=k} 

Pk 

I{Ki=k} 

Pk 
(3.47) 

(3.48) 

Vw = N-'Vt 

where 

2 2 

E ^ f c , 2 

It follows that 

Vw N*Vl y V 2 m - l ^ 
i£s 

m 

is an unbiased estimator for Vw, where 

ies keuN
 lK 

Remark 3.3.1 Rewrite Vw as 

where Vi = N - 1 E f c e ^ P f c 1 ^ * ^ } a n d $ = m ~* E < e . ^ -

(3.49) 

(3.50) 

(3.51) 

(3.52) 
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The rth mean, vT, of N l Y>keuN Pk lu^{«,=fc} i s S i v e n by 

1 V^ wk 

= O 
N^p] i i — 1 

Define ^ — Ep (-01 — N ltw) ; further, 

2 

M4 = 4̂ - 4^3"^ + 6^2 f ^ 
f \ 3 A N 4 

(3.53) 

(3.54) 

(3.55) 
.W/ VAT, 

For finite fourth moment iid random variables (Mood et al. (1974) Theorem 3.3 

P. 11), 

1 a2 \ * ( m _ 3 T / 2 

varp (S^) = — I /x4 -14 
^ m \ m — 1 

Lemma 3.3.3 For fixed population size N, and as m —> 00 i/ie estimator 

1 

(3.56) 

AKW« ft Wfl(CGHfi 
m i 

.2 K -

is consistent for 

AVwR ( &GHR ) = Zo~ Vw, 
\ / mxf, 

uN 

where Vw and Vw are given in equations (3.49) and (3.51) respectively. 

Proof: From equation 3.55, /n4 is finite when the population size N is fixed. There­

fore, 

E„ 
AVWR e, WR "GHR 

AVWR (8GHR) 

- 1 
Ep (Vw - Vw 

var, 

V2 

V2 

0 as m —> 00. 
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The following lemma covers the case when N, and m —> oo. 

Lemma 3.3.4 Under conditions Fi — F4 and as m, N —> oo the estimator 

AV\VR I QGHR ) — —o_o Ku 

is consistent for 

AVU WR I PGtffl ) = -4 2 " M i l -

Proof: From equation (3.55), fi4 = O (1). Hence from equation (3.56), varp ( Vw ) = 

OR. 
From equation (3.50), recall the definition of Vx and under the assumption F2 

we have 

V f t 

^ 1 + cfc/W /V 

= N(N-l)Slu + ±J2wt°(N2~T) 
u 

where the O (•) terms are uniform in k € U. Hence 

•2 

Therefore, 

£L 
y4K WR IOGHR) 

4 — f - l 
AVWR(0, WR VGHR 

EP[vw-v„y 
[S2

wU + 0(N-

varp (Vw) 

[SwV , + 0{N-
1 

Of 

r ) ] 2 

o 

0 as m —> oo. 

(3.57) 

(3.58) 
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In the following theorems we will discuss the asymptotic distribution of 9QHR 

when N is fixed and m —> oo and when m, N —> oo. 

Theorem 3.3.1 For fixed population size N, 

OGHR - 0 c 

AVWR U WR \ VGHR 

J\f (0, 1) as m —> oo. 

Proof: From equation (3.47), we have 

'GHR -9 = 0 o -

i=i fcec/ 

Define 

AVWR. {OGHR) — vorT, 

-, m r T 

*u„tf£f,N [ Pk 
i-i keu 

are iid (o, v„) 

mx2
UN 

Vw 

Therefore, by a standard CLT (Casella and Berger (2002) p.236) 

9GHR - 0 c 

AVWR [9, WR VQHR 

A/"(0, 1) as m —> oo. 

Since 

'GHR — 
AVWR [OGHR) 

'GHR — 

AVWR. \0GHR) \ AVWR [OGHR) \ AVWR [OGHR) 

(3.59) 

(3.60) 

(3.61) 

then the theorem follows from Lemma 3.3.3. 

file:///0ghr
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Theorem 3.3.2 Under conditions F\ — F4 

TGHR 

IAVWR \0GHR) 

Proof : From equation (3.47), recall that 

J V ( 0 , 1) as m, N -> oo. 

(3 

It follows from equation (3.55) that 

P 1 Mm Z_y Wfc 

keu 

I{K,=k] 
- 1 

Pfc 

and hence 

Define 

m r 1 

2^ Ep l A ^ 2-> 
i = l 

Afm 
^fc 

fcef/ 

{/t,=fc} 

Pfc 
- 1 

m 4 

= ° '^4 
m4 

(3 

<7t — uarp — > > --7 — - 1 

\ i=i fcet/ 

using equation (3.58), we have 

_1_ 

m 
[S2

wU + 0{N-T)}. 
no 

Note that 

/^i=i Ep 17v^ L^keu wk 
VI 

£*->]} Pk o&) 
s~t4 _L rc2 

m.2 

= O 1 \ 1 

0 as AT, m —> oo, (3 

the Lyapunov's condition holds for 5 = 2. It follows that 

<#£E«* 
=1 keu 

1 {«<=*} _ 1 

Pfe 
•A/"(0, 1) (3 

file:///0ghr
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as m, N —> oo. The theorem follows from Lemma 3.3.4, and Slutsky's theorem. 

Result 3.3.1 Under the model £ : yu = Pxk + ^k where tk are independent (0, a\). 

Then E^ AVWR [6GHR) is not attained the Godambe and Joshi (1965) lower bound 

as m —> oo and attained the Godambe and Joshi (1965) lower bound as m, N —> oo. 

