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ABSTRACT

EXPECTED DISTANCES ON HOMOGENEOUS MANIFOLDS AND NOTES ON PATTERN

FORMATION

Flag manifolds are generalizations of projective spaces and other Grassmannians: they parametrize

flags, which are nested sequences of subspaces in a given vector space. These are important objects

in algebraic and differential geometry, but are also increasingly being used in data science, where

many types of data are properly understood as subspaces rather than vectors. In Chapter 1 of this

dissertation, we discuss partially oriented flag manifolds, which parametrize flags in which some

of the subspaces may be endowed with an orientation. We compute the expected distance between

random points on some low-dimensional examples, which we view as a statistical baseline against

which to compare the distances between particular partially oriented flags coming from geometry

or data.

Lens spaces are a family of manifolds that have been a source of many interesting phenomena in

topology and differential geometry. Their concrete construction, as quotients of odd-dimensional

spheres by a free linear action of a finite cyclic group, allows a deeper analysis of their structure.

In Chapter 2, we consider the problem of moments for the distance function between randomly

selected pairs of points on homogeneous three-dimensional lens spaces. We give a derivation of a

recursion relation for the moments, a formula for the kth moment, and a formula for the moment

generating function, as well as an explicit formula for the volume of balls of all radii in these lens

spaces.

Motivated by previous results showing that the addition of a linear dispersive term to the two-

dimensional Kuramoto-Sivashinsky equation has a dramatic effect on the pattern formation, we

study the Swift-Hohenberg equation with an added linear dispersive term, the dispersive Swift-

Hohenberg equation (DSHE) in Chapter 3. The DSHE produces stripe patterns with spatially
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extended defects that we call seams. A seam is defined to be a dislocation that is smeared out

along a line segment that is obliquely oriented relative to an axis of reflectional symmetry. In

contrast to the dispersive Kuramoto-Sivashinsky equation, the DSHE has a narrow band of unstable

wavelengths close to an instability threshold. This allows for analytical progress to be made.

We show that the amplitude equation for the DSHE close to threshold is a special case of the

anisotropic complex Ginzburg-Landau equation (ACGLE) and that seams in the DSHE correspond

to spiral waves in the ACGLE. Seam defects and the corresponding spiral waves tend to organize

themselves into chains, and we obtain formulas for the velocity of the spiral wave cores and for the

spacing between them. In the limit of strong dispersion, a perturbative analysis yields a relationship

between the amplitude and wavelength of a stripe pattern and its propagation velocity. Numerical

integrations of the ACGLE and the DSHE confirm these analytical results.

Chapter 4 explores the measurement and characterization of order in non-equilibrium pattern

forming systems. The study focuses on the use of topological measures of order, via persistent

homology and the Wasserstein metric. We investigate the quantification of order with respect

to ideal lattice patterns and demonstrate the effectiveness of the introduced measures of order

in analyzing imperfect three-dimensional patterns and their time evolution. The paper provides

valuable insights into the complex pattern formation and contributes to the understanding of order

in three dimensions.
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Chapter 1

Expected Distances on Manifolds of Partially

Oriented Flags 1

1.1 Introduction

Let V be an n-dimensional vector space. A flag in V is a nested sequence of subspaces

V1 ⊂ V2 ⊂ · · · ⊂ Vk = V . If di is the dimension of Vi, then associated to the flag is an increas-

ing sequence d1 < d2 < · · · < dk = n. We call the sequence (d1, d2, . . . , dk) the signature of

the flag. For this paper, we will make the assumption that V is a real vector space and the flag

manifold Fℓ(d1, d2, . . . , dk) will be the real manifold whose points parametrize all flags of sig-

nature (d1, d2, . . . , dk). Flag manifolds are natural generalizations of Grassmann manifolds and

have found applications in image analysis [1] and face, pose, and action recognition [2, 3]; as Ye,

Wong, and Lim point out [4], they are also implicit in many tasks in numerical and statistical anal-

ysis, ranging from mesh refinement to multiresolution analysis to canonical correlation analysis.

The key feature of flag manifolds is they locally look the same at each point, i.e. flag manifolds

are homogeneous spaces. Homogeneous spaces naturally admit nice coordinates which allow for

tangible calculations.

In this paper we generalize the notion of flag manifold, defining partially oriented flag mani-

folds. These manifolds are slight generalizations of the partially oriented flag manifolds introduced

by Lam [5] and studied by Sankaran and Zvengrowski [6, 7], among others. Flag manifolds are

natural models for data which is properly represented as (nested) subspaces, rather than as individ-

ual vectors, and partially oriented flag manifolds should prove useful as models for subspace data

when some or all of the nested subspaces are equipped with an orientation. These spaces are rather

1This project is with Chris Peterson and Clay Shonkwiler. This manuscript was first published in the Proceedings of
the AMS.
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simple to define as homogeneous spaces, but do not seem to have appeared previously in the data

science literature.

Given two data, represented as points in some Riemannian manifold or more general metric

space, it is natural to use the distance between the points as a measure of similarity. However, the

raw distance is meaningless without further context to know whether the distance is, say, much

smaller than expected. A reasonable statistical baseline for such a comparison is the expected

distance between two random points in the space. With an eye towards applications of partially

oriented flag manifolds to data problems, we determine the expected geodesic distance between

random points in all manifolds of partially oriented flags in R3; compare to Absil, Edelman, and

Koev’s work using a slightly different notion of distance in Grassmannians [8].

More precisely, recall that Fℓ(1, 2, 3) is the manifold of all (1, 2, 3)-flags in R3; that is, each

point represents a line inside a plane inside R3. We will shortly introduce some more involved

notation for this space, but for the moment let M be the manifold of such flags in which the line

has a preferred orientation, but the plane and R3 do not. Then the most interesting expectations we

compute are:

Theorem 1. The expected distance between two random points in M is

E[d;M ] = 1 +
π

4
.

The expected distance between random (1, 2, 3)-flags is

E[d;Fℓ(1, 2, 3)] =
3π

2
+

96

π2

∫
π/4

0


 arctan

(
tan2

(
arctan(secφ3)

2

))

−
arctan2

(√
1 + sec2 φ3

)

√
1 + sec2 φ3


dφ3 ≈ 1.31172503.

We define the partially oriented flag manifolds in Section 1.2 and discuss a number of examples

and relationships to more familiar manifolds, including Grassmannians, Stiefel manifolds, and
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classical flag manifolds. In Section 1.3 we compute the expected distance between two random

points in SO(3) both analytically and numerically using Monte Carlo integration. While this

computation is not new, it serves as a starting point and template for determining the expected

distances between random points in all the manifolds of (partially oriented) flags on R3, which is

the focus of Section 1.4.

1.2 Flags and Partially Oriented Flags

Let N denote the set of all positive integers and let n ∈ N. An ordered partition of the integer

n is the tuple λ = (λ1, . . . , λk) with λj ∈ N such that
∑k

j=1 λj = n.2 In this case, we say the size

of λ is k. Notice that for an ordered partition of size k, the symmetric group Sk acts by permuting

elements; i.e. if σ ∈ Sk we define σ · λ = (λσ(1), . . . , λσ(k)). Now suppose that Iλ = {1, . . . , k} is

the collection of indices of the partition λ. Then a partition of the set Iλ is a collection of disjoint

nonempty subsets of Iλ whose union is all of Iλ. We call the partition {Iλ} the trivial partition,

and the partition {{1}, {2}, . . . , {k}} the complete partition. All other partitions of Iλ will be

called proper partitions.

Let O(r) denote the group of real r × r orthogonal matrices. For any fixed ordered partition λ

of n, define the group Gλ =
∏

j∈Iλ
O(λj). An easy exercise in group theory shows that if σ ∈ Sk,

then Gλ
∼= Gσ·λ. Since elements of Gλ are of the form

⊕
j∈Iλ

Aj where Aj ∈ O(λj), we can

interpret Gλ as a block-diagonal subgroup of O(n).

Now suppose that Iα = {i1, . . . , im} is a subset of Iλ. We define a special orthogonal block

of Gα to be the set

S(O(λi1)× · · · ×O(λim)) = {A ∈ Gα| det(A) = 1}.

For brevity of notation, we will denote this set as SGα. If P is a partition of Iλ, define a special

orthogonal partition of Gλ to be the group SGP
λ =

∏
Iα∈P

SGα. If the partition of Iλ is trivial,

2Contrast this with the usual definition of a partition, in which the order does not matter, and hence one can assume
λ1 ≥ λ2, . . . ,≥ λk.
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complete, or proper, we call the corresponding special orthogonal partition the same. SGP
λ is a

block-diagonal subgroup of SO(n) which is finite if and only if λ = (1, 1, . . . 1). Since the SGP
λ

are subgroups of SO(n), the quotients will be homogeneous spaces which are the central object of

this paper.

Definition 1. Suppose that λ is any ordered partition of the integer n. Then if P is a partition of Iλ,

we may define the orbit space Fℓ(λ;P ) = SO(n)/SGP
λ . If the partition P is trivial, then Fℓ(λ;P )

is called a flag manifold. If P is a complete partition, we say that Fℓ(λ;P ) is an oriented flag

manifold. Finally, if the partition P is proper, then Fℓ(λ;P ) is called a partially oriented flag

manifold.

Example 1.2.1. If λ = (k, n− k) and PT = {{1, 2}} is the trivial partition, then

Fℓ(λ;PT ) = SO(n)/S(O(k)×O(n− k)) ∼= Gr(k, n),

the Grassmannian of k-dimensional linear subspaces of Rn. If instead we take the complete parti-

tion PC = {{1}, {2}}, then

Fℓ(λ;PC) = SO(n)/(SO(k)× SO(n− k)) ∼= G̃r(k, n),

the oriented Grassmannian of oriented k-dimensional subspaces of Rn, which double covers Gr(k, n).

Example 1.2.2. If 1 ≤ d1 < d2 < · · · < dk = n, recall that the flag manifold Fℓ(d1, . . . dk)

consists of nested subspaces

V1 ⊂ V2 ⊂ · · · ⊂ Vk = Rn

where dim(Vm) = dm.

If λ = (λ1, . . . λk) is an ordered partition of the integer n, define dm =
∑m

j=1 λj for each

1 ≤ m ≤ k. If PT is the trivial partition of Iλ, then

Fℓ(λ;PT ) = SO(n)/S(O(λ1)× · · · ×O(λk)) ∼= Fℓ(d1, . . . dk)
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really is a flag manifold. Notice that if σ ∈ Sk, then Fℓ(σ · λ;PT ) yields a different space

parametrizing entirely different geometric objects which is nonetheless diffeomorphic toFℓ(λ;PT ).

This helps explain our use of ordered partitions of n rather than just partitions: we are thinking

of the Fℓ(λ;P ) spaces as data models, with points corresponding to actual data, so we want to

avoid the complication of applying a diffeomorphism before we can think of our data as points in

a (partially oriented) flag manifold.

Example 1.2.3. Take λ = (n− k, 1, 1, . . . , 1) and suppose that PC is the complete partition of Iλ.

Then

Fℓ(λ;PC) = SO(n)/(SO(n− k)× SO(1)× · · · × SO(1)) ∼= SO(n)/SO(n− k) ∼= St(k, n),

the Stiefel manifold of orthonormal k-frames in Rn.

Example 1.2.4. In this example, we’ll consider all special orthogonal partitions when n = 3 and

λ = (1, 1, 1). If PC = {{1}, {2}, {3}} is the complete partition of Iλ, then SGPC
λ = SO(1) ×

SO(1) × SO(1) is the trivial group, so Fℓ(λ;PC) ∼= SO(3). At the other extreme, if PT =

{{1, 2, 3}} is the trivial partition, then Fℓ(λ;PT ) ∼= Fl(1, 2, 3)) and SGPT
λ = S(O(1) × O(1) ×

O(1)) is the copy of the Klein 4-group

SGPT
λ =








1 0 0

0 1 0

0 0 1



,




−1 0 0

0 −1 0

0 0 1



,




1 0 0

0 −1 0

0 0 −1



,




−1 0 0

0 1 0

0 0 −1







.

If P1 = {{1}, {2, 3}}, P2 = {{2}, {1, 3}}, and P3 = {{3}, {1, 2}} are proper partitions, then

the corresponding groups are

SGP1

λ =








1 0 0

0 1 0

0 0 1



,




1 0 0

0 −1 0

0 0 −1







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Fℓ(λ;PC) ≃ SO(3)

Fℓ(λ;P1) Fℓ(λ;P2) Fℓ(λ;P3)

Fℓ(λ;PT ) ≃ Fℓ(1, 2, 3)

Figure 1.1: Tower of flags for λ = (1, 1, 1).

SGP2

λ =








1 0 0

0 1 0

0 0 1



,




−1 0 0

0 1 0

0 0 −1








SGP3

λ =








1 0 0

0 1 0

0 0 1



,




−1 0 0

0 −1 0

0 0 1







.

Clearly each SGPi
λ is a subgroup of SGPT

λ of index 2, so in the quotients we have natural double

covers captured by the tower in Figure 1.1.

The double coverings in the previous example are special cases of a more general phenomenon.

Given an ordered partition λ of n and any partition P of Iλ, suppose that P ′ is a refinement of P .

Then the number of sets contained in P ′ and P differ by an integer m. It follows that |SGP
λ :

SGP ′

λ | = 2m, and hence we have the proposition:

Proposition 2. Suppose that λ is an ordered partition of n and P is a set partition of Iλ. Given

any refinement P ′ of P with m = |P ′| − |P |, Fℓ(λ;P ′) is a 2m-cover of Fℓ(λ;P ).

Example 1.2.5. In light of the proposition and Example 1.2.1, we re-verify that G̃r(k, n) is a

double cover of Gr(k, n).

Since Fℓ(λ;P ) is defined by quotients of orthogonal groups, we can find the total volume of

Fℓ(λ;P ). If λ is of length k and σ ∈ Sk, we have Vol(Fℓ(λ;P )) = Vol(Fℓ(σ · λ; σ · P )), so,
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for the purposes of computing volume, we may assume that λ is in decreasing order. To simplify

notation, let Sr denote the unit r-sphere and set Vi = Vol(Si−1) for i ∈ {1, 2, . . . n}; then

Vol(O(m)) =
m∏

i=1

Vi,

so we see:

Proposition 3. With notation as above,

Vol(Fℓ(λ;P )) = 2|P |−1 V1V2 · · ·Vn∏λ1
i=1 Vi · · ·

∏λk
i=1 Vi

= 2|P |−1V
✶

V λ̄
= 2|P |−1V ✶−λ̄.

In this expression, λ̄ denotes the conjugate of the partition λ given by taking the Young diagram

corresponding to λ, reflecting across the main diagonal, and then taking the partition correspond-

ing to this new diagram; see Figure 1.2 for an example.3 Also, we use the notation ✶ := (1, . . . , 1)

and xµ := xµ11 x
µ2
2 · · · xµnn .

Figure 1.2: On the left is the Young diagram corresponding to the partition λ = (4, 3, 2, 2, 1). The conjugate
Young diagram is on the right, with corresponding partition λ̄ = (5, 4, 2, 1).

1.3 SO(3) and Lifts to the 3-Sphere

In this section and the next, we generalize [9] and compute the expected (Riemannian) distance

between two random points in a partially oriented flag manifold. We will discuss this computation

for all flags for the case n = 3. The strategy for each of these computations is similar. The idea is to

3It is in converting the partition λ into a Young diagram that it is important we assume λ is in decreasing order.
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lift SO(3) to the unit 3-sphere and carry out computations upstairs. Lifting to S3 gives us a natural

coordinate system for SO(3) which is then used to describe the Haar measure on SO(3). The

push-forward measure is then used to find an invariant measure on each of the flags, and amounts

to only changing the region of integration in each case. Additionally, we’ll discuss how we can do

these calculations via Monte Carlo integration.

1.3.1 Lifting for Analytic Computation

We begin with a known calculation [9] of the expected distance between random points in

SO(3). The calculations for partial flags will follow from a refinement of this approach. First

we’ll briefly describe the Haar measure on SO(3) as parametrized by S3. It is not hard to see

that SO(3) is double covered by the unit 3-sphere. Indeed, S3 has a natural group structure as the

unit quaternions, which act on the quaternions by conjugation. This action clearly fixes the real

line since the reals commute with quaternions under multiplication. Hence the purely imaginary

quaternions are also invariant under the action of unit quaternions. The restriction of the action to

the purely imaginary quaternions is an isometry. To see this, suppose that q is a unit quaternion

and that x and y are both purely imaginary quaternions. Then

|qxq−1 − qyq−1| = |q||x− y||q−1| = |x− y|.

By identifying the purely imaginary quaternions with R3, this calculation shows that S3 acts

by isometries on R3. In fact, this action is by rotations: if u, n ∈ R3 are unit vectors, which

we interpret as purely imaginary quaternions, and we define q = cos θ + sin θn ∈ S3, then a

straightforward calculation shows that

quq−1 = (cos θ+sin θn)u(cos θ−sin θn) = cos 2θ u+sin 2θ(n×u)+(1−cos 2θ)(u ·n)n, (1.1)

8



which is the Rodrigues formula for rotation of u around the axis n by an angle 2θ. Therefore, S3

acts on R3 by rotation; moreover, since q and −q both induce the same rotations, it readily follows

that SO(3) is double covered by S3.

The double covering of SO(3) provides us a natural way to parametrize SO(3): each element

of SO(3) corresponds to an antipodal pair of points in S3, so each rotation corresponds to a (almost

always unique) point in the hemisphere of S3 where the first coordinate is positive. We can use

hyperspherical coordinates on S3 to parametrize SO(3):

x = cosφ1

y = sinφ1 cosφ2

z = sinφ1 sinφ2 cosφ3

w = sinφ1 sinφ2 sinφ3,

where φ1 ∈ [0, π/2], φ2 ∈ [0, π] and φ3 ∈ [0, 2π). The volume form on S3 is

sin2 φ1 sinφ2 dφ1 ∧ dφ2 ∧ dφ3,

but we need to make a slight adjustment to write down the volume form on SO(3). If 0 ≤ θ ≤ π/2

and n is a purely imaginary unit quaternion, then the point q = cos θ + sin θn has positive first

coordinate and lies at a distance θ from 1 in S3. However, looking at (1.1), the corresponding

element of SO(3) is at Frobenius distance 2θ from the identity. Therefore, the map S3 → SO(3)

scales distances by 2 and hence 3-dimensional volumes by 23 = 8, so we conclude that, with

respect to hyperspherical coordinates,

dVolSO(3) = 8 sin2 φ1 sinφ2 dφ1 ∧ dφ2 ∧ dφ3.
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With this in mind, an easy calculation shows that

Vol(SO(3)) =

∫ 2π

0

∫ π

0

∫ π/2

0

8 sin2 φ1 sinφ2dφ1dφ2dφ3 = 8π2,

as expected since the first column lies on the unit 2-sphere, with an area of 4π, the second column

lies on a perpendicular unit circle of circumference 2π, and the third column is determined by the

first two.

Now, we can compute the expected distance between two random points in SO(3). Since

the Frobenius distance is equivariant with respect to the left action of SO(3) on itself, we can

rotate one of the two points to the identity and, equivalently, compute the expected distance from a

random point in SO(3) to the identity. Equivalently, since an element of SO(3) is a rotation by an

angle θ around an axis n, and θ is exactly the Frobenius distance to the identity, we are computing

the expected rotation angle of a random element of SO(3).4

In order to compute the expected rotation, we note that if q = cosφ1 + n sinφ1, the angle of

rotation is 2φ1. In other words, up in S3 we are computing the expectation of twice the distance φ1

from a random point in the hemisphere of points with positive real part to the identity element 1:

E[d;SO(3)] =
1

Vol(SO(3))

∫

SO(3)

2φ1 dVolSO(3)

=
2

π2

∫ 2π

0

∫ π

0

∫ π/2

0

φ1 sin
2 φ1 sinφ2 dφ1dφ2dφ3 =

2

π
+
π

2
.

