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ABSTRACT 

 

 

 

THE INTERACTION BETWEEN CYCLING CADENCE AND SUBSTRATE UTILIZATION IN TRAINED CYCLISTS 

 

 Currently, the optimal pedaling rate for road cycling endurance performance is not very well 

understood. It is known that muscle fiber recruitment patterns vary between low and high cadence 

rates. However, it is unclear whether different muscle fiber recruitment patterns stimulate different 

substrate utilization patterns between low and high cycling cadences. PURPOSE: We investigated if 

pedaling at a higher cadence at a submaximal work level results in a higher proportion of fat oxidation 

compared to cycling at the same intensity at a low cadence. In addition, we aimed at studying the 

optimal cadence for endurance road cycling and why well-trained and professional cyclists tend to pedal 

at higher rates. METHODS: Participants were trained, competitive cyclists and/or triathletes (VO2 max 

60.4 ± 7.1 ml/kg/min, aged 24 ± 2.5 years, n = 11) living in Fort Collins, CO. All were training at least 8 

hours per week and had participated in a competitive event in the past two years. Baseline testing 

consisted of a maximal consumption test (VO2 max test) that started at a low work level (50 – 100 watts) 

and increased by 25 watts every three minutes until exhaustion after which a verification bout was 

performed. From the VO2 max test, the first ventilatory threshold (VT1) was determined for each 

participant and served as the power output used during the cadence protocol that followed on a 

separate day. The cadence protocol entailed seven stages each lasting six minutes in length with a four-

minute recovery period in between. Work rate remained constant during the cadence protocol while a 

different cadence was assigned randomly to each stage (60, 70, 80, 90, 100, 110 and freely chosen 

cadence (FCC)). RESULTS: Cadence had a significant effect on HR (estimated slope = 0.2634, SE = 0.032, 

p < 0.001), VO2 (estimated slope = 0.098, SE = 0.012, p < 0.001), RER (estimated slope = 0.0007, SE = 

0.0001, p < 0.001), as well as absolute (estimated slope = 0.012, SE = 0.001, p < 0.001) and relative 
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percentage of CHO utilization (estimated slope = 0.2696, SE = 0.053, p < 0.001.  Cadence did not have a 

significant effect on absolute fat utilization, but it did have a significant effect on the relative percentage 

of fat utilization (estimated slope = -0.2283, SE = 0.053, p < 0.001. VO2, HR, and VE were minimized at 70 

rpm while carbohydrate utilization was minimized at 60 rpm. FCC was found to be 89.8 rpm. Pairwise 

comparisons with FCC showed significant mean differences with respect to HR and VO2 between FCC 

and 70, 100, and 110 rpm as well as significant mean differences with respect to CHO utilization 

between FCC and 110 rpm.  CONCLUSION: The increase in energy expenditure at higher cadences is not 

counterbalanced by a significant increase in fat oxidation, thereby resulting in a carbohydrate penalty at 

higher cadences. FCC is not solely chosen to limit metabolic cost or optimize substrate utilization. An 

optimal pedaling cadence may be one that allows the cyclists to maintain the highest wattage desired 

without a considerable amount of muscular fatigue while minimizing the consequent increased 

metabolic cost and CHO penalty.  
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CHAPTER 1 – LITERATURE REVIEW 

 

 

 

Introduction 

 Every summer, the top cyclists in the world battle it out for the coveted yellow leader’s Jersey, 

the maillot jaune, at cycling’s most iconic race, the Tour de France. With advanced research in optimal 

training, new bicycle technologies and the talent of riders, the sport is more impressive and evolving 

faster than ever before. Cyclists have endless choices of gearing, wheels, and nutrition to optimize their 

performance for any kind of race conditions. However, despite all these advancements, the pedaling 

rate at which one should pedal at for optimal performance is still not very well understood.  

Today, well-trained and professional cyclists tend to pedal at a rate of 90-95 revolutions per 

minute (rpm) or higher. However, this was not always the case. High cadence work seemed to 

dramatically increase during the 1992 edition of the Tour de France when Lance Armstrong first came 

onto the professional cycling scene and adopted a very high (110+ rpm) pedaling rate, even when 

climbing. Pedaling at high cadences seems to be counterintuitive as cadence rates of 40-60 rpm have 

been shown to elicit the lowest metabolic and oxygen cost at low workloads and the most metabolic 

economical cadence will increase with increasing workloads [1, 2]. So there exists a discrepancy 

between a cyclist’s freely chosen cadence and the cadence that is most metabolically optimal for road 

cycling. 

It has been established that pedaling at different cadence rates has different physiological and 

biomechanical tradeoffs. Pedaling at a higher cadence at a high but submaximal effort (> 65% VO2 max) 

as well as lower workloads (45 – 65% VO2 max) will invoke a greater oxygen cost and heart rate response 

than lower or moderate cadence rates [1-7]. Research has shown that pedaling at higher cadence 

requires less muscle activation and innervation as measured by integrated myography (iEMG) data [8-
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10], with greater recruitment coming from slow twitch muscle fibers [11, 12]. This leads to less 

neuromuscular fatigue and torque required per pedal stroke. Pedaling at lower cadences requires 

greater muscle activation and recruitment, with a greater proportion of muscle activation from fast-

twitch muscle fibers, especially at high power outputs [13]. This translates to a greater torque per pedal 

stroke which might lead to greater muscular fatigue and lactate production [11, 13, 14]. Bieuzen et al., 

observed differences in the energetically optimal cadence (most metabolically economical) and the most 

neuromuscular optimal cadence. These cadences were 63.5 and 93.5 rpm respectively [15].  

Currently, therefore, the optimal pedaling cadence for overall endurance performance in road 

cycling remains elusive. It likely involves a complex interaction of multiple variables. Optimizing one 

variable, muscular fatigue for instance, may hinder another variable, such as oxygen cost. The aim of this 

review is to explain what is known about the interplay of factors that may determine optimal pedaling 

rate. 

Muscle Fiber Recruitment and Cadence  

 Recruitment and contraction of muscle fibers repeated over and over allows movement to occur 

except for repeated isometric contractions. This process is important for daily activities as well as 

structured exercise, such as cycling. The type of muscle fibers recruited depends on the task at hand. 

Slow twitch fibers, also known as type I fibers, typically have a higher mitochondrial density than their 

Fast twitch counterparts, and therefore have superior oxidative capacities. Type I muscle fibers have a 

lower force production but are far slower to fatigue. Fast twitch muscle fibers, also known as Type II 

muscle fibers, which can be further categorized into Type IIa and Type IIx, often rely on glycolytic and 

anaerobic pathways, making them less efficient and more prone to fatigue. However, type II fibers can 

generate a higher force and power than slow twitch fibers, making them effective for intense activities.  

Recruitment of muscle fibers for endurance exercise, such as cycling, begins with anaerobic 

metabolism and makes a seamless transition to reliance on aerobic metabolism. For instance, by the 3rd 
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minute of exercise, 60% of energy production originates from aerobic metabolism. Since type II fibers 

fatigue more quickly, exercise bouts of one to four hours are heavily reliant on aerobic energy 

production (Type I muscle fibers) with less contribution from anaerobic metabolism (Type II muscle 

fibers). The intensity of the exercise will dictate muscle fiber recruitment which affects how long the 

chosen intensity can be sustained. In addition to duration and intensity of the exercise, muscle fiber 

recruitment while cycling is also dependent on a few other variables including the phase in the pedal 

cycle, the position of the cyclist (seated or standing) and pedaling rate.  

The pedal cycle has two main phases: the push power phase and the pull power phase. The push 

power phase occurs when the crank position is between 0o (12 o’clock position) to 180o (6 o’clock 

position), and the pull power phase is from 180o to 360o [16].  

Seating and standing positions on the bicycle will produce different combinations of pedal 

forces, crank torque, muscle recruitment pattern and joint movement profiles. For example, when 

standing, the vastus lateralis, an important knee extensor, is recruited earlier in the pull power phase 

and remains engaged for a longer duration of the push power phase. Furthermore, Li and Caldwell 

demonstrated that when climbing in the standing position, the gluteus maximus is further engaged 

compared to a seated position. They determined that the further engagement of the muscle allowed for 

increased stabilization while standing, figure 1 shown below [17].  This trend of greater and longer 

recruitment patterns can be seen for most lower limb muscles in the standing position compared to the 

seated position. Despite the increased muscle recruitment and force while standing, Millet et al., (2002) 

concluded that level-seated, uphill seated, or standing cycling positions produce similar external 

economy and efficiency in trained cyclists at submaximal intensity [18]. In addition, it was included that 

heart rate (HR) was significantly higher in a standing position (p < 0.05), and while cycling uphill, 

ventilation (VE) was higher in a standing position compared to a seated position (p < 0.05)[18]. 
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Cycling cadence can alter the pattern of muscle fiber recruitment. Ahlquist et al., (1992) found 

that glycogen depletion was different between slow-twitch and fast-twitch muscle fibers at different 

cadences. As shown in Figure 2, glycogen content of the individual fiber types was quantified as an 

optical density (D) of the periodic acid-Schiff (PAS) stain. The glycogen depletion data for type I fibers 

indicated that there were no significant differences between 50 and 100 rpm. However, the glycogen 

depletion data for type II fibers indicated that pedaling at 50 rpm resulted in a significantly greater (p < 

0.05) amount of glycogen depletion compared to the 100 rpm exercise bout [12]. From this, the authors 

concluded that fewer fast-twitch fibers, compared with slow-twitch fibers, are recruited when pedaling 

cadence is increased from 50 to 100 rpm, shown in figure 2[12]. This recruitment pattern is in response 

to the reduced muscle fiber force and tension required per pedal revolution at a higher cadence. 

