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ABSTRACT OF DISSERTATION

UNBIASED RATIO ESTIMATION FOR FINITE POPULATIONS

In many sample surveys from finite populations, the value of an auxiliary vari-
able z is available (at least in aggregate form) for the entire finite population, and
is correlated with the study variable of interest y. This auxiliary variable can be
used to improve the precision of the estimator of the y-total.

One method of improving precision is through finite population ratio estima-
tion, which has been extensively discussed in the literature, especially under simple
random sampling without replacement (SI). Hartley and Ross (1954) obtained an
exactly unbiased estimator for the finite population ratio under SI, and hence an
unbiased ratio estimator of the y-total. Other authors have obtained an almost
unbiased estimator for the finite population ratio, or have considered alternative
sampling designs to obtain an unbiased or an almost unbiased estimator for this
parameter.

In this work, the Hartley and Ross (1954) estimator is generalized to unequal-
probability sampling designs, under the condition of measurability (strictly positive
second-order inclusion probabilities). This results in generalized Hartley and Ross
(GHR) estimation. Two distinct versions are considered.

The first builds on the Horvitz and Thompson (1952) estimator. This GHR
estimator is unbiased and an exact variance and an unbiased estimator for the exact
variance are obtained. The computations for the exact variance and the unbiased
variance estimator of the GHR require higher-order inclusion probabilitics (up to
fourth order), which are not easily obtained in general. To overcome this problem,

two methods of approximation are given.
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The GHR estimator is shown to be mean square consistent under mild condi-
tions. These conditions are met, for example, by simple random sampling without
replacement, simple random cluster sampling, and stratified sampling designs.

* Central limit theorems (CLTs) are established for GHR under the SI design and
under the Poisson sampling (PO) design. The asymptotic variance and a consistent
estimator for the asymptotic variance are given under both designs.

The GHR is evaluated under a super-population model, and it is shown that
the Godambe and Joshi (1965) lower bound is attainable for GHR under SI and PO
sampling designs. The GHR is compared to other estimators analytically and via
simulation.

The second version of GHR is derived using a Hansen and Hurwitz (1943) type
estimator for with-replacement sampling. This estimator is unbiased. This estimator
is discussed under two different asymptotic scenarios, when the population size
N is fixed and number of independent draws m tends to infinity and when both
mand N tend to infinity. Under each of the two cases, a CLT is established and
the asymptotic variance and a consistent estimator for the variance are given. The
Godambe and Joshi (1965) lower bound is shown to be attainable for the second
case.

An important problem in applications is estimation of the population total ¢,
under a stratified sampling design when stratum z-totals are known, particularly in
the case of small stratum sizes. If biased estimators are used to estimate within-
stratum population y-totals, the bias may accumulate across strata. The unbiased
GHR estimators can be used effectively in dealing with such situations by introduc-
ing a separate GHR estimator, analogous to the classic separate ratio estimator of
survey statistics. A CLT is proven for the separate GHR estimator under a strat-

ified sampling design when the stratum sizes are fixed and the number of strata
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tends to infinity. Simulation results show that GHR under different sampling de-
signs gives excellent results compared to other almost unbiased estimators proposed

in the literature, even when the number of strata is not large.

Jehad Al-Jararha
Department of Statistics
Colorado State University
Fort Collins, Colorado 80523
Spring 2008
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Chapter 1

INTRODUCTION
1.1 Sampling Designs

In surveys of finite populations, auxiliary information is often available for ev-
ery element in the population. Ratio estimators use variables that are correlated
with the variable of interest. Population registers in some countries contain age and
taxable income for all residents. Studies of labor force characteristics or household
expenditure patterns might benefit from these auxiliary data. Geographic infor-
mation systems may contain measurements derived from satellite imagery for all
locations. These spatially explicit data can be used in augmenting measurements
obtained in agricultural surveys or natural resource inventories.

Consider a finite population Uy consisting of N units {1,2,...,k,...,N}. A
sample, denoted by s, is a subset from the population. Let us define the following

concepts.

Definition 1.1.1 Sampling design, py (+), is a function mapping the set of all sub-

sets of Uy to [0, 1], where py (s) is the probability of selecting the sample s.

Example 1.1.1 A census is a sampling design with

. 1, S = UN
Py (s) = { 0, otherwise. (1.1)

Definition 1.1.2 First-order inclusion probability, mx;, is the probability that a

sth

sample s will include the ¢** element under the sampling design py () :

mni=Pr(i€s)=> pn(s),

§31



where the sum is taken over all subsets s of Uy.

Definition 1.1.3 A probability sampling design is a sampling design such that

N > 0, Vie Uy.

Definition 1.1.4 Second-order inclusion probability, my,;, is the probability that a
sample s will include both i**, j** elements under the sampling design py (-),
TNy = Pr(ij€s)= ZpN (s).
5317
Remark 1.1.1 In similar manner, we can define third-order, fourth-order, and

higher-order inclusion probabilities.

Remark 1.1.2 It follows directly that the inclusion probability is invariant to per-
mutations of the indices in the subscript, and that the order is reduced if any indices

are repeated. For example, Tyijikki; = Tnijkl = TN jkii-

Remark 1.1.3 In developing an asymptotic theory, we consider sequences of finite
populations and associated sampling designs as IV — oc. Therefore, the first-order
inclusion probabilities my;, second-order inclusion probabilities 7y;;, and higher-
order inclusion probabilities are actually sequences depending on N. For the sake of

simplicity in notations, we will drop the subscript V.

Definition 1.1.5 A measurable sampling design is a sampling design such that

7'('1'_7' >0, V’L]EU

Definition 1.1.6 In general, a m!*-order measurable sampling design is a sampling

design such that all m*-order inclusion probabilities are strictly positive.

In the following examples, we will discuss different sampling designs.



Example 1.1.2 Simple random sampling without repl?cement design (SI) (e.g.
Sarndal et al. (1992)) assigns equal probability ( ]Z ) to every subset of U that
contains exactly n distinct elements. SI can be implemented by drawing the first
element from a uniform distribution on all N elements. Discard the first element
and draw the second element from a uniform distribution on the remaining N — 1
elements. Discard the second element and continue this process to select the n'*

element from a uniform distribution on the last N —n + 1 elements.

Example 1.1.3 With-replacement sampling design (WR). Suppose that py =
Pr (selecting element & on a single draw) for k = 1,...,N, and 3, ., p = 1.
The WR design is implemented by using the py’s to draw a first element. The
selected element is replaced and the process is repeated until the m** element is

drawn. The sample size in this case is n < m.

Definition 1.1.7 The sample membership indicators are

Iges = { (1) 'if.i €s
ifidgs.
Example 1.1.4 Poisson sampling design, (PO). Let m; be the first-order inclu-
sion probability for the i** element i = 1,..., N. Under PO, I {ies} are independent
Bernoulli random variables with

Pr (I{iEs} = 1) = ;.

To draw a random sample using the Poisson sampling design let u;,...,uy be
independent Uniform(0, 1) random numbers; if u; < 7; then the element ¢ is selected

(Sérndal et al. (1992)).

Remark 1.1.4 In the Poisson sampling design,

e The sample size ny = Y Iies) is random with mean FEpo(n,) =

> Ero (Ijiesy) = Y.y mi and variance varpo (ns) = Y, mi (1 — m) .



e Since the indicators are independent, 7,; = m;m; for ¢ # 7. In a similar manner,

we can define higher-order inclusion probabilities.

Example 1.1.5 Probability proportional-to-size sampling with-replacement design

(pps). For given positive numbers z1, ..., zy, define

r)
Pi = )
oy T

Draw a random sample with the same arguments as in the with-replacement sam-

i=1,...,N.

pling design of Example 1.1.3.

Example 1.1.6 Probability proportional-to-size sampling without-replacement de-
sign (mwps). For given positive numbers z1,...,zy, the first-order inclusion proba-
bilities 7; are strictly proportional to z; (Sérndal et al. (1992)). Brewer and Hanif
(1983) described a procedure to draw a 7ps sample of size n = 2. Define ¢, =
YouThs k= Tk (te — xk) [tz (tz — 22k), Pk = &/ )y ck and assume z < t/2.
Use the set of probabilities py (k= 1,...,N) to draw a first element. Without

replacing the first drawn element (say ki), give the element ! the probability
Pk, = 71/ (tz — T4)
of being selected in the second draw. According to this scheme,
mo=2x;/t, fork=1...,N

and for ¢ # j

2.’171'.'171‘ tz — I — .’E]
7Tij = .
te ZU ¢k (te — ) (te — 75)
Remark 1.1.5 For sample size n > 2, SAS proc surveyselect uses a method due
to Hanurav (1967) and Vijayan (1968) to draw a mps sample. The procedure also

produces the first-order and second-order inclusion probabilities.



Example 1.1.7 Stratified sampling design (ST). The finite population Uy =
{1,..., N} isdivided into H disjoint sub-populations, U = U U,. Forh=1,..., H
draw a probability sample s;, from U, according to a design py (+) , where the selec-
tion in one stratum is independent of the selections in all other strata, (Sarndal et al.

(1992)).

Example 1.1.8 Simple random cluster sampling (SIC). The finite population Uy =
{1,..., N} is divided into NV, clusters, denoted by Uy, ..., Uy,. The set of all clusters
is a new finite population, denoted by U, = {1,..., N;}. A sample s, of fixed size n,
is selected from U, via SI sampling design and all elements in each selected cluster

are observed, (Sdrndal et al. (1992)).

1.2 Unbiased Estimation of Finite Population Total

One of the key interests in finite population sampling is to estimate the pop-

ulation total, ¢, = .., v;. For each i € s, a value y; is observed for element i.

Definition 1.2.1 The Horvitz-Thompson (HT) estimator (Horvitz and Thompson
1952) for the population total t,, is defined by
» Yi Yi
b= == e, (12)
) Ur . 75
i€s g%
Remark 1.2.1 The Horvitz-Thompson estimator is an unbiased estimator for the
population total ¢, under any probability sampling design since
Byt =S LB, [Iien] =S Lir = ¢
p[yﬂ] —Zﬂ, » [ {165}] —Zﬂ.,m— Y
e ey
where E,[-] is the average over all possible samples under the design. Also, the

variance of HT with respect to the sampling design is

vary, (Ayﬂ) = Z&&Aij (1.3)



where A;; = cov, (I{ZES}, I{_,-ES}) = my; — mw;. For a measurable sampling design, an

unbiased estimator of var ({,7) is

ary (i) = 3 ZAA a4
iges T 73 Tij

Under the with-replacement sampling design of example 1.1.3,
T = 1- (1_pk)m)

which can be used in constructing the HT estimator. An alternative unbiased es-
timator can also be derived. Let x; denote the element selected in the it* draw,
i=1,...,m. Define the indicator I.,—«) to be one if the kt* element is selected in

the i** draw, and zero otherwise.

Definition 1.2.2 The Hansen and Hurwitz (1943) (HH) estimator for the popula-

tion total ¢, is defined by

m
g = —771; Z Z %:"I{M:k}-

i=1 keU
Remark 1.2.2 The Hansen-Hurwitz estimator is unbiased for the population total

ty, since

m

A 1 & 1
E, [tnn] = m ZZ %Ep [ini=ty] = m Z i’:‘pk =1y

i=1 kel i=1 keU
Furthermore, note that because the sampling is done with replacement, the random
variables >, %11, _y) are independent and identically distributed (iid). See, for
example, Section 2.9 of Sérndal et al. (1992). It follows easily that

var. (fHH) = —1~Z (yf —1 >2pk
12 m o Y )
€U

and an unbiased estimator for this variance is

bar, (fan) = s 3 (y_ - EHH)Q. (15)

i=]


file:///--tBH

Since gy is the sample mean of iid random variables with finite variance, it

follows from a standard CLT (Casella and Berger (2002) p.236) that

__t__.Hl—[.:}L_.E)(O, 1) as m — 00.

~

IA)G,TP (tHH)

Remark 1.2.3 (with-replacement approximation).
If pi is small then

me=1—(1-pe)" = mpg,

so that the HT estimator under WR design becomes
m
g%[{kes} = g%;ﬁmzk}, (1.6)
since Pr (370 Igx=ky > 1) is very small for pj small. But (1.6) is the HH estimator,
so that HT and HH are cxpcected to behave similarly under WR designs with small
Dk
It is common in practice to extend this approximation to without-replacement
designs. Define py = m;/m and ”pretend” that the sample was drawn with re-
placement with these probabilities and with m = n. equation (1.5) then provides a
convenient (approximate) variance estimator, implemented in SAS and other survey

software.

Remark 1.2.4 It is easy to establish asymptotic results when the Hansen-Hurwitz
estimator is used, since under sampling with-replacement design the indicators
I{,=xy are independent random variables, due to the fact that we have indepen-
dent draws. However, the asymptotic are not easy when a without-replacement
sampling design and the Horvitz-Thompson estimator is used. The difficulties come

from the fact that the indicator functions /j;¢,) are dependent random variables for



most designs. An exception is Poisson sampling, under which /e, are indepen-
dent Bernoulli random variables each with with success probability m;. A special
case of Poisson sampling is the Bernoulli sampling design, with =, = = € (0, 1).
Central limit theory for Poisson sampling has been established in Héjek (1960), and
extended to central limit theory for SI in the same work. Additional results and

references will be discussed later in this dissertation.

Up to this point, the only randomness that has been discussed is that introduced
through the sampling design; in particular, the y; values have been regarded as fixed,
real numbers, not as random variables. To study further the properties of estimators,
it is useful to introduce a probabilistic model for the y;’s. This model is referred to
as a superpopulation model, and commonly denoted by &. Suppose that X,,..., Xy
are known auxiliary vector values. Assume the relationship between y, and X is

given by
£ y=XB+e (1.7)

where E¢ (¢,) =0, E¢(ef) =o0f andfor k#1 FE¢(exe;) = 0 where the expec-
tation E (-) is the average over all realizations from the superpopulation model. If
fy is an estimator for ¢,, the estimation error tAy — t, can be examined jointly under
the model § and the sampling design p (-) . The anticipated variance (Sarndal et al.
(1992)) of &, — ¢, is

EeE, | (8~ 1,)°| - (BB, (i, - 1,)]".
If E.E, (fy — ty) = (), the anticipated variance is
EEEP [(fy - ty)z] '
Result 1.2.1 Godambe and Joshi lower bound (GJLB). Under the model (1.7), if

E¢E, (tAy - ty) =0



then

where t; is any estimator of the population parameter t, (Godambe and Joshi

(1965)).

1.3 Estimation of a Population Ratio

In many survey applications, it is of interest to estimate the population ratio

ot _ 2icu Yi
tz ZiEU €I;

Example 1.3.1 Suppose the population consists of agricultural fields of different

sizes. Let

y; = bushels of grain harvested in field ¢

x; = acreage of field <

Therefore, we are interested in yield, which is the population ratio 6 = t,¢;! =

bushels per acre.

Example 1.3.2 The goal of studies of labor force is to estimate the employment

rate

0 - E’i _ number of employed persons '
t., number of persons in labor force

The availability of auxiliary information can vary from population to popula-

tion. Consider the following situations:
o Auxg: x; are available only for i € s.

e Auzx, : x; are available only for ¢ € s and Zy,, is known.
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e Auzy : x; are available only for ¢ € s, and Zy, is known for stratum h =

1,...,H where U = U U,
o Auzs: x; are known for all i € U,

Note that if Auz; holds the so does Auxi, k < j. Under Auz;, define Brgive =

txt;' as an estimator for 6. This is clearly an unbiased estimator for 6, with
; 1 Yi Yj
va7p { Onaive | = ) =Z=Ay (1.8)
T ijeU

This estimator is known to be relatively inefficient, in general.

Under Auzg, define the stmple ratio estimator
_ Zie.s %Jr—z
g4 ZiEs jr_z

The estimator 6 is considered one of the most important estimators for the

(1.9)

population ratio. This estimator is biased since it is a nonlinear function of the
unbiased estimators fy,r, tzr. It is often impossible to find exact bias or exact variance
for this estimator. However, this estimator is asymptotically unbiased. Under a
general sampling design, the properties of this estimator will be discussed. When
this estimator is used in a separate ratio estimator under stratified sampling, the
bias can accumulate, even for moderate numbers of strata. The estimator can then
give very poor results as we will see in Section 3.4.

To study the asymptotic properties of é, linearize f by first order Taylor expan-

sion,
b=
t.’Eﬂ'
t 1 ,. t
= 2t (b —ty) = 7 (fer — )
x x x
1 Tiiesy
= constant + o (y; — Ox;) —. (1.10)
5


file:///byir
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Therefore, the variance of  is given by

vary (é) = ti? Z Yi ;H.ZZ Yi —le.’lij Aij, (111)

Vi
T §5eU t J

where A;; = m;; — mym;. Note that (1.11) should be smaller than (1.8) if fz; explains
some of the variation in y;. For a measurable sampling design, an approximately

unbiased estimator for var, (é) 18

dar, (0) :ﬁ_zy i Y; x]—fl

ik i,j€s i Trj ﬂ-@?
This estimator can be shown to be consistent for the true variance under fairly mild

conditions on the design, the z,’s and y,’s.
1.3.1 Bias of {

In order to find the bias for é, expand 0 to second order by Taylor expansion,

oty 1. ty -1\ ,; .

