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NOTICE
This report was prepared as an account of work sponsored by an agency of ithe
United States Government. Neither the United States nor any agency thereof,
nor any of their employees, makes any warranty, expressed or implied, or
assumes any legal liability or respomnsibility for any third party's use or the
results of such use of any information, apparatus, product or process dis-
closed in this report, or represents that its use by such third party would

not infringe privately owned rights.
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EXECUTIVE SUMMARY

The purpose of this research was to increase knowledge of the physical
processes that govern wind characteristics over ridges and, subsequently, to
improve empirical and numerical techniques for wind velocities over ridges.
These objectives were achieved by conducting a wind-tunnel study of the flow
field over triangular-shaped and sinusoidal-shaped ridge models with varying
upwind and downwind slopes under various thermal stratification conditioms.

A simple technique was developed to predict the velocity-amplification
profile above a ridge crest for an arbitrary ridge slope. Largest speedups
were measured for the steepest symmetrical ridge which did not cause flow
separation. Criteria for flow separation over ridges are provided in this
report. Effects of turbulence, surface roughness, and thermal stratification
on speedup are generally of secondary importance. However, these effects and
the slopes of the ridge are significant in determining whether or not separa-
tion occurs. Applicability of the results for ridges with finite width is
discussed.

The. separation phenomenon downwind of a ridge was investigated by
analyzing the effects of upwind and downwind ridge slopes on the longitudinal
extent of the separation region. It appeared that the downwind slope partic-
ularly affected the length of this region.

The turbulence structure over ridges was investigated by analyzing the
longitudinal velocity fluctuations. It was found that the directional energy
distribution of the turbulence above the crest is significantly different from
that of the upwind turbulence. Changes in power spectra and probability
density functions are relatively small.

Physical and numerical techniques to simulate flow over ridges were
critically reviewed. It was shown that similarity requirements for wind-
tunnel modeling techniques were generally met. In some cases similarity could
not be achieved in a thin surface layer (X 3 percent of the hill length). The

overall flow, however, was not affected.
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1.0 INTRODUCTION

This report is the first in a series produced as part of the Wind-Tunnel
Wind Energy Conversion System (WECS) Siting Program. The program was designed
to study the characteristics of the wind in complex terrain, especially hilly
terrain, so that installation sites for WECS can be identified. This report
identifies the topographical features of hills most favorable for siting WECS.
Specifically it considers the role of hill slope, hill shape, surface rough-
ness, and stratification. Wind-tunnel measurements of the mean wind flow over
model hills provide data to substantiate an empirical hill crest and speed up
algorithm. Analysis of turbulence characteristics suggest what simplifica-

tions are permissible in analytic or numerical model procedures.

1.1 THE OBJECTIVES OF THIS WIND-TUNNEL WECS SITING PROGRAM

The objectives of this portion of the physical modeling program have been
1. To study the wind characteristics over hills as influenced by

a. hill shape,

b.  surface roughness and upwind turbulence, and
c. thermal stratification;
2. To correlate hillcrest wind conditions with upwind conditions for a

wide range of hill shapes; and
3. To identify the dominant physical mechanisms that govern flow

characteristics over hills and, hence, provide guidance for the

development or selection of analytic or numerical models for WECS

siting.
The information contained in this report deals primarily with two-dimensional
flow (to be interpreted as flow over ridges of infinite width and with a flow
direction perpendicular to the crest). However many of the findings should
hold, at least qualitatively, for three-dimensional flow over hills. Rela-
tions between the upwind velocity profiles and velocity profiles at the crest
have been established by varying hill and flow features.

MeaSurements have been made of wind speed, turbulence intensity static
pressure, probability density function, and spectra over a number of trian-
gular and sinusoidal two-dimensional hill shapes. Measurement techniques are
described in Meroney et al. (1976a,b), Rider and Sandborn (1977a), and in this
report. Data are tabulated in detail in Meroney et al. (1976b), and Rider and
Sandborn (1977b) for neutral stratification measurements. A set of measure-

ments investigating the flow field when the downslope hill varies to incipient



separation are discussed and tabulated in this report. A set of measurements
associated with stratified flow over two-dimensional hills has been compiled
into Appendix C, Meroney et al. (1978b). Additional measurements over a set
of six different hill shapes are described in Rider and Sandborn (1977b).

Three-dimensional flow field data are provided in tabulatiop form by
Chien et al. (1978). Their interpretation is discussed in Merony et al.
(1978b).

A review of physical-modeling similarity requirements has been placed in
reports by Meroney et al. (1976a, 1978a,b). This report emphasizes particu-
larly the similarity requirements for flow over a surface obstacle in a deep
shear layer.

A validation study was performed through a joint effort between Colorado
State University and the University of Canterbury, New Zealand. The results

of this program have been gathered into Meroney et al., 1978a.

1.2 ORGANIZATION OF THIS REPORT

The remaining chapters of this report are organized in the following
manner. In Chapter 2 the physical processes that govern flow over ridges are
discussed. If the reader is familiar with the literature concerning flow over
obstacles in shear flows, he may prefer to proceed directly to the result
sections in Chapters 3, 4, and 5. Chapter 3.0 discusses the experimental re-
sults of the wind tunnel measurements of mean flow over ridges. The hill
shape and flow condition are parameterized to describe the dependency of
speedup over the crest on such variables. Experimental results and additional
information are presented to extend the conclusions of the two-dimensional
analysis to flow over ridges with finite width. An empirical prediction
technique for the velocity profile at hill crest is proposed in Chapter 4.0.
Turbulence characteristics are considered in Chapter 5.0. In Chapter 6.0
there is a recapitulation of the major conclusions of this study including
suggestions about worthwhile areas for further investigation.

Details of experimental methodology, data analysis techniques, a review
of the constraints of and characteristics over ridges on mathematical predic-
tion procedures, and tabulated data are summarized in a series of appendices
at the end of the report. The tabulated data should be particularly helpful
to those interested in the construction or validation of analytic or numerical
WECS siting models.



2.0 PHYSICS OF FLOW OVER RIDGES

The accuracy of analytical or numerical prediction techniques that
approximate wind flow over hills depends a great deal upon

1. An understanding of the turbulence structure over the hill and its

interaction with the mean flow,

2. An understanding of the mechanism that causes flow separation and

the development of a wake, and

3. The sophistication and validity of current mathematical models for

flow over hills.
This chapter considers these aspects of flow over a hill.

The literature on the physics of boundary layer flow over obstacles is
not generally familiar to most meteorologists or engineers, nor has it been
consolidated into any single reference. Pertinent material is reviewed in
this sectioﬁ and is used to support the results of a perturbation analysis of
changes in total head as wind flows over a hill crest at various lengths from
the surface.l The analysis and review provide a context for evaluation of the
experimentallresults discussed in Chapters 3.0, 4.0, and 5.0. The analysis
also provides a context for review of mathematical prediction procedures for
hill flows. Appendix E considers the constraints of wind characteristics over
ridges on various analytic and numerical methodologies.

The turbulent action on the mean flow is analyzed by considering flow
over hills as a departure from the flow of an inviscid fluid. Regions are
distinguished where the effect of turbulence on the mean flow is different.
The most important flow and hill features affecting flow separation are con-
sidered, and the large, separated flow region which results from the inter-
action between wake and main flow is investigated.

The: analysis is carried out by considering two-dimensional flow over
ridges. However, the general approach of the analysis justifies application
to thre:e-dimensional flow over ridges. Section 4 of Chapter 3 is devoted to
discus:ing quantitatively the applicability of the insights gained to ridges
with ‘figite width and to other three-dimensional effects such as Coriolis
accelerations and ridges at an angle to the flow.

|
2.1 I?ENTIFICATION OF FLOW REGIONS

F%ow regions are identified to indicate portions of the flow field where
the tirbulence structure affects the mean flow differently. 1In flat plate

boundary layers two regions are usually distinguished, the inner and the outer



regions. In the inner region the flow is directly affected by the surface
shear stress; in the outer region the flow closely resembles free turbulence,
with properties of the turbulence being strongly dependent on conditions far
upstream.

Jackson and Hunt (1975) conducted an analytical study on flow over low
hills and also divided the flow field into an inner and outer region. By
definition, the inertia, pressure, and Reynolds stress gradients in the inner
region were of the same order of magnitude; whereas in the outer region the
fluid had effectively inviscid properties. Although the changes in Reynolds
stresses in the region outside the inner region may be orders of magnitudes
smaller than the inertia stresses, after extended periods of transport over
long hills they may cause significant additional total head losses.

In order to include the long-range effects of the turbulence on the mean

flow over the hill, three regions rather than two need to be distinguished.

a) An Inner Region. The inertia, pressure, and Reynolds stress

gradients in this region are of the same order of magnitude; It may be as-
sumed that the turbulence energy production and dissipation rates are so large
that they are the only dominant terms in the turbulence kinetic energy equa-

tion; thus

Q
=1

u

|

1]
m

(2.1)

Q
N

Under such conditions structural similarity exists between the Reynolds

stresses (Townsend, 1962).

b) A Middle Region. In this region inertia stress gradients are much

larger than Reynolds stress gradients. But changes in Reynolds stresses are
sufficiently large to cause substantial additional change in total head.

The advective terms in the Reynolds transport equations may reach the
same orders of magnitude or become even larger than the production and dis-
sipation terms. If longitudinal velocity accelerations are sufficiently
large, boundary-layer approximations may not be applied. As a result, the
prediction of the turbulence stresses may become very difficult. Moreover,
Bradshaw (1973a) pointed out that the effect of extra strain rates (additional
velocity gradients to the simple shear d u/d z) is often an order of magnitude
larger than expected from the explicit extra terms they introduce into the

Reynolds-stress transport equations. He indicated that the unexpected effects




of extra strain rates could be identified by classifying the flow according to

the ratio of the extra strain rate to main shear, Y. A flow is

strongly distorted if |y| ~ 0.1 - 10

~

a fairly thin shear layer if |y| <~ .01 - .1
a simple shear layer if |[y| < .01

The significance- of each of the classes is that in a strongly distorted
flow, the Reynolds stresses are locally insignificant since pressure gradients
greatly exceed Reynolds stress gradients; in a fairly thin shear layer
Reynolds stress gradients may become unexpectedly large; and in a simple shear
layer the turbulence is not affected by the extra strain rates.

The rates of extra strain in flow over hills are related to the curvature
of the streamlines. A convenient way of defining Y is by writing the strain
rates in s-n coordinates (Castro, 1976). Different extra rate of strain

ratios can be defined. First the following ratio will be considered:
(2.2)

Close to the surface the streamlines approximately follow the curvature of the
surface. In this region the radius of curvature may be estimated by the hill

parameters h and L. A typical value of r over the crest is

LZ
Lerest = ¢ [H_] (2.3a)

and at the foot of the hill

2
= [ IETJ' (2.3b)

“foot
Velocities are approximately of the same order, and the length scale of
the nor?al velocity gradient is typically equal to 6. The extra rate of

strain ratio is then

=0 [5951 (2.4a)

onot 2L



= o [-h (2.4b)

Y
L2

crest

Thus these extra strain rates are large for steep, short hills and small for
long low hills. The highest values for Yy exist when flow separation does
not occur (h/L < 0.3), and when the hill is deeply embedded in th; boundary
layer. Therefore values of |y| of interest are less than 1. Streamline
curvature decreases with increasing height. Thus flow close to the surface
may be strongly distorted, further away from the surface, the flow may be
characterized as a fairly thin shear layer.

The change in streamline curvature with height is directly related to the
longitudinal acceleration. The ratio of this extra strain rate to main shear

is

du
y =2 (2.5)
du

an

The order of magnitude of the longitudinal acceleration will be expressed in

terms of the fractional speedup ratio, defined by

Ec(z) - ﬁo(z)

a (z)
o]

AS =

where Eo is the upwind velocity, and ﬁc is the velocity at the crest.
Thus
ASS
¥ =] s (2.6)

The fractional speedup factor AS in the surface region of steep hills
is large with respect to h/L. Therefore Yy' dominates the extra strains for
steep hills in the surface region; Yy [Equation (2.4)] may dominate in the
upper part of the middle region. The flow field over a hill should be classi-
fied according to the largest occurring extra rate of strain ratio. Thus the
middle region contains usually two flow regimes: a fairly thin shear layer
and a strongly distorted flow. This concept makes the mean flow prediction

particularly difficult.



In some cases the prediction may be less complex as a result of the
varying curvature of the streamlines; Yy 1is negative at the foot of the hill
and positive over the crest. The turbulence structure does not immediately
adjust to the extra strain rate. Therefore Yy is effectively less. Bradshaw

(1973b) proposes the following lag equation to calculate the effective value

of Y
Dy
f . ~1
bt =T UV 2.1
where T is a time scale of the stress-bearing eddies: T < l:
Buolaz

In the flow field over a hill, a region exists where Yy falls in the
range that defines a fairly thin shear layer. Suppose that in this region
T~ 6/50. The time it takes a fluid particle to travel from x = - 1/2 L to
x=1/2 L is the order of L/uo. Suppose further that Yy is constant
for - 1/2 L < x < 1/2 L and Yy =0 for x < - 1/2 L. Then, at the crest:

A y(1 - exp(- 2_6)) (2.8)
Now for L/ =1, Yogs = 0.4 y. Thus, although curvature is significant over
this hill, this result shows that extra strain rates do not always affect the
Reynolds stress significantly.

It seems reasonable, based on the foregoing arguments to state that for
short hills (L<§) in the region where 0.01 < y < 0.1 , the stress-bearing
eddies do not change considerably due to streamline curvature. Consequently,
Reynolds shear stresses stay approximately constant along streamlines. This
result will be used in the next section to show that under these conditions

the flow may be essentially inviscid.

c) An Outer Region. In this region the flow is essentially a simple

shear layer. Extra strain rates do not affect the turbulence structure nor

the mean flow. The region is defined by,

< 0.01 and
n

Because the curvature changes continuously along a streamline, a better
definition of the region would be obtained if the effective value of the extra

strain rate were applied.



The three flow regions are illustrated in Figure 2.1. It is noted that
if
B ¢ 0.01 and 238 < o.01

L2 L

[
the middle region vanishes. In case L < 6 the middle region does not
necessarily vanish, but its size is reduced, since the effective strain rate
is much less than Y.
Classification of the different regions in the flow will be particularly
valuable to a discussion of closure models frequently used in numerical models
(see Appendix E, Section E.1) and to discuss the inviscid character of the

flow in the middle region.

2.2 THE INVISCID CHARACTER OF FLOW OVER RIDGES

Turbulent flow fields may be approximated as flow with an effectively
inviscid fluid if work done by friction is small compared to the kinetic
energy of the flow. In stationary boundary-layer flow which is driven by a
pressure gradient, the work done by the pressure gradient equals the work done
by the friction; therefore, total head loss in the streamwise direction is
equal to the pressure drop of the driving-pressure system. Thus, if the
pressure drop over a hill is small (short hill), the fluid can be considered
as effectively inviscid. Over large distances the pressure drop becomes
significant, and total head losses have to be taken into account.

One of the characteristics of inviscid flow is that vorticity stays
constant along streamlines. This characteristic is not restricted to inviscid
flows alone. Along streamlines in boundary layer flow over a flat plate, for
example vorticity (mean velocity gradient) stays practically constant over a
distance in which the boundary layer thickness does not change significantly.
In terms of total head, this may be interpreted to mean that total head along
a streamline decreases at the same rate as the pressure that drives the flow.
Since the synoptic-pressure system of flow over hills is often known, it is
convenient to analyze a specific case by considering the departure from flow
with constant vorticity along streamlines or, alternatively, to analyze the
flow by considering the departure from the total head loss as given by the

driving-pressure gradient. The latter case will be referred to as additional
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total head loss. An initial analysis of flow over hills is most easily
carried out by considering the additional total head loss, because the working
equations contain expressions for the Reynolds stress gradients which are
relatively easy to measure. Analysis of the change of vorticity requires the
use of the full vorticity equations which contain vorticity-velocity correla-
tions that are difficult to measure.

The Reynolds number for flow over a hill is sufficiently large that
viscosity terms in the equations of motion may be neglected. Thus the equa-

tions of motion for two-dimenstional mean flow are:

I
|
(]

a du du _ _9p _ du” _ duw

Usx Y Y527 " 5x T 5x oz (2.9)
and

%W, 9w _ _op _ dv’ _ duw 5.

Y 3x 9z ~ 9z 0z 9x i

It is convenient to transform the Cartesian coordinates into von Mises

coordinates. In the latter system the independent variables are x and the

stream function Y . The transformation formulae are:
9 9 =9
[5z]1 = [5z] - wiggl (2.11)
9x " X " s %
and
53] = ulgy) (2.12)
X X

The x, z, and Y behind the brackets denote that the derivatives are taken
when x, z, and § respectively are constant. In subsequent equations the

subscript is omitted. The equations of motion become

—du 9 _ -9 _ _du” -23u” - duw

u = + 5% " V¥ 3 - z +w 5 u 3 (2.13)

GO, g g O, O (2.14)
9x N - ¥ 9x N :
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The change in total head along a streamline due to the action of Reynolds
stresses is easily derived by adding equation (2.13) after multiplication with
U to equation (2.14) after multiplication with w. Denoting total head by P,

the decrease in total head over a distance from x0 to x1 is

X 2 2 . 2 — -
= (b poul | grduT - w7) duw  —q_p2y duw
AP = - [ [3}{ Pu B + B % + u(1-p%) 3 ] dx, (2.15)
xO
where B = % which is the local flow direction and x_ = is an upstream
w

reference point relatively to the crest of the hill.
The additional total head loss is then

1 Spo
AP' = AP - f g dx (2.16)
X
o
apo
where 5% is the driving pressure gradient. It is noted that for flow over
a flat plate
AP' =0 .

An order of magnitude analysis is carried out to determine the maximum
losses in the middle region as defined in the previous section. This maximum
value is obtained by making the following approximations: Assume flat plate
conditions exist upstream from a point defined x = -L where L 1is the char-
acteristic length of the hill, defined as twice the distance between the crest
and the point where the hill height is half the height at the crest, and as-
sume changes in Reynolds stress gradients along streamlines occur a distance
up to AL above the surface, if AL < 6 and up to & , if AL > 6. A de-
pends on the hill shape and is to be determined empirically. The character-
istic change in Reynolds stress will be defined as R , where R may be
either

R=o0[|u?, , -u

foot CrestI] (2.17a)

or
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R = ollﬁﬁfo | (2.17b)

- uw
ot crest

whichever is larger. The order of magnitude of the terms of equations (2.15)
and (2.16) for x > -L is then,

2
d R
s = 0 [f]

W )
Bﬁ%ﬂ:o[%]

where Rm is the maximum Reynolds stress in the flow field.

p 2w - o (B}

LZ

_ — 9p
u(l-Bz) gﬁﬂ - 5;9 = 0[%] if & < AL

O[§I] if 6> AL

The order of magnitude of the maximum additional total head 1loss is then

R

AP' = 0[((1 + 5+ %) % + % s (x; + L] if 6> AL (2.18)
R

AP = 0[((1 +F + D) % + % s (x; +L)] if 8 <AL (2.19)

The effect of the hill on AP' is illustrated by applying those
approximations to experimental data presented by Rider and Sandborn (1977a).
Horizontal and vertical turbulence intensities were measured over triangular
hill models where h/L = 0.17, 0.25, and 0.33, with L/6 = 0.6, 0.4, and 0.3,
respectively. Maximum local turbulence intensities were about 20 percent. It
may be expected that for those rather steep and short hills, changes in the
Reynolds normal stresses along streamlines are less than changes in the
Reynolds shear stresses. The data show that R based upon Reynolds normal
stresses is less than 30 percent of Rm and that A is on the order of 0.5.

The maximum additional change in total head at the crest is then

AP' ~ 4%. (2.20)

crest ~
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Further away from the surface, AP' decreases since the most significant
changes in the turbulence structure occur in the lowest regions.

The result obtained for flow over the triangular hill models should also
be valid for hills with larger ratios of hill length to boundary-layer thick-
ness, since equation (2.18) in particular is not sensitive to this parameter.

The inviscid character of flow over a hill is illustrated also by the
following considerations. For weak turbulence and approximately constant
Reynolds shear stresses along streamlines, equations (2.13) and (2.14) may be
simplified to

_%u, % _-0p_ - ouw
I.l-a—x'+ax'wallj-llw (2.21)
PN LG o (2.22)

Eliminating the terms on the right-hand side and presuming that the total head

along streamlines stays constant yields the following expression:

3w , dp _
ox T oy = O (2.23)

The presumption that total head stays constant may be expressed as

-2
UO 62
¢=¢1 ¢=¢1
Elimination of p from equations (2.23) and (2.24) leads to
1.— 2
~%u ow, 9w _ 2%

0
Equation (2.25) represents another property of inviscid flow, namely that the
mean vorticity along streamlines stays constant. This justifies the presump-

tion that the total head along streamlines stays constant.

'

2.3 FLOW SEPARATION OVER RIDGES

The occurrence of flow separation over ridges is from the point of view
of wind power undesirable. The wake mixes momentum across streamlines,

diminishes longitudinal pressure gradients, and consequently reduces the wind
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velocity over the top of the hill. Moreover, separation causes reduced
velocities in the surface region downstream of the wake.

At present operational models for flow separation over ridges do not
exist. Some semi-empirical models require empirical information, such as the
location of the separation point, reattachment point, and base pressure. See
the discussion in Appendix E, Section E.4 of Kiya and Arie (1972) and Bitte
and Frost (1976). The development of prediction techniques for velocities
over hilly terrain must rely heavily on experimental data.

In this section implications of theoretical and experimental separation
concepts are reviewed and applied to flow over ridges. A general description
of phenomena related to separation from the surface is given by Scorer (1978).
The following discussion is a detailed review of existing insights into
separation phenomena over ridges. Two separation regions are considered: the

separation regions upstream and downstream of the ridge.

The Upstream Separation Region. Upstream separation depends primarily on

the upstream slope at the base of the hill. In contrast with the downstream
separation region, the upstream region is never very large. The length is of
the order of the obstacle hill height. Its effect, however, on the velocity
field is quite important, because the separation zone in front of a hill
reduces the favorable pressure gradient that normally provides large speedup
effects in the lower layers over the crest.

It was shown in Section 2.2 that the flow over hills, if no flow
separation occurs, is approximately inviscid. Indeed, even in the presence of
separation, the prediction of the occurrence of flow separation may be obtain-
ed by an inviscid theory presented by Fraenkel (1962). Fraenkel shows that
corner eddies with closed streamlines can be predicted analytically from
inviscid flow assumptions. The physical interpretation of this phenomenon is
simply that the flow near the front of the obstacle stagnates to the extent
that the motion is dominated by the vorticity. Once flow separation occurs,
the viscous effects (particularly along the separation streamline) invalidate
to some extent the inviscid flow assumption.

A semi-analytical model, based on Fraenkel's theory, was presented by
Kiya and Arie (1972) for flow over a fence deeply embedded in a boundary layer
(see also Appendix E, Section E.4). Their model requires empirical input
parameters to take into account the downstream wake. The flow in the upstream

separation region, however, is predicted essentially on a theoretical basis.
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Excellent agreement was found between their theoretical results and
experimental measurements by Good and Joubert (1968). The success is
undoubtedly due to the fact that the vorticity was sufficiently strong.

Conditions similar to those discussed above apply to flow over a ridge
embedded in the boundary layer. Hence an inviscid separation model is appro-
priate. The interaction between main flow and a separation eddy becomes
important if the hill height is much larger than boundary-layer thickness.
Robertson and Taulbee (1969) conducted an experimental study of turbulent
boundary-layer flow over a forward-facing normal step. They evaluated the
effect of ratio between the step height and boundary-layer thickness on the
extent of the separated flow region. When values of h/8 varied from 0.5 to
2, they found that the location of the separation point upstream of the step
extended to 0.8h for h/6 = 0.5, and to 1.5h for h/6 = 2.

An important phenomenon may occur if the flow is stably stratified. The
cooler heavier air in front of a ridge stagnates. That in turn results in a
further decrease in temperature. This may lead to a total blocking of the air
in front of a mountain range. This phenomenon is the main cause of Fohn
winds, in which air descends from an altitude not far from that of a ridge top
on the upwind side to the surface on the downwind side. Blocking seems to
occur only if (Scorer, 1978)

211
h > T

where £ 1is the Scorer parameter,

g=_8 1096
-2 0 9z
u
0
and 6 is the potential temperature.

The Downstream Separation Region. Boundary-layer flow over a flat ground

plane driven by a synoptic-pressure system is in equilibrium and does not
separate since the pressure drop in the streamwise direction is in balance
with the surface shear stress. But the force balance in flow over hills is
disturbed due to the increased surface shear stress over the hill. As a
result horizontal momentum in the lowest layer is transported downward at a
higher rate. Although the momentum along a streamline at the crest is larger
than upstream along the same streamline, the momentum may not be large enough

to overcome the adverse over-crest pressure gradient. Consequently the flow
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tends to separate from the surface, and, depending on the interaction between
wake and main flow, a large wake may develop.