Figure 1. Adapted from Li and Caldwell 1998 Figure 2. Adapted from Ahlquist et al. 1992 
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Ahlquist et al. further concluded that the force demands of pedaling, not the velocity of contraction is 

what determines the muscle fiber recruitment pattern [12]. In addition, Gollnick et al., (1974a) have 

shown that isometric contractions greater than 20% of maximal voluntary contractile strength (MVC) 

result in greater glycogen depletion in type II fibers compared to type I fibers. Furthermore, contractions 

of less than 20% MVC result in preferential glycogen depletion in type I fibers [19]. Other studies 

produced similar findings [13, 14, 20]. 

Efficiency and Cadence 

 Mechanical efficiency can be defined as the ratio of mechanical work done to the metabolic 

energy expended to do that work [21]. It is a measure of effective mechanical work accomplished and is 

expressed as the percentage of total energy expenditure that produces external work. External work is 

the application of force by the muscles through a distance [21, 22]. The external work produced when 

cycling can be calculated by the displacement of the flywheel and resistance opposing to the 

displacement of the flywheel. Energy expenditure is calculated based upon oxygen uptake (VO2) and the 

corresponding respiratory exchange ratio (RER) [4, 23]. Cycling efficiency has been reported to be in the 

range of 10-25%. Therefore, this implies that 75-90% of total energy utilized to maintain equilibrium is 

obtained from ATP hydrolysis and released as heat [4]. The mechanical efficiency value obtained refers 

to the gross efficiency (GE) index, as first proposed by Gaesser and Brooks (1975). Gross efficiency can 

be expressed as a percentage of the external work accomplished divided by the total energy consumed 

(𝐺𝐺𝐺𝐺 = 𝑊𝑊𝑒𝑒𝑒𝑒𝑒𝑒𝐸𝐸𝑒𝑒𝑡𝑡𝑒𝑒 × 100 )[4]. 

 Gross efficiency could be considered one the most vital functional abilities of a cyclist as it 

determines the power that a cyclist can produce for a given oxygen cost and level of energy expenditure 

[24]. In addition, it has been suggested that other methods of calculating efficiency, such as net, work 

and delta efficiency, have all been suggested to be conceptually flawed [25, 26]. For instance, net 

efficiency involves a baseline subtraction of all processes that are not part of the energy flow through 
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the system of interest, such as resting metabolic rate [4, 23]. By doing so, this then assumes that the 

processes related to resting metabolism are independent, isolated, and running in parallel from the 

process of doing work. However, there is evidence that particularly at high work rates, various processes 

are affected (e.g., gastrointestinal, splanchnic metabolism, etc.); therefore, it is hard to argue that the 

working system and the resting metabolism are completely isolated [4, 23]. Work and delta efficiency 

have similar flaws. With work efficiency, the negative component is often removed from calculations (by 

taking the absolute value) [27]. This approach suggests that negative work is always an energy loss and 

never converted to external work. Finally, an advantage of delta efficiency is that knowledge of the 

resting metabolic rate is not required and will be less affected by changes in the baseline energy cost 

caused by work rate. However, the issue is that it assumes the energy flow for the change in power 

production is independent of the energy flow for the first amount of power produced. In other words, 

when applying delta efficiency as a measure for muscular efficiency the assumption is made that 

efficiency is independent of work rate, and furthermore, not a true measure of efficiency [26].  

Therefore, it seems prudent to focus on gross efficiency as the primary outcome variable for efficiency 

for whole body exercise, particularly in cyclists.  

 Gross efficiency has been shown to be influenced by a number of factors including body mass  

[28], cycling position [29], pedaling technique [30], muscle fiber type [31], training status [32-34], and 

cadence [5, 35] and power output [13]. Furthermore, regardless of pedaling rate and other factors, 

multiple studies have demonstrated GE significantly improves with an increase in power output in both 

lower limb [4] and upper limb exercise [36].  

 Gross efficiency can also be influenced by cadence [5, 35]. Lucia et al., (2004) conducted a study 

that analyzed the effect of pedaling rates on gross efficiency and other physiological variables on elite 

and professional cyclists at high power outputs. Cadences of 60, 80, and 100 rpm were chosen for the 

study. Results showed that GE was highest (24.2 +/- 2.0%) at 100 rpm compared to 60 and 80 rpm. 
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Additionally, mean values of oxygen consumption (VO2), HR, rating of perceived exertion (RPE), lactate 

and EMG data all decreased at increasing cadences [13]. It was concluded that professional cyclists 

working at a high-power output are more efficient at higher cadences (100 rpm) compared to lower 

cadences (80 rpm). On the contrary, studies involving nonprofessional cyclists found that GE actually 

decreases at higher cadences [13].  

 There are many factors that may contribute to greater efficiency at higher cadences. One 

contribution to the greater efficiency of high pedaling rates in trained cyclists is that the working 

muscles are contracting closer to the speed of shortening that maximized their efficiency [37]. Heglund 

and Cavagna (1987) also demonstrated this concept in an in vitro study. They found the efficiency of 

contraction of mammalian and frog skeletal muscle increases with the speed of contraction until 

reaching a maximum, which corresponds to the optimal velocity of shortening [38]. 

Improving Gross Efficiency 

 Multiple studies have demonstrated the ability to improve efficiency during cycling through high 

intensity cycling intervals [33] and heavy strength training [39, 40]. However, improving efficiency might 

be dictated by muscle fiber composition as suggested by Hansen [41] who demonstrated that cyclists 

with a greater proportion of type I muscle fibers have greater potential to increase their efficiency.  

 Hopker et al. (2010) studied the effects of incorporating two high-intensity training sessions per 

week for 6 weeks in improving gross efficiency in cyclists. It was found that gross efficiency increased 

significantly between pre and post-high-intensity training in Group A (1.6 ± 1.4%; p < 0.05), while there 

was no evidence of change in GE in Group B (control group) (0.1 ± 0.7%; p > 0.05) [34]. A 1.6% increase 

in GE signified those cyclists in Group A increased their GE from an average of 19.9% to 21.5%. This 

indicates that the cyclists were able to work at the same power output at a lower oxygen cost after the 6 

weeks of specific training. Additional studies by Hopker et al., found that although high-intensity training 
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has been shown to improve gross efficiency, it did not lead to any changes in VO2 max [25, 32-34, 42, 

43].  

 Another way of improving gross efficiency in cycling is through heavy strength training. 

Ronnestad et al., (2011) demonstrated that heavy strength training can improve gross efficiency during 

the last hour of a 3-hour bout of submaximal cycling [39]. In addition to cyclists having improved 

efficiency, they also had lower blood lactate concentrations and reported lower RPE values at the same 

work rate. The improvements in gross efficiency could be from improvements in the cyclists’ maximal 

strength and force. Therefore, the peak force required per pedal stroke is now a lower percentage of 

maximal force. This improvement in strength could potentially lead to greater recruitment of more 

efficient and highly oxidative slow twitch muscle fibers.  

Economy and Cadence 

Economy is related to the oxygen consumption (VO2) required to maintain a certain power 

output, and it can be expressed by the equation, T = Pout/ VO2, where T is economy, VO2 is the oxygen 

consumption required, and Pout is the power output. Economy is an indicator the metabolic cost of a 

certain activity at a particular power output. The lower the VO2 value, the lower the metabolic or energy 

cost resulting in greater economy.  

Cadence has been shown to affect metabolic economy [1-4, 6].  Therefore, at a fixed power 

output, economy will either increase or decrease based on the pedaling rate of the cyclist. Minimizing 

oxygen consumption and conserving energy is particularly important for cycling races, triathlons, and 

training. The cadence at which oxygen consumption and metabolic cost is minimized is referred to as 

the energetically optimal cadence (EOC).  

Multiple studies have demonstrated that when cycling at a submaximal power output, lower 

oxygen cost is seen when pedaling at 50-70 rpm compared to higher cadences of 90 rpm or higher. [1, 
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35]. This indicates a lower metabolic cost and an improvement in economy at lower cadences [35, 44]. 

Specifically, a study by Bieuzen et al. found that the most energetically optimal cadence was 64.5 rpm, 

while a study from Buśko (2004) showed that oxygen cost was minimized at 60 rpm (see Figure 3) [15, 

45].  

Similar to the relationship between GE, power output, and cadence, multiple studies have 

demonstrated that the most energetically optimal cadence is increased as power output is increased in 

well-trained and professional cyclists [1, 2, 13, 46]. Coast and Welch (1985) found that when well-

trained cyclists maintained a power output of 100 watts, the most economical cadence was 50 rpm 

whereas when working at 300 watts, the most economical cadence increased to 80 rpm, see figure 4 

below [2]. Perhaps it is not surprising to see an increase in pedaling rate in accordance with work rate. 

Producing a power output at 300 watts while pedaling at 50 rpm will greatly increase the force required 

to turn the pedals compared to pedaling at 80 rpm. This suggests that limiting neuromuscular force and 

fatigue may play a large role in determining the optimal cadence rate.  

 

 

Figure 3. Adapted from Buśko 2004 Figure 4. Adapted from Coast and Welch 1985 
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Neuromuscular Effects of Cadence 

In the previous section, it was discussed that the metabolic economy at submaximal power 

outputs is optimized at cadences 50 and 70 rpm with the most metabolically economical cadence 

increasing with increasing power output. Therefore, while pedaling at low cadences elicits the lowest 

oxygen cost, greater muscles forces and torques are required per pedal stroke to maintain the desired 

power output [14, 47].  Lower cadences require greater muscle activation and recruitment. MacIntosh 

et al., (2000) determined there is a unique cadence to minimize muscle activation at a given power 

output, with the unique cadence increasing with increasing power output.  