6 = i+z;(ty,r—ty)——é(tz,,—tz)+(—tg—> (bar — tz) (Lyr — ty)
1 1 /2t ,» 2
+§*0+—2'<7§i) (tzﬂ--—tz>

Then the bias of § is approximated by

Bias = F (9 — 9)

. 1 A s t .
= —zgcov,, (t”, ty,r) + %—g—varp (t”)
oy (far, ) Vo (ar) vary ()t v, (i)
= —— + =
t tzty tz t2

Tajvary (tAI,,) vary (fy,r)
= 0 [(cvp (Eer))” = P10 4,00 (Eer) ety (i)

= 0 vy (Ean) = Pty 4y 00 ()] €0 (Fon) (1.12)

where cv, () denotes the coefficient of variation under the design.
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Remark 1.3.1 Under the model ¢ : y; are independent (B3z;,0%x;), it is an easy
task to show that the right hand side of (1.12) is approximately zero, but this is not

the general case.
1.3.2 Godambe-Joshi Lower Bound for §

Under the model design ¢ : y; are independent (8z;,0?), and for probability
sampling design, p(-). If we had the entire finite population, then the least squares

estimate for 0 is 6 = t,t; . Let 6 be any estimator of 0 satisfying
E¢E, (é - 9) =0.
Godambe-Joshi (1965) showed that
SN2 1 1-m
— > = ‘Yol = .
E(E, (0 e) > & é\; ( - ) o= GJLB

Assume that 7; > m;; > my, > 0. Then

11 |1
GILB< ———— | =S (1 -m)o?|,
=72 N [NZ( ”)”’]

N ieU
which is order O ((N'/TN*)_I) under mild conditions. In particular, for SI of size n,
GJLB=0(n"1).
Under the model € : y; = fBz; + ¢, where ¢; are independent (0, 02), the
Godambe and Joshi (1965) lower bound is asymptotically attained by 6. To see
this, note that 7 — 8 = ‘—.’Z'[;LEU, where &y = N7} Y ey € and so from equation

(1.11), recall that

j 1 y; — Oz y; — Ox;
vary, (9) = = Z — j - A
T 45el g J
1 A
t,jeU
1 AVP
= 50 (G (B-0)m)(G+(B-0)z)
T g5eu Y



— i Al] _ 2 Z Az] ie €U+‘1— Az] xsz—ZU
- ) — i —
tg ijeu T 3: ijeU T Ty, t?n i7eU T .’)32U
G 1 1—m 2 AVY ;
Ee [varp (9)] = = m i I B
iz ey g tZ rev T N.??UN
1 Ay _zi 2
2 572 Zal
(54 L N2z, P
= GJLB+O
" ( 2 N*>+ <N27TN*)
1
" (Nzﬂ-N*) ( )
Since
1 1—m 1
GJLB = 7 Z —7—&—103 of order O (NWN*)
L oieU
then

%%;%@:14—0(%)—»1 as N — oo.

Hence, Godambe and Joshi (1965) lower bound is asymptotically attainable.

On the other hand, from equation (1.8), recall that

. 1 o
vary <9mu've) = 1‘_2 Z %&AU
1 — 2
- B{EER T S
 \ieu i£ijeU T
N 1 1 — T At

Eﬁ [Uarp (enaive>] = t—2 {Z T [022 + /82-7312] + Z '7:.,821171‘73]‘}

T

iclU t itgijelr Tm;
1 1 - Trrl 2 ‘Lj
- t_2 {Z s + Z )6 Ti CL‘,}
T\ ieU ¢ zJeU
/62
= GJILB+ % Z Ry
w i]EU g
1
= GJLB+O 1.14
+0(50) (1.14)

under mild conditions, so the reminder term is of the same order as GJL B, and the

lower bound is not attainable asymptotically.
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1.4 Ratio Estimation of a Finite Population Total

Once we have an estimate of the population ratio, we can use this estimate to
estimate the population total t, under Auz;. In other words, estimate t, by £, = t.0,
where 4 is an estimate for . If § is unbiased for #, then th is unbiased for .

Ratio estimation is often used in the case of stratified sampling in which the
population of N units is divided into H non-overlapping strata Uy, with N;, = |Up|

units in the A** stratum. Under this scenario, the population total is

i i
by=D tyn = tonbh, (1.15)
h=1 h=1

where t,, = ZkeUh Yk top = ZkeUh Ty, O = tyntos, and Uy C U is the A* stratum,
consisting of N units.

Consider a measurable stratified sampling design, sampling n, units from the
h** stratum. To estimate the population total using ratio estimation, there are two
approaches. The first one is is to combine all strata, estimate the population ratio
and multiply by t, and the second approach is to estimate the h® stratum ratio,

multiply by t,;, and sum across all strata.

Definition 1.4.1 The combined ratio estimator for the population total ¢, is defined
by

~ ~

o Compg = tab (1.16)

where 6 is any estimator of §. This estimator requires auxiliary information Auz;.

Definition 1.4.2 The separate ratio estimator for the population total t, is defined

by

H
Lyseps = D tanbh (1.17)
h=1

where 6, is any ratio estimator for the h!* stratum ratio. This estimator requires

auxiliary information Aux,.
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For example, using f as an estimator for the population ratio # in equation

(1.16), we have the simple combined ratio estimator

~ ~

f = t.0 (1.18)

ycom, 8
under Auz,. From equation (1.12), it follows that
Bias, (fycom,é) = Lk (fycom,é) — t,.0
- [ )-
=ty |ty (far) = Phun yu s (Bur) | cVp (Fer)
and from equation (1.11),

) i — 0z, y; — 015
vary (tycom,é) = Z ¥ 7Y 2 Aij‘ (119)

M, m;
ijeu ¢ 7

Further, under the super-population model
£ y; = Px; + ¢;, where ¢; are independent (O, af) ,

we have from earlier discussion that the Godambe-Joshi lower bound is asymptoti-
cally attainable for iycom,é‘

As another example, using 6 as an estimator for the population ratio ¢ in

equation (1.17), we have the simple separate ratio estimator

Lysend Z t"‘hgh

under Auz,.

Applying equation (1.12) in each stratum, we have

Bias, (ijsep’é) = (ysto) Zfzhgh
- Sl () -0

= 3 t,Bias (éh) (1.20)

h=1

L‘:
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where

A

Bias (9h) =ty {cvp (famh) = i ity CUp (fymh)] cp (temn)

and, using the independence across strata and equation (1.11) within strata,

H
; . Yi — OnTiy; — Ona;
vy (fyss) = D D0 BTN, (121)

T
h=1ijeUn J

Remark 1.4.1 The use of stratification comes from our belief that there are dif-
ferences between strata and homogeneity within strata. To use the combined ratio
estimator to estimate the population total ¢, will ignore much of the efficiency af-
forded by stratification. The variance in (1.21) is small in the case of a common
ratio for all strata, so the simple common ratio estimator will work well only if the
ratios do not vary much from stratum to stratum. When we have big differences
in ratios from stratum to stratum, then the simple separate ratio estimator will be
a better estimator of the population total ¢, as can be seen from its approximate
variance in equation (1.21).

On the other hand, if 4 1s used to estimate the population total ¢,, then

ySep,
as shown by equation (1.20), the biases of the within-stratum ratio estimates may
accumulate across strata, leading to poor performance. To overcome this problem,
it is useful to have an exactly unbiased estimator for the within stratum ratios.

Therefore, in this work, we will propose an exactly unbiased estimator for ¢, which

can be used for unbiased, efficient estimates of the within-stratum totals ¢,4.

1.5 Ratio Estimators with Reduced Bias

Ratio estimation has been studied in the literature for more than fifty years.
Most of the discussions are under the simple random sampling design, and only

approximate variances of the corresponding estimators are given. Under a general
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sampling design, the population ratio estimators are typically biased, though almost
unbiased, and asymptotically unbiased. To eliminate or reduce the bias of ratio es-
timation, authors have either modified the estimator, or have modified the sampling
design.

In particular, Lahiri (1951) proposed a sampling method that is an example of a
rejective method. Start this method by choosing a number M > max (z3,...,Tn) .
With equal probability draw one of the N population elements. Let n be the se-
lected element. Draw u from a Uniform (0, 1). If uM < z,, then the selected
element is included in the sample; otherwise, start over. This method gives
Tk = Tk/ D pey Ths fork =1,..., N, a probability proportional to size sampling de-
sign with n = 1, even though >, 24 need not be known. Note that under this design,
2 kes (Yr/7x) has expectation ey (ye/zk) (Tr/ Lpev ¥6) = Ppev Yo/ Lokev Tk
the population ratio. That is, this particular combination of design and estimator
gives an exactly unbiased estimator of the population ratio under Auxy.

Mickey (1959) derived an estimator under simple random sampling without
replacement of size n. Compute 0;_ by removing each unit i in turn from the sample,
so that §;,_ = ZE;Z—: is computed over the remaining n —1 members. Then the Mickey

estimator is given by:

~ = N — 1 =
b=+ 2D (555 (122)
NJJUN
where f_ is the mean of n ratios 0,_, and §, = nUS oy, Ty =
n~13 xg, and Tyy = N7'Y°, @ Mickey’s estimator is an unbiased estimator

for the population ratio § under Auz,.
Nieto de Pascual (1961) proposed an almost unbiased estimator, in which the
bias is of order n~2. This estimator is also under simple random sampling and Auz;,

and is given by:

N —s 1 — R
bp=2 4 —— (5, - 7.2,) (1.23)
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where rp = yg/zx and 75 =n7t Y 1y

Murthy and Nanjamma (1959) proposed the following estimator,

éMN =7+ _n"‘—‘_‘_f_“ (@73 - sts) (124)

under simple random sampling without replacement. This is an almost unbiased
estimator for the population ratio under Auz;.

Our work is directly motivated by that of Hartley and Ross (1954), who de-
rived an exactly unbiased estimator for the population ratio under simple random

sampling and Aux;. Their estimator is given by

n(N-1)

———— (g — TeZy) . 2
N{n—T)g, Us ™ Te) (1.25)

Onr =7, +

Hartley and Ross (1954) gave the asymptotic variance of this estimator as

_ 2 2
’Ua’l“p <0HR> = l (ﬂ) |:0'y + _(;I' _ ZCOUT) (x’ y) . (1-26)

o 5 P
n \Zuy Yo Tuy YuTuy

In this work, we will propose an exactly unbiased estimator under a general
probability sampling design, which gives the Hartley and Ross (1954) estimator as a
special case under SI. Furthermore, we will give an exact expression for the variance
and an exactly unbiased estimator for the variance. Various extensions will be
considered, including the stratified sampling case, in which the bias of ordinary

ratio-type estimators is a serious issue.

1.6 Contributions of This Dissertation

We will give a brief description for the coming chapters. In Chapter 2, we will
introduce the Generalized Hartley-Ross estimator, éGH r. We will show that this
estimator is exactly unbiased under a general sampling design and that it gives the
Hartley-Ross (1954) estimator under the special case of simple random sampling

design without replacement (SI). As examples, we will investigate the properties of
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fcur under SI, random sampling with replacement (WR), Poisson sampling (PO),
and stratified sampling designs. We derive the exact variance of Ocrr and an ex-
actly unbiased variance estimator under a fourth-order measurable sampling design.
We will give the first through fourth-order inclusion probabilities for different sam-
pling designs, which are needed to compute the variance and the unbiased variance
estimator for éGHR. To find the first through fourth-order inclusion probabilities
for a general sampling design is not an easy task in general; therefore, we will give
two methods to approximate the computations of the unbiased estimator for the
variance of éG nr. The two methods of approximations will be tested via simulations
under SI, proportional to size sampling design (7ps), and PO sampling designs. Fur-
thermore, b mr Will be written under stratified simple random without replacement
sampling design (STSI) to estimate the population total ¢,. Also, Ocnr is written
under interpenetrating sub-samples, and under interpenetrating STSI by sampling
one element from each strata via SI.

Under a stratified sampling design and Aux,, éGHR can be used in a separate
ratio estimator to estimate the population ratio 8 or to estimate the population total
ty.

An alternative unbiased ratio estimator éGHR under a with-replacement design
using a Hansen and Hurwitz (1943) type estimator will be introduced. This estima-
tor will be used to estimate the population ratio # and the population total ¢,. An
exact variance and an unbiased estimator of the variance of this estimator will be
given.

At the end of Chapter 2, we will introduce another estimator as a result of a
linear combination between éGHR and 6. The GHR estimator is unbiased but may
have large variance, while the simple estimator is biased but has small variance. The
goal of the combination is to obtain an estimator with variance less than the variance

of crr. However, the new estimator is no longer unbiased (except in the trivial
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special case when only éGHR is included). From this combination and under the SI
sampling design, we can produce Murthy and Nanjamma (1959), Nieto de Pascual
(1961), Hartley and Ross (1954), and simple estimators.

In Chapter 3, asymptotic results involving the two unbiased estimators bcur
and G will be discussed. Central limit theorems (CLTs) for éGHR will be dis-
cussed under SI and PO sampling designs. Further, a CLT for tAySep,GHR under a
general stratified sampling design will be established. In addition, CLT based on
éGH r will be established; both for the case that the population size N is fixed and
the number of independent draws tends to infinity, and for the case when both the
population size and the number of independent draws tends to infinity. A con-
sistent estimator of the asymptotic variance under the second case will be given.
Godambe and Joshi (1965) lower bound will be discussed for Ocur, and fcur. At
the end of the Chapter 3, éGH r and 6 are compared through simulation and results
are given for unstratified and stratified sampling designs. Chapter 4 includes some

concluding discussion and an appendix assembles some technical details.



Chapter 2

GENERALIZED UNBIASED ESTIMATION OF RATIOS AND
RATIO ESTIMATION

The need to find an exactly unbiased estimator for the population ratio is a
serious issue especially in stratified sampling. In this chapter we will introduce an

exactly unbiased estimator for the population ratio and derive its characteristics.

2.1 General Measurable Designs

The population ratio 8, is a non-linear function of two totals, the total of the

study variable ¢, and the total of the auxiliary variable ;. In other words,

0 . f (Il ¢ ) — E}J_ . ZiEU Yi
= J by tzg) = = .
te ZieU Ty

We will assume Auz; : the auxiliary values x; > 0 are available for all sampled

elements 7 € s, and Ty, is also available from some source external to the sample.
A probability sample s is drawn from a finite population U according to a

measurable sampling design p (-) ; for this general probability sampling design, our

goal is to obtain an exactly unbiased estimator for 6.
2.1.1 Generalized Hartley and Ross Estimator

We will generalize Hartley-Ross estimator under a measurable sampling design.

Theorem 2.1.1 Under a measurable sampling design and Aux,, the estimator

A 1 1 1 v 1 1
Ocrr = — ,— LA i, 2.1
GHE N iz&_;riﬂ'i t NiUN e M N erx]ﬂ' ] ( )

i€s je€s i
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where r; = yia:i”l, is an unbiased estimator for 0, and t, cur = t:9cHR s an unbiased

estimator for L.

Proof: Rewrite 0ggr as

A 2 1 I{i JEs}
QG’HR - "‘trﬂ— + t T T X, : (22)
N [ v N2(EUN ;fg “a T
where #,, = doicu T I{;C;”. Therefore,
A 1 t 1
E, [HGHR] = —l+ -2 - TiL;
N e Nty i€l jeuU
1 t 111
= —t,+ L - = |=t|t
NTTL T [N ]
=0 (2.3)

Hence, 6gxr is an unbiased estimator for 8, and fy,GHR is an unbiased estimator for
t,.

|
In the following examples we will write 6 r under different sampling designs.

Example 2.1.1 Simple random sampling without replacement design (SI).

Under SI design,

n
and
_n(n-1) o
= NN =) Vi # J. (2.5)
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Define Sp, = {all distinct ¢-tuples from s} . From (2.1), we have

bour = To+ N;UN Ny, — % Z T — s
! ij€sp,
N —
= Ty+ NflUN —Nﬂs - W:Eﬁ {i’%ﬁx]’ -~ iezsyz} - ﬂs}
= et N.TI:UN n (n],v:ll)gs - (n],v:ll)fsfs]
= Te+ N’?;LL]_\{—I)IT)W (gs - 7:si's) ) (2'6)

which is the Hartley and Ross (1954) estimator.

Example 2.1.2 With replacement sampling design (WR).

In with-replacement sampling (WR), the selection is carried out by drawing a first

element in such a way that
Pr (selecting element k) = py; k=1,...,N

where ), pr = 1. The selected element is replaced and the second element is inde-
pendently selected, continuing this process to the mt* element.

For m independent draws, the first-order inclusion probability is
ﬂ'k:l*—(l—pk)m. (27)

The second-order inclusion probability my;, for k,{ € Sp, is given by

mw = Pr(k,l€sp,)
— 1—Pr(k¢sorlds)
— 1—[Pr(k¢s)+Pr(i¢s) —Pr(kandl¢s)]
= 1-{1-p)" + (1 =p)" = (1= (pe +p))"] (2.8)

Expressions (2.7) and (2.8) can be plugged in to equation (2.1) to yield 61 r under
WR.
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Example 2.1.3 Poisson sampling design (PO).

Let m, = Pr (I{kes} = 1) be the predetermined positive inclusion probability for
the k™ element in the population, where & = 1,..., N. The sampling membership
indicators I{xecs) are independent; therefore, my; = mpm for any k # I. From equation
(2.1), rewrite dgxr under PO as

N-1+—|%—-—— i— X —
Z [ * 71'1-] m  N2Zy, [;r ; x]wj]

i€s

bonr = NZ“ N2

x
i€s Un

Example 2.1.4 Stratified sampling design.

Under a general stratified sampling design, fcrr from equation (2.1) is

Y

h-—l €S

- > T L,

h heDg i€sp ]Es

T 9) DTS 35 Wp 29

.'E
h=1i€sp UN 3= 14,j5€s,

In particular, under stratified simple random sampling without replacement (STST),

we have
Th
;= — 2.9
m= 5 (2.9)
and
%7: 1 fori=jandi,j €U
My = 1’\‘,’;1—\};%1 for i # j and ij € U, , (2.10)
%t:%t: for i € Uy, j € Uy, and h,h € Ds.
Hence,

H
A STSI _ 1 Ny, —ny,
bcrr = th{rh‘i‘ = ( L )(h_rhTh}+—ZU)hyh

h=1 Nzyy \ nn—1 Tun 5
1 _ _
_— Z WhTH Z WrZyp | - (211)
Tuv \"% i
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where 7, = n, Ezes,. Yix; and w, = N,N!.

Example 2.1.5 éGHR under interpenetrating sub-samples.

The idea of interpenetrating sub-samples is to draw a sub-sample of size m via SI,
then return the m observations into the population and independently repeat this
process GG times; in this case, the sample size is n < mG. The first order-inclusion

probability is then

m = Pr(i€s)
= 1—Pr(i¢s)

G
= 1—Pr<i€ms§>
g

= 1-[Pr(ies))®

= 1- [1—%]0 (2.12)

The second order-inclusion probability (i,j € Ds) is
My = Pr(i,j€s)
= 1—-Pr(i¢sorj¢s)
— 1 [Pr(i¢s)+Pr(jgs) —Pr(i¢sand j¢s)
= 1—[2Pr(i¢s)—Pr(i¢s and j ¢ s)]
2Pr<' ﬁ > PT‘(Z]Eﬂ )]

- 2(Pr(ie )¢ — (Pr(i,j e sl))ﬂ

— {2[1—— . [1— (2%—%—:—%)]0} (2.13)

Expressions (2.12) and (2.13) can be plugged in to equation (2.1) to yield bchr

under this design.



26
Remark 2.1.1 For small p, expand (1 — p)™ by first-order Taylor expansion to get

(1-p)" =1-mp.