The interaction between those two flow regions can be .described by
considering the flow over a hill model initially at rest and then suddenly in
motion at constant speed. (Batchelor (1967, plate 8) illustrated the develop-
ment of the downstream wake in this way by showing a series of pictures of a
flow visualization of the development of the flow patterns around a house
model that is pulled in a fluid initially at rest.) In the initial stages
when no flow separation has developed, the pressure gradient in the surface
region is parallel to the surface. When the flow separates, there is no force
that prevents the development of an eddy directly after the separation point.
In later stages, however, a pressure gradient across the separating streamline
builds up so that futher growth of the eddy is prevented. The equilibrium
that is established in the flow is mainly determined by the strength of the
eddy and the pressure gradients across the separation streamline. The order
of magnitude of those forces suggests that features like location of separa-
tion point and hill shape may significantly affect the size of the wake.
Indeed, experimental evidence of the importance of the point of separation was
given by Huber et al. (1976). They showed that significant increase in the
dimensions of the wake downstream of a bell-shaped hill model was created by
tripping the boundary layer at the crest.

Depending on the shape of the hill, different flow features may dominate
the separation phenomenon. Several aspects of flow separation may be conven-
iently discussed by considering three different hill types:

- Hills with steep downstream slopes, say h/LdS % , where Ld is the
downstream characteristic hill length. For this category of hills the
eddy in the separation region is not constrained by the downstream
slope. Available information on the flow development downstream of the
separation point from studies with vertical backward-facing steps may
well be applied.

- Round-crested hills with downstream slopes % < h/Ld < % . For this
category, location of the separation point as affected by surface

roughness affects the velocity field significantly.
For this

D] -

- Sharp-crested hills with downstream slopes % < h/Ld <
hill type, the separation point is fixed. The effect of the ratio

h/L, on the extent of separation region is most marked.

d
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Hills with Downstream Slopes, Say h/Ld > %

Once separation occurs, two flow regions can be identified. One includes
the region around the separation streamline defined as the new shear layer,
the other, the region downstream of the reattachment point.

The new shear layer is a free turbulent shear flow similar to the mixing
of a uniform-freestream and a quiescent-flow region; hence turbulent half-jet
theories are relevant. Some of the first researchers who investigated the
flow in this manner were Korst, Page, and Childs (1954) and Chapman, Kuehn,
and Larson (1957). Following their methodology, Chang (1966) analyzed the
velocity distribution in the new shear layer behind a wedge-shaped hill model
with a frontward-facing vertical slope and backward-facing slope of 1/1. He
found that the velocity profiles in this layer could be described successfully
by the half-jet theory except for the region close to the separation point.

Chang noted that according to half-jet theory the velocity profiles along

the separation region may be described by

(1 + erfn), (2.26)

cliel
B =

0

where n is a dimensionless coordinate equal to o z'/x', in which o0 is a
similarity parameter and 2z' and x' are the coordinates of an intrinmsic
system. The 2z' coordinate is determined from measurements, whereas the x'
coordinate is the distance from the crest. Experiments have shown that values
of 0 are approximately constant in ideal flow cases such as the half-jet.
In the separated flow region behind a wedge-shaped hill, however, it appears
that 0 varies with downstream distance from the crest. This deviation may
occur because the half-jet theory assumes a uniform incident velocity profile,
whereas in the present case a nonuniform velocity distribution exists. Fol-
lowing Kirk (1959), Chang showed that o may be modified to a constant value,
if one displaces the origin in the upstream direction by a distance X,
determined experimentally. Incorporating these considerations into the

original equation leads to the following expression for the velocity field

downstream of the wedge-shaped hill:

'

_ 1 4
= E (1 + erf (U ;;——

—) (2.27)
[0}

s

0
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where the curve is a function to be determined experimentally and ¢ and X,
are empirical constants.

Bradshaw and Wong (1972) reviewed a series of experiments conducted by
other researchers [(Tillmann (1945), Arie and Rouse (1956), Tani et al.
(1961), Mueller and Robertson (1963), Plate and Lin (1964), and Betryk and
Brundrett (1967)]. Based on their results Bradshaw and Wong showed that a
strong dependence exists between the length of the downwind separation region
and the configuration of the surface upstream of the separation point. The
distance between separation and reattachment point varies from 5 to 20 hill
heights. The distance is small for simple backward-facing steps and is large
for bluff surface obstacles such as fences.

As is well known, the turbulence structure in the new shear layer changes
significantly from upstream conditions. Downstream of the separation region
the turbulence in the boundary layer is strongly disturbed over the part of
the boundary layer that has been exposed to the new shear layer. The thick-
ness depends primarily on the length of the separation region. The longer the
separation region, the larger the disturbance of the turbulence and, conse-
quently, the larger the departure of the velocity from the velocity distribu-
tion in an equilibrium boundary layer. The return of the boundary layer to an
equilibrium structure occurs only after a long distance downstream of the
reattachment point.

Some quantitative information on reestablishment of equilibrium flow is

presented by Bradshaw and Wong (1972), who further analyzed the data of Petryk

and Brundrett (1967). Values of h/6 quoted were in the range of 0.18 and

0.53 where h is the height of a single fence; h as well as § were varied
in Petryk's experiments. Bradshaw and Wong used the Clauser parameter to
measure the departure of the boundary layer from equilibrium. The Clauser

parameter is defined as:

sl 1@ ©® -y @)? aznds
2@ ® -u () dzfuy 8

According to the data of Coles (1962), G 1is about 6.8 in an equilibrium

(2.28)

constant-pressure boundary layer at high Reynolds numbers. Values of G
downstream of the reattachment point decreased sharply and then increased
slowly to an equilibrium value. The distance Xg where G reaches its

minimum could be expressed by the empirical relation
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xGmJﬁﬁ , (2.29)

implying that two length scales are to be considered. This is reasonable,
since on one hand the disturbance is caused by the length of the separation
region, h ; whereas on the other hand, the recovery of the boundary layer
depends on the scale of the turbulence, say 6. The proportionality constant
in Equation (2.29) is equal to 100 for a fence, but is certainly less for any
hill shape.

Depending on h/6, the minimum value of G changes, i.e., for h/§ =

0.18, Gmin = 5.6 whereas for h/6 = 0.53, Gmin = 4.5,

Round-Crested Hills with 1/4 < h/Ld <1

The force balance in the flow over round-crested hills with 1/4 < h/Ld
<1 1is such that the mean flow field may change significantly due to simple
surface features. Flow separation over a hill may be caused by a salient
edge; however, if the hill has no salient features, change in surface rough-
ness or significant increase in surface shear stress may affect the location
of flow separation and thus the velocity field over the crest.

A popular method to predict the separation point of a turbulent boundary
layer in an adverse pressure gradient was developed by Stratford (1959) and
Townsend (1962). The basic assumption of the method is that the boundary
layer can be divided into two distinct and adjacent regions. The flow in the
region adjacent to the wall is determined by the local shear stress distribu-
tion and is otherwise independent of the past history of the flow. But the
flow in the outer region develops nearly independently of the Reynolds stress,
implying that the total head stays constant. In addition it is assumed that
the Reynolds shear stress stays constant in the outer region.

Unfortunately, application of the Stratford-Townsend method to predict
the point of flow separation over a hill is not possible, since a middle
region (see Section 2.3) exists which does not possess the characteristics of
the inner and outer region as given above. In the middle region, the flow is
locally ‘inviscid, but Reynolds shear stress may change significantly due to
the strong flow distortion. Only if the Reynolds stresses could be predicted
in the lowest layer of the middle region, and if the velocity profile in the
inner region at the location of the pressure minimum is known, can a similar
approach to that of Stratford and Townsend be developed to predict the
separation point.
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The prediction becomes even more complicated if the surface roughness
changes upstream over the hill. Qualitatively the effect of changing surface
roughness on the flow is well understood. For some simple flow cases, analyt-
ical solutions have been obtained (Townsend, 1976). In general an increase in
surface roughness in the flow direction introduces higher shear s{resses in
the flow. In turn this causes a larger total head loss in the layer adjacent
to the surface and consequently an earlier flow separation. A streamwise
decrease in surface roughness has the opposite effect. It may be noted that
the installation of extensive windmill hardware on a hill may itself induce
earlier flow separation and consequently less speedup of the wind.

The effect of surface roughness on flow separation over a circular
cylinder was investigated by Giiven, Patel, and Farrell (1976). Although their
semi-analytical approach may seem not directly applicable to flow over hills,
the experimental results show the effect of surface roughness. Since their
approach turbulence is weak and of a large-scale, their results may be inter-
preted as being the effect of increased surface roughness over a hill relativ;

to upstream conditions. Some of their results for a Reynolds number of 10

are presented in the table below.

zO UIII
~3 C C ) _pm
pb pm W U,
1072 -0.62 -2.04 111.5 1.74
1074 -0.80 -1.91 105.6 1.71

where z, is the equivalent roughness height,

is the cylinder diameter,

Cpb is the base pressure coefficient,
CpIII is the minimum pressure coefficient, and
¢w is the approximate angle of beginning of the wake region measured

from front stagnation point.
Upm/L'llm is the relative velocity increase at the pressure minimum.
The effect of a change in ¢w of 6° causes a 2 percent change in maximum
velocity over the cylinder. Although this is not a significant effect over
cylinders, for hills the effect of surface roughness on the location of separ-
ation point may be much larger because the hill slope at the downstream side

decreases in the flow direction.
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An interesting illustration of the effects of upwind turbulence (e.g.,
due to large upwind surface roughness) is offered in an investigation by
Halitsky (1965). He noticed that in boundary-layer flow over a ridge
(h/6 = 3, b/L, ~ % y h/L, ~ %) downwind flow separation occurred for upwind
freestream turbulence intensities of 1 percent, whereas for large upwind
turbulence intensities of 15 percent periodic collapse of the wake occurred.

For smooth surfaces, the Reynolds number also influences flow separation.
Flow separation is essentially due to viscous effects; thus the separation
point will depend on the Reynolds number. Model results may require correc-
tion for the effective Reynolds number variation between field and laboratory.

Other than the material previously reviewed, little further material
speaks to separation over shapes with salient corners or crests.

Hills with a Salient Edge and with Slopes, Say 7 < h/L; < 5

The strength of the eddy in the separation region, of course, has an
important effect on the size of the wake. If the downstream slope is small,
then the eddy stays small causing a weak interaction between wake and main-
flow. Quantitative information about the important effect of hill slopes on
wake size and velocity speedup over the hill is not available in the litera-
ture. In Chapter 3 data is presented that systematically shows the effect of

hill slope on the size of the separation region.

2.4 SUMMARY

The following summary of the most important conclusions made in this
chapter serves as a review of present understanding of flow over an isolated
ridge and provides a basis for the experimental program discussed in the
following chapters.

1. Three regions in the flow are distinguished

a. An Inner Region. In this region Reynolds shear stress
gradients are of the same order of magnitude as pressure or
inertial gradients. Production and dissipation rates of turbu-

! lence are the dominant terms in the turbulence kinetic energy
equations. The large mean velocity gradients are character-
istic of this region.

b. A Middle Region. In this region Reynolds stress gradients are
locally insignificant but may cause substantial changes in
total head downwind of the first flow disturbance. The changes
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in total head may be large since extra rates of strain affect
Reynolds shear stresses, often one order of magnitude larger
than expected. Nevertheless, for relatively short hills
(L < 8) with large extra strain ratios, changes in Reynolds
stresses are small since it takes time for the stress-bearing
eddies to adjust to the mean flow conditions. An order of
magnitude analysis and experimental data show that for such
flow cases total head changes over the crest are usually less
than 4 percent. Generally, the order of magnitude analysis
indicates that the flow field upwind of the ridge crest can be
predicted accurately by assuming the fluid to be inviscid.
c. An Outer Region. Extra strain rates are small and do not
affect the turbulence nor the total head losses.
The upwind separation region is small compared with the downwind
separation region because interaction between upwind wake and main
flow is impeded by the presence of the ridge. For sufficiently
large vorticity in the approach flow (in other words, for a suf-
ficiently small ratio h/6), the upwind separation region is not
affected by the interaction between wake and main flow. Otherwise
interaction takes place and, with the present understanding of such
flow cases, empiricism has to enter analytical-prediction proce-
dures. No quantitative information is available on the amount of
vorticity required to avoid interaction.
A large wake resulting from main-flow wake interaction affects the
mean flow over a hill and downwind of a hill dramatically. The new
shear layer causes the boundary layer downwind of the reattachment
point to be in strong nonequilibrium. Up to distances of the order
of 100Jh§ the Clauser parameter decreases, after which a return to
equilibrium flow conditions takes place. Therefore prediction of
the flow field over a group of ridges is extremely complex. The
occurrence of flow separation over downwind ridges may be strongly
affected.
Existing prediction techniques of flow separation over ridges are
not adequate. There exists some experimental evidence that changes
in surface roughness affect the occurrence of flow separation over

steep ridges (h/L < .3) significantly. Qualitatively, the effects
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of surface roughness are understood, i.e., an increase in upwind
surface roughness causes earlier flow separation whereas a decrease
in upwind roughness causes a later flow separation.

The length of the downwind separation region is reduced by shallower
downwind slopes since the eddy development in this region is impeded

by the presence of an elevated surface in the separation region.
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3.0 MEAN FLOW OVER RIDGES

The following three chapters discuss laboratory data measurements made
under this program and describes quantitatively the effects of ridge shape,
turbulence and surface roughness, and moderate stable stratificatjon on the
mean flow over ridges. Data are utilized to prepare an empirical wind speed
prediction relation in Chapter 4.0. Changes in the turbulence structure over
the ridge as a result of the distortion by the mean flow are interpreted using
rapid distortion principles in Chapter 5.0. A brief review on the limitations
of the physical modeling techniques employed is provided in Appendix F. Flow
conditions and hill shapes have been characterized by simple nondimensional
parameters defined in that Appendix.

Section 3.1 evaluates the influence of ridge shape on wind speedup over
hill crests. The important role of separation on speedup is identified and a
criterion for flow separation is provided. The data are used to validate the
inviscid approach identified in Section 2.2.

Section 3.2 examines the influence of turbulence and surface roughness on
wind speed over hills. An inviscid numerical program described in Appendix E,
Section 3.3 was used to extend the results beyond those measured in the
laboratory. The influence of turbulence on wind profiles was suggested by the
analysis in Chapter 2.0 to be significant only in an inner and middle region
near the surface. Comparison of model data against a recent field study
revealed the unexpected influence of relaminarization on the inner regions
during:model measurements.

Section 3.3 considers the influence of stable stratification on the mean
velocity profile, the character of the hill crest turbulence, and the extent
of separation. Mild stratification appears to result in rather modest pertur-
bations.

Section 3.4 examines the validity of the assumption of two-dimensionality
when dealing with real finite-length ridges. A finite hill length reduces
hill crest and speedup, modifies the separation region, and results in lateral
wind field variations. Nevertheless for the cases considered perturbations

were modest.
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3.1 EFFECT OF RIDGE SHAPE ON VELOCITY PROFILES

The ridge shape is characterized by 3 parameters, namely h/Lu, h/Ld and
h/6. In addition to these three parameters, the presence of salient features
on a ridge is considered in this section.

The effect of ridge shape on wind flow will be considered separately in
terms of upwind and downwind slopes, the height of the hill with respect to
the atmospheric boundary layer, and the detailed hill profile.

Upwind and Downwind Slopes. The highest ridge in hilly terrain is not

necessarily the site where the largest speedup of the wind occurs. At ridge
crests where flow separation is present the wind speedup is less than at ridge
crests that avoid flow separation. Hence, speedup depends also on the upwind
and downwind slopes.

Figures 3.1 to 3.9 show the dramatic changes in mean velocity, static
pressure and longitudinal turbulence intensity that accompany flow separation.
In these figures and subsequet plots the distance from the crest to the base
is 2.5 times the height of the hill (except for Figures 3.7 and 3.9 where it
is 5 times the height of the hill). Similar, but enlarged, contour plots of
mean velocities and static pressures are presented in Appendix D.

Flow separatiou occurs for h/L = 1/2 and 1/3; however, no flow
separation occurs for h/L = 1/4. Static pressure perturbations for the
ridges with h/L = 1/2, 1/3 and 1/20 penetrate deep into the boundary layer,
causing slightly higher velocities in the upper region of the boundary layer.
Note that the contour lines of the static pressure distribution at the down-
wind side of the crest for h/L = 1/2 and 1/3 approximately follow the
streamlines. This phenomenon is typical for flow separation over ridges. It
shows clearly that pressure gradients across streamlines may be much larger
than the gradients in the streamwise direction. Therefore, mathematical
models in which the 9p/dz term in the equations of motion has been
neglected, such as the model of Frost et al., 1977 (see Appendix E, Section
E.4) do not represent the flow accurately.

MeaFurements over various ridge models were performed for two different
freestream velocities to identify any Reynolds number flow dependence.
Figures 3.1, 3.3, 3.5, 3.7, and 3.9 show contour plots for U, = 9.14 m/sec.
Figures 3.2, 3.3, 3.4, and 3.6 show contour plots for U, = 15.24 m/sec. No
significant changes in the flow field occur for different wind velocities.

Figures 3.10 to 3.13 are contour plots over two round-crested hills (half-sine
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FIGURE 3.3. Contours of Flow Characteristics Over a Triangular Ridge,
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FIGURE 3.6. Contours of Flow Characteristics Over a Triangular Ridge,
h/L = 1.4. Test Case 6
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FIGURE 3.7. Contours of Flow Characteristics Over a Triangular Ridge,
h/L = 1/6. Test Case 7
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FIGURE 3.8. Contours of Flow Characteristics Over a Triangular Ridge,
h/L = 1/6. Test Case 8
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a. Mean longitudinal velocity, b. Static pressure, AC_ = .015
ﬂu/uo (6) = .05 P

c. Streamlines d. Longitudinal turbulence
intensity, ﬁu'/uo (8) = .0033

FIGURE 3.9. Contours of Flow Characteristics Over a Triangular Ridge,
h/L = 1/20. Test Case 9
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FIGURE 3.10. Contours of Flow Characteristics Over a Sinusoidal Ridge,
h/L = 1/4. Test Case 10
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a. Mean longitudinal velocity, b. Static pressure, AC_ = 0.44
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FIGURE 3.11. Contours of Flow Characteristics Over a Sinusoidal Ridge,
h/L = 1/4. Test Case 11
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a. DMean longitudinal velocity, b. Static pressure, AC_ = .034
Au/uo (6) = .05 e

c. Streamlines

FIGURE 3.12. Contours of Flow Characteristics Over a Sinusoidal Ridge,
h/L = 3/16. Test Case 12
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a. Mean longitudinal velocity, b. Static pressure, AC_ = .040
Bu/u (8) = .05 P

c. Streamlines

FIGURE 3.13. Contour of Flow Characteristics Over a Sinusoidal Ridge,
h/L = 3/16. Test Case 13
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shaped) for U, = 9.14 m/s and U_ = 15.24 m/s. The average slopes defined
by h/Lb are 1/3 and 1/4; those defined by h/L are 1/4 and 3/16. Flow
separation does not occur in any of these cases. No Reynolds number effects
are noticeable. The mean flow fields closely resemble the flow field over the
triangular hill h/L = 1/4, but do not resemble the triangular hill h/L =
1/3. Apparently the definition of L characterizes the hill length better
than Lb'

Flow separation that may occur upwind of a hill is different from flow
separation that may occur downwind. The eddy in the downwind separation
region interacts strongly with the main flow, producing an extended wake in
the downwind direction. For steep downwind slopes the separation region may
extend to a distance of 10 to 20 times the obstacle height. The interaction
between eddy and main flow at the upwind side is constrained by the presence
of the hill. The upwind separation region, which depends slightly on the
parameter h/8, does not extend further than two hill heights upwind. Flow
separation occurs if h/Lu > 1/2.

High velocities over the crest result in large static pressure gradients
across streamlines just above the separated flow region. These large pressure
gradients result in earlier reattachment of the separating streamline.
Indeed, Figure 3.14 suggests the separated flow region for h/Lu = 1/2
extended beyond a distance of x = 9h, but that the flow reattached at x = 9h
for h/Lu = 1/4 and 1/6. Figures 3.15 and 3.16 display similar trends.

The extent of the downstream separation region depends on the strength of
the eddy just downwind of the separation point, which in turn are dependent on
both upstream and downstream hill slopes. Figure 3.14 shows vertical mean
velocity profiles over the crest and downwind of the crest for three different
ridge shapes. In all cases there is a backward-facing step. The upwind slope
varies: h/Lu = 1/2, 1/4, and 1/6. Speedup is largest for h/Lu = 1/4, and is
slightly less for h/Lu = 1/6. The speedup is smallest for h/Lu = 1/2. For
relatively gentle downwind slopes only weak eddies can develop. This causes
early reattachment of the separating streamline. The effect of h/Ld on the
mean velocity field is illustrated in Figure 3.17 by superimposing vertical
velocity profiles at different locations downwind of the hills. For all cases
h/LLl = 1/2; the downwind slopes were h/Ld = 1/0, 1/3, 1/4, and 1/6. The
boundary layer recovers faster for the smaller values of h/Ld. A signifi-

cantly larger speedup over the hill crest occurs for h/Ld = 1/6. Similar
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effects may be noticed in Figure 3.18 where vertical velocity profiles are
presented at the crest and downwind of hills with h/Lu = 1/4, h/Ld =1/0, 1/2,
an 1/3.

A given hill may cause quite different crest profiles depending on the
approach direction (see Figure 3.19). Although a "jet" effect occyrs for the
case h/Lu = 1/3, h/Ld = 1/4, the velocity distributions indicate that a
separation cavity has developed downwind of the crest.

All data measured in the current series of measurements to study the
effect of upwind and downwind slopes were for h/8 = 0.1. A wider range of
conditions was not examined because Huber et al. (1976) found that the
separation phenomenon is not affected by the upstream velocity distribution or
boundary layer depth. He observed essentially identical downwind separation
regions for approach velocity profiles, where h/6 = 0.2 and 0.5. Since the
occurrence of flow separation then depends primarily on h/Ld and h/Lu, a
generally applicable separation criterion for flow over ridges may be derived
from the wind-tunnel data obtained over the triangular ridges. Figure 3.20
suggests an empirical envelope determined between h/L and h/Ld that

L
governs the occurrence of flow separation.

Height of the Ridge. It is also desirable to Lnow the effect of hill

height to shear layer depth on wind speed when separation does not occur.

Jackson and Hunt (1975) define a speedup parameter «alled a fractional speedup

ratio:
_ ucrest{zl ] uo(z)
AS = LS
crest u (z)
0
where Eo is the upstream velocity distributon, acrest is the velocity

profile above the crest, and 2z 1is the distance from the surface. By non-
dimensionalizing the speedup parameter with the upstream profile, they
anticipated that the fractional speedup ratio would not depend strongly on the
approach velocity distribution. This would imply that the fractional speedup
does not depend strongly on h/é.

In Chapter 2 and Appendix E it was concluded that mean crest velocities
could be predicted accurately with an inviscid flow model. An inviscid model
was constructed by Derickson and Merony (1977) and compared with the

laboratory data discussed in Sections 3.1 and 3.2. The numerical and
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laboratory and fields were essentially identical. Numerical calculation,
using the inviscid flow model as described in Appendix E, Section E.3, can
thus give accurate velocity distributions over the crest of a bell-shaped hill
with constant h/L and varying h/6. The hill shape and upwind velocity
distribution are defined by Equations (E.20) and (E.21), respectiyely. The
parameters considered to predict the influence of the height of the ridge were
combined in numerical calculation runs 1, 3, 5, and 14 (see Table E.1). Given
a hill slope, h/L = 0.2, the values of h/6 used are 0.012, 0.04, 0.4, and
4,0. The surface roughness imposed in each case is approximately the same;
hence its perturbation effect on the fractional speedup is assumed to be
negligible. Upwind approach velocity profiles and corresponding fractional
speedup ratio profiles are given in Figures 3.21 and 3.22.

The calculations suggest that the fracitonal speedup ratios decrease with
increasing h/8. Changes seem to be most significant close to the surface.
For h/8§ < 1 and 2z/h < 1, fractional speedup ratio AS 1is approximately 30
percent larger than the uniform velocity profile case (h/6 > 1). For

z/h > 1 differences approach zero.

Detailed Hill Shape. The effect of detailed hill shape for a given h/L

on the velocity field was investigated by comparing velocity fields over

symmetric triangular hill models with those measured over sinusoidal-shaped
hill models (Figures 3.5, 3.6, 3.10 and 3.11). Almost identical velocity
fields were measured. Rider and Sandborn (1977b) in a separate series of
tests associated with this test program considered a number of alternate hill
shapes with the same heighf and with the same distance from crest to the base
of the hill (Lb). The models include full sine-wave, half sine-wave,
triangular, trapezoidal, and box-shaped hills. Speedup effects over the crest
of the different hill models varied substantially. For a triangular hill the
fractional speedup factor at a height h above the crest was 0.35; for the
box-shaped hill this factor was 0.15. This shows again that Lb does not
characterize the hill length accurately. The hill length L varied by a
factor 2; moreover, separation regions exist upwind and downwind of the box-
shaped hill.

3.2 EFFECTS OF TURBULENCE AND SURFACE ROUGHNESS ON VELOCITY PROFILES

The wupwind surface roughness induces different approach velocity

profiles. The approximate effects of such profile changes on the fractional
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speedup were examined utilizing the inviscid flow model described in Appendix
E, Section E.3 as well as performing laboratory experiments. The experimental
measurements are interpreted in terms of the inner and middle regions
previously identified in Chapter 2.0.