Takaishi et al., studied neuromuscular recruitment and cadence extensively [10, 11, 14]. One 

technique employed was using integrated electromyography (iEMG) slope data, defined as the changes 

in iEMG as a function of time during exercise, as a technique to measure fatigue across different 

cadence rates. In their earlier studies, they were able to conclude that the cadence at which 

neuromuscular fatigue is minimized coincides with the cyclists’ preferred cadence, not the most 

economical cadence. Takaishi et al. reported that iEMG signals were minimized when well-trained 

cyclists pedaled at 80 and 90 rpm at a moderate intensity [14]. However, this was not true for untrained 

cyclists as the iEMG signals were minimized at 70 rpm, signifying the point of minimal neuromuscular 

fatigue [11, 14]. This would suggest that through the process of training, cyclists are able to shift the 

cadence that minimizes neuromuscular fatigue to a higher one. 

Furthermore, in a 1998 study, the research team again measured iEMG data on 3 leg muscles 

(biceps femoris (BF), vastus lateralis (VL), and vastus medialis (VM)) on cyclists and noncyclists that had 

similar aerobic capacities. All participants pedaled at 5 different cadences (45, 60, 75, 90, & 105 rpm) at 

150 and 200 watts. As shown in Figure 5 below, the iEMG data for VL and VM for noncyclists was 

minimized at 60 rpm and abruptly rose for all higher cadences whereas iEMG data for VL and VM for 
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cyclists stayed consistently low until the 105-rpm bout. The BF data for cyclists showed a dramatic 

increase after 60 rpm. In addition, all but one cyclist preferred to pedal at 90 rpm while over half of the 

untrained cyclists preferred pedaling at 60 rpm [10] This again demonstrates that trained cyclists are 

able to ward off neuromuscular fatigue at higher cadences compared to untrained or noncyclists, 

indicating a positive training adaptation.  

  

Neptune and Hull (1998) had similar results with well-trained cyclists. In their study, subjects pedaled at 

a submaximal work level (265 watts) at 3 different pedaling rates: 75, 90, and 105 rpm. EMG data was 

collected at fourteen different sites on the working muscles and summed together to get a total muscle 

activation for each of the three cadences. Results showed the total muscle activation and muscle force 

quantities were minimized at 90 rpm compared to 75 and 105 rpm respectively [48]. In addition, 

Bieuzen et al. concluded that the neuromuscular optimal cadence was 93.5 in well-trained cyclists [15].  

 These results align with the idea that if muscle fibers are recruited in cycling based on force 

requirements (rather than speed of pedaling), the lower force requirement of 90 rpm would indicate a 

Figure 5. Adapted from Takaishi et al. 1998 
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lower proportion of fast twitch muscle fibers recruited and a larger proportion of slow fast twitch 

muscle fiber recruitment [12]. Slow twitch muscle fibers are known for their low recruitment threshold 

[49], higher oxidative capacity and greater efficiency [31, 50-52].  

Given that most well-trained and elite cyclists tend to pedal at cadences of 90 rpm or higher, 

perhaps minimizing neuromuscular fatigue, and not oxygen consumption, might be an important 

deciding factor for choosing the optimal cadence rate.  

Freely Chosen Cadence  

 A cyclist’s preferred pedaling rate can be referred to as their freely chosen cadence (FCC). FCC 

varies between professional/elite cyclists and recreational and untrained cyclists. A study by Marsh et al. 

found rating of perceived exertion (RPE) values could be a critical component in cadence selection [53]. 

Multiple studies have concluded that professional/elite cyclists tend to naturally select pedaling rates 

between 85 and 95 rpm or higher [46, 54] compared to recreational and untrained cyclists that seem to 

prefer pedaling rates as low as 60 rpm [3, 55]. Terrain and other environmental conditions can greatly 

impact cadence selection; therefore, depending on the terrain (flat, mountain or descent) most 

professional cyclists will choose a cadence between 80 and 126 rpm. From this, it is clear that there 

exists a large discrepancy between the most economical cadence and one’s freely chosen cadence. In 

addition, Takaishi et al. demonstrated that the torque required to maintain the same power output will 

decrease going from a lower cadence to a higher cadence [14]. This suggests that cyclists prefer a 

pedaling rate that decreases neuromuscular fatigue, but it may not be minimized at their FCC. 

Therefore, it stands to reason that minimizing metabolic cost and oxygen consumption may not be the 

main or only driving force of FCC, and other factors such as minimizing neuromuscular fatigue likely play 

an important role.   

Benefits of having a high FCC 
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Despite the increased oxygen consumption for a given power output (due to increase in internal 

work for repetitive limb movements) [1, 3, 4], pedaling at a higher rate may confer multiple advantages. 

For instance, higher pedaling rates elicit less force per pedal revolution and shorten muscle fiber 

contraction time, contracting with a greater velocity. Shortening of muscle fiber contraction time has 

been shown to encourage blood flow to the muscle. Gotshall et al., (1996) demonstrated that higher 

pedaling cadences enhanced cardiac output in excess of the increased oxygen consumption which 

potentially leads to a more effective skeletal muscle pump allowing for greater muscle blood flow and 

venous return [56]. In addition, high cadences could have positive metabolic and substrate usage 

consequences, as they are associated with a minimization of type II muscle fiber recruitment, which 

would be expected to result in less lactate accumulation (metabolic acidosis) [57] and potentially a more 

optimal substrate utilization by sparing glycogen. It has been shown that the respiratory exchange ratio 

(RER) for 90 rpm is significantly lower than for 60 rpm [58]. This again suggests a greater reliance on 

slow twitch muscle fibers, which are highly oxidative and more efficient, at higher pedaling rates [56, 

58].  

High cadences reduce neuromuscular fatigue, promote better blood flow through the working 

muscles and potentially have better substrate usage outcomes as shown by RER. Therefore, high 

cadences can prove to be advantageous despite the reduced economy.  

Too high of a cadence? Implications for going above and beyond high cadence 

 It has been speculated that there is an upper limit to having a high cadence [59]. One of the 

main factors that influences the upper limit is referred to as negative muscle work. Negative muscle 

work occurs when the cadence rate is exceptionally high. The starting point varies per individual but 

starts to occur around 105+ rpm. At these exceptionally high pedaling rates, it becomes more difficult to 

have effective muscle coordination because of activation dynamics and the increased need for 
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movement control and stabilization, such as to prevent knee hyperextension. The result is co-

contraction. Co-contraction occurs when both the agonist (e.g. quadriceps) and antagonist (e.g. 

hamstrings) muscles are producing force at the same time, akin to Lombard’s Paradox [60]. Co-

contraction causes negative muscle work as extra oxygen is being utilized by the working muscles 

without any extra work being produced. Although negative muscle work occurs at lower cadences, such 

as 90 and 100 rpm, it is typically overcome and becomes negligent with additional positive work by the 

opposite muscle group to maintain the power output. However, when agonist and antagonist muscles 

are producing force at the same time, negative muscle work cannot be overcome [59].  

 Neptune and Herzog conducted a study analyzing cadence and crank torque to measure the 

amount of negative work being performed at each cadence. Five different cadence rates were tested 

(60, 75, 90, 105, 120 rpm). They found that there was no negative muscular crank torque generated at 

60 rpm and negligible amounts produced at 75 and 90 rpm. Negative work significantly increased at 105 

and 120 rpm. They determined that the critical pedaling rate, the highest pedaling rate before negative 

muscle work increases substantially, was 90 rpm. Furthermore, they concluded that the critical pedaling 

rate was highly correlated to the cyclists’ preferred pedaling rate [59].   

Cadence and Cycling Performance 

 As previously described in this review, well-trained and professional cyclists tend to pedal at 

higher cadences compared to novice and amateur cyclists. This section aims at discussing cadence rates 

of professional cyclists and potential reasons why well-trained and professional cyclists tend to pedal at 

higher rates compared to amateur cyclists.  

 Adopting a higher cadence rate was first brought into professional cycling by 5-time Tour de 

France (TDF) winner Miguel Indurain (1991-1995). Higher cadences in the professional cycling scene 
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were made popular by 7-time TDF winner1, Lance Armstrong (1999-2005). In the tour, Armstrong often 

maintained a cadence of 90+ rpm regardless of whether he was on a climb or riding on flat road. During 

the 2001 edition of the TDF, Armstrong ascended the famous Alpe d’ Huez averaging 100 rpm and an 

estimated power output of 450 watts [13].  

 Lucia et al., (2001) compiled data from the three grand tours in men’s professional cycling: Giro 

d’Italia, Tour de France, and Vuelta a Espana. On mountain stages, the average cadence and speed of 

the riders were lower as riders ascended climbs averaging 7.2% while averaging 70 rpm but ranging 

from 60 – 80 rpm [20]. While ascending, riders will switch between a seated and a standing position on 

the bike. Although standing on the bike is a less economical position, cyclists are able to push more 

force through the pedals as the cyclists’ entire body weight is being used to produce power. In addition, 

standing could potentially increase blood flow through iliac artery which is partly occluded over the 

psoas muscle during a seated position [61]. On long, flat stages, cadence was much higher with an 

average 90 rpm with some riders averaging 126 rpm during sprints. Cadences during the individual time 

trials (ITT) can be much higher, with the best time trialists averaging 96 rpm during their effort [20]. 

 The cadence that leads to the best performances on the track seem to be even higher than 

pedaling cadences on the road. The 1-hour record on the velodrome has been routinely set with the 

cyclists maintaining a high cadence of over 100 rpm [62, 63]. The current 1-hour record holder, Victor 

Campenaerts set the record (in 2019) covering 55.089 kilometers (34.23 miles). He aimed for an average 

of 105 rpm for the effort [64]. 