We use this fact to approximate the first-order and second-order inclusion probabil-

ities. From equation (2.12), we have

m=1—[1—T]Gﬁ1—(1—GT)=G

m
N N N

and from equation (2.13), we have

Therefore éGHR under this sampling design is

; L1 1 m(N —1)
GHR —G—Z ;;Zﬁ +mN(m-1 Z%

g=1 1€3g qug
1 1
— (7_71— T —-—Zx]
SER JESg
1< m (N — 1)
= — Tg + e [ “f,f‘]}, (2.14)
52 {7 sy, o=

which is the average of éGH r under SI over G repetitions.
2.1.2 Exact Variance of éGHR

One of the interesting properties of 8y g is an exact variance expression under

any measurable sampling design.

Theorem 2.1.2 Assume z; > 0 for all « € U. For a measurable sampling design,

the variance of éGHR is given by

. 1 vl y; 1 iy Tk
varp \feur) = 3m 2 o Bet g Ty T L
ijeuv "+ UszkleU i Tkl
2 y* TeXy
3
Nz — Lkl (215)
Tyy T Tki



27

. 1+1
Y = z | Tuy Yi

where

Dij = covp (Iiesy, Ijesy) = mij — mim;
A = covy (Ijiesy, Iipies}) = Mawt — Wity
Aijkl = Covp ([{z]es}, ]{kles}) = Tijkl — TijTki-

Further, the variance of fy,GHR is given by
vary (fy,GHR) = tiva‘rp (90HR) .

Proof: From equation (2.1), rewrite éGHR as

9GHR = — Z yz [{zea} N2 Z Z i [{1 JE€s}

1€U Un jeu jeu

The theorem follows directly by taking the variance of both sides of this equation.
|

In the following examples, we will write the exact variance of éGHR. We need

the following notation:
Up, = {Set of all distinct ¢-tuples (4y,1s,...,%) from U}.
Example 2.1.6 Variance of fcrr under SI sampling design.

For a population of size N > 3 and under SI, the third-order inclusion probability
for i, 7, k € Up, is

nn—1n-2

= ——— ——— 2.16
Tk = NN 1IN -2 (2.16)
and the fourth-order inclusion probability for ¢, 7, k, [ € Up, is
nn—1n—-2n-—3
Tijkt = (2.17)

NN-1IN-2N-3
The inclusion probabilities (2.16) and (2.17), along with (2.4) and (2.5), can then be
plugged in to Theorem 2.1.2 to yield on exact variance. Note that Hartley and Ross

(1954) provided only a variance approximation.
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Example 2.1.7 Variance of @GHR under WR sampling design.

For 4, j, k € Up,, and ¢, j, k, | € Up, it is possible to derive the third-order and
fourth-order inclusion probabilities, using argument like those in Example 2.1.2 re-
sulting in
Tk = 1=[(1=p)" + (1 —-p)" + (1 —p)" = (1= (pi +p;)"
— (1= (i+pe))" = (L= (pj +pe)™ + (1= (pi +pj + pe))™] (2.18)
and for ijkl € Dy,
Mg = 1=[1=p)" + 1 ~p)" + (1 —p)" + 1 =p)" = (1 = (ps +p;))"

- A=+ p))" = Q= (pi+p)" = (1= (P +p)" = Q= (p; +12))"

f

(I=(o+p)"+ Q= (pi+pj+pe)" + Q= (pi +p; +p))"
+ (= (pi+pe+p)" + (1= (pj+pe+p)"
- (I-(m+pi+pm+m)"].

Alternatively, these higher-order inclusion probabilities can be approximated by zero
using the second order Taylor expansion. In either cases, Theorem 2.1.2 can be used

to compute the variance of HAGH r under this design, either exactly or approximately.

Example 2.1.8 Variance of bcur under PO sampling design.

The independence of sampling membership indicators I{xe,) enables us to define
easily the third-order and the fourth-order inclusion probabilities. For ¢, 5, k € Up,,

the third-order inclusion probability for PO is
Tijk = T ;T
and for 1, j, k, [ € Up,, the fourth-order inclusion probability is
Tijkl = TiT3TETY.

With these inclusion probabilities, Theorem 2.1.2 can be used to yield an exact

variance of gyr.
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Example 2.1.9 Variance of gy under stratified sampling design.

Under a general stratified sampling design,

H
5 _ y; 'U] TiZ; ThLL
vary, (GGHR) = hz:: -~ it N4 N Z > ikl
2

T
ij€Un UN he1djkieu, "9 Tkl

Y; Tk
E : LETA, 2.19

by Theorem 2.1.2.

In particular, under STSI, for ¢, j, kK € Up,, and i, j, k, | € Up, it is possible to
derive the third-order and fourth-order inclusion probabilities, using arguments like
those in Example 2.1.4, equation (2.19) can then be used to compute the variance

of éGHR'

2.1.3 Unbiased Variance Estimation

The existence of an exactly unbiased estimator of var, (éGH R) is another useful

result for éGHR.

Theorem 2.1.3 For a fourth-order measurable sampling design, an unbiased esti-

mator for vary (éGHR) s given by

X
N 5 1 vy Ay 1 5T TkTy Dl
bary (fonr) = [E 2 Tt yE O .
ijEs 5 7T] 7T1] J'.UN i klEs Tij Tkl 7T1]kl
2 Vi Tt Diny (2.20)
N3z T TR Tkl '
Un ik lEs 1 Nkl ikl

Further, an unbiased estimator for vary (tAy,GHR) is given by
’0(17‘,, (fy,GHR) = tif)arp (éGHR> .

Proof: The proof of this theorem follows directly from Theorem 2.1.2, using fourth-

order measurability to ensure that (2.20) is well-defined.
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Though an exactly unbiased estimator for var, (égy R) exists if the conditions
of Theorem 2.1.3 are satisfied, it is in general difficult to obtain the third-order
and the fourth-order inclusion probabilities under general sampling designs. It is
an easy task, however, to obtain these higher-order inclusion probabilities under SI
(with n > 4 for fourth-order measurability) and PO sémpling designs. For Brewer’s
method a special case of 7ps with n = 2, the third-order and fourth-order inclusion
probabilities are zero when at least three of the indices are distinct. For n > 4,
other mps methods exist as implemented, for example, in SAS proc surveyselect.
This procedure will produce first and second -order inclusion probabilities, but not
higher-order, a common limitation. It will be therefore be useful to consider approx-
imate variance estimators that do not require higher-order inclusion probabilities.
We begin however, with the case when the first through fourth-order inclusion prob-

abilities are available. Let us return to our earlier examples.

Example 2.1.10 dar, (éGHR> under ST design

Let us rewrite the first through fourth-order inclusion probabilities under S7 and

for N > 3.

The first-order inclusion probability is m; = 1%,

the second-order inclusion probability is m;; = 7’(7—"—"}1, for 4, 7 € sp,,

the third-order inclusion probability is m;x = %ﬂill—"—'%, for i, 7, k € sp,,

the fourth-order inclusion probability is m;;, = ﬁ";ll]’\l,—“_z%%, for 4, 7, k.1 € sp,,

2
where sp, is the set of all distinct t-tuples (4,4s,...,%;) from s. Therefore, the
computations of var, (éGHR> in Theorem 2.1.3 can be done to yield an unbiased

variance estimator.

Remark 2.1.2 As previously noted, fcpr is exactly the Hartley and Ross (1954)

estimator under SI. But what is new and not given by Hartley and Ross (1954)
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are the exact variance of fggr and an exactly unbiased estimator for the variance.

Hartley and Ross (1954) gave only an asymptotic result for the variance.

Example 2.1.11 dar, <9GHR) under WR design.

Under WR. sampling design, the first through fourth-order inclusion probabilities
can be computed (as given in Examples 2.1.2 and 2.1.7). Note that even a second-
order Taylor approximation for such inclusion probabilities would not be sufficiently
precise since the approximation of the third-order and fourth-order inclusion prob-

abilities would be zero in this case.

Example 2.1.12 dar, <9GHR) under PO design.

Under PO sampling design, the first through fourth-order inclusion probabilities are
available. Therefore, the computations of dar, <9GHR) can be done directly from

Theorem 2.1.3.

Example 2.1.13 dar, <éGHR) under stratified sampling design.

Assuming a general fourth-order measurable stratified sampling design, an unbiased

estimator of var, <éGHR) is given by

H
- A yz y] 1 Ty Tkxl z]kl
vary <6GHR) = N2 E ———-————N4_2 E E
T ) 7T] Tl 4 145 y

hel ijesh Tij Tkl Tijkl
H
2 Z Z Y5 TeTL Dy (2.21)
37 4 o '
N TUN 4] s iTee, i TR ikl

In particular, under STSI with ny > 4 in every stratum, it is easily to derive the
third-order and fourth-order inclusion probabilities, using arguments like those in
Example 2.1.4, equation (2.21) can then be used to compute var, <9GHR) under
STSI.
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2.2 Separate Ratio Estimation for Stratified Sampling Designs

We now consider estimation of the population total or population ratio under
Auzy. The finite population is divided into H non-overlapping strata and éGHR
can be applied to each stratum since Zy, is known for A = 1,..., H. As noted in
Chapter 1, this estimator is motivated by the fact that the classic separate ratio
estimator may suffer from accumulation of bias across strata, so substitution of

unbiased estimators within each stratum is warranted.
2.2.1 Separate Ratio Estimation Using éGHR

We apply éGH g within each stratum to obtain a separate ratio estimator. Define

. 1 1 1 LI !
i _ 1 L Nl T —— 2.22
GHER Ny ZT U " NpZy, Zylﬂ' Ny Z 1 Tij (2:22)

1ES), 1Esy iJEsp

and
H

LySep,GHR = E tehfGHR -
h=1

is estimating the population total.

Theorem 2.2.1 Under a measurable stratified sampling design and Auz,,

H
. boh A
OcHRSep = Z =0cHRh
bz
h=1
is an unbiased estimator of the population ratio 6, and

H

tySep,GHR = E ten@GHRR
h=1

15 an unbiased estimator of the population total t,.

Proof: The proof follows directly by applying fcnr to each stratum under a mea-

surable sampling design p(-), and using Theorem 2.1.1.
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Remark 2.2.1 Many real surveys are stratified surveys, such as the National Re-
sources Inventory (NRI). The sample design is based on a stratified two-stage area
sample of all US lands. Strata are subtownship-level geographic subdivisions in the
areas of the country covered by the public Land Survey and analogous geographic
subdivisions elsewhere, amounting to tens of thousands of strata. Two primary
sampling units are selected in most strata in the first stage of sampling. In the sec-
ond stage of sampling, three points per Primary Sampling Unit are selected (Breidt
(2002)).

The US Current Population Survey (CPS) is a multistage stratified sam-
ple. The first stage of the CPS sample design is the selection of counties (see
http://www.census.gov/prod/2006pubs/tp-66.pdf). There are approximately 3,000
counties in the US.

From the above two examples, NRI and CPS are highly stratified, and such
large numbers of strata enable us to use asymptotic results in which the number of

strata goes to infinity.

In the following example, ban r.n Will be derived under stratified simple random

sampling.

Example 2.2.1 éGHR,Se,, under stratified simple random sampling without-

replacement (STSI).

Assuming ny, > 2 in each stratum, estimate the population ratio 6 by
H
- STSI ten | np (N —1)  _ -
faur,s = "——{7‘ + = (Ys, — TspT
€p hz::; tz Sh Nh (nh _ l)th ( Sh Sh Sh)
and the population total £, by
STSI = np (N — 1)
¢ I - h h — o -
g 3t S -

where 7;, = ngl Zz’es,,, r;. This result follows directly from applying the Hartley-

Ross estimator of Example 2.1.1 to the A" stratum.


http://www.census.gov/prod/2006pubs/tp-66.pdf
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2.2.2 Exact Variance for Separate Ratio Estimation Using GHR

Assuming a measurable stratified sampling design, the variance of éGH R,Sep and

~

tysep,cHR 18 given in the following theorem.

Theorem 2.2.2 Under a measurable stratified sampling design,

H 2
. bt .
vary (OGHR,Sep) = Z (%) vary (OGHR,,I)
h=1

xz

and
H
f =Y 2 6
vary \lySep,GHR) = zhVOTp L VGHR A } 5
h=1
where
. 1 yrys 1 TiX; Tk
i 7] g TkAl
vary (Gonns) = 5z 2 B0yt g 3 TE A
hoigeu, "t hUn g jkiey, 9 "k
2 yr rk:le
Nray D e O
hWUUN ke, TR
. 11
Yi = \ -+t )W
Ty Ty,
Ay = covp (Iiesys Tgesny) = Ty — mim;
Ay = covy (Lesny Liktesny) = Miwt — TiTwl
and

Aijrr = covp (I{ijes,,}, [{kle.sh}) = Tijkl — TijTkt-

Proof: The proof follows from Theorem 2.1.2 using the definition of éGH R,Sep and

tysep,crr and the fact that the strata are independent.

Example 2.2.2 var, (écHR,sep) and vary (iysep,GHR) under STSI.
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Note that
w, = %}-}LL—, fort € Uy,
np np — 1 .
Ty = NN, T fori £ 5 € Uy
Ny nh—lnh—2 ..
ik = ———, forijk e U
Tk = Ny Na—1N,—20 TR S Uhn,

nhnh—lnh—2nh*3 ..
g = = . forijkl € Uy, .
Tt = N Ny = 1Np 2Ny =3 Ok € Ui,

Plugging these expressions into Theorem 2.2.2 yields wvar, (éGHR,Sep> and

varp (fySep,GHR) .

2.2.3 Unbiased Variance Estimation for Separate Ratio Estimators Using
OcHr
For fourth-order measurable stratified sampling designs, unbiased estimators

for var, <¢9GH Ryge,,> and var, (tyge,,,GHR) exist,.

Theorem 2.2.3 For a fourth-order measurable stratified sampling design, an un-

biased estimator of var, (0GHR,S€Z,> 1

H 2

. 5 tzn \~ . 5

vary 9GHR,,Sep == = vary 9GHR,h
t

h=1 x

and an unbiased estimator of var, (tygep‘GHR) 1s

H

~ A 2 A A

varp (tySep,GHR) = E tzhvarp (HGHR,h)
h=1

where

*
ﬁﬁAij 1 Z TiZ; TRIy Aijkl

N (é 1
var. = —=
P GHR,h 2 1-2
Nh . T3 Ty Ty NhIUh i Ti5 Tkt Tijkl

Z,jGS ajakylesh
2 Y kT Dkt
N3z e e
hPUN | jics, T Tkt Tkl

Proof: The proof follows from Theorem 2.2.2 and Theorem 2.1.3.
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Example 2.2.3 dar, (éGHR,Sep) and dvar, (fygep,GHR) under STSI.

If np > 4forh =1,...,H, then STSI is fourth-order measurable. Using the in-
clusion probabilities defined in Example 2.2.2, dar, (éGH Rygep) and dar, (EySep,GHR)
can be computed from Theorem 2.2.3.
2.3 Alternative Unbiased Ratio Estimation for With-Replacement De-
signs

We now consider another version of unbiased ratio estimation for the spe-
cial case of with-replacement designs, using the Hansen and Hurwitz (1943) es-
timation idea. This alternative estimator is of interest of its own right, but
is also of interest for producing an approximate variance estimator for 9GHR
that does not require higher-order inclusion probabilities. We consider this ap-
proximation in Section 2.4. Recall that for a with-replacement design, p, =
Pr (selecting element k on a single draw) >0 fork=1,...,N,and >, ., px =
1.

Define

Zni (Y) = % Zkev Blin=iy Zni (2) = § Xrev 2 lini=k)
‘ (2.23)
ZNi ('f‘) = Jiv ZkEU %]{m:k} ZNi (g) = % ZkEU gf[{m=k}

where Jx = yr/ (Npk) and i = yx/zk. Note that Zy; (a) is a random variable with

a discrete distribution assigning probability pi to the values N™lay/px, k € U. It

follows from the WR sampling scheme that Zy; (a) are iid for ¢ = 1,...,m, with
mean
By 2 (a)] = 5 37 288 = B (2.24)
’ N P N

and variance

var, [Zni(a)] = % Z (%> Pk — (Z alkpk) . (2.25)

keu \Pk kev Pk
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2.3.1 Unbiased Ratio Estimation Using Hansen-Hurwitz Estimators

Under a with-replacement sampling design and using Hansen and Hurwitz

(1943) estimation ideas, define
1

éGHR = ZNm (T) + Tl"_ZNm (y) + —"’_—“:“‘“ZNm (y)
Zuy (m—1)Zy,
—mZNm (T) ZNm (.’E) (226)

where

_ 1 &

ZNm () = —T;L- ; ZN'i () 3
and Zy; (+) are given by (2.23).

Theorem 2.3.1 Under a with-replacement sampling design, Ocur defined in equa-

tion (2.26) is unbiased for the population ratio 0. Further,
tycHr = t:0cnr
is unbiased for the population total t,.

Proof: First note that

By [Zwm (1) Zom @] = 5 929 3 3 5By [l Ty

- 2,772 .
Nim® keu R
1 T Xy
730 O ——Ep[lie=n)] By [Tin,=0)]
N2m i7y k1cu Pk P ’
1
= N2—Tn2 {Nmth +m (m — 1) t'rNt:cN}
1 m—1
= —t; ———t NN 2.2
N 9N+ Ny riten (227)
Also, E, [Zym (a)] = +tun by (2.24). Hence, from (2.26) and (2.27), we have
. 1 1 1
E (9 ) = —t t )
p\VGHR N Nar WY N = Do,
B m 1 - m — 1t y
N(m—1zy, |[Nm ™" Nem ™V
1
I S (2.28)

Niyy



38

and Ep (Ey,GHR) - ty.

Remark 2.3.1 The exact variance of fy,GHR is not readily available. In Chapter
3, we will give an asymptotic variance and a consistent estimator of the asymptotic

variance.

2.4 Simple Ways to Approximate tar, (F}GHR)

First through fourth-order inclusion probabilities are readily available for SI,
PO, and WR sampling designs, but are not generally available. Standard software
like SAS proc surveyselct will compute first and second-order inclusion probabil-
ities under various designs, but not higher-order. In this section, we will introduce
two methods of variance estimation that not require higher-order inclusion proba-
bilities.

The first method, which we call the uncorrelated variance estimation method,
treat the sample membership indicators as approximately uncorrelated, so that m;; =
m;m; for i # j. This method is discussed in Section 2.4.1. It requires first and second-
order inclusion probabilities.

The second method, discussed in Section 2.4.2,approximates the sampling de-
sign as a with-replacement sampling design. This method requires only first-order

inclusion probabilities.
2.4.1 Uncorrelated Variance Estimation

Assume

M5 = ey > 0

and

limsupn max =i = O0(1).
N—»oop NijEUN:ir,ﬁj Iﬂ'z] 7Tz71'.7| ( )
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This assumption enable us to approximate m;; by m;m;. Such an assumption holds
exactly under PO sampling, and approximately under SI, WR sampling designs.