Proof: Under the model £, we have 

#£ (Wfc) o, 

varc (u;fc) 

2 2 ^ 2 \ "̂  "̂/ 

ieuN 

E$ (tw) 

Ei (tw) 

o, 

var^ (tw) 

keuN keuN keUN 

Therefore, 

Ec«) = * | £ = f - < 

keuN
 Fk keuN

 FK keuN
 K 

+ 
Xk -y 

Hence, 

E(_ AVWR [OGHRJ = Ee 
NH mlv'x 

y-\ 
t-' xf 

-Vx 

- x , 
ieuN ' 
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therefore, 

+ 

+ 

Et 

Z>- Vk 
mN2^Nk^N Pk 

-Ou 
mNxlN N2 ^ Vk 

mNxUN 

1 

mNxjr 
UN 

N ^ xk 
keuN 

1 Y ^
 x] 

keuN
 Fl 

1_ y , a[ 

ieuN < 

mN 
1 V ^ 
N £" xf 

leuN ' 

mN2 m" E UN keuN
 Pk 

1 - Pk , 2 , ,-, 
mN 

GJLB=O(± 

AVWR \QGHR) 
= l + Ov 

GJLB 

If the population size N is fixed, then the Godambe and Joshi (1965) lower 

bound is not attainable. However, if the population size N —> oo, then the 

Godambe and Joshi (1965) lower bound is attainable. 

3.4 Simulat ion Resul t s 

In this section we will compare various ratio estimators through simulations. 

The entire population consists of {x\, y i ) , . . . , (xioooi yiooo) • Consider three differ­

ent sampling designs, simple random sampling without replacement (SI), Poisson 

sampling (PO), and probability proportional to size without replacement (7rps). 

This section will be divided into two subsections, covering the unstratified case and 

stratified case. 

file:///Qghr
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3.4.1 Simulation Results For Unstratified Sampling 

Let Xi be independent and identically distributed (iid) as 

Gamma(a = 3, (3 = 2), with mean a(3 = 6 and variance a(32 = 12. 

Let \ji — 3XJ + Cj with {ej} independent N (0, 25x'j) . (Under this particular 

models the bias of 6 is quite small, as mentioned in Remark 1.3.1.) Let Zj denote 

the size variable when 7rps sampling is used, and take 

Zi = 10 + Xi + rii, {r]i} iid N (0, 1) 

independent of {e^} . Under 7rps sampling, first and second order inclusion probabil­

ities are obtained from the out= JTPROBS option in SAS proc surveyselect. 

For PO sampling design, the first order inclusion probabilities are simulated by 

= exp (1.5:r») 
1 + exp (l.bxi) 

and b is chosen such that NbE — 10,15,. . . ,40,75 where E — N~1Y2uei an<^ 

Zi — exp (1.5XJ) [1 + exp (1.5XJ)]_ . 

Furthermore, by independence the higher order inclusion probabilities are de­

fined for PO sampling as follows: 

•Kij = TTiiTj, for ij 6 sD2; 

Kijk^'KiiXj'Kk, for ijkesD3; (3.66) 
TTijfcf = KiirjTTkTri, for ijkl G sDl. 

MSE(e ) 
Define the mean square error (MSE) ratio R, = —MSE"* ' w n e r e the MSEs 

are empirical values based on 1500 simulated samples realization of the finite pop­

ulation. Values of R less than one favor OGHR- If the numerator and denominator 

of R were independent variance estimators, then R would have an approximate F 

distribution with 1499 numerator degrees of freedom and 1499 denominator degrees 

of freedom. The corresponding quantiles are F (1499,1499, 0.025) = 0.903676 and 

F(1499,1499,0.025) = 1.1065913. The MSE's of 6 and 9GHR are dependent, how­

ever, and we would expect that the MSE ratio should have distribution more tightly 



82 

concentrated around one than the F-distribution when the two estimators are be­

having equivalently. That is, if R. < 0.9 or R > 1.1, then we can conclude that this 

is a significant difference in estimator performance, and is not due to chance in the 

1500 replications of the simulation experiment. 

Results for simple random sampling without replacement at various sample size 

are shown in Table 3.1. At all samples sizes, 9QHR, and 9 are virtually indistinguish­

able in this case. 

R = 
MSB(e) 

MSE(6GHR) 

MSE (§} 

sample size 
10 

0.986 

0.450 

15 

0.992 

0.287 

20 

0.991 

0.216 

25 30 

1.000 1.000 

0.178 0.137 

35 

0.996 

0.121 

40 

0.993 

0.108 

75 

1.003 

0.047 

Table 3.1: Empirical MSE ratios, each based on 1500 simulated SI samples. 
At various sample sizes from a fixed finite population. 

Results for 7rps sampling without replacement, as implemented in SAS proc 

surveyselect option METH0D=PPS, are summarized in Table 3.2. In this case, the 

two estimators behave equivalently at small sample size (n < 30). For large n, 9 

is essentially unbiased and has lower variance than QQHR-, SO the MSE ratios are 

significantly greater than one. This is consistent with the expectation that main 

advantage of 9QHR is its exact unbiasedness. 

The sample size under PO sampling is random. Table 3.3 displays MSE ra­

tios at various expected sample size, Ep (ns), ranging from 10 to 75. In contrast 

with Table 3.2, MSE ratios are high at small expected sample size favoring 9 over 

9QHR- This phenomenon is similar to that seen in comparing the weighed sample 
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R = 
MSE{O) 

MSE(§GHR) 

MSE (e\ 

sample size 
10 

0.994 

0.426 

15 

0.979 

0.265 

20 

0.960 

0.202 

25 30 

0.937 0.886 

0.165 0.129 

35 

0.894 

0.126 

40 

0.863 

0.101 

75 

0.807 

0.053 

Table 3.2: Empirical MSE ratios, each based on 1500 simulated 7rps samples. 
At various sample sizes from a fixed finite population. 

mean or Hajek estimator ( E s M t V S s 7 1 ' * 1 ) to the Horvitz-Thompson estimator 

{Y^sV^k1/^) m c a s e of random sample size (see Sarndal et al. (1992), p. 87). At 

higher expected sample sizes, the variation in sample size is less critical, and 9 and 

OQHR
 a r e essentially equally efficient. 

R = 
MSE (6) 

MSE(§GHR) 

MSE (§) 

Ep (ns) 
10 

0.840 

0.224 

15 

0.852 

0.147 

20 

0.887 

0.111 

25 30 

0.939 0.957 

0.089 0.075 

35 

0.963 

0.064 

40 

0.973 

0.055 

75 

0.973 

0.026 

Table 3.3: Empirical MSE ratios, each based on 1500 simulated PO samples, 
at various sample sizes from a fixed finite population. 