 In regard to time trials (TT) performed in a laboratory setting, Foss and Hallen conducted a 

cadence and performance study on fourteen elite male cyclists. Cyclists completed 30-minute time trials 

at different cadences (60, 80, 100, 120, FCC) while having the ability to adjust the workload throughout 

 
1 Titles were stripped in 2012 due to doping violations. 
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the effort. Compared to 80 rpm, finishing times at 60, 100, and 120 rpm were 3.5, 1.7 and 10.2% slower 

(P<0.05)[65]. Finishing time at FCC (mean rpm of 90) was undifferentiated from 80 and 100 rpm. The 

maximal energy turnover rate was 1.7% higher at 100 rpm compared to 80 rpm. The authors concluded 

that pedaling at more efficient cadences or a cyclist’s FCC can lead to better performances of this 

length[65], although it is unclear whether longer TT performances, such as a 40k TT, would lead to the 

same conclusions.  

 Coyle et al., found certain physiological and biomechanical attributes that professional cyclists 

possess that could make them exceptionally efficient and primed for adopting high cadence rates [50]. 

Coyle et al., (1991) categorized a group of cyclists as either “elite-national” or “good-state” cyclists. 

During a 1-hour effort, elite-national cyclists were able to generate 11% more power and were able to 

work at a higher percentage of their VO2 max compared to the good-state cyclists, 90 +/- 1% versus 86 

+/- 2% respectively. They found that the elite-national cyclists were able to generate higher peak 

torques and push power through the downstroke phase earlier compared to the good-state cyclists. 

They concluded that it was the higher percentage of type I muscle fibers and possessing a 23% greater 

muscle capillary density found in the elite cyclists that may contribute to the greater capabilities for 

performance [50]. Furthermore, another study by Rodriquez et al. (2002) concluded that professional 

cyclists have a higher percentage of type I muscle fibers (64%), mitochondrial volume (4.3%) and 

capillary density [66]. Therefore, it seems through years of endurance training, professional cyclists are 

able to optimize their muscle fiber type and composition to be able to perform well riding at cadences of 

90 rpm or above.  

Substrate Utilization and Cadence 

 Many factors can contribute to how the body utilizes carbohydrates and fats for energy. Factors 

such as age, sex, training status, and diet can change the ratios of substrate utilization both at rest and 
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while exercising [67]. At rest skeletal muscle accounts for approximately 20% of the body’s total energy 

requirements [68], and about 80% of the muscles’ energy while at rest is derived from fat [69]. 

 The human body has a much greater capacity to store and reserve fats for energy compared to 

glycogen. The largest energy reserve in the body is composed of endogenous triacylglycerols and is 60 

times greater than the amount of energy stored as glycogen. As glycogen depletion is an important 

component to fatigue in prolonged exercise [70], different strategies of glycogen sparing can be crucial 

to improving endurance performance. A study by Coyle et al., (1986) found that when given a 

carbohydrate solution, participants were able to exercise at 71% of their VO2 max for an additional hour 

compared to the placebo (3.02 ± 0.19 h) vs. (4.02 ± 0.33 h)[71]. Given that the rate of glucose oxidation 

did not drop and there was very little reliance on muscle glycogen in the final hour with the 

carbohydrate solution trial, the participants were able to oxidize carbohydrates at a high rate from other 

sources than muscle glycogen and allowing them to perform longer [71]. 

The intensity of exercise can change the proportions of carbohydrate and fat is used for energy. 

Romijn et al., (1993) determined that fat is the predominant source of fuel for the muscles during 

prolonged low and moderate-intensity exercise (up to about 65% of VO2 max). A study from that group 

analyzed substrate oxidation rates at three different intensities: 25%, 65%, and 85% of VO2 max. 

Respiratory exchange ratios (RER) were significantly different and increased with each intensity (0.73 ± 

0.01, 0.83 ± 0.02, and 0.91 ± 0.01 respectively). Fat oxidation rates were significantly higher at 65% VO2 

max compared to 25 and 85% VO2 max. In addition, whole body fat oxidation was significantly higher 

than free fatty acid (FFA) uptake by the muscle at 65 and 85% VO2 max [72]. Carbohydrate oxidation did 

significantly increase with each exercise intensity. This manifests that energy derived from carbohydrate 

oxidation eventually becomes the main fueling source as intensity and energy expenditure increase.  
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Saltin and Karlsson (1971) conducted a study looking specifically at glycogen depletion rates at 

various percentages of VO2 max [73]. Figure 6 shows the mean glycogen depletion rates on workloads 

from 30% to 120% of VO2 max. The steepness of the curves is related to the relative workloads. They 

found that at lower intensities (30% and 60% of VO2 max), participants were able to exercise for the 

entire 120 minutes without much glycogen depletion. At intensities of 70-80% VO2 max, it was found 

that exhaustion coincided with muscle glycogen stores approaching zero (0). They concluded that 

workloads above 50% VO2 max, carbohydrates are the dominant fuel source, but a reduced absolute 

amount of fat oxidation is not found until workloads of 70-80% VO2 max. Therefore, it could be 

concluded that at intensities between 65 and 75% of VO2 max, glycogen depletion is the limiting factor 

to performance as the point of exhaustion coincided with very low muscle glycogen values.  

Despite the fact that skeletal muscle is heavily reliant on carbohydrate oxidation for fuel, there 

is evidence that endurance training increases muscle oxidative capacity and fat oxidation in submaximal 

exercise without an increase in the rate of lipolysis of adipose tissue triacylglycerols [74]. Instead, other 

factors such as increased mitochondrial density [75] and a proliferation of capillaries within the skeletal 

muscle [76] contribute to the greater capacity for fat oxidation. This could lead to sparing of glycogen 

Figure 6. Adapted from Saltin & Karlsson 1971 
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and improved performance. Furthermore, predominance of muscle fiber type might also be an 

important determinant of substrate metabolism during exercise as mitochondrial density is greater in 

slow-twitch fibers compared to fast-twitch fibers [77]. Given that higher cadences have been shown to 

utilize a greater proportion of slow-twitch muscle fibers, pedaling at higher cadences during submaximal 

cycling could lead to greater fat oxidation usage for energy.  

 As described elsewhere in this review, higher pedaling rates utilize a greater proportion of slow-

twitch muscle fibers compared to lower cadences. Since slow-twitch muscle fibers often rely on fat 

oxidation, substrate utilization may be optimized at higher cadences while cycling. Ahlquist et al., found 

that prolonged cycling at 85% VO2 max at 50 rpm resulted in greater fast-twitch muscle fiber glycogen 

depletion compared to pedaling at 100 rpm. This result indicates that more fast twitch muscle fibers are 

recruited at lower cadences. The required force and torque output derived from changing the pedaling 

rate might change the recruitment of muscle fibers; therefore, leading to influence substrate 

metabolism. Preferential use of fat as a fuel substrate at higher pedaling cadences has been reaffirmed 

by research demonstrating RER to be lower when pedaling at 90 rpm compared to 60 rpm [58]. Thus, if 

higher pedaling cadences utilize more fat, they might be expected to improve cycling performance 

through glycogen sparing [50, 78].  

Summary  

Despite many technological advancements in cycling, the optimal cadence at which a rider 

should pedal at for the best road endurance performance has not been determined. Furthermore, the 

relationship between cadence and potential differences in substrate utilization is not well understood. 

However, it has been confirmed by research that there are different muscle fiber recruiting patterns 

between low and high cadence rates. Since research suggests that higher cadence rates recruit more 

slow twitch muscle fibers, it is likely that high pedaling rates preferentially utilize fat as an energy 
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source. This would be expected to be advantageous for cycling performance through glycogen sparing or 

at the very least, allowing the optimization of other factors such as decreasing neuromuscular fatigue 

without a large metabolic penalty. The potential negative consequence that high cadence rates have a 

higher metabolic cost may be outweighed by the excess energy requirement being met by fat oxidation, 

of which everyone has an endless supply. 
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CHAPTER 2 – INTRODUCTION 
 
 
 

Cycling is a popular sport and activity not only in the United States but worldwide as well. For 

some, riding a bike is a form of transportation or a leisure activity. However, for others cycling is a 

competitive sport, requiring hours of training for athletes to be able to perform at their best in the 

world most prestigious races, such as the Tour de France. With the introduction of disc brakes, 

electronic and wireless shifting, and ultra-light carbon frames, professional cyclists are able to go faster 

than ever. In addition, advanced research in training methods, sports performance, and nutrition has 

allowed athletes to train and recover more effectively. Yet, despite all these advancements, there is 

little consensus as to what the optimal pedaling cadence is to maximize endurance performance on the 

road.  Well-trained and professional cyclists tend to pedal at a rate of 90 rpm or higher. This seems 

counterintuitive as cadence rates of 50 to 60 rpm tend to elicit the lowest metabolic and oxygen cost. 

However, higher cadences result in recruitment of a higher proportion of slow twitch muscle fibers and 

less neuromuscular fatigue.  It is known that muscle fiber recruitment and potentially substrate 

utilization is different between low and high cadences. Very little research has been conducted on the 

effects of cadence and substrate utilization. Therefore, if a higher metabolic cost is related to higher 

cadences, it would be inconsequential if it came from fat oxidation. If this were true, cyclists would have 

the benefits of higher cadences with little negative effect on the metabolic cost of cycling. The present 

study aims to characterize the effects of cycling cadence on substrate utilization in trained competitive 

cyclists in order to maximize endurance performance.  