Under this assumption,

1 1 1 1
N2z Z .. N2% Z T
UN i jesiisty % UN i jesiitj i
< 1 MM = T
= N2z e
UN lijesiizti AN
— | | = E il
—— Ny MAaX | T — Ty T z;
ny N2Zy, it J J J

* i€s jEs

1
0( 3 ) (2.29)
nNﬂ-*N

which goes to zero under mild additional assumptions. Thus, from equation (2.1),

we have
p ) y, 1 I jesy Iicq)
bann = . 3, ees Z.
GHR “EZU Py Tgesy — NZIU ijEZU TiZ; T + ieZUy p
Dy
1 Jies) 1 TiesyI{jes) Ticsy Iiesy
= oM e [ Dot T Y e A ) e
N iU i N2Zyy, LijeU Ty v M iclU i
1 ( T > lies) 1 { Lics) [{JES}
- Iy ()l Ly S s
= ) 2
N = LUy i N*Zyy v ™oew
Z Yi ]{zEs} Z ” [{iES}}
iU i T ieU i
1 N-—-1. 1 . 1 . .
— by + ——tu. — Lymtrn 2.30
Nt N et g e T g et (2.30)
1. N-1. 1 . 1 N A
=y iy iy toty 4t (For — t2) + b (Frr — 5
N R et g e~ g et 0 ) + ta (frr — )]
1 1 Vi Iiesy
= — 1)y i —_ tr. A .
Nt WD g [(N ) vi + . rl] - (2.31)

The variance of gy g can be approximated by taking the variance of the right

hand side of equation (2.31), we have

) 1 1 v [i s
VaTapp (9GHR) = var {]—V—t, + N Z [(N 1)y + .3”_ —t, Z] {; }}

el
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- it N (2.32)

where

w; = (N —1)y; + ¥ _ L.
Ve

i
An unbiased estimator for var,,, (HGH R) is

DAT gpp (éGHR> = N2t2 Z i wJ (2.33)

T T; 7rU

where

Wi = (N - 1) Yi + —7:%— — lgr,r:E,i.

i

Note that (2.33) requires first and second-order inclusion probabilities.

Remark 2.4.1 In Chapter 3, we will show that dar,p, (éGHR) is consistent for

vary (éGHR) under SI and PO sampling.
2.4.2 With-Replacement Approximation

This method requires the first-order inclusion probabilities to be known and
“pretends” that sampling is done via a with-replacement design.

Define py =: m™!m; where m; are the first-order inclusion probabilities for the
original design.

We now construct a with-replacement version of the approximation (2.31). De-

fine

1 1 Tii=ky
7 = 4= )y — b | =R
Nt ZKN +7Tk>yk rk] Pk

T keU

where [(.,=x) is one when the k** element is selected in the i draw and zero oth-

erwise. Now,
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= tz
var (Z) & E(Z,—t.)?
1 1 Iis=t)
= N — = —t, i t, I
E(Ntzkezu K 1+7rk>yk rk] kGZU b= k})

2
1 1 1
- E( {Nt [(N_H_) y’“_t’r’“} *_t’}[{”‘:k}>
keU T Tk Pk
1 1 1
= { [(N—l—f———)yk—trl‘k}———tz}
kleU bz Tk P

N
1 1 1
Nel+—)y—tumy| = =, % Elpcit I mim
{Ntr[ +m>yl Iz]pl } (ki=k} {ri=1}
1

N—-14— 1 Ly L t ’
= — — x| — — 1
Ni, ™ Yk k o z( Pk

- W (2.34)

Since Z; are iid (t,, V1), then

pwr -

3“6—‘

is an unbiased estimator, under WR, for ¢, and varp, (fpwr) = n~'V;. Therefore,
. ; 1 512
0arpur (lyur) = gy > (2-2) (2.35)
i=1
ia an unbiased estimator for varyy, ( pwr) Estimate Z; by

. 1 1 . Tig,=k)
Z; = N—-1+— by |
1 NtTZK +ﬁk)yk xk] Pk

v keU

and compute Darpy, (EW,) as a with-replacement approximation to the variance of

(2.31), and hence as a WR approximation to the variance of éGHR.
2.4.3 Simulation Results

We will compare the two methods of variance approximation through sim-

ulations. Let z; be ild Gamma(a =3, 3=2) with mean 6 and variance
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(1, »1), - -, (%1000, Y1000) -

Define the following terms

VAT emp (QGHR) is the empirical (simulation) variance of 8cgr

and

Table 2.1 shows the simulation performance of the two methods as defined in
equations (2.33) and (2.35) based on 1500 replications of SI and different sample
sizes. The values of %RV B when the second method is used are higher consistently
than the values of %RV B when the first method is used. For both methods, the

values of the approximate variance estimators are fairly conservative, but track the

Darepp (éGHR) is defined in equation(2.33)

Darpur (éGHR) is defined in equation (2.35)

%RV B =100

E (var(+)) — varemp ()

VAT emp ()

actual variance well.

= 3xz; + ¢;. The entire population consists of

1 n| 10 15 20 25 30 35 40 75 |
VaTemy (forr) | 0456 0290 0218 0178 0137 0122 0.108 0.047
0T app (éGHR) 0.567 0.341 0246 0.190 0156 0.130 0.113 0.056

%RVB | 24342 17.586 12.844 6.742 13.869 6.557 4.630 19.149
QT pur (éGHR) 0.573 0.347 0251 0.195 0.161 0.134 0.118 0.061
%RVB | 25658 19.655 15138 9.551 17518 9.836 9.259 20.787

Table 2.1: Performance of two variance estimation approximations under SI
Based on 1500 simulated simple random samples from a fixed finite population.

We next consider the performance of the two approximations under 7ps sam-

pling. Let z; = 10+x;+n;, where ¢; and 7; are independent and 7; are iid N (0, 1),
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be the size variable to be used in the probability proportional to size sampling de-
sign. The first and second-order inclusion probabilities are obtained from the out=
JTPROBS option in SAS proc surveyselect. Table 2.2 shows the simulation per-
formance of the same two methods of approximations of dar, (éGH R) , but in this
case under 7ps sampling. In this case, the two methods perform similarly through-
out, tracking the true variance fairly well throughou, through non-conservatively at

higher sample sizes.

L n | 10 15 20 25 30 35 40 75

Varsmy (fcur) | 0428 0271 0211 0176 0145 0.141 0.117  0.066

VaTap (éGHR) 0520 0325 0233 0184 0153 0132 0114  0.059

%RVB | 21.495 19.926 10.427 4.546 5517 -6.383 -2.564 -10.606

V ar pus (éGHR) 0523 0326 0235 018 0151 0129 0.112 0.058

%RVB | 22196 20.295 11.374 5.682 4.138 -851 -4.274 -12.121

Table 2.2: Performance of two variance estimation approximations under wps
sampling, based on 1500 simulated 7wps samples from a fixed finite population.

Finally, we consider the performance of the two variance estimation approxi-

mations under PO. The first-order inclusion probabilities are computed from

exp (1.5z;)

——— for b>.0
1+ exp (1.5z;)

;=
Because sample size is random for PO, choose b such that NbE = 10, 15, ..., 40, 75,
where E = 15001 3,°% {exp (1.5z;) (1 + exp (1.5x¢))_1} . Furthermore, under PO
sampling design, we have m;; = m;7;. Therefore, one can expect especially the first
method of approximation will give excellent results. Table 2.3 shows the values
of %RV B. In all cases, both methods of approximate variance estimation work

extremely well.
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| E(n,) | 10 15 20 25 30 35 40 75|
Varsm (fenr) | 0267 0173 0125 0095 0078 0066 0056 0.026
Varay (6our) | 0270 0.166 0119 0092 0.075 0063 0.054 0.026
%RVB | 1124 -4.046 -48 -3.158 -3.846 -4.546 -3.571 0
Varp (dorr) | 0250 0164 0120 0094 0078 0066 0058 0.030
%RVB |-2.996 -5202 -4 -1.053 0 0 3571 15.385

Table 2.3: Performance of two variance estimation approximations under PO
sampling, based on 1500 simulated PO samples from a fixed finite population.

The first method of approximation of 9ar, (éGHR> will be used under stratified

sampling in Section 3.4.

2.5 Combining éGHR and

The estimator éGHR is exactly unbiased but may have large variance, while

the estimator 6 is asymptotically unbiased and has variance less than the variance

of éch It is natural to consider convex combinations of the two estimators, to

produce asymptotically unbiased estimator with potentially smaller mean square

error than either fgpg or 6. Furthermore, under SI sampling design, it turns out

that the estimators for Murthy and Nanjamma (1959), Nieto de Pascual (1954), and

other estimators can be obtained from such combinations.

2.5.1 Optimal Combination

For A € [0, 1] define

Therefore,

E

=\ +

L0 = 0+ \bias (9)

(1-

’\) éGHR-
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MSE, (

D¢
N~—
I
=
TN
|
>
(]

= vary (é) + )\2bia312, (é)
= )\21)(1,7",, (9 +(1- )\)2 vary (HAGHR) +2A (1 = A) cov, (9, 9GHR)

+M\2bias? (9) . (2.36)

Differentiate (2.36) with respect to A, equate to zero, and solve for A, we have

var, (éGHR) — covy, (é, éGHR)
var, (éGHR) + var, (é) — 2couy (é, écHR) + bias? (g) .

A= (2.37)

Since the equation (2.36) is quadratic in A and the coefficient of \? is positive
(varp (é - éGHR) = vary (éGHR) + var, (é) — 2couy, (9, éGHR)) , it follows that
the given value of A in (2.37) minimizes equation (2.36). This optimal value of

A is unknown in practice but might be estimated from the sample.
2.5.2 Relationship to Earlier Literature

Under SI design and for different choices of A we can obtain different estimators

given in the literature:

j oY EUVY PG el PR
f = 553)\+(1 A) S+N(n—1)5:UN(ys s.s)]
L,onN-Y o fE (o, eV
= 75+ m (ys - Tsl”s) + A [%—S‘ - (Ts + m (ys - Tsl"s))]
_ s n(N-1) C oz __1___ n(N —-1) o
- L + N(TL _ 1).'EUN (yS L S) + A [fg N(n'— 1).'EUN:| (ys 8 S) M (2'38)

The estimator due to Murthy and Nanjamma (1959) can be obtained from (2.38)

by taking
n (jUN - js)
(n—1)Zyy — nZ,

A=

and using the approximate (N — 1) N7! = 1.
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Furthermore, the estimator due to Nieto de Pascual (1961) can be obtained

from (2.38) by taking

Nz,

A=1 .
T Nm- Do, —n(V -1z,

Of course, the Hartley and Ross (1954) estimator is obtained by letting A = 0,

and the simple estimator is obtained by letting A = 1.



Chapter 3
ASYMPTOTIC RESULTS

In this chapter we will discuss the asymptotic properties for estimators derived
in earlier sections, including results on mean square consistency, central limit theory,

and the Godambe and Joshi (1965) lower bound.

3.1 Asymptotic Results for Ochr

To study asymptotic properties of estimators in finite populations, we can
imagine that we have sequences of finite populations and associated probability
samples (eg., Héjek (1960), Breidt and Opsomer (2000), Isaki and Fuller (1982),
Krewski and Rao (1981), Bickel and Freedman (1984)). We will assume that the
N finite population, Uy = {1,..., N}, contains N elements. Therefore, the first-
order, second-order, and higher order inclusion probabilities are sequences that de-

pend on N. For simplicity of notation, we will drop the index N.

Definition 3.1.1 Given sequences of finite populations, the estimator 8 is design

consistent for the finite population parameter 6 if for every ¢ > 0

(o] 2 ) =

where the probabilities are computed with respect to the sequence of sampling de-

signs.

Definition 3.1.2 Given sequences of finite populations, the estimator 0 is mean

square consistent (M SC) under the design for the finite population parameter ¢ if

- 2
lim E, (e _ 9) —0,
N—-oo
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where the expectations are computed with respect to the sequence of sampling

designs.

Remark 3.1.1 By Chebychev’s inequality,
~ 2
) E, (6-9)
Pr(ﬁ—@’ > <

2
Therefore, if 6 is MSC for the population parameter # then it is a design

consistent estimator for 6.

Consider the following conditions,

Ar— m 2>y > 1y > 0 for all ¢ € Uy

As— 3 jeu A% =0 (NT) for some n* < 2
Az~ 3 ikiev Dbk = O (N™) for some 1 < 4
Ay— Nmin{l'z_—“i’%ﬂ}‘/rm — 00 as N — oo

As— UM SUPy o0 & P osey Y2 < 00

- 1 2
Ag— limsupy_o0 7 2 ier Tf < 00

2
. 1 LA
A;— limsupy_ N ZqieU 7 <0

Ag— limSUpy_o0 % 2oier (%)2 < oo
Ag— liminfy_,e0 % Y ier Ti > 0.

Since we have sequences of finite populations, the first-order and second-order
inclusion probabilities are sequences based on sequences of sampling designs. To
keep Ogrr defined through all the sequences of finite populations, condition A, is
assumed and simply says that the first and second-order inclusion probabilities are
bounded away from 0, ensuring that the designs are all measurable.

Since |A4j| < 2, the highest order for > A% is O (N?) . Therefore, Condition

1,j€U
Aj is assumed to exclude this case and ensure weaker dependence among sample

membership indicators. For similar reasons we have condition As.
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The expected sample size is ) ,,.;; 7 > N7yy, and we need to guarantee that
this expected sample size will tend to infinity as N — oo, even if the minimum
sampling rate wy. — 0. If n or n* are large, meaning strong dependence in the
design, then we need the sample size to go to infinity even more rapidly. Therefore,
we assume condition A4. Assumptions As — Ag are moment conditions for the finite
population. They will be satisfied, for example, if we assume 0 < [, < z; < u, < 0©
and y; £ uy < oo. Later, we will demonstrate that conditions A; — A4 hold for simple
random sampling without replacement, simple random cluster sampling (SIC) and

general stratified sampling designs.

Theorem 3.1.1 Under A; — Ag, éGHR is a mean square consistent estimator for

6.

Proof: Since the design is measurable under A, Ocrr is unbiased for f by The-
orem 2.1.1. It suffices to show that war, (éGHR) — 0 as N — oco. Rewrite

vary (éGHR) = By + Cy — Dy, where

1 yr Yy
By = — 2N (3.1)
2 )
N i,jeU i T
1 L TRT
Cy = Nizz 17 Tk ikl (3.2)
TOn i jeter T TR
2 TR
Dy = N3z Y et ikl (3.3)
Tyy i leU T Tkl
and
1 1
v o= (— + —) Yi (3.4)
TI; LUy

It is enough to show that By — 0 and Cy — 0 as N — oo, since |Dy| <

B}V/2C}V/ ? by the Cauchy-Schwarz inequality. Now

1 v \® vl Y;
By = — Z(;r—l) mi(1—m)+ —“i;éAu
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1 1
3 3
1 1 i} 1 yr2 yr?
< (o) rmp (T ) (> 9%
Nx ieU Nx \ijeUp, 4.5€UD,
< (3 2) 5 zAz) (z )
S ~ Y; 2 ij
Ny \ N i€l N7y, ijeu ijeU
1 1 1
Ny, (N i€l Ny, 1,jEU zEU

2-n* »
N="n%, ijeU N7 N

By assumptions A, — Ag, By — 0as N — oo.

yZZ) :

s
<

Furthermore,

1
Cy < W E ’TixjrkfclAijk”
N¥“UN 45k leU

1
1 Zi,j,k,leU ukl) ( ) (1 2>2
7] __ - €T
v () (529) (32
1 1
1 ) (1 s
X 7\72% NZ.’L‘[
keU el
_ 1 (Zi,j,k,lEU A?jkl) ( Z <yz> ) ( Z )
-1
N2 27r12V $?] N7 N el N JjeuU

By assumptions A; — Ag, Cny — 0 as N — oo. This concludes the proof.

IA

There are a lot of cases in the quadruple sum of condition Aj3. To reduce the number

of cases to be checked in determining the value of 7, consider the following results.

Result 8.1.1 Consider
Agy ZzeU 7rz =0 (N" )

2 (3.7)
Azg: Zz‘jeUDZ (myj — mym;)” = O (NTI ) :

If both Ayy and Ass hold, then As holds, where Dy is the set of all distinct t-tuples

(i],iz,...,it) .
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Proof: The result follows from the fact that (1 — 7;)> ~ O (1) and the definition of
Aij.

Result 3.1.2 Consider

A3‘1 : ZijEUD2 (N7TL2]) = O(NTI)

(3.8)
2
Asa: Zz’jkteUD4 (it — migm)” = O (N7) .
If both Az and Asq hold, then Asz holds.
Proof: Consider all possible cases under condition A3.
1. If i = j =k =1 € U then this case is covered under condition A2,
2. If i = 7; ikl € Up,, then
Do Ak = ) (= mrw)?
iklEUD, ikl€Up,
< Z (g — i)
ikl€Up,
< Z o (1 - m)”
iklEUDa
< N z Til- (3.9)
klEUD2

This is covered by As;.

3. f i =3, k=1, ik € Up, then Ayxx = 7y — Tk, and this case is covered

under condition A2.
4. If i = k; ijl € Up, then

Ayju = My — Ty

IA

i (1 - 7Tz'l)
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and
2 2 2
2 , Aijvil < E T < N E Myj
ileUD3 ’ileUD2 ijEUD3

This is covered by Ajz ;.

(3.10)

Ifi = k, ] = l, Z] S U132 then Aijij = T (1 - 7T«,;_7') . This is covered by A3.1.

Ifi=1; 15k € Up, then

Dijki = Tijk — TijTik

INA

7Tij (1 - 7Tik) .
This is covered by Aj ;.

If j =k; ijl € Up, then

Dijji = Tyt — Ty
< m (=)
This is covered by Aj;.
If j =1; ijk € Up, then
Az‘jkj = Tijk — TijTky
< i (1= k) -

This is covered by Az ;.
If k=1, ijk € Up, then

Aijke = Tijie — TijTk

IN

7Tz'j (1 - 7Tk) .

This is covered by Az ;.

Ifi =1 g =k ij € Up, then Ayj; = m;; (1 — m;;) . This is covered by Aj;.

(3.11)

(3.12)

(3.13)

(3.14)



53

11. fi=j=k; il € Up, then Ay = my (1 — m;) . This is covered by Aj.
12. Ifi=j=1;4,k € Up, : Augi = mir (1 —m;) . This is covered by Az ;.
13. Ifi=k=1 ij’ € Up, then A;j; = m;; (1 — m;) . This is covered by As;.
14. If j = k = l; 1j € Up, then Ayj;; = m; (1 — ;). This is covered by Az ;.