This calculation agrees with that found in [9].

1.3.2 Monte Carlo Methods

This computation can also be done numerically using Monte Carlo integration. First, we will

describe how to randomly generate matrices in SO(n). With this, we will be able to easily compute

4This can also be computed by integrating the rotation angle against the known density of the circular real ensem-
ble [10].
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expected distances on SO(3). From here, we will be able to use the same algorithms with slight

modifications for similar computations on flag and partially oriented flag manifolds.

Following Chikuse [11], we can generate random orthogonal matrices in Algorithm 1 by ap-

plying Gram–Schmidt to a random Gaussian matrix.

Algorithm 1 Random Special Orthogonal Matrix

1: function RANDSO(n)
2: A← random n× n Gaussian
3: Q← GRAMSCHMIDT(A)
4: if det(Q) = 1 then

5: return Q
6: else Q← E1,2Q ▷ E1,2 is the elementary row swap matrix
7: return Q
8: end if

9: end function

The next algorithm depends on the geodesic distance on SO(n). Fix A,B ∈ SO(n), and let

ABT = UΛU∗ be the spectral decomposition of ABT . Then because B is an isometry,

d(A,B) = d(ABT , I) = d(UΛU∗, I) = d(UΛ, U) = d(Λ, I).

This means the geodesic distance between A and B depends only on the eigenvalues of ABT .

Thus when approximating the integral via a Monte Carlo algorithm, we only need to generate one

random special orthogonal matrix at each step, which reduces computation time significantly.

In fact, the distance d(A, I) is described in [12] and is given by

d(A, I) =

(
1

2

n∑

k=1

| log µk|2
)1/2

.

where µk are the eigenvalues of A. The factor of 1/2 ensures that we aren’t overusing arg µk,

since the eigenvalues come in complex conjugate pairs. Algorithm 2 describes the Monte Carlo

experiment. Using Algorithms 1 and 2 with n = 3 and N = 10,000,000 gives the approximation
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E[d;SO(3)] ≈ 2.207478465, with absolute error

∣∣∣∣
2

π
+
π

2
− 2.207478465

∣∣∣∣ ≈ 0.000062365.

Algorithm 2 Calculating Expected Distance

1: D ← [0] ∗N ▷ Begin with a list of N zeroes
2: for i← 1, N do

3: A← RANDSO(n)
4: D(i)← d(A, I)
5: end for

return MEAN(D)

1.4 Expected Distances Between Partially Oriented Flags

Following the example computations on SO(3), we now compute the expected distance be-

tween two random points on each (partially oriented) flag manifold Fℓ(λ;P ) obtained from SO(3).

In all but one case we’ll be able to find an analytic expression for the expectation, and in all cases

we’ll get a numerical result from a Monte Carlo experiment.

Notice that for λ of length k, σ ∈ Sk, and P a partition of Iλ, we have Fℓ(λ;P ) ∼= Fℓ(σ ·λ; σ ·

P ). This is true in general, but in the special case of SO(3) we also observe that if partitions P

and P ′ of Iλ have the same order, then Fℓ(λ;P ) and Fℓ(λ;P ′) are diffeomorphic. Combined with

the previous fact, we see that Fℓ(λ;P ) ∼= Fℓ(σ · λ; P̂ ) so long as the partitions P of Iλ and P̂ of

Iσ·λ are the same size. This reduces the number of computations to be done.

In each case, we can use a trick already mentioned above to simplify our calculations. Since

each Fℓ(λ;P ) = SO(3)/SGP
λ is a homogeneous space, and since we will always choose the

Riemannian submersion metric on the quotient which is invariant under the left SO(3) action, we

can always move one point to the orbit of the identity, and hence the expected distance between

two random points in Fℓ(λ;P ) is the same as the expected distance between a single random point

and the identity orbit (or any other preferred point).
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1.4.1 S2 and RP 2

In this section we’ll consider the simplest (oriented) flag manifolds derived from SO(3).5 Sup-

pose that λ = (1, 2). Let PC = {{1}, {2}} and PT = {{1, 2}} denote the complete and trivial par-

titions of Iλ, respectively. Then we have the identifications S2 ∼= Fℓ(λ;PC) and RP2 ∼= Fℓ(λ;PT ).

Using standard spherical coordinates, the area form on S2 is dAreaS2 = sinφdφ ∧ dθ, where

φ ∈ [0, π] is the polar angle and θ ∈ [0, 2π] is the azimuthal angle. Indeed, we verify from the

volume formula in Proposition 3 that Vol(Fℓ((1, 2); {{1}, {2}})) = 4π, the area of the unit sphere.

Since S2 is homogeneous, it suffices to consider the distance between a point and the north pole,

which is simply the polar angle φ. Hence we have

E[d;Fℓ((1, 2);PC)] =
1

Area(S2)

∫

S2

φ dAreaS2 =
1

4π

∫ 2π

0

∫ π

0

φ sinφdφdθ =
π

2
.

This is what we expect, since a point is just as likely to be in the northern hemisphere as in

the southern. The calculation can also be carried out using Monte Carlo integration: generate a

3-vector v with independent, normally distributed entries. Normalize v to get v̂ which is uniformly

distributed on the sphere. As above, it suffices to compute the angle between v̂ and the north

pole. Taking the average of N samples gives the numerical estimate; indeed, an experiment with

N = 10,000,000 yields the estimate E[d;Fℓ((1, 2);PC)] ≈ 1.570989, with an absolute error of
∣∣π
2
− 1.570989

∣∣ ≈ 0.000193.

The story for RP2 is similar. The map π : S2 → RP2 given by p 7→ [p] := {p,−p} is a

Riemannian submersion, so the area form on RP2 is π∗ dAreaS2 = sinφdφ ∧ dθ, and computing

the distance between points in RP2 is equivalent to computing the minimum distance between

two pairs of antipodal points in S2, so our computation reduces to determining the expected angle

5For completeness, we can consider the trivial flag manifold SO(3)/SO(3) which clearly has expected distance 0.
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between a random point in the northern hemisphere and the north pole:

E[d;Fℓ((1, 2);PT )] =
1

Area(RP2)

∫

RP2

φ dAreaRP2 =
1

2π

∫ 2π

0

∫ π/2

0

φ sinφdφdθ = 1.

To carry this out with Monte Carlo methods, take v̂ as before, but compute the average of

arccos |v̂ · e3| where e3 is the point at the north pole. An experiment with N = 10,000,000 pro-

duces the estimate E[d;Fℓ((1, 2);PT )] ≈ 0.999975.

1.4.2 Flags with λ = (1, 1, 1)

In this section we consider flags with the ordered partition λ = (1, 1, 1). First we’ll describe

the problem of finding expected distances via Monte Carlo integration. Following this, we’ll take a

look at each individual case. Suppose that P is any partition of Iλ. In this case SGP
λ contains only

a finite number of elements in SO(3) as we have already seen in Example 1.2.4. Computing the

expected distance on SO(3)/SGP
λ is hardly any different from what we’ve done before: we simply

take the minimum distance from each point in the orbit gSGP
λ to the identity as in Algorithm 3.

Algorithm 3 Expected Distance on SO(3)/SGP
λ

1: D ← [0] ∗N ▷ Begin with a list of N zeroes
2: for i← 1, N do

3: A← RANDSO(3)
4: orbitdata← [0] ∗ |SGP

λ | ▷ |SGP
λ | denotes the order of SGP

λ

5: for j ← 1, |SGP
λ | do

6: orbitdata(j)← d(Ahj, I) ▷ Each hj denotes a distinct element of SGP
λ

7: end for

8: D(i)← MIN(orbitdata)
9: end for

return MEAN(D)

14



Oriented Flags

When P = PC is the complete partition, the oriented flag manifold Fℓ(λ;P ) ∼= SO(3) and we

saw in Section 1.3.1 that the expected distance between two random points in this space is

E[d;Fℓ((1, 1, 1);PC)] = E[d;SO(3)] =
2

π
+
π

2
.

Partially Oriented Flags

For the case of the partially oriented flags we may choose P to be P1, P2, or P3 as in Exam-

ple 1.2.4. In any case, SGP
λ will contain two matrices. Without loss of generality, suppose that

P = P1. We can readily apply Algorithm 3 with N = 10,000,000 to see that the expected distance

is ≈ 1.78548266.

To get an analytic expression, the strategy is to lift the computation to S3 as in Section 1.3.

Since the composite map S3 → SO(3) → SO(3)/SGP
λ is (up to the scale factor 2) a Riemannian

submersion, the distance between a pair of points in Fℓ(λ;P ) = SO(3)/SGP
λ is equal to twice the

minimum distance between the sets of preimages in S3.

As usual, the expected distance between two random points in Fℓ(λ;P ) is the same as the

expected distance between a single random point and any preferred point, which we will take to

be the identity coset ISGP
λ . In turn, the identity coset consists of the identity and the rotation by

angle π around the axis (1, 0, 0), so its preimages in S3 are {1,−1, i,−i}; in general, if g ∈ SO(3)

is rotation by θ around an axis n, then the preimage of gSGP
λ in S3 is {q,−q, iq,−iq}, where

q = cos θ
2
+ sin θ

2
n. In turn, since multiplication by −1 and multiplication by i are isometries,

d({1,−1, i,−i}, {q,−q, iq,−iq}) = d(1, {q,−q, iq,−iq}),

where the minimum distance will be achieved by the element of {q,−q, iq,−iq} which is closer

to 1 than to −1, i, or −i.

Therefore, the expected distance between a random coset gSGP
λ and the identity coset (and

hence, between two random points in Fℓ(λ;P )), is simply the expectation of twice the distance

15



from 1 to a random point in the subset of S3 which is closer to 1 than to −1, i, or −i. In terms of

Cartesian coordinates (x, y, z, w), this is precisely the set {(x, y, z, w) : x ≥ |y|}; in hyperspherical

coordinates, x ≥ |y| is equivalent to 0 ≤ ϕ1 ≤ arctan(secϕ2).

Hence, the volume of the partial flag is given by

Vol(Fℓ(λ;P )) =

∫

Fℓ(λ;P )

dVolFℓ(λ;P ) =

∫ 2π

0

∫ π

0

∫ arctan(secφ2)

0

8 sin2 φ1 sinφ2 dφ1dφ2dφ3

= 2

∫ 2π

0

∫ π/2

0

∫ arctan(secφ2)

0

8 sin2 φ1 sinφ2 dφ1dφ2dφ3,

where we use symmetry to restrict to φ2 ∈ [0, π/2) and avoid any issues with arctan(secφ2).

Mathematica will happily compute the above integral to be 4π2, which agrees with the volume

calculation from Proposition 3, but the limits of integration on the innermost integral make this

unpleasant to compute by hand.

We can make things easier by changing coordinate systems. Thinking of S3 as the unit sphere

in C2, we will interpret points on S3 as pairs (z1, z2) ∈ C2 with |z1|2 + |z2|2 = 1. Then the

condition x > |y| is equivalent to | arg z1| < π
4

– which will be a lens-shaped region in S3; the

analogous region on S2 is a lune – so it is desirable to use arg z1 as one of our coordinates. In fact,

|z1|2 + |z2|2 = 1 means that

(z1, z2) = (cosα eiθ1, sinα eiθ2)

for α ∈ [0, π/2] and θ1, θ2 ∈ [0, 2π]. Notice that each value of α determines a torus in S3 except

the extremal values α = 0 and α = π/2, where the torus collapses to the unit circle in the z1- or

z2-plane. See Figure 1.3 for a visualization.
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Figure 1.3: Stereographic projection to R3 of join coordinates on S3. θ1 and θ2 are simply the arguments
of the two complex coordinates, while α gives the angle a given vector makes with the z1-plane. The level
sets of α are generically tori, collapsing to the unit circle in the z1-plane when α = 0 and to the unit circle
in the z2-plane (which stereographically projects to the z-axis) when α = π/2.

We can write these coordinates – which we call join coordinates because they give a concrete

realization of S3 as the topological join of two copies of S1 – in terms of Cartesian coordinates as

x = cosα cos θ1

y = cosα sin θ1

z = sinα cos θ2

w = sinα sin θ2

and the volume form on S3 is easily computed to be dVolS3 = cosα sinα dα ∧ dθ1 ∧ dθ2. In

these coordinates, the volume of Fℓ(λ;P ) is easy to compute by hand, as it reduces to a simple

u-substitution:

Vol(Fℓ(λ;P )) =

∫ 2π

0

∫ π/4

−π/4

∫ π/2

0

8 cosα sinα dα dθ1dθ2 = 4π2
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We want to compute the expectation of twice the spherical distance from 1 to a random point in

the region−π
4
< θ1 <

π
4
. The distance is simply arccos(cosα cos θ1), and so the expected distance

between two random points in Fℓ(λ;P ) is

1

Vol(Fℓ(λ;P ))

∫ π

−π

∫ π/4

−π/4

∫ π/2

0

2 arccos(cosα cos θ1)8 cosα sinα dα dθ1dθ2

=
4

π2

∫ π

−π

∫ π/4

−π/4

∫ π/2

0

arccos(cosα cos θ1) cosα sinα dα dθ1dθ2

=
16

π

∫ π/4

0

∫ π/2

0

arccos(cosα cos θ1) cosα sinα dα dθ1

by integrating out θ2 and using the fact that the integrand is even in θ1.

This is slightly tedious but essentially straightforward to compute using the substitutions u =

cosα and sin v = u cos θ1, producing the first half of Theorem 1, which we restate in slightly more

general form:

Theorem 4. For i = 1, 2, 3, the expected distance between two random points in Fℓ((1, 1, 1);Pi)

is

E[d;Fℓ((1, 1, 1);Pi)] = 1 +
π

4
.

Note that
∣∣∣1 + π

4
− 1.78548266

∣∣∣ ≈ 0.0000844966

which once again shows that our Monte Carlo experiment does a good job of approximating the

analytic result.

Flags

Finally, we consider the case when P is the trivial partition, so SGP
λ contains four matrices as

in Example 1.2.4 and Fℓ(λ;P ) ∼= Fℓ(1, 2, 3), the manifold of (complete) flags on R3. We may

readily apply Algorithm 3 with N = 10,000,000 to find that the expected distance between two

random points in Fℓ(1, 2, 3) is ≈ 1.311751687.
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Finding an explicit integral for this calculation only requires a few additional changes to the

bounds from the previous section. The orbit of the identity lifts to {±1,±i,±j,±k}, which are

the vertices of the regular 16-cell dual to the standard hypercube. Other orbits are simply rotated

copies of the orbit of the identity, so they also get lifted to regular 16-cells. Hence, computing the

expected distance between points in Fℓ(1, 2, 3) is equivalent to computing the expected distance

from 1 to all the other unit quaternions which are closer to 1 than any of the other integer points on

S3.

This set is nothing but the radial projection of the cube

{(x, y, z, w) : x = 1,−1 ≤ |y|, |z|, |w| ≤ 1}

to S3, namely those points with x ≥ |y|, x ≥ |z|, and x ≥ |w|. This spherical cube is partitioned

into 3!× 23 spherical tetrahedra, each congruent to the spherical tetrahedron x ≥ y ≥ z ≥ w ≥ 0.

To integrate over this tetrahedron in hyperspherical coordinates we get the limits of integration

φ1 ∈ [0, arctan(secφ2)], φ2 ∈ [0, arctan(secφ3)], and φ3 ∈ [0, π/4]. Since the simplex is 1
48

of

the full spherical cube, we see that

Vol(Fℓ(1, 2, 3)) = 48

∫ π/4

0

∫ arctan(sec(φ3))

0

∫ arctan(sec(φ2))

0

8 sin2 φ1 sinφ2 dφ1dφ2dφ3;

using Mathematica’s numerical integration algorithm reassuringly yields a number numerically

indistinguishable from 2π2, which we know from Proposition 3 is the true volume.

Therefore, the expected distance between two points on Fℓ(1, 2, 3) is given by the integral

48

2π2

∫ π/4

0

∫ arctan(sec(φ3))

0

∫ arctan(sec(φ2))

0

2φ18 sin
2 φ1 sinφ2 dφ1dφ2dφ3.

In join coordinates, the corresponding integral turns out to be

4

2π2

∫ π/4

−π/4

∫ π/4

−π/4

∫ arctan
(

cos θ1
cos θ2

)

0

2 arccos(cosα cos θ1) 8 cosα sinα dα dθ1dθ2.
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It is not clear how to evaluate either of these integrals exactly, though the former can be reduced

to the one-dimensional integral given in the second half of Theorem 1, which we restate:

Theorem 5. The expected distance between two random (1, 2, 3)-flags is

E[d;Fℓ(1, 2, 3)] =

3π

2
+

96

π2

∫
π/4

0


arctan

(
tan2

(
arctan(secφ3)

2

))
−

arctan2
(√

1 + sec2 φ3

)

√
1 + sec2 φ3


dφ3.

Of course, this can be numerically evaluated to an arbitrary degree of precision; to 20 digits,

we can compute that the expected distance between two random points in Fℓ(1, 2, 3) is

1.3117250347224445929. Using the PSLQ algorithm [13], this does not appear to be in the vector

space over Q generated by 1, π, and 1
π

, unlike all the other expected values we have computed.

1.5 Conclusion and Open Questions

The manifolds of partially oriented flags described in this paper have the potential to be a

natural home for data which is interpretable in terms of nested subspaces, of which some may be

oriented. We encourage mathematicians, engineers, and other practitioners who are beginning to

see the usefulness of flag manifolds in data analysis to keep these spaces in mind.

While partially oriented flag manifolds have been studied by algebraic topologists [5–7], we

have not been able to find much evidence of their being studied by geometers. Given the funda-

mental role played by flag varieties in algebraic geometry, it would be interesting to find a more

algebraic definition or interpretation of these spaces. We also look forward to further geomet-

ric computation on these spaces, whether it be computing expected distances on a larger class of

partially oriented flag manifolds or determining other geometric quantities of interest.

For data living in a metric space, the expected distance between two random points in that

space is a simple statistical baseline for distance-based similarity measures. While this quantity

can often be estimated effectively using Monte Carlo techniques, it would be interesting to see
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analytic expressions for expected distance on spaces which are nice geometrically or useful as data

models.
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Chapter 2

Distributions of Distances and Volumes of Balls in

Homogeneous Lens Spaces 6

2.1 Introduction

Given a set of data, what is the best guess for the random process that produced the data?

Attempts to answer special cases of this question have motivated new developments in statistics,

mathematics, and machine learning. As a starting point, one would like to understand whether the

observed data has a distribution differing from what is “expected.” However, determining what is

expected can be quite subtle when the data takes values on a manifold, though when the manifold

is homogeneous, there are additional tools that one can use to simplify the problem. At an intuitive

level, a homogeneous manifold is a space in which each point is indistinguishable from any other

point.

For distance data, one would ideally like to check whether the distribution of pairwise dis-

tances is compatible with the corresponding distribution on the manifold. In a previous paper [14],

we considered the problem of computing the expected distances between randomly drawn points

on manifolds of partially oriented flags. These manifolds generalize projective spaces and other

Grassmannians and form a large family of homogeneous spaces. The examples in which we had

the most success computing expected distances turn out to be (scaled) lens spaces; that is, quotients

of an odd-dimensional sphere by the free action of a cyclic group. In this paper we go beyond sim-

ple expectations and determine precisely the distributions of distances between pairs of random

points in all homogeneous three-dimensional lens spaces.