Statement of the Problem 

It is presently unclear whether pedaling at a high cadence rate while cycling elicits a greater fat 

oxidation rate compared to pedaling at a lower cadence. 
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Aims and Hypotheses 

The first aim of this study is 1. to characterize the effect of pedaling cadence on fat oxidation in trained 

cyclists at a submaximal workload, and 2. to determine the cycling cadence that maximizes fat oxidation 

in trained cyclists at a submaximal workload. Hypothesis: Pedaling at a moderate cadence (80-100 rpm) 

will result in a higher proportion of energy coming from fat oxidation compared to pedaling at a low 

cadence (60-70 rpm). The second aim is to characterize the effect of pedaling cadence on carbohydrate 

oxidation in trained cyclists at a submaximal workload. Hypothesis: Pedaling at a moderate cadence will 

not differ in carbohydrate utilization compared to pedaling at a low cadence. Finally, the third aim is to 

characterize the relationship between self-selected cadence and fat oxidation, carbohydrate oxidation, 

and metabolic efficiency in trained cyclists at submaximal workload. Hypothesis: Self-selected cadence 

will occur at a pedaling rate that generates maximal fat oxidation and elicit a higher metabolic cost than 

the most efficient cadence.   
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CHAPTER 3 – METHODS 

 
 
 

Research environment 

 Prior to recruitment of subjects, the research team obtained approval to conduct the study by 

the Institutional Review Board (IRB) at Colorado State University in Fort Collins, Colorado. Once selected, 

subjects provided informed consent to all protocol methods and procedures as explained by a research 

team member at the Human Performance Clinical Research Laboratory (HPCRL) at Colorado State 

University. All study visits were performed in the Human Performance Clinical Research Laboratory at 

Colorado State University under the supervision of Dr. Fahrner with IRB approval for Kuali protocol 

#1765.  

Subject Selection 

 Young, healthy, competitive cyclists and/or triathletes aged 18 and over of both genders and all 

races and ethnic backgrounds were recruited from Fort Collins and the surrounding communities. 

Exclusion criteria included less than 18 years old, presence of cardiovascular, renal, pulmonary, or 

metabolic condition, use of a medication that alters normal heart rate responses, and pregnancy or 

trying to become pregnant. Trained cyclists and triathletes were chosen to be subjects for this study as 

cyclists would provide the most relevancy to the data and results. Additionally, a trained cyclist would be 

expected to be able to complete the testing protocol in its entirety, whereas a healthy, fit person (but 

someone who does not regularly cycle) might struggle to complete the cadence protocol due to the 

unfamiliarity of riding a bike on a trainer and the length of the cadence protocol. Trained cyclists were 

defined as an individual who trains for at least eight (8) hours per week or rides 200 miles or more per 

week. In addition, all participants were required to have competed in cycling and/or triathlon 

competitions during the past 2 years. Twelve cyclists/triathletes were recruited for the study with one 
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cyclist dropping out due to injury. Eleven cyclists/triathletes (VO2 max 60.4 ± 7.1 ml/kg/min; Range 50.5-

73.2 ml/kg/min) completed the study. Subjects consisted of six males and five females (aged 24 ± 3 

years; Range 22-31 years) all residing in Fort Collins, CO.  

Pre-visit Assessments 

 Subjects completed a general health history questionnaire on the REDCap data collecting 

software. Information gathered from this questionnaire included any current health conditions, injuries, 

medications and supplements, and the details of the bike (brake type, cassette, crank arm length, etc.) 

that they would be bringing for both study visits.  

Visit 1 – VO2 Max Test 

Participants arrived at the lab with having eaten their last large meal at least 2 hours 

beforehand. Participants could eat a small meal/snack that was relatively low in protein, fat, and fiber 

within that time window if desired. Participants abstained from caffeine and strenuous exercise for the 

previous 24-hours. Following the consenting process, participants underwent various anthropometric 

assessments upon arrival to their first visit. Height and weight measurements were recorded. In 

addition, participants’ body composition was measured by using a dual X-ray absorptiometry (DEXA). 

Finally, resting heart rate and blood pressure were obtained. 

Participants performed a VO2 max test that measured their maximal oxygen uptake. VO2 max 

assessments were administered using each participant’s road bike, a Wahoo Kickr Direct Drive Smart 

Trainer© in Erg mode, and a Parvo Medics TrueOne 2400 Metabolic Measuring System (Sandy, Utah). 

The VO2 max test involved 3-minute stages on the bike starting at 50, 75 or 100 watts (depending on 

level of talent of each cyclist) and increased by 25 watts every stage. All participants progressed through 

the stages until exhaustion with the duration ranging from 25-39 minutes. Blood pressure was taken 

during the last minute of each stage. Heart rate, ventilation, and gas exchange were also measured.  
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 Following a 10-minute rest and recovery period, participants performed a VO2 verification bout. 

Given the relatively long duration of the first VO2 max test protocol, this second bout was performed to 

confirm the maximal rate of oxygen consumption. During this verification bout, participants pedaled at 

the power output equal to either the power output of the final interval of the VO2 max test, or 25 watts 

higher if the subject was over halfway through the stage when test was ceased. Participants pedaled at 

this power output until exhaustion, and the duration ranged from 1 to 8 minutes. The same variables 

listed above were recorded every minute during the verification bout. The criteria used to determine 

that VO2 max was achieved are listed below. Two out of three criteria had to be met to consider it a 

successful test. 

VO2 max test criteria: 

• Heart rate (HR) within 10 beats of participants’ HR max. If participants did not know their 

maximal HR, it was calculated using age-predicted max HR (APMHR = 220 – age).  

• Plateau in VO2 despite increasing workload.  

• RER > 1.05 

The first ventilatory threshold was determined by the following: 

• VT1 = first increase in VE/VO2 with a concomitant increase in PETO2, while no increase in VE/VCO2 

 

Visit 2 – Cadence Protocol  

 Participants arrived at the lab following a 12-hour abstention from alcohol and food, a 24-hour 

abstention from caffeine, and an 18-hour abstention from exercise. A fast was chosen for this protocol 

as it has been shown that food consumed within 4 hours of exercise can affect substrate utilization. 

Resting heart rate was recorded for all participants. 

 Following a brief warm-up, participants completed seven (7) different stages that were six (6) 

minutes in length. Six-minute stages were chosen to ensure participants reached a steady state, and 
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data were collected during the last two minutes of each stage. Participants pedaled at pre-determined 

cadence for each stage selected in a randomized order (60, 70, 80, 90 ,100, 110, and self-selected 

cadence). The power output (watts) remained consistent throughout all stages. The power output 

corresponded to the power output that each participant was working at when ventilatory threshold one 

(VT1) was achieved during the VO2 max test and ranged from 100 to 250 watts. This power output was 

chosen as it allowed participants to reach a steady state without the accumulation of excess lactate or 

excessive muscular fatigue compounding from subsequent stages. Power output remained constant 

between all cadences due to the ERG mode available on the Wahoo Kickr.  

 Each stage was followed by a 4-minute active recovery/ washout period where participants 

pedaled at a very easy work rate (50 or 75 watts) with no set cadence. Cyclists whose VT1 occurred at 

less than 150 watts recovered at 50 watts, while cyclists whose VT1 was 150 watts or greater recovered 

at 75 watts. 

Equipment 

 Cadence protocols were administered using each participants’ road bike, a Wahoo Kickr Direct 

Drive Smart Trainer©, and a Parvo Medics TrueOne 2400 Metabolic Measuring System (Sandy, Utah).  

Measurements 

Heart rate and gas exchange measurements were recorded and averaged during the last 2 minutes 

of each stage. The rate of fat and carbohydrate (CHO) oxidation was determined from the respiratory 

exchange ratio (RER) and is automatically generated by the Parvo using the non-protein respiratory 

quotient [79]. The equations are:  

• CHO oxidation rate = 4.585 VCO2 – 3.226 VO2 

• Fat oxidation rate = 1.695 VO2 – 1.701 VCO2 
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o VO2 and VCO2 expressed in L/min 

o Oxidation rates expressed in g/min 

Data Analysis and Statistics 

 Three different statistical models were used to appropriately analyze the data. First, a mixed 

model with cadence (rpm) as a numeric, continuous variable was fit as a covariate for each response 

variable separately (ex: RER, %CHO, etc.). Cadence (rpm) was included as a fixed effect. Subject was 

included as a random effect to account for repeated measures on subjects. To account for potential 

differences in sex, a separate analysis was run in which cadence (rpm), sex (M, F) and cadence*sex 

interaction were included as fixed effects. Subject was included as random effect to account for 

repeated measures on subjects. This model allows the effect of cadence to vary by sex. In other words, 

this allows different slope estimates for each sex. However, we did not find evidence of sex or 

sex*cadence interaction for any response variables. Finally, to compare response variables on FCC 

against all other cadence stages, a mixed model with cadence (rpm) treated as a categorical variable was 

performed. Cadence as a categorical variable allows mean comparison. CadenceCAT (rpm) was a fixed 

effect and subject as a random effect. Pairwise comparisons comparing mean differences of FCC against 

all other cadences were run using Bonferroni as post hoc analysis. All data analyses were run on SPSS 

version 27. Statistical significance was established at p < 0.05 for all analyses.  
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CHAPTER 4 – RESULTS 

 

Subject Characteristics  

 Table 1 depicts subject characteristics. The average VO2 max was 60.4 ± 7.1 ml/kg/min; Range 

50.5-73.2 ml/kg/min, indicating sample of very highly trained cyclists/triathletes.  