The hill shape and upwind velocity distributions are defined, again by
Equations (E.20) and (E.21), respectively, The cases considered are listed in
Table E.1 as runs 1 to 9. The upwind velocity distributions are given in
Figure 3.23 and fractional speedup ration profiles are presented in Figure
3.24. Most values of 20/6 were too small to represent realistic surface
conditions. Nevertheless, the calculations do show some interesting trends.
There is only a slight decrease in AS as the surface roughness decreases.
This change is most significant for small values of h/6. The latter seems
reasonable, because for small values of h/§, velocities do change signifi-
cantly with roughness over a surface layer with a thickness of the order of
the hill height.

The effect of surface roughness was investigated experimentally by
considering the Cases 5 and 14 as listed in Appendix A, Table A.1. 1In both
cases the slopes are 1/4 but surface roughness has changed from 20/6 =1.2 x
107%  {Case 5) ‘to z /8= 1.6 x 1073

varying from crops to rural woods. The fractional speedup ratio profiles at

(Case 14), representing terrain types

the crest are provided in Figure 3.25. The profiles show the same trend as
suggested by the inviscid profiles given in Figure 3.24; however, for these

larger, more realistic surface roughnesses the changes are much larger.

The Inner Region. As a result of the large longitudinal pressure

gradients developed in the wind-tunnel study, a realistic inner region did not
develop. This section identifies the discrepancy through a comparison with
recent field data. An examination of the phenomenon reveals that the loss of
an inner region may be associated with an relaminarization process previously
identified by aerodynamicists.

Bradley (1978) «conducted a field study to measure the wind
characteristics over a ridge with a shape similar to those tested in the
Meteorological Wind Tunnel but with a larger ratio of hill height to boundary-
layer thickness. The ridge height was 170 m, the upwind ridge length (Lu)
was 550 m, and the downwind length somewhat longer, Ld = 600 m. The hill was

covered with trees; surface roughness and the displacement thickness were
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estimated at 1.0 m and at 7.0 m respectively (typical tree height was 10.0 m).
The boundary-layer thickness was estimated at 600 to 800 m. Although the
ridge was not strictly two-dimensional, it presented a broad face of uniform
slope. Data were recorded during periods in which the mean wind direction was
within 15° of the normal of the ridge. Bradley obtained wind data ,at various
heights up to 100 m above the crest under neutral conditions. Vertical
velocities were measured, and streamline inclinations determined at the top of
the ridge. The results indicate that a separation region exists downwind of
the crest.

Bradley's measurements have been compared to several laboratory cases via
fractional speedup ratio profiles in Figure 3.26. Close to the surface the
field data is quite different from the laboratory data. Bradley suggests that
an inner region should exist up to a height (h-d) of 28 m, which corresponds
to a value of 0.17 on the vertical axis of Figure 3.26. This would imply that

in this region

3';.1-‘;]
9z

=

- du _
llﬁ—{)[

Bradley measured Reynolds shear stresses at the crest. Values of the shear
stress at 9 m were 2.6 times as large as the upwind shear stress, but at 25 m
were about the same as -upwind values. The upwind shear velocity was 0.52

m/sec. Hence

d-uw ~ 2

5z ~ .04 m/sec” .
Mean velocities were approximately 6 m/sec so that longitudinal velocity
accelerations should be on the order of 1/136 sec-l. Typical measured

accelerations were on the order of 4/550 sec-l, which does suggest that the
inner region extends to about a distance of 28 m.

However, in the wind-tunnel experiments no inner layer was observed for
the steeper hills. If we assume that the hill length is the governing length
scale, the inner-layer thickness over the steeper hill models should have been
on the order of 0.8 cm. Local destruction of this layer at the sharp-crested
triangular hills is unlikely since the fractional speedup ratio profiles over
the crest of the sinusoidal hill models are similar. Only for the triangular

hill with h/L = 1/20 1is an inner layer of 0.2h apparent (see Figure 3.26).
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The discrepancy between the field and wind-tunnel data is disconcerting.
It may be explained by boundary-layer relaminarization: A turbulent boundary
layer reverts towards a laminar state when it undergoes a rapid acceleration
through a strongly favorable pressure gradient. The effect 1is most
significant in the surface layer where eddies are sufficiently, small to
dissipate after being stretched by the longitudinal strain. The result is
that above a smooth surface a thickening of the viscous sublayer reduces
surface shear stresses. Although relaminarization effects have not been
investigated over rough surfaces, it can be argued intuitively that the
increased dissipation rate impedes an increase in Reynolds stresses over a
rough surface.

Several investigators have sought to explore the relaminarization process
in detail. Kline et al. (1967) and Badri Narayanan and Ramjee (1968) found
that a critical value of the nondimensional pressure gradient for relaminar-

ization was

Rp = —l% gg ~ b4 x 10-6,

=H

oo

where dp/dx was the longitudinal pressure gradient which was constant across
the boundary layers.

Blackwelder and Kovasznay (1972) conducted an experimental study to
investigate the turbulence structure of a boundary layer in a strongly
favorable pressure gradient. Typical values of Rp were also on the order of
4 x 10-6. They measured Reynolds shear stresses close to the surface but
above the viscous sublayer and showed that the shear stresses remained
constant along streamlines. Similar results were reported by Rider and
Sandborn (1977a). They presented Reynolds shear stress distributions over the
crest of ridges (Cases la, 5a and 7a).

It is appropriate to consider the laboratory study of flow over ridges in
regard to the parameter suggested by Kline et al. (1967) because pressure
gradients across the boundary layer are not constant in flow over low ridges,

Rp has been redefined by the following expression:

P
R = - v crest (3‘1)

P 33 1

[+ ]
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It should be pointed out that the velocity scale is evaluated at a height
above the crest; therefore, the critical value of Rp according to Equation
(3.1) is likely to be less than 4 x 107°.

Values of R calculated for the different wind-tunnel flow cases are

R 3.7 x 10~ (Case 5) for h/L = 1/4,

Ri =1.9 x 10'2 (Case 14) for h/L = 1/4,
Rp =2.2 % 10-? (Case 3) for h/L = 1/3, and
Rp = 3.1 x 10 " (Case 9) for h/L = 1/20.
These values of RP suggest that the flow in the inner region may revert to a

laminar state for the wind-tunnel study, except for the 1/20 ridge.
Longitudinal pressure gradients in the field study of Bradley (1978) are less
by a factor of 3000, so that no reversion was likely to take place.

It was shown in Section 2.2 that for constant shear stress along
streamlines and for weak turbulence the flow is effectively inviscid. This
theoretical result, combined with the experimental evidence that the shear
stresses remain constant, explains the large speedups close to the surface in
the flows over the steeper hills when the inner region decays.

An indication of the thickness of the inner layer may be obtained by
applying Jackson and Hunt's (1975) formula [Appendix E, Equation (E.12)]. 1In

terms of z, and L the inner-layer thickness is

2= 0.067 200'1 10-9

Computed values of £ for Cases 5, 14, 3, 9, and Bradley (1978) are 0.6 cm,
0.8 cm, 0.5 cm, 2.6 cm, and 19.6 m. respectiﬁ{;y. The "measured" value of £
is 0.5 cm for Case 9 and 28 m for Bradley's case. Although these are limited
data to validate Equation (E.12), it seems that Jackson and Hunt's expression
for £ is not unrealistic.

No research has been conducted to study the effect of a stable thermal
stratification on boundary-layer relaminarization in a wind-tunnel modeling.
Stable stratification may accelerate the relaminarization because velocities
in the wind tunnel are usually much less than under neutral test conditions.

In ,summary, it may be concluded that for large pressure gradients in the
wind-tunnel study, a realistic inner region does not always develop. Further
research is required to validate or modify Equation (E.12), and to investigate
the constraint the relaminarization phenomenon places on wind-tunnel

simulation.
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The Middle Region. Above the inner region the interaction between

perturbations of the turbulence and the mean flow are locally insignificant.
The effects of the interaction become significant for an air parcel when
nonequilibrium® flow conditions persist long enough. The following paragraphs
consider whether turbulence significantly influences mean velocity over the
middle region for the cases examined.

In Section 2.2 an order of magnitude analysis was presented to estimate
the total head losses caused by the distortion of the turbulence. The
additional total head losses at the crest can be expressed [Equations (2.18)
and (2.19)] as follows:

' - R, h —_ h

crest ~0 [R¥* X +F R if 5< Xf; ’ (3.2)
RL

' - u_h o o B

crpse 0 R E R G 5 2 AL (3.3)

where R is the maximum characteristic change in any of the Reynolds stresses
along a streamline between a point upstream and a point at the crest, and
where Rm is the maximum Reynolds stress existing in the flow field. (An
adequate estimate for Rm is the square of the longitudinal turbulence
intensity close to the surface.)

To evaluate AP' for a particular hill shape, detailed information of
the Reynolds stresses over the hill is required. Rider and Sandborn (1977a)
present data on the longitudinal and vertical turbulence intensities and
Reynolds 'shear stresses over ridges (Cases la, 5a and 7a). Their data show
the following: 1) 6 > ALu; 2) the longitudinal turbulence intensity increases
toward the base of the ridge, then decreases over the crest; 3) the vertical
turbulence intensity shows a decrease at the base of the ridge and increases
over the crest; and 4) changes in Reynolds shear stresses are small. Based on
this information, R should be evaluated by considering only longitudinal
Reynolds normal stresses, and AP' should be calculated from Equation (3.2).

Contour plots of longitudinal turbulence intensities with the streamline
pattern superimposed for triangular hill models h/6 = 0.1, h/L = 1/2, 1/4,
1/6, and 1/20 are provided as Figures 3.27 to 3.30. (These models are similar

*Equilibrium flow conditions are defined here as equal momentum transfer to
and from a particular streamline. ‘
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FIGURE 3.27. Contours of Longitudinal Turbulence Intensity Over
Triangular Hill h/L = 1/2, with Superimposed Stream-
Lines. Contour Interval &u‘/uo (8) = .0061. Test
Case 1
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FIGURE 3.28. Contours of Longitudinal Turbulence Intensity Over Triangular
Hill h/L = 1/4, with Superimposed Streamlines. Contour
Interval Au‘/u0 (8) = .0053. Test Case 5
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FIGURE 3.29. Contours of Longitudinal Turbulence Intensity Over Trianglar
Hill h/L = 1/6, with Superimposed Streamlines. Contour
Interval Au‘/u0 (6) = .0030. Test Case 7
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FIGURE 3.30. Contours of Longitudinal Turbulence Intensity Over Triangular
Hill h/L = 1/20, with Superimposed Streamlines. Contour
Interval Au‘uo (6) = .0027. Test Case 9
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to those considered by Rider and Sandborn.) The figures show that the
decrease in R between the base and the crest along streamlines close to the
surface is 33 percent of Rm for the 1/2-hill, 47 percent for the 1/4-hill,
42 percent for the 1/6-hill, and 27 percent for the 1/20-hill. The parameter
A varies between 0.3 and 1.0. Rm = 0.6 percent of ﬁo (6)2. Resulting
changes in additional total head are then at most two times Rm. Increases in
dynamic head may be as large as 300 percent; even for the 1/20-hill the
increase in dynamic head is 100 percent. Supposing that the change of
additional total head causes an equal change in dynamic head, it may be
concluded that the effect of turbulence on the mean flow at the crest is not
significant at least for h/6 < h/hLu. The effects of turbulence may be
expected to be somewhat larger for hills with h/6 > h/?\Lu (long hills).

An increased surface roughness will further increase the additional total
head 1losses. If 20/6 = 1.6 X 10-3, then R = 63 percent of Rm’ and
Rm = 0.1 percent of Eo (6)2 (see Figure 3.31). However, since RIn and R
do not change by orders of magnitude, it may be concluded that the inviscid
flow theory will predict the mean flow field outside the inner region
accurately upwind of the crest even for a large surface roughness.

Downwind of the crest, turbulence production increases, and turbulence
intensities in this region exceed upwind intensities. As a result, additional
total head changes become larger. The relative effect of the turbulence
perturbations on the dynamic head increases downwind of the crest, since the
dynamic head returns to values approximately equal to upwind values.

The effects of turbulence downwind of the crest are illustrated by
considering flow over a symmetric hill. According to inviscid flow theory,
the velocity and static pressure fields over a symmetric hill are also
symmetric. Therefore, the measured degree of flow symmetry indicates the
effects of turbulence on the mean flow.

Contour plots of mean velocity and static pressure over symmetric hill
models are presented in Figures 3.1 to 3.13 and in Appendix D. Excluding the
first four cases for which flow separation occurs, slightly asymmetric contour
plots may be observed. At the downwind base of the hills, velocities are
smaller than they are at the upwind base, and the positive static pressures
downwind are smaller than they are upwind. The static pressure plots indicate
that the downwind static pressures return very slowly to upwind values. Some

of the apparent static pressure variation may be caused by the turbulence,
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FIGURE 3.31. Contours of Longitudinal Turbulence Intensity Over Triangular
Hill h/L = 1/4, with Superimposed Streamlines. Contour
Interval Au'/uo (8) = .0060. Test Case 14
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since static pressures were not corrected for the relatively large turbulence
intensities downwind. For example, for the 1/6-hill (Case 8) downwind
turbulence intensities are 0.150(6). The resulting errors may be as large
as 10 percent of the static pressure variation at the base over a surface
layer of thickness h.

The downwind mean flow is strongly affected by the upwind turbulence
intensities. This is demonstrated in contour plots of mean velocities for
1/4-hills with different surface roughness conditions (Figure 3.32).
Asymmetry is more significant for the rough flow case. The ratios of the
upwind to the downwind maximum turbulence intensities are 1.33 for the rough
surface case, and 1.11 for the smooth surface case. One concludes that wind
fields downwind of a hillcrest are not governed by an inviscid physics;
nonetheless, in the absence of separation the inviscid numerical model may

give quite adequate results.

3.3 EFFECTS OF THERMAL STRATIFICATON ON VELOCITY PROFILES

A stably stratified boundary layer was simulated to study its effect on
the velocity field over ridges. Triangular ridges with h/L = 1/4, 1/6 and
h/6 = 0.1 were used. The freestream approach velocity was varied from 2.8 to

8.9 m/sec with a corresponding variation in Richardson number, as defined by

AT

Ri = &
T
VA

h,
from 0.004 to 0.021. Details of the measurements of the mean and turbulent
velocities and temperatures are given in Meroney et al. (1978b, Appendix C).

The effect of stable thermal stratification on the fractional speedup
ratio above the crest is shown in Figures 3.33a and b for the 1/4-hill and the
1/6-hill, respectively. There is some evidence that the experimental AS
increases slightly as the stratification becomes more stable. However, it is
probable the effect is caused by changes in approach profile shape with
stability. Similar effects were found for different approach profiles under
neutral thermal flow conditions. Calculations by Derickson and Meroney (1977)
suggest that AS will normally decrease slightly with stability for a given
approach profile.

It is likely a wider range of experimental stability conditions must be

considered to resolve this discrepancy. Since stable stratification also
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Smooth surface

FIGURE 3.32. Comparison of Mean Velocity Fields Over a Triangular
Hill h/L = 1/4 in the Smooth and Rough Surface
Boundary Layers. Test Cases 5 and 14
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FIGURE 3.33b. Fractional Speedup Ratio Profiles Over a Triangular Hill

h/L = 1/6 in Neutral and Stable Stratified Boundary Layers.
Test Cases S4 and S5
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influences. the approach wind profile it will be difficult to separate the
influence of profile and buoying in the laboratory.

The effect of stably stratified flow on the turbulence is to further
reduce the longitudinal velocity component over that originally observed in
the neutral flow case for the same ridge shapes. The temperature fluctuation
behaves as a passive scalar quantity and does not change as it is convected
over the ridge (see Meroney et al. (1978b, Appendix C).

The effect of stratified flow on the extent of a separation region is
significant, although speedup over the crest is not strongly affected.
Measurements of mean velocities downwind of a triangular hill with h/Lu = 1/4
and h/Ld = 1/0 (an escarpment) show that the downwind separation region is
much longer under stable conditions than under neutral conditions (Figure
3.34). The temperature in the separation region is low as a result of the low
wind velocities in this region; therefore, the heavier air in the separation

region resists reattachment of the separation streamline.

3.4 EFFECT OF FINITE RIDGE WIDTH ON VELOCITY PROFILES

In the previous sections, ridges with infinite width were considered.
Additional experiments were conducted over ridges with limited lateral extent
to study the effects of finite width. The ridge shapes were identical to
those employed in the two-dimensional ridge study, namely: h/Lu = 1/4, h/Ld =
1/3, and h/Lu = 1/4, h/Ld = 1/0. Total ridge widths (2b) were 9h and 18h.
Sets of velocity profiles at the crest of these ridges are displayed in
Figures 3.35 to 3.38. The deviation from the two-dimensional velocity
profiles at the crest is indicated by the solid curve at each measuring
station. 1In all four cases, the velocities at the center of the ridge are
less than for the two-dimensional case, especially if a large separated flow
region exists downwind. At the extreme ends, the velocities are about equal
for the case h/Lu = 1/4, h/Ld = 1/0. The large speedups at the ends of the
ridge crest for h/Lu = 1/4 and h/Ld = 1/3 apparently result from a reduced
separated flow region at the sides of the downwind slope.

Thése data confirm the calculated conclusions of Hunt (1978) who reported
amplification factors over the top of an ellipsoid based on a potential flow
model. Hunt's results suggest that for b/Lb > 5 the amplifications are

essentially constant regardless of the slopes, and that for b/Lb < 5, changes
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in the amplification factor become increasingly less as h/Lb decreases;
e.g., the parameter, A increases from 1.055 to 1.062, as b/Lb varies from
1 to o=, for h/Lb = 0.1.

Speedups over a finite-width ridge in a stable stratified boundary layer
are significantly less than those over the same ridge under neutral
conditions. Figure 3.39 shows a set of velocity profiles at different
locations at the crest. The ridge shape is identical to that of Figure 3.35
(h/Lu = 1/4, h/Ld = 1/0). Particularly at the ends of the crest the speedup
is much less. This is caused by the tendency of the air to go around the
ridge rather than over it. Relatively large speedup effects are obtained
above the center of the crest.
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4.0 A PREDICTION TECHNIQUE FOR THE VELOCITY PROFILE AT A RIDGE CREST

Analysis of the measured data indicates that wind speedups at hill crest
is a complicated nonlinear function of approach profile, upwind hill slope,
and downwind hill slope. Neither linearized perturbation analysis nor primi-
tive equation numeral models are currently capable of predicting speedup ef-
fects over a wide range of these parameters. In this chapter an emperical
model has been prepared to perform the prediction task of hill crest wind
speed prediction. In section 4.1 the empirical model is developed and adjust-
able constants specified. In section 4.2 the model is tested against the
independent field data of Bradley (1978). Probable error bands are specified
based on the scatter of comparisons against the laboratory measurements.
Section 4.3 recommends a step-by-step procedure for the use of this new model.

Two example cases are produced.

4.1 EMPIRICAL MODEL FOR HILL CREST VELOCITY AMPLIFICATION

It is common practice to approximate boundary-layer velocity profiles by
a power law distribution. This approach has been very successful particularly
over flat terrain. In the present study the crest profile has been approxi-
mated by a power law formula to obtain a simple relation between upwind condi-
tions and ridge shape on the one hand and crest profile on the other hand.
This implies that certain crest-profile features, such as local maximum velo-
cities ("jets"), cannot be reproduced, but that the large features of the
profile will be predicted.

The factorial increase in velocity is defined by an amplification factor

u_(z)
A(z) = i (4.1)

u (z)

Substitution of the power law expressions into this equation give

- Z aC-GO
AR = AL )7, (4.2)
re

where o and a, are the power law exponents of the velocity profiles at

the crest and upwind, respectively, and =z is the reference height where

ref
velocities are known.
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By defining variables, s and a , as

z
z P 5
h and a = h (4.3a,4.3b)

and by selecting a value, s , such that
A(sh) =1 (4.4)

the following expression is derived from equation (4.1):

o -o
C

)0

w

A(ah) = ( (4.5)

a
Let a = 1; then it appears from test cases selected from Table A.1 that
oo and A are highly correlated (see Figure 4.1). The relation between
A(h) and a o, as defined by equation (4.5) is displayed for s = 7 and
s = 10. Almost all data fall in this s-value range, implying that speedups
are practically zero for heights larger than 7h. Selecting s = 8.5 yields an
expression for A(z) which only depends on the difference in power law expo-
nents, W namely
a -o

o) = s )

If the amplification factor would be known at the reference height, the

exponent, «_, can be calculated from equation (4.5), namely

o« = - log A(ah) (4.7)

An alternative expression for A(z) may be obtained by the following
relation between a-a and A(h) (see Figure 4.1):

Substitution of equation (4.8) into equation (4.2) gives

1 - A(h)

) 2.3

A(z) = A(ah) (5 ; (4.9)

where A(h) can be calculated iteratively from the expression

A(h) = 1 + 12@33 iog (ﬁ%g%j) . (4.10)
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FIGURE 4.1. Correlation Between a - A and Crest-amplification

Factor at z=h Obtained from Wind Tunnel Experiments
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The power law profile approach may also be applied to establish a
criterion for the height at which the streamlines are approximately horizon-
tal. For numerical calculations, such a criterion may be of practical value
for the specificiation of the height of the top boundary condition. Stipulat-
ing that at a height th , the streamlines are not affected by the fopography
(streamlines are horizontal), the following expression is obtained after

integrating the upwind and crest power law profiles:

a +1 o
c _ t=1,,t-1"¢c
<= EhdEh (4.11)
o
Since t>>1 and a, < 0.25, the factor t may be approximated by
1+o
t s —2
a-o. . (4.12)

Expression (4.12) suggests that for large differences between o and
o (large speedup) t is relatively small. Hence, low hills require a rela-
tively much larger spatial domain during numerical calculations than steep
hills with the same height (provided no flow separation occurs).

It has been shown that the speedup over a hill can be characterized by a
single parameter, namely the amplification factor at a selected height, pre-
ferably above the inner region. By relating this amplification factor to the
three most important characteristics, namely a h/Lu and h/Ld 5 Xt i
possible to predict the amplification distribution from the upwind velocity
distribution (ao) and ridge characteristics.

The dependency between a and A is given in Figure 4.2 for two sets
of values of h/Lu and h/Ld. These data suggest the following relation
between a and A.

1::15: % a,
A(Clo) = A(ﬂo') W (4.13)

where a and ao' are two different upwind power law exponents. For more
gentle hills, however, the effect of a on A decreases. Note that for
flat terrain A(ul) = A(uo').

The relations between A(h) and different combinations of h/Lu and
h/Ld for a = 0.13 are given in Figures 4.3 and 4.4. Measured amplifica-

tion factors for a # 0.13 were corrected using equation (4.13). Since
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there is considerable scatter in the data, the curves given in Figure 4.3 and
4.4 were selected on the basis of the available data and an understanding of
the effects of flow separation on the mean flow over the hill.

In this section a methodology has been developed to predict the mean
velocity distribution above a ridge crest. The prediction techniqug has been

applied to an example problem in the following section.

4.2 MODEL COMPARISON AGAINST FIELD DATA

The amplification factors calculated from Bradley's (1978) velocity
measurements were compared with predicted amplifications using equations (4.6)
and (4.7), and, alternatively, wusing equations (4.9) and (4.10). A
representative upwind velocity distribution was obtained for Bradley's case by
extrapolating the velocity data upwards from 25 m by assuming a logarithmic
velocity profile. A power law exponent was then estimated by fitting the
power law formula over a layer between 10 m and 100 m. It was found that
a, = 0.26, which is in good agreement with Counihan's estimate of 0.24 for
flat terrain with a roughness length Z. = 1 m. Values of a, and A(z)
have been calculated for various reference heights. Results are presented in
Tables 4.1 and 4.2. The amplification distribution was also calculated using
equations (4.9) and (4.10). Results for various reference heights are given
in Table 4.3.

A comparison between: predicted and measured amplification factors
indicates that equation (4.6) leads to an average error of about 15 percent.
Better results were obtained with equation (4.9), particularly for reference
heights above the inner region. The errors in predicted amplification factors
are less than 10 percent. For reference heights above the inner region,
errors are less than 5 percent. When equation (4.9) was applied to the wind-
tunnel data, average errors in the predicted A-values deviated less than 5

percent from the measured amplification factor.