These distributions are examples of distance distributions (or sometimes shape distributions

or distance histograms), which make sense on arbitrary metric measure spaces, and are often used

6This project is with Chris Peterson and Clay Shonkwiler. This manuscript was first published in Differential Geometry
and its Applications.
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for geometric classification and shape analysis [15–21]. Our results provide a strong statistical

baseline against which to compare data on lens spaces, which have recently been applied to data

science [22], appear frequently in the cosmography literature [23–26], and are the natural setting

for spherical data with cyclic symmetries.

To establish notation, each pair of positive integers (n,m) with n > m and gcd(n,m) = 1

determines a three-dimensional lens space L(n;m) which is a quotient of the 3-sphere S3 by the

cyclic group of order n. By requiring the quotient to be a Riemannian submersion, we induce a

Riemannian metric on L(n;m), which turns out to be homogeneous when m = 1 or n− 1. More-

over, L(n; 1) andL(n;n−1) are isometric, so to understand distance distributions on homogeneous

lens spaces it suffices to consider those lens spaces of the form L(n; 1).

As a first step, we determine all moments of distance (i.e., expected values of powers of dis-

tance) by solving a recurrence relation that they satisfy:

Theorem 6. For each k ≥ 0 and each n ≥ 2, the kth moment of distance on L(n; 1) is

In,k =
1

(k + 1)(k + 2)

[
4

k + 3

(π
n

)k+2

1F2

[
1

k+4
2
, k+5

2

;−π
2

n2

]

+tan
π

n

(
n
(π
2

)k+1

1F2

[
1

k+3
2
, k+4

2

;−π
2

4

]
− 2
(π
n

)k+1

1F2

[
1

k+3
2
, k+4

2

;−π
2

n2

])]
,

where for n = 2 this is interpreted as the limit of the above expression as n → 2, and 1F2 is a

hypergeometric function whose definition we recall on page 33 below.

The alternating finite sum formula given in (2.8) is typically more useful for small k, but

one virtue of this formulation in terms of hypergeometric functions is that it is easy to extract

asymptotic information:

Corollary 7. As k →∞ the kth moment of distance grows like

I2,k ∼
2

k

(π
2

)k
and In,k ∼

n

k2

(π
2

)k+1

tan
π

n
for n ≥ 3.

23



A more attractive and systematic packaging of the moments is in the form of the moment-

generating function of distance:

Theorem 8. The moment-generating function of distance on L(n; 1) is

Mn(t) =





4
π(4+t2)

(
2(etπ/2−1)

t
+ tetπ/2

)
if n = 2

2n
π(4+t2)

(
2(etπ/n−1)

t
+ tan π

n

(
etπ/2− etπ/n

))
if n ≥ 3.

We then use the moment-generating function to determine the cumulative distribution function

of distance, which (up to scaling) simply reports volumes of balls. Consequently, our probabilistic

approach to studying distances on lens spaces yields the following purely geometric result:

Theorem 9. For n ≥ 2, the volume of a ball of radius r in L(n; 1) is

Vn(r) =





2π(r − sin r cos r) if r ≤ π
n

2π2

n
− 2π cos2 r tan π

n
π
n
< r < π

2

π
2

r ≥ π/2

Notice, in particular, that this formula for volume extends beyond the injectivity radius π
n

of

L(n; 1), in contrast to most results about volumes of balls in Riemannian manifolds (e.g., [27]).

In addition to the potential applications of these ideas to data problems, this seems to be a novel

result to add to existing knowledge about the geometry and topology of lens spaces [28–36].

We describe our perspective, provide basic background material on lens spaces, and give the

setting in which algorithms and analytic computations are to be made in Section 2.2. In Section 2.3

we describe algorithms for sampling random points and determining their distance apart. In addi-

tion, we present the results of several Monte Carlo experiments that illustrate differences between

distributions of distances on homogeneous and non-homogeneous lens spaces. Section 2.4 con-

tains the main theoretical results of the paper.
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Figure 2.1: A fundamental domain of the lens space L(n;m). The arrows indicate the directions of the join
coordinates (θ1, θ2, η) that will be defined on page 27.

2.2 Lens Spaces

Three-dimensional lens spaces are a family of manifolds that arise as the orbit space of a finite

cyclic group acting freely on the unit 3-sphere. More precisely, let Zn = {ei2πk/n ∈ C | 1 ≤ k ≤

n} denote the cyclic group of order n and consider S3 = {(α, β) ∈ C2 | |α|2 + |β|2 = 1}. Given

n,m ∈ N with gcd(m,n) = 1, there is a free action of Zn on S3 defined by

ω · (α, β) = (ωα, ωmβ),

for each ω ∈ Zn. The resulting orbit space is the lens space L(n;m).

To visualize L(n;m), we can look at the fundamental domain of the Zn action on S3 ⊆ C2, as

in Figure 2.1. The fundamental domain of the rotation e2πi/n in the first factor is an arc of length 2π
n

in the unit circle in the z1-plane of C2. All points in S3 with first coordinate in such a fundamental

domain form a lens-shaped domain as pictured. The top and bottom faces of the lens consist of all

points lying on geodesics connecting an endpoint of the arc to all points in the unit circle in the

z2-plane: these are hemispheres of unit 2-spheres meeting at an angle of 2π
n

along the unit circle in

the z2-plane. Since the endpoints of the arc are identified under the 2π
n

rotation in the z1-coordinate,

the bottom face is identified with the top face by this rotation. However, this identification happens

with a 2πm
n

twist in the z2-coordinate, so that the green sector in the bottom face is glued to the

green sector in the top face (in the picture, m = 2).
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Lens spaces were introduced by Tietze [37] and have historically provided interesting examples

of manifolds which cannot be distinguished by homology or homotopy groups. For example,

L(5; 1) and L(5; 2) are not homeomorphic (nor even homotopy equivalent) despite the fact that

π1(L(5; 1)) ∼= π1(L(5; 2)) and H•(L(5; 1)) ∼= H•(L(5; 2)) [28]. In fact, the lens spaces L(n;m1)

and L(n;m2) are homotopy equivalent if and only if m1m2 = ±a2 (mod n) for some a ∈ N, and

are homeomorphic if and only if m1 = ±m±1
2 (mod n) [29, 33]. Using these criteria, one can

easily conclude that L(7; 1) and L(7; 2) are examples of manifolds which are homotopy equivalent

but not homeomorphic.

In addition to their topological structure, lens spaces have geometric structure. The round

metric on S3 induces a unique metric on S3/Zn = L(n;m) that makes π : S3 → L(n;m) a

Riemannian submersion. A result of Ikeda and Yamamoto [30] implies that two three-dimensional

lens spaces are isometric if and only if they are homeomorphic. This result, combined with work

of Tanaka [35], shows that the spectrum of the Laplacian uniquely determines a three-dimensional

lens space among all Riemannian manifolds. An explicit orthonormal eigenbasis for the Laplacian

is given in [31]. Moreover, the isoperimetric problem has been solved in all lens spaces L(n;m)

with n large enough [36].

With respect to this Riemannian metric, some lens spaces are homogeneous, meaning the isom-

etry group acts transitively. Theorem 7.6.6 of Wolf [38] says that Sd/G is homogeneous if and

only if the group G has a Clifford representation — that is, a faithful orthogonal representation

ρ : G→ O(d+ 1) such that ρ(g) = ±I or half of the eigenvalues of ρ(g) are λ ∈ S1 and the other

half are λ̄. The action of Zn on S3 has the faithful orthogonal representation ρ : Zn → O(4) given

by

ρ(ω) =




cos 2π/n − sin 2π/n 0 0

sin 2π/n cos 2π/n 0 0

0 0 cos 2πm/n − sin 2πm/n

0 0 sin 2πm/n cos 2πm/n




,

26



and has eigenvalues ei2π/n, e−i2π/n, ei2πm/n and e−i2πm/n. Hence L(n;m) is homogeneous pre-

cisely when m = 1 or m = n − 1. Since L(n; 1) and L(n;n − 1) are homeomorphic and hence

isometric, we may simply take m = 1 when dealing with homogeneous lens spaces.

2.2.1 Coordinate systems

Using the natural group structure on S3 given by its identification with the unit quaternions, we

can describe an isomorphism between S3 and SU(2). Writing quaternions in the form α + βj for

α, β ∈ C, define φ : S3 → SU(2) by

φ : α + βj 7→



α −β

β α


 ,

where ζ denotes the complex conjugate of ζ . It is easy to check that φ is a Lie group isomorphism.

The action of Zn on S3 then induces an action on SU(2) given explicitly by

ω ·



α −β

β α


 =



ωα −ωmβ

ωmβ ωα


 . (2.1)

Describing the lens space in this way will make our computations straightforward. The idea is

that we can easily generate random elements of SU(2) according to Haar measure (which corre-

sponds to the uniform probability measure on S3), compute the orbits explicitly, and then distances

between orbits correspond to distances in the lens space.

For homogeneous lens spaces, we will be able to make explicit analytic calculations in Sec-

tion 2.4. To do so, we’ll parametrize S3 using join coordinates, which realize the 3-sphere as the

join of two circles. Since S3 = {(α, β) ∈ C2 | |α|2 + |β|2 = 1}, we can write α = eiθ1 cos η

and β = eiθ2 sin η for θ1, θ2 ∈ [−π, π) and η ∈ [0, π/2]. This can also be expressed in Cartesian
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coordinates on R4 as

x = cos θ1 cos η

y = sin θ1 cos η (2.2)

z = cos θ2 sin η

w = sin θ2 sin η.

These coordinates easily yield the volume form dVolS3 = cos η sin η dη ∧ dθ1 ∧ dθ2, and

the volume form induced by the Riemannian submersion metric on the homogeneous lens space

L(n; 1) is dVolL(n;1) = cos η sin η dη ∧ dθ1 ∧ dθ2, where now θ1, θ2 ∈ [−π/n, π/n). A straight-

forward calculation shows that Vol(L(n; 1)) = 2π2/n2.

2.3 Algorithms and Experiments

In this section we’ll provide an algorithm for a Monte Carlo experiment. We then use this as a

guide for analysis on higher moments.

Our aim is to describe a Monte Carlo simulation which will allow us to approximate expected

(Riemannian) distances between two points in L(n;m). We will use Algorithm 4 to randomly

generate elements of SU(n).

Algorithm 4 Random Special Unitary Matrix

1: function RANDSU(n)
2: A,B ← random n× n Gaussian
3: C ← A+ iB ▷ where i =

√
−1

4: Q← GRAMSCHMIDT(C)
5: Q1,n ← 1

det(Q)
Q1,n ▷ Q1,n is the last column of Q

6: end function

We will use the Riemannian distance function on SU(2) (see [39]), then use the Riemannian

submersion π : SU(2) → L(n;m) to obtain a distance function on the lens space. Suppose

that A,B ∈ SU(2), and let λ1, λ2 be the eigenvalues of AB∗. For a nonzero complex number
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z = x + yi, we let log z denote the principal value logarithm whose imaginary part lies in the

interval (−π, π]. The geodesic distance in SU(2) is given by

d(A,B) =
1√
2

√
| log λ1|2 + | log λ2|2

or, since λ2 = λ1, d(A,B) = | log λ1|. To compute distances on L(n;m), we first compute the

orbits, then compute pairwise distances between the elements of each orbit, and finally take the

minimum of all distances computed. Thus for [A], [B] ∈ L(n;m), we have

d([A], [B]) = min
1≤j,k≤n

{d(ωj · A, ωk · B)},

where ω = e2πi/n. This leads to Algorithm 5.

Algorithm 5 Expected Distance on L(n;m)

1: D ← [0] ∗N ▷ Begin with a list of N zeroes
2: for k ← 1, N do

3: A← RANDSU(2)
4: B ← RANDSU(2)
5: orbitdata← [0] ∗ n× n ▷ Initialize n× n zero matrix
6: for i← 1, n do

7: for j ← 1, n do

8: orbitdata(i, j)← d(ωi · A, ωj · B)
9: end for

10: end for

11: D(k)← MIN(orbitdata)
12: end for

return MEAN(D)

For example, using Algorithm 5 with N = 1,000,000, we estimate the expected distances

between random points on L(5; 1) and L(5; 2) to be approximately 0.85897 and 0.80378, respec-

tively, reflecting the fact that these lens spaces are not isometric (nor even homeomorphic); see

Figure 2.2. The corresponding estimates for L(7; 1) and L(7; 2) are 0.82641 and 0.73641, respec-
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Figure 2.2: On the left are histograms of distances between 1,000,000 random pairs of points in L(5; 1)
[blue] and L(5; 2) [red], computed using Algorithm 5; the curve shows the true density of distances in
L(5; 1) from (2.11). The right shows histograms of distances in L(5; 2) from 1,000,000 random points
to different fixed points, where the fixed points are the images in L(5; 2) of SU(2) elements of the form(
cosφ − sinφ
sinφ cosφ

)
, where φ = 0 [blue], π/8 [red], and π/4 [green]; the curve shows the density of distances

from random points in L(5; 1) to any fixed point, again from (2.11). In particular, whereas the distributions
of distances from random points to any fixed point in the homogeneous space L(5; 1) are all the same, these
distributions vary with the fixed point in the non-homogeneous L(5; 2).

tively, again reflecting the fact that these spaces are neither isometric nor homeomorphic, though

they are homotopy equivalent.

In the homogeneous case, it actually suffices to fix a representative of a fixed orbit, then check

the distances between the chosen representative and each element of the other orbit. To see this,

note that

d([A], [B]) = min
1≤i,j≤n

{d(ωi · A, ωj · B)}

= min
1≤k≤n

{d(ωk · AB∗, I)}.

If A,B are chosen according to Haar measure on SU(2), then AB∗ will also be distributed accord-

ing to Haar measure, which is definitionally invariant under the (left or right) action of SU(2) on

itself. Hence, when doing a computational experiment, we can generate one random element of

SU(2), compute the orbit under the action, and then compute the distances from each element in

the orbit to the identity. This yields the less computationally expensive Algorithm 6.
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Algorithm 6 Expected Distance on L(n; 1)

1: D ← [0] ∗N
2: for l ← 1, N do

3: A← RANDSU(2)
4: orbitdata← [0] ∗ n
5: for k ← 1, n do

6: orbitdata(k)← d(ωk · A, I)
7: end for

8: D(l)← MIN(orbitdata)
9: end for

return MEAN(D)

For N = 1,000,000, a naïve Matlab implementation of Algorithm 5 gives the estimate

E[d;L(5, 1)] ≈ 0.85897 in about 940 seconds on a laptop, whereas Algorithm 6 yields

E[d;L(5, 1)] ≈ 0.85921 in about 86 seconds.

2.4 Distributions of Distances

We now restrict to the case that L(n;m) is homogeneous; as previously mentioned, we can

(and will) assume in what follows that m = 1. In this section we derive an analytic description of

the distributions of distances on all the L(n; 1) lens spaces.

As a first step to understanding these distributions of distances, we will compute the kth mo-

ment of distance between 2 random points in L(n; 1). We now work in join coordinates (2.2), and

we think of points in L(n; 1) as orbits of points in S3. Since L(n; 1) is homogeneous, we may fix

one point to be (the orbit of) the point q = (1, 0, 0, 0). The fundamental domain of the Zn action

centered at this point (depicted in Figure 2.1) is determined by the join coordinate inequalities

−π
n
≤ θ1, θ2 <

π

n
,

so computing the expectation of kth power of distance in L(n; 1) is equivalent to computing the

expectation of [dS3(p, q)]
k, where p varies over this fundamental domain. With p written in join

coordinates, dS3(p, q) = arccos(p · q) = arccos(cos θ1 cos η), so the kth moment of distance is
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exactly

In,k := E[dk;L(n; 1)] =
1

Vol(L(n; 1))

∫

L(n;1)

[dL(n;1)([p], [q])]
k dVolL(n;1)

=
n2

2π2

∫ π/n

−π/n

∫ π/n

−π/n

∫ π/2

0

arccosk(cos θ1 cos η) cos η sin η dη dθ1 dθ2.

Obviously,

In,0 = 1. (2.3)

For k ≥ 1, the integral expression for In,k can be simplified somewhat by integrating out θ2,

observing that the integrand is even in θ1, and making the substitution cosu = cos θ1 cos η. Doing

so produces the integral

In,k =
2n

π

∫ π/n

0

sec2 θ1

∫ π/2

θ1

uk cosu sin u du dθ1. (2.4)

Notice that this integral is improper for n = 2. For n ≥ 3 we can apply the reduction for-

mula [40, 2.631.1] for the inner integral to compute the first moment

In,1 =
π

2n
+
n− 2

4
tan

π

n
(2.5)

and the relation

In,k = −
k(k − 1)

4
In,k−2 +

1

k + 1

(π
n

)k
+

n

2π

[(π
2

)k
−
(π
n

)k]
tan

π

n
(2.6)

for k ≥ 2.

We can solve this recurrence using standard methods. The following theorem expresses the

solution in terms of generalized hypergeometric functions pFq

[
a1 a2 ... ap
b1 b2 ... bq

; z

]
. In the definition of

this class of functions, it is convenient to introduce the Pochhammer symbol (a)n, defined by the

32



rule

(a)n =





1 if n = 0

a(a+ 1) · · · (a+ n− 1) if n ≥ 1.

Equivalently, so long as a is not a nonpositive integer (a)n = Γ(a+n)
Γ(a)

.

In terms of the Pochhammer symbol, the generalized hypergeometric function is defined by the

series

pFq

[
a1 a2 . . . ap
b1 b2 . . . bq

; z

]
=

∞∑

n=0

(a1)n(a2)n · · · (ap)n
(b1)n(b2)n · · · (bq)n

zn

n!
,

provided none of the b1, . . . , bq is a nonpositive integer. When p ≤ q, the series converges for all z

and pFq is entire.

Theorem 6. For each k ≥ 0 and each n ≥ 3, the kth moment of distance on L(n; 1) is

In,k =
1

(k + 1)(k + 2)

[
4

k + 3

(π
n

)k+2

1F2

[
1

k+4
2
, k+5

2

;−π
2

n2

]

+tan
π

n

(
n
(π
2

)k+1

1F2

[
1

k+3
2
, k+4

2

;−π
2

4

]
− 2
(π
n

)k+1

1F2

[
1

k+3
2
, k+4

2

;−π
2

n2

])]
. (2.7)

Values for small k are given in Table 2.1.

Proof. While the difference equation (2.6) is second-order, the even and odd In,k are independent

of each other, so we can separately reduce each to a first-order difference equation and then solve

that first-order equation.

For example, if k = 2m is even, then defining ym := In,2m and index-shifting allows us to

re-write (2.6) as

ym+1 = −
(2m+ 2)(2m+ 1)

4
ym +

1

2m+ 3

(π
n

)2m+2

+
n

2π

[(π
2

)2m+2

−
(π
n

)2m+2
]
tan

π

n

with initial condition y0 = In,0 = 1 from (2.3).
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Table 2.1: Values of the kth moment of distance In,k for small k and n ≥ 3.

k In,k

0 1

1 π
2n

+
(
1
4
n− 1

2

)
tan π

n

2 −1
2
+ π2

3n2 +
(
π
8
n− π

2n

)
tan π

n

3 −3π
4n

+ π3

4n3 +
(
π2−6
16

n+ 3
4
− π2

2n2

)
tan π

n

4 3
2
− π2

n2 +
π4

5n4 +
(
π3−12π

32
n+ 3π

2n
− π3

2n3

)
tan π

n

5 15π
4n
− 5π3

4n3 +
π5

6n5 +
(
π4−20π2+120

64
n− 15

4
+ 5π2

2n2 − π4

2n4

)
tan π

n

6 −45
4
+ 15π2

2n2 − 3π4

2n4 +
π6

7n6 +
(
π5−30π3+360π

128
n− 45π

4n
+ 15π3

4n3 − π5

2n5

)
tan π

n

7 −315π
8n

+ 105π3

8n3 − 7π5

4n5 +
π7

8n7 +
(
π6−42π4+840π2−5040

256
n+ 315

8
− 105π2

4n2 + 21π4

4n4 − π6

2n6

)
tan π

n

This is in the standard form ym+1 = gmym + hm for general first-order linear difference equa-

tions, and hence has solution

ym =
m−1∏

j=0

gj

(
y0 +

m−1∑

j=0

hj∏j
ℓ=0 gℓ

)
(2.8)

= (−1)m (2m)!