Table 1: Subject Characteristics 

Subject Sex Age (years) Height (cm) Weight (kg) VO2 Max (ml/kg/min)  

1 F 24 173.0 63.0 60.6 
2 M 22 179.8 68.7 73.2 

3 M 24 176.5 80.9 65.0 

4 F 24 175.9 66.7 50.5 

5 F 25 155.7 48.0 52.7 

7 M 31 185.4 76.1 66.3 

8 M 23 170.0 66.3 65.9 

9 F 26 165.1 54.9 54.9 

10 F 23 173.0 67.0 52.1 

11 M 25 170.2 64.6 62.0 

12 M 22 185.0 87.9 60.7 

 
 

Freely Chosen Cadence (FCC) and Work Rate for all Stages 

 Table 2 represents the FCC for each subject as well as the work rate, determined from their VT1, 

at which they pedaled at for all seven stages of the cadence protocol. One of the seven stages of the 

cadence protocol had no set cadence for the subjects to maintain. Instead, the cadence number was 

hidden from view, and subjects pedaled at their freely chosen cadence (FCC). The average FCC was 89.8 

± 5.0 rpm, ranging from 84 to 100 rpm.  

From the model treating cadence as categorical (7 levels), pairwise comparisons with all other 

cadence stages against FCC showed evidence of statistically significant differences in heart rate (bpm), 

oxygen cost (VO2), and carbohydrate utilization (g/min). Average heart rate and substrate utilization 

data for each cadence can be found in Table 3 and in Table 4 for specific sex differences.  
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Table 2: Work rate and FCC 

Table 3. Cardiometabolic Responses 

Table 4. Sex Differences in Cardiometabolic Responses 
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Heart Rate (bpm) and VO2 (ml/kg/min)  

 Figure 7 represents the average heart rate for each cadence. The average heart rate across all 

cadences was 142 ± 13 bpm. There was evidence of a positive association between cadence and heart 

rate (estimated slope = 0.2634, SE = 0.032, p < 0.001). For every 10 rpm increase in cadence, heart rate 

can be expected to increase by an average of 2.6 ± 0.32 bpm. Regarding oxygen cost, the average VO2 

was 39.36 ± 6.44 ml/kg/min. Figure 8 represents the average VO2 for each cadence. There was evidence 

of a positive association between cadence and VO2 (estimated slope = 0.098, SE = 0.012, p < 0.001). For 

every 10 rpm increase in cadence above 70 rpm, VO2 can be expected to increase an average of 0.99 ± 

0.12 ml/kg/min. This equated to subjects working on average at 65 ± 7% of their VO2 max. The average 

intensity for each cadence is show in Figure 9. 

 From the model treating cadence as categorical (7 levels), pairwise comparisons showed 

evidence that heart rate was significantly lower at 70 rpm (MD = -5.618, SE = 1.584, p = 0.005) and 

significantly higher at 100 and 110 rpm compared to FCC (MD = 5.527 and 10.600, SE = 1.584, p = 0.005 

and 0.001 respectively). In addition, pairwise comparisons showed that oxygen cost (VO2) was 

Figure 7. Average heart rate (bpm) for each cadence (rpm) stage. 
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significantly lower at 70 rpm (MD = -1.662, SE = 0.536, p = 0.018) and significantly higher at 100 and 110 

rpm compared to FCC (MD = 1.753 and 4.319, SE = 0.536, p = 0.011 and 0.001 respectively).  

 

   

Figure 9. Work rate as a percentage of VO2 max for each cadence (rpm) stage.  

Figure 8. Average VO2 (ml/kg/min) and Cadence  



32 

Substrate Utilization Data  

 The respiratory exchange ratio (RER) was measured across all cadence stages and is represented 

in Figure 10. The average RER was 0.86 ± 0.04. Analyses showed a positive association between cadence 

and RER (estimated slope = 0.0007, SE = 0.0001, p < 0.001). Therefore, for every 10 rpm increase in 

cadence, RER can be expected to increase by an average of 0.007 ± 0.001. Furthermore, the average RER 

for females was slightly higher compared to males (0.87 ± 0.03 vs. 0.85 ± 0.04).  

 

Figure 11 represents the rate of carbohydrates (g/min) utilized while Figure 12 shows the 

relative contribution (as a percentage) that carbohydrate utilization provides for total substrate 

utilization across all cadences. The average absolute rate of carbohydrates (g/min) utilized was 1.65 ± 

0.52 g/min across all subjects. From the model treating cadence as numeric (rpm), there was evidence 

of a positive association between cadence and absolute carbohydrate utilization (g/min) (estimated 

slope = 0.012, SE = 0.001, p < 0.001) and relative carbohydrate utilization (estimated slope = 0.270, SE = 

0.053, p < 0.001). For every 10 rpm increase in cadence, absolute carbohydrate utilization can be 

Figure 10. Average Respiratory Exchange Ratio (RER) for each cadence (rpm) 
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expected to increase an average of 0.12 ± 0.01 grams per minute, while the relative percentage of 

carbohydrate utilization can be expected to increase by 2.7%. 

 From the model treating cadence as categorical (7 levels), pairwise comparisons of all cadence 

stages versus FCC showed that carbohydrate utilization was significantly higher at 110 rpm compared to 

FCC (MD = 0.497, SE = 0.098, p = 0.001).  

Figure 11. Carbohydrate utilization (g/min) for each cadence (rpm) stage.  

Figure 12. Average carbohydrate utilization as a percentage for each 

cadence (rpm) stage.  
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The absolute ate of fat (g/min) utilized for each cadence is depicted in Figure 13. The relative 

contribution (as a percentage) that fat utilization provides for total substrate utilization across all 

cadences is represented in Figure 14. The average rate of fat utilized was 0.64 ± 0.27 g/min across all 

subjects. From the model treating cadence as numeric (rpm), there was no evidence of an association 

between cadence and fat utilization, (estimated slope = -0.002, SE = 0.0009, p = 0.06). However, there 

Figure 13. Average fat utilization (g/min) for each cadence (rpm) stage.  

Figure 14. Average fat utilization as a percentage for each cadence (rpm) stage. 
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was a negative association between the relative rate of fat utilization and cadence, (estimated slope = -

0.228, SE = 0.053, p < 0.001). For every 10 rpm increase in cadence, the relative percentage of fat 

utilization can be expected to decrease by 2.3%.  

Figure 15 represents the number of calories expended from carbohydrates versus fat across all 

the cadences. From the model treating cadence as numeric (rpm), there was evidence of a positive 

association between cadence and calories expended from carbohydrates (estimated slope = 0.049, SE = 

0.007, p < 0.001). Furthermore, there was no evidence of an association between cadence and calories 

expended from fat (estimated slope = -0.015, SE = 0.008, p = 0.06). For every 10 rpm increase in cadence 

the average calories per minute of carbohydrate expended can be expected to increase by 0.49 ± 0.07 

kcals/min, while the average calories per minute fat can be expected to decrease by 0.15 ± 0.08 

kcals/min.  

 

 
 
 

Figure 15. Average calorie expenditure as a function of carbohydrate versus fat 

utilization.  
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CHAPTER 5 – DISCUSSION 
 
 
 

Introduction 

 The present study tested the hypothesis that substrate utilization is optimized towards a greater 

reliance on fat oxidation at higher cadences while pedaling at a fixed submaximal work rate. In addition, 

this study also sought to determine if highly trained cyclists inherently select a cadence that is more 

metabolically costly, but one in which the additional energy requirements are provided predominantly 

by fat oxidation and therefore would allow the cyclist to take advantage of the benefits of pedaling 

faster (e.g., decreased muscular fatigue) while minimizing the effect of a metabolic penalty. The primary 

findings of the study demonstrate a greater reliance on carbohydrate oxidation as pedaling rate is 

increased. In addition, HR, oxygen consumption and minute ventilation were minimized at 70 rpm.  

VO2, VE, HR and Cadence  

 It was hypothesized that oxygen consumption (VO2), ventilation (VE), and heart rate (HR) would 

be minimized at low cadences, indicating optimal metabolic economy at low cadences. Results for 

oxygen VO2, VE, and HR demonstrated the same patterns across cadences as they all increased with an 

increase in pedaling rate from 70-110 rpm at a submaximal work level. Furthermore, oxygen 

consumption VO2, VE, and HR were all lower at 70 rpm compared to 60 rpm (37.23 ± 6.30 vs. 38.39 ± 

5.87 ml/kg/min), (64.10 ± 16.45 vs. 65.84 ± 16.55 L/min), (135 ± 10 vs. 139 ± 13 bpm). These findings 

were similar to previous studies that demonstrated pedaling at a higher cadence will elicit a higher 

oxygen cost than lower or moderate cadence rates [1-6]. The current study, along with previous studies, 

has also shown that oxygen cost, HR and VE are all minimized between 50 and 70 rpm with slight 

variations depending on the power output and that pedaling rates greater than this becomes 

progressively more costly. Buśko showed that oxygen cost was minimized at 60 rpm while Bieuzen 
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found it was 64.5 rpm [15, 45] . Slight differences between the most metabolically efficient cadence 

might exist due to subjects’ familiarity with pedaling at low cadences, differences in intensity, and power 

output. 

Substrate Utilization and Cadence 

 Substrate utilization was one of the main outcome variables in this study to be able to 

characterize its relationship to pedaling rate at a submaximal work level. It was hypothesized that 

pedaling at moderate cadences (80-100 rpm) would result in a higher proportion of energy originating 

from fat oxidation compared to pedaling at low (60-70 rpm) or high cadences (> 100 rpm) based on 

previous research that demonstrated glycogen depletion was greater at lower cadences [12], and the 

fact that a greater proportion of efficient, oxidative slow-twitch muscle fibers are recruited at higher 

cadences. However, results demonstrated that the relative proportion of energy originating from fat 

oxidation decreases as cadence rate increases. This was shown through both RER and individual 

substrate utilizations (g/min).   