4.3 EXAMPLE CALCULATIONS

In Section 4.1 of this report empirical expressions were developed to
predict mean velocities above a ridge crest. The following paragraphs suggest

a rate methodlogy to follow when estimating wind speed over hill crests.
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TABLE 4.1. TField Data of Bradley (1978) and Calculation of A(ah) and
o
z _0 ac
(m) (m/s) (m/s) A(ah) a %
9 2.84 5.45 1.92 0.055 0.13
17 3.70 7.16 1.94 0.104 0.11
28 4.36 8.13 1.86 0.172 0.10
40 4.82 7.93 1.64 0.245 0.12
55 5.25 8.29 1.58 0.337 0.12
70 5.57 8.50 1.52 0.429 0.12
89 5.89 8.66 1.47 0.546 0.12
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TABLE 4.2. Comparison of Measured and Calculated Amplification Factors, A,
Using Equation (4.6)
Field Data Calculated A Using Equation (4.6)
z
(m) A(z) 8, = 0.13 a, = 0.11 a, = 0.10 a, = 0.12
9 1.92 92 1.74 1:57 1.83
17 1.94 I7 1.62 1.55 1.70
28 1.86 .66 1.54 1.48 1.60
40 1.64 .59 1.48 1.43 1.53
55 1.58 .52 1.43 1.38 1.47
70 1.52 47 1.39 1.35 1.43
89 1.47 .43 1.35 1.32 1.39
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TABLE 4.3. Comparison of Measured and Calculated Amplification Factors, A,

Using Equation (4.9)

Field Data Calculated A Using Equation (4.9)
(;) A(z) 9 m 17 m 28 m ah 40 m 55 m 50 m 89 m
9 1.92 1.92 2.14 2.25 2.04 2.07 2.06 2.07
17 1.94 1.76 1.94 2.02 1.86 1.88 1.87 1.88
28 1.86 1.65 1.79 1.86 1.73 1.75 1.74 1.75
40 1.64 1.57 1.70 1.75 1.64 1.66 1.65 1.66
55 1.58 1.51 1.61 1.66 1.57 1.58 1.58 1.58
70 1.92 1.47 1.55 1.60 1.51 1.52 1.52 1.52
89 1.47 1.42 1.50 1.53 1.46 1.47 1.47 1.47

r
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Prediction Procedures

a)

Available data: ridge shape, upwind surface roughness, and upwind
topography.
1) Determine characteristic ridge lengths Lu and Ld'
2) Determine the upwind power law exponent a- ¢

For a uniform and homogeneous upwind surface roughness, a good
estimate of the power law exponent may be obtained from Counihan
(1975). He proposed the following relation between surface rough-

ness 2 and o :
0 0
_ 2
a = 0.096 log10 z, + 0.016 (log10 zo) + 0.24 (4.14)

The following values of z, ~are typical for different terrain

types:

snow and short grass 0.1 cm
crops 5 cm
rural 20 cm
rural and woods 50 cm
woods 100 cm

Alternatively, o  may be obtained by matching the powerlaw
velocity distribution to the atmospheric velocity distribution for

stable conditions, given by
u = Y ) 2 _
uo(z) K 1n st B I ; (4.15)
o mo

where Lmo is the Monin-Obukhov length parameter. The powerlaw

exponent a, as a function of height is then

VA
1 ' I‘mo
a = = = ; (4.16)
In =— + B —
z L
o mo

A representative value of z is 2z = 0.7h, so that

h
. 1+ 0.7 ‘I;; (4 o
° wmEB.o7pl

mo

If upwind topography is close to the ridge, it creates high turbu-

lence levels; hence, one has to increase a to say a = 0.3.
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b)

Generally this correction must be applied if the upwind topography
has steep downwind slopes h/Ld < 1/4 and if the distance to an
upwind hill is less than 15 times the height of the upwind hill.

3) Determine the power law exponent correction factor from

Ala) g 08

= A(ao=0.13) - 1.15+a (4.18)

f

4) Estimate A(h; By = 0.13) for h/Lu, h/L from Figures 4.3

and 4.4, and multiply this value with f.

d

5) Calculate the amplification distribution using the following

expression

1-A(h)
A(z) = A(h) B) 2.3 | (4.19)

6) Determine the velocity profile from

Ec(z) o

=A(2) G ° . (4.20)

u (z ref

o “ref

Available data: ridge shape, upwind surface roughness, and upwind
topography, and uo(zref) and uc(zref)'
1) Determine o as indicated under a, point 2.

2) Calculate

u (z_ L)
A( = ek (4.21)
u

Z ) =
ref
o(zref)

The reference height, z , should be preferably above the inner

ref
region: (z_; > 0.067 200.1 -4

3) Calculate the amplification distribution

1-A(h)

AGz) = Az, )2 23, (4.22)

z
Z
ref

where A(h) follows from
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Examples
a)

b)

Z
AR = 2 # %52 (E2E)\10g (K%£%§E7) . (4.23)

The following data is available:

Lu = 550 m; Ld = 600 m; h = 163 m; ¢

uniform surface roughness, woods; no upwind hills.

(Bradley, 1978).
According to Figures 4.3 and 4.4 A(h; ¥ = 0.13) = 1.20. From
equation (4.14) it follows that a = 0.24 (z0 = 1 m). The A

correction factor is then 1.09, so that
A(h) = A(h; a = 0.13) f = 1.31.

Thus the velocity distribution at the crest is
uc(z) 0.24

= 1.31 (=2—)
) Zref

uo(zref
The following data is available:

I.u = 550 m; Ld = 600 m; h = 163 m; uniform surface roughness,

woods; no upwind hills; Eo(l? m) = 3.70 m/sec; Ec(l? m) =

7.16 m/sec.

The amplification factor at z = 17 m is
A(h) = 1.36,

so that (equation (4.22))

-0.16
A(z) = 1.94 (§?)

The velocity distribution at the crest is then

ﬁc(z) 2 -0.16 . 0.24
- = 1.94 (%) )
uo(zref ref
The velocity distribution is expressed in terms of Eo(zref) and

Z of tO indicate that any height may be selected. For example, one

may select the annual mean velocity at 10 m.
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5.0 TURBULENCE CHARACTERISTICS OVER TWO DIMENSIONAL RIDGES

The implications of ridge presence on boundary layer turbulence structure
is discussed in Section 5.1 in terms of rapid distortion theory. Section 5.2
reveals that the terrain influence of turbulent energy distribution over

narrow eddy scales is small for inseparated flow fields.

5.1 DIRECTIONAL DISTRIBUTION OF TURBULENT ENERGY OVER RIDGES

The turbulence structure over a ridge is distorted by the additional
strains induced by the ridge. In the inner region the turbulence interacts
strongly with the mean flow, whereas in the middle region the turbulence-main
flow interaction is weak. The inner and middle regions will be considered

separately to discern this difference.

The Inner Region. Section 3.2 indicated that the Reynolds stresses in a

thin layer adjacent to the hill-model surface did not always accurately
simulate field conditions. Nevertheless, it is possible to approximate the
shear stress distribution at the crest by making a number of assumptions,
namely: 1) equation (E.12) provides a realistic value for the inner-layer
thickness, 2) the Reynolds shear stress at the outer edge of the inner layer
is constant and equal to its unwind value, 3) the decrease of shear stress
with height is linear, and 4) the longitudinal inertial stress gradient at a
height £ is of the same order of magnitude as the vertical shear stress

gradient. The shear stress distribution above the crest may then be expressed

as
2
o u
uw(z) _ 2-z *
g =2 8500 * gy 0<z<g (5.1)
u (2) L Y L

0

Turbulence shear stresses measured by Bradley (1978) above the crest of a
prototype ridge correspond closely to those predicted from equation (5.1).
Bradley‘also reported measurements of the three components of the turbulence
intensity in the inner region. His data suggest that all turbulence compo-
nents above the crest are approximately 50 percent larger than at comparable

heights upwind.

The Middle Region. In the middle region the turbulence is affected by

the history of the airparcels. Particularly, if the eddy-decay time-scale is
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less than the time it takes an airparcel to travel over a distnace L ,
history or rapid distortion effects dominate turbulence production and
dissipation effects. In Section 2.1 it was shown that this is generally the
case if L < 6.

Figures 3.1d, 3.5d, 3.7d, 3.9d and 3.27 to 3.31 show contouyr plots of
longitudinal turbulence intensities. In all cases a slight increase exists
along streamlines toward the upwind base and a decrease exists towards the
crest. Rider and Sandborn (1977a) reported measurements of vertical turbu-
lence intensities for almost identical flow cases. Their data show that the
relative vertical component of turbulence increases at hill crest.

For all flow cases considered herein L < 6. Therefore the turbulence is
"rapidly distorted" by the mean flow. An increase in vertical turbulence
intensity and a decrease in longitudinal turbulence intensity were predicted
around a circular cylinder by a Rapid Distortion Theory (Hunt, 1973). Hunt's
approach flow was irrotational; whereas the approach boundary layer in the
wind tunnel is rotational. Apparently the mean vorticity of the boundary-
layer flow is, at least qualitatively, not different from irrotational distor-
tion. Even in the surface region, where the vorticity is relatively large and
the eddy-decay time-scale relatively short, a continuous decrease of
longitudinal turbulence towards the crest is noticeable (except for the
1/20 hill). For L > 6 the effects of turbulence production, dissipation and
diffusion become more significant. These effects reduce the degree of

anisotropy of the turbulence.

5.2 TURBULENT SPECTRAL DISTRIBUTION OVER RIDGES

The turbulence eddy structure was investigated by measuring the frequency
distribution of the longitudinal fluctuating velocity component. Power spec-
tra of the velocity signal were generated at several locations along stream-
lines over the 1/4-ridge (Case 5). The locations are indicated in Figure 5.1.
The spectra are reproduced in Figures 5.2 and 5.3. (After normalization, the
spectra were shifted in the vertical for ease of comparison.) The differences
between the spectra are not large. The only systematic deviation noted was
irregularity of spectra along the streamline going through the points 1, 2,
and 3.
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FIGURE 5.1.

Locations in the Flow over Triangular Hill, h/L = 1/4, where Velocity Time Signals were Taken
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Probability density functions of the longitudinal velocity fluctuations
‘were generated for the points 0, a, b, 1, 2, and 3 (Figure 5.1). The density
functions as displayed in Figures 5.4 and 5.5 show clearly the effects of in-
crease and decrease of turbulence intensities along streamlines. The shape,
however, remains essentially the same, except for point 3. Skewness and
flatness factors of the probability density function are provided in Table
5.1. The skewness factor decreases at the upwind base of the ridge and then
increases over the ridge to values approximately equal to those upwind. The
initial sharp decrease is caused by changes in minimum peak velocities and not
by those in maximum peak velocities. The flatness factor at the crest is
about 3 and less at the upwind and downwind base. This indicates that the
extreme velocity fluctuations in these regions are relatively small.

In summary it may be concluded that the directional redistribution of the
turbulence kinetic energy along a streamline is the most significant phenome-
non. The frequency distributions and probability density function of the

velocity fluctuations change only slightly.
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TABLE 5.1. Statistical Characteristics of Longitudinal Velocity
Fluctuations (Case 5)

Point Turbulence Skewness Flatness
(Figure 5.44) Intensity Factor Factor

0 0.080 0.33 ° 3.15

a 0.079 0.26 3.09

b 0.058 0.30 312

I 0.074 0.18 2.80

2 0.058 0.23 2.95

3 0.096 0.27 2.74
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6.0 CONCLUSIONS

In this chapter final conclusions are drawn concerning the implications
of this experimental program for WECS-siting procedures. The conclusions
listed here are general rather than specific, which reflects the cgmplicated
and nonlinear behavior of the phenomena studied. Many specific sub-
conclusions which will be valuable to meteorologists, engineers, and numerical
specialists are contained within the subsections of Chapters 3.0, 4.0 and 5.0.

Some of the remarks included below may seem obvious or trivial; however,
the reader should recall that due to the lack of data many perturbations
proposed have been only conjecture until now. Indeed, the most recent review
on flow over topography prepared by the World Meteorological Organization
(Davidson, 1964) was unable to conclude with any assurance whether speedup or
speeddown was most likely to occur over ridges. The conclusions are grouped
in three sections to reflect the objectives of this study as listed in Section
y e

6.1 WIND CHARACTERISTICS OVER RIDGES

Wind characteristics over ridges are affected to some degree by ridge
shape, surface roughness and upwind turbulence, and thermal stratification.
Specifically this study reveals:

1. The occurrence of flow separation at the downwind side of a ridge
depends on both upwind and downwind slopes and is independent of the
ratio of ridge height to boundary-layer thickness. Flow separation
is delayed if upwind surface roughness is larger over the ridge, or
if turbulence levels in the approach wind are high due to upwind
topography. Flow separation may occur for more gentle slopes if the
upwind surface roughness is less than that over the ridge or if the
flow has a stable stratification.

2. The downwind separation region is in general large as a result of a
strong interaction between the main flow and the separated flow
region. Crest velocities are reduced significantly. Static pres-
sure gradients above the separated region are largest across stream-
lines. If no flow separation occurs the static pressure gradients

are largest parallel to the streamlines.
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The downwind separated flow region may extend to a distance of 15 h
from the crest. For relatively gentle slopes the separation region
is shorter. The downwind flow remains in nonequilibrium after
reattachment. Return to equilibrium flow conditions depends on the
length of the separation region; it is on the order of 100 h for
steep downwind slopes.
Upwind flow separation depends primarily on the upwind slope.
Separation will occur for h/Lu < 1/2. The separated flow region
upwind is generally much smaller than the separated region downwind
because the interaction between wake and main flow is impeded by the
presence of the ridge. The interaction may vanish for sufficiently
large vorticity.
The effect of the turbulence on the mean flow is very small, except
for the inner region. In the inner region Reynolds shear stress
gradients are the same order of magnitude as pressure gradients. A
realistic estimate for the inner-layer thickness could be obtained
from

2 = 0.067 zoo°1 02 (Jackson and Hunt, 1975).
However, it is recommended that further research be conducted to
validate this expression (see also point 1 in Section 6.3). The
turbulence above the inner region, downwind of the crest affects the
mean flow most significantly. An estimate for total head losses re-
sulting from nonequilibrium flow conditions over a hill may be ob-
tained from equations (2.18) and (2.19).
The turbulence structure changes along streamlines in the flow field
over hills. In the inner region, where turbulence length scales are
small, the turbulence dissipation and production rates are the domi-
nant terms in the turbulence kinetic energy equation. Consequently,
the turbulence intensities and shear stresses increase towards the
crest. In the middle region for L < & the turbulence character-
istics at the crest behave as those predicted for turbulence under-
going a contraction. The longitudinal turbulence intensity reduces
in magnitude towards the crest, while the vertical turbulence inten-
sity increases. For L > § distortion effects are still important;

in addition turbulence production, dissipation, and diffusion affect
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the turbulence structure. In general, turbulence characteristics in
the middle region, other than turbulence intensities, do not deviate

significantly from upwind conditions.

6.2 FUNCTIONAL DEPENDENCY BETWEEN UPWIND AND RIDGE-CREST MEAN VELOGITIES

A simple relation has been obtained for upwind and ridge-crest mean
velocities by systematically varying the pertinent ridge and flow character-
istics (see Section 5.4 and Appendix E). The method incorporates the most
important parameters which affect the wind velocity amplification at a ridge
crest. The following conclusions may be drawn with respect to speedup:

1. Largest speedups occur over ridges which just avoid flow separation

and which are symmetrically shaped (See Figures 3.20, 4.3 and 4.4).

2. Amplification (not necessarily speedup) is largest for large upwind
power law exponents.

3. Measurements and theory suggest that mild stable or unstable
stratification decrease or increase wind velocities slightly at hill
crests, respectively, for equivalent approach velocity profiles.
This, of course, assumes no elevated inversion of "1lid" that lies
directly above a hill crest. When airflow is constrained to move
between a ridge and an elevated inversion then exactly opposite wind
effects are likely.

4. Speedup over round-crested and sharp-crested ridges are essentially
equal for ridges with the same parameters, h/Lu and h/Ld. If
flow separation occurs speedups may be larger over round-crested
ridges because of later flow separation.

5. Speedups over ridges of finite width (b = 9 h and 18 h) are
approximately the same as those over infinite-width ridges. Under
neutral flow conditions, wind velocities are slightly larger at the
ends of the crest and slightly less at the center. Under stable
flow conditions speedups are larger in the center and significantly
less at the ends of the ridge. Potential flow calculations (Hunt,
1978) suggest that for b/L > 5 the amplifications are essentially
constant irrespective of the slopes and for b/L < 5 changes in the

amplification factor become increasingly less as h/L decreases.
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6.3 PHYSICAL AND NUMERICAL MODELING

Physical modeling requirements of the turbulent approach flow were met as
specified in Appendix F. As a result dynamics and kinematics in the middle
region replicated the atmosphere accurately. It appeared, however, that
physical similarity in the inner region could not be met under certain
conditions.

Based on a categorization of flow regimes criteria for the applicability
of simple closure models were developed. In Appendix E a comparison was made
between mathematical models to investigate the effects of the turbulence
closure equations on the surface shear stress. In addition mathematical
modeling techniques of flow over ridges including flow separation were
discussed.

In this section conclusions are drawn that summarize the most significant
limitations of specific modeling techniques.

1. The flow in the inner region over ridge models may be affected by
boundary-layer relaminarization if pressure gradients are suffi-
ciently large. It appears that in the present wind-tunnel study the
pressure gradients over the steeper ridges were such that this
phenomenon affected the thickness of the inner region. Further
research is required to investigate the constraint the relaminariza-
tion phenomenon places on wind-tunnel simulation.

2. Realistic representation of the turbulence effects on the mean flow
in the middle region by simple closure models, i.e., mixing length
model, modified mixing length model taking into account streamline-
curvature effects (Bradshaw, 1969), and the turbulence kinetic
energy model, is rather limited. In Appendix E, Section E.1 the
conditions are summarized under which the closure assumptions may be
applied.

3. A comparison between surface shear stress distributions over
bell-shaped hills computed by different mathematical models showed
considerable discrepancies. No clear correspondence existed between
numerical nonlinear models. Research is required to establish
criteria for the proper discretization of the mathematical model in
the surface region.

4. Linear models may be applied to flow over low hills. Results of

Jackson and Hunt (1975) suggest that linear models may be applied to
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hills with h/L < 0.01. However, Jackson and Hunt found also agree-
ment between theory and experiments for hills with slopes too steep
for the theory to be strictly valid.

Existing mathematical models of flow over surface obstacles that
include flow separation require a substantial amount of, empirical
information and are difficult to apply to other than very simple

surface obstacle shapes.
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APPENDIX A EXPERIMENTAL PROGRAM AND INSTRUMENTATION

A.0 INTRODUCTION

Laboratory simulation permits the systematic evaluation of the influence
of simple combinations of approach flow wind characteristics and of topo-
graphical features on the resultant flow field over model topography. In this
Appendix the test conditions, the methods used to make measurements, and the
techniques employed in converting raw measurements to meaningful physical
quantities are discussed. Attention is drawn to the limitations in the tech-
niques in order to prevent misinterpretations or misunderstandings of the
results.

A number of reports have been prepared under this research program
(Meroney et al., 1976a, 1976b, Rider and Sandborn, 1977a, 1977b, and Meroney
et al., 1978a, 1978b). A large portion of the data was obtained in the flow
field over two-dimensional ridges. In this Appendix such information is con=-

solidated by reviewing test conditions, measuring techniques, etc.

A.1 THE WIND-TUNNEL FACILITY

The experiments were performed in the Meteorological Wind Tunnel (MWT)
located in the Fluid Dynamics and Diffusion Laboratory at Colorado State
University. A plan view of the wind tunnel is shown in Figure A.1. The
tunnel is a closed-circuit facility drivem by a 250 hp variable-pitch,
variable-speed propeller. The test section is nominally 2 m square and 27 m
long fed through a 9:1 contraction ratio. The test-gection walls diverge 0.01
m/m and the roof is adjustable to maintain a zero pressure gradient along the
test section. The mean velocity can be adjusted continuously from 0.3 to
37 m/sec. The wind speed in the test section does not deviate from that set
by the speed controller by more than one percent. The tunnel is equipped with
a heating and cooling system to simulate thermally stratified boundary layers.
The floor is cooled by circulating brine through coils insulated in the floor.
Thermocouples imbedded in the floor were used to maintain a uniform prese-
lected temperature. The freestream temperature was controlled by a heat
exchanger in the return-flow leg of the tunnel. Under neutral flow conditions

the heat exchanger was used to maintain the air temperature at a constant
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level (% %OC). All tests reported in this report used a neutral or stable
boundary-layer stratification. The facility is described in detail by Plate
and Cermak (1963).

At the entrance to the wind-tunnel test section a 0.038 m high saw-tooth
boundary-layer trip was installed to insure prompt formation and growth of a
turbulent boundary layer. The boundary-layer thickness increases with dis-
tance from the entrance. Over the smooth plate the thickness of the boundary

layer increases in proportion to x0'48 (Zoric 1969).

A.2 TEST CONDITIONS

A series of 15 hill models were constructed for tests in the
meteorological wind-tunnel:
- symmetric triangular hill models with a width of 1.83 m, a height of
5.08 m, and slopes (h/Lb) of 1/2, 1/3, 1/4, 1/6, and 1/20;

- symmetric sinusoidal hill models with a width of 1.83 m, a height of
5.08 cm, and slopes (h/Lb) of 1/3 and 1/4;

- triangular hill models with a width of 1.83 m, a height of 5.08 cm,
one vertical face, and one slope (h/Lb) of 1/2, 1/3, 1/4, and 1/6;

-~ triangular hill models with a width of 0.90 m, a height of 5.08 cm,
one vertical face, and one slope (h/Lb) of 1/3 and 1/4;

- triangular hill models with a width of 0.45 m, a height of 5.8 cm, one
vertical face, and one slope (h/Lb) of 1/3 and 1/4.

The symmetric models were constructed by placing a 0.32 cm thick
Plexiglas skin over 9 support ribs. The models were equipped with static
pressure holes and preston tubes. The asymmetric.models were constructed in a
similar manner, but the material was wood and masonite, 0.32 cm thick.

The experiments were carried out in three phases. In each phase,
somewhat different experimental procedures were applied as suggested by dif-
fering accuracy or resolution requirements (see next section). Upwind condi-

tions for Phase I were different from Phase II and III.

Upward Conditions, Phase I. The hills were mounted in the wind tunnel

with a false floor upstream. The false floor was placed 5.60 m directly
downwind of the initial boundary layer trip and was 10.75 m in length, (Figure
A.2a). The false floor consisted of three sections: an approach ramp, a

plywood testing base, and a trailing ramp behind the hill. The horizontal
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length of approach ramp was 1.3 m. The plywood testing base was that section
of false floor positioned adjacent to and flush with the approach ramp.
Plywood, 1.91 cm thick, was used to maintain a horizontal surface on which
designated models could be placed. The testing based covered 8.55 m in
length. The trailing ramp was the final section of false flopr located
furthest downstream. The ramp was positioned flush with and sloping downward
from the testing base. This final section of false floor was 0.90 m in
length. The approach and trailing ramp formed an angle of about 1° with the
horizontal. The center of the model was set 14.0 m from the entrance (Figure
A.2b). During Phase I freestream wind velocities were set at 9.1 m/sec and
15.2 m/sec. For a detailed description of the upwind flow characteristics,

the reader is referred to Section A.6.

Upwind Conditions Phase II and III. The models were mounted directly on

the aluminum floor of the wind tunnel. During stratified flow measurements,
cooling plates were installed beginning at 1.83 m from the saw-tooth fence and
ending at 11.93 m. The surface of the cooling plates was varigated as a
result of cooling channels. The coolant channel ribs were 0.16 m in height
and were spaced both normally and parallel to the flow. The center of the
models was set at 18.6 m from the entrance.

For one of the runs in Phase II, a uniformally rough surface was obtained
by glueing graded rock particles, having an average diameter of 0.25 cm spaced
approximately 1.0 cm on center, to 1.91 cm plywood support boards. The par-
ticle size and distribution was designed by the method of Gartshore and
de Croos (1976) to produce a 20/6 & 1.5 %X ]0-4. Roughness was also applied
to the hill utilizing double-sided sticky tape. The roughness extended 7.2 m
upwind of the hill crest and 2.4 m downwind of the crest. On the upwind side
of the rough boards, an approach ramp was installed flush with the board.

During all tests (Phases I, II and III) the wind tunnel ceiling was kept
horizontal, including the section in which the hill models were installed. No
measurable changes in static pressure gradients along the ceiling were observ-
ed before or after installation of the hills.