15. If igkl € Up, then Ak = 50 — mi7mg. This is condition Ag .

Consider the following examples.

Example 3.1.1 Assume n ~ O (N‘s) , for g < 4 <1. Then éGHR is a mean square
consistent estimator for § under SI sampling design. If 6 = 1, then the finite popu-
n

lation correction ( fre=1-— ﬁ) cannot be ignored and we can ignore it if § < 1.

Example 3.1.2 Consider simple random cluster sampling design (SIC). Under
this design, M is the number of clusters, C is the cluster size, N = MC(C is the
population size, and we draw m clusters from the M clusters via SI design and
observe all elements in each selected cluster. Assume m ~ O (M 5) , for % < 4§ <1,

then Agpr is mean square consistent for 6.

Example 3.1.3 For 0 < § < 1, Ocur is a mean square consistent estimator for
# under stratified sampling design, assuming that Hy ~ O (N ‘5) is the number of
strata and N, ~ O (N1'5) is the A" stratum size if Nimy, — oo. Consider STST

sampling design. Then

TN = Min I
Nx = h NhNh'—]. .

If N%TFN* — o0, where N = f;"l Ny, then STST is a mean square consistent

estimator.
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Details for Examples 3.1.1, 3.1.2, and 3.1.3 will be given in technical details
appendix.
In the following sections, we will discuss the asymptotic distribution of éGHR

under SI and PO sampling designs.

3.1.1 CLT for éGHR Under Simple Random Sampling Without Replace-
ment
Under S7 sampling design, we will show that bcur is asymptotically nor-
mal. Further, we will give a consistent variance estimator and show that the
Godambe and Joshi (1965) lower bound is asymptotically attainable. Consider the
following assumptions:

Dy: 0<l<r;<u,<oo and |y| <wuy <oo,
Dy limyoeo Tuy = phry, UMy Guy =y, and  lmy_e Zyy = . (3.15)
Dy limy o S2y, =02 >0

where

1
‘S"LQU,UN = m Z ('LUZ' - U_)UN)2 .

i€UN
It follows by using Fuller (1996) Corollary 5.1.1.1 p. 220 that

Tsy — Tuy = OP (n—1/2) ’
Yo — Juw = Op (n71?), (3.16)
Ton —Tuy = OP (n-1/2)

where Z,, = n7'Y__ xx. It follows from Stuart and Ord (1987) p. 422, Exercise

12.11, and and straightforward computations that

vary [52 ] = [ [52 —SZ’UN]2

w,SN w,SN

= CN {GN Ii%,‘ Z (w; — U_JUN)4]

€Uy

— by [% Z (w; — u')UN)z] } , for n>4 (3.17)

i€Un
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where
1 _
S’l%},SN = n — 1 Z (wl - wSN)za
tESN
1 1 1 n
“N_<1”"ﬁ“7\7_nN>(1"7v")"0(1)’
3 6 3 3
=1l =0(1
by=1-C+ m-n a0,
and

N3 (N —n)

N T M- DW-1 (N-2)(N-3)

1 N?4 n
- S re ey W)

o)

It follows from Fuller (1996) Corollary 5.1.1.1 p. 220

1
S’gl,sN - SfU,UN - Op (%) .

Now we are ready for the following theorems,

(3.18)

Theorem 3.1.2 Under D1 — D3 and simple random sampling without-replacement,

(o) = -1 2) %

Y—TsZ,9
uy

s a conststent estimator for

A 11 n
AV. (0 ):———(1-—)52_ .
st \fcur - N ) Cy-rozU
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Proof: First note that

- - 2
SS—FUN.@,UN = Z [ yUN —Tuy (‘Ti - :EUN)]
’LEUN
. — 2
= Z { yUN +rl2/N (‘ri_‘rUN)
ZEUN

= TUy (yi - yUN) (Ii - iUN)}
s? o n ff,N 21 — oy Septiy

2

= 2
Y—Fs Ny TSN ySN TSN ( T — xUN)]

zEsN
_ S2 S2 — 97§ + noo_ (— - 2
- Y, 9N TsnPz,sn Tsnay,sn n— 1TSN Tsy — ‘TUN)
so that
2 2 . 2 2 = = = = 2
Sy —Fapn T8N Sy =TUun T Un ™ (Sy,sN Sy,UN> + (TSN - TUN) (TSN + TUN) Sz,sN

+F[2]N (512 SN SE,UN> + QFUN (S:I:y,UN - Sx:'/sz)
_ _ no_ _ ~ 2
-2 (TSN - TUN) SI.U,SN + 'n__—l"TSN (‘TSN - IUN)

20 as N,n— oo. (3.19)

Note that (S;, v — Szys 20 as N,n — oo by Cauchy-Schwarz inequality.
v, Un Y,SN y

Now
1N (1 _ nyg2 2
2 n (1 N) Sy—',"sz,s Sy Fs,8 Sy fuz,U P
1 N2 n 9 —-1= 52 0 as N n — 0.
;‘ET (1 - 7\7) Sy—FUa:,U y—ruz,U

Theorem 8.1.8 Assume D), — D3 and assume that n, N — oo and N — n — o0.

Then under simple random sampling without replacement

borr — 9 £>/\/'(0, 1) as N — oo,
AVsy (9GHR>

where

. 11 ,
AVsy (QGHR) = = n (1 - N> Sy—ruy 2.UN"
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Proof: From Example 2.1.1, fgyp is the Hartley and Ross (1954) estimator and is

given by
- N n(N—1) _ o
QGHR =Tsn + N (7’L - 1) EUN (ySN - TSNISN) .
Define
dy = n(V-1)
N(n—-1)
1 n
a3
N n—1 N
1
= — .20
0 <n> (3.20)
Now
R d 7
QGHR_Q = FS}\]‘FTi(:_{jS]\] _FSNfSN)__;l;/—gl
Tuy Tuy
_ / _ _ _ _ _ _ _ Ju.
= Tey + %—‘]\L ((ySN - yUN) + Yuy — Tsy ((IW - :I:UN) + :I:UN)) - —_N
Un $UN
_ I _ Yun
= (1—dn)Ts+ (dy ~ 1) =— (Joy — TJuy) + (dy — 1) =%
.’L‘UN IUN
Ton /o _ 1 _
- (dN - 1) = ~ (‘TSN - ‘TUN) + (ySN - yUN)
Zuy Zuy
Ty “T0n P00 (3, — 35,)
.’L‘UN
1 _
= (1~ dn) Fow + ([dx — 1) =— (o — Juy) + (dy — 1) 2
Uy xUN
Ton _ 1 _ _ -
- (dN - 1) = = ($SN - $UN) - - (T9N - TUN) ($SN - $U}\J)
Ty Tuy
1 _ TUn /= _
+i‘UN (ySN yUN) fUN ($SN IUN)
o(No,a)+0 (2 () +o () o
= faund - o n 2 "
n P n)? n P
1 1 -1 1 - - FUN _ _
+0 | =1}op (n 2) + 0y (n ) + = (Fsn — Jun) — = (Zsy — Zuy)
n Tyy Tuy
_ 1 Ynk — Juy — Tun (Tnk — Zuy)
— 1 - N N N
= o(n M%;[ —
_ 1 Ynk — Juy — Tuy (Znk — Zuy)
= o007 1 g 3 | Pt T
N kes
(3.21)
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Since

IA

lynve — Guy — Tuy (Tne — Tuy )| lynel + 1Tuy | + 1Tus | 1Zne] + 1Zuy ]

< 2uy + 2—1;1% <o VEk,

it follows that the Lindeberg-type condition,

2
. ZkEUN ka[{lek|>ecN}
lim 5
N0 ZkEUN Wi

=0 forall ¢>0. (3.22)

holds (Ash (2000)). Hence, by Hdjek (1960) Theorem 3.1, wy has an asymptotic

normal distribution and so
Vit (enn - 6)

\/ UN (1 )Sy fuz,U

L N(0, 1),

where

j 1 s — Juy — Tuy (B — Tuy)
AVsy (GGHR) = wvargs {t_ Z [ = n/]];J/ *

z

kes
11 ny\
= Zon (1 - N) Sy—ryzU- (3.23)
|
Corollary 3.1.1 Under conditions of Theorem 3.1.8,
fcrr — 0
GHE AN@O 1) N-ooo, as N—oo (3.24)

Z-‘75'1 (éGHR)
Proof: Since
ZVSI (éGHR) bonn — 0

AVsy (éGHR) ) \/AVSI (éGHR) \/Z‘\/Sl (éGHR)

then the result follows from Theorems 3.1.2 and 3.1.3.

farn — 0

?



99

Result 3.1.3 Under the model,
& 1 y; are independent (ﬂxi,af) o2 >0, Vi,

E; [AVSI (éGHR)] asymptotically attains the Godambe and Joshi (1965) lower

bound.

Proof: It follows from the model that

Ee (Juy) = BTuy Ee (fy) =p
(3.25)

2
vare (Juy) = w7 2oiev 07 vare (Fu) = 57 Liev 7

Recall that, w; = y; — Juy — Fv (i — Zuy ), then E¢ (w;) = 0, and

N-1 . 1 el ! o?
Zvarg(wi) = -—N—Zai——[NZ(xi~xUN)} !NZ?}

€U i€l €U jeu

Therefore, the model expectation of the approximate design variance is given by

E¢ [i'j‘\; (1 - *]T\l“,) Sg—mx,u] = F

1
= GJLB — .
ro()

n
Since GJLB is of exact order O (n™!), it follows that

B[4 0- 1) 8

2 m N/ Yy—fyzU

GJLB

}:1+O(N_1)—»1 as N — oo,

and so éGHR asymptotically attains the GJLB.
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From Section 2.4.1, recall the discussions of approximating dar, (éa H R) . It was

given that
R p 1 W, Wi Ay
VaTapp (HGHR> = N Z ?ﬂ'—j?j’ (3.26)
T jjes '
where
12)7, = (N - 1) yi + % E’rwmi
1

will be used to approximate var, (éGHR,) . Under SI, this method of approximation

is asymptotically equivalent to ZVSI (éGH R) .

Result 3.1.4 Under conditions of Theorem 8.1.3,
X 5 SI 1 1 n 1 N~ 32
Darapp (QGHR,> = —NQ:'E‘%,N - (1 — N> [n — EZS (s — ) ]

~ Aot (donr) +0, (J_)

Proof: Since

N = SI _ _ _ 1 n _
w—w = N [(% — Tsn) — (@i = Ty ) Tsp + - (1 - —]\7) (yi — ys}\r)} ;
therefore,
S (@i =) = NI (W — o) — (@6 — Fay) Tan)”
€S i€s
]V2 n\2 _ 2
+ o (1_N> Z(:Ui—:yszv)
€S
N2 n _ _ _ _
+ 7(1_N> {Z(yi—ysN)z—_T.‘lNZ(yi—ysN) ("L‘i—l‘sN)}'
i€s 1€s
Hence,
. 5 SI 1 1 n 1 o 22
s (fons) 2 g (1) |25 S - 9




Tspy 2 n\2 1 _
- PR (- [T e e-)
N L 1Es
—_— A 1 o 1 0 1
= AVg; HGHR +Op ﬁ + U '772' + +0, ?

In the following sections we will discuss the asymptotic results of éGHR under
PO; O ur 18 asymptotically normal. Also, a consistent variance estimator is given,
and the Godambe and Joshi (1965) lower bound is asymptotically attainable for the

asymptotic design variance.
3.1.2 CLT for 9GHR Under Poisson Sampling

From Example 2.1.3, recall the definition of fgrz under PO sampling design,

6 —1f+N—1f+1f 1
GHRE= N " "Nt, V" Nig, 7" Nt

trnton (3.27)

where gx = yx/ (N7g) . Consider the following assumptions
Ey:0<i, £z S uy <ooand |y < uy < o0,
Ey:O<mye Em <y < 1.
Es: Nmdy(1—75)° - 00 as N — oo.
Ex: iminfy oo & Yer, Wk — Fuyas) > 0.
The term N ‘lfgﬂ in (3.27) asymptotically is ignorable as we will see in the

following lemma.



62

Lemma 3.1.1 Under Ey — E4 and under Poisson sampling,

1. 1
—fp =0 .
Ny (Nﬂ'N*)

Proof: Since

1 Ve Likes) 1 ( Yk )21‘7%
var — —_— = @ —_— Al —_
P Nker:Nka Tk Nng;N Ny Tk

1|1 .
S o | W 2
* kEUN

Therefore,

1. 1° 1 yr Tikes) 1 2

~ ¢ es ~

—f. = JE— —_— e —1 = O

E, [Nty"] vary N Nro + [Ep [Nty”” " ((
kEUN

The Lemma follows by using Fuller (1996) Corollary 5.1.1.1 p. 220.

Lemma 3.1.2 Under Fh — E, and under Poisson sampling design,
AV PO (éGHR) .
—— =1 as N — o0,
AVro (Bcnn)

where

— /s 1 1. 21— min Tjies)
AV po (HGHR) = Nz Z (yi - ']—V‘tnrl"i> ———L——

T, iy
Un icUn iN iN

(3.28)

(3.29)
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and

A 1 l1-m
AVpo (HGHR> = Nz Z (i — Fuyi)’ W'NlN- (3.30)
N jeUy ¢

Proof: Since

—_— s 1. 21— mn I
2.2 iN 1{i€s}
N xUNA[’ PO (%HR) = E (yi - _Ntrwx'i) B

iUn TN TN
1. 2 1 —m; Ii s
= Z [yb - FUN'T’L' - (—trﬂ - FUN) Iz] —Nﬂ
b N TN TN
1 —mn Iy
= Z (yi — fUNl‘z')2 - T “liea)
icUw TiN TN
1. 2 1 — min Lfies)
I e
(N Un iGZUN TN TN
1. i _ 1 — mn Les)
2| —=tpr — i — i) Ti —
(N r TUN) ieZUN (y TuyT )‘7" TN TN
Therefore,
— A ~ ]_ _ ]- — TN I’L 5
AV po (GGHR> — AVpo (GGHR> = NigE Z {(yi "TUin)Q i { {ies} 1:|
Z{y, el TN TiN
1. S QR Lies)
v (Li, gy ) g2l Hies
(N " UN) MmN TN
1. _ _ 1—mn I{ies}
- 2 (’]‘V‘tmr - TU)v) (yi - TUNmi) Z; 7TZ'N1 TN '
Hence
——— ~ _ - Ii &
AV po (HGHR> ey (Ui = Tuy )’ e [ el 1]

- 2 1—m;
EieUN (i — Tuy i) 177%&

2 21—my Iics)
+ < 1 7 ) EiEUN "L"L' TiN TN

—'trw — Ty
N = 21-my
N iUy (yi — Tuy i) TN

AVpo (éGHR>

T 1-m Iz £l
IEiGUN (yi - TUNLEi) IiTZr;M‘;fN)

— 71—,
> icuy (i — Tuy i) l,,—TVM

= Ay + By +Cy. (3.31)

1,
+2 t}_v_trﬂ — Tun
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Now,

= —TiN. Ii s
vary [ZiEUN (yt - TUN'Ti)z ' —L):’

TN TN
by (A?V) = ~ 2 1o ]2
[EieuN (yi — Tuyms)” 8 ]
1 EiEUN (vi — fUin)4 /N
x\2 _ 2
Nﬂ-?\/* (1 - 7TN) [ZiEUN (yl - TUN‘ri)2 /N]
— 0 as N — oo, by Es (3.32)

since E, (A%) — 0= E,|Ax| — 0 as N — co. Next,

= 2 1-miy
N seuy Wi — Tuy®i)” =

2 21-mn Iies)
1. _ EiEUN T ‘m\l/ TiN
B = —tpe — T
N T UN Z

1 ZieUNm?/N <1£ F )2
" — rbrme T U
T L= 73) [Ciery Wi — Fogz)® /NJ AN 7Y
1 v T2/N 1.
E,(By) < = T 2ty /_ STUAT (——~tr,r)
TR (1 =) [ﬁ EiEUN (¥s — TupTs) ] N
— 0as N — oo, (3.33)
since
1. 1 Ty Ty
vary <~]\7tm) = mijeUﬂ—iﬂ—inj
1 ri\ 2 1 T T
= 22(—1) T (1= 7)) + <3 17:4\11
ey Nt i#jey "t

1 1

< —=» r2 40

i
1

= 0

(N’ITN*) !
and

N7y, (L—m3)? < Nrd, (1 — 7).

Since E,(A%) — 0, E,(By) — 0, then by Cauchy-Schwarz inequality

WPO(éGHR Z‘\/PO(éGHR) 14

)
E,(Cn) —» 0as N — o0, and E, AVpo(6crr) 1| — 0, hence Aroliann) 1=

0 as N — oo.
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Theorem 3.1.4 Under conditions Fy — Ey and Poisson sampling design,

borr — 0
GHE £>/\/'(0, 1) as N — oo.
AV po <9GHR)
Proof: Recall the definition of fgyr under PO sampling design from equation

(3.27); therefore,

é 0 = 1 Eyfr_ty 1 1{ + 1 1£ 1 t'r‘ﬂ'—t'r‘tfl}ﬂ'—tfﬁ
GHR " Ty, N Nigya \N ") " 2o, \N") &, N N

~

_ FUN t.‘m‘r - t’l‘

Ty, N
1 1 fyr—t, Ty ter —t
—- O ym y N txm x
p(N?TN*)+fUN N Tuy N
1 1 _ [{iES}
= 0 ; — Tu Ty -1 3.34
P (va*) * Nz, ; (i = Tun ) ( — (3:34)

Note that (y; — Fu, i) ([{iES}wi"A} - 1) are independent with mean 0 and variance

(s — Funms)® (1 = Tan) mn- Define

[z' s
C% = warp lz (yi — Fup i) (%Tf—l - 1)}

i€y Al
1— Lp
= Z(yi~fUNIi)2 ) =
3 TiN
. . 1 _ 2 N (1 t 7T* )
> | liminf & > (ke — Fuyzs) —1”—
keUpn
e 1 _ «
> hNHl,loI},f i Z (yk — Foyzi)’ | Nad,, (1 —7%)°
keUpn
— oo as N — oo (3.35)

by F3 and E4. Now,

> B [(yi — Ty i) (%‘i - 1)]4 = Y (v~ 7oz { (7721; - 1)47Tz'N

iGUN W
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IA IA
e I
M e
~— i
@ =3
& =
| Z
S S
B —N—
~— L
.+_
—
——

ﬂ-N* ‘iEUN
1 1
o < I -
N N2(1—m%) [hm inf yooo ¥ EieUN (y; — TuyTi) /N]
so that
= I{ics) 4
EZ’EU}V ET) li(yl - TUNIi) ("m_ - 1)} < 1
Cx T Nad (1-mp)?