The overall conclusions from Tables 3.1 to 3.3 are that 9 and QGHR perform 

similarly, with QGHR having some advantages at small, fixed sample sizes due to its 

unbiasedness, and 6 having some advantages at small, random sample sizes due to 

its low variance. 

We now consider confidence interval properties for the two estimators via sim­

ulation. The approximation methods described in Section 2.4 for estimating the 

variance of QGHR will be used in the following simulation results. For each table, we 

compute the percent relative bias, 

„ „ , „ (simulation mean of estimator) — 0 _ 
%RelBias = - '—— • 100%, 

Q 

the percentages of nominal 95% confidence intervals that cover 9, and the average 

length of the confidence interval. 
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Table 3.4 gives results for SI. Both 9 and OGHR have negligible empirical bias 

(less than 0.5% in absolute value) in all cases. The confidence intervals for OGHR 

have slightly better coverage than those for 9, particularly at small sample sizes. 

This better coverage comes at the expense of slightly wider confidence intervals. 

%Rel Bias (d) 

% Coverage 1 9 1 

Length of CI (§\ 

%Rel Bias [9GHR ) 

%Coverageapp U)GHR) 

%Coveragepu;r (dcHR.) 

Length of CIa p p [OGHR] 

Length of CIp^ r [OGHR) 

Sample Size 
10 15 20 25 30 35 40 75 

-0.482 -0.151 0.111 0.197 -0.442 0.042 -0.125 0.172 

92.3 92.7 93.1 93.3 94.9 94.0 94.0 96.3 

2.551 2.070 1.809 1.614 1.471 1.348 1.270 0.912 

-0.308 -0.060 0.289 0.275 -0.342 0.093 -0.058 0.189 

93.3 94.2 93.9 94.5 95.5 94.3 94.5 96.5 

93.5 94.3 94.3 94.8 95.8 94.8 95.0 96.9 

2.849 2.240 1.915 1.687 1.531 1.398 1.306 0.925 

2.864 2.258 1.934 1.709 1.555 1.423 1.333 0.961 

Table 3.4: Percentage relative bias, percentage coverage of nominal 95% CIs. 
Average length of confidence intervals under 1500 simulated replicates of simple random sampling 

without replacement. 

Table 3.5 summarizes the results for the 7rps sampling design. Results are 

similar to those under SI, with negligible empirical bias in all cases, slightly better 

coverage of confidence intervals associated with OGHR, at the expense of slightly 

wider confidence intervals. 

Finally, results for Poisson sampling are summarized in Table 3.6. Once again, 

empirical bias is negligible in all cases, so the exact unbiasedness of 9GHR is bringing 

no real advantage. Further, the extra variability due to random sample sizes under 

PO negatively impacts OGHR, SO that confidence interval coverage is no better than 

that of 0, at the expense of wider confidence intervals. 

In these unstratified simulations, OGHR. performed overall very similar to 9, with 

slight advantages to one estimator or the other in certain cases. In the following 

subsections, we simulate the performance of iysep,GHR and t s $ under stratified 
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%Rel Bias (§) 

%Coverage 16) 

Length of CI (d) 

%Rel Bias (§GHR) 

%Coverageapp (9GHR) 

%Coveragepror (9GHR) 

Length of CI a p p (§GHR) 

Length of CIpu)r (9GHR) 

Sample Size 
10 15 20 25 30 35 40 75 

-0.143 -0.228 -0.472 -0.882 0.276 -0.359 0.185 0.047 

91.7 93.1 93.9 94.1 95.1 93.3 94.9 94.6 

2.464 2.025 1.758 1.583 1.436 1.336 1.244 0.896 

-0.159 -0.203 -0.439 -0.800 0.375 -0.279 0.232 0.107 

93.7 94.5 94.5 94.7 96.0 93.7 95.2 95.1 

93.5 94.6 94.5 94.9 96.1 94.3 95.1 93.9 

2.747 2.188 1.862 1.660 1.503 1.393 1.295 0.930 

2.758 2.198 1.877 1.675 1.511 1.400 1.304 0.939 

Table 3.5: Percentage relative bias, percentage coverage of nominal 95% CIs. 
Average length of confidence intervals under 1500 simulated replicates of 7rps sampling without 
replacement. 

sampling, to estimate the population total. In this setting, it is expected that bias 

will accumulate in iySepg, while iysep,GHR is exactly unbiased, so GHR methodology-

may show some real advantages. 

3.4.2 Simulation Results For Stratified Sampling 

When the population is divided into different strata, U = U^=1£//j, and each 

stratum is relatively homogenous, one can expect that stratification will improve 

the efficiency of the parameter estimate. In this subsection, we will concentrate 

on estimating the population total, ty. Let Nh = J2keuh *> V* — X^ec/,,^' ^h = 

Ylkeu f̂c for h — 1 , . . . , H. The importance of stratification appears when the strata 

totals, tyh, have big differences from stratum to stratum. To take advantage of 

the efficiency of stratification, we use 9 and 9GHR as components of separate ratio 

estimators, as discussed in Sections 1.4 and 2.2. Using either 9 or 9GHR.
 a s combined 

ratio estimators will ignore the efficiency afforded by stratification. Combined ratio 

estimators well only if the stratum ratios, 9h, are not varying from stratum to 

stratum. 
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%Rel Bias (§) 

%Coverage (O) 

Length of CI (§\ 

%Rel Bias (§GHR) 

%Coverageapp [9GHR) 

%Coveragepwr [9GHR\ 

Length of CIopp (0GHRj 

Length of CIpTOr [9GHRj 

Ens 

10 

-0.069 

92.1 

1.773 

-0.034 

92.4 

91.6 

1.984 

1.948 

15 

-0.159 

93.3 

1.459 

-0.026 

93.1 

93.3 

1.573 

1.566 

20 

-0.202 

93.8 

1.259 

-0.152 

93.7 

93.6 

1.336 

1.342 

25 

-0.155 

93.7 

1.125 

-0.125 

94.0 

94.1 

1.177 

1.192 

30 

-0.236 

93.9 

1.021 

-0.211 

93.9 

94.5 

1.064 

1.086 

35 

-0.225 

93.7 

0.942 

-0.201 

93.9 

94.5 

0.975 

1.001 

40 

-0.203 

93.1 

0.876 

-0.159 

93.9 

94.7 

0.905 

0.935 

75 

-0.073 

94.3 

0.620 

-0.060 

93.9 

95.4 

0.628 

0.679 

Table 3.6: Percentage 
Average length of confidence 

replacement. 

relative bias, percentage coverage of nominal 95% CIs, 
intervals under 1500 simulated replicates of PO sampling without 

As noted previously, the bias issue will arise when we are using 6 as a separate 

ratio estimator under stratified sampling, especially if the stratum sizes Nft are small. 