An overview of all test conditions is presented in Table A.1. For
detailed information on upwind flow characteristics, the reader is referred to

Section A.4.
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TABLE A.1. Identification of Test Cases Including Locations of Tabulated Data

i, (10h) . Tabulated Data
case  Shape’! MLy MLy s e (/sec) Ki 2016 i /G{10n) LTRR, v T ¢
1 e /2 12 09 11 9.1 o Lzx10™*  Lozr 11 1 a.a.  n.a.
la tr /2 1/2 .1 1 9.1 L] 1.2 x 10-& .034 2 3 3 3 3 o na
2 er 12 12 BT 15.2 o 7.sx10 Lo 1 na. ma.
3 tr 13 173 a1 9.1 0 t2x10t Lo 11 na.  n.a.
4 tr 13 173 at 15.2 0 7.5x107° o3 11 T
5 tr i /4 011 9.1 o 1zxw0t Loz 1 el ne om0 |7
sa e m 4 BT 9.1 0 L2xi0t Lo i 3 3 3 3 ma na | ’ N
6 tr m 174 I 15.2 o 7.5x10d Lox 11 na. na. |
7 tr 16 /e 0 1 9.1 o 12x10"  Low 113 1 B . |
1a tr /6 /6 .11 1 9.1 o 1.2 x N!"‘I .034 3 3 3 3 3 n.a. n.a. ?
8 tr 16 16 aI 15.2 o rsx10} Lom 11 W W
9 te /20 /20 .09 II! 9.1 0 1.2 x ln'“ 027 11 1 n.a. n.a.
10 sn we? o o 5.1 0 Lzx1w0Y Lom 11 na. na
1 sn e W) o a 15.2 o 7.5x107°  Lon 11 03 ma
12 sn ne? e n 1 9.1 0 nzx107Y 0.3 11 na. na
13 sn ! 36 1 15.2 0 7.5x107% Lo 11 na. ma
1% te 174 m 09 It 9.1 0 1.6x107  Low 1 1 o e L0 | ?
s te 14 4 09 I 9.0 .004 . 4 4 4 4
s2 % 14 m 09I 6.0  .008 : 4 4 4 4
53 tr /6 1/4 .09 11 3.0 021 - 4 b [ 4
s4 te /6 16 091 6.0  .008 - 4 L 4 4
s5 tr 1/6 16 0 I 0 .02 = 4 4 4 4
1 te 3 m 29 9.1 o nzx10™t o7 2 2 foas B.a
I tr /4 1/3 .09 11t 9.1 [ 1.2 x 107 027 2 2 2 n.a. n.a
1 te 2 14 RT3 9.1 o rzxi0t o2t 2 2 2 G .
v t m 1z 09 I 9.1 o rzxi0t Lo 112 2 na. A
v te 1/2 1/6 09 I 9.1 o r2x10t Lo 2 2 2 na. na.
vi tr 6 1z 09 I 9.1 o 12xw0t Loz 22 2 WD W
Vi tr 12 1/3 09 I 9.1 o 1.2x10* .027 2 2 2 na. o
Vil tr 13 1/2 .09 111 9.1 0 L2x107" 021 22 2 n.a.  n.a.
1% tr 2 1/0 09 101 9.1 0 L2x10" 027 2 2 2 n.a. n.a
X te 1/3 1/0 09 I 9.1 0o 1zxwt .027 2 2 2 na. o
X1 te 174 1/0 .09 Il 5.1 0 Lzx10% Lozt 2 2 z n.a.  n.a.
X1 te e 170 09 1 9.1 o r2x10t Lo 2 2 2 n.a. B
e 170 09 9.1 0 r2xwt Loz 2 na.  n.a
XIv [T 7Y 1/0 09 1 9.1 o 1zxw0t Lom 2 8.8 f.a
v Y 3 09 11 9.1 o 12x1w0t L1 .2 ) n.a.  na.
Wi et we T .09 111 9.1 0 1z2x107t .027 2 0.3, n.a
W e 14 10 09 I 3.0 015 1.2% 107 - 2 2 2
XVIII tr /e /o .09 mnr 6.0 011 1.2 x lﬂ" - Ry 2
XX v 170 09 30 .5 rzx0t 0 - 2 2
X g 14 1/0 0911 6.0 o1 12 x 107t . 2 2

5) Spectra and probability density functions

2) Equivalent to h/ are presented in Figures 5.1-5.5 of this report

3} Ridge with fi = 45m 6) Kumbers refer to reports listed below

4) Ridge with finite width 2b = 9Ucm 7) tr: triangular, sa: sinusoidal, n.a.: not applicable

1 Reported lu:

toal. (197uh)

®ef this teport

£ samdbern (14771 (posityve x=directinn paints in upwind Jdirection)

Heroney ot al, (19/80), Appendix € (positive x-dirrction points in upwind dicection)
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A.3 MEASURING PROCEDURES

All measurements in the flow field over the hill models were carried out
over a grid of points determined by vertical surveys (z-direction) at particu-
lar longitudinal points (x-direction) along the center of the tunnel. The MWT
carriage can be positioned at any desired point in the x-direction. ‘A control
unit outside the tunnel monitors the vertical movement of the probe support
and probes through the boundary layers. This actuator system provided a
constant voltage change for a particular change in height. The probe support
was attached to the carriage by a 1.00 m extension bar. The length of this
bar was sufficiently long that the flow distortion due to carriage was negli-
gible at the measuring location (Figure A.3a).

In the tests, a stop rod attached tightly to the probe support made
contact with the floor prior to the other instruments. The purpose of the
stop rod was to protect the probes from being driven into the floor and to
accurately determine the vertical distance between the surface and the probes.
During Phase I an electric indicator triggered when the stop rod contacted the
floor. During Phases II and III a 0.00254 cm dial indicator was employed to
determine more accurately the z-locations of the probes within 0.5 cm of the
wall. A schematic of the probe support is given in Figure A.3b.

The freestream velocity was monitored throughout the tests with a
pitot-static probe affixed to the ceiling upstream of the hill locationms.

The instrumentation employed during Phases I, II and III is listed in
Table A.2.

Mean Velocity Measurements. During Phase I, mean velocity measurements

above the hills were made with commerical probes. Dynamic pressures were
measured from the pressure differential between the total-head hole of a kiel
probe 0.16 cm in diameter and the static holes of a pitot-static tube 0.18 cm
in diameter. The kiel probe is insensitive to flow angles over a range of at
least * 40 degrees. For the range of velocities measured in the present study
the kiel probes agreed with the total pressure measured by the laboratory
standard probe. In the region near the hill surface where relatively large
flow angles were encountered the pitot-static probe was pointed in the
direction of the flow. However, due to uncertainty about the precise flow
direction, misalingment of the probe has occurred. Errors in mean velocity
caused by misalingment may have been as large as 4 percent of the local mean

velocity.
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TABLE A.2. Instrumentation

PHASE 1

PROBES

Freestream: !

Total and static pressure: pitot-static tube (United Sensor, Type
PAC)

Flow Field over Hills:

Total pressure: kiel probe (United Sensor, Type KB)

Static pressure: static holes of a pitot-static tube (United
Sensor, Type PBA)

Velocity signal: single hot-wire probe and X-wire probe (both
non-commerical): wires 80 percent platinum and 20 percent iridium,

1.2 x 10”2 cm in diameter, length ~ 0.16 cm.

Surface Static Pressure Gauges

Static taps on models; sharp edged, 0.064 cm in diameter, drilled
perpendicular to the model

Static pressure probes on the wind-tunnel floor; brass tubing 0.079
cm i.d. and 0.139 cm o.d. (end of tubes closed and small holes
drilled in a circle around circumference)

Transducers and Anemometers

Pressure transduces (MKS Baratron Pressure Meters, Type 77)

Constant temperature anemometers (TSI, Model 1051-2)

Readout and Time Averaging Instruments

Pressure meter outputs: digital voltmeters (TSI, Model 1076);
outputs averaged by 10 seconds averaging circuits of digital
voltmeters

Anemometer outputs (d.c. and a.c.): digital voltmeters (TSI, Model
1076); outputs averaged by 10 seconds averaging circuits of digital
voltmeters; X-wire anemometer outputs (a.c.): outputs multiplied by
an analog multiplier (non-commercial)

Calibration Pressure Transducer

Water manometer (Dwyer, Microtector)
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B.

c.

D.

E.

TABLE A.2. (Continued)

PHASE 11

Probes

Freestream:

Flow

Total and static pressure; pitot-static tube (United Sensor, Type
PAC)

Field over Hills, Neutrally Thermal Stratification:

Total pressure: kiel probe (United Sensor, Type KB)

Static pressure: disk probe (non-commercial);.disk diameter 0.62 cm

Mean temperature: thermistor (YSI)

Temperature signal: hot-wire probe (non -commercial): wire5 90
c

percent platinum and 10 percent rhodium, wire diameter 5 x 10 ~ cm

Velocity-temperature signal: hot-wire probe (non-commercial); wire

80 percent platinum and 20 percent irridum, 1.2%x ll‘]“-3 ‘cm in
diameter, length < 0.16 cm

Transducers and Anemometers

Pressures transducers (MKS Baratron Pressure Meters, Type 77)
Constant temperature anemometers (TSI Model 1051-2)

Temperature transducer (YSI, Model 42 SC)

Readouts and Time Averaging Instruments

Pressure meter outputs: integrating digital voltmeters (DYMEC,
Model 2401C); outputs integrated over 60 seconds

Anemometers outputs (d.c. and rms): digital voltmeters (TSI, Model
1076); outputs averaged by a 10 second averaging circuit

Temperature outputs read from needle position

Spéctra and Probability Density Functions

Correlation and probability density function (Honeywell, Model SAl
43A)

Spectra (Honeywell, Model SAI 470)

Calibration of Pressure Transducers

Water manometer (Dwyer, Microtector)
121



B.

TABLE A.2. (Continued)

PHASE III

Probes

Freestream:

Flow

Flow

Total and static pressure: pitot-static tube, (United Seﬂgor, Type
PAC)

Field over Hills, Neutrally Thermal Stratification:
Total pressure: kiel probe (United Sensor, Type KB)

Static pressure: disk probe (non-commercial): disk diameter
0.62 cm

Velocity signal: hot-wire probe (non-commercial): wire 80 percent

platinum and 20 percent iridium, 1.2 x 10“3 cm in diameter, length ~
0.16 cm

Field over Hills, Stably Thermal Stratification:
Total pressure: Kkiel probe (United Sensor, Type KB)

Static pressure: disk probe (non-commercial): disk diameter
0.62 cm

Mean temperature: thermistor (YSI)

Velocity signal: hot-film probe (TSI-10)

Transducers and Anemometers

L B

Pressure transducers (MKS Baratron Pressure Meters, Type 7)
Constant temperature anemometer (TSI, Medel 1051-2)

Temperature transducer (YSI, Model 42SC)

C. Readouts and Time Averaging Instruments

D.

Pressure meter outputs: minicomputer (HP 1000); outputs digitized
and integrated over 10 seconds

Anemometer outputs: minicomputer (HP 1000); outputs digitized,
converted to velocities and integrated over 10 seconds to calculate
mean velocities and rms of the velocity fluctuations

Temperature outputs: output read from needle position

Calibration of Pressure Transducers

Water manometer (Dwyer, Microtector
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During Phases II and III the pitot-static probe was replaced by a disk
type probe to reduce errors in flow direction. The disk probe is similar to
the Elliott rotating probe used for atmospheric static pressure measurements.
The disk is positioned vertically and parallel to the flow direction. Holes
are drilled through the center of the disk. The pressure at the holes is
somewhat larger than the static pressure in the absence of the probe due to
speed up effects. It was found that dynamic pressures using the kiel-disk
system could be calculated from

) * C (A.1)

Pagi = Puieot = Paisk disk
where Cdisk is a constant to be determined experimentally. For the range of
velocities measured in this study, Cdisk was approximately 0.9 and was
evaluated daily by calibration against a standard pitot-static probe in the
freestream.

Another error in the dynamic pressure measurements was caused by the
effects of turbulence. In the measurements over the surface with rock parti-
cles and downwind of the crest, this error could be significant, because the
turbulence intensity here was of the order of 20 to 30 percent of the local
mean velocity. Thus the maximum error in the mean velocity is estimated to be
of the order of three percent. Typical systematic errors were approximately
one to two percent. Random errors were reduced by time averaging circuits of
10 seconds during Phase I, of 60 during Phase II, and 10 seconds of Phase III.

Some data is presented which was obtained in the separated wake of the
hill using the apparatus and techniques just described. This data is pre-
sented only for completeness and for the useful qualitative view it presents

of the flow. The values given are not accurate.

Static Pressure Measurements. Static pressure measurements were taken on

the surface of the symmetric hill models and on the floor of the tunnel during
Phases I and II. Each of the models tested contained a set of pressure holes
distributed over the centerline of the hill. On the floor of the tunnel just
upwind of the hills static probes were constructed from 0.079 o.d. and 0.139
o.d. br?ss tubing. Detailed specification of the surface pressure sensors is
given by Rider and Sandborn (1977a).

Static pressures in the flow over the hill were measured along with the
velocity measurements. During Phase I readings of pressure differentials be-

tween the static holes of a pitot-static tube and the surface static pressure
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holes at the same x-location were monitored. After the vertical traverses
were completed, the pressure differentials between the surface static pressure
and the freestream static pressure were measured. The static pressures,
in the flow field over the hill were obtained simply by subtraction,

Pstat
namely ‘

Pstat ~ Pp.t. " Psurf 7 p‘surf " Pref (A.2)

This procedure was followed to eliminate some of the spatial static
pressure variation. However, it turned out that errors in the static pressure
measurements were still quite large because of dirt in the surface static
pressure holes. Another source of error was the misalignment of the pitot-
static probe. Errors were sometimes as large as 10 percent of the freestream
dynamic pressure.

During Phases II and III, static pressure readings were obtained by
monitoring the difference between the static pressure at the static pressure
holes  of the freestream pitot-static probe and the static pressure at the disk

probe. Static pressure was calculated using the following expression:

et (1-c¢ (A.3)

Pstat ~ Pdisk Pre disk) pdyn

Systematic errors were caused by the effect of turbulence and are of the order

of two percent.

Turbulence Intensity Measurements. During Phase I constant temperature

hot wire anemometers were employed to measure longitudinal and vertical
velocity fluctuations. The cross wire used was not of the usual X-wire type,
but had one wire normal and one wire yawed to the flow. The yawed wire is
sensitive to two turbulent velocities, u, w plus the correlation between the
components, uw. A detailed discussion of the experimental procedure as well
as ‘the evaluation of the hot-wire output is given by Rider and Sandborn
(1977a).

During Phases II and III, longitudinal turbulence intensities were
measured using constant temperature anenometers. The hot wires (Phase II) and
hot film (Phase III) were calibrated daily by placing them in the freestream
of the wind tunnel. The flow velocity was measured directly with a pitot-

static probe.
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Calibration data were fit to a variable exponent form of King's Law:

2=A+B " (A.4)
using a least square fitting program. From this equation it can be shown that

the local turbulence intensity is given by

u' _ 2e e' (A.5)
u m (e%-A)

On many days of testing, the hot wire or hot film was calibrated several
times per day. This was done to reduce the errors due to drifting of the
anemometer system and also to obtain an indication of the system accuracy and
repeatibility. Repeatibility in longitudinal turbulence intensities was of
the order of one percent and was never observed greater than three percent.

Some data is presented which was obtained in the downwind wake of the
hill model. The values given are not accurate because of the low mean velo-
cities and relatively high velocity fluctuations. The data should be used

only to determine trends along the new shear layer.

Probability Density and Spectra Measurements. The longitudinal velocity
signal was recorded over a symmetric triangular hill h/Lb B 1/4 , with an
aerodynamically smooth surface. Upwind surface was flat and aerodynamically
smooth. The distance between boundary layer trip and the center of the hill

model was 14.0 m. The turbulence signal was obtained with a commercial hot-

film anenometer system. The unit was operated without linearization or
filtering. According to manufacturer's specifications the film had a
frequency response up to 16 KHz' This was more than adequate in these

measurements as the maximum frequency of interest was of the order of 300 Hz‘

Measurements of power spectra and probability density functions were made
with a commerical digital data acquisition system. Probability density func-
tions (p.d.f.) and spectra were computed after multiplying the a.c. signal by
a factor 10. The system produces a 400 point p.d.f. analysis. The sample
rate was 2000 sps and the sampling time was 33 seconds. Before the p.d.f. was
generated, it was insured that the amplitude of signal would lie within
selected bounds.

Power spectra were generated by a Fourier analysis of a 400 point

autocorrelation function (a.c.f.). The a.c.f. was determined simultaneously

125



at 400 incremental lag points. The sampling rate was 1000 sps. Hence the
maximum time lag was 0.4 seconds. Point averaging was applied over 327
cycles. The power spectrum was computed by a Fourier analysis of the averaged
a.c.f. Although theoretical constraints dictate that from 400 available data
points only one half as many independent frequency points can be obtgined, the
system incorporates an interpolation scheme which provides a 1000 point inter-
polated output. In actual frequency, the maximum value is 500 Hz (Nyquist
frequency).

The computed p.d.f. and a.c.f. were available as hard copy plots in less
than a minute after the signal was recorded. The method has the advantage
that repeatability of the functions could be checked while the tests were

conducted.

A.4 DATA REPORTING

In this section a review is given of all data of flow characteristics
over ‘two-dimensional ridges obtained in the Meteorological Wind Tunnel. The
purpose is to make access to the data easier. The identification of the data
location is organized according to the three phases of the measuring program.
In Table A.1, the report location of all available data is tabulated. There
is some inconsistency in the choice of the two-dimensional coordinate system.
The standard coordinate system is such that the origin of the x-axis is locat-
ed at the crest with its positive side pointed in the downwind direction. The
z-axis is pointed upwards with its origin at the base of the upwind flat sur-

face. Deviant coordinate systems, etc., are indicated in the table.

A.5 DATA REDUCTION

The reduction of data obtained during Phases I and II was directed toward
mapping the complete pressure, velocity and turbulence fields above the hills
in the form of contour plots by employing the computer. The procedure in-
cludes data smoothing techniques reducing random errors associated with the
original data. In the generation of contour plots, the original data is
checked for internal consistency. In some cases it was necessary to exclude
certain data points and in a few cases vertical data profiles. As a result
the accuracy of the contour plots is at least as high as the original data.
An unusual feature of the contour plotting route is that the two-dimensional

domain over the hill may be specified arbitrarily.
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All available data points are included, even if they fall outside the
boundaries of the contour plot domain. Space increments Ax and Az are
equal in both x and z direction, but Ax may be different from Az. The con-
tour plots presented in this report have been generated by 50 increments in x-
and z-direction. The generation of such contour plots is described in detail

in Appendix C.
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APPENDIX B
TABULATED EXPERIMENTAL DATA OF FLOW OVER TRIANGULAR RIDGES
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TABLE B.1. Locator Table: Identification of Tables for Test Condition in

Phase III
Case h/I.u h/Ld b u(10h) Ri Table Upw%nq
(cm) (m/sec) number condition
(See TaPle 1)
I /3 14 180D 9.0 0.0  B.3a A
11 1/4 1/3 180. 9.0 0.0 B.3b A
III 1/2 1/4 180. 9.0 0.0 B.3c A
v 1/4 1/2 180. 9.0 0.0 B.3d A
v 1/2 1/6 180. 9.0 0.0 B.3e A
VI 1/6 1/2 180. 9.0 0.0 B.3f A
VII 1/2 1/3 180. 9.0 0.0 B.3g A
VIII 1/3 1/2 180. 9.0 0.0 B.3h A
IX 1/2 1/0 180. 9.0 0.0 B.3i A
X 1/3 1/0 180. 9.0 0.0 B.3j A
XI 1/4 1/0 180. 9.0 0.0 B.3k A
X1I 1/6 1/0 180. 9.0 0.0 B.31 A
X111 1/4 1/0 45. 9.0 0.0 B.3m A
XIv 1/4 1/0 90. 9.0 0.0 B.3n A
XV 1/4 1/3 45. 9.0 0.0 B.30 A
XVI 1/4 1/3 90. 9.0 0.0 B.3p A
XVII 1/4 1/0 180. 3.0 0.07 B.3q C
XVIII 1/4 1/0 180. 6.0 0.0012 B.3r B
XIX 1/4 1/0 45. 3.0 0.07 B.3s C
XX 1/4 1/0 45. 6.0 0.0012 B.3t B

1) b = 180, this hill width represents the two-dimensional flow case.
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TABLE B.2. Upwind Conditions in Phase III
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TABLE B.3a. Triangular Hill Model, Height 5.08 cm, Upwind Slope 1/3,
Downwind Slope 1/4, Surface Roughness Smooth, Freestream
Velocity 9. m/sec, Neutral Thermal Stratification
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TABLE B.3b.

Triangular Hill Model, Height 5.08 cm, Upwind Slope 1/4,

Downwind Slope 1/3, Surface Roughness Smooth, Freestream
Velocity 9. m/sec, Neutral Thermal Stratification
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TABLE B.3c. Triangular Hill Model, Height 5.08 cm, Upwind Slope 1/2,
Downwind Slope 1/4, Surface Roughness Smooth, Freestream
Velocity 9. m/sec, Neutral Thermal Stratification
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TABLE B.3d. Triangular Hill Model, Height 5.08 cm, Upwind Slope 1/4,
Downwind Slope 1/2, Surface Roughness Smooth, Freestream
Velocity 9. m/sec, Neutral Thermal Stratification
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TABLE B.3e. Triangular Hill Model, Height 5.08 cm, Upwind Slope 1/2,
Downwind Slope 1/6, Surface Roughness Smooth, Freestream

Velocity 9. m/sec, Neutral Thermal Stratification
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Z u URMS P Z u UKMS P
30 cecl 1.u5 =-.05 +30 Jud 1,03 -,03
o Bc ceb1l lald =sU7 lebu J. 09 LelO =406
!.33 d.14 lléT = UG 1.70 3.93 le2d ‘.07
2407 3,07 1.32 =+ 1V 2e43  4e30 1,36 =-,08
3.50 4.57 1.63 -.12 3.8 LT3 l.46 -.09
“. 58 5.53 1.58 ~u15 6.73 5,66 1.39 -.08
tL.3€ b.ul lecV ~-ala 9.60 tels <87 =slc
1.71 0.3 1.10 =-sl5 13,22 6,69 -1} -l
Yerk CRe-10 ol5 =.18 16,74 6,83 -1 -l
l2ece €.84 T =s1l9 240 T«20 13 =-el15
lo,43 T.15 -1 =19 23.94 7.53 +D4 =15
cu. 1 7.30 1] =19 27495 TaTh -3t -el7
23,60 fabG -1 -a21 34 T4 B.07 Y] -al7
21.1e TelU 53 =:2U 4190 B437 « 38 - lB
34,39 806 48 49,12 H,.54 24 -el9
41l.56 Be.4b .38 - 20 50.28 8.59 ol3 -alb
bba 117 Be5b 27 - 20
55.91 d,54 «15 - 18

U LUNTIUDINAL YELUCITY IN M/SEC

UkMS RMS UF LUNG. VELOCITYFLUCT. IN M/SEC
P S5T7TaTlC PReSSURES [N NIZDM2

A UUanalivb UISTANCE FROM CREST IN CM

Z RELlGAT AQUVE UPwWIND SURFACE=-LEVEL [N CM
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TABLE B.3f.