23 ievy (% — Tuyw)' /N

2
[lim EN o0 Yoierry (Vi = Tuy )’ /N ]
— 0 as N — 00, (3.36)

the Lyapunov condition holds for § = 2. Using Ash (2000) p.309, Lyapunov’s con-
dition implies that
Ii s
Cy' Z (yi — Fup i) (_g_e_} - 1) £ N (0, 1) as N — oo.
. TN
ZEUN
From Lemma 3.1.2,

—— ~ ]. 1 - 7T’i I'i 8
AV po (HGHR) = Z (yi — FsNIi)z S TN _lies)

N2z? 5 5
Un i€Un iN iN

is a consistent estimator for

o 1 1— s
AVpo (HGHR) = > Wi — Fuyz)® 3

N27z2 ;
UN icUn N

and hence the theorem follows.
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Result 3.1.5 Under the model
£y, = Bx; +¢€, where € are independent (0, Uf) ,

E [AVPO (éGHR)] asymptotically attains the Godambe and Joshi (1965) lower

bound.

Proof: From (3.30), recall the definition of

: 1 1. \1-m
AVpo <9GHR) = N2z2 Z (yi N mﬂ?i> . =

Since
Ee (yi — Tuy®i) =0

then the model expectation of the approximate design variance is given by

E [AVPO (éGHR)] = Z [vare (ys — TUN‘T'L)]
/I €Uy TN
. 1- TN 2 2 1 1 0.?
= Z {ai N01+N {NZF
J”zeUN JjEUN 7
- B v 2 et
z i€Un TiN .’E ieUn TN
1 |1 1—mn 5| |1 o3
i€Un JjeEUN
1
< GJLB+ NZWN*EQUN [ Z az]
i€Un
A | Ep et
j
N2 72 Tl | N 72
N 7rN*'TUN ieUy JjeUN j
1
- GJLB+O< . ) . (3.37)
T Nx*

Since

GJLB =

1—m 1
Z ~—Mai2 has order O ( ) ,
ir Nﬂ'N*

ey N

o~
-:to|'—‘
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then
Ee [AVpo (Bonr) |
GJLB

1
:1+O(N>—»1 as N — oo.

From equation 3.26,

. (é w, w]
var,, GHR = E
PP N N2g2 i m]

””z‘e

F_O 1 Zl—ﬁsz
- N4 7I'.2 i

TUN i€s g

1. 1—m
wz’ =N [(y: - —ﬁtrwwi) + N7T'7r yL:| .

Result 3.1.6 Under E, — Ey,

where

. A — /s 1
VaTgpp (GGHR) P=O AVPO (GGHR) +0 <N27T3> .

Proof: Since

. A PO 1-— 7rZ .
00T app (90113) = Z w7
UN
1 1— Lt 1-m ]2
= NQTU Z (yz t7‘7T$> + N, yi]

1 1—m 1 2 1 (1-m)® ,
- Nz Z (y’ N”””) RN Dy e

2 (1 - 7Ti)2 1.
- sz%]N Z N Yi — Ntrw-[/'i Yi

i€s
— /s 1 1-m)®
= AVpo (HGHR) N2z2 Z (N2 4) Y; ]{265}
UN €Uy
2 (1—-m)? 1.

UN lGUN

— . 1 (1-— m-)3
AV pp (HGHR) + NigZ Z —Nm——y?

Un €Uy

IA



N |ieU ¢
< AV (9 )
= GHR N37T4IUN Z yi
lEUN
2 1 1.
+ W N Z (yi N 1'7rxi> Yi
N zGUN

— A 1 1
= AVpo (9GHR) + 0 <——N37rf) +0 (_—Nzni’)

= //U\/Po (éGHR) +0 <N217T3) .
. , 5

()

3.2 CLT of Separate GHR Estimator for Stratified Sampling Design

We consider the asymptotic distribution of fySep,GHR. Consider a sequence of
stratified finite populations Uy = {1,2,..., Ny} = Uf_Uspy, |Upe| = Neg > 4,
Ny = Zthl Npg, where H — oo. From the Ath population, a stratified probabil-
ity sample sy = U s,y is selected, where in stratum A, spg C Upy is selected
via a probability sampling design ppy (), independently of the sample selected in
any other stratum h. Let {miu}, {miu}, {mijxa}, and {m;un} be the first, second,
third, and fourth-order inclusion probabilities respectively.

Consider the following assumptions:

S Npgp<N,<oo forall h=1,...,H andall H.
Se:mpg > My 2m >0 forall 4, j€ Uy andforall H.
Sz : 2 2, var, (éGHR,Sep,h) — 00, as H — oo,

Sg:0<!l, <x; <uy <oo, and Jy;| <uy <oV jeUy.

Theorem 3.2.1 Under assumptions S; — Sy,

tySep,GHR — by £ N(0,1) as H— oo.

H A
\/Zh:l t?:hvarp (0GHR,Sep,h)
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Remark 3.2.1 An unbiased estimator of var, (éGHR,gep,h) is discussed in theorem

2.2.3.

Proof: Since F)GHR,Sep,h is applied to each stratum  separately
and sampling is independent across strata then the sequence
tzléGHR,Sep,l, tzgéGHR]Sep’g, ...,tzHHAGHR,SeP)H \is an independent sequence.
For a measurable sampling design tzhéGHR,Sep,h is an unbiased estimator for £;;0,.
By triangular inequality and from equation (2.22), we have for all h = 1,..., H

that

ten0GHR,Sep,h

= |tzn ‘éGHR,Sep,h

ben [ Uy Uy Uy Ug

< Yoy, Ty

= W*H{lz TLtL L

< Newafuy 4y WU ] (3.38)
TT«H lz lz lz l:c

Using (Ash p.308), in this uniformly bounded case Lindeberg’s condition holds, and

the result follows.

Remark 3.2.2 The condition Zglzl t2,var, (éGHR,SEP»h> — oo excludes the case

where var, (tzhéGHRYSEP,O = 0 for infinitely many strata.
Example 3.2.1 Under stratified simple random sampling without replacement
sampling design,
= .
Y ohet tzn <0G’HR,Sep,h - 9h> c

- S N(0,1) as H— oo.
\/ Yoy t2var, <0GHR,Sep,h>

Under this sampling design, myz > 7.y = min, %%ﬁ:—ll > 0, Also, the

vary (txhéGHR,sfzp,h) can be computed from Theorem 2.1.2, and we have to exclude

the case where this variance is zero for infinitely many strata.
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3.3 Central Limit Theory for 0gyr

The with-replacement GHR estimator 5(: mr was introduced in Section 2.3.1 and
given by equation (2.26). In this section, we will discuss the asymptotic distribution
of 56; ur under two different cases where 5(: R 1s asymptotically normal with a given
mean and a given variance. The two cases are that the population size NV is fixed
and the number of independent draws, m, tends to infinity, and when both N and m
tend to infinity. From equation (2.23) recall the definition of Zy; (+),

Zni () = % Dovev El=ry Zni(T) = § Lper o=l im=h)
(3.39)
Zni(r) = % > keu %I{m:k} Zni (§) = '11\7 > kev %ff{an}
where Jx = yx/(Npx) andry = yp/x. Also, recall the definition of Ogur from
equation (2.26),

1 _

. _ 1 -
0GHR = Znm (T) + :—‘ZNm (y) + ZNm (37)

Tuy (m—1)Zuy,
m

*(m——l)—i(;ZNm (r) Znm (2). (3.40)

Consider the following conditions,

Fi: 0<l;<z <u;<oo and |yl <y, <oo,
Fy: 0<p, <pp<p*<l and py=N"'4N ) ¢ cl-c d,
for some ¢,7 >0, V k € U,
Fy: limyoo Tuy = ey, My fuy = Hy, and  limy_oo Tuy = pe > 0,
Fy: liminfy . S2;, >0, where wy = yx — FyyZs.
It follows under F3 and by using Fuller (1996) Corollary 5.1.1.1 p. 220 that

Znm (z) = Tyy = Op (M),
Znm (y) = Joy = Op (m™172) (3.41)
I (r) = Tuy = O, (m=1/2) .

Consider the following lemmas
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Lemma 3.3.1 Assume Fy — Fy. For fized N, as m — o0,

Lt ) =0 ().

Proof: Since

;_ Y _ 1 _1_ - i[{nizk}
B [(m—l)ZNm (y)] B (m—l)mNE" !E Npr  p }

i=1 keU

— [N > NPJ (3.42)

keU
s (i)
m

| . 1 Yk L=k}
vary {(m — 1)ZNm( )] (m mZszan [ZZ Npe  px

i=1 keU

T m mNZZ(Npk) .

keU

T (m-1? I:NZ(Npk> sz,ﬂ (3.43)

and

Il

=X

it follows that

1 — 2 1 _ 1 _ 2
By | —Znm )| = T (§ T rim (3
it = v [t o] + [ [ 2 )]
1
= 0 (W) (3.44)
The Lemma follows by using Fuller (1996) Corollary 5.1.1.1 p. 220.
|

Lemma 3.3.2 Assume Fy — Fy. As N — oo and m — oo,

(—m—lzT)ZNm (%) = O, (%) -
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Proof: From equation (3.42), we have

o [ on 9] < e £ | -0 (3)- o

and from equation (3.43), we have

v |Gy o )] < e | 2 B[ O (7).

Therefore,
B[t ] = o [t ] [ [ 2 0]

1
= 0 (;1—2-) . (3.46)
The Lemma follows by using Fuller (1996) Corollary 5.1.1.1 p. 220.

Under conditions F) — Fj, rewrite 6gpg as

~ 1 - 1 - m-—1+4+1 4 _
= - Z m PO m T N = m Z m
Gain = O () + Zam (1) + 2 2o ) = L2 Zn (1) 2 (0
Therefore,
~ 1 m — _ - _
berr — 0 = Op <;> - m (ZNm (7”) - TUN) (ZNm (CE) - CEUN)
1 _ m _ = m
———-—m_lsz(T')—— ( _1) _UNTUNZNm(CE)+m_1TUN
+"_ZNm (y) - y&
Tuy Ty y
= O —1- — m (ZN (T)—fy )(ZN (.T) Ty )
] m (m - 1)1—EUN m N ™m N
1 - m B _
— — 1ZNm (7") (m_ 1)9_3UNTUN (ZNm (:L’) _‘TUN)
1,5 _
+§;; (Znm (y) — Tuw)
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Hence,

. 1 1 m )
Ocur—0 = O <~n;) + mNZo, ZZ(yk“TUN

where wy = (yx — Ty, k) . Note that

_Z [I{m —k) 1]

keU

are iid with mean 0 and variance
-2
Ve = N7°V;

where

It follows that

. 1. 1 1 wy )
Vw = —V = e————— —_— K= _‘tw
N2t N2m—1Z Zpkl{zk}

i€s | k€Upn
1.
= =D, I{m-k} —ty
m= i€s keUN N
is an unbiased estimator for V,,, where
03 T
m 1€3 kEUN
Remark 3.3.1 Rewrite V,, as
V:__l_ (w‘—’lZ)QZSQ
w m—1 4 i Ps)

2

where 1; = N1 ZkeUN p;lwkl{m:k} and ¢ = m™! Zies Vi.

(3.47)

(3.48)

(3.49)

(3.50)

(3.51)

(3.52)
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The rth mean, v,, of N~} EkeUN p;lwkl{ﬂi:k} is given by

1 Wy
Vb = — 1.1 (3.53)
1
= 0(—-——Nr_lp:_l>. (3.54)
Define py = E, (¥ — N"ltw)4; further,
4vg 4 60, (L 2 4oy (L 3+ A (3.55)
= — e 1% - ot - - . .
e = V4 V3N 2\ N " N N

For finite fourth moment iid random variables (Mood et al. (1974) Theorem 3.3

P. 11),

1 m—3
’Ua'f'p (5’3}3) = <N4 — mvu?) . (356)

m

Lemma 3.3.3 For fized population size N, and as m — oo the estimator

—— ~ ]_ ~
AVwr (9GHR> = —3
miy
s consistent for
~ 1
AVwr (9GHR> = —5—Vu,
mIy

where V,, and V,, are given in equations (3.49) and (3.51) respectively.

Proof: From equation 3.55, p4 is finite when the population size N is fixed. There-

fore,
AVwr (éGHR) . ) (f/w - Vw>2

o AVwr (éGHR> vi
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The following lemma covers the case when NV, and m — oo

Lemma 3.3.4 Under conditions F}

Fy and as m, N — oo the estimator
—— ~ ]_ A~
AV (fann) =

m

is consistent for

= 1
AVr (9GHR> = —Vu.
mIg,
Proof: From equation (3.55)
0(3).

= O (1) . Hence from equation (3.56), var, (V( )

From equation (3.50), recall the definition of V; and under the assumption F;,
we have

o= Z“’—E‘—ﬁ

w
T Pk

t2
= N -
Zl+(k/NT

w

N

(T i) pee ()

1
_ _1y<e2 4 & 2 2-7
= N(N-1)Sy++ ;ka (N2T) (3.57)
where the O (-) terms are uniform in k € U. Hence
= > = U —t2 | ~SZy+O(NTT) ~ S2 (3.58)
N2 Dk wlU wU '
U
Therefore,

~ 2 N 2
. AVwn (9GHR) B (vw - vw)
| AViwr (éGHR) [S2, + O (N
vary (Vw)
[S2y +O (N_T)]z
1

52y 1OV ()
— 0 as

m — OQ.
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In the following theorems we will discuss the asymptotic distribution of fcur

when N is fixed and m — oo and when m, N — oc.
Theorem 3.3.1 For fized population size N,

donr — 0
bonn 5 N(0,1) as m — oo.
AVwr <9GHR)

Proof: From equation (3.47), we have

N Ii=
beur—0 = O, ( ) ——— ZZ Lk [ {ri=k) 1] (3.59)
N

i=1 k€U

Define

AVwr (5GHR) = wary | ZZ Wy [[{m—k} 1]
N

=1 keU

vl

are iid (0, Vu)

L
- v, (3.60)

72
mmUN

Therefore, by a standard CLT (Casella and Berger (2002) p.236)

borr =9 £ ar(0,1) as m— oo, (3.61)
AVwr <9GHR,)

Since

Gcmn — AVwr (%HR) Bopr — 0

\/AVWR 9GHR \/AVWR Ocur \/AVWR <9GHR)

then the theorem follows from Lemma 3.3.3.
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Theorem 3.8.2 Under conditions F} — F}

crn — 0

£>J\/'(0, 1) as m, N — oco.
AVwr (9GHR)

Proof: From equation (3.47), recall that

. wy | Lx,=
our—0 = o,,( ) — ZZ ’“[{ Ji 1], (3.62)

i=1 keU

It follows from equation (3.55) that
1 I !
{ri=Fk} K4
E,{ — i T A
p{NmkeZka[ Pk ]} m?

-0 (#) , (3.63)

and hence

3
il
<
3
/\
3|+
=|§
| —
oy
&
I
|
A
~——

_ _1__ 2 —T
- Lis o]
Note that
4
2 im1 {Nm 2 keu Wk [ {K;;;k} - 1}} B O ()
Cy L2, o (NP

- o(3) o

— 0 as N, m — oo, (3.64)

the Lyapunov’s condition holds for § = 2. It follows that

m

CH DD wk [1{“’—’“} 1] £ N(0, 1) (3.65)

i=1 keU


file:///0ghr

79

as m, N — oo. The theorem follows from Lemma 3.3.4, and Slutsky’s theorem.

Result 3.3.1 Under the model € : yx = Bxx+ ¢, where ¢, are independent (0, a?) .
Then E¢ [AVWR (éGHR)] is not attained the Godambe and Joshi (1965) lower bound

as m — o0 and attained the Godambe and Joshi (1965) lower bound as m, N — oo.

Proof: Under the model &, we have

E{ (wk) = 0,
Eg (w)® = varg (wy)
2 1 o?
2 2 2 i
- Uk - ““‘Uk + _ka _2.
N leUy i
by = ty - tzFUN)
EE (tw) — 0)

k k Tk
EUN kGUN kGUN
Therefore,
2
W 2
Ee(Vi) = Eg| Y -4
kEUN pk
1-—- Pk 9 2 U}% _ k
=) k*jv—zi,—Jr?IUNE:T—
keUy Pk kevy Pk keUy "k
1 T3 o} = o}
+ : 2 'S > 22|~ Tus >
keU leuy leuy ¢
Hence,

e [k (Genn)] = Pz
N
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1 1- 2 1 ol
= oW 2 o o | o
M LN peuy  Ph MmN Tyy keUy Pk
2 1 0,%
+ — —_ —_
mNZy, NkGUN Ty
1 1 2| |1 o?
DR IEDE:
mNZ; _N heTy Pk NleUN z
1 |1 o}
- lx g
mN NleUN z;
1 1—-pc 4 1
- 272 Z O\ %)
mN Iy, vl & mN
GJLB:O(;nl—)

therefore,

Ee |[AViwr (6
Il vea3).

If the population size N is fixed, then the Godambe and Joshi (1965) lower
bound is not attainable. However, if the population size N — oo, then the

Godambe and Joshi (1965) lower bound is attainable.

3.4 Simulation Results

In this section we will compare various ratio estimators through simulations.
The entire population consists of (z1, 1), ..., (1000, Y1000) - Consider three differ-
ent sampling designs, simple random sampling without replacement (SI), Poisson
sampling (PO), and probability proportional to size without replacement (7ps).
This section will be divided into two subsections, covering the unstratified case and

stratified case.
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3.4.1 Simulation Results For Unstratified Sampling

Let =x; be independent and identically distributed (iid) as
Gamma(a = 3, 8 = 2), with mean o = 6 and variance a3* = 12.

Let y; = 3x; + ¢; with {¢;} independent N (0, 25z;). (Under this particular
models the bias of § is quite small, as mentioned in Remark 1.3.1.) Let 2 denote

the size variable when #ps sampling is used, and take
zi=10+x; +n, {m:} iid N (0, 1)

independent of {¢;} . Under 7ps sampling, first and second order inclusion probabil-
ities are obtained from the out= JTPROBS option in SAS proc surveyselect.
For PO sampling design, the first order inclusion probabilities are simulated by

' exp (1.5x;)
"1+ exp (1.52;)
and b is chosen such that NbE = 10,15,...,40,75 where £ = N~13", ¢ and
e; = exp (1.5z;) [1 + exp (1.5z,)]*.

Furthermore, by independence the higher order inclusion probabilities are de-

fined for PO sampling as follows:

Tij = Ty, for ij € sp,;
Tijk = TiT;Te,  for ijk € spy; (3.66)
Tk = mymymemy, for ijkl € sp,.