An exactly unbiased estimator 9GHR is crucial to overcome this problem. 

Prom Section 1.4, recall of the definitions the separate ratio estimator and the 

combined ratio estimator: 

V e p ,6 ~ Z-J
 xh 

ft=i 

(3.67) 

L = t 
Lsh=i tyh (3.68) 

where iyh and 4ft are the HT estimator for ty and tx respectively for the hth stratum. 

Also, from Section 2.2 recall the definition of the GHR version of the separate 

ratio estimator: Estimate the population total, ty, by 

H 

tySep,GHR = 2_^ txh.0cHR,h 

where 
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yr± + _ 1 _ f r » - i r v T i X i l \ . (3.69) 
^ \ i NhXUh ^ T T ; Nh ^ ^ J TTa V ' 

3 - 1 ^ 1 l 

>GHR,h — "77-

We simulate a stratified finite population as follows. For a given value of / / 

(10, 20, 30, or 40) and a particular stratum h G { 1 , 2 , . . . , / / } , define 6/, = 7r/18 + 

47r (/i — 1) / [9 (// — 1)]. For i e {/̂ , we simulate x.L independent Uniform(0, bh) and 

j/i = / i - 1 sin(a;j) + e,, €» independent iV (0, (0.001) xi) . When 7rps is used, we 

use Zi = 1 — ^fx~i as the size variable. Simulation results are based on Nh = 50 in 

every stratum, and 1500 iterations. 

As noted earlier 8 has approximately bias zero if we are simulating from 

straight line passing through the origin. We will deviate little bit from this line 

by choosing sin(-) which pass through the origin and for any choice of b^ we have 

Xi G (TT/18, IT/2) , which means, in each stratum the values of sin (•) can be approx­

imated by a line. In this way we can produce bias for 9 and we can make it worst 

if Nh, reduced to smaller numbers. 

For this stratified population, the within-stratum ratios vary from stratum to 

stratum, so that the estimator t Combg is based on the wrong model. Therefore, we 

expect i Combg to have larger variance and larger confidence interval length than 

separate ratio estimators. Further, i s § is based on the correct model and so is 

expected to have small variance, but potentially large bias due to the accumulation 

of bias from stratum to stratum. 

The GHR-based separate ratio estimator is expected to have advantages in this 

context. Unlike tyComb§, tysep,GHR is based on the correct model, and should have 

relatively small variance. Unlike t s x, tysep,GHR is exactly unbiased, and so will 

not suffer from any accumulation of bias. 

In our simulation study, we consider sample sizes of nh — 4, 5, or 6 per stra­

tum. (A minimum of n^ = 4 is needed to ensure fourth-order measurability, so 



that an unbiased variance estimator can be computed.) Under Poisson sampling, 

the sample size is random and is zero in some stratum h with high probability 

when E[ns] — 4, 5, or 6. We therefore restrict attention to stratified simple ran­

dom sampling without replacement (STSf) and stratified 7rps sampling (ST-7rps) as 

implemented in SAS proc surveyselect . 

For STSI, the exactly unbiased variance estimator is easily computed since 

fourth-order inclusion probabilities are readily available. For ST7rps, however, 

fourth-order inclusion probabilities are not available, and we use the first method of 

approximation as described in Section 2.4. 

In stratified sampling design, the estimator tycom is wrong model of estimating 

the population total, ty. Therefore, we expected tycom has a high variance and larger 

confidence interval length. In the same time, tysep is correct model for stratified 

sampling design, but has less variance and this is due to the accumulate bias from 

stratum to stratum. However, tyGHR is between the two estimators. tyGHR is exactly 

unbiased estimator for ty and the correct model when the stratified sampling design. 

Table 3.8 shows MSE ratios for t Cmnbg-, and t s $ relative to tysep,GHR- For 

i comb §' t n e ratios are much larger than one, reflecting the large inefficiency of 

using common ratio model for this population. The ratios actually get worse with 

increasing stratum sample size or increasing number of strata, since the failure of 

the common ratio model becomes more evident in either case. 

For t s g, the MSE ratios in Table 3.8 show that the separate ratio estimator 

performs better with respect to the separate GHR estimator as the sample size 

increases within strata, but worse for fixed sample size as the number of strata 

increases. This is due to the accumulation of bias in LSep§ across the strata. 

Coverage of the nominal 95% confidence intervals for iyCmnh g is close to 95% 

for all cases considered, with better coverage at larger sample sizes, but the average 

length of these confidence intervals is much greater than those of tysep,GHR or t s $. 
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Average length of confidence interval for i s § are smallest among those considered, 

but coverage is far less than the nominal 95% in all cases with i s $. Coverage 

increases with increasing sample size within strata, but decreases with increasing 

number of strata, due to accumulation of bias across strata. Average length of the 

confidence intervals for tyseP,GHR are somewhat larger than for t s $ but much less 

than t Combg. Still, the coverage of the confidence intervals is close to the nominal 

95% in all cases, improves with increased sample sizes within strata, and is not 

adversely affected by increasing the number of strata, unlike t s $. 