Triangular Hill Model, Height 5.08 cm, Upwind Slope 1/6,
Downwind Slope 1/2, Surface Roughness Smooth, Freestream
Velocity 9. m/sec, Neutral Thermal Stratification

CRGEOOUORCOCARIERAORRRROEG RO NRORCAEROEIRRERNVORNORPRORIRVORERDTRERARRERRRINDRGROED

AS Ueu0 X= Sa U0

z u UHMS P Z U UKMS P
5,38 5,32 -1 - o7 -1 U0 .34 =10
0,03 b,U3 -1 - 06 3.59 + U0 el -olU
T.48 Detth « 70 - 07 K] « 717 «b3 -elU
Y617 be.bl 865 - 07 Sete .22 1.30 =« 09
11.80 6,79 «55 - U6 6.4 6.73 b8 ~o0y
16.80 T.18 «57 - VS 9e3T7 7«22 1.} =+ 08
2u.4é T.39 31 - 05 13,00 T.38 M-} -.06
23.98 7453 57 = U4 16.080 Tsbe 02 =. U6
27.57 fa?l 055 - U4 20.1& 7.91 lbg ".Gb
34,77 B.23 a9 - 03 3. 117 .07 « b0 =.05
41,55 beald «37 - e 27431 HelY -1 - 04
24413 .67 . ] - Lz 4452 Bl - -o 04
S6,3U b.b6 «30 - Ve 41,73 d.75 « 32 -.03
bH.92 B.94 13 -. 02
S6b,04 d.95 +19 -el2

= pualu K= 45,00

4 u URMS 2 2z U URMS P
» 3y U0 «30 =10 «30 l.62 9B =e00
l.us «UU ol =11 1.U5 €e35 lal06 =s01
leTe LU el =10 l.70 2«85 l.c8 =.02
e «UU s4b =s10 2a10 3.39 ladl =02
3.84 1.u5 .08 =l 3.088 432 l.63 -s02
b.13 bbb/ -] =s1U b.l6 S.78 Le%v -o03
Yeze fol= sEL sy 9458 Da.45 75 -+ 02
13.21 fe3S - - U8 13.17 o.78 03 -s U3
la,Hu fedS b3 =su/ lb. b3 fe09 =11 =403
EU.“U ?'?3 257 -y Ub 20438 Tetl ebl "a03
£3.597 Te95 - =s U5 244,00 1.58 02 -+03
€l.54% dacl o7 -sUZ 27459 T.96 1] -s03
Ja,7¢ e a7 s U4 34475 Bedd o 49 - 03
41459 He75 «31 -.03 41,91 B.b4 «35 -sl2
"5;";( d.tﬂ' U7 -z 49,10 H.d5 o 17 -slic
Sback bB495 .28 L D6.E6 de%l b -.l2

U LOnGITUbLINAL VELUCLTY IN M/SEC

URMYS mMS R LUNGs VELUCITYFLUCT. IN M/SEC
2 STAl[lC PRESSUKES IN N1/Z70M2

A COwhwlivhh UISTANCE FHOM CHEST IN CM

L FElGAl GbUVE UPwlGU SURFACE=LEVEL IN CM
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TABLE B.3g. Triangular Hill Model, Height 5.08 cm, Upwind Slope 1/2,
Downwind Slope 1/3, Surface Roughness Smooth, Freestream
Velocity 9. m/sec, Neutral Thermal Stratification

BP0 vwE It eRodROURIRICCORALITEURORORRROARRAERTILOLEOIRAT VG IUBORUATERIRGERINOOONO
{

= Usbu A= fa50
Z u URMS P 2 u UKMS P
5.3k 00 69 -.02 2.b4 0V «4b ~al&
S5.951 b, 49 -1 =« UU k-7 N-11 40 - U4
b.6% 0. 36 09 «0U 5.28 l.25 -1 =-s U4
B.0Y b.buU « 70 10 2,70 a9 l.02 -.03
9,54 6.81 + 66 01 Q.54 T.28 W05 -, 00
13.vus8 6,97 «56 « 01 13.12 T.55 -1 00
16,67 T.19 «55 02 16.70 TaT1L -1 «01
20.30 7.38 -1} 02 20,31 7.87 D0 «01
23,25 T.73 -1 PRty 3.3z T.50 -1 W02
21.45 B.U9 -1 02 27.51 8.16 5l «02
34,061 Haet1 48 <03 34.04 d.61 «4b «03
G4lab] B.l2 Y 203 4] .64 .79 e 37 U3
49,01 U.95 L5 | « 04 45,01 A «13 «03
Sb.ld eI 033 w03 56.19 9,09 2V o0&
A= 15.00 X= 45,00
Z u URMS F 2 ¥] UHMS P
« 30 «UU bl -s04 Pt} « 80 -1-] =401
1.00 1] 65 -o U4 ool 1e35 ol -o01
2.45 200 -1-] a4 1,09 Le75 «b3 -s01
3.08 By 206 =s U4 2e4 U 1.86 1] -2
b.31 €+25 sbl b L 'E] 3.b5 2:59 1+.26 =+01
6.7¢ 4a40 Leo7 -.03 6.71 4495 leib =01
Y.64 1436 02 =,01 9.6U 0.32 Loty «00
13.20 f.71 b4 «00 13.22 T.03 .81 201
io,u3 T.00 aigd «01 Ib,ia Ta30 bl 201
20,40 deud o7 «01 2035 71.63 «95 «01
24,08 BacV 52 01 23.96 8.01 -3 «02
27.58 B.25 -1 w2 27.58 b 36 59 02
34.bu Be5h .52 $03 34476 B.56 49 «03
L1.97 d.H4 e 37 «03 41,94 H,91 e 40 «03
49,11 Yeul sUG U3 49,11 Yal2 o113 +03
50,30 9.07 13 U4 56,8 9.23 o2h «03

U LChGITUDINAL VELUCITY IN M/SEC

UKMS mM> OF LONGe VELOCITYFLUCT. IN M/SEC
P STA1IC PRESSURES IN NT/ZDM2

X LOwNwIND DISTANCE FRUM CREST 1IN CM

2 FEIGH] ABUVE UPwINU SURFACE=-LEVEL IN CM
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TABLE B.3h Triangular Hill Model, Height 5.08 cm, Upwind Slope 1/3,
Downwind Slope 1/2, Surface Roughness Smooth, Freestream

Velocity 9. m/sec, Neutral Thermal Stratification

R EC A UG R RO RN OGO R OB RN RGN ORUOURGOORORDEROCRECRCIBONDOOREBDODBEEY

= VeV
7 u URMS P
5,38 S.%0 DY =ec5
5,73 6,35 «99 - 28
b 4E - P%-14 07 =21
T.1¢8 6409 o171 -2
d.5E 0.70 «73 .24
11.51 7413 b2 =e25
14,39 Tatt -1 -e25
17.94 7.53 59 =23
21.51 7.10 «55 -e23
25.13 rlgs tbﬁ ‘533
eo.l2 be.l8 .13 =-ec3
32,33 8,33 a7 -.22
29,41 B.(8 39 -.23
4b.617 B899 24 -.23
53.84 Yaleg o lb -a2l
Cb,ls Geub 18 -e22
Xi= luslU
Vi u UNMS P
34 «UL .27 .l
«bd «u0 4l =12
l.bé VU 047 -.12
2:3¢ e Uu -3 =-olZ
P U0 ool -, 12
6,63 2.8 1.346 -.l4
Y50 wall WY -el3
13.0e 4,23 03 -slé
15.0$ 4,436 -1 ] -ell
EU.c& G a7 M.-1-1 =e10
23.be 4,55 «91 - U
27441 4,463 52 =-.US
34,65 44b3 52 =-+09
41,81 S5.ul 38 -.08
b ,99 Y.lb 2 U6 -s25
S6.l% 9,08 s CH -o2h

U LONCITULINAL VeLUWCITY IN M/SEC

UKMS rMS UF LUNG.

YELUCLITYFLUCT.

P STaTlu PRESSURES IN NI/DOM2

X LUsivalivD LISTANCE FrRUmM CREST IN CM

x= S5.00
Z u UHMS P
-1 LUV « 39 =37
3.2“ .OU 0““ —.3?
3.93 UV « 37 - 37
LY-T LY + 39 -a38
6.u9 4438 l.11 =-sbl
8.97 Tea2 o7 =abl
kl.ﬁb f.bU N1} =35
19.07 TeT17 31 =30
2263 TG4 -1} -.27
e6.22 Hel3 -1 =27
d?-da a.JU abl '-26
33.43 .46 -1 =25
40.00 d.84 ol ~e2b
47476 Y.00 «ld .22
ES.JO 9-09 .dZ -,:?
Xa=
Z U UKMS P
30 1.32 . 4h -, 03
«93 1oty -7 =s 04
l.07 1.78 «b3 -a U5
2.34 1.9 o1 -, 05
3.82 3.1% 96 =s05
5.&1 4-0‘ l.f3 -.0&
6,65 5.1 R "L UB
9453 6.31 le73 =sUD
13.12 b.49e lalv =05
164,175 Tetel - =.05
20.29 190 -1 =-. 05
23,94 HBele 00 -.05
27.51 d.35 -1 =+ 0b
34 b L.y «50 -s U4
41.b4 Y4 b2 =203
49,017 Y.29 < -.03
56,25 9.21 22 =203

In M/SEC

2 EleRT ABUVE UPwINU SURFACE=LEVEL IN CM
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TABLE B.3i. Triangular Hill Model, Height 5.08 cm, Upwind Slope 1/2,
Downwind Slope 1/0, Surface Roughness Smooth, Freestream
Velocity 9. m/sec, Neutral Thermal Stratification

ﬁiﬂﬂGﬂQl'ﬁﬁ‘l‘ﬂ.ﬁlll.lﬁﬁ‘lﬂﬂ'.ﬁ.‘."llG.QQC*"l.l‘ﬂ“...*i'...OQ"QQOCQG'GQQ“.I“

A= velv A= 2£.50
z u UHMS P Z U URMS P
5,38 Se.00 « 56 -, US « 3V + UL «03 -sle
5.9H 5.%3 02 =-.U5 la03 U «09 =212
b.68 6.30 71 =sUE faiv 00 N-T3 -.12
B.10 b.33 N-1.] ~alU4 2e45 VU 62 ~.12
9.57 b.b4 o7l -aU5 3.5 1.31 1] =13
13-16 [- 1913 .?u -a U4 b.'s‘l.l "‘.03 lobg -.12
16,72 Teu? «57 =,04 9.70 6,95 La.07 =511
20,35 7.26 62 -.03 13.27 Te4b -1 -a10
23,92 fe60 55 -.03 2044 ToT4 55 -+ 08
27,52 Tall 51 -sU3 lo.B4 T.64 «63 =409
34,68 B.18 « 37 -.03 24.U5 TeHU o7 -e07
4) .6 Beal « 36 -2 2763 B.03 51 =-,06
49,05 HB.068 35 =03 34717 H.36 ) -~. 05
56,21 .70 «33 =02 424,00 b.6b T =s04
«94,13 BaT9 o il =-s 0%
564,43 8,80 o3 -« 03

U LUNGITUDINAL VeELGCITY IN M/SEC

UkMS HMS OF LUNG. vELOCLIYFLUCT. IN m/SEC
P STATIC PHRESSURES IN NT1/ZDMZ2

X DOanwiIND LISTANCe FROM CHEST IN CM

Z PFEIGHT ABUVE ULPwIND SUHFACE=LEVEL IN CM
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TABLE B.3j. Triangular Hill Model, Height 5.08 cm, Upwind Slope 1/3,
Downwind Slope 1/0, Surface Roughness Smooth, Freestream
Velocity 9. m/sec, Neutral Thermal Stratification

resesrre T YT RS XE R YR AR RS ER RS R AR RS SS SRR R R RS2SR R AR R Y2 Y

x= V.00 k= 22.50

z u URMS P 2 u UKMS P
+30 «0U 49 =all
b.38 b.u6 42 =07 93 « 00 - =s11
5,.,8¢ S.ES $ 42 - U7 1.65 « 0U she -»11l
6.61 .26 ol =6 2434 «0U .4 -s11
B.04 b.57 « 45 -2 06 3.860 1l.38 48 =21l
Q9.4E 6,75 X =-.05 6,67 4.1 l.09 -sll
13.08 T403 243 -, U4 9.52 7.03 «03 -, 09
16,64 Tel7 ol =s U4 13.16 Te.27 ol -, 08
20,26 "33 43 - 03 16,69 Ted9 42 - 07
23.83 7154 sl ~s U4 20,30 TaTh W2 =07
S0y ' Te v el -a U3 23,91 Te63 « 39 -, U0
34.01 Hatd .30 -.03 2T euS 7.81 sl -s 05
4]l.d80 B.b82 «c8 -.03 34,65 bB.21 » 38 =, 05
49,00 8.6 24 =,02 4] .04 b.42 .28 ~o D4
S6,.17 B.78 - -.02 48,99 8.62 121 -s 04
56,17 de.0U o1l -s03

U LONGIIVDINAL VELUCITY IN M/SEC

UktS HM> OF LUNG. VELUCITYFLUCT. IN M/SEC
P STATIC PRESSUKES IN NI/ZDM2

X COwinwlinD DISTANCE FRUM CREST IN CM

2 rSiGal siuve UPWIND SURFACE=-LEVEL IN CM
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TABLE B.3k. Triangular Hill Model, Height 5.08 cm, Upwind Slope 1/4,
Downwind Slope 1/0, Surface Roughness Smooth, Freestream
Velocity 9. m/sec, Neutral Thermal Stratification

OO COORR DU GO RN GO ROON NS RO D AN ENTOOUGORORONECRREORCRRRORNARRERNERCORRRERGD

xX= VeUD = 22e50
z U UHMS P z V] URMS P
b.38 b.uUY «69 -aU7 «30 o 19 -1 -, U8
S5.94 b.35 W01 =07 2.18 «51 oo -a 09
6.50 .70 -1 -7 E.bb '52 -1} =-.08
T.28 6.7 «03 =a U7 3.01 hb 70 =.08
b.8S 6.93 bl =« 06 3.39 1.27 « 76 =a 09
11.20 1«12 59 = U6 3.98 lebd 9% =,09
13.25 1.29 1] "'ou_b boettls 2.58 la10 -e 09
16,95 T.36 53 -.U5 4495 3,43 l.32 =09
20,34 T.53 55 =.U5 S.42 3.79 letl -.08
27.67 B.V9 53 =405 Se4 4,73 letel =-.,09
35,05 S.43 46 ~s U4 b.80 5.69 l.,18 =-.08
42,45 Bab3 29 =03 T.46 6.34 k] =08
49,85 o.72 « 05 -,03 9.06 6.b84 67 =« 07
56,90 b.76 27 =3 11.80 T.03 59 =.006
14.91 T-EJ Dﬁﬁ -oob
17.99 Te306 -1 =+ 05
22.44 !ob“ l'—"l -.05
23-09 f.dl .bU -.0“
35,0} 8:25 ol =,03
LY4%-1.] Ce4l8 o 3b -.03
49,83 H.62 ] =-slz
56.90 306? .20 = 0c
r= 42.00
Z u URMS P
«30 l.08 10 =01
1.7 sl +95 =s01
2-28 ﬁob“ llua =s01
3,13 3.13 lec2 =02
3.59 J.5t lasl .02
4,75 443 1.39 =s 02
bH.,62 4,00 l.42 -.02
6,34 S.24 l.31 -V
?.99 5092 1-11 =-,02
lu,.28 €44 09 =slz
13.64 6,08 Ty -s02
17051 bvga e - 02
21.UE T.ﬁf -3 -G
28.24 .75 93 =.02
35,37 da2l 49 =.02
43,063 Bu.sé 36 =.02
49,85 B.63 « 31 =-sle
56,90 B.61 «35 =a01

U LONGITUDINAL VELUCITY IN M/SEC

URMS HMS OF LUNG. VELUCITYFLUCT. IN M/SEC
P STaTIC FRESSURES IN NT/7DM2

X DOwhWIND DISTANCE FROM CREST IN CM

Z HEIGHT ABOVE UPwIND SURFACE=LEVEL IN CM
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TABLE B.31. Triangular Hill Model, Height 5.08 cm, Upwind Slope 1/6,
Downwind Slope 1/0, Surface Roughness Smooth, Freestream
Velocity 9. m/sec, Neutral Thermal Stratification

POORLUeReR RGO RARRCEPRRRCORRORLORRRNGOCRERREGRORORRECERONBORDERREDDRBOCTORREGD

= UeOU X= Z22.50
2 U URMS P Z ] UKRMS P
5-20 b.21 ou? - U/ «30 «00 .b? -.08
5,85 6.53 .63 -7 1.05 00 56 =-e09
b.56 b.75 -1 =07 1.77 Y -1 -« 09
7.31 bo?g .71 ".u? 2.5“ .5-’ 191 -.Ug
8,00 7.00 66 =07 3.21 1,84 l.21 -« 09
GLbb 7.09 69 =06 3.95 2499 1437 -o 09
11.68 1.29 67 =-.05 4.38 3,63 1,49 =209
13.13 Ta60 -1 =.05 4.69 4.14 latl =-a 09
le.75 T.51 -1 =05 S.u?7 L -1 le43 -+ 09
2U 43 T.06 «60 -+ U9 Seal 5.02 1.33 -e 09
Eﬂ.ﬂ? 5.“1 06U 1L Lald 5.97 1015 -, 09
27.71 8,16 63 -.04 6.491 beT2 «bd =209
35,02 d.51 «55 -.03 T.061 Ta01 -] -, 08
4,33 HB.u5 e ] -.U3 9.u2 7«10 -1 ] -s07
49,60 B9 39 -.02 13.39 7T.40 -1 - 06
S6.50 YalU .36 -.02 17.v6 7.63 b4 -.06
2U,.06 Ta71 bl =05
27.68 deld D9 =04
35.14 Hebl 057 -.03
4aul B.85 e 47 =-s03
49,06 B.93 el =-sl2
56,90 9,03 » 38 -, 02
X= «2eU0
2z u UHMS P
2y l.od -14] 02
o717 2ect L.U0 »01
l.61 2.495 l.u9 «01
-1 3.39 1.29 « 00U
3.59 4,33 1.49 00
5.46 5.30 1.49 « V0
T.5% el lau4 «U0
“.51 bal& o 78 -4 00
13.57 D.Ye 67 - 01
17.14 1.23 67 -.00
2U|T“ Teaol b5 -.Ul
ET.'?Z HeU2 M-I o 31
35,20 Beud 54 -0l
4.4y GebY 45 =-.01
49,50 L.8b « 30 =00
56.9v 8.51 25 =00
56,86 Ba.87 «25 «0C
So.HS B.91 + 26 =-eU0
St,us .17 30 «01

U LONGITUDINAL YELOCITY IN M/SEC

UKMS HMS OF LUNGe VELUCITYFLUCT. IN M/SEC
P STATIC PRESSUKES IN NT/ZLMZ

X COalwinn 2TCTANCE FROM CREST IN CM

Z rElénl AQUVE UPWIND SURFACE=LEVEL 1N CM
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TABLE B.3m.

Triangular Hill Model, Height 5.08 cm, Upwind Slope 1/4,
Downwind Slope 1/0, Surface Roughness Smooth, Freestream

Velocity 9. m/sec, Neutral Thermal Stratification

CEACORARDICET LRI RRAN IO R AR RN RE RO RO UCNRRRORNREROERORRD

Y= ue0U

2 7] UHMS
S5.24 b,ue 65
6,03 645 L]
TelS b.b7 +bO
B.5Y T«u5 M-1-]
10,00 7.21 «66
13,62 T.57 sl
17.21 -1 02
20.83 B.02 ebbh
24440 8.30 + 64
248,00 8,55 -7
ds,.2b B.v2 -1
bz bn Yel7 b6
49,71 9.306 » 37
S6.5U J.38 + 35

Y= 2125

2 v] URMS
5,74 Gaul 208
b,7¢z b.Y58 62
Beld Tell 59
9.5¢ 7.38 .63
11.61 Teu9 o0l
13,22 le09 «00
16,865 1.79 «60
2u.53 B.01 «29
:'r.l":."' Utla 057
27,18 .37 -1
35,07 B.b6 «50
42,34 9.01 el
49,61 S.16 e 37
50,90 Gecé «33

U LONGITUDINAL VELUCITY IN M/SEC

UHMS kM5 OF LUNGS

VELOCITYFLUCT,.

Y= 15,00
Z U URMS
5.50 5430 71
6e19 6.7¢2 63
1410 6.98 .11
BeTl Te29 63
9e74 T.38 63
13.43 Tebl .0l
17.01 T4 T4
-1 T.94 « 65
2held 8.24 «63
27.88 8,39 6l
35,13 H.b4 49
4ot Y.14 39
49.01 9.23 37
56.90 9.32 «35

Y= 22450
rd u URMS
5.74 6.48 « 69
b.E9 6.93 263
Bell Tecbd -1
9.66 7'31 '61
11.81 Ta0l «61
13.28 TS50 -1
16.8S 7.717 -1
2Ge5e Te9l «58
24.16 .07 57
27.73 Ledd fe-1.]
35.09 8,71 47
42,436 9.00 «39
49,65 Y.15 «35
56490 9.23 «35

IN M/SEC

Y LATERAL UISTANCE FAOM CENTER CHEST IN CM
Z HELGH] ABOVE UFWIND SURFACE~LEVEL IN CM
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TABLE B.3n. Triangular Hill Model, Height 5.08 cm, Upwind Slope 1/4,
Downwind Slope 1/0, Surface Roughness Smooth, Freestream
Velocity 9. m/sec, Neutral Thermal Stratification

t= Vel Y= 15,00
2 J UMMS z u URMS
S5.24 5.686 66 5.24 bel7 TB.50
6,61 6,53 +68 5.66 ba.U2 TUaDV
B.006 6.83 «08 6437 6430 Tc.39
9.50 Teb4 65 Teab 6.60 81,39
11.72 T.31 6l b.18 601 T4e31
13.19 Te34 «00 9.63 6,90 68,07
lo.id3 Teb4 b3 1187 Tel2 69.22
20,48 T.tl -1 13.29 T7.18 68,92
24,08 8.19 «58 16,92 Taub U, 75
27.73 d,34 -1.] 20eb1 T«59 65,.5¢
31.41 d.43 «58 24e16 T4 61.09
35.02 B.66 +51 27.8% B.05 Sbete
4z.3¢ 8.4%5 «45 35.10 Be45 4711
49,61 Y11 33 42439 8.76 36,417
56.90 Yel4 «31 49.62 8,91 23.68
S6.90 8495 lo.57
Y= ENYIT] Y= 43,75
Z u URMS 2 V] URMS
S5.24 bel7 + 63 5.3 6.53 o7l
5.98 be.b4% «59 5.81 T.28 o713
.66 6. 78 63 Ha4Y9 T.58 + 68
T.0e 6,99 59 7423 TaT4 «69
8,10 T.03 « 58 7493 Te73 .1
9.5% Ta33 29 Gele 4,03 55
11.7¢ fa23 «bl 13.04 B.c4 67
13,24 7.35 5-¥ 10465 8,38 « 68
lo.BE Te59 -1 2025 Ba.b6 + 08
20,4548 T.72 PS4 23.917 b.92 + 64
24,13 .92 .52 27.51 9.17 62
27.7¢ Baul o0 34.81 9.55 49
35.87 Be4l hh 42.04 G0 42
tz.306 Hebb 032 49432 .87 « 37
49,65 b.B6 25 5654 9.76 « 36
S6.%0 d.91 +20
Y=  w2.00
Z v URMS
5.20 5.67 «05
5.73 6.61 «b3
L0l h.89 bl
Tele L.9b 02
Tavl fs03 o563
9439 Te25 -1
11.58 1430 «59
13,49 7.38 -3
lo.69 Teol +59
2v,34 1«72 -1
23.9%S Be1lU -1
L 21.68 8.30 el
34,96 Wi S 42
42.27 d.b0b a8
49,61 B.91 oc0
S6.9u B.00 «23

U LORGTIubINaL VELUCITY IN M/SEC

UHMS kMY UF LUNL, VELUCITYFLUCT. IN M/SEC
Y LAlewAL LISTANCE FROM CENTER CREST IN CM
Z FElGAT ABUVE UPwIND SURFACE=LEVEL IN CM
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TABLE B.30. Triangular Hill Model, Height 5.08 cm, Upwind Slope 1/4,
Downwind Slope 1/3, Surface Roughness Smooth, Freestream
Velocity 9. m/sec, Neutral Thermal Stratification

GO CRROGUERGRRURBCROGEROERCDERORARTERERNERRNTRRGRGGRRRBROGRE

Y= VsV Y= 15.00
7 v URMS Z u UHMS
S.2U 6,30 « 75 5.2V levl alh
5.496 7T.03 o[V 5.91 Te61 69
zs2l Tald .67 bebe T.71 05
7Te38 T+37 o71 Te3¢c T84 o T4
B,11 T.46 .72 B.Ub 795 «67
B.89 {75 W11 9.52 8.u6 «67
9.55 Te70 72 1170 B.09 67
1l.74 7.87 «65 13.19 8.11 -3
13.24 7499 « 66 lo.80 de32 -1
16.87 bBa.23 -1 2lel& HB.49 b3
2U.5¢ Ha43 .69 €4ell 8.09 +61
24,10 +r 81 - 27.76 8,93 62
2T.77 Y.u3 b3 35,04 Y34 «53
35,08 Y.45 «58 42.34 9.65 85
42.32 9.75 «45 4Y.6U 9.82 «38
49,60 9,89 «35 bb.9U F.91 o34
56,90 9.95 st
Y=  El.25 Y= 22.50
2z u URMS 2 u URMS
.20 B8 20 5.20 5.06 «91
b.EG Tall «75 5.76 Ta90 76
6.61 7.95 o T4 649 T.83 « 68
Te34 7.95 -1 Tell Te93 1]
H.14 Bou2 e 69 Te98 B.l2Z 1.1
9455 Beu7 « 09 Yebd T.93 63
13.21 8,16 « 65 1159 7.98 -7
l6.86 8,31 « 59 i3.1i0 J.1d «61
20,46 8,54 o0l 16.71 b.32 -T2
24,12 beT78 61 20e35 H.55 60
27.717 ba b 60 2he04 8,61 62
35.['3 Ys29 52 2771 8.863 97
44,33 9.061 e43 35,02 Q.23 49
49,62 9.72 «39 42.30 9,51 o b
Eo,90 Y.81 e 37 49,459 © Q.70 « 36
56490 977 «36

U LonGLIvDINAL VELOCITY IN M/SEC

UHMS nM> OF LUNG. VELOCITYFLUCT. IN M/SEC
Y LATERKAL DISTANCE FROUM CENTEK CREST IN CM
Z HEIGhI AoUOVE UPwIND SURFACE=LEVEL IN CM
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TABLE B.3p. Triangular Hill Model, Height 5.08 cm, Upwind Slope 1/4,
Downwind Slope 1/3, Surface Roughness Smooth, Freestream
Velocity 9. m/sec, Neutral Thermal Stratification

Y= Ve 00O Y= 15.00
z v URMS r4 U URMS
5,23 6.28 69 5.23 6.52 617
5.78 b7 02 S.80 6.9% +65
be4S 6.78 69 Gt ' 'r -1
T«2u T.ul 69 Te24 Tect 1)
1495 Te2V « 70 T«99 Teul + 66
Gebgz Tetsl « 08 Gedl Teb9 N1
13,03 Te71 02 13.04 Tald N-17
l6.66 Te97 + 04 16.64 B.18 59
20,33 B.20 «06 20430 8,39 62
23,97 Beal « 60 23495 .60 +61
27.51 E.64 04 27452 B.74 .59
34,80 J.11 «54 34.78 9.20 o8y
42,10 T «39 42408 9.48 4l
49,32 Y59 oZh 49.217 9.66 .28
SB.517 9.59 o0 ShabU 9.063 o3