22m

(
1 +

m−1∑

j=0

(−1)j+1

(2j + 3)!

(
2π

n

)2j+2

+
n

2π
tan

π

n

m−1∑

j=0

(−1)j+1

(2j + 2)!

(
π2j+2 −

(
2π

n

)2j+2
))

after some simplification.

In turn, each of the finite sums becomes one of the hypergeometric functions in (2.7). For

example,

1 +
m−1∑

j=0

(−1)j+1

(2j + 3)!

(
2π

n

)2j+2

=
n

2π

m∑

j=0

(−1)j
(2j + 1)!

(
2π

n

)2j+1

=
n

2π

∞∑

j=0

(−1)j
(2j + 1)!

(
2π

n

)2j+1

− n

2π

∞∑

j=m+1

(−1)j
(2j + 1)!

(
2π

n

)2j+1

=
n

2π
sin

2π

n
− (−1)m+1

(2m+ 3)!

(
2π

n

)2m+2 ∞∑

i=0

1

(m+ 2)i(m+ 5
2
)i

(
−π

2

n2

)i
.
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After multiplying each term by 1 = i!
i!

= (1)i
i!

, the remaining sum is the standard power series

representation of 1F2

[
1

m+2 m+ 5

2

;−π2

n2

]
.

Simplifying the remaining terms in (2.8) and replacing 2m with k yields the solution (2.7) for

the even moments.

On the other hand, notice that we can solve the difference equation (2.6) for In,1 independent

of the value of In,−1. Therefore, if we define zm = In,2m−1 for m ≥ 1, we can choose the initial

condition z0 arbitrarily. If we choose z0 = 1,7 then the difference equation and initial condition for

zm are essentially identical to those in the problem we just solved. Indeed, solving the system and

plugging in k = 2m − 1 at the end yields the exact same expression (2.7) for the odd moments,

completing the proof.

We can’t plug n = 2 into the expressions (2.5) and (2.6), but taking the limit as n → 2 gives

the corresponding values of the improper integral (2.4):

I2,1 =
1

π
+
π

4

I2,k = −
k(k − 1)

4
I2,k−2 +

1

k + 1

(π
2

)k
+
k

π

(π
2

)k−1

.

The solution of this initial value problem (together with I2,0 = 1) is simply the limit of (2.7) as

n→ 2:

Corollary 10. The kth moment of distance on L(2; 1) = RP3 is

I2,k =
1

k + 1

(π
2

)k[
2 1F2

[
1

k+3
2
, k+4

2

;−π
2

4

]

+
π2

(k + 2)(k + 3)

(
1F2

[
1

k+4
2
, k+5

2

;−π
2

4

]
− 4

k + 4
1F2

[
2

k+5
2
, k+6

2

;−π
2

4

])]
.

7We emphasize that In,−1 ̸= 1; in fact, it is not too hard to show that

In,−1 =
n

π

[
γ − Ci

(
2π

n

)
+ log

(
2π

n

)
+

(
Si(π)− Si

(
2π

n

))
tan

π

n

]
,

where γ ≈ 0.577 is the Euler–Mascheroni constant and Ci and Si are the cosine integral and sine integral functions,
respectively.
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We point out that the partially oriented flag manifolds Fℓ((1, 1, 1); {{1}, {2}, {3}}) and

Fℓ((1, 1, 1), {{1}, {2, 3}}) considered in our previous paper [14] are (up to a global scale factor

of 2) the lens spaces L(2; 1) and L(4; 1), respectively, and indeed the expected values of distance

that we computed on those spaces were exactly 2I2,1 =
2
π
+ π

2
and 2I4,1 = 1 + π

4
.

For small k the finite sum formula (2.8) is typically more useful than (2.7) — and, indeed, the

finite sum is what we see in Table 2.1 — but one virtue of Theorem 6 and Corollary 10 is that we

can easily determine the asymptotic behavior of In,k as k →∞ by retaining only the leading terms

in the power series representations of the hypergeometric functions.

Corollary 7. For fixed n ≥ 3, the asymptotic growth of the kth moment of distance on L(n; 1) as

k →∞ is

In,k ∼
n

k2

(π
2

)k+1

tan
π

n
.

For n = 2, the asymptotic growth of the kth moment of distance on L(2; 1) = RP3 is

I2,k ∼
2

k

(π
2

)k
.

On the other hand, if we fix k and let n get large, only the middle term in (2.7) survives:

Corollary 11. For fixed k ≥ 0,

lim
n→∞

In,k =
π

(k + 2)(k + 1)

(π
2

)k+1

1F2

[
1

k+3
2

k+4
2

;−π
2

4

]
.

Values for small k are given in Table 2.2.

Another way to package the information contained in Theorem 6 is by computing the moment-

generating function of distance:

Theorem 8. For n ≥ 3, the moment-generating function of distance on L(n; 1) is

Mn(t) =
2n

π(4 + t2)

(
2(etπ/n− 1)

t
+ tan

π

n

(
etπ/2− etπ/n

))
. (2.9)
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Table 2.2: lim
n→∞

In,k for small k. The coefficient of π is the coefficient of n tan π
n in the corresponding entry

in Table 2.1, and the remaining term is the constant term from Table 2.1.

k lim
n→∞

In,k Decimal approx.

0 1 1.00000

1 1
4
π 0.78539

2 −1
2
+ π

8
π 0.73370

3 π2−6
16

π 0.75979

4 3
2
+ π3−12π

32
π 0.84293

5 π4−20π2+120
64

π 0.98258

6 −45
4
+ π5−30π3+360π

128
π 1.18885

7 π6−42π4+840π2−5040
256

π 1.48090

For n = 2, the moment-generating function is

M2(t) =
4

π(4 + t2)

(
2(etπ/2− 1)

t
+ tetπ/2

)
.

Proof. By definition,

Mn(t) = E(etd;L(n; 1)) =
2n

π

∫ π/n

0

sec2 θ1

∫ π/2

θ1

etu cosu sin u du dθ1 (2.10)

using the same substitution that produced (2.4). Using the identity sin 2u = 2 sin u cosu and

integrating by parts twice yields

Mn(t) =
2n

π(4 + t2)

(
etπ/n− 1

t
+ tan

π

n
etπ/2−

∫ π/n

0

etθ1(t tan θ1 + sec2 θ1 − 1) dθ1

)

for n ≥ 3. Integrating the first term inside the integral by parts produces a term which cancels the

second, and the rest is straightforward.

For n = 2, evaluating the indefinite integral (2.10) boils down to taking the limit of (2.9) as

n→ 2, which produces the desired expression for M2(t).
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Figure 2.3: Histogram of distances between 10,000,000 random points on L(3; 1) generated by Algorithm 6
compared to the pdf f3(x) =

6
π

(
sin2 x+Θ(x− π/3)

(
− sin2 x+

√
3 sinx cosx

))
.

We can recover the probability density function (pdf) fn of distance as the inverse Laplace

transform of Mn(−t):

f2(x) =
4

π
sin2 x

fn(x) =
2n

π

(
sin2 x+Θ(x− π/n)

(
− sin2 x+ sin x cosx tan

π

n

))
, (2.11)

where Θ is the Heaviside function which is zero for negative values and 1 for positive values. See

Figure 2.3.

As n → ∞ we see that fn(x) → sin 2x, the pdf of the sine distribution introduced by Gilbert

in the study of moon craters [41, 42]. It is not so surprising to see this distribution: as n → ∞

the lens spaces L(n; 1) converge in the Gromov–Hausdorff sense to a 2-sphere of radius 1/2 [43,

Example 2.85], and the distance distribution on this sphere is exactly the sine distribution.

In turn, given the pdf, we can integrate to get the cumulative distribution function Fn(x) of

distance on L(n; 1):

F2(x) =
2

π
(x− sin x cosx)

Fn(x) =
n

π

(
x− sin x cos x+Θ(x− π/n)

(π
n
− x+ sin x cos x− cos2 x tan

π

n

))
;

see Figure 2.4.
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Figure 2.4: The cumulative distribution function of distance on L(n; 1) for 2 ≤ n ≤ 6 and in the limit as
n→∞.

By definition,

Fn(x) = P(d(p, q) ≤ x) =
VolBq(x)

VolL(n; 1)

where q ∈ L(n; 1) is any fixed point and p ∈ L(n; 1) is random; since L(n; 1) is homogeneous this

is independent of q. Hence, we can compute the volume Vn(r) := VolBq(r) of a ball of radius r

in L(n; 1) as

Vn(r) = Vol(L(n; 1))Fn(r) =
2π2

n
Fn(r).

This proves:

Theorem 9. For n ≥ 2, the volume of a ball of radius r in L(n; 1) is

Vn(r) =





2π(r − sin r cos r) if r ≤ π
n

2π2

n
− 2π cos2 r tan π

n
π
n
< r < π

2

π
2

r ≥ π
2

The last case is easily explained by the fact that the diameter of L(n; 1) is π
2
. Notice also that

we never reach the second case when n = 2. Finally, 2π(r − sin r cos r) is simply the volume of

a ball of radius r in S3; not surprisingly, things get interesting only when r > π
n

, the injectivity

radius of L(n; 1).

Thinking in these geometric terms, the pdfs from (2.11) are scaled areas of spheres. Rescaling

by the same 2π2

n
factor as above yields the surface area An(r) of the sphere of radius r centered at
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any point in L(n; 1):

An(r) =





4π sin2 r if r ≤ π
n

4π sin r cos r tan π
n

else.

2.5 Concluding Remarks

Three-dimensional lens spaces are a family of topological/geometric objects that have played

a historical role in the development of manifold theory. Their interest derives both from their ease

of construction and as examples of manifolds exhibiting unusual phenomena. They appear across

several disciplines including topology, geometry, cosmography, and data science, and are a natural

setting for spherical data with cyclic symmetries. While lens spaces have been well studied from

varying perspectives, we are unaware of other sources which consider distance distributions on

them.

Distance distributions have been used in geometric classification and can be used to under-

stand general metric measure spaces. While they can often be approximated effectively using

Monte Carlo techniques, it would be interesting to determine analytic expressions for distance

distributions on a broader class of manifolds. For manifolds which are not homogeneous spaces,

the distribution of distances from a fixed point depends on the point. In other words, the volume

formula for a ball is dependent on the location of the center of the ball in the manifold. In turn, in-

tegrating the distribution of distances from a fixed point as the fixed point varies over the manifold

yields the distribution of distances between pairs of random points.

Non-homogeneous lens spaces, both in three and in higher dimensions, are particularly tractable

examples of non-homogeneous manifolds, so in these spaces it may be feasible to find analytic ex-

pressions for the distributions of distances both from a fixed point and between random points.
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Chapter 3

Spatially Extended Dislocations Produced by the

Dispersive Swift-Hohenberg Equation 8

3.1 Introduction

The Kuramoto-Sivashinsky (KS) equation occurs in many contexts, including the nonlinear

evolution of flame fronts [44], concentration waves in reaction-diffusion systems [45], and nanoscale

pattern formation produced by bombardment of a solid surface with a broad ion beam [46–48]. It

is among the simplest partial differential equations that exhibit spatiotemporal chaos. Adding a lin-

early dispersive term to the one-dimensional (1D) KS equation yields the dispersive KS equation

in 1D,

ut = −uxx − uxxxx + u2x + γuxxx, (3.1)

where u = u(x, t) and γ is real. (The 1D KS equation is recovered for γ = 0). Surprisingly, when

γ is large and the initial condition is low amplitude spatial white noise, highly ordered patterns

emerge at sufficiently long times and the spatio-temporal chaos that would otherwise prevail is

suppressed [49]. This remains true if a strong linearly dispersive term is added to the anisotropic

KS equation in two dimensions (2D) [48, 50].

In the limit that γ tends to infinity, the 1D dispersive KS equation (3.1) becomes the Korteweg-

DeVries (KdV) equation. The KdV equation has solutions in which multiple solitons are present.

For large but finite γ, there is a repulsive interaction between neighboring solitons, and the solitons

eventually arrange themselves in an ordered chain as a consequence [51]. Thus, there is some

understanding of how order emerges in solutions of Eq. (3.1) for γ ≫ 1. This picture does not

carry over to the anisotropic 2D KS equation with added dispersion, however.

8This article is with Patrick Shipman and Mark Bradley. This manuscript was first published in Physical Review E.
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When a solid surface is bombarded with a broad ion beam and the angle of ion incidence θ

exceeds a threshold value θc, self-assembled ripples with wavelengths as short as 10 nm form

[52]. If the patterns formed were not almost always disordered, ion bombardment could become a

widely employed method of fabricating large-area nanostructures with feature sizes too small to be

attained by conventional optical lithography. After rescaling, the equation that describes the time

evolution of an ion-bombarded solid surface for θ just above θc is

ut = −uxx − uxxxx + u2x + uyy + γuxxx, (3.2)

where u = u(x, y, t) is the height of the solid surface about the point (x, y) in the x − y plane

at time t and γ ∝ (θ − θc)
−1/2 diverges as θ → θ+c [48]. Equation (3.2) reduces to Eq. (3.1)

if u is independent of y. It is a simplified version of the anisotropic 2D KS equation with linear

dispersion, and simulations show that it produces highly ordered ripples if γ is large, i.e., if θ is just

above θc [48, 50]. This finding has the potential to revolutionize the field of nanoscale patterning

by ion bombardment, and, accordingly, it is of considerable importance to understand how strong

linear dispersion modifies the dynamics.

A second intriguing observation emerges from simulations of Eq. (3.2): dispersion can lead to

the formation of transient raised and depressed triangular regions that are traversed by ripples for

moderate values of γ. Triangular nanostructures of this kind have been observed in many exper-

iments in which a solid surface is bombarded with an obliquely incident ion beam [52–62], but

their formation is currently poorly understood. In simulations, once the triangular nanostructures

have disappeared, the surface has a disordered appearance with streaks parallel to the x axis.

The Swift-Hohenberg equation (SHE) is an important model equation in the study of pattern

formation in spatially extended nonlinear systems [63]. Close to the threshold for pattern forma-

tion, analytical results can be obtained because there is a narrow band of unstable wavelengths. In

particular, the amplitude equation, which describes the slow variation of the pattern in space and

time, can be derived.
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In this paper, we study the SHE with added linear dispersion in both one and two dimensions.

Our motivation for doing so is this: the effect of strong linear dispersion can be better understood in

the context of the SHE than for the KS equation because there is a narrow band of unstable wave-

lengths close to threshold in the case of the SHE. We find that the 2D dispersive Swift-Hohenberg

equation (DSHE) produces a unique type of spatially extended defect if the linear dispersion is suf-

ficiently strong. These defects — which we will refer to as “seams” — are essentially dislocations

that are smeared out along line segments oriented obliquely to the x axis. As we will discuss, these

are related to the triangular nanostructures that are observed when a solid surface is bombarded

with a broad ion beam.

Simplicity emerges in the DSHE in two limits: close to threshold and in the limit of strong

dispersion. Close to threshold, we show that the amplitude equation for the DSHE is a special

case of the anisotropic complex Ginzburg-Landau equation (ACGLE). The seams in the original

equation of motion are spiral waves in the ACGLE. These spiral waves and the corresponding

seam defects tend to arrange themselves into chains. We predict the velocity of the spiral wave

cores and the spacing between them for a particular type of controlled initial condition. In the

limit of strong dispersion, on the other hand, we carry out a perturbative analysis that shows that

the stripes have a nearly sinusoidal dependence on position. The analysis also yields the stripe’s

propagation velocity and a relationship between their amplitude and wavelength. These predictions

are in excellent accord with the results of our numerical integrations of the equation of motion.

This paper is organized as follows: In Sec. 3.2, we recast the DSHE in dimensionless form and

perform a linear stability analysis. We find an approximate solution to the 1D DSHE in the limit

of strong linear dispersion in Sec. 3.3. In Sec. 3.4, we derive the amplitude equation that applies

close to the threshold for pattern formation. Simulations of the DSHE and the corresponding

amplitude equation are carried out in Sec. 3.5. We also study the dynamics of chains of spiral waves

both analytically and numerically. Our work is placed in context in Sec. 3.6, and we conclude in

Sec. 3.7.
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3.2 The Dispersive Swift-Hohenberg Equation

In this paper, we study the DSHE

ut = −a∆2u− buxx + cuyy + duxxx + eu− fu3 (3.3)

in one and two dimensions. Here u = u(x, y, t) and a, b, . . ., and f are real parameters. We confine

our attention to the case in which a, b and f are positive. We introduce the dimensionless param-

eters ũ = 2(af/b2)1/2u, x̃ = sgn(d)[b/(2a)]1/2x, ỹ = sgn(d)[b/(2a)]1/2y, and t̃ = [b2/(4a)]t.

Dropping the tildes, we find the rescaled equation of motion to be

ut = −∆2u− 2(uxx − βuyy) + γuxxx + (µ− 1)u− u3, (3.4)

where µ = 1 + 4ae/b2, β = c/b and γ = [2d2/(ab)]1/2. Note that γ is nonnegative. For the case

γ = 0, there is no dispersion and Eq. (3.4) reduces to the usual SHE.

The equation of motion (3.4) has the equilibrium solution u = 0. Linearizing about this solu-

tion, we obtain

ut = −∆2u− 2(uxx − βuyy) + γuxxx + (µ− 1)u. (3.5)

Setting u = exp(i⃗k · x⃗+ σt), we find the dispersion relation

σ = −k4 + 2(k2x − βk2y) + µ− 1− iγk3x, (3.6)

where k⃗ = (kx, ky) is the wave vector. An easy calculation shows that Re σ is maximized for

k⃗ = (±1, 0) and has the maximum value µ provided that β > −1, which we assume to be the case.

This tells us that the solution u = 0 is linearly stable when µ < 0 and linearly unstable whenever

µ > 0. By the continuity of Re σ = Re σ(k⃗), it follows that there are neighborhoods about the

points k⃗ = (±1, 0) in which Re σ is positive if µ > 0. For small, positive µ, neither neighborhood
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contains the zero vector, indicating a type-I instability. Moreover, the phase velocity is

v = −Im σ

k
= γ

k3x
k
. (3.7)

For the 1D case in which uy = 0, the phase velocity (3.7) reduces to v = γk2x.

3.3 The Strongly Dispersive Limit

We begin by studying the equation of motion (3.4) when dispersion is strong, i.e., the case in

which γ ≫ 1. We set u = u(x, t) in Eq. (3.4) and so obtain

ut = −(1 + ∂2x)
2u+ γuxxx + µu− u3. (3.8)

We seek solutions to Eq. (3.8) of the form u = u(x− vt). Moreover, we will set ϵ = γ−1 and take

γ to be large. Equation (3.8) now yields

uxxx + ωux + ϵ
[
µu− (1 + ∂2x)

2u− u3
]
= 0, (3.9)

where ω ≡ v/γ = ϵv. Next, we assume that

u = u0 + ϵu1 + ϵ2u2 + h.o.t. and (3.10)

ω = ω0 + ϵω1 + ϵ2ω2 + h.o.t., (3.11)

where h.o.t. stands for higher-order terms. Then, to zeroth order in ϵ, Eq. (3.9) reads

u0xxx + ω0u0x = 0. (3.12)

The general solution to Eq. (3.12) is given by

u0 = C + A cos(
√
ω0x+ ϕ), (3.13)
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where C, A and ϕ are arbitrary constants. By choosing the origin appropriately, we may arrange

for ϕ to be zero. Thus, we have

u0 = C + A cos(kx), (3.14)

where k ≡ √ω0 is the wave number.