H Est 

10 

20 

3 0 

4 0 

'ySepJ 
hSep.CHH 

tySep,6 
tySep.GH R 

tvCamb,ff 
tySep,S 

iySep.GHR 
tvComb,e 

tvSep,S 
tySep,GHR 

tyOomb,i 

nh = 4 
%Coverage 

nh = 5 nh=B 

80.1 
86.9 
92.0 

78.9 
91.7 
94,0 

76.3 
93.7 
93.8 

73.9 
94.1 
93.2 

82.3 
89,7 
93.4 

82.7 
93.3 
94.5 

79.7 
94.5 
94.4 

80.3 
93.1 
93.8 

86.5 
91,9 
93.6 

86.9 
94.1 
94.7 

83.3 
93,9 
94.0 

83.0 
93.7 
93.9 

nh = 4 
CI Length 

nh = 5 " h = s 

1.258 
1.776 
8,677 

0.917 
1.311 
8.095 

0.771 
1.086 
7.837 

0.725 
1.003 
7.754 

1.155 
1.618 
7.695 

0.83 
1.139 
7.154 

0.696 
0.943 
6.928 

0.654 

0.871 
6.855 

1.059 
1.448 
6.946 

0.766 
1.029 
6.444 

0.639 
0.846 
6.246 

0.599 
0.781 
6.184 

«h = 4 
%RVB 

» h = 6 

-31.69 
-2.45 
-5.92 

-27.36 
1.188 
2.717 

-26.01 
3.328 
4.383 

-26.55 
0.022 
1.074 

-29,33 
-3.59 
-3.32 

-23.01 
-3.4 

5.826 

-20.79 
0,908 
4.155 

-24.17 
-4.78 
-3.36 

-20.76 
1.78 

0.857 

-13.53 
5.033 
5.484 

-22.13 
-4.48 

-0.321 

-22.85 
-4.91 
-2.67 

Table 3.7: Percentages of Confidence Intervals Covering ty under STSI 
sampling design. 

H 

10 MSE(tySep^IMSE{iySep,GHR) 

MSE UyComb^ /MSB (t,ySeP,GHR) 

20 MSE(tySepj)/MSE{iysep,GHR) 

MSE (tyCombj) /MSE (tySePtGHR) 

30 MSE(tySepj)/MSE{iySep,GHR) 
MSE W j ) /MSE (iySep,GHR) 

40 MSE(t,ySepj-)/MSE(iySep,GHR) 

MSE (iyCombj) /MSE {iySep,GHR) 

nh = 4 

0.832 

22.167 

1.014 

36.112 

1.222 

50.545 

1.344 

58.519 

nh = 5 

0.816 

21.436 

0.897 

35.312 

1.109 

51.786 

1.175 

60.838 

nh = 6 

0.774 

22.346 

0.854 

38.573 

0.991 

51.921 

1.0825 

61.142 

Table 3.8: MSE Ratios under STSI design based on 1500 replicates. 

Table 3.10 shows MSE ratios for i Comb§, and i s § relative to iysep,GHR- For 

tyComb0, the ratios are much larger than one, reflecting the large inefficiency of 
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H 

10 

2 0 

30 

4 0 

Est 

tySep.GHR 

tySep.GHR 

tySep.GHR 

. 'ySep.i 
' j /Sep.GHR 

nh = 4 

69,9 
97.9 
91.2 

62,8 
99.3 
94.0 

59.3 
99.7 
94.0 

84.2 
99.9 
93.9 

%Coverage 
nh = 5 

74.2 
95.3 
92.5 

70.9 
98.2 
94.1 

65.4 
99.6 
94.3 
61.3 
99.7 
93.3 

nh = 6 

74.8 
93.5 
92.5 

76.2 
96.5 
92.7 

71.3 
97.9 
94.4 
68.1 
99.1 
94.4 

™/> = 4 

1.278 
3.463 
11.224 

0.924 
3.011 
10.067 

0.779 
2.759 
9.566 
0.734 
2.61 

9.416 

CI Length 
nh = 5 

1.2 
2.396 
10,032 

0.862 
2.071 
8.986 

0.725 
1.899 
8.536 

0.678 
1.815 
8.41 

nh = 6 

1.116 
1.812 
9.12 

0.808 
1.547 
8.182 

0.676 
1.418 
7.774 

0.631 
1.362 
7.667 

nh = 4 

-48 
77.506 
-7.415 

-44.436 
162.725 

0.934 

-39.392 
204.748 

3.681 

-41.927 
257.24 
1.067 

%RVB 
nh - 5 

-38.637 
6.331 
-6.305 

-39.079 
70.306 
-6.738 

-34.517 
142.712 

-0.53 

-35.648 
157.061 

2.11 

nh = 6 

-41.86 
-21.103 
-9.852 

-32.197 
25.564 
-7.214 

-33.536 
42.375 
2.803 

-32.044 
78.992 
0.152 

Table 3.9: Percentages of Confidence Intervals Covering ty under STnps 
Sampling Design. 

H 

10 MSE (tySepfi) /MSE (tySep,GHR) 

MSE (tyCombj) /MSE {iys^GHn) 

20 MSE (tySepjS) /MSE {iySep,GHR) 

MSE (tyCombtd) /MSE {iys^GHR) 

30 MSE hSep>d) /MSE (iySep,GHR) 

MSE hyCombj) /MSE {iySep,GHR) 

40 MSE (tySepj) /MSE {iySep,GHR) 

MSE (iyComhj) /MSE {iySep,GHR) 

nh = 4 

0.766 

20.506 

0.931 

29.252 

1.031 

35.456 

1.465 

46.148 

nh = 5 

0.648 

20.054 

0.899 

34.476 

1.224 

49.38 

1.442 

54.141 

nh = 6 

0.729 

22.308 

0.832 

37.837 

0.959 

41.65 

1.269 

56.774 

Table 3.10: MSE Ratios under STvTps design based on 1500 replicates 

using common ratio model for this population. The ratios actually get worse with 

increasing number of strata, since the failure of the common ratio model becomes 

more evident in either case. 

For i s g, the MSE ratios in Table 3.10 show that the separate ratio estimator 

performs better with respect to the separate GHR estimator as the sample size 

increases within strata, but worse for fixed sample size as the number of strata 

increases. This is due to the accumulation of bias in i s § across the strata. 