Y= 3U.0U Y= 43,75
Z u UKMS 2 v UnMS
S.22 6,13 -1 5.23 T.51 69
Y. 7% iegl b2 >.80 Teo2 71
6.51 Te34 «69 ekl Taka oll
7.&5 7-50.1 Ibs 7.2“ a.uo 169
Teos le65S -1-] Te99 . HsUl oJu
9437 lals 63 Geidt 8e.12 «69
13.04 HaUB 02 13.07 baels 57
lo.bE o. U8 «61 16.63 B39 68
ZU.31 Cech .61 cUedl H,50 « 62
23,91 B.57 ol c3.94 B.tl «60
27 .54 Heb2 «59 -1 Y.u6 1]
34,177 Y.21 49 Jé4a 17 9,45 52
42.05 9.59 36 4ca10 9.73 « 317
49,30 9.68 «32 49,2d 9,74 « 306
56,55 Y.65 « 30 Seabl 9.67 e 32

Y= 42600

14 u UrmS
5.23 1453 72
5.77 1.81 o 77
6454 T.91 7
l1.2u 1«90 « 11
T.49 Te95 o712
9439 T.69 69

13.0¢2 bB.l3 -1
15,64 a6 1.1
cu.29 B.55 «65
23,46 dab2 64
27.517 Be99 59
34,43 9.43 « 49
4¢e,uk Yal1 « 39
y 49,31 9l 032
56,99 ke 30

U LUNGITUDINAL VELUCITY IN M/SEC

UrMS HMS UF LUNGe VELUCITYFLUCT. IN M/SEC
Y LaTewaAL UISTANCE FrOM CENTER CKEST IN CM
Z m=1GrT ABUVE UPwIND SURFACE=-LEVEL IN CM
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TABLE B.3q. Triangular Hill Model, Height 5.08 cm, Upwind Slope 1/4,
Downwind Slope 1.0, Surface Roughness Smooth, Freestream
Velocity 3. m/sec, Stable Thermal Stratification

LE-E-E-E-TF-E-E-F-R-RY-YLEEEEE-EE-REEESEEEIEEER R R F Y YR R R AR R YRR -E 1) '
%= JelO = 22.50
7 T U 2 T U
5,34 15.0 1.71 « 3V 30 « 00
5.97 1545 lew0 2409 0.7 200
6.58 15.5 116 4,12 13.2 +50
7.29 17.0 1.90 4463 14,2 4l
8,35 18,0 2.06 5.3% 14,5 %-1-]
Y50 19.0 l.98 573 15.5 lell
13.16 210 2.U6 6,07 16,0 lel9
16,78 2245 2«12 .41 17.0 1«65
20,39 23.5 2430 bets3 16,5 l1.51
24,08 2440 et 7«15 17.5 1.59
27.7¢ 2445 2456 T:54 10,0 l.86
35.02 £5.2 2472 T.HE 18.5 la77
beg,32 5.7 2«75 B.BU 19.0 2.00
49,61 26.¢ 2491 9.36 19.5 l«80
S6,90 Iy 2e90 13.32 2le.v led?
16.94 23.0 2ol
2leb4 244U 2.2V
27.84 25.0 el
35.10 26.0 el !
42,38 26,45 2469
el 2 2Tsu Ceb9
56,90 27.5 2¢70
i= 4500
z T u
1.21 12.2 LU0
1.34 13.5 00
2alb l4.0 U0
3,35 14.5 «00
4,07 15.0 200
4,60 15.5 U0
4.56 15.5 1.10
5.34 15.5 1.10
9,37 15.5 60
.72 15.7 l1.00
6,71 18,0 le50
b.lez 17.5 1.50
T.91 19.0 l.178
b.TU 195 le61
9.91 20,0 lab3
12.16 21,0 1.92
15.45 22.6 2ol
19;19 23.5 2y
24,27 2445 228
3l1.51 25,5 237
41,03 €5,.7 2e¢53
49,67 6,0 2e59
56,90 26.5 ‘2469

T TEVPERATURE IN DEGREES CELCIUS

U LOnGIITVDiNAL veLUCIIY IN M/SEC

X COwNwIND UDISTANCE FROM CHEST IN CM

Z HEIGRT ABUVE UPwIND SURFACE=LEVEL IN CM
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Triangular Hill Model, Height 5.08 cm, Upwind Slope 1/4,
Downwind Slope 1.0, Surface Roughness Smooth, Freestream
Velocity 6. m/sec, Stable Thermal Stratification

TABLE B.3r.

FEGLUOOCORCLGR RN RGP USROS ORI RNBORCE AR B DR T RERNDRE VORI RRBORD

x= Va00 X=  22.50
Z T u 2 T U
5.3k 19.0 3,47 «3U 740 .00
S.50 19.5 3,65 o562 13.0 « 00
6.5¢ cl.5 3.8l 1.34 14,5 - 00
?.aﬂ El.u 4404 ZOUB lbcb oUU
B,35 c2s5 Gelb 3.16 16.0 «0U
9,44 23.0 4.27 3.52 16.0 - 00
13.08 24.5 4430 3.89 17.0 200
16,75 25.5 44060 bebh 17.0 62
20,35 26,0 4476 4425 17.0 1.71
24,02 26.5 4.87 4499 18.0 2.159
27.68 2l.0 5.05 LIEK 18,0 2+51
24,99 2T+ 0 Secd - a1 cle .62
42,26 27.5 Ses40 T+49 2l.0 @0l
49,56 28,0 5.32 9.648 23.0 4422
56,90 8.5 S.42 13.25 L] beb2
l6.86 25.0 4,60
2047 25.5 G817
24410 26.0 5.02
27.69 2645 5.09
34,91 27.0 S5.14
42413 27.5 5.32
49,435 2840 S5.42
S6.54 28.5 5.33
A= 45.00
2 T u
«3U 12.5 «U0
-1t la,b 00
1.35% 8.0 +UD
ca.ld lY.0 92
3.18 19.3 1.73
J.54 19.7 1.68
3.90 2u.U 218
4430 2Va cetd
4,66 cl.3 2631
5.34 clal 2.72
6,76 21.8 3.31
.22 22.4 370
Y.6b 23.3 3.92
13.2¢ 24.5 4410
16,59 25,2 4429
20,417 26,1 4455
24,08 27.0 4eT1
27.665 els.2 “e91
Juayl 21.06 5.21
4e.13 2d.0 5,33
49436 I41- %4 S.40
56,58 28.5 S.42

T TF~PERATUKE IN DEGREES CELCIUS

U LORCLIWUINAL YeLLCITY

N M/SEC

X COnivwIND DISTANCE FROM CHEST IN CM
Z FELIGHT ApUVE UPWIND SURFACE=LEVEL IN CM
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TABLE B.3s. Traingular Hill Model, Height 5.08 cm, Upwind Slope 1/4,
Downwind Slope 1/0, Surface Roughness Smooth, Freestream

Velocity 3. m/sec, Stable Thermal Stratification

HeooedatUdeoRORdadoOOCdnRURERGRERelRdaNOQRORGROROREORERRDY

y= JeUU Y= 15.00
Z T u 2 T u
5.10 2l.v l.07 5.10 20,0 l.306
5.80 21.5 1.58 5.84 19.9 1.63
b.517 2le4 l.64 6«51 203 1.599
7.28 2le l1.62 723 21.0 1.71
8,03 2l.8 l.b4 T.99 21.3 1.5%
Gt 22.1 l.00 el 2leYy 1.58
12,08 2340 l.82 13.06 23.0 1.59
16,67 2445. 1.92 16.67 2440 1.70
20,33 25.3 2.03 20.32 25.0 1.79
23,55 -1 2.16 23.92 25.7 2.01
27.54 2645 220 2l.52 2640 2al2
34,81 evl.0 2413 34,81 6.8 2ell
42.08 -4 2e4l 42,08 27.2 ce28
49,30 27.9 2.56 45.E5 275 2.22
56,56 28U 2439 Sbe54 27.7 2.42
Y= £Ze50
Z T u
5.20 1640 1.33
S.89 1ue3 leav
6,65 17.5 les2
Ta34 l8.4 le49
b.us 19.3 1.05
9.50 20.3 1443
15,159 21,9 l.b4%
16.74 23.3 1.73
20,35 c4al 2.02
24,99 25,0 2.2
27.61 2545 2,09
34,46 2643 2.19
42,08 26,8 2acl
49,31 26.9 2.38
50,55 27.2 2,48

T TEMFERATURE IN DEGREES CELCIUS

U LONEITULINAL VELUCLTY IN M/SEC

X 1:0whalob OISTANCE FROM CREST IN CM

2 FEleri woDUVE urwIND SURFACE-LEVEL IN CM
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TABLE B.:it. Triangular Hill Model, Height 5.08 cm, Upwind Slope 1/4,
Downwind Slope 1/0, Surface Roughness Smooth, Freestream

Velocity 6. m/sec, Stable Thermal Stratification

LAV ORICRGORERRRUG DR RRAP R R PR SR RGRREREORGORDRHORGRN

Y= Ue 00 Y= 15.00

rd T U z T u
5.20 19.5 3.05 5.21 2245 3.08
5.95 20,0 3.04 5.95 23.0 3.78
6.63 213 3.b4 6.65 €3.5 3.94
7.38 22.0 3.b1 T+35 e3.7 3.97
8.09 22.9 3.80 8.08 2440 4012
$.55 23.7 3.97 9.51 24,3 4,18
13.14 24.9 3.20 13,13 €5.1 4436
16,82 2640 4e32 16,717 ¢5.9 4454
20.38 27.v 4451 20437 26.1 4.T7
24,01 27.1 4e13 24.00 2b.9 4.85
21.61 2746 4.92 27.63 27.1 S.00
34,87 r4-Fy) 5.08 34.868 27.0 5.22
42,12 2de4 S.ct 40,649 27.8 S5.30
494,31 2o,.9 539 49,34 28,0 S5.27
56,54 2, b 5437 S56.54 cB.b5 5.26

Y= gze5U

Z T u

5.20 €29 3.94

5,58 23,0 4.11

b,64 23,1 4,u9

T.34 2344 4e09

8.7 237 4.13

9.5¢ 2ieal 4ol

13.15 25,1 4.c2

16.7¢ €240 4,53
20,41l 26,1 4,03

2a,01 2€.0 485

27.63 26,8 4499

34,87 274 5.21

42,11 21,8 5.36

49,30 2d.U 5,34

Ry T 2841 S5.32

T TEVFERATURE IN DEGREES CELCIUS

U |LONGITULINAL VELUCLITY InN M/SEC

X OQwhNalnND DISTANCE FROM CREST 1IN CM

Z rEIGnl ABOVE UPwIKD SURFACE=-LEVEL IN CM
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APPENDIX C

CONTOUR PLOTTING PROCEDURES
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APPENDIX C CONTOUR PLOTTING PROCEDURES

When measuring flow characteristics there is always some deviation from
the true value. The error is partly random and partly systematic. Systematic
errors are usually caused by inaccurate calibration data. Typically random
errors are c:used by the "drift" of the measuring system and by insufficient
time-averaging. Least-square curve-fitting techniques may be used to reduce
the degree of random error provided there is sufficient data available. This
appendix describes the procedures developed to interpolate and smooth the data
in order that accurate contour plots of the measured quantity could be

generated.

C.1 GENERAL PROCEDURE

A spatial domain was selected for which contour plots are to be
generated. The domain was defined by the upwind distance from the crest, Du’
the downwind distance, Dd’ and the top, H. Additional consideration was
given to horizontal interpolation of data close to the surface of irregular
terrain by performing a transformation of the vertical coordinates for the

measured data points. The following transformation was used:

z= g (zz), (c.1)
s

where z, represents the local surface elevation. Subsequently each vertical

profile was smoothed and interpolated by a least-squares fit using cubic

spline functions. The computer subroutine used for the data-fitting is part

of the Tubesna Library (IMSL) and is named ICSSCU.

The algorithm of ICSSCU was developed by Reinsch (1967). The formulation
is as: follows. Let Ei’ q, (1= 1""’Nk) be the transformed vertical coor-
dinates: and corresponding measured magnitudes respectively, where Nk is the
number of data points of data profile k. A smoothing function gk(z) is con-
structed which minimizes the integral

sz
I gﬂ (z) dz (C.2)

i
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such that

N —_

k g (z.) - q. 2
F 4 : 117 <s (€.3)
i=1 ¥y

i

The constants S > 0 and dyi >0 (i = 1,...,Nk) are numbers to be
specified. The function gk(z) is taken as a third degree polynomial. The
constant S allows for an implicit rescaling of the quantities dyi and is
introduced only for convenience. The constants dyi control locally the
extent of the smoothing. Choosing S equal to zero leads to interpolation by
cubic spline functions. Some difficulty was encountered in applying this
technique to the vertical data profiles. These problems and the subsequent
program modifications will be discussed in Section C.2.

Once the spline functions gk(E), (k = 1,...,Np), (Np is the number of

data profiles) were specified values gk(z}), (G = 1,...,Nz) were evaluated.
NZ is the number of intervals in the z-direction and
= ds
2 N H (Cc.4)

The same procedure as that applied to the data profiles was then used to
determine cubic spline functions hj(x), (= 1,...,NZ). These spline func-
tions were specified such that the points Xis gi(Ej) were smoothed and in-
terpolated accurately. Once a satisfactory fit was obtained values hj(xi),
(i-= 0,...,Nx), (j= 0,...,N2) were calculated. (Nx is the number of inter-

vals in the x-direction and
x; = g (04D ) (C.5)

X

Given now a uniform grid of data values in the x-z system, two-
dimensional arrays (xi, zi)j’ (i= I,...,NS), (j = 1,...,NC) containing the
coordinates of the j i contour line were generated using subroutine CALCNT.
This program was a linear contour routine in the Fortran Library available at
the Colgrado State University Computer Center. (NS is the array dimension,
and Nc is the number of contour lines to be plotted.) Prior to plotting the

contour lines a back transformation was applied such that
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H-z

(xpoz)y = (g, 2z + 5 ()5 (C.6)

A flowchart summarizing the procedure is presented in Figure C.1.

!

C.2 MODIFICATIONS

a) Vertical Velocity Profiles

The magnitude of the velocity changes drastically close to the surface
and in the wake-main flow interface. These regions required the following
special attention in the data-reduction procedure.

Surface region: The vertical coordinates z were transformed to a

logarithmic scale; thus the data to be smoothed was more or less equally

spaced in the transformed space.

Wake interface region: Smoothing of a vertical profile through a wake

using the procedure described above results in an oscillating interpolating
function. This results because at the wake-main flow interface large second
derivatives, g"(z) are calculated. A rotation of the coordinates (velocity
and elevation) eliminates this undesired phenomenon.

Consistency of the velocity data is improved by including the option to
multiply the velocity interpolating function by a factor such that at z = 10 h
the resulting streamline is horizontal. The adjustment was made if the varia-
tion in velocities generated at that height corresponded closely with measure-

ments obtained from a horizontal traverse at that elevation.

b) Static Pressure and Turbulence Intensity Profiles

Large second derivatives were calculated by curve-fitting the turbulence
intensity profiles using subroutine ICSSCU. Relatively large errors in the
original static pressure measurements did not justify the use of a sophisti-
cated curve-fitting procedure. Adequate data fitting of turbulence intensity
and static pressure profiles were provided by simple linear interpolation.
This procedure was followed only for the vertical data profiles.
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61

Readings converted to meaningful
physical quantities. Data
stored on File [

Specification of the top-
boundary neight of the
contour plot

read File I
1

z-coordinates of each datapoint
are transformed to z by equa-
tion (C.1}). Points of each
vertical data profile are
curve-fitted using cubic spline
functions.

Spline functions, gk, and verti-
cal data profiles are output on
hard copy plotter

read File I

Specifications of parameters,
dyi, for local smoothing

not ok

Check on data-fitting

ok
|

Coefficients of spline funclions
for each data profile are
stored on File Il

read File 11

Specifications of upwind and
downwind boundary of contour
plot as well as numbers of
intervals in x and z
direction (Du, Dy» Ny» Nz)

Calculation of data, g9;(Zj),

at equally spaced intervals in
the vertical. Points at each
elevation are curve-fitted using
cubic spline functions

Spline functions, hj, and hori-
zontal data profiles are output
on a hard copy plotter for
every fifth elevation

FIGURE C.1.

3
read File II

Specification of parameter, dyi.
for local smoothing

not ok

Check on data-fitting

Flow Chart of Contour Plotting Procedure

ok

Uniform grid of data values is
stored on File 11I. Contour
plots are generated




APPENDIX D
CONTOUR PLOTS OF LONGITUDINAL

VELOCITIES AND STATIC PRESSURES
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TABLE D.1. Locator Table of Contour Plots

Figure numbers of contour plots

CASE Phase h/L u(10h) Longitudinal
(m/sec) velocity Static pressure
7
1 I 1/2 9.1 D.1a D.2a
2 I 1/2 15.2 D.1b D.2b
3 I 1/3 9.1 D.1lc D.2c
4 I 1/3 15.2 D.1d D.2d
5 II 1/4 9.1 D.le D.2e
6 I 1/4 15.2 D.1f D.2f
7 II 1/6 9.1 D.1g D.2g
8 I 1/6 15.2 D.1h D.2h
9 I 1/20 9.1 D.1i D.2i
10 I 1/4(sine) 9.1 D.1j D.2j
11 I 1/4(sine) 15.2 D.1k D.2k
12 I 3/16(sine) 9.1 D.11 D.21
13 I 3/16(sine) 15.2 D.1m D.2m
14 II(rough) 1/4 9.1 D.1n D.2n
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FIGURE D.la. Contours of Mean Longitudinal Velocities over
Triangular ridge h/L = 1/2. Contour Interval
Au/u(10h) = 0.05
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FIGURE D.1b. Contours of Mean Longitudinal Velocities over
Triangular Ridge h/L = 1/2. Contour Interval
Au/u(10h) = 0.05
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FIGURE D.1lc. Contours of Mean Longitudinal Velocities over
Triangular Ridge h/L = 1/3. Contour Interval
Au/u(10h) = 0.05
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FIGURE D.1d. Contours of Mean Longitudinal Velocities over
Triangular Ridge h/L = 1/3. Contour Interval
Au/u(10h) = 0.05
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FIGURE D.le. Contours of Mean Longitudinal Velocities over
Triangular Ridge h/L = 1/4. Contour Interval
Au/u(10h) = 0.05
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FIGURE D.1f. Contours of Mean Longitudinal Velocities over
Triangular Ridge h/L = 1/4. Contour Interval
Au/u(10h) = 0.05
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FIGURE D.1g. Contours of Mean Longitudinal Velocities over
Triangular Ridge h/L = 1/6. Contour Interval
Au/u(10h) = 0.05
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FIGURE D.lh. Contours of Mean Longitudinal Velocities over
Triangular Ridge h/L = 1/6. Contour Interval
Au/u(10h) = 0.05
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FIGURE D.1li. Contours of Mean Longitudinal Velocities over
Triangular Ridge h/L = 1/20. Contour Interval
Au/u(10h) = 0.05
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FIGURE D.1j. Contours of Mean Longitudinal Velocities over
Sinusoidal Ridge h/L = 1/4. Contour Interval
Au/u(10h) = 0.05
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FIGURE D.1lk. Contours of Mean Longitudinal Velocities over
Sinusoidal Ridge h/L = 1/4. Contour Interval
Au/u(10h) = 0.05
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Sinusoidal Ridge h/L = 3/16. Contour Interval
Au/u(10h) = 0.05
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FIGURE D.1n. Contours of Mean Longitudinal Velocities over
Sinusoidal Ridge h/L = 1/14. Contour Interval
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FIGURE D.2a Contours of Static Pressue over Triangular

Ridge

h/L = 1/2. Contour interval ﬁCp = 0.24
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FIGURE D.2b Contours of Static Pressue over Triangular
Ridge h/L = 1/2. Contour interval ACP = 0.26
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FIGURE D.2c Contours of Static Pressue over Triangular
Ridge h/L = 1/3. Contour interval ﬁCp = 0.23

174




IIIIIIIIII/IIIIITIIIIITITIl

e T

TTTI/TTTTT

TT

T

T

TT T T T T Iy T T T T I T T Tgr T T T I T I T I T LT T T T T T T T T I T T T rrrTd

Jlll Ly ey rd I O " O O I o

FEEEV/ A EEEN AN

| N W N (S Y O O

FIGURE D.2d Contours of Static Pressue over Triangular
Ridge h/L = 1/3. Contour interval ACP = 0.24
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FIGURE D.2e Contours of Static Pressue over Triangular
Ridge h/L = 1/4. Contour interval ACP = 0.36
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FIGURE D.2f Contours of Static Pressue over Triangular
Ridge h/L = 1/4. Contour interval QCP = 0.61
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FIGURE D.2h Contours of Static Pressue over Triangular
Ridge h/L = 1/6. Contour interval ACP = 0.28
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FIGURE D.2i Contours of Static Pressue over Triangular
Ridge h/L = 1/20. Contour interval ACp = 0.015
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FIGURE D.2j Contours of Static Pressue over Triangular
Ridge h/L = 1/4. Contour interval &Cp = .041
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FIGURE D.2k Contours of Static Pressue over Triangular
Ridge h/L = 3/16. Contour interval &CP = .031
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FIGURE D.21 Contours of Static Pressue over Triangular
Ridge h/L = 1/4. Contour interval QCP = .037
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FIGURE D.2m Contours of Static Pressue over Triangular
Ridge h/L = 3/16. Contour interval an = .033
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FIGURE D.2n Contours of Static Pressue over Triangular
Ridge h/L = 1/4. Contour interval ACP = .021
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APPENDIX E CONSTRIANTS OF WIND CHARACTERISTICS OVER RIDGES
ON MATHEMATICAL PREDICTION PROCEDURES

E.0 INTRODUCTION

The governing equations of fluid motion are given by a set of nénlinear
partial differential equations containing unknown Reynolds stress gradient
terms. Approximations for the Reynolds stress gradients are required to
complete the formulation. Usually numerical techniques are employed to solve
for the fluid motion over a ridge. Some analytical solutions have been
obtained by applying perturbation techniques which linearize the equations
once higher order terms of small quantities are neglected. None of the exist-
ing numerical or analytical models accurately predict the flow field resulting
from the interaction between main and a separated flow. Nonetheless, semi-
analytical models have been developed that include flow separation.

This appendix reviews mathematical models that have been developed
specifically to predict the flow over simple-shaped topography. A discussion
of the most common closure assumptions is given in Section E.1 and applies to
the models reviewed here. The purpose of this chapter is to evaluate the
physical implications of analytical and numerical results and to investigate

the applicability of the models to WECS site selection.

E.1 IMPLICATIONS OF FLOW PHYSICS IN SELECTION OF NUMERICAL CLOSURE MODELS

The effect of turbulence on the mean velocities over the crest of hills
is in many cases not significant because of the large inertia and pressure
gradients. Downwind of a hill, however, those gradients may become of the
same order as the Reynolds stress gradients. If the effects of turbulence on
the mean flow are to be included, or if wvalues of Reynolds stresses are

desired, a turbulence closure model must be selected.

E.2 LINEAR MODELS

Most attempts to predict the velocity distributions over surface
undulations have used numerical techniques. An exception is the analytical
solution of the equations of motion carried out by Jackson and Hunt (1975).
Application of their results is limited to cases involving small velocity

perturbations.
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Only occasionally have the more sophisticated closure models been applied
to flow over hills (Yamada, 1978). Usually mixing-length or turbulence
kinetic energy models are selected on the basis of their simplicity rather
than on the basis of their representation of the turbulence. In this section
limitations are proposed for a few of the closure models most frequently used
in numerical models for flow over hills. For an extensive discussion on a
large variety of closure models the reader is referred to books such as
Bradshaw (1976) or Launder and Spalding (1972).

Many closure models are based on the eddy viscosity concept. The most

popular version is the "mixing length'" formula:

du
5 (E.1)

— _ .2 |&u
-uw = 1 52

where 1 is the mixing length. The formula is utilized when the boundary
layer is considered as a two-layer region, consisting of an inner and outer
region. The middle region has to vanish since curvature and history effects

are excluded by this model. Typically the model may be applied if

Eg < 0.01
L

and if
ASS

(see condition for outer region, Section 2.1).

Bradshaw (1969) extended the mixing-length model by taking into account
the streamline-curvature effects on the Reynolds shear stresses. An algebraic
analogy was drawn between the meteorological buoyancy parameter, the
Richardson number, and the parameters describing the effects of streamline
curvature. The analogy proved to be a good first approximation as long as
history effects on the turbulence structure were negligible. The effect of
curvature on the apparent mixing length was shown to be appreciable if the
shear-layer thickness exceeded roughly 1/300 of the radius of curvature. This
result éan be applied to flow over hills if Yy defined in Equation (2.4) is
the dominant extra rate of strain ratio. Supposing that the magnitude of the
streamline curvature close to the surface extends to a height of % L then

curvature effects would become significant if
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1 1 L h 2 : 1
72L>3%5 R ©°f T>30 f 3FL<O
) y (E.2)
1 L h - 1
6>3—0—H or L—2>3—0 if -2"L>6

There is some overlap with the closure model discussed previously. The
curvature effect only develops after the stress-bearing eddies have adjusted
to the extra strain rate; therefore, for hills with L < & streamline-
curvature effects are exaggerated if Bradshaw's analogy is followed closely.