To first order, Eq. (3.9) may be written

u1xxx + ω0u1x = −ω1u0x − µu0 + (1 + ∂2x)
2u0 + u30

≡ q. (3.15)

Let L0 = ∂3x + k2∂x, so that Eq. (3.15) can be written compactly as

L0u1 = q. (3.16)

It is a straightforward exercise to show that L0 : C3[−L,L] → C[−L,L] is a Fredholm operator.

The Fredholm Alternative then implies that q is orthogonal to kerL†
0, where L†

0 denotes the adjoint

with respect to the L2 inner product. Because

kerL†
0 = span{1, eikx, e−ikx}, (3.17)

the constant term in q must be zero, i.e.,

−µC + C + C3 = 0. (3.18)

Equivalently, C = 0 or C2 = µ − 1. Since C is real, the latter possibility is ruled out whenever

µ < 1, and we take this to be the case. This means that

u0 = A cos(kx). (3.19)
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Further still, we have

q = ω1kA sin(kx)− µA cos(kx) + A(1− k2)2 cos(kx) + A3 cos3(kx) (3.20)

= ω1kA sin(kx)− µA cos(kx) + A(1− k2)2 cos(kx) + 1

4
A3 [cos(3kx) + 3 cos(kx)] . (3.21)

q ∈ (kerL†
0)

⊥ therefore implies that ω1 = 0 and

A2 =
4

3

[
µ− (1− k2)2

]
. (3.22)

Because A2 ≥ 0, we must have

∣∣1− k2
∣∣ ≤ √µ. (3.23)

This establishes that a steady-state, propagating solution is obtained only for wave numbers in

the linearly unstable band. We also see that A2 = 4Re σ(k⃗)/3, and so we come to the natural

conclusion that the higher the linear growth rate, the higher the amplitude of the corresponding

steady-state solution. Now note that Eq. (3.15) reduces to

u1xxx + k2u1x =
1

4
A3 cos(3kx). (3.24)

We will seek a solution to Eq. (3.24) of the form

u1 = B sin(3kx). (3.25)

In doing so, we obtain

B =
1

96
k−3A3, (3.26)

47



and hence

u(x, t) = A cos(k(x− vt)) + 1

96
k−3A3ϵ sin(3k(x− vt)) +O(ϵ2), (3.27)

where A and k satisfy Eqs. (3.22) and (3.23), respectively. Equation (3.27) gives the approximate

form of the propagating, periodic solution to Eq. (3.8). The presence of the correction with wave

number 3k in Eq. (3.27) is to be expected because a cubic nonlinearity is present in the equation

of motion (3.8).

Since ω0 = k2 and ω1 = 0,

ω = ω0 + ϵω1 +O(ϵ2) = k2 +O(ϵ2). (3.28)

This in turn gives us the phase velocity,

v = γk2 +O(ϵ). (3.29)

This shows that in the strongly dispersive (γ → ∞) limit, the phase velocity (3.29) obtained by a

perturbative analysis of the full nonlinear equation of motion reduces to the phase velocity (3.7)

for the linearized problem.

If we begin a simulation of the equation of motion (3.8) with a low amplitude spatial white

noise initial condition, it is not evident whether the solution will evolve toward a solution of the

form (3.27) with the phase velocity given by Eq. (3.29) and with A and k related by Eq. (3.22).

Even if that turns out to be the case, it is not clear a priori what the chosen value of k will be,

although the inequality (3.23) would have to be satisfied. Numerical integrations of Eq. (3.8) will

be carried out in Section 3.5 to address these issues.
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3.4 Near-Threshold Behavior

In this section, we analyze the equation of motion (3.4) close to threshold, i.e., for small,

positive µ. Because we have assumed that β > −1, there are small neighborhoods about the

critical wave vectors k⃗ = (±1, 0) in which Re σ(k⃗) is positive. This implies the existence of an

amplitude equation. To find this amplitude equation, we begin by writing Eq. (3.4) as

ut = Lu− u3, (3.30)

where

L ≡ −∆2 − 2(∂2x − β∂2y) + γ∂3x + µ− 1 (3.31)

is the linear part of the differential operator on the right-hand side of Eq. (3.4). The linear disper-

sion relation tells us that, to leading order, the solution to Eq. (3.4) is a traveling plane wave with

wave number k = 1 that propagates in the x direction. Note that the phase velocity of the mode

with wave vector k⃗ = (1, 0) is γ, and the corresponding group velocity is 3γ. Accordingly, we

begin with the ansatz

u = µ1/2u0 + µu1 + h.o.t.

= µ1/2A(ξ, Y, T )ei(x−γt) + c.c.+ µu1 + h.o.t., (3.32)

where ξ ≡ µ1/2(x− 3γt), Y ≡ µ1/2y and T ≡ µt are slow variables and c.c. denotes the complex

conjugate. As a result, we must make the replacements ∂x 7→ ∂x + µ1/2∂ξ, ∂y 7→ µ1/2∂Y and

∂t 7→ ∂t − 3µ1/2γ∂ξ + µ∂T in Eq. (3.30). This leads to

L 7→ L0 + µ1/2L1 + µL2 + h.o.t., (3.33)
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where

L0 = γ∂3x − (∂2x + 1)2 (3.34)

L1 =
(
−4∂3x + 3γ∂2x − 4∂x

)
∂ξ (3.35)

L2 = −6∂2ξ∂2x − 2∂2x∂
2
Y + 3γ∂2ξ∂x − 2∂2ξ + 2β∂2Y + 1. (3.36)

To order µ1/2, Eq. (3.30) is

∂tu0 = L0u0. (3.37)

This automatically holds since we set

u0 = A(ξ, Y, T )ei(x−γt) + c.c. (3.38)

To order µ, Eq. (3.30) yields

∂tu1 − 3γ∂ξu0 = L1u0 + L0u1. (3.39)

Since L1u0 = −3γ∂ξu0, Eq. (3.39) reduces to

∂tu1 = L0u1. (3.40)

This merely tells us that

u1 = A1(ξ, Y, T )e
i(x−γt) + c.c. (3.41)

To order µ3/2, Eq. (3.30) gives

∂Tu0 − 3γ∂ξu1 + ∂tu2 = L2u0 + L1u1 + L0u2 − u30. (3.42)
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Next, using Eq. (3.38), Eq. (3.42) can be rearranged to obtain

Λu2 =

[
−AT + A+ 4

(
1 + i

3

4
γ

)
Aξξ + 2 (1 + β)AY Y − 3 |A|2A

]
ei(x−γt)

− A3e3i(x−γt) + c.c.,

≡ Q, (3.43)

where Λ ≡ ∂t − γ∂3x + (∂2x + 1)2. A quick check shows that ei(x−γt) ∈ ker Λ, which implies that

AT = A+ 4

(
1 + i

3

4
γ

)
Aξξ + 2 (1 + β)AY Y − 3 |A|2A. (3.44)

Equation (3.44) is the amplitude equation for the two-dimensional (2D) DSHE, Eq. (3.4). If we put

A = Ã/
√
µ in Eq. (3.44), drop the tilde, and write the result in terms of the original coordinates,

we obtain

At + 3γAx = µA+ 4

(
1 + i

3

4
γ

)
Axx + 2(1 + β)Ayy − 3 |A|2A. (3.45)

We prefer, however, to put the amplitude equation (3.44) in the standard form used in Refs. [64]

and [65] by setting Â =
√
3A, x̂ = ξ/2, ŷ = Y/

√
2(1 + β) and t̂ = T and then dropping the hats.

This gives

At = A+ (1 + iη)Axx + Ayy − |A|2A, (3.46)

where η ≡ 3γ/4. Equation (3.46) is a special case of the ACGLE [64,65]. If there is no dispersion,

then γ = 0 and Eq. (3.46) reduces to the isotropic (real) Ginzburg-Landau equation.

3.5 Numerical simulations

We carry out numerical simulations of Eq. (3.8) on x ∈ [−L,L], and of Eqs. (3.4) and (3.46)

on the square domain (x, y) ∈ [−L,L]2. To do so, we employ Fourier spectral methods with
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periodic boundary conditions, coupled with the fourth order exponential time differencing Runge-

Kutta method (ETDRK4). Implementations of this method can be found in Refs. [66] and [67],

while full derivations of the method can be found in Refs. [68] and [69]. In all simulations in this

paper, we employ a spatial grid with N = 2048 grid points in 1D and an N ×N spatial grid with

N = 128 in the 2D simulations unless otherwise noted. The time step in all cases is ∆t = 0.01.

3.5.1 Simulations of the Dispersive Swift-Hohenberg Equation

Figure 3.1 shows results of simulations of the 1D equation of motion Eq. (3.8) and the corre-

sponding power spectral densities (PSDs) at time t = 100 for µ = 0.1 and selected values of γ.

The initial conditions were low amplitude spatial white noise. The simulations suggest that as γ

gets large, the solution tends to a sinusoidal form, in accord with the perturbation theory prediction.

The perturbation theory prediction (3.22) gives the amplitude as a function of the wave number

k to order γ−1. Figure 3.2 shows the relative error in Eq. (3.22), where the relative error is defined

to be the absolute value of the difference between the measured and predicted values divided by

their sum. Note that as γ increases, the relative error decreases and is less than 1% when γ > 50.

Thus, Eq. (3.22) appears to hold in the limit γ → ∞, as expected. The perturbation theory also

predicts the phase velocity of the solution. In the simulations, the observed velocity was taken to

be ∆ϕ/(k∆t), where ∆ϕ is the phase difference in u at two times separated by time ∆t and k is

the dominant wave number. Figure 3.3 compares the prediction given by Eq. (3.29) to the observed

velocities determined from 100 simulations — one for each integer value of γ between zero and

99. The simulations were run until time t = 100 and the velocities were determined from the last

two time steps. Figure 3.3 is another indication that the simulated results agree very well with

perturbation theory.

Turning our attention to the 2D case, Fig. 3.4 shows the time evolution of solutions to Eq. (3.4)

and their corresponding PSDs for three values of γ, namely γ = 0, 10 and 100. In all three cases,

µ = 1. For the nonzero values of γ, the defects are stretched dislocations or seams which are

obliquely oriented with respect to the x axis. The phase changes through ±2π on a contour that
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Figure 3.1: The first row depicts solutions to Eq. (3.8) on the spatial domain x ∈ [−100, 100], and the
second row shows the corresponding PSDs. In all cases, µ = 0.1, which is near the threshold for pattern
formation. From left to right, γ = 0, 25, 50, 75 and 100. All images are for time t = 100.

circles a seam. Of particular note is the appearance of several seams at nearly the same y value but

differing values of x. We call these defect chains. Figure 3.5 (a) shows a solution to Eq. (3.4) for a

spatial white noise initial condition with a chain of three defects. These chains of seam defects are

present at early times. At later times, defects of opposite sign meet and mutually annihilate, which

ultimately results in a defect-free pattern. The two yellow horizontal reference lines in Fig. 3.5 (a)

make it easy to see that the seams make a nonzero angle with the x axis.

Equation (3.4) is the Swift-Hohenberg equation for γ = 0. As the first two rows of Fig. 3.4

show, spatially extended defects are also present in the stripe pattern when γ is zero. However, in

this case, the defects are not straight and are not obliquely oriented relative to the x axis; instead,

they wind sinuously through the domain. Accordingly, the defects present for γ = 0 will not be

referred to as seams.

The time evolution that occurs with relatively large γ in one and two dimensions is similar in

several ways. In 2D, after some time, multiple roughly horizontal bands have formed in which u

is almost independent of y, as seen in Fig. 3.5 (a). These bands are separated by chains of seam
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Figure 3.2: Comparison of Eq. (3.22) to simulation results for values of γ between 1 and 100. Each data
point gives the relative error of the amplitude for the corresponding value of γ. In each simulation, µ = 1,
the domain was x ∈ [−100, 100], and the measurements were taken at t = 100. We note that the relative
error is less than 1% for values of γ larger than 50, and decreases as γ increases.
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Figure 3.3: The phase velocity of the steady-state propagating solution versus γk2, as computed from
numerical simulations (+’s). Each point is the result of a single simulation with µ = 1 and a value of γ
between 1 and 100. The solid line shows the theoretical prediction. The domain for each simulation was
x ∈ [−100, 100], and the velocities were calculated at time t = 100.
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defects. Within a band, the form of the solution is close to a solution to the 1D DSHE, and so the

the phase velocity is approximately equal to γk2. Figure 3.6 shows the time evolution of a solution.

Defects are present except at the latest time, t = 1500. For each of the cuts parallel to the x axis

that are shown in Fig. 3.6 (a) - (d), the velocity in the x direction was computed and compared to

Eq. (3.29). The results of this comparison are shown in Fig. 3.6 (a’) - (d’). The agreement is very

good at each of the four times shown in the figure, except where a cut passes directly through a

seam.

With a spatial white noise initial condition, chains of seams appear in an unpredictable fashion

and the disordered arrangement of defects makes it challenging to discern the underlying order in

the dynamics. By choosing a different type of initial condition, we can produce defect chains in a

controlled fashion that makes it easier to study them. In particular, we adopt an initial condition in

which sinusoidal ripples of two different wave numbers k1 and k2 occupy horizontal bands and are

in contact with one another: we set

u(x, y, 0) =





cos(k1x) for |y| < L/2 and − L < x < L

cos(k2x) for |y| > L/2 and − L < x < L.

(3.47)

The initial condition given by Eq. (3.47) must satisfy the periodic boundary conditions, and so we

must have ki = πni/L, where ni is an integer and i = 1 and 2. We also choose k1 and k2 to be

within the range of linearly unstable wave numbers, i.e., (1 − k2i )
2 < µ for i = 1 and 2. This

requirement ensures that neither of the initial sinusoids has an amplitude that rapidly tends to zero

as time passes. Figure 3.5 (b) shows the result of a simulation with this type of banded initial

condition. Two defect chains have developed. Notice that the dislocations within a defect chain

all have the same sign and are evenly spaced. In addition, the dislocations in the two chains have

opposite signs, and will annihilate after some time; see Fig. 3.7. Furthermore, as γ increases, the

length of the defects increases, but is restricted by the number of defects in the chain (see Figs. 3.8

and 3.9). Figure 3.9 (a) makes it particularly evident that that the seams are oriented obliquely to

the x axis.
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Figure 3.4: Solutions to Eq. (3.4) with parameters µ = β = 1 on the domain (x, y) ∈ [−100, 100]2. The
values of γ are the 0, 10 and 100 for the first, second and third pairs of rows, respectively. In each pair of
rows, the first row shows the solution at the times listed and the second row shows the corresponding PSDs.
The columns from left to right depict the solutions at times t = 30, 60, 100, 500 and 1500.
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Figure 3.5: (a) A solution to Eq. (3.4) at time t = 40 that was started with a low amplitude spatial white
noise initial condition. Note the chain of three defects between the horizontal lines. (b) A solution to
Eq. (3.4) with a banded initial condition of the form (3.47) at time t = 100. The initial condition had
n1 = 28 and n2 = 31. The parameter values were µ = β = 1 and γ = 100 in both (a) and (b).

3.5.2 Simulations of the Amplitude Equation

Solutions of the 1D amplitude equation

At = A+ (1 + iη)Axx − |A|2A (3.48)

behave in a fashion analogous to the solutions of the 1D DSHE (3.8). This is illustrated by the

simulations of Eq. (3.48) shown in Fig. 3.10. The amplitude |A| and phase ϕ are plotted as func-

tions of x at time t = 60 for two simulations with η = 10 and 100. For the larger value of η, the

solution is close to a plane wave: as seen in panels (b) and (b’) of the figure, the amplitude |A| is

almost a constant and the phase ϕ is close to being a linear function of x. The plane-wave solution

is the analog of the highly ordered ripples seen in Fig. 3.1 for the larger values of γ. The solution

shown for η = 10 still deviates significantly from a plane wave at time t = 60 but approaches such

a solution at longer times.
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Figure 3.6: The time evolution of a solution to Eq. (3.4) with µ = β = 1 and γ = 100 is shown in the first
row. The domain is (x, y) ∈ [−100, 100]2. The phase velocity in the x direction was computed for each of
the cuts parallel to the x axis that are shown. The second row shows the observed velocities along each cut
(+’s) versus the velocities predicted by Eq. (3.29) (solid lines).

Figure 3.7: A solution to Eq. (3.4) with the parameter values µ = β = 1 and γ = 100 on the domain
(x, y) ∈ [−100, 100]2 at times (a) t = 25, (b) t = 50 and (c) t = 500. The initial condition was given by
Eq. (3.47) with k1 and k2 chosen so that n1 = 25 and n2 = 31.
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Figure 3.8: Solutions to Eq. (3.4) on the domain (x, y) ∈ [−100, 100]2 are shown at time t = 100. The
parameter values are µ = β = 1 for each panel, and γ = 0, 2, and 50, as labelled. The initial conditions
were given by Eq. (3.47) with k1 and k2 chosen so that n1 = 28 and n2 = 31. There are therefore
n2 − n1 = 3 defects in each chain.

Figure 3.9: Solutions to Eq. (3.4) on the domain (x, y) ∈ [−100, 100]2. The parameter values are µ = β =
1 and γ = 50. The initial conditions were given by Eq. (3.47). Panel (a) shows a solution at time t = 100
with n1 = 31 and n2 = 30, and panel (b) shows a solution at time t = 50 with n1 = 31 and n2 = 25.
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The analogy between the amplitude equation and the DSHE extends to 2D. Figure 3.11 shows

simulations of Eq. (3.46) at different times for selected values of η. The initial condition in each

case was low amplitude spatial white noise. For η = 0, Eq. (3.46) reduces to the much studied real

Ginzburg-Landau equation.

For η > 0, the amplitude |A| is depressed in elongated regions that are obliquely oriented

relative to the x direction, as is seen most clearly by looking at the defects close to the upper and

lower domain boundaries in Fig. 3.11 (f) - (j). The phase ϕ ≡ Im (lnA) winds through ±2π about

each of these regions. These defects are the analogs of the seams in the DSHE and are spiral waves,

as can be seen in panels (i’) and (j’) of Fig. 3.11, for example. The spiral waves are anisotropic,

in contrast to the isotropic spiral waves produced by the (isotropic) complex Ginzburg-Landau

equation. As we would expect based on our simulations of the DSHE, chains of spiral waves

appear in the simulations of the ACGLE (3.46). These are most evident in Fig. 3.11 (k) - (o). For

η = 0, the spiral waves reduce to vortices.

We can once again cause chains of defects to form in a controlled fashion using banded initial

conditions. We begin by noting that there is a plane-wave solution to Eq. (3.46) of the form

A(x, y, t) = R0e
i(qx−ωt+ψ), where R2

0 = 1 − q2, ω = ηq2, and ψ is an arbitrary phase. We will

study an initial condition that has two adjacent horizontal bands with different wave numbers q1

and q2 and phases ψ1 = ψ2 = 0:

A(x, y, 0) =





√
1− q21eiq1x for |y| < L/2 and − L < x < L

√
1− q22eiq2x for |y| > L/2 and − L < x < L.