Coverage of the nominal 95% confidence intervals for t Comh $ is close to 95% 

for all cases considered, but the average length of these confidence intervals is much 

greater than those of iysep,GHR or iyStp6~- Average length of confidence interval for 
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Ksepd a r e smallest among those considered, but coverage is far less than the nominal 

95% in all cases with t s §. Coverage increases with increasing sample size within 

strata, but decreases with increasing number of strata, due to accumulation of bias 

across strata. Average length of the confidence intervals for tysep,GHR are somewhat 

larger than for t Sep§ but much less than t Cornbg. Still, the coverage of the confidence 

intervals is close to the nominal 95% in all cases, improves with increased sample 

sizes within strata, and is not adversely affected by increasing the number of strata, 

unlike tySepiS. 

As a final comment, the bias affect the percentage of coverage of tysep and keep it 

far a way from the nominal value %95, and iyGHR. works better than tysep. However, 

the percentage coverage of tysep can be worst than the given simulation results by 

decreasing the strata size (in the given simulation are fix and equal to 50) and by 

increasing number of strata. In the same time, the percentage coverage of IVGHR 

will not affected by decreasing the strata size or increasing number of strata. 



Chapter 4 

CONCLUSIONS 

In this work, the Hartley and Ross (1954) estimator has been generalized to 

unequal-probability sampling designs, under the condition of measurability (strictly 

positive second-order inclusion probabilities). This results in generalized Hart­

ley and Ross (GHR) estimation. Two distinct versions were considered, ane 

building on the Horvitz and Thompson (1952) estimator and one building on the 

Hansen and Hurwitz (1943) estimator for with-replacement sampling. 

In Horvitz-Thompson based GHR estimator is of interest because it is unbi­

ased and an exact variance and an unbiased estimator for the exact variance were 

obtained. The computations for the exact variance and the unbiased variance esti­

mator of the GHR require higher-order inclusion probabilities (up to fourth order), 

which are not easily obtained in general. To overcome this problem, two methods of 

approximation were given. Simulation results for SI, PO, and WR sampling indicate 

that these are useful approximations. 

The GHR estimator was shown to be mean square consistent under mild con­

ditions. These conditions are met by simple random sampling without replacement, 

simple random cluster sampling, and stratified sampling designs. 

Central limit theorems (CLTs) were established for GHR under the SI design 

and under the Poisson sampling (PO) design. The asymptotic variance and a con­

sistent estimator for the asymptotic variance were given under the two sampling 

designs SI and PO. 
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The GHR was evaluated under a super-population model, and it was shown 

that the Godambe and Joshi (1965) lower bound is attainable for GHR under SI 

and PO sampling designs. The GHR is thus asymptotically equivalent to the stan­

dard, simple ratio estimator, and superior to the naive ratio estimator. The GHR 

can be combined with simple estimator to produce other estimators that have ap­

proved in the literature including Hartley and Ross (1954), Murthy and Nanjamma 

(1959) and Nieto de Pascual (1961). The GHR was compared to other estimators 

analytically and via simulation. 

The version of GHR derived using a Hansen and Hurwitz (1943) type esti­

mator for with-replacement sampling was shown to be unbiased. This estimator 

was discussed under two different asymptotic scenarios, when the population size 

N is fixed and number of independent draws m tends to infinity and when both 

m and N tend to infinity. Under each of the two CLT was established and 

the asymptotic variance and a consistent estimator for the variance were given. The 

Godambe and Joshi (1965) lower bound was shown to be almost attainable under 

the first case and attainable for the second case. 

An important problem is estimation of the population total ty under a stratified 

sampling design when stratum x-totals are known, particularly in the case of small 

stratum sizes. If biased estimators are used to estimate within-stratum population 

y-totals, the bias may accumulate across strata. The unbiased GHR estimators 

were adapted to deal with such situations by redefining the GHR as a separate 

GHR estimator, analogous to the classic separate ratio estimator of survey statistics. 

A CLT was proven for the separate GHR estimator under a stratified sampling 

design when the stratum sizes are fixed and the number of strata tends to infinity. 

Simulation results showed that GHR under different sampling designs gives excellent 

results compared to other almost unbiased estimators proposed in the literature, 

even when the number of strata is not large. 
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The work in this dissertation can be extended in a number of directions. Work 

on GHR-type estimators could be pursued in at least five directions. First, sim­

ulation results indicate that the two methods of approximate variance estimation 

behave very similarly. The first approximate variance estimator was shown to be 

consistent for the true variance. Under what conditions is the second approximate 

variance estimator, based on a with-replacement approximation, consistent for the 

true variance? Second, it would be of interest to weaken the conditions used in 

establishing central limit theory for GHR, while still giving conditions that are rel­

atively easy to check in practice. Third, we have shown asymptotic attainment of 

the Godambe-Joshi lower bound under SI, PO, and WR sampling designs. Does the 

GJLB always hold for the GHR estimators, and if not, under what designs or models 

does it fail? Fourth, simulation results for both unstratified and stratified designs 

showed good performance of GHR relative to standard estimators under particular 

simulated finite populations. These simulations were quite limited, however, and it 

would be of interest to conduct a broader simulation study to give guidance to users 

on appropriate choices of ratio estimators. Fifth, and finally, it would be of interest 

to apply GHR to real data. 

In addition to extending results for GHR, it would also be of interest in 

future work to apply the theoretical methods used in this dissertation to other 

ratio estimators, to produce a thorough, systematic study of the properties of 

the Hartley and Ross (1954), Murthy and Nanjamma (1959), and Nieto de Pascual 

(1961) estimators in unstratified and stratified cases. Asymptotic results could be 

derived and simulation studies undertaken. Further, the unbiased estimation tech­

niques used to develop GHR in the presence of auxiliary information might be 

extended from ratios to other kinds of population parameters, including variances 

and regression coefficients. These would require additional auxiliary information. 



Appendix A 

MEAN SQUARE CONSISTENCY EXAMPLES 

In this section we will give details that were omitted in previous chapters. 

Example A.0.1 Assume n ~ O (N5) , for | < 5 < 1. Then OGHR is mean square 

consistent estimator for 9 under SI sampling design. If 5 — 1, then the finite popu­

lation corrections (fpc — 1 — jj) cannot be ignored and we can ignore it if 5 < 1. 

Solution For SI sampling design, 

Therefore, 

and 

7Ti = 

7Ti,' for ij e UD2 

7TjV* 

and 

N' 
n n — 1 
~NN-1 
n n — 1 
~NN-V 

n n — 1 n — 2 n — 3 
~NN -IN-2N -3 

for ijkl G Up4. 