The eddy viscosity models described above cannot be applied to hill forms
if history effects become important; nonetheless, several authors have used
these models to make hill flow calculations. The turbulence kinetic energy
equation may be used to include history effects (e.g., Townsend, 1972, Taylor

and Gent, 1974). The equation is then given by

df oL _
- 2 - 2 — du , 9 12 e _
ug—tw 5 + uw 52 + 57 (Eq w+pw) +&=0, (E.3)

where %qz is the total kinetic energy of the turbulence. The first two
terms represent advection of turbulence kinetic energy, the third and fifth
terms represent respectively turbulence production and dissipation, and the
fourth term is the lateral transport of turbulent kinetic energy by diffusion.

To use Equation (2.28) as a closure, various unknown terms must be
approximated. Townsend (1961) pointed out that turbulent flow attains a
condition of structural similarity after prolonged unidirectional shear. If

this is true, the local motion is determined by

—2‘3/2
2
e = =9 (E.4)

LE

and

= R
IQ’

where a; is constant and L8 is a length scale proportional to the distance
from the surface, at least in the region close to the wall. The diffusion may

be approximated by
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= — 3/2 2
q®w + pw = a,(¢®)  sgn (g%) : (E.5)

M=

where a, is a constant.

This closure model has been applied quite successfully for a variety of
flow cases. Most notable is the work of Bradshaw, Ferris, and Atwell (1967),
who developed a numerical model to calculate the boundary-layer development.
This model is based on the solution of a hyperbolic system of equations by the
method of characteristics; boundary-layer approximations are an essential
requirement, since this makes the set of equations hyperbolic.

Unfortunately, although history effects and diffusion of turbulent energy
are taken into account, important turbulence production terms have been
neglected. This is illustrated by considering the turbulence production terms
in the full two-dimensional turbulence kinetic energy equation. This equation

is

2 2 5 a5 me
1(;0¢°, ;08¢\ 0u, — 8, 28, 73
2(“ax*‘*’az)“"’az‘”““’x*“ax*“’az
9 (12 . —=\,8 (12  —
+$(§qw+pw)+§-§(§qu+pu)+a=0 (E.6)
The four turbulence production terms are
29u _ 239w _—3du _— dw
“u” ae , W 5o, CUW -, UV 5o (E.7)

By continuity the sum of the first two terms may be written

2 _ 2, du
(w® - u%) 5% (E.8)

If this term is positive, turbulence production increases. Flow approaching

the crest accelerates, thus g% > 0. The difference in turbulence intensities
[

of the vertical and horizontal component changes due to the distortion of the
turbulence structure by the mean flow. A qualitative discussion on the

distortion of turbulence over the hill is presented in Section 5.6. For now,
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experimental evidence is applied to pursue this discussion. Data presented by

Rider and Sandborn (1977a) shows that w2 increases towaids the crest whereas

u2 decreases. Since the up-stream values of w2 - u2 are negative, the

turbulence production due to those terms is negative but increases slightly
l
towards the crest. Measurements of intensities over hills with h/L = 0.25,
0.33, and 0.5 and L/6 = 0.6, 0.4, and 0.3, respectively, show that
2 2

¥ U ¢-1 at the foot, and that this ratio is less than -0.5 at the crest.

u
Thus the effect of the first two terms on the turbulence production is

negative, implying that turbulence kinetic energy is transferred to the mean
flow.

Apparently the neglect of these terms in the turbulence energy equation

cannot be justified if g% =0 [g%]. The sum of the two remaining terms is
— | du | ow :
uw [E*'&]. (Eg)

As was pointed out in Section 2.2, the vorticity remains almost the same along
a streamline. (Changes in vorticity of 5-10 percent do not invalidate the

following arguments.) Thus

[Qg + QEI o [?EE] (E.10)
dz 9dz ¢:¢1 oz ¢=¢1

This equation shows that any change in g% along a streamline is accompanied
by an almost equal change in gg . Data presented by Rider and Sandborn

(1977a) shows that the magnitude of g% changes by its own magnitude.
Therefore, it may be concluded that in general the omission of the new term

-uw g; in the turbulence kinetic energy equation cannot be justified.

One of the requirements for the approximation of Equations (2.29) and
(2.30) is that the flow has to be strained by a unidirectional shear. As

explained above, this is not generally the case in flow over hills.
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All objectives against the use of this version of the turbulence kinetic
energy closure model vanish if the distortion of the mean flow is very small,
namely if gg/g% << 1, thus if % << 1.

The approach of their analysis was briefly mentioned in Section 2.3. The
flow field over a hill is divided into two regions: an inner region close to
the surface of the hill and an outer region, where a variation in the surface
stress has no immediate effect on the flow. Reynolds stress gradients in the
outer region are assumed to be negligibly small; hence the perturbed velocity
field induces perturbation pressures governed by an inviscid flow model. It
is assumed that the inner layer thickness is much less than the characteristic
length of the hill. The pressure distribution along streamlines in the inner
region are matched to the pressure distribution in the lowest part of the
outer region. In the inner region, the Reynolds stress gradient may become as
large as the pressure gradients. Indeed, the inner layer thickness is defined
to include that zone where the order of magnitude of the Reynolds stress
gradient is as large as the pressure gradient.

The solution is obtained by introducing Prandtl's mixing-length
hypothesis as a turbulence closure. Velocities are matched asymptotically, in
the inner layer as

z/8 > @

where 2z is the vertical coordinate in the inner layer and £ is the inner-

layer thickness, and the outer layer as
z/L >0

where L is the characteristic length scale of the hill.

The essential limitations to the general applicability of the Jackson and
Hunt relations are associated with the linearization of the equations of
motion. They argue that their assumptions allow a consistent use of the
mixing-length hypothesis and that curvature effects on the turbulence

structure are negligible. The basic condition to be satisfied is

' 2
k log =

h 0
I << ‘1“‘2—1,— (E.11)
og _Z
0

where z, is the equivalent surface roughness length.
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The expression for £ arises from the condition that Reynolds -stress
gradients are of the same order of magnitude as the pressure gradients in the
inner region, namely
L 0.9
2.5 .

2 1
_ZE(Z b
(o} o}

, (E.12)

o]

hence a limiting expression for % as a function of z, and L can be

written as

h . 0.9k _ 2.08k (E.13)
L lo L, lo ol
gZ 8 z
(o] (4]
Typical values for %— are in the range of 102 to 10?. Corresponding values

0
for the r.h.s. of Equation (3.3) are then in the range of 0.04 and 0.02.

Therefore, according to these theoretical arguments, application of Jackson
and Hunt's theory is limited to hills with very gentle slopes. However,
Jackson and Hunt found also reasonable agreement between theory and field and
wind-tunnel experiments for hills with slopes too steep for the theory to be
strictly valid. In the next section a few comparisons are presented between
Jackson and Hunt's calculations and inviscid flow calculations.

Sacre (1975) developed an analytical solution for stratified inviscid
shear flow over topography. The solution is also based on linearization but
in this case of the Euler equations. He cited good agreement with the results
of Jackson and Hunt (1975). Larger deviations were found when Sacre's results
are compared with nonlinear numerical calculations .of Taylor and Gent (1975).
Considering the limitations predicted from Jackson and Hunt's theory, results
of Sacre's model should be used with caution for hills with slopes larger than
0.01.

Early interest in shear flow over surface perturbations was associated
with the generation and damping of water waves. The first theoretical
contributions came from Miles (1957). Efforts since have been directed at
finding means to assess the role of turbulence and to incorporate an adequate
closure model in the equations of motion. Most analytical contributions
consider the linearized equations of motion. Notable is the work of Miles
(1967) and Davis (1970, 1972) which has been reviewed below.

193



After several attempts to predict wave growth, Miles (1967) concluded
that satisfactory agreement between theory and experiment had not been
achieved. According to Miles, this was primarily because the dynamics of the
turbulence over the waves was not adequately understood. Davis (1970)
subsequently conducted research to investigate the importance of this
turbulence. He applied two hypothesized turblence models to flow over a
traveling wave of infinitesimal amplitude (this permitted the equations of
motion to be linearized). The first model's hypothesis was based on an
assumption that the turbulence field is not influenced by the waves. The
second model was based on the assumption that the magnitude of the Reynolds
stresses depends on the height above the instantaneous water surface. The
wave-induced velocity field predicted by these two models differed consider-
ably. Thus within the limitations of the linearized theory Miles's statement
was confirmed.

In a later study, Davis (1972) applied more sophisticated closure models
but continued to solve linearized equations. One new model was similar to
that developed by Bradshaw, Ferris, and Atwell (1967). The second improved
model was based on the assumption that the turbulent stresses are determined
by the recent history of the strain that a fluid parcel has undergone. The
results were compared to measurements by Stewart (1970), who measured the mean
flow over waves in laboratory experiments, and Kendahl (1970), who measured
mean flow and Reynolds stresses over waves. The agreement between calculated
and measured values was not good. Townsend (1972) also used linearized
equations of motion and a closure model similar to that used by Bradshaw et.
al. (1967). He concluded

"Although the attention paid to the turbulent motion makes for a

more realistic account for the flow, the linearized theory is not

able to account for the considerable discrepancy between calculated

surface pressures and those measured in recent field studies by

Snyder and Cox (1966) and by Dobson (1971)."

Townsend indicated that the linearized theory may be applied only to waves
with a height-length ratio less than 0.1.

Ifwo important conclusions may be drawn from these investigations on the
velocity field over water waves: 1) the linear theory does not predict the
velocities and pressures accurately for larger wave height to wave length
ratios, and 2) the turbulence closure model selected for insertion into
linearized equations of motion affects the predicted mean velocities

significantly.
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E.3 NONLINEAR MODELS EXCLUDING FLOW SEPARATION

In the last 15 years nonlinear models have been introdced to study flow
over topography. Two classes of models may be distinguished: 1) nonlinea:
inviscid flow models, and 2) nonlinear flow models that include the Reynolds«
stress terms in the equations of motion. The latter will be &enoted by
"turbulence flow" models. As was pointed out in Sections 2.1 and 2.2, the
Reynolds stresses affect the mean flow in the inner and middle region. The
effect in the middle region only becomes significant when Reynolds stresses
have had the time to adjust to the distorted flow field and when their action
has resulted in a significant transfer of momentum across streamlines. In th-
following portion of this section, several numerical models are discussed in
the 1light of the inviscid character of the flow, or more precisely, by
considering the effects of the approximations for Reynolds stresses.

Alexander and Coles (1971) developed a numerical model solving the
Navier-Stokes equations with a constant eddy viscosity. Deaves (1975
improved their model by including a more realistic eddy viscosity based on a
mixing-length model. Taylor and Gent (1974) presented a solution incorporat-
ing turbulence length scale and turbulence kinetic energy equations to assist
turbulence closure. Deaves as well as Taylor and Gent presented results for
the flow over hills with shapes similar to those considered by Jackson and
Hunt (1975).

Inviscid flow calculations have been completed herein for almost
identical flow conditions as those considered by these authors using a
numerical model developed by Derickson and Meroney (1977). An inviscid flow
solution is obtained using stream function-vorticity coupled with an equation
for potential temperature to handle unstable, neutral, and stable stratifica-

tion as follows:

Vi = n (E.14)
3 . 3y, B , 9 _ -g 90
S gh-3 ngy=8 (E.15)
9 .., 0 9 .. O _
2@ ah-2 (=0 (E.16)
where = = gg; = o gg.
Z X
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A simple coordinate transformation was applied to solve the equation in a

rectangular domain. The transformation is given by

|

— ._'—H -
= X Z = Rz, (z zs) (E.17)

in which zs(x) is the topography height, and H is the height of the top of
the grid. The transformed spatial operators are thus defined in numerical

conservative form as

20 . 1 2L 0, 28 ¢ 0, 15
J6  9x 9z
and
gi) - J-é g-? (E.19)
z - 9z '
where V6 =1--5andch = 3% E-1) -

Vertical and horizontal grid expansion were applied to obtain higher spatial
resolution at the crest. For a more detailed description the reader is
referred to Derickson and Meroney (1977).

This inviscid flow model has been applied to calculate mean velocity

field over bell-shaped hills. The surface elevation is defined by

VA
s _ 1.04h 1 1
T 1 ( %2 EE) (E.20)
—f)

1+ (

and approximates the bell-shaped hills considered by Deaves, Taylor and Gent,
and Jackson and Hunt to within three percent of h. The upwind and downwind
boundary conditions were varied according to the upwind conditions of the flow
cases to which the inviscid flow calculations are compared. In all cases the

approach profile is approximated by

" ou (2) u, 2tz
g = — 1n = z <06 (E.21)
“0(5) kuo(ﬁ) o
u (z)
- =1 z>6 (E.22)
u (8)
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Up and downwind conditions were specified at respectively x = *2.5 L. The
height of the top of the grid was varied and is indicated in Table E.1. The
no-slip condition was applied at the surface boundary.

0f particular interest is the thickness of the inner region where the
shear stresses change most substantially and where by definition,a strong
interaction between mean flow and turbulence occurs. A sensitive measure of
the importance of a closure model may be provided by comparing surface shear
stresses computed by the inviscid and turbulence flow models. The surface
shear stresses of the inviscid flow model were obtained by assuming that no
interaction between mean flow and turbulence occurs and that the mixing-length
closure provides an accurate relation between mean flow and shear stress.
Thus the nondimensionalized surface shear stresses were calculated by the

following expression:

= (E.23)

IS z>0 (511 ) 2
0 o
9x

where the x-axis is parallel and the z-axis is perpendicular to the surface.

A comparison between the surface shear stress distributions over a bell-
shaped hill (Case I of Table E.1) as calculated by Taylor and Gent and as
calculated with the inviscid flow model is presented in Figure E.1. The
asymmetric surface shear stress distributions of the turbulence flow models
are caused by the action of the shear stress on the mean flow. This clearly
shows that the mean flow is affected by the surface friction. The overall
good agreement between the shear stress distributions of the inviscid and
turbulence flow models may indicate, however, that the flow is inviscid at
least down to a distance equal to the first grid point above the surface. In
the inviscid flow calculations this point was located at 2z = 0.04 h. In
terms of hill length, the inner-layer thickness would be less than 0.004 L.
Alternatively, the good agreement may be fortuitous since discretization may
have introduced inaccuracies, particularly, in the surface region where large
velocity gradients occur.

Table E.1 includes 13 flow cases for which maximum surface shear stresses
have been calculated by the inviscid flow model. Results are compared with

the data given by both the nonlinear model of Taylor and Gent and the linear
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TABLE E.1. Comparison of Maximum Surface Shear Stress over Bell-Shaped
Hills Calculated with Turbulence and Inviscid Flow Models
Ts
Prediction of Ml
- u, To
o = h h H Turbulence Inviscid

Run Author S u(s) s L h Model Mode1l)
T a6 x10t Los2 4 .2 10. 1.81 2.8
2 JH 4.6 x 10°°  .040 4 .2 10. 3.10 3.4
3 JH 4.6 x 10°%  .033 .04 .2 10. 6.32 3.6
4 JH 3.6 x 10°°  .039 4 2 10. 1.87 2.4
5 JH 3.6 x 1070 .032 4 .2 10. 3.21 2.8
6 JH 3.6 x 1077 .027 .04 .2 10. 4.75 2.9

7 JH 2.8 x 107 o031 4 .2 10. 1.86 2.3
8 JH 2.8 x 1077 .026 .4 2 10, 2.60 2.5
9 JH 2.8 x10°8 026 .04 .2 10. 3.95 2.6
10 63 6.1 x10°® .033 .003 .05 20. 18 2.06
11 TG 6.1 x 10°°  .033 .030 .05 20. 1.8 1.44
12 TG 6.1 x 10°°  .033  .006 .1 20. 3.2 355
13 TG 6.1 x 10°®  .033 .006 .1 10. 3.2 4.77
14 TG 6.1 x 10°®  .033 .012 .2 10. 10.1 3.35
1) Derickson and Meroney (1977)
2) Jackson and Hunt (1975)
3) Taylor and Gent (1974)
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FIGURE E.1. Comparison of Numerically Calculated Surface Shear Stress Distributions over
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model of Jackson and Hunt. Taylor and Gent's results show a much larger
increase in Vs with increasing hill steepness than the increase in tmax
from the inviscid flow calculations. Discrepancies between calculations
obtained with the turbulence flow models of Taylor and Gent and of Deaves were
reported by Deaves (1975). Since there is no clear correspondence between the
results of the nonlinear models, evaluation of the effects of the numerical
modeling techniques used for each method would be desirable, but is beyond the
scope of this research.

Astley et al. (1977) have developed a numerical model applying the finite
element method to solve the equation of motion for inviscid flow over hills
and escarpments. Velocities were calculated over escarpments with slopes 1:1,
1:2, and 1:4. The results were compared to wind-tunnel measurements of Bowen
and Lindley (1977). There is in general good agreement for 2z > 0.5 h. 1In
the surface region, z < 2 h downstream of the crest separation of the stream-

lines and the action of the Reynolds stresses cause the mean velocities to be

significantly less than the predicted velocities.

E.4 NONLINEAR MODELS INCLUDING FLOW SEPARATION

Separation of the flow over hills occurs upwind and downwind of the hill
if the slopes are sufficiently steep. A purely mathematical treatment of the
flow is not yet possible because of the lack of knowledge about the inter-
action between the wake and the main flow. Present mathematical models that
predict a separated flow region have included some empiricism. A number of
existing models were developed to study the flow field over bluff surface
obstacles such as buildings and may as well be applied to predict flow over
hills. Other models were developed particularly for application in the
aeronautics industry and include the usual boundary-layer approximations
(pressure gradients across the streamlines are neglected) in the surface
boundary layer (Kuhn et al., 1974). Application of such models to flow over
hills embedded in a boundary layer does not seem to be justified.

An analytical solution of the equations of motion to plane inviscid shear
flow over surface obstacles was presented by Fraenkel (1961). The solution
includes closed streamlines just upstream and downstream of the obstacle. It
is noted that in this model the separated flow regions are not the result or
are not affected by mean flow wake interactions (see also Section 2.4).

Although theoretically solutions could be obtained for a large variety of
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conditions, at present solutions can realistically be obtained only if the
vorticity is constant and if the physical plane can be mapped onto a complex
plane. Application of this model to flow over hills is therefore limited and
only justified if the interaction between the wake and the main flow is
insignificant. '

Kiyva and Arie (1972) extended Fraenkel's model by including the
freestreamline theory of Parkinson and Jandali (1970). The freestreamline
theory describes the separation phenomenon resulting from the interaction
between main flow and wake. The technique is developed for two-dimensional,
incompressible flow external to a bluff body and its wake. The desired flow
separation points are made the '"critical" points. The stagnation streamlines
then transform to tangential separation streamlines in the physical plane with
separation at the desired pressure. The position and strength of the sources
are determined by empirical parameters, namely the separation point and the
pressure coefficient at the separation point. The flow inside the separation
streamlines is ignored and the base pressure is constant between the separa-
tion points. One of the limitations of this freestreamline theory is that the
wake width is finite for any downstream distance. Kiya and Arie's model
requires two more empirical parameters in order to determine the value of the
constant vorticity and slip velocity at the surface. They selected the
location and pressure at the stagnation point.

Kiya and Arie (1972) compared experimental results of Good and Joubert
(1968) for flow over a fence submerged in the boundary layer with their
theoretical predictions. They showed that excellent agreement was obtained
for the pressure distribution over the upwind face of the fence and for the
location of the freestreamline up to a distance of 4 h from the fence. The
upwind separated flow region was also predicted accurately.

Kiya and Arie's theory was extended recently by Bitte and Frost (1976).
They added a sink equal in strength to the existing source to include the
reattachment of the boundary layers downstream of the obstacle. An additional
empirical parameter has to be specified, namely the location of the rear
reattachment point.

The theory as developed by Kiya and Arie (1972) and Bitte and Frost
(1976) requires a substantial amount of empirical information and is difficult

to apply to other than very simple surface obstacle shapes. But the theory is
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unique in the general description of flow separation and is adequate for

parametric studies such as the effect of upwind velocity gradients on the

velocity field over hills.
Bitte and Frost (1976) present a numerical model to analyze atmospheric

flow over a bluff surface obstruction by applying concepts of boundary-layer
theory. This work is an extension of the model developed by Frost, Maus, and
Simpson (1973). Although predicted velocities are qualitatively similar to
those calculated with other models, the model is unrealistic because it

ignores vertical pressure gradients.
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APPENDIX F

LABORATORY SIMULATION OF WIND OVER RIDGES
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APPENDIX F LABORATORY SIMULATION OF WIND OVER RIDGES

Since Meroney et al. (1978a) reviewed similitude criteria as they relate
to shear flow over irregular terrain this section only summarizes the limita-
tions of wind-tunnel modeling and discusses their implications for this re-
search. A number of nondimensional parameters can be derived from the full
Navier-Stokes equations, which have to be equal for model and prototype in
order to have exact similarity. Although equality cannot be obtained for some
of those parameters, partial simulation seems adequate.

Two dimensionless parameters for which models simulation of atmospheric
boundary layer flow over complex terrain are partial or incomplete are the

Rossby number and the Reynolds number.

ROSSBY NUMBER
The Rossby number represents the ratio of inertial to Coriolis force and

may be estimated from:

ﬁUx
Ro = fﬁ;
where &Ux is the speedup over a distance L. Coriolis forces affect pri-
marily the variation of wind direction with height and were of course not
simulated in the experiments. They have to be taken into account, however,
for say Ro < 3. Such small Rossby numbers exist only at large distances from
the surface or over low hills. For example, assume that one is interested in
correcting forsfpeedup as small as 0.5 m/sec, then at a latitude of 40°, where

Qo =9 x 10 sec-l, the hill length has to be larger than 2 km before

Coriolis forces affect the mean flow field.

REYNOLDS NUMBER

This parameter is the ratio of inertial to viscous forces. Different

Reynolds number effects may be distinguished. For aerodynamically smooth
surfaces the Reynolds number effects limit the capabilities of physical model-
ing in a region close to the surface. In the present study an aerodynamically
smooth surface had to be selected in order to scale the equivalent surface-
roughness length to realistic proportions. The surface-roughness selection
was based on the following approximations: 1) the atmospheric boundary-layer
thickness was assumed to be 600 m, 2) the atmospheric surface condition to be

simulated varied from grassland to rural wood, [corresponding to a surface
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roughness length variation between 0.01 m and 1.0 m (Counihan 1975)], and 3)
the boundary-layer thickness in the wind tunnel was approximately 0.60 m.
Hence the surface roughness in the wind tunnel should be modeled between 10-5
and 10_3 m. The smooth floor "roughness lengths" were 6.8 x 10_5 m for
U, =9.1 m/sec, and 3.5 X 10-5 m for U, = 15.2 m/sec.

Close to a smooth surface under a turbulent shear layer there exists a
viscous sublayer in which similitude may be violated. Its thickness may be

estimated from
5,
/)

where 6v is the thickness of the viscous sublayer. This height is 0.05 cm

= 10

in the wind tunnel corresponding to a thickness of 50 cm in atmosphere. This
layer is usually irrelevant to wind velocity predictions.

Another Reynolds number effect that may jeopardize similitude between
model and prototype is related to the fetch. In the atmosphere the upwind
conditions may often be nonuniform causing a nonequilibrium boundary layer.
In a wind tunnel, however, it is desired to have equilibrium-flow conditions
so that changes in the turbulence structure are solely due to the surface
obstacle. Zoric and Sandborn (1972) conducted an extensive study investigat-
ing where in the Meteorological Wind Tunnel equilibrium-flow condition would
be established. Their analysis demonstrates that the turbulent boundary layer
develops to a similarity form by 6 m from the entrance. Downwind of 6 m
changes in flow characteristics were insignificant over the section where the
measurements were made.

The Reynolds number effect on flow separation is the final aspect that
needs consideration. Different velocities or hill dimensions may affect the
location of the separation point over a gently curved hill. The separation
phenomenon was studied by employing a triangular-shaped ridge which fixed the
separation point at the crest. When the Reynolds number based on hill length
is sufficiently large for flow over sharp edged geometries separation and
reattachment are independent of Reynolds number magnitude.

The remaining similitude parameters which govern flow over terrain relate
to geometric similarity and similarity of the approach windfield. These

parameters can be identified by consideration of a few additional independent
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variables. The features of the flow field and terrain which perform as
independent variables are:
- hill height, h,
- hill length upwind of the crest, Lu,
- hill downwind of the crest, Ld’ A
- detailed hill shape (or distinction is to be made between sharp-crested
and round-crested ridges),
- the boundary layer thickness, &,
- the equivalent surface roughness length, z,
- the shear velocity in the upwind surface layer, u,,
- the velocity at a height &, u (), and
- the thermal stratification characterized by a temperature differential
over the height of the hill, (T(h) - T(o))/h.
For these 9 variables, plus the kinematic viscosity of air and the
gravitational constant, the following nondimensional parameters may be de-

veloped by inspection:

z ., o
h h h 0 % _u(é6)h i . B AT
I I‘d * B8 F 2 m , Re = ’p ’ and Ri = T 3 h,

u AUZ
where ﬂUz is the characteristic change in velocity over the height of the
ridge. The eighth parameter is the detailed hill shape. The limitations
discussed above notwithstanding it is generally possible to simulate the
parameters noted above.

Physical magnitudes such as the integral length scales and Monin Obukhov
length in the equilibrium boundary layer are not included since they are
implicitly determined by the other parameters. For detailed information the
reader is referred to Zoric and Sandborn (1972) and Arya (1968).
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