(3.49)

The initial condition must satisfy the periodic boundary conditions, and so we must have qi =

πni/L, where ni is an integer and i = 1 and 2. Without loss of generality, we may assume that

n2 > n1. Simulations with banded initial conditions show that two parallel chains of spiral waves

form after a short time, as seen in Fig. 3.12 (a) and (b), for example.
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Figure 3.10: Two simulations of Eq. (3.48) starting from low amplitude spatial white noise initial conditions
are shown at time t = 60. In panels (a) and (b), the amplitude |A| is plotted as a function of x for η = 10
and 100, respectively. The corresponding phase φ is depicted in panels (a’) and (b’).
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Figure 3.11: The time evolution of three simulations of Eq. (3.46) on the spatial domain (x, y) ∈
[−100, 100]2. Rows (a)-(e), (f)-(j), and (k)-(o) show the magnitude of the solution |A(x, y, t)| for η = 0, 10
and 100, respectively. Rows (a’)-(e’), (f’)-(j’), and (k’)-(o’) show the corresponding phases φ(x, y, t). The
solution at times t = 50, 250, 500, 1000 and 2500 is shown in columns 1 through 5, respectively.
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Figure 3.12: Chains of spiral waves created by simulating Eq. (3.46) with a banded initial condition of the
form given by Eq. (3.49). The spatial domain was (x, y) ∈ [−100, 100]2 and the snapshot was taken at
t = 100. We set η = 1 and the wave numbers q1 and q2 were chosen so that n1 = 2 and n2 = 5.

If the plane waves simply propagated without changing their form, the solution to the ACGLE

with the initial condition (3.49) would be

A(x, y, t) =





√
1− q21ei(q1x−ω1t) for |y| < L/2 and − L < x < L

√
1− q22ei(q2x−ω2t) for |y| > L/2 and − L < x < L,

(3.50)

where ωi ≡ ηqi for i = 1 and 2. This of course is not the solution to the initial value problem

since the A(x, y, t) given by Eq. (3.50) does not satisfy the ACGLE along the lines y = ±L/2.

Nevertheless, let us suppose for the moment that Eq. (3.50) were the solution. The defect cores

would then appear at the locations x = xn where the phase difference between the two bands is

180◦, i.e.,

q1xn − ω1t = q2xn − ω2t− (2n+ 1)π (3.51)
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for n ∈ Z. This would mean that

xn =
ω2 − ω1

q2 − q1
t+

(2n+ 1)π

q2 − q1
. (3.52)

Equation (3.52) immediately gives us two results: the spiral wave velocity

ẋn =
ω2 − ω1

q2 − q1
= η(q1 + q2) (3.53)

and the spacing between the cores of two adjacent spiral waves

∆x = xn+1 − xn =
2π

q2 − q1
. (3.54)

It is interesting to note that Eq. (3.53) implies that ẋn is the sum of the phase velocities of the two

plane waves.

As we have noted, Eq. (3.50) does not really give the solution to the ACGLE with the banded

initial condition. Instead, as time passes, the amplitude of the solution becomes depressed in

the vicinity of the spiral wave cores and the lines of constant phase become curved, as Fig. 3.12

illustrates. However, the initial condition (3.49) is periodic in x with period ∆x. As the solution

to the ACGLE evolves in time, the solution remains periodic with this period. Equation (3.54)

therefore gives the correct separation between the spiral wave cores. In addition, our simulations

demonstrate that Eq. (3.53) gives a very good estimate of the spiral wave velocity, as we will now

show.

We compared the velocity and spacing predictions given by Eqs. (3.53) and (3.54) with the

results of numerical simulations with banded initial conditions. Simulations were carried out for

q1 = 0 and q2 = πn2/L, where n2 = 2, 3, 4, 5, 6, and 7. (We omitted the n2 = 1 case because

the spacing between defects is undefined if there is only one defect in a chain.) The simulations

were performed for the parameter value η = 100 on the spatial domain (x, y) ∈ [−100, 100]2 and

were run up to time t = 200. The resulting defect velocities and spacings are compared with the
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Figure 3.13: Simulations of Eq. (3.46) with banded initial conditions of the form given by Eq. (3.49) were
carried out with q1 fixed at zero and with q2 = πn2/L, where n2 = 2, 3, 4, 5, and 7. The spatial domain
was (x, y) ∈ [−100, 100]2 and η was 100. The defect velocities and spacings were computed at t = 200.
The observed values (dots) are compared to the values predicted by Eqs. (3.53) and (3.54) (solid curves).

predictions given by Eqs. (3.53) and (3.54) in Fig. 3.13 (a) and (b), respectively. The agreement is

excellent, provided that η and ∆n ≡ n2 − n1 are sufficiently large. If either η or ∆n is too small,

then the defects velocities oscillate in time. This is the reason for the discrepancy seen in the right

panel of Fig. 3.13 for the case n2 = 2.

A comparison of the regions of depressed amplitude |A| obtained for η = 10 and 100 in

Fig. 3.11 suggests that the angle ψ that the spiral wave cores make with the x axis decreases with

η. To investigate this further, we defined a new function ρ ≡ 1 − |A|2 within a neighborhood

around a defect. We interpreted ρ as a “density,” and then found the moment of inertia tensor

for this density distribution. The angle that the principal axis with the smallest principal moment

makes with the x axis is the angle ψ. Figure 3.14 shows the value of ψ for a range of values of η.

The results are for banded initial conditions with q1 = 0 and q2 = n2π/L, where n2 = 2, 3 and 4.

In addition, the values of ψ were averaged over all of the defects in a given simulation. Our results

support the proposition that ψ is a decreasing function of η for given values of n1 and n2. They

also suggest that ψ is inversely proportional to η, and hence that ψ vanishes in the limit η →∞.
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Figure 3.14: Simulations were run of Eq. (3.46) with initial conditions given by Eq. (3.49) on the spatial
domain (x, y) ∈ [−100, 100]2, and the average angle ψ that the defects made with the x-axis was computed.
This was repeated for η = 5, 10, . . . 145 and for q2 = n2π/100 with n2 = 2, 3, and 4. In each case, q1 = 0.
Each data point represents the average angle obtained from a simulation, while the curve is a fit that is
proportional to 1/η. The constant of proportionality depends on ∆n.

Figure 3.13 shows that the defect spacing depends on q2, and of course it depends on q1 as

well. If we take the limit in which both q1 and q2 tend to a common nonzero value q, then ∆x

tends to infinity according to Eq. (3.54). In this limit, the seams are in effect infinitely wide and

they become parallel to the x axis. We found an exact solution of the ACGLE (3.46) that gives the

form of the seams in this limit:

A(x, y, t) = ±
√

1− q2ei(qx−ηq2t) tanh
(√

1− q2
2

y

)
. (3.55)

Equation (3.55) is a valid solution for any real q with magnitude smaller than 1. If we cross the

seam described by Eq. (3.55) anywhere along its length, the phase ϕ changes by π. The amplitude

is depressed around the x axis in a region with width proportional to (1− q2)−1/2; this is the core

of the seam.

3.6 Discussion

This study was motivated in part by a need to better understand the nanoscale patterns pro-

duced by ion bombardment of solid surfaces. Raised and depressed triangular regions that are
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traversed by ripples are commonly observed in experiments, but the formation of these patterns

is not currently understood. Simulations of the dispersive KS equation in 2D produce triangular

nanostructures that strongly resemble those seen in experiments and show that dispersion plays an

important role in their genesis [50]. This finding led us to study the DSHE in 2D.

Our work on the 2D DSHE suggests that the oblique sides of the triangular nanostructures

might, in fact, be seams. We therefore examined the results of a numerical integration of the

simplified anisotropic KS equation with linear dispersion, Eq. (3.2), and found that this is indeed

the case. This is illustrated by Fig. 3.15. Our work therefore indicates that the notion that there

are triangular nanostructures is misleading: Instead, the experimentally observed topographies are

more properly thought of as ripples with a high density of seams.

The triangular structures found in simulations of the 2D dispersive KS equation are transient

[50]. Because the surfaces display a high degree of disorder and the seams are abundant, it is

challenging to discern how the so-called triangles disappear. Our simulations of the dispersive KS

equation and the associated amplitude equation suggest that seams of opposite signs move toward

one another and then annihilate, ultimately leaving a surface without triangular nanostructures.

There are admittedly important differences between the dispersive KS equation and the DSHE

in 2D. The ripples are more orderly and the seams are more widely separated from one another in

the case of the DSHE, for example. In addition, the anisotropic SHE we studied produces ripples

with a high degree of order even in the absence of linear dispersion; in contrast, solutions of the

anisotropic KS equation exhibit spatiotemporal chaos, and strong linear dispersion is needed to

suppress this and to produce highly ordered ripples. However, we exploited another key difference

to our advantage. The DSHE has small regions of unstable wave vectors near threshold which

allowed us to derive the associated amplitude equation. This is not possible in the case of the

dispersive KS equation because there are unstable modes with arbitrarily long wavelengths. Stated

more succinctly, the instability is of Type I in the case of the DSHE but is of Type II in the case of

the DKSE [63].
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It should be mentioned that the 1D DSHE (3.8) with the quadratic nonlinearity 2u2 appended

to the right-hand side has previously been studied [70]. The emphasis was on the propagation of

fronts and on finding localized states for small γ, however. In our work, we did not touch on those

topics and considered only the case in which no quadratic nonlinearity appears in the equation of

motion (3.8). We also placed special emphasis on the limit in which the dispersive coefficient γ is

large [71].

Chains of spiral waves that appear in simulations of the ACGLE have been studied by Faller

and Kramer [65]. Those authors had to carefully adjust the parameters in the ACGLE in order to

get chains to form. They also had difficulty getting chains of defects to form starting with spatial

white noise initial conditions. In this paper, we studied the special case of the ACGLE in which the

coefficients of the terms proportional to Ayy and |A|2A are real. In this case, chains of spiral waves

form readily with a spatial white noise initial condition if linear dispersion is sufficiently strong.

We also established that chains of spiral waves can easily be produced in a controlled fashion using

banded initial conditions. This led us to a prediction of the spacing and velocity of the defects in a

chain, and this prediction agrees well with our simulations.

3.7 Conclusions

Spatially extended dislocations were shown in this paper to appear in simulations of the 2D

dispersive Swift-Hohenberg equation. These defects, which we call seams, tend to organize them-

selves into ordered chains. The presence of a narrow band of unstable wavelengths in the DSHE

allowed us to make analytical progress towards understanding seam defects. We studied the DSHE

in two limits. First, close to threshold, we derived an amplitude equation for the DSHE, which

turns out to be a special case of the ACGLE. In this limit, seam defects correspond to spiral waves

in the ACGLE. Numerical simulations confirm analytical formulas for the distance between spi-

ral wave cores and their velocities. The second limit was that of large dispersion. A perturbative

analysis in this case yielded the propagation velocities of ripple patterns and a relationship be-

tween their amplitudes and wavelengths. Our results shed light on the effect dispersion has on the
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Figure 3.15: (a) A simulation of Eq. (3.2) for γ = 5 at time t = 65 that shows the raised and depressed
triangular regions traversed by ripples. The initial condition was low amplitude spatial white noise. We
employed an 512 × 512 spatial grid and a time step of ∆t = 0.01. (b) An enlargement of the portion of
panel (a) that is outlined in black. The dislocation cores within two seams are circled.

nanoscale patterns produced by ion bombardment of solid surfaces. In a more general context,

our work can be viewed as a first step towards developing a comprehensive understanding of the

effects of dispersion on pattern formation in two dimensions.
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Chapter 4

Topological Measure of Order 9

4.1 Introduction

In the study of non-equilibrium pattern forming systems and molecular simulations with pe-

riodic boundary conditions, the detection of order is crucial. Ordered patterns emerge when the

maxima align themselves in a lattice-like formation. To quantify this order, various measures can

be defined. In this text, we explore different measures of order and their applications.

In Section 4.2, we introduce persistent homology and the Delaunay triangulation, as well as the

Wasserstein metric as tools for a topological and geometric measures of order. These techniques

have been used to characterize the orderliness of lattices in the plane [72, 73]. These topological

and geometric methods together with the Wasserstein distance function will allow us to quantify

the amount of (dis)order in a lattice pattern.

We compute the necessary data- both topologically and geometrically- on ideal lattices in Sec-

tion 4.3. We show in detail the calculation of the Vietoris-Rips complex for SC, FCC and BCC

lattices, and their persistence diagrams. We also show the Delaunay triangulations of each of these

ideal lattices, and their corresponding edge length distributions, and their pairwise angle distribu-

tions. These data are used to define measures of order with respect to the ideal cases.

In Section 4.4, we show how the measures of order change when the data being measured is

perturbed. This demonstrates the continuity of these measures, which is vital since noise in the

data should correlate to noise in the measures of order. We also observe interesting phenomena in

the topological measures of order, which turn out to be useful in identifying the onset of a perfect

pattern.

Section 4.5 focuses on pattern formation in three dimensions, which occurs naturally in biologi-

cal morphogenesis, materials science, and fluid dynamics. Modeling three-dimensional lattice pat-

9This project is with Patrick Shipman and Mark Bradley. It is to be published.
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terns using partial differential equations (PDEs) presents challenges due to the complex bifurcation

diagrams. Standard approaches involve perturbing known analytic solutions and using numerical

PDE solvers to arrive at perfect patterns. We present two methods to produce three-dimensional

lattice patterns from low amplitude white-noise initial conditions- namely, by introducing an lin-

early dispersive term, or by adding a forcing term to the system. The topological measure of order

is used to quantify the patterns’ orderliness.

We make concluding remarks on the forced Swift-Hohenberg equation in Section ?? and the

time evolution of the topological measure of order. Finally, in Section 3.6, we discuss several open

problems encountered as this project nucleated into being.

Overall, this chapter provides an overview of measures of order and their applications in char-

acterizing lattice patterns in non-equilibrium systems and molecular simulations. The presented

techniques offer insights into the orderliness of patterns in different dimensions, contributing to

the understanding of complex pattern formation.

4.2 Measures of order

In the case of non equilibrium pattern forming systems (or in molecular simulations) with peri-

odic boundary conditions, order can be detected by the location of maxima alone- provided there is

no spatial temporal chaos. Indeed, lattice like patterns can be modelled given carefully chosen pa-

rameters so that the maxima have a propensity to align themselves, hence ordered patterns emerge.

We can exploit this fact, and define a measure of order (MoO) with respect to a given lattice. In

this section, we aim to describe several measures of order.

4.2.1 Persistent Homology and the Wasserstein Metric

We draw inspiration from [72] and [73] expand on a topological MoO to three dimensional

patterns. In [72], persistent homology (PH) was used to characterize the orderliness of hexagonal

lattices via variance of the H0 data, and the sum of the H1 data that is encoded in a persistence

diagram (PD). In [73], these techniques were expanded to include other lattices in the plane. This
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was done with the Wasserstein distance between the PDs of an ideal lattice and those of a nearly

ideal lattice obtained from solving non-equilibrium pattern-forming systems.

Techniques from computational topology will be particularly useful for studying patterns in

dimensions three and higher. Let X be a point cloud in Rn, and let d(_, _) be a metric. We may

define a filtration, Sr, called the Vietoris Rips (VR) Complex in the following way:

• the points in S0 are the the points of X .

• for each x ∈ X , define the ball Br(x) of radius r, and let r vary. Here r is the filtration

index.

• for x, y ∈ X , if d(x, y) ≤ r, we include the edge between x and y in the filtration Sr.

• we include an n-simplex in Sr if all of its edges are included.

The first rows of Figs. 4.1, 4.2, and 4.3 show this process for small portions of ideal simple

cubic (SC), face centered cubic (FCC) and body centered cubic (BCC) lattices respectively. This

construction allows us to associate a X to a collection of discrete distributions, µkX , with k =

0, 1, . . . , n − 1 by keeping track of the filtration values at which simplicies are added. Further,

these distributions mark the change of topological features and are hence known as birth-death

diagrams, or persistence diagrams (PDs) The second rows of Figs. 4.1, 4.2, and 4.3 show the

PDs of the ideal SC, FCC and BCC lattices respectively. An important addition to each PD is

the inclusion of the diagonal ∆, in which each point has infinite multiplicity. This allows us to 1.

compare PDs of different sizes and 2. to quantify noise.

We can then define a MoO via the Wasserstein metric D(µL, _). Thus, if X is a nearly ordered

point cloud (representing a disordered system), we may define its MoO relative to L by

D(µL, µX) = inf
η

∑

u∈µL

∥u− η(u)∥1, (4.1)

where the infimum is taken over all bijections from the points of µL (including the diagonal) to

those of µX . This metric can be likened to moving piles of sand from one position to another,
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and as such is often called the ’Earth Mover’s Distance.’ By taking this measure of order in each

dimension, we define a vector of MoOs

mk
L(X) = D(µkL, µ

k
X), (4.2)

where k = 0, 1, ...n− 1.

The MoOs defined in this way enjoy several nice properties:

1. invariance under E(3) transformations, so the point cloud and ideal lattice do not need to be

lined up to be compared

2. X and L do not have to contain the same number of points. Imperfect configurations are not

required to have the same integral number of points an ideal lattice has.

3. two points close together inX (noise) result in topological noise (or transient features) which

result in points near the diagonal on the persistence diagram- which add small contributions

to the MoO under the Wasserstein metric.

See [74] for more details on persistent homology and the Wasserstein metric.

In practice, we use the sliced Wasserstein metric to approximate D(_, _) [75]. The idea behind

this approximation is the following: given two PDs, say µ and µ′, and a line l(θ) through the origin

that makes an angle θ with respect to the x-axis, for each u ∈ µ we project u onto l(θ), ( similarly

for each u′ ∈ µ′). These give new ’flattened’ PDs, which we call µθ and µ′
θ. Both µθ and µ′

θ are

one dimensional distributions, for which there Wasserstein distance is merely

D(µθ, µ
′
θ) = inf

η

∑

u∈µθ

∥u− η(u)∥, (4.3)

where the infimum can be taken care of by sorting the elements of µθ and µ′
θ in ascending order,

and computing the 1-norm. This can be done for every θ ∈ [0, π], so that

SW (µ, µ′) =
1

π

∫ π

0

D(µθ, µ
′
θ)dθ. (4.4)
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Figure 4.1: The VR complex of an SC cell whose side lengths are 1/2. Filtration values of r = .1, .5 and
.75 are shown to capture the different stages the VR complex undergoes. The highlighted edges show a
tetrahedron in the center of the cell that kills the H1 data, and also prevents any H2 data from being formed.

The above integral can be approximated by the mean of D(µθ, µ
′
θ) for some sample of θ’s.

4.2.2 Delaunay Triangulation

Delaunay triangulations (DTs) have been used to define a measure of order for hexagonal

lattices [72,76], in which the measures of order are closely related to the first coordination number

(or number of nearest neighbors) and the average distance between vertices. The order parameters

defined rely on a property unique to hexagonal lattices- namely all points are equidistant from one

another (thus the coordination number is readily available from the DT). These properties do not

carry over into lattices in higher dimensions since 1. the edge lengths vary and 2. since vertices

may have different numbers of neighbors. See Fig. 4.4. In this section, we briefly introduce the
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Figure 4.2: The VR complex of an FCC cell whose side lengths are 1/2. Filtration values of r = .1, .36
and .5 show the different topologies of the FCC VR complex. The highlighted edges are the edges of the
octahedron at the center, which begets the H2 data.
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Figure 4.3: The VR complex of two BCC cells whose side lengths are 1/2. Filtration values of r = .1, .45
and .5 show the different stages of the VR complex of the BCC lattice. The highlighted edges show one of
the loops that is formed, and eventually dies. There are three others- one around each edge that is shared
between the two cells of the lattice.
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Figure 4.4: Delaunay triangulation of single cell for SC, BCC and FCC lattices. Note that the number
of neighbors differs between vertices. Thus the coordination number of 3D lattices are not immediately
obvious.

notion of the DT, and we outline the details of an extension to the DT measure of order that is

suitable for more general lattices.