"£,«? = o (N26-1) , 
ieu 

ij£UD 

E n n — 1 
- ( 

n \ 2 

iV 

{ 'KNJ \ N(N-l) J 

= O{N2S~2). 
i)2 
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Hence, rj* = max {25 — 1,25 — 2} = 25 — 1 < 2. 

To find rj, consider the following two cases: 

= OiN45-1), 

iJ£UD2 

and 

0(N4) 
n n — 1 

~NN-1 

2 r n — 2 n — 3 n n — 1 

J V - 2 N - 3 NN-1 

= 0(N4S) 

= 0{N6S-4) 

-AnN2 + An2N + 6 (TV2 6(N-n) 

N (iV - 1) {N - 2) (W - 3) 

Therefore, 77 = max {65 - 4,45 — 1} = 45 — 1 < 4. Since 

mm < 1, 
rj* 4 - 771 

n'T/ = mm < 1 
3 - 2 5 5 - 4 5 1 3 - 2 5 h 

then 

Nn n 1 ' 4 . 4 ^ = 0 ^ --6f-S 
00, as N —> 00 and for - < 5 < 1. 

6 

Hence the SI sampling design is a mean square consistent. If 5 = 1, then the finite 

population corrections (fpc = 1 — -^) can not be ignored and we can ignore it if 

5 < 1. 

Example A.0.2 Consider simple random cluster sampling design (SIC). Under this 

design, M is the number of clusters, C is the cluster size, N = MC is the population 

size, and draw m clusters from the M clusters via SI design and observe all elements 

in each selected cluster. Assume m ~ O (M*5) , for | < 5 < 1, then OQHR is mean 

square consistent estimator for 6. 
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Solution. Let Uh, be the hih cluster, h = 1, 2 , . . . , M. Now, for i G Uh, we have 

m 

M 

= 0 ( M 2 i " 1 ) , 

771 

and 

= 0 ( M 2 5 - X ) . 

If h ^ h and i G C4, j € C/̂  then 

m 

m m — 1 

^ = MAM' 

and 

E E K-^)2 - M(M-1)c2(S)' 
= 0(M26~2). 

Therefore, rf = max {25 - 1,2<J - 2} = 2<J - 1 < 2. 

If i 7^ j e Uh then 7Ty = ^ ; then 

M ( m - l ) - m ( M - 1 ) 
T2 

M ( M - l ) 

E E M C4 = O (M«) , 

and lox h ^ h and i € £//,, j G i/. h' 

m m — 1 

and 

7 r " ~ M M - 1 ' 
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If ijkl G Uh and ijkl G D4 then 

m 

and then 

E E 4 « = «c <c - D <c - 2) <c-3) (£)'(!-£)" 
h=l ijkleUh 

= C^M 2 ' " 1 ) . 

Two different clusters and two elements in each cluster: L^, Ufp and Zi, /i G D2. 

- Case(l): ij G Uh and kl G t/^. 

TTjj 

Kijkl 

\jkl 

and 

l_j E Am 
h,heD2 iJ€Uh,kleUk 

• G Uh and j / G f/̂ . 

TTjyfcJ = 

Ajjfci — 

and 

m 
= 7 r " = M ' 

m m — 1 
MM-V 

m (^ m^ 1 
M \ M) M - 1 ' 

- 0 ( M M " 2 ) . 

m m — 1 
W„ — 7Tfc| — M M _ r 

rn rn — 1 f ^ m m — 1 
M M - 1 V M M - 1 

E E ^« - o(M«-a). 
h,heD2

ik^uh,3^Uk 

Case(3): iZ G [4 and j/c G UL 

m m — 1 

and 

E E ^ « - °(M45~2) 
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• Two different clusters and three elements in one cluster and one element in 

the other one: 

- Case(l): ijk € Uh and I € U^. 

7T,;.; = 

&ijkl 

and 

m 
M' 

m m — 1 

M M - 1 ' 

E E A2 

m m — 1 
M M - 1 

O (M4<5-2) . 

m 
MJ' 

- Case(2): r/7 € [//, and fc G [4 

E E A '̂fei 

- Case(3): ikl £ C/h and j € C/̂ . 

7T„ = 

and 

2 

m 
M ' 

m m — 1 
M M - 1 ' 

- 0(M46-2). 

TTfc; 

Kijki 

and 

E E ^Jkl 

m 
M' 

m m -

~ ^ ~ M M -

- 0(M46~2). 

-1 

- 1 ' 

Case(4): jkl € Uh and i € l^. 

m 
M ' 

m m — 1 
" M M - 1 
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and 

£ £ ^]kl = O(M«->). 
h,heD2i

kl(£Uh^uh 

• Three different clusters: [//,; Ur. U-, and h,h,h€ D3. 
11 h 

- Case(l): ij G [//, and k G £//j, and I G [/;. 

m 

m m — 1 
nkl = M M - 1 ' 

m m — 1 m — 2 

^ = M M - 1 M - 2 ' 

^jki = - 2 ^—J ^ — - J ^1 - — j ( M _ 2 ) , 

and 

E E -̂« = °(^-3)-
h,h,heD3

ijeUh'keU^eUL 

- Case(2): ik G [/̂  and j £ U^, and I EU>. 

m m — 1 
^ = 7 r w = M A T T i ' 

m m — 1 m — 2 
^ = M M - 1 M - 2 ' 

AiiW = 0 ( M 3 i ' - 3 ) , 

and 

x; E ^« = O(M«-S). 
fc,/i,A6D3ifce,7hJ'€t'*''et/A 

- Case(3): iZ G £4, j G t^ and k G £/;. 

_ m m — 1 

m m — 1 m — 2 
?ryW = M M - 1 M - 2 ' 
and 

X; E ^« = o(M«-»). 
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- Case(4): jk E Uh, i G U^ and / G U^. 

_ m m — 1 

m m — 1 m — 2 

^ = M M - 1 M - 2 ' 

and 

x; E ^« = O(MM-3). 