RER is an indicator of substrate utilization with a value of 0.70 representing a predominance of 

fat combustion as an energy source, 1.00 representing carbohydrates as the sole fuel source, and values 

in-between representing a mixture of fuel sources. It was found that RER increased with a subsequent 

increase in pedaling rate. Additionally, both relative (%fat) values of fat oxidation significantly decreased 

as pedaling rate increased. Therefore, from this study, it can be concluded that fat oxidation is 

maximized at lower cadences. These findings are contrary to the findings of Hagan who demonstrated 

RER was lower at 90 rpm compared to 60 rpm. In Hagan’s study, however, subjects were pedaling at 

much lower workloads (127 and 166 watts) compared to subjects in the present study [58]. These low 

workloads could have accounted for the differences in RER data compared to the present study. For 

instance, at lower workloads, RER values can be expected to be lower in general. Whereas, in the 
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present study, the subjects pedaled at a power output equivalent to their first ventilatory threshold VT1. 

This equated to subjects working at an average of 60% of VO2 max. The workload at VT1, and not an 

exact percentage of VO2 max, was used in an effort to select an intensity that could more closely 

represent an average power output used in a prolonged (several hour) cycling race. Choosing a lower 

work rate, therefore, might have led to different substrate utilization patterns, such as a greater reliance 

on fat oxidation, but would not have been realistic compared to the work rate required during a long 

elite-level cycling race. Furthermore, using the power output at each cyclist’s VT1 represented a specific 

physiologic point rather than an arbitrary percentage of VO2 max which may actually represent different 

relative intensities for each cyclist. 

A second hypothesis was that carbohydrate utilization would remain the same for low and 

moderate cadences but would increase at higher cadences. Results demonstrated that both relative and 

absolute carbohydrate oxidation increased with an increase in pedaling rate from low to moderate to 

high cadences. Although glycogen depletion was not measured in this study, this would contradict 

Ahlquist’s study in which he concluded that glycogen depletion for type II muscle fibers was greater at 

50 rpm compared to 100 rpm while pedaling at 85% of VO2 max [12]. It is unclear whether the subjects 

in that study were fasted before the exercise bouts. This is an important note because if any source of 

carbohydrates was ingested within a few hours prior to exercise, this could preferentially favor the 

utilization of carbohydrates over fat.  

These findings indicate that although muscle fiber recruitment patterns may be different at 

different pedaling rates [11-14], substrate utilization may be more determined by the workload, HR, and 

oxygen cost than the actual cadence, as different intensities will require the recruitment of more or less 

fast twitch muscle fibers, which will most likely affect substrate utilization.  

 



39 

Freely Chosen Cadence (FCC) 

 Subjects’ self-selected cadence was measured and analyzed for a few different reasons. Firstly, 

we wanted to determine the FCC in well-trained and professional cyclists and confirm the consistency 

with previous studies. Secondly, we wanted analyze metrics at FCC to in an effort to determine how and 

why cyclists choose a specific cadence. For instance, if metabolic cost was higher but carbohydrate 

utilization was minimized at FCC (i.e., a greater contribution from fat oxidation at FCC), cyclists would be 

able to take advantage of the benefits of pedaling faster while minimizing the effect of a metabolic 

penalty.  

 It was hypothesized that the FCC would not occur at the most metabolically efficient cadence. 

FCC was found to occur at 89.8 rpm, ranging from 84 to 100 rpm, – a pedaling rate significantly higher 

than where VO2 and HR were minimized. This demonstrates that cyclists do not inherently pedal at the 

most metabolically optimal cadence, which was an expected finding given that previous studies have 

determined that highly trained cyclists tend to adopt a pedaling rate of 90-95 rpm or higher and 

metabolic cost is minimized at 60 rpm. In the present study, only two participants pedaled greater than 

95 rpm for their FCC. Coyle et al., found a strong relationship (r = 0.75; p<0.001) between years of 

endurance training and percentage of type I muscle fibers. Type I muscle fibers are known for their 

efficiency and are the predominant muscle fiber recruited at higher cadences. In addition, the present 

study had both cyclists and triathletes as subjects whereas other studies typically were studying only 

cyclists. Given that a triathlete’s training revolves around three sports instead of just one, the average 

triathlete most likely does not spend the amount of time training on the bike as a pure cyclist does. This 

could lead to differences in recruiting specific muscles throughout the pedal stroke (pedaling skill and 

efficiency), FCC, and efficiency on the bike.  
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 In terms of substrate utilization, it was hypothesized that FCC would occur at a pedaling rate 

that generates maximal fat oxidation. Yet, this was not the case. Fat oxidation at FCC was 0.65 ± 0.29 

g/min, while carbohydrate oxidation was 1.60 ± 0.41 g/min. FCC was determined to be 30 rpm greater 

than the most substrate optimal (i.e., predominantly fat utilization) cadence and 20 rpm greater than 

the most economical (i.e., lowest metabolic cost) cadence. Although not statistically significant, it is 

important to note that the carbohydrate utilization rate at FCC was less than the rate at 90 rpm (p = 

0.20), and the fat utilization rate was greater at FCC than 80 and 90 rpm (p = 0.75 and 0.55) respectively. 

It can be concluded that from this study that in well-trained cyclists and triathletes, FCC is not chosen 

solely to limit metabolic cost or optimize substrate utilization. Additional factors must therefore play a 

role in the FCC that is naturally selected. For example, the FCC could be influenced by an effort to limit 

muscle activation and fatigue as well as selecting the cadence that subjectively feels the most 

comfortable and easiest, as measured by RPE. As discussed in the literature review, choosing a FCC that 

is higher could have other potential benefits as well such as improved blood flow and minimizing 

negative muscle work. Importantly, it has been shown that cyclists can be successful pedaling at higher 

cadences despite the greater metabolic cost. Lance Armstrong, for instance, arguably one of the top 

cyclists in the world, would often ascend the highest mountaintops of the Tour de France pedaling at 

100 rpm. Additionally, the 1-hour cycling track record is routinely set with the cyclist maintaining a 

cadence over 100 rpm.  

The Carbohydrate Penalty 

Although cyclists have repeatedly shown extraordinary success pedaling at high cadences, it 

comes at a cost of more carbohydrate utilization – demonstrating less-than-optimal substrate utilization 

for endurance performance. In the present study, 60 rpm was found to utilize the lowest amount of 

carbohydrates compared to all other cadences with a utilization of 1.34 ± 0.39 g/min. Therefore, 

anything above that rate would be considered a carbohydrate penalty (CHO Penalty). CHO Penalty = 
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CHO oxidation rate @ (70, 80, FCC, 90, 100, 110) – CHO oxidation rate @ 60 rpm. Therefore, 60 rpm has 

a carbohydrate penalty of zero (0). By converting the carbohydrate utilization from grams per minute to 

grams per hour, the carbohydrate penalty at other cadences was determined.  

Figure 16 shows the carbohydrate penalty at varying cadences. For instance, if a cyclist were to 

pedal at 110 rpm for one hour, they would utilize 45 more grams of carbohydrate compared to pedaling 

at 60 rpm which equates to 180 more kcals expended during that hour. Pedaling between 90 and 100 

rpm for an hour would have a cyclist on average utilizing 21.6 – 22.2 more grams of carbohydrate 

compared to baseline (60 rpm). This equates to 88 more kcals expended in the hour. While this might 

not seem drastic for just one hour, it could add up to be quite significant over a 4–5-hour ride, requiring 

the ingestion of a large amount of extra carbohydrates and increasing the risk of glycogen depletion 

resulting in significant fatigue and deteriorating performance. Although fueling needs vary from person 

to person, 40-80 grams of carbohydrates per hour must be ingested to avoid glycogen depletion, 

depending on the intensity while cycling. 

Figure 16. Carbohydrate penalty (g/hour) at each cadence with 60 

rpm as the baseline of zero (0) penalty.  
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Interestingly, the CHO penalty for FCC is 6 grams lower compared to 90 rpm, even though the 

values are close together. One potential explanation for this is that cyclists have trained their muscles to 

utilize substrates more optimally at a very specific cadence.  

Unexpected Results 

 Although not statistically significant, results showed differences in substrate utilization between 

males and females in the study. Males had a higher rate of fat oxidation compared to females across all 

cadences (0.77 ± 0.26 vs. 0.47 ± 0.15 g/min; p = 0.465). This is surprising as there is research that 

demonstrates females have a greater ability for fat oxidation, mainly due to hormonal differences, such 

as estrogens [80]. A study of 300 men and premenopausal women showed the energy contribution of 

fat was significantly higher in women vs. men at all exercise intensities ranging from 41 – 61% VO2 max 

[81]. In the present study, all female subjects were premenopausal. Estrogen levels are known to 

fluctuate throughout the menstrual cycle, usually being higher during the luteal phase (LP) compared to 

the follicular phase (FP). There is mixed evidence of the impact of different hormone concentrations 

affecting substrate utilization. Studies have demonstrated a muscle glycogen sparing and increase in fat 

oxidation [82, 83], while other studies have shown no differences fat oxidation between phases [80, 84]. 

For the present study, a larger sample size would likely be needed to determine the true trend of fat 

oxidation and cadence between different genders.  

Optimal Pedaling Cadence 

 Two of the objectives of this present study were to analyze the effect of cadence on substrate 

utilization to determine optimal cadence and how highly trained cyclists may inherently select a 

pedaling rate. Results of the current study showed that cyclists do not routinely pedal at a metabolically 

optimal cadence nor a cadence that utilizes the least amount of carbohydrates. So, do they naturally 

choose a less-than-optimal cadence? Although glycogen sparing is an important concept for endurance 
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performance, it may not be the only factor that determines what is optimal, and this study has 

demonstrated that it is not the main factor driving natural cadence selection. Perhaps then, an optimal 

cadence for cycling endurance performance is a balance between conflicting factors. An optimal 

cadence may be one that allows the cyclist to maintain the highest wattage desired without a 

considerable accumulation of muscular fatigue while minimizing the consequent increased metabolic 

cost and “CHO penalty.” Of note, the optimal cadence will also vary depending on the power output and 

terrain (climbing vs. flat) and potentially the task at hand (time-trialing vs. sprinting) as discussed in the 

literature review. 