In order to obtain a DT, we begin with a Voronoi tessellation. Let X be a set of points in Rn

and let d(_, _) be a metric. For x ∈ X , define the region Vx of points in Rn that are closer to x than

any other point in X . Explicitly, Vx = {u ∈ Rn|d(x, u) < d(y, u) for y ∈ X, x ̸= y}. A Voronoi

tessellation is then the union of all such Vx for x ∈ X . A DT is a triangulation whose vertices are

the points x ∈ X and whose edges are perpendicular to the boundaries of each region Vx of the

tessellation. That is, the DT is dual to the Voronoi tessellation. The text [77] contains more details

on Voronoi tessellations and Delaunay triangulations.

Given an ideal lattice L, we can define a measure of order of X with respect to L in the

following way: we first find the DTs of both X and L, and calculate the edge lengths. We then

define the distributions of edge lengths eL and eX , respectively. A suitable measure of order can

then defined by

me
L(X) = D(eL, eX), (4.5)

where, once again D(_, _) is the Wasserstein distance of distributions. Since lattices in R3 are

characterized by their edge lengths and the angles between faces in each cell, we can define the
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additional measure of order by finding the distributions of angles found in the triangulation (i.e.

the angles found in each triangle that appears in the DT), θX and θL, and define

mθ
L(X) = D(θL, θX). (4.6)

When working with the DT measure of orders on finite subsets of lattices, the boundaries often

contain distorted simplices, which in turn yield outliers in the distributional data. Thus we ignore

the boundary when necessary.

The MoOs defined via DTs have similar properties as those of the PH flavor- namely:

1. invariance under E(3) transformations

2. X and L do not have to contain the same number of points

3. two points close together in X (noise) result in small edge lengths, or noise in the edge

distributions. These are once again detected as noise in the Wasserstein metric between

distributions.

One could equally well define a measure of order using the distance distribution of the lattices

and point clouds. It is worth noting that in the case of ideal lattices, the edge length distributions

are in some sense more distinguishable than the collection of all pairwise distances (Fig. 4.5).

Indeed, using the distance distribution would enjoy all of the aforementioned properties as well.

4.3 A note on ideal lattices

In this section, we look at ideal lattices, which are necessary to define our MoOs. The top

row of Figure 4.6 shows the persistence diagrams of three ideal Bravais lattices, generated on the

domain [0, 10]3, each containing 64 cells. It is important to note that increasing the number of cells

only increases the frequency (or multiplicity) of each distribution µkL, k = 0, 1, 2, and the size of

the domain varies the scale of the lattice parameter, but otherwise the PD looks the same.
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Figure 4.5: The distance distributions of ideal lattices on the domain [0, 10]3 with 10 unit cells. The DT
edge length distributions are more distinguishable and are depicted in the first row of Fig. 4.7.

It is also interesting to note that SC and BCC lattices contain no H2 data, while FCC lattices

contain no H1 data. This can readily be seen. Let a denote the width of a unit cell in each case. For

the SC lattice, note that when the filtration value r reaches a, edges are added between each vertex,

which is the source of theH1 data, and the filtration becomes a single connected component. When

the filtration value reaches r = a
√
2, edges are added along the diagonal on the faces of the unit

cell. In particular, a tetrahedron whose edges may be placed along these diagonals is added to the

center of the cube, thus filling the volume, so there is no H2 data in the SC lattices. Figure 4.1

shows the VR complex and persistence diagrams for different filtration values on a single cell of

an SC lattice.

In the case of the FCC lattice, when the filtration value reaches r = a/
√
2, edges are added

between the vertex on the face, and the neighboring corners of the unit cell, as well as an edge

between neighboring face vertices. Thus at each corner of the unit cell, there is a tetrahedron.

Then the center of the cell, remains an octahedron whose vertices lie at the center of each face of

a cube, which is the source of H2 data. The center is filled when the filtration value reaches the

width a. See Fig. 4.2 for a depiction of the VR complex for one cell of an FCC lattice, and the

corresponding persistence diagrams at a few filtration values.

A single unit cell of a BCC lattice only shows H0 data– so to see H1, we must consider two

adjacent cells. When the filtration value reaches r =
√
3/2a, edges are added between the center
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Figure 4.6: (Top row) From left to right, are the persistence diagrams of ideal SC, BCC and FCC lattices.
It is interesting to note that SC and BCC have no H2 data while the FCC lattice has no H1 data. (Bottom
row) The PDs of an ideal Bravais lattice with a randomly selected single point perturbed. The measures of
order (written as (m0

L(Lp),m
1
L(Lp),m

2
L(Lp)) ) are about SC: (0.2328, 0.4253, 0.0), BCC: (0.4407, 0.4152,

0.1367) and FCC: (0.4614, 0.0487, 0.48).

vertex and the neighboring vertices at the corners of thee cube (this is true for both cells). Indeed,

four loops are formed between the two cells, where each loop contains the two center vertices, and

two of the corner vertices, and wraps around a single shared edge between two cubes. When the

filtration value reaches r = a, edges are added between neighboring corners, and an edge is added

between the two centers, thus filling the filtration with simplices which mean there is no H2 data.

Figure 4.3 shows this VR complex and the persistence diagrams for two adjacent cells of a BCC

lattice.

To close this section, we present the distributional data from DTs of ideal lattices. The edges

present in the distributions are straightforward to see– they are just the distances between neigh-

boring vertices. The DTs of unit cells are shown in Fig. 4.4.
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Figure 4.7: (First row) The Delaunay triangulation edge length distributions and angle distributions of the
ideal lattices. The lattices are all on the domain [0, 10]3 with 64 unit cells. (Second row) The distribution
data from the DT of the perturbed lattices- namely an ideal lattice with one randomly chosen point perturbed
a small amount. The measures of orders (written (me

L(Lp),m
θ
L(Lp))) are approximately SC: (0.57, 3.33),

BCC: (0.24, 1.74) and FCC: (0.24, 1.98).
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4.4 Perturbed Lattices

By design, the MoOs in the PH and DT cases are stable [74]. In other words, a small change in

the point cloud X will result in a small change in mL(X) for every MoO defined in the previous

section. In this section, we consider perturbations of lattices in order to demonstrate this stability

of the MoOs.

4.4.1 Single Point Perturbations

We begin with an ideal Bravais lattice (SC, BCC and FCC) generated on a domain [0, 10]3,

each with 216 unit cells (each having a width of 5/3 spatial units). These lattices have 343, 559,

and 1099 points respectively. A random point is then chosen, and perturbed by b/100 where b is

the lattice parameter. The resulting PDs are shown in the second row of Fig. 4.6 while the DT

distributions can be seen in the second row of Fig. 4.7. Note that even small changes to a single

point may or may not yield a change in the topology. It is also worth noting that while the DT

distributions are not visibly different, the MoO from the angle distributions appear to be the most

sensitive to this kind of perturbation.

4.4.2 Random perturbations

Next, we analyze what happens when each point in the ideal lattices is perturbed by allowing

each to walk a Brownian path. We used the small variance σ2 = dt = a2/1000, where a is the

width of a single cell. In these simulations, we used 27 cells for each lattice (so a = 10/3). We

also assume that the points bounce off the boundary, since we do not include periodic boundary

conditions in our PH calculations, nor in our DT calculations. After long enough time, the points

will have walked to a random configuration. Figure 4.8, shows the change in MoOs, both in the

PH case (first row) and in the DT case (second row) as the points randomly walk. In each case,

the lattices were on a domain of [0, 10]3 with 27 unit cells. It is interesting to note that in the

PH MoOs, the H2 data spikes in case of SC and BCC latices, while the H1 data spikes in the

FCC lattice- despite those lattices not having those respective data in their ideal configurations.
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Figure 4.8: These figures exhibit the time evolution of the measure of orders of the perturbed SC, BCC, and
FCC lattices with respect their ideal form lattices. The first row shows the MoO in the PH case, while the
second row shows their MoO in the DT case. In each case, the perturbations were random walks with the
initial configuration being an ideal lattice. The left column shows a random walk where the initial starting
configuration is an SC lattice. The middle column shows a random walk with initial configuration of a BCC
lattice. The right column depicts random walk whose initial configuration is an FCC lattice. In both the SC
and BCC cases, the measure of order (in the PH case) contain a spike in the H2 data- in part because both
ideal lattices have no H2. Similarly, the H1 measure of order spikes in the FCC case.

A similar spike was also observed in [72] and in [73] in the case of hexagonal lattices. We posit

that this is the case because of the following: as the vertices walk around, the expected distance

between two vertices decreases (this can be seen in H0 as the configuration diffuses), which leads

to the non-trivial topological data. When the perturbations are small, the configurations are nearly

ordered. This near order configuration contains more loops (and enclosed volumes) from the VR

complex than points in random position in the domain. See subsection 5.3 for more on this idea.
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4.5 Pattern Formation in Three Dimensions

Pattern formation in three dimensions occurs both naturally and experimentally, and can be ob-

served in biological morphogenesis, materials science and fluid dynamics [78, 79]. The challenge

with modelling patterns in three dimensions with partial differential equations (PDEs) lies in the

fact that their bifurcation diagrams are ’crowded’. That is to say, several more types of patterns can

arise in three-dimensional systems, than in their two-dimensional counterparts. In the current liter-

ature, the standard approach to model three-dimensional ideal lattice patterns is to perturb known

analytic solutions and feed them through a numerical PDE solver such as the ETDRK4 algorithm

or finite difference methods [80, 81]. It can also happen that a solution that exhibits some pattern

occurs at a minimum of a potential function. In this case, it is possible to generate patterns from

white-noise initial conditions [82, 83]. A BCC lattice pattern is among the patterns found in [83],

but SC and FCC lattices are not found.

Patterns produced from white-noise initial conditions will typically contain defects. While

defects are naturally occurring, it may sometimes be desirable to produce perfect lattice patterns.

In this section, we offer two ways to produce three-dimensional lattice patterns from low amplitude

white-noise initial conditions, and we will use the topological measures of order to quantify their

degrees of order. We do so by using a maximum filter to identify the locations of all local maxima,

and apply PH to that point cloud. Then an ideal lattice is estimated based of the computed PH data

at the last time step, which is then used to compute the time evolution of the measure of order.

4.5.1 Linear Dispersive Terms

In two-dimensional pattern formation, adding a linear dispersion term to a non-equilibrium

system causes interesting behavior. If the dispersion is large enough, systems that produce patterns

or spatial-temporal chaos are overridden by ripple patterns [84,85]. If the dispersion is of moderate

size, patterns will propagate in the direction of the dispersion, but the patterns will remain, and

become increasingly ordered over time, as we will demonstrate by adding dispersive terms to the

Brusselator (see Fig. 4.9). The Brusselator is a reaction diffusion system which is often used in the
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study of three-dimensional patterns. In principle, we could use any three-dimensional system with

a narrow shell of unstable wavelengths, since their amplitude equations (and hence bifurcation

diagrams) would be the same [86].

We use the following modified Brusselator:

ut = D1∆u+ CP (u)− (B + 1)u+ u2v + A (4.7)

vt = D2∆v + CP (u) + Bu− u2v (4.8)

where P is a third order, autonomous differential operator. In our experience, different dispersive

terms yield differing results. Even if the parameters A,B,D1 and D2 are chosen with a specific

lattice pattern in mind (according to their bifurcation diagrams, as in [86]), some dispersive terms

may change the outcome of patterns entirely. Figure 4.9 shows a solution of the Brusselator as well

as two solutions of the dispersive Brusselator, one with P = ∂x∂y∂z and the other with P = ∂3x and

the persistence diagrams from their maximum locations. In all cases, ETDRK4 was used to provide

solutions, on a cubic grid with N = 64 on the spatial domain [−3π, 3π]3 with dt = .1 and up to

time t = 5000. The parameters used in each simulation were A = 2, B = 3.1, C = 1, D1 = 1 and

D2 = 7.1111, and the initial conditions were low amplitude white noise. The parameters A,B,D1

and D2 were chosen since they satisfy the conditions to produce a BCC pattern [86] and C = 1

was chosen to be moderately sized. Notice the dispersionless solution produced a nearly perfect

BCC pattern but in the case in which P = ∂x∂y∂z, the pattern produced is a perfect BCC lattice

(see the middle column of Fig. 4.9), while when P = ∂3x appears to have a hexagonal pattern in

the yz-face, which is elongated and slanted in the xz-face (see the right column of Fig. 4.9).

It is not a priori clear which dispersive terms will give the desired outcome- nor why. Another

dispersive term that produces the BCC lattice pattern (with the choice of parameters) is P =

∂3x+ ∂3y + ∂3z . Note that both ∂x∂y∂z and ∂3x+ ∂3y + ∂3z are invariant under 2π/3-rotations about the

axis (1, 1, 1).
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In the case in which P = ∂x∂y∂z, we can observe what happens to the dispersive Brusselator

(Eqs (4.7) and (4.8)) over six separate simulations. We use the same setup and parameters that

were used to create the left column of Fig. 4.9, and compute the measures of order through the

time evolution of the system with respect to the ideal BCC lattice. Figure 4.10 shows these results.

The ideal lattice is easily estimated in this regime- since at the last time step, the pattern converges

to a perfect BCC pattern (as in the middle column in Fig. 4.9). This is true for each of the six

simulations depicted in Fig. 4.10. Unsurprisingly, the H2 MoO spikes just before reaching perfect

order, just as the second panel in Fig. 4.8 shows the same spike just after perturbing the ideal BCC

lattice. Moreover, Fig. 4.10 shows that the system achieves an ideal pattern much sooner than

t=5000. This is hugely beneficial for cutting back computing time.

We will refrain from pursuing this line of investigation any further since adding dispersion to

the Brusselator carries no physical interpretation or use beyond generating patterns from white-

noise initial conditions. Additionally, it is not clear whether consistently obtaining SC and FCC

patterns from the white noise initial conditions is even possible. Instead, we present another way

to produce patterns.

4.5.2 Forced Swift-Hohenberg Equation

Since it is rather difficult to generate solutions with specified lattice patterns from white noise

initial conditions via the (dispersive) Brusselator, we will generate desired lattice patterns by

adding a spatially periodic forcing term to a non-equilibrium system. Such systems have been stud-

ied in one and two dimensions for decades, with early applications stemming from hydrodynamic

phenomena such as electrohydrodynamic instabilities in liquid crystals, Rayleigh-Bénard convec-

tive fluids, and turbulence [87–96]. Somewhat more recently, spatially periodic perturbations have

been used to study optical techniques in Bénard-Marangoni convection experiments [97, 98]. In

much of the earlier work, the forcing terms were spatially periodic rolls states with a prescribed

forcing wavenumber. Propagating stripe states with m : n resonance forcing terms have been

studied extensively in one and two dimensions- see Ref [99] for a unified review at the level of am-
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Figure 4.9: The first row depicts solutions of Eqs. (4.7) and (4.8) at t=5000. In all cases, the domain is
[−6π, 6π]3 and the parameters used were A = 2, B = 3.1, C = 1, D1 = 1 and D2 = 7.1111. The left
column shows a solution obtain with no dispersion. The middle column shows the solution obtained with the
dispersive term P = ∂x∂y∂z and its corresponding persistence diagram computed from the max locations.
The second column shows the solution and its corresponding persistence data with P = ∂3x.
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Figure 4.10: This figure shows the time evolution of the measure of orders with respect to the ideal BCC
lattice. Six simulations of Eqs. (4.7) and (4.8) on the domain [−3π, 3π]3 up to t=5000 (the time was cut off
to t=1600 since perfect order was achieved sooner). Each simulation used low amplitude white-noise initial
conditions and the parameters were A = 2, B = 3.1, C = 1, D1 = 1 and D2 = 7.1111. The dispersive
term was P = ∂3x. The mean and confidence intervals of two standard deviations are plotted.

plitude equations. Even with a unidirectional forcing term, the authors of Ref. [99] find a wealth

of pattern forming phenomena, including the appearance of hexagonal patterns for questionable

choices of parameters.

In our study of PH measures of order, we will focus on the forced Swift-Hohenberg equation

(FSHe):

ut = −(1 + ∆)2u+ µu+ βu2 − u3 − αh(x)u. (4.9)

The parameters α and β are non-negative, and µ is the bifurcation parameter whose critical value

is µc = 0. The function

h(x) =
∑

k̂

cos(kf k̂ · x) (4.10)
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is a linear combination of cosine functions. Here, the k̂ are the unit wavevectors which are (to

scale) dual to the lattice pattern, kf is the forcing wavenumber and is such that mkf = n(kc + q)

for positive co-prime integers n andm and a small mismatch q of the critical wavenumber, kc. This

kf is known as the forced wavenumber which has m : n resonance.

The critical wavevectors for SC, BCC and FCC patterns can be found in [86], but we include

them here for convenience.

SC lattice:

k1 = −k4 = kc(1, 0, 0), k2 = −k5 = kc(0, 1, 0), k3 = −k6 = kc(0, 0, 1) (4.11)

BCC lattice:

k1 = −k7 =
kc√
2
(1, 1, 0), k2 = −k8 =

kc√
2
(0, 1, 1) k3 = −k9 =

kc√
2
(1, 0, 1) (4.12)

k4 = −k10 =
kc√
2
(1,−1, 0) k5 = k11 =

kc√
2
(0, 1,−1) k6 = −k12 =

kc√
2
(1, 0,−1) (4.13)

FCC lattice:

k1 = −k5 =
kc√
3
(1, 1, 1), k2 = −k6 =

kc√
3
(1,−1,−1) (4.14)

k3 = −k7 =
kc√
3
(−1, 1,−1), k4 = −k8 =

kc√
3
(−1,−1, 1) (4.15)

Here, kc = 1 is the critical wavenumber for the Swift-Hohenberg equation. The forcing terms

of Eq. 4.10 only require a basis for a lattice, and so each forcing term can be written as a sum of

three terms. As we shall soon see, the addition of our forcing terms may beget unusual patterns

with given parameters- but our purpose in this dissertation is not to give a full investigation of this.

Rather, we will focus on how the patterns change as the forced amplitude and forced wavenumber

change.
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Indeed, at exact 1 : 1 resonance, (i.e. with no wavenumber mismatch so q = 0), the resulting

pattern should closely resemble a lattice pattern. Figure 4.11 depicts the three solutions of Eq.

4.9 corresponding to SC, BCC and FCC lattice patterns. In each case, we used the parameters

µ = −.1, β = 1.1, and the forcing parameters were α = 1 and 1:1 resonance with q = 0. It is

interesting to note the BCC forcing causes raised tetrahedral regions (the bright regions depicted

in the middle column of Fig. 4.9) whose maxima lie on a (nearly) BCC lattice. Moreover, each

solution exhibits a small number of defects. It is possible that these defects are the result of the

choice of parameters and the forcing term, which compete and cause defects.

In order to continue our study of the forcing parameters, we establish some semblance of a set

of control simulations- the case when kf = kc = 1 and when α = 1. Figure 4.12 shows how

the measures of order evolve over time given 50 simulations of Eq. 4.9 with of the SC, BCC and

FCC forcing terms. These MoOs are once again scaled with the MoOs of random point clouds

which give a basis of comparison. Thus when a measure of order is near one, that is an indication

that it resembles that of a random point cloud of the same number of points as there are local

maxima in the solution at later times. The plot shows the mean of the results in each case, as well

as confidence intervals of 2 standard deviations. It is interesting to note the effect of adding the

different forcing terms. The left panel of Fig. 4.12 suggests that a solution of Eq. (4.9) with an SC

forcing term merely nucleates and is fully formed at early times. Note the spike in the H2 MoO

is consistent with the perturbation simulation of Fig. 4.8, and occurs just before obtaining a high

degree of order. The right panel of Fig. 4.12 shows the time evolution of the MoO for the FCC

forcing term. The measures in both H0 and in H2 begin near 1, which is no surprise given that

the initial conditions are white noise. The H1 MoO starts closer to zero, but spikes as the solution

nucleates to a high degree of order. This is consistent with the FCC measure of order seen in Fig.