- Case(5): jl € Uh, i G t/^ and /c e U>. 

nij -

T^ijkl -

and 

h,hMD3
jleUh<ieU*>k€Uk 

m m — 1 
^ ~ M M - 1' 
m m — 1 m — 2 
M M - 1 M - 2 

= 0(M6S~3). 

- Case(6): fc/ G Uh, i G C/̂  and j G C/̂ . 

TTfc; = 

nij -

Tijkl ~ 

and 

m 
M ' 
m m — 1 
M M - 1 ' 
m m — 1 m — 2 
MM-1M-2 

- 0(M4S~3). 

• Four different clusters: % € £4, j G C/̂ , /c G Ui, I G C/s and ( /i, /i, /i, /i ) G D4. 

m, m — 1 
M M - 1 ' 

mm — 1 m — 2m — 3 
7ryw = M M - 1 M - 2 M - 3 ' 
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Aijkl = 

and 

E / , ^ijkl ~ 
. ', '; ijkl 

Therefore, 

m m — 1 / 

MM-1\ 

= 0{M3S-4) 

- 0 ( M 6 * " 4 ) . 

m \ 6M + 6m - 6 - 4mM 
MJ ( M - l ) ( M - 2 ) ( M - 3 ) 

77 = max {25, 4<5 -1,25 -1,25 -2,4<5 - 2 , 4 5 - 3 , 6(5 - 3 , 6(5 - 4 } 

= 45-1 for - < 5 < 1. 
6 

. , 2-77* 4 - 7 / 1 . f 3-2(5 5 - 4 5 1 3-2(5 
mm < 1, —-—, —-— > = mm < 1, l — 

Since 

4 ' 4 I P 4 ' 4 I 4 ' 

and under this sampling design, 7TM* = ^jfZ\ Then, 

Mmin{i, a=p_, i r a } ^ ^ = Q / M ^ \ ^ ^ a s M ^ 00 and for ^ < 5 < 1. 

Example A.0.3 For 0 < 5 < 1, (JGHR is mean square consistent estimator for 6 

under ST (stratified sampling) design. Let H^ ~ O (-/V"5) be the number of strata, 

Nh~0 (N1'6) be the hth stratum size. 

Solution 

Let Uh be the hth stratum and h = 1, 2 , . . . , HN. Now, for % £ Uh, we have 

HN 

E£^2 ^ °w-
h=l ieUh 

If i ^ j € Uh then 
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If h 7̂  h, i e Uh,j 6 U^ then -K^ — 7 ^ . Therefore, 

Y,h*h Y.ieuh,jeuk {*ij - KiKj? = O (1). 

Hence, 

r)* = max {1,0, 2 - 5} = 2 - 5, for 0 < a < 6 < 1. 

• Find the order of V\.,pr/ Nnf,. 

Ui^jeUh then 

and for h ^ h, i E Uh, and j G U^ then 

EE^4 ^ °M-
h,h »J 

• Find the order of J2ijkieuD4 &%ku w n e r e Ayfei = 7rlifc( - 7i\,7rfc(. 

- For ijkl G UD4 and ijkl G f//, then 

E E A <̂ ^ o (N^) . 
h=l ijkl£Uh 

- Two different Strata, t/^, U^, h ^ h; and two elements in each strata 

* Case(l): ij G £//» and kl G t/^ 

E E A ^ = oi1)-
* Case(2): ifc G £4 and jl G l^ 

EE A ^< ^ O(N^). 

For other cases, they have the same order. 

- Three different Strata Uh,U^, U•< and h,h,h G D3. 
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* Case(l): i ^ j G Uh and k G Uh and / G h. 

* Case(2): i =£ k £ Uh and j G t/^ and £ G h. 

Other cases are either of order O (1) or O (N4-s) . 

- Four different clusters: i G Uh and j G C//n and k G £42 and / G f43 and 

/i, hi, h2, h3 G I>4-

E E 4 H = o(i). 
- ; ; ijkl 

Therefore, 77 = max {3,3 - 5,4 - 35, 0,4-25,4-5} = 4-5. Since 

min {l, ^ j 2 - , ^j1} = f, then choose 5 such that 5 > 0 and N^ITN* —> 00asiV —> 00. 

Hence this design is a mean square consistent. 



Appendix B 

NOTATION 

The following notations are used in this work. 

UN = {l,2,...,N} 
Uh 

H = /-lieu y* 

P 
s 
ns 

p{s) 

P ( 0 

TTij 

Tfijk 

Kijkl 

h 
Ay 
Ayfc = Kijk - niitjk 

\jkl = TyfeJ _ KijTTkl 

Pk 

SI 
WR 
ST 
STSI 
STirps 
SIC 
PO 
nps 
pps 

"GHR 

Ep(§) 

Finite Population 
hth Stratum or Cluster 
Population total ty 

Population ratio totals(means) of the variables y and x 
Superpopulation parameter 
Probability sample 
Sample size 
Probability of drawing the sample s from U^ 
Fix measurable sampling design 
First order inclusion probability of element i 
Second order inclusion probability of elements i and j 
Third order inclusion probability of elements i, j , and k 
Fourth order inclusion probability of elements i, j , k, and I 
Sample membership indicators 
Covariance of Ii and Ij 
Covariance of Ii and Ijk 
Covariance of Uj and hi 
Probability of drawing element k with replacement sampling 
Simple random sampling without replacement 
Random sampling with replacement 
Stratified sampling 
Stratified sampling with SI in each stratum 
Stratified sampling with nps in each stratum 
simple random cluster sampling 
Poisson sampling 
Probability proportional to size sampling without replacement design 
Probability proportional to size sampling with replacement design 
Population ratio 
An estimator of 0 
Generalized Hartley and Ross estimator for 6 

Expected value of an estimator of 9 under sampling design p 
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Expected value of an estimator of 6 under model design 

Variance of an estimator of 6 under sampling design p 

Variance of an estimator of 6 under model design £ 

Estimate of var (9 j 

Mean square error 

7r estimator of the population total ty 

Sample mean of the ratios 

Set of all distinct f.tuples (ii,i2, • • •, h) 
Set of all distinct ^tuples (ii,i2, • • • ,h) from s 
Set of all distinct ^tuples (ii,i2, • • • ,h) from U 
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