Define the mean square error (MSE) ratio R = %ég:”), where the MSEs
are empirical values based on 1500 simulated samples realization of the finite pop-
ulation. Values of R less than one favor fggr. If the numerator and denominator
of R were independent variance estimators, then R would have an approximate F
distribution with 1499 numerator degrees of freedom and 1499 denominator degrees
of freedom. The corresponding quantiles are F'(1499,1499,0.025) = 0.903676 and
F (1499, 1499, 0.025) = 1.1065913. The MSE’s of § and fgnr are dependent, how-

ever, and we would expect that the MSE ratio should have distribution more tightly
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concentrated around one than the F-distribution when the two estimators are be-
having equivalently. That is, if R < 0.9 or R > 1.1, then we can conclude that this
is a significant difference in estimator performance, and is not due to chance in the
1500 replications of the simulation experiment.

Results for simple random sampling without replacement at various sample size
are shown in Table 3.1. At all samples sizes, éGHR and 6 are virtually indistinguish-

able in this case.

sample size
10 15 20 25 30 35 40 75

B MSE(0)
= ¥SB(bons)

MSE(é) 0.450 0.287 0.216 0.178 0.137 0.121 0.108 0.047

R 0.986 0.992 0.991 1.000 1.000 0.996 0.993 1.003

Table 3.1: Empirical MSE ratios, each based on 1500 simulated SI samples.
At various sample sizes from a fixed finite population.

Results for nps sampling without replacement, as implemented in SAS proc
surveyselect option METHOD=PPS, are summarized in Table 3.2. In this case, the
two estimators behave equivalently at small sample size (n < 30). For large n, 6
is essentially unbiased and has lower variance than éGHR, so the MSE ratios are
significantly greater than one. This is consistent with the expectation that main

advantage of 6gpr is its exact unbiasedness.

The sample size under PO sampling is random. Table 3.3 displays MSE ra-
tios at various expected sample size, E,(n,), ranging from 10 to 75. In contrast
with Table 3.2, MSE ratios are high at small expected sample size favoring g over

O r- This phenomenon is similar to that seen in comparing the weighed sample
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sample size
10 15 20 25 30 35 40 75

0.994 0.979 0.960 0.937 0.886 0.894 0.863 0.807

_ MSE(d)

MSE(é) 0426 0.265 0.202 0.165 0.129 0.126 0.101 0.053

R

Table 3.2: Empirical MSE ratios, each based on 1500 simulated 7wps samples.
At various sample sizes from a fixed finite population.

mean or Hajek estimator (ZS et/ S, 7rk_1) to the Horvitz-Thompson estimator
(3>, wwm'/N) in case of random sample size (see Sirndal et al. (1992), p. 87). At
higher expected sample sizes, the variation in sample size is less critical, and 6 and

fcrr are essentially equally efficient.

E, (ns)
10 15 20 25 30 35 40 75
_ MSE(a)
R——MSE(éGHR) 0.840 0.852 0.887 0.939 0.957 0.963 0.973 0.973

MSE(é) 0.224 0147 0.111 0.089 0.075 0.064 0.055 0.026

Table 3.3: Empirical MSE ratios, each based on 1500 simulated PO samples.
at various sample sizes from a fixed finite population.

The overall conclusions from Tables 3.1 to 3.3 are that § and éGHR perform
similarly, with Ocin having some advantages at small, fixed sample sizes due to its
unbiasedness, and g having some advantages at small, random sample sizes due to
its low variance.

We now consider confidence interval properties for the two estimators via sim-
ulation. The approximation methods described in Section 2.4 for estimating the
variance of éGH g will be used in the following simulation results. For each table, we
compute the percent relative bias,

(simulation mean of estimator) — 6

%RelBias = 7

- 100%,

the percentages of nominal 95% confidence intervals that cover #, and the average

length of the confidence interval.
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Table 3.4 gives results for SI. Both 6 and ey r have negligible empirical bias
(less than 0.5% in absolute value) in all cases. The confidence intervals for 9GHR
have slightly better coverage than those for §, particularly at small sample sizes.

This better coverage comes at the expense of slightly wider confidence intervals.

Sample Size
10 15 20 25 30 35 40 75

%Rel Bias (4 -0.482 -0.151 0.111 0.197 -0.442 0.042 -0.125 0.172
%Coverage (0 92.3 92,7 931 933 94.9 94.0 940 96.3
Length of CI ( 2,551 2,070 1.809 1.614 1.471 1.348 1.270 0.912

%Rel Bias (0grr) | -0.308 -0.060 0.289 0.275 -0.342 0.093 -0.058 0.189
%Coverage,,, (0cr 933 942 939 945 955 943 945  96.5
%Coverage,,, (Ocur 935 943 943 948 958 948 950 96.9

Length of Cl,,, (0cnr) | 2849 2240 1915 1.687 1.531 1.398 1306 0.925
Length of CL,, (onr) | 2864 2258 1934 1709 1.555 1423 1333 0.961

Table 3.4: Percentage relative bias, percentage coverage of nominal 95% Cls.
Average length of confidence intervals under 1500 simulated replicates of simple random sampling

without replacement.

Table 3.5 summarizes the results for the wps sampling design. Results are
similar to those under SI, with negligible empirical bias in all cases, slightly better
coverage of confidence intervals associated with éGHR, at the expense of slightly
wider confidence intervals.

Finally, results for Poisson sampling are summarized in Table 3.6. Once again,
empirical bias is negligible in all cases, so the exact unbiasedness of éG uR is bringing
no real advantage. Further, the extra variability due to random sample sizes under
PO negatively impacts éGHR, so that confidence interval coverage is no better than
that of é, at the expense of wider confidence intervals.

In these unstratified simulations, éGH r performed overall very similar to é, with
slight advantages to one estimator or the other in certain cases. In the following

subsections, we simulate the performance of fysep,GHR and tySepé under stratified
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Sample Size
10 15 20 25 30 35 40 75

%Rel Bias (§) | -0.143 -0.228 -0.472 -0.882 0.276 -0.359 0.185 0.047
%Coverage (0 91.7 93.1 93.9 94.1  95.1 93.3 949 946
Length of CI (§ 2464 2025 1.758 1.583 1.436 1336 1.244 0.896

%Rel Bias (fcgr) | -0.159 -0.203 -0.439 -0.800 0.375 -0.279 0.232 0.107
oo (fcur) | 937 945 945 947 960 937 952 951
%Coverage,,, (fcrr) | 935 946 945 949 961 943 951  93.9
Length of CL,,, (fgrr) | 2747 2188 1.862 1.660 1.503 1.393 1.295 0.930
Length of CL,,, (dorr) | 2758 2.198 1877 1.675 1.511 1400 1.304 0.939

%Coverage

Table 3.5: Percentage relative bias, percentage coverage of nominal 95% Cls.
Average length of confidence intervals under 1500 simulated replicates of mps sampling without
replacement.

sampling, to estimate the population total. In this setting, it is expected that bias
will accumulate in fy Sepd» while fysep,GHR is exactly unbiased, so GHR methodology

may show some real advantages.
3.4.2 Simulation Results For Stratified Sampling

When the population is divided into different strata, U = UfL U, and each
stratum is relatively homogenous, one can expect that stratification will improve
the efficiency of the parameter estimate. In this subsection, we will concentrate
on estimating the population total, ¢,. Let NV, = ZkeUh 1, tyn = ZkeUh Yky beh =
Zkeuh zr for h =1,..., H. The importance of stratification appears when the strata
totals, {,n, have big differences from stratum to stratum. To take advantage of
the efficiency of stratification, we use 6 and éGH r as components of separate ratio
estimators, as discussed in Sections 1.4 and 2.2. Using either 0 or ek as combined
ratio estimators will ignore the efficiency afforded by stratification. Combined ratio
estimators well only if the stratum ratios, 6, are not varying from stratum to

stratum.
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Eng
10 15 20 25 30 35 40 75
%Rel Bias (§) | -0.069 -0.159 -0.202 -0.155 -0.236 -0.225 -0.203 -0.073
%Coverage {0 921 933 938 937 939 937 931 943
Length of CI(4) | 1773 1459 1259 1125 1.021 0.942 0.876 0.620

%Rel Bias (fcmr -0.034 -0.026 -0.152 -0.125 -0.211 -0.201 -0.159 -0.060
%Coverage,,,, fcrr 92.4 93.1 93.7 94.0 93.9 93.9 93.9 93.9
%Coveragepm éGHR 91.6 93.3 93.6 94.1 94.5 94.5 94.7 95.4

Length of CI,,, Ocrr 1.984 1573 1.336 1.177 1.064 0.975 0.905 0.628
Length of CI,,,,,. Ocur 1.948 1566 1.342 1.192 1.086 1.001 0.935 0.679

Table 3.6: Percentage relative bias, percentage coverage of nominal 95% Cls.
Average length of confidence intervals under 1500 simulated replicates of PO sampling without
replacement.

As noted previously, the bias issue will arise when we are using fasa separate
ratio estimator under stratified sampling, especially if the stratum sizes N}, are small.
An exactly unbiased estimator Ocur is crucial to overcome this problem.

From Section 1.4, recall of the definitions the separate ratio estimator and the

combined ratio estimator:

yt/ﬂ-i)
’ Loh : | (3.67)
yS P Z Zzesh (z; [ ™)
" Zh 1 uh
t1 Comb,é (368)
! Zh ot

where fyh and {,, are the HT estimator for ty and t, respectively for the hth stratum.
Also, from Section 2.2 recall the definition of the GHR. version of the separate

ratio estimator: Estimate the population total, t,, by

H

bySep,GHR = E tenbcHR R
h=1

where
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a 1 1 1 Yi 1 1
6 , = — i — —_ = — Wi | . 3.69
GHR,} Ny iez;hr py + NaZu, g;: A Z Z T Ijﬂ_ , ( )

i€sp, jEsp K

We simulate a stratified finite population as follows. For a given value of H
(10, 20, 30, or 40) and a particular stratum h € {1,2,..., H}, define by, = /18 +
A (h—1) /[9(H —1)}. For i € Uy, we simulate z; independent Uniform(0, by) and
y; = h~lsin(z;) + ¢, ¢ independent N (0, (0.001)2 SEi) . When 7ps is used, we
use z; = 2 — /z; as the size variable. Simulation results are based on /N, = 50 in
every stratum, and 1500 iterations.

As noted earlier  has approximately bias zero if we are simulating from
straight line passing through the origin. We will deviate little bit from this line
by choosing sin (-) which pass through the origin and for any choice of b, we have
z; € (n/18, w/2), which means, in each stratum the values of sin (-) can be approx-
imated by a line. In this way we can produce bias for 6 and we can make it worst
if Np, reduced to smaller numbers.

For this stratified population, the within-stratum ratios vary from stratum to
stratum, so that the estimator fyComb,é is based on the wrong model. Therefore, we

expect £ ¢ to have larger variance and larger confidence interval length than

yComb,
separate ratio estimators. Further, fysep,é is based on the correct model and so is
expected to have small variance, but potentially large bias due to the accumulation
of bias from stratum to stratum.

The GHR-based separate ratio estimator is expected to have advantages in this
context. Unlike fyComb,é’ fysep,GHR is based on the correct model, and should have

~

relatively small variance. Unlike ¢ tysep.cHR is exactly unbiased, and so will

ySep,é’
not suffer from any accumulation of bias.
In our simulation study, we consider sample sizes of n, = 4, 5, or6 per stra-

tum. (A minimum of n, = 4 is needed to ensure fourth-order measurability, so
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that an unbiased variance estimator can be computed.) Under Poisson sampling,
the sample size is random and is zero in some stratum A with high probability
when E[ng] = 4, 5, or6. We therefore restrict attention to stratified simple ran-
dom sampling without replacement (STSI) and stratified 7ps sampling (STnps) as
implemented in SAS proc surveyselect.

For STSI, the exactly unbiased variance estimator is easily computed since
fourth-order inclusion probabilities are readily available. For STwps, however,
fourth-order inclusion probabilities are not available, and we use the first method of
approximation as described in Section 2.4.

In stratified sampling design, the estimator tAymm is wrong model of estimating
the population total, t,. Therefore, we expected fycnm has a high variance and larger
confidence interval length. In the same time, fysep is correct model for stratified
sampling design, but has less variance and this is due to the accumulate bias from
stratum to stratum. However, fyGH r is between the two estimators. fyGH R 1s exactly
unbiased estimator for ¢, and the correct model when the stratified sampling design.

Table 3.8 shows MSE ratios for fyCo’mb,é’ and EySep,é relative to fyse,,,GHR. For
tAyCOmb,é, the ratios are much larger than one, reflecting the large inefficiency of
using common ratio model for this population. The ratios actually get worse with
increasing stratum sample size or increasing number of strata, since the failure of
the common ratio model becomes more evident in either case.

~

For ¢ the MSE ratios in Table 3.8 show that the separate ratio estimator

ySep,é’
performs better with respect to the separate GHR estimator as the sample size
increases within strata, but worse for fixed sample size as the number of strata
increases. This is due to the accumulation of bias in EySep,é across the strata.
Coverage of the nominal 95% confidence intervals for tAyCOmb’é is close to 95%
for all cases considered, with better coverage at larger sample sizes, but the average

A

length of these confidence intervals is much greater than those of {ysepcrr or LySep.d-
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but coverage is far less than the nominal 95% in all cases with ¢
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ySepd*

0,6 are smallest among those considered,

Coverage

increases with increasing sample size within strata, but decreases with increasing

number of strata, due to accumulation of bias across strata. Average length of the

confidence intervals for I‘ys.g,, cur are somewhat larger than for

‘ySep, 6

but much less

than tyComb,é' Still, the coverage of the confidence intervals is close to the nominal

95% in all cases, improves with increased sample sizes within strata, and is not

adversely affected by increasing the number of strata, unlike

ySep,0°
%Coverage CT Length %RV B
H Est ny =4 np =5 np = 6 ny =4 ny =5 ny =6 ny =4 ny =5 ny =6
ySep 6 80.1 82.3 86.5 1.258 1.155 1.059 ~-31.69 -29.33 -20.76
10 lysep GHR 86.9 89.7 91.9 1.776 1.618 1.448 -2.45 -3.59 1.78
[} Comb,b 92.0 93.4 93.5 8.677 7.695 6.946 -5.92 -3.32 0.857
yCom
tySep,é 78.9 82.7 86.9 0.917 0.83 0.766 -27.36 -23.01 -13.53
20 {ygep.GHR 91.7 93.3 94.1 1.311 1.139 1.029 1.188 -3.4 5.033
5 94.0 94.5 94.7 8.095 7.154 6.444 2.717 5.826 5.484
yComb,f
tysep F 76.3 79.7 83.3 0.771 0.696 0.639 -26.01 -20.79 -22.13
30 Ey§gp‘cﬂﬂ 93.7 94.5 93.9 1.086 0.843 0.846 3.328 0.908 -4.48
93.8 94.4 94.0 7.837 6.928 6.246 4.383 4.155 -0.321
yComb [
tyscp F] 73.9 80.3 83.0 0.725 0.654 0.599 -26.55 -24.17 -22.85
40 tysep GHR 94.1 93.1 93.7 1.003 0.871 0.781 0.022 -4.78 -4.91
tuComb 5 93.2 93.8 93.9 7.754 6.855 6.184 1.074 -3.36 -2.67

Table 3.7: Percentages of Confidence Intervals Covering ¢, under STST

sampling design.

H np=4|np,=5|n,=06
10 MSE ({504 /MSE(,,SP,,GHR) 0.832 | 0.816 | 0.774
MSEgyCombﬂ) /MSE (Iysepcrr) | 22.167 | 21.436 | 22.346
20 MSEgySep JMSE (Lyseperr) | 1014 | 0.897 | 0.854
MSE (i,coms) /MSE (ysepcnr) | 36.112 | 35312 | 38.573
30 MSE(l,5.,4) /MSE (lysepaur) | 1.222 | 1.109 | 0.991
MSE Efchmbe) /MSE ({yseparr) | 50.545 | 51.786 | 51.921
40 MSE (1,5, /MSE(tySep,GHR) 1.344 | 1.175 | 1.0825
MSE ({,comsi) IMSE (ysepcnr) | 58519 | 60.838 | 61.142

Table 3.8: MSE Ratios under STSI design based on 1500 replicates.

Table 3.10 shows MSE ratios for EyComb,é’ and tAySep,é relative to fysep,GHR. For

fyComb,év the ratios are much larger than one, reflecting the large inefficiency of



90

“ %Coverage “ CT Length “ %RV B
H Est ny =4 ny =5 n, =6 ny =4 ny =5 ny =6 ny =4 ny =5 n, =6
tySep,é 69.9 74.2 74.8 1.278 1.2 1.116 -48 -38.637 -41.86
10 €y§ep,GHR 97.9 95.3 93.5 3.463 2.396 1.812 77.506 6.331 -21.103
b Comb.8 91.2 92.5 92.5 11.224 10.032 9.12 -7.415 -6.305 ~9.852
A tySE‘p,é 62.8 70.9 76.2 0.924 0.862 0.808 -44.436 -39.079 -32.197
20 ty;s‘zp.GHR 99.3 98.2 96.5 3.011 2.071 1.547 162.725 70.306 25.564
tyCamb,é 94.0 94.1 92.7 10.067 8.986 8.182 0.934 -6.738 -7.214
A tySep,@ 59.3 65.4 71.3 0.779 0.725 0.676 -39.392 -34.517 -33.536
30 iysep,GHR 99.7 99.6 97.9 2.759 1.899 1.418 204.748  142.712  42.375
tyCamb 5 94.0 94.3 94.4 9.566 8.536 7.774 3.681 -0,53 2.803
. tySep,é 54.2 61.3 68,1 0.734 0.678 0.631 -41.927 -35.648 -32.044
40 ty§eﬂ,GHR 99.9 99.7 99.1 2.61 1.815 1.362 257.24 157.061 78.992
tyComb,é 93.9 93.3 94.4 9.416 8.41 7.667 1.067 2.11 0.152

Table 3.9: Percentages of Confidence Intervals Covering ¢, under STnps

Sampling Design.

MSE (t,comps ) /MSE (Lysepcur) | 35.456 | 49.38 | 41.65
40 MSE (iys05) /MSE (lyseponr) | 1465 | 1442 | 1.269
MSE ({ycomsi) IMSE (Iysepcnr) | 46148 | 54.141 | 56.774

H np=4|n,=5|n,=6

10 MSE E ysw) JMSE (Iysepcur) | 0.766 | 0.648 | 0.729

MSE (fyomys) /MSE (iysepcir) | 20.506 | 20.054 | 22.308

20 MSE g y5end) /MSE (ysepcrr) | 0931 | 0.899 | 0832

MSE (8,0omy3) /MSE (iysepcnn) | 29.252 | 34.476 | 37837

30 MSE § ysend) /MSE (fyseponr) | 1031 | 1224 | 0.959
)

Table 3.10: MSE Ratios under STmps design based on 1500 replicates

using common ratio model for this population. The ratios actually get worse with
increasing number of strata, since the failure of the common ratio model becomes
more evident in either case.