4.8.

The middle panel of Fig. 4.12 depicting the time evolution of the MoOs given the BCC forcing

term is a bit more surprising. Figure 4.13 shows the time evolution of Eq. 4.9 with BCC forcing,

at times t = 4, 8 and 30. This figure reveals a surprising artifact of the BCC forcing term- which is
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that at early times during the nucleation, the regions near local maxima appear to be spherical, but

at later times, become tetrahedral regions. The reason for this behavior is not clear. However, the

middle panel of Fig. 4.12 suggests that this is an occurrence that all 50 simulations go through this

transition, since there is small variance in theH2 measure of order roughly between the times t = 5

and t = 12. The larger variance of the H−2 MoO at times before t = 5 may be due to the solution

lingering at a developing stage before the formation of a lattice pattern. The larger variance at

times later than t = 15 is possibly due to discrepancies while pinpointing local maxima in their

tetrahedral regions and the maximum filter’s ability to single out a single point in that region. The

fact that the H2 MoO averages just above 1.5 at t = 50 is consistent with the persistence diagram

in the middle panel of fig. 4.11, which shows some noise in the H2 MoO.

Now we would like to understand how the evolution of the measures of order change as the

forcing parameters change. Arguably, the effect of changing the parameter α should be simpler

to understand, since it controls the strength of the forcing term. Figure 4.14 illustrates the time

evolution of MoOs of Eq. 4.9 for SC, BCC and FCC forcing terms- each at a lower forcing

strength. The first row shows the results for when α = .5 while the panels in second row had

α = .2. For the SC forcing term, whenever α = .5, the nucleation is delayed until around until

around t = 10, as indicated by the initial spike in the H2 MoO. After t = 10 the variance of the H2

MoO is larger than when α = .5. This is because the forcing term is competing with the labyrinth

pattern formation that is typical of the (unforced) SH equation. When the forcing strength of the

SC forcing term is further weakened to α = .2, low amplitude SC patterns are visible, but too weak

for the max filter to find the peak locations. Starting around t = 20 the labyrinthine pattern begins

to take precedence over the small forcing term. This is indicated by the large variance in the H0

and H2 MoOs, as well as by their means being noticeably above 0.

Turning our attention to the second column of Fig. 4.14, in which we have a BCC periodic

forcing term with weakend forcing strength. When α = .5, we see that the period of time in which

the variance of the H2 MoO is delayed and extended to the times roughly between t = 12 and

t = 20. During this time period, the forcing term takes precedence over the labyrinthine pattern

92



of the unforced SH equation. In Fig. 4.12, once the variance of the H2 MoO begins to widen,

the regions about the peaks began transitioning from spherical to tetrahedral level sets. In Fig.

4.14 however, a similar occurrence of the H2 variance is observed, but these regions about peaks

never become fully formed tetrahedra. The nonzero variance does seem to suggest that the solution

during this time period undergoes a struggle where the regions around the peaks are competing to

between being spherical and tetrahedral. After, the time of about t = 40, the spherical regions

dominate and continue. When the strength of the forcing term is further lowered to α = .2, the

BCC patterns nucleate at a much slower rate, but the recurring spike in the H2 MoO is present, and

prolonged. At t = 50, a faint BCC pattern is present, and the regions surrounding the peaks are

spherical.

A look at the third column of Fig. 4.14, suggests that the FCC forcing term is the least affected

by the forcing strength. When α = .5, the pattern nucleates at early times, as indicated by the

spike in the H1 MoO, similar to what was observed in 4.8. The pattern undergoes minor changes

as peaks begin to settle around t = 20. The variance of each of the measures of order are slightly

increased, which tells us that there are defects present in the pattern. When α = .2, the pattern

nucleates at roughly t = 8 when the H1 spike is present. After t = 8, the pattern appears to deviate

from perfect order as it competes with the parameters chosen to simulate Eq. (4.9). At the end

of the simulation when t = 50, a highly ordered FCC pattern emerges, albeit a faint one. The

noticeably wider variance in each of the MoOs indicate the presence of even more defects than

when the stronger forcing terms are used.

Next, we observe what happens when the forcing parameter kf is altered. Figure 4.15 show

several panels of the time evolution of the MoOs. In each panel, 50 simulations of Eq. (4.9) were

carried out, using the parameters µ = −.1 and β = 1.1 and the forcing parameters α = 1. In all

cases, a 1:1 resonance was used, but a small mismatch in the wavenumber was introduced. The

first row shows simulations where q = .05 while the second row shows simulations where q = .1.

The first column of Fig. 4.15 shows what happens when the SC forcing is used with a deviated

forced wavenumber. When q = .05, the SC pattern forms at around t = 4, which is slightly later
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than seen in Fig. 4.12. Once again, the characteristic spike in the H2 MoO appears just before

a high degree of order is attained, just as the peaks are prominent enough. After the spike, the

patter quickly settles in to a nearly SC lattice pattern. When the deviation in the wavenumber is

increased to q = .1, the pattern nucleates, but the higher variance of the H2 measure of order and

the behaivor of its mean roughly between t = 3 and t = 12 indicate that there are defects in the

pattern. This is to be expected since the preferred wavenumber of Eq. (4.9) is kc = 1, so kf = 1.2

causes disruption in the pattern.

Whenever the forcing term if BCC periodic, the solutions yet again exhibit strange behavior.

Figure 4.16 shows two solutions of Eq. (4.9) with BCC forcing terms and there corresponding

PDs at time t = 50. Both solutions have a 1:1 resonance, but a small mismatch in the forced

wavenumber. The left column of Fig. 4.16 shows when the small mismatch is q = .05 and the

right column shows a solution when that mismatch is q = .1. Notice that when q = .05, the

most prominent peaks occur along the edges of the domain. It can also be seen that there are

depressed ellipsoidal regions where the local minima are located. This is likely the cause of the

large variance in the H2 MoO in the second column of Fig. 4.15 after the pattern is formed at early

times. When the forced wavenumber becomes even larger, i.e. when q = .1, the regions around

the local maxima are ellipsoidal (see the second column of Fig. 4.16) as opposed to spherical or

tetrahedral as observed earlier. These ellipsoidal regions around the peaks likely cause the wide

variance in the H2 MoO after the formation of the nearly BCC lattice pattern. Since the means

of the measures of order are nonzero, the are defects present. Such defects can be seen on the

boundary in Fig. 4.16.

The right column of Fig. 4.15 shows the time evolution of the measures of order when the

forcing term is FCC periodic. Just as before, the forcing term seems to be the least affected by

the change in forcing parameters. In both the q = .05 and the q = .1 cases, the variances of the

measures of orders are low. The MoOs also reach a high degree of order and are close to zero at

early times, indicating that the FCC patterns nucleate and settle quickly.
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Figure 4.11: Simulations of Eq. 4.9 with SC, BCC and FCC forcing terms respectively. In each case, we
used a 643 grid on the domain [−6π, 6π]3 and the parameters µ = −.1 and β = 1.1. The forcing parameters
were α = 1 with a 1:1 resonance with q = 0. The initial condition were low amplitude white noise and the
solutions are shown at t = 50.

Figure 4.12: Each figure depicts a collection of 50 simulations of Eq. 4.9 with SC, BCC and FCC forcing
terms respectively. The measure of order was computed from the PH of the local maxima at each time step
of the solution until t = 50. In all the the simulations, low amplitude white-noise initial conditions were
used, a 643 grid was used on the domain [−6π, 6π]3 with the parameters µ = −.1, β = 1.1 and the forcing
parameters α = 1 and with kf = kc = 1. The means of the results are plotted, as well as confidence
intervals within 2 standard deviations, with the area between the bands being shaded.
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Figure 4.13: Three snapshots of the time evolution of Eq. 4.9 with BCC forcing. A 643 grid was used on
the domain [−6π, 6π]3. The parameters were µ = −.1 and β = 1.1 and the forcing parameters where α = 1
and kf = kc = 1. The times shown are at t = 4, t = 8 and t = 30 respectively.

Figure 4.14: Each panel depicts the time evolution of the measures of order for 50 simulations of Eq. 4.9.
In each case, a 643 grid was used on the domain [−6π, 6π]3. The parameters were µ = −.1 and β = 1.1. In
the first row, the forcing strength was α = .5 and in the second row α = .2. In all cases, kf = kc = 1 and
the final time was t = 50.
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Figure 4.15: Each panel depicts the time evolution of the measures of order for 50 simulations of Eq. 4.9.
In each case, a 643 grid was used on the domain [−6π, 6π]3. The parameters were µ = −.1 and β = 1.1.
The forcing strength in each simulation was α = 1. The forced resonance was 1:1 but a small deviation in
the forced wavenumber was introduced. In the first row, the deviation was q = .05 and in the second row
q = .1. In all cases, the final time was t = 50.
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Figure 4.16: This figure shows the results of two simulations of Eq. (4.9) with a BCC periodic forcing term.
In each case, we used 642 grids on a domain of [−6π, 6π]3. The parameters were µ = −.1 and β = 1.1.
In both cases the forcing strength was α = 1. The left panel shows when the forced wavenumber had a
mismatch of q = .05 while the right panel shows a solution whose forced wavenumber was q = .1. In both
cases, the solutions are shown at t = 50.
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4.6 Conclusions

In this paper, we have discussed a measure of order for imperfect three-dimensional patterns.

We introduced the concepts of persistent homology and of Delaunay triangulations, the Wasser-

stein metric as a tool for quantifying order in point clouds with respect to ideal lattices. We drew

some comparisons between this topological measure of order with a more geometric measure of

order- via the Delaunay triangulation. We discern that for 3d patterns that the additional data (the

H2) provide a more telling story about the time evolution (dis)ordering systems.

We then explored the application of these measures of order to three-dimensional pattern for-

mation. We discussed how pattern formation of non-equilibrium systems in three dimensions

occurs naturally in various fields. We highlighted the challenges in modeling three-dimensional

lattice patterns from white-noise initial conditions. To address these challenges, we presented two

approaches for producing three-dimensional lattice patterns from low-amplitude white-noise initial

conditions. The first approach involved adding linear dispersive terms to the Brusselator equations,

which led to surprising outcomes of pattern- including the emergence of a perfectly ordered lattice

pattern. The second approach involved a periodic forcing term to the Swift-Hohenberg equation,

which has several potential applications in hydrodynamics and optics.

Overall, these topological measures of order provide valuable insights into the orderliness of

imperfect three-dimensional patterns and the time evolution of pattern forming systems. By under-

standing and quantifying the order in such patterns, we can gain a deeper understanding of complex

systems and potentially uncover underlying principles governing their formation and behavior.
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Chapter 5

Discussion of open problems

The project of Chapter 4 has led to a number of unanswered questions, which are as far as we

know, open. In this concluding chaper, we touch on these.

5.1 Moduli Space of Bravais Lattices

Given a basis B = {b1, b2, . . . bn} of Rn, a Bravais lattice, L is defined to be the integer span of

the basis B. We would like to parameterize this collection of lattices in a way that is conducive to

our study of (dis)order. One approach for two-dimensional lattices, as taken in [72], is to consider

the fundamental triangle spanned by the two basis vectors b1 and b2 such that the third side of the

triangle, b1 − b2 is scaled to length 1. Under this definition, two lattices are equivalent if there

is an orthogonal transformation or a scale factor of the fundamental triangles. This lends itself

to a nice description of the moduli space of lattices. The downside to this approach is that this

parameterization does little in the way of distinguishing lattices up to their PH - i.e. their shape.

Moreover, it is not immediately clear how to generalize this to higher dimensions.

There is but another way. Note that we can identify a full rank lattice in Rn by a matrix

B ∈ GL(n,R), whose columns are the generators of the lattice. In order to distinguish lattices

up to shape, we consider two group actions on GL(n,R): the left action of the conformal or-

thogonal group CO(n) ∼= R∗ × O(n) via g · B = gB for g ∈ CO(n) and the right action of

GL(n,Z) on GL(n,R) given by B · u = Bu for u ∈ GL(n,Z). The resulting double coset

space CO(n)\GL(n,R)/GL(n,Z) are the lattices up to shape. The above approach is common in

number theory [100, 101].

The above description of lattice-shape space is easy to write down, it would be interesting to

give a geometric realization of this space in low dimensions. It is conceivable that sampling such

a space may help with that endeavor.
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Given a basis for a lattice, we can write a matrix, say A ∈ GL(n,R). We can thus generate

a random lattice in the following way: First, generate a random matrix A whose entries are dis-

tributed normally. Next, apply the LLL algorithm to write the factorization A = UÃ, where Ã is

a reduced basis and U ∈ GL(n,Z). This factorization is unique if we require all pairwise angles

between the columns to be less than or equal to π/2. Then, apply the QR algorithm to factor

Ã = QR. This factorization is unique if we take the diagonals of R to be positive. Finally, we can

re-scale R by defining K = det(R)−1/nR. Thus K is a canonical representation of a lattice up to

shape.

The above algorithm could be used for Monte Carlo simulations that could be used to probe

questions of random lattices (what is the expected lattice?) and perhaps even help come to grips

with a geometric realization of the moduli space of lattices to shape.

5.2 Close-Packed Lattices

Another interesting observation is that in dimensions two and three, close packed lattices

(hexagonal, FCC and HCP) contain no H1 data. Figure 5.1 depicts the PDs for an HCP lattice,

with 216 points. We may ask then, do all close packed lattices in Rn have µ1
L = 0? Further, given

a random lattice (or perhaps even a random set of points), can we find a close packed lattice by

minimizing topological constraints from PH?

5.3 H1 count of a random set points

In subsection 4.4.2, we made a claim that the spikes in the MoOs are due to the packing of

topological features in highly ordered configurations of points. We can back this claim with some

Monte Carlo simulations. For these simulations, we focus on hexagonal lattices for simplicity, and

note that similar arguments can be applied to lattices in higher dimensions. Further, our configura-

tions will all be made in a domain [0, 10]2- but it is important to notice that the size of the domain

does not matter, only the number of points. We do the following: we create a lattice, which is then

perturbed so that each point takes one Brownian step whose variance is proportional to the distance
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Figure 5.1: The PD of an HCP lattice with 216 points, generated by vertices
r
(
2i+ (j + k) mod 2,

√
3(j + (k mod 2)/3), k 2

√
6/3
)

with i, j, k = 1, 2, . . . 6 and with r = 1.1.

between neighboring points in the original lattice. We compute the PH, and count the number of

H1 data that occur. Rinse and repeat for a total of 1,000,000 instances and store the H1 data count

for each instance, and plot the (normalized) H1 count distribution and cumulative distribution. In

tandem, we do the same with a set of uniformly distributed random point cloud of the same number

of points as the perturbed lattice. We repeat this simulation for different sized configurations.

The first simulation consisted of configurations that have 4 points. Figure 5.2 depicts an in-

stance of each configuration, and the H1 count distributions (denoted by #PH1). Note that the

mean number of H1 obtained from perturbed hexagonal lattices is greater than that of the random

point clouds, while their variances are approximately the same. The distributions shown in Fig. 5.2

are Bernoulli distributions, because there can be at most one H1 data with four given points- so the

presence of an H1 data can be modelled as a success. As the size of the configurations grow, the

number of H1 data becomes Gaussian distributed- a consequence of the Central Limit Theorem.

Figure 5.3 shows the H1 count distributions of larger point clouds. Since the means and variances

can be estimated from the simulated data, the Gaussian distributions can thus be estimated. These

simulations indicate that the expected number of H1 data from a nearly hexagonal configuration is
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Figure 5.2: The top row shows a single instance of a perturbed lattice (orange points) and the corresponding
H1 count distributions over 1,000,000 independent instances. The second row shows the same but for
random point clouds. This simulation gives the E(#PH1) ≈ .20 and var(#PH1) ≈ .16 for perturbed
hexagonal lattices and E(#PH1) ≈ .04 and var(#PH1) ≈ .04 for the random point clouds. Note in both
cases, these are Bernoulli distributions.

greater than the expected number of H1 data from a random point cloud (with the same number

of points). Figure 5.4 shows the mean and variance data of the H1 count distribution of several

Monte Carlo simulations, each using different sized point clouds. It is interesting to note that the

variances in the H1 count between the perturbed hexagonal configuration and the random point

cloud are nearly the same.

This would be a neat integral geometry problem to pursue. We can ask, what is the probability

that four points in a convex subset of the plane produce H1 data? If this could be answered rigor-

ously given the two types of distributions (uniformly and from a perturbed hexagonal lattice), we

could begin fully explain the spikes in the MoO data that appear in [72,73] and perhaps have some

idea on doing the same for the higher-dimensional cases seen in this paper.
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Figure 5.3: The top row shows a single instance of a perturbed lattice (orange points) and the corresponding
H1 count distributions over 1,000,000 independent instances. The second row shows the same but for
random point clouds. This simulation gives the E(#PH1) ≈ 107 and var(#PH1) ≈ 26 for perturbed
hexagonal lattices and E(#PH1) ≈ 63 and var(#PH1) ≈ 26 for the random point clouds.
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Figure 5.4: This figure shows the mean and variance of the H1 count data over several Monte Carlo simu-
lations. Each simulation had 1,000,000 samples, and increased the size of each configuration, starting with
3 points, and up to 279 points.

5.4 Linear Dispersive Terms in Non-Equilibrium Pattern Form-

ing Systems

The problem of added linear dispersion has been studied when dispersion is small [102] and

when dispersion is large [84, 85, 103]. As far as the authors are aware, the addition of moderately

sized linear dispersion to a system with a narrow band of unstable wavelengths has not been stud-

ied. In subsection 4.5.1, we observe that the addition of (some) dispersive term can increase the

order of a resulting pattern, but it is not exactly known why this is the case. Simulations indicate

that this is also true for patterns in two dimensions.

Additionally, in subsection 4.5.1, we had a brief look on the effects of added linear dispersion

(of moderately sized) to the Brusselator. We noted that different dispersive terms may beget un-

expected patterns. It stands to reason that a third-order (homogeneous) differential operator which

is invariant under cubic symmetry may produce the desired lattice patterns- but finding such a

differential operator would require a descent amount of algebraic geometry- possibly a modified

Derksen’s algorithm [104]. The input of Derksen’s algorithm is a (finite) linear representation of a
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group, and the output is a generating set of homogeneous polynomials which are symmetric under

that group action. The modification is slight, and is merely to consider the polynomial ring over

the operators ∂x, ∂y, ....

Given the right parameters of some non-equilibrium system, it would be interesting to see if

we could generate other lattice patterns from low amplitude white-noise initial conditions with a

moderately sized linear dispersive term. Indeed, it would be amusing to do so, and to understand

why the added dispersive terms (and which ones, at that) contribute to the highly ordered patterns.

We posit that the dispersive terms cause a transfer of energy between regions with differing domi-

nating wavenumbers- which would in turn drive defects caused by the local patches to collide and

annihilate, thus producing a perfect lattice pattern.

5.5 Forced SH Equation

The discussion of the forced SH equation in this paper barely scratches the surface. It would be

interesting and perhaps useful to engage with a deeper study at the level of amplitude equations. As

we have noted in section 4.5.2, there are interesting phenomena that occur with the BCC periodic

forcing term- thus warranting a deeper study. It would also be reasonable to study what happens at

m : n resonance when m ̸= n. Such a study could be useful for optical lattices.
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