 Highly trained cyclists inherently select a cadence that is more metabolically costly, but perhaps 

it is one that takes advantage of some of the benefits of a higher cadence (e.g., decrease muscular 

fatigue) while minimizing the effect of a metabolic penalty. Therefore, maybe no one factor is truly 

optimized, but there is an optimal combination of all the factors. The ultimate test for the “optimal” 

pedaling cadence would be to simulate actual road race conditions (e.g., a lengthy time trial or an actual 

road race – which may have different optimal pedaling cadences) and have cyclists pedal at different 

cadences and characterize the effect on elapsed time or overall performance. 
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CHAPTER 6 – SUMMARY AND CONCLUSIONS 

 

 Cycling is becoming an increasingly popular sport both in the United States and around the 

world. With new technology such as disc brakes, electronic and wireless shifting, and ultra-light carbon 

frames, both professional cyclists and recreational athletes are able to go faster than ever. Despite the 

advancements, the optimal pedaling rate at which one should pedal at to maximize endurance 

performance is still not very well understood. It is known that metabolic cost is minimized when 

pedaling between 50 and 70 rpm; however, professional cyclists pedal between 90 to 95 rpm. Pedaling 

at that rate elicits a higher oxygen and energy cost. The relationship between cadence rate and 

substrate utilization has not been well established. Therefore, the aim of the present study was to 

examine substrate utilization rates and ratios at different cadences in well-trained cyclists and 

triathletes. Another key objective was to observe the cadence that these subjects inherently select and 

examine the potential consequences and benefits of that pedaling rate. Of note, this is one of the first 

studies studying the relationship between cadence rates and its effect on substrate utilization.  

 To examine the questions of interest, we implemented a seven-stage cadence protocol where 

each stage was a different cadence (60, 70, 80, 90, 100, 110, FCC) performed in a randomized order. 

Prior to this study visit, subjects completed a VO2 max test to: 1. Assess their maximal aerobic capacity, 

2. determine the power output of the first ventilatory threshold that each subject would work at for the 

cadence protocol. During the cadence protocol, cadence, HR, VO2, RER, substrate utilization markers 

(CHO & fat (g/min)) were assessed during the last two minutes of each stage.  

 We were able to observe HR, RER, VO2, and CHO utilization values increase to with increasing 

cadence, which all proved to be statistically significant. The average FCC was found to be 89.8 rpm, 

which is higher than the metabolically and substrate optimal cadence. Therefore, it can be concluded 
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that higher cadences do not minimize CHO utilization nor maximize fat utilization and so FCC was not 

chosen to optimize metabolic cost or substrate utilization. It would be reasonable to speculate that this 

allows cyclists to take into account neuromuscular and biomechanical benefits.  

Delimitations, Limitations and Assumptions 

The current study presented a couple of limitations which compromise the ability to extrapolate 

the findings to a wide range of athletes. First, a sample size of 11 subjects (6 males, 5 females) reduced 

the statistical power; however, this sample size is comparable to other cycling and cadence studies. 

Secondly, this study included a combination of males and females. Previous studies involving cycling 

performance and cadence typically only involve male subjects. With this current study, females’ 

menstrual cycles were not tracked or accounted for. Although there is mixed evidence on whether the 

phase of the menstrual cycle impacts substrate utilization, it would be beneficial to account for it in a 

future study.   Additionally, although this current study did include a 12-hour fast before the cadence 

visit, it did not include a control of diet 24 hours before the visit. Finally, another potential limitation is 

the total weekly training volume. For instance, a minimum training volume of 8 hours was set to be 

eligible to participate in the study. Furthermore, years of cycling was not accounted for either.  We 

assume that all subjects were all rested and fully hydrated going into each study visit. 

Future Directions 

 First and foremost, additional subjects should be added to see substrate utilization trends across 

a larger sample size. In addition, a future study should investigate the effect that gender can have not 

only on substrate utilization at different cadences, but how gender may affect FCC as well. Considering 

that women on average had a higher FCC than men in this study, it would be interesting to investigate 

this further. Regarding substrate utilization, women on average utilized more carbohydrates compared 

to men at every cadence. A future study might involve investigating this further.  
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 The ultimate test for the “optimal” pedaling cadence would be to simulate actual road race 

conditions (e.g., a lengthy time trial or an actual road race – which may have different optimal pedaling 

cadences) and have cyclists pedal at different cadences and see its effect on elapsed time or overall 

performance. 
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HEALTH HISTORY QUESTIONNAIRE 

Study Title: The interaction between cycling cadence and fat oxidation rates in trained cyclists 
Study Number: 1765 
 

The purpose of this form is to ensure you do not have any exclusion criteria that would make you 

ineligible to participate in the study. You may refuse to answer any of the following questions. However, 

please be aware that your refusal may prevent researchers from safely assessing your suitability for 

participation in this investigation. If in the case an exclusion criterion does apply to you, your form and all 

information given will be shredded.  

 

CONTACT INFORMATION: 

1. What is your name? 

 

2. What is your telephone number? 

 

3. What is your email address? 

 

4. Please provide the name and contact information (telephone number) of your Emergency Contact. 

What is your relationship to your Emergency Contact (e.g. spouse, parent, child, sibling, etc.)? 

 

PERTINENT MEDICAL INFORMATION: 

1. What is your date of birth? 

 

2. What biological sex was assigned to you at birth (e.g. male, female)? 

 

3. Do you have any cardiovascular, kidney, metabolic (like diabetes), or respiratory conditions? If yes, 

please explain. 

4. Do you use tobacco products? If yes, provide more details (e.g. what do you use, how often do you 

use tobacco products, etc.). If no, please provide more details (e.g. have you ever used tobacco 

products, what did you use, when did you stop, etc.).  
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5. Do you have any current injuries that may limit your exercise performance (e.g. back pain, knee pain, 

sore feet, etc.)? 

 

6. Are you currently taking any prescription medications? If yes, please list all medications, dosage, 

frequency, and reason for taking them.   

 

7. Are you currently on a beta-blocker medication or any other medication that may alter normal heart 

rate or respiratory responses?   

 

8. Women only: To the best of your knowledge, are your currently pregnant or trying to become 

pregnant? 

 

GENERAL QUESTIONS RELATED TO RESEARCH STUDY: 

1. Are you willing and able to perform difficult exercise on a stationary bike or your bicycle? 

 

2. Do you have your own road or mountain bike that you are willing and able bring and use for the study 

visits? If yes, please provide, make/model of bike, crank length, rear cassette cogs (ex. 11-25), if your 

wheels are quick-release or thru-axle, and if it is a disc or rim brake bike. 

**If it is determined that your bike is not suitable for the Kickr, an electrically braked stationary bike will 

be used.** 
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FASTING & FEEDING INSTRUCTIONS 

Study Title: The interaction between cycling cadence and fat oxidation rates in trained cyclists 
Study Number: 1765 
 
 
Visit 1 

A fast is NOT REQUIRED prior to the VO2max test. However, it is highly recommended that your last 

meal is eaten at least 2 hours prior to your study visit to minimize the chance of stomach and/or 

gastrointestinal distress. Food can be consumed within 2 hours of your study visit, but it is 

recommended that foods higher in protein, fiber, and fat be avoided. Drinking plenty of fluids and 

staying hydrated is highly recommended.  

Caffeine is to be abstained from 24 HOURS PRIOR to the start of your scheduled study visit. This includes 

caffeine from any sources such as coffee, energy drinks, teas, soda, 5-hour energy, etc.  

Upon arrival for your visit, you will be asked if you have abstained from caffeine for 24 hours and 

provide a signature to confirm. Your appointment will be rescheduled for another day if instructions 

were not followed.  

 

Visit 2 

A 12-hour fast IS REQUIRED for the cadence protocol visit. Depending on the time of your study visit, 

you will be asked to stop eating 12 hours prior. For example, if your study visit is scheduled for 7am, you 

will be asked to stop eating at 7 pm the night before. This includes any liquid calories such as juice, 

sports drink, or soda. Water is permitted to be consumed without any restriction and is highly 

recommended to stay hydrated. In addition, caffeine is to be abstained from 24 HOURS PRIOR to the 

start of your scheduled study visit. This includes caffeine from any sources such as coffee, energy drinks, 

teas, soda, 5-hour energy, etc.  

Upon arrival for your visit, you will be asked if you are at least 12 hours fasted and 24 hours without 

caffeine. You will provide a signature to confirm. Your appointment will be rescheduled for another day 

if instructions were not followed.  

 

 

If you have any questions regarding the fasting and feeding instructions, please reach out to Victoria 

Dippold -> victoria.dippold@colostate.edu | 814-594-9671.  
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Visit 1 

I, __________________________(participant name printed), can confirm I have abstained from caffeine 

for at least 24 hours prior to the time of my study visit  _____________ (insert time of visit).  

 

Visit 2 

I, __________________________(participant name printed), can confirm I have fasted (food and liquid 

calories for at least 12 hours prior to my study visit and have abstained from caffeine for at least 24 

hours prior to the time of my study visit  _____________ (insert time of visit).  

 

____________________________            ___________ 

(signature of participant)            (date) 

 

____________________________            ___________ 

(signature of research team member)           (date) 

 