For £ the MSE ratios in Table 3.10 show that the separate ratio estimator

ySep,§

performs better with respect to the separate GHR estimator as the sample size
increases within strata, but worse for fixed sample size as the number of strata
increases. This is due to the accumulation of bias in £ ySep,§ BCTOSS the strata.

Coverage of the nominal 95% confidence intervals for f, g is close to 95%

yComb,

for all cases considered, but the average length of these confidence intervals is much

greater than those of tAySe,,YGHR or i Average length of confidence interval for

ySep, 6
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~

t,sep,d arc smallest among those considered, but coverage is far less than the nominal

~

95% in all cases with tySepd- Coverage increases with increasing sample size within

strata, but decreases with increasing number of strata, due to accumulation of bias

across strata. Average length of the confidence intervals for tAygepYGHR are somewhat

~

larger than for t,sep,6 Dut much less than fyCmnb,é' Still, the coverage of the confidence
intervals is close to the nominal 95% in all cases, improves with increased sample
sizes within strata, and is not adversely affected by increasing the number of strata,

~

unlike £, g, 4.

As a final comment, the bias affect the percentage of coverage of fysep and keep it
far a way from the nominal value %95, and fyGHR works better than fyse,,. However,
the percentage coverage of fysep can be worst than the given simulation results by
decreasing the strata size (in the given simulation are fix and equal to 50) and by

increasing number of strata. In the same time, the percentage coverage of fyGHR

will not affected by decreasing the strata size or increasing number of strata.



Chapter 4
CONCLUSIONS

In this work, the Hartley and Ross (1954) estimator has been generalized to
unequal-probability sampling designs, under the condition of measurability (strictly
positive second-order inclusion probabilities). This results in generalized Hart-
ley and Ross (GHR) estimation. Two distinct versions were considered, ane
building on the Horvitz and Thompson (1952) estimator and one building on the
Hansen and Hurwitz (1943) estimator for with-replacement sampling,.

In Horvitz-Thompson based GHR estimator is of interest because it is unbi-
ased and an exact variance and an unbiased estimator for the exact variance were
obtained. The computations for the exact variance and the unbiased variance esti-
mator of the GHR require higher-order inclusion probabilities (up to fourth order),
which are not easily obtained in4g0neral. To overcome this problem, two methods of
approximation were given. Simulation results for SI, PO, and WR sampling indicate
that these are useful approximations.

The GHR estimator was shown to be mean square consistent under mild con-
ditions. These conditions are met by simple random sampling without replacement,
simple random cluster sampling, and stratified sampling designs.

Central limit theorems (CLTs) were established for GHR under the SI design
and under the Poisson sampling (PO) design. The asymptotic variance and a con-

sistent estimator for the asymptotic variance were given under the two sampling

designs SI and PO.
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The GHR was evaluated under a super-population model, and it was shown
that the Godambe and Joshi (1965) lower bound is attainable for GHR under SI
and PO sampling designs. The GHR is thus asymptotically equivalent to the stan-
dard, simple ratio estimator, and superior to the naive ratio estimator. The GHR
can be combined with simple estimator to produce other estimators that have ap-
proved in the literature including Hartley and Ross (1954), Murthy and Nanjamma
(1959) and Nieto de Pascual (1961). The GHR was compared to other estimators
analytically and via simulation.

The version of GHR derived using a Hansen and Hurwitz (1943) type esti-
mator for with-replacement sampling was shown to be unbiased. This estimator
was discussed under two different asymptotic scenarios, when the population size
N is fixed and number of independent draws m tends to infinity and when both
m and N tend to infinity. Under each of the two cases, a CLT was established and
the asymptotic variance and a consistent estimator for the variance were given. The
Godambe and Joshi (1965) lower bound was shown to be almost attainable under
the first case and attainable for the second case.

An important problem is estimation of the population total ¢, under a stratified
sampling design when stratum z-totals are known, particularly in the case of small
stratum sizes. If biased estimators are used to estimate within-stratum population
y-totals, the bias may accumulate across strata. The unbiased GHR estimators
were adapted to deal with such situations by redefining the GHR as a separate
GHR estimator, analogous to the classic separate ratio estimator of survey statistics.
A CLT was proven for the separate GHR estimator under a stratified sampling
design when the stratum sizes are fixed and the number of strata tends to infinity.
Simulation results showed that GHR under different sampling designs gives excellent
results compared to other almost unbiased estimators proposed in the literature,

even when the number of strata is not large.



94

The work in this dissertation can be extended in a number of directions. Work
on GHR-type estimators could be pursued in at least five directions. First, sim-
ulation results indicate that the two methods of approximate variance estimation
behave very similarly. The first approximate variance estimator was shown to be
consistent for the true variance. Under what conditions is the second approximate
variance estimator, based on a with-replacement approximation, consistent for the
true variance? Second, it would be of interest to weaken the conditions used in
establishing central limit theory for GHR, while still giving conditions that are rel-
atively easy to check in practice. Third, we have shown asymptotic attainment of
the Godambe-Joshi lower bound under SI, PO, and WR sampling designs. Does the
GJLB always hold for the GHR estimators, and if not, under what designs or models
does it fail? Fourth, simulation results for both unstratified and stratified designs
showed good performance of GHR relative to standard estimators under particular
simulated finite populations. These simulations were quite limited, however, and it
would be of interest to conduct a broader simulation study to give guidance to users
on appropriate choices of ratio estimators. Fifth, and finally, it would be of interest
to apply GHR to real data.

In addition to extending results for GHR, it would also be of interest in
future work to apply the theoretical methods used in this dissertation to other
ratio estimators, to produce a thorough, systematic study of the properties of
the Hartley and Ross (1954), Murthy and Nanjamma (1959), and Nieto de Pascual
(1961) estimators in unstratified and stratified cases. Asymptotic results could be
derived and simulation studies undertaken. Further, the unbiased estimation tech-
niques used to develop GHR in the presence of auxiliary information might be
extended from ratios to other kinds of population parameters, including variances

and regression coeflicients. These would require additional auxiliary information.



Appendix A

MEAN SQUARE CONSISTENCY EXAMPLES

In this section we will give details that were omitted in previous chapters.

Example A.0.1 Assume n ~ O (N?), for 2

consistent estimator for # under SI sampling design. If 6 = 1, then the finite popu-

lation corrections ( fpe=1—%

n

Solution For S sampling design,

Ty =
Mg =
TNx =
and
Tijkl —
Therefore,
and

Y (my—mmy)?

ij€UD,

n
N’

nn—1 ..

NN 1 for 15 € Up,,
IL_n—l

NN-1

IL_n—l n—2n-—23
NN-1N-2N-3

for 5kl € Up,.

0 (N25—1) ,

>

el

)

z[— (}3)]
e (3 (e
:N(N—1(TV’3> _n)(Tv—iT

O(NZJ 2

< 9§ < 1. Then éGHR is mean square

) cannot be ignored and we can ignore it if 6 < 1.
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Hence, n* = max{20 — 1,20 — 2} =20 — 1< 2.

To find 7, consider the following two cases:

—1\?
> Nmfj = ZN(%JT\L/~1>

ijelp, ijeUp,
— O(N45-—~1)’
and
2 2
I T 4 f_n-—l n—2 n—3_£n—1
,jkg; T = mmal” = O(N)<NN—1> [N—ZN—B NN-1
[ Dy
o) —4nN? 4 4n®N + 6 (N2 = n?) — 6 (N —n)]°
- N(N-1)(N-2)(N-=3)
= O(N%1),

Therefore, 7 = max {66 — 4,46 — 1} =46 — 1 < 4. Since

ind1 2—-n" 4—n)| _ 1 3—20 5—40 3-20
m ) 4 ) 4 =mi s 4 ’ 4 - 4 )

then

. —n* — - 5
Nmm{l’z_?‘_"i_‘i,l}wm =0 (N6645> — 00, as N — oo and for g < §< 1.

Hence the SI sampling design is a mean square consistent. If § = 1, then the finite

population corrections ( fpe=1- IAE,) can not be ignored and we can ignore it if

4 < 1.

Example A.0.2 Consider simple random cluster sampling design (SIC). Under this
design, M is the number of clusters, C'is the cluster size, N = M (' is the population
size, and draw m clusters from the M clusters via S1 design and observe all elements
in each selected cluster, Assume m ~ O (M‘s) , for % < 6 <1, then éGHR is mean

square consistent estimator for 6.
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Solution. Let Uy, be the A" cluster, h =1,2,..., M. Now, for i € U}, we have

.m
Ty = —M—’
M
S>3 = me(L)
h=14€U,
= O (M26—1) ,
mp o= m=m=—  Vi#jeU,
and
- 2 m\ 2 m\ 2
Z' ' (myy —mm;)" = MC{c—-1) (M> (1 — M)
h=1 i#jeUy,
- 0 (M26—1) ‘

If h+ handie Uy, je U then

m
Ty = Fj:M,
mm—1
T MM -1
and

2[M(m~1)—m(M-1)]°
D S e e T (N el

hath 1€URJEV,
= O (M¥7?).
Therefore, n* = max {26 — 1,20 -2} =20 — 1 < 2.
If i # 5 € Uy then m;; = §;; then
DL D MCmy = O(M¥),
h i#jEUR

andforh;éﬁandiEUh,jEU',

mm —1
7Tz'j_

T MM-1
and

Y mcrl = o(M¥).

h#h 1
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o If 75kl € Uy, and ijkl € D4 then

m
Tigkt = Ty = TRy = K/[—’
and then
M 2 2
>3 Ay = MC(C-D(C-2(C-3) (-AT-’;-) (1 - %)
h=1 ijkleUy,

- 0 ( M26—1) _
o Two different clusters and two elements in each cluster: Uy, Uy, and h, h e D,.

— Case(1): ij € Uy and kl € U;,.

m
Ty = TR
mm-—1
Ti4 = — ,
wT MM -1
m m 1
A = —— (1 - —) ,
YL M M) M =1
and
Y. D Ay = o(MP).
h,fLEDz 7‘JEU’L7klEU”L
— Case(2): ik € Uy and jl € U;.
mm—1
Tigkt = Tij = Tkl = rr =
mm—1 mm — 1
AV V=1 (1—_]\/7M—1)’
and
§—
Z Z ALy = O(M*?).
h,he Dy th€Un jlEUy
— Case(3): il € Uy and jk € Uy,
mm—1
Mijkl = Mij = Mg = A EEL
and

> AL, = oM,

h,ﬁGDz ileUh,jk?EU}*L
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o Two different clusters and three elements in one cluster and one element in

the other one:

— Case(1): ijk € Uy and | € Uy,

m

Ty = K/[_’
mm—1

Tijkl = Wkl:MM_lv

mm—1 m
o = BRI F)
7t MM-—1 M
and

Yo D Ahw = oM7),

h,he Dy 7KEURIEU,

— Case(2): ijl € Uy and k € Uj,

m
Ty = IYE

mm-—1
Tkl = MZZMM 1
and

Yo > Ay = oM7),

h,f’IEDz ileUh,kEU;L

— Case(3): ikl € Uy and j € U;,.

m
v
mm—1
Tijel = WijZMM_la
and

YooY ALy = oM.

h,iLEDz iklEUh,,jEU;1

— Case(4): jkl € U, and i € U;,.

Tkt —

m
Tk = T M-
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and

YooY AL = oM.

h,FLEDz jklEUh,iEU}‘1

o Three different clusters: Uy; Uy; Ufm’ and h,fl, he Ds.

— Case(1): 7j € Up and k € Uy, and | € Uy,

2. 2

h,hheDs

7Tij =
Tl =
Tijkl =
Aijkl =
and

2 —
A =

Z'jEUh,/CEUﬁ,IEU;l

— Case(2): tk € Uy and j € Uz, and | € U};.

2.

hfheDs

2.

m
i
mm— 1
MM-1
mm-—1m
M M
m 1
> M)(M—z)’
O (M*7%).
mm—1
Ty = mcl:—]\?_—M——l’
_oomm-—1m-—2
Tk = MM -1M -2

Ay = O (M%),
and

A?jkl - O (MGJ—S) .

Z’/(?EUh,‘jeU};”leU’:1

— Case(3): il € Uy, j € Uy and k € Uy

2.

h,]:L,i:LEDa

>

7,lEUh,_]EU"l,ICEU’:l

mm—1

Rl v V)

mm-—1m-—2

TR S M 1M -2
and

ALy = O (M3
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— Case(4): jke Uy, i€ Uy and L € U,

mm-—1

R v s

mm-—1m-—2

Tkl = =5 T

ikt MM—1M —2
and

> S AL, = oMY,

h,fl,f'LED3 jkEUh,iEU;LJEU’i

— Case(5): jl € Up, i€ Uy and k€ U,

mm-—1

L V) VI

mm-—1m-—2

Tijkl = MM—-—1M -2’
and

> Y, Ay = oM%Y,

h,ﬁﬁeDa leUh,iEUﬁ,kEU;L

— Case(6): kl € Uy, i € Uy and j € U,

m

Tt — M)
_ mm-—1

T MM o1

mm-—1m—2
o, . o mmz—im=2
ikl MM—-1M ~2’
and

Q

(

<
S
&
S

Z Z A?jkl =

h,fl,ﬁéDa klEUh,’L'EU)'L,]'EU;L

o Four different clusters: i € Uy, j € Uy, k € U}’l’ le Uh and (h, h,h,h) € Dy.

_'m_,m—l
T MM-1
mm—-1m-2m-—3
MM~-1M~-2M-3

Ty = Tkl

Tijkl



mm—1 m 6M +6m — 6 —4dmM
DAy = = (1——“) ,
MM-—-1 M) (M—-1)(M-2)(M-3)
and
— O(M35—4)
Yo DAk = Oo(M¥Y).
hhhoheDy T
Therefore,
n = max{26,46 — 1,20 — 1,26 — 2,46 — 2,46 — 3,66 — 3,66 — 4}
= 46-1 for g<5§1.
Since
min 12—77* 4—n _mind 1 3—20 5—40) 3-2)
40 4 | 4 4 T4

and under this sampling design, Ty, = %;—"ﬁ Then,

Mmi"{l’z_jl_’%n}wm =0 (MQZ;S) — o0, as M — oo and for g <é<1.

Example A.0.3 For 0 < § < 1, éGHR is mean square consistent estimator for 8

under ST (stratified sampling) design. Let Hy ~ O (N?) be the number of strata,

Nu ~ O (N'%) be the h'* stratum size.

Solution

Let Uy, be the h** stratum and h = 1,2,..., Hy. Now, for i € U, we have

Hy
>N m < O(N).

h=1i€U,

If i # j € Uy, then

Z Z (ﬂ'ij -*7Ti7l'j)2 S O(Nz_(s) .

h=1 i?éjEUh
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If h # ﬁ, i € Uy, j € Uy, then 7y; = mym;. Therefore,

2
Eh;&ﬁ EiEUh,jEU;I (7Tz'j - ”i”j) =0 (1) .
Hence,

n* =max{1,0,2—-90}=2-4, for0<a<d <1

o Find the order of 3 e, Nn?

i
If i # j € Uy, then
> > Nmp < o),
h i£j€U,
and for h # h,i€ U, and j € U then
Y D Nm < O(N%).
hh

¢ Find the order of Zz’jkléUm ALy, where Dijyy = Tije — Ty,

— For vjkl € Up, and ijkl € Uy, then

Hy

Z Z Ay < O(N%).
h=1 ijkleUy

— Two different Strata, Uy, U;, h # ﬁ; and two elements in each strata

x Case(l): ij € Uy and kl € Uy
> A = o).
hf gkl
* Case(2): ik € U, and jl € Uy,
S Y 4 < o)
hh gkl
For other cases, they have the same order.

— Three different Strata U, Uy, U}’l and h, h,h € Dj.
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x Case(l): t#j€Uyand k€U, andlef;.

ZZAz‘ijl = O(1).

h,fL ijkl
* Case(2): i#keU,and jeU; andl € h.
DD Ak < O(N*T).
h,fl,fl 17kl
Other cases are either of order O (1) or O (N*~?) .
— Four different clusters: i € U, and j € Uy, and k € Uy, and | € Uy, and
h, hy, ho, ha € Dy.

Z ZA?jkl = 0(1).

.z ¢ 45kl
ahEE Y

Therefore, n = max{3,3—-6,4-35,0,4—26,4—6} = 4 — 4. Since
min {1, 2-%":, 4—;'1} = g, then choose § such that § > 0 and N%TFN* — oocas N — oo.

Hence this design is a mean square consistent.



Appendix B

NOTATION

The following notations are used in this work.

Uy ={1,2,...,N}
Uy

ty=ZieUy¢
f=p

B

s

Tijk

Tijkl

I

Aij ES 7Tij — 7Ti7Tj
Dijie = Tijie — Ty
Az’jkl = Mgkl — T4kl
Pk

ST

WR

ST

STSI

STrps

SIic

PO

mPS

pps

0

~

0
Ocur

o (9)

Finite Population

h*™ Stratum or Cluster

Population total ¢,

Population ratio totals(means) of the variables y and z
Superpopulation parameter

Probability sample

Sample size

Probability of drawing the sample s from Uy

Fix measurable sampling design

First order inclusion probability of element 1

Second order inclusion probability of elements 7 and j

Third order inclusion probability of elements ¢, j, and k
Fourth order inclusion probability of elements 4, j, k, and !
Sample membership indicators

Covariance of /; and I

Covariance of I; and I

Covariance of [;; and Iy

Probability of drawing element k with replacement sampling
Simple random sampling without replacement

Random sampling with replacement

Stratified sampling

Stratified sampling with ST in each stratum

Stratified sampling with 7ps in each stratum

simple random cluster sampling

Poisson sampling

Probability proportional to size sampling without replacement design
Probability proportional to size sampling with replacement design
Population ratio

An estimator of 6

Generalized Hartley and Ross estimator for 6

Expected value of an estimator of § under sampling design p
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Expected value of an estimator of f under model design ¢
Variance of an estimator of § under sampling design p
Variance of an estimator of # under model design ¢

Estimate of var ((9)

Mean square error
7 estimator of the population total £,

Sample mean of the ratios

Set of all distinct t_tuples (i3, 12, ..., 1)
Set of all distinct ¢t_tuples (iy,1s,...,4;) from s
Set of all distinct ¢_tuples (i1, 142,...,%) from U
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