
DISSERTATION

EXPLOITING NOISE, NON-LINEARITY, AND FEEDBACK TO DIFFERENTIALLY 

CONTROL MULTIPLE DIFFERENT CELLS USING A SINGLE OPTOGENETIC INPUT

Submitted by

Michael P May

School of Biomedical Engineering

In partial fulfillment of the requirements

For the Degree of Doctor of Philosophy

Colorado State University

Fort Collins, Colorado

Fall 2023

Doctoral Committee:

Advisor: Brian Munsky

Co-Advisor: Tim Stasevich

Diego Krapf

Patrick Shipman



Copyright by Michael P May 2023 

All Rights Reserved



ABSTRACT

EXPLOITING NOISE, NON-LINEARITY, AND FEEDBACK TO DIFFERENTIALLY

CONTROL MULTIPLE DIFFERENT CELLS USING A SINGLE OPTOGENETIC INPUT

Motivated by Maxwells-Demon, we propose and solve a cellular control problem in which

the exploitation of stochastic noise can break symmetry between two cells and allow for specific

control of multiple cells using a single input signal. We find that a new type of noise-exploiting

controllers are effective and can remain effective despite coarse approximations to the model’s

scale or extrinsic noise in key model parameters, and that these controllers can retain performance

under substantial observer-actuator time delays. We also demonstrate how SIMO controllers could

drive two-cell systems to follow different trajectories with different phases and frequencies by

using a noise-exploiting controller. Together, these findings suggest that noise-exploiting control

should be possible even in the case where models are approximate, and where parameters are

uncertain. Having demonstrated the potential of noise-enhanced feedback control through compu-

tational modeling, we have also begun the next steps toward automating microscopy to implement

this potential in experimental practice. Specifically, we demonstrate a new integrated pipeline to

automate the image collection including: (i) quickly search in two-dimensions to find fields of

view with cells of desired phenotypes, (ii) targeted collection of three-dimensional image data

for these chosen fields of view, and (iii) streamlined processing of the collected images for rapid

segmentation, spot detection and tracking, and cell/spot phenotype quantification.
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Chapter 1

Introduction

1.0.1 Synthetic Biology

Synthetic biology is an interdisciplinary field covering biology, engineering, and control theory

that has enhanced the ability to engineer and manipulate living organisms. By designing and con-

structing biological components and modules, changes to cellular behavior can be in incorporated

in a logical manner similar to electronic circuits [1, 2]. Synthetic biology has been used in a wide

array of applications, from developing biofuels [3], sustainable agriculture [2], and calculators with

a display [4].

Orthogonal control in synthetic biology seeks to ensure independence for different compo-

nents or modules within a biological system [5]. Orthogonality enables precise manipulation and

programming of these components to perform specific functions without unintended cross-talk or

disruption, enabling the construction of intricate and reliable biological circuits and systems that

can be programmed using a literal programming language [6].

Modularity in synthetic biology breaks down complex biological processes into discrete, in-

terchangeable modules or genetic components, each with a specific function. These modules can

be standardized and easily combined to create novel biological systems or circuits, much like as-

sembling building blocks. The modular approach offers several advantages, including flexibility in

design, scalability, and the ability to rapidly prototype and modify biological functions [7].

1.0.2 Control Theory

Control theory is a multidisciplinary field that focuses on the design and analysis of systems

to regulate and manipulate their behavior. At its core, control theory aims to develop algorithms,

controllers, and strategies that ensure a system’s output closely follows desired references, despite

disturbances and uncertainties. It encompasses a wide range of applications [8], from engineering

[9] to robotics [10] and biology [11, 12]. It relies on mathematical models, feedback loops, and

1



principles of optimization to achieve stability, robustness, and precision in controlling dynamic

systems, making it a useful tool in scientific domains.

Enhancing control theory to account for noise and uncertainty is crucial in these systems. Noise

and parameter uncertainties, inherent in real-world systems, can significantly affect the perfor-

mance and reliability of control systems. To address this challenge, control strategies have been

developed that explicitly model and mitigate the impact of measurement noise and parametric un-

certainties. Techniques such as Kalman filtering [13], stochastic optimal control [14], and robust

control [15] can be effective tools in such systems.

The management of noise in control theory initially found its solution in the application of

robust control methods [15–17]. As control systems became more prevalent in various engineering

and scientific domains, it became apparent that external disturbances, uncertainties in system pa-

rameters, and sensor measurement noise could severely impact system performance. In response to

these challenges, robust control methods were developed to enhance the resilience and stability of

control systems in the presence of such uncertainties. These methods encompassed a range of tech-

niques, including H-infinity control, or µ-synthesis, which aimed to design controllers capable of

maintaining desired system behavior even under the most adverse conditions. The advent of robust

control enabled the development of systems capable of withstanding the inherent imperfections

and fluctuations encountered in real-world applications.

Control systems adjust the control inputs depending on the state of the system (i.e., feedback),

to manipulate the system’s output and achieve the desired control performance. For single-input-

single-output (SISO) systems a control input may have a simple effect, but for a multi-input-multi-

ouput (MIMO) system, the control inputs may have more broad effects on the system. For a

Linear-Time-Invariant system (LTI) these control actions acting on a system can be represented

as a two linear matrices that can be optimized to produce the desired control performance. Non-

Linear systems can be controlled by linearizing them down into Piecewise linear systems which can

change over time. Stochastic non-linear systems can be linearized using the Finite State projection

(FSP) [18, 19].
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Many synthetic biological systems are controlled using recurring network topologies called

motifs [20]. These motifs describe the elements within synthetic biology building blocks, con-

sisting of specific arrangements of genes, regulatory elements, and feedback loops that precisely

control cellular functions. High-level descriptions of these motifs, such as feedback and feedfor-

ward (coherent, incoherent, and adaptive) provide a system for categorizing and understanding

their functional roles. New motifs are being discovered and proposed which can provide new and

interesting behaviors [21, 22].

1.0.3 Optogenetics

Optogenetics is a field that combines genetics and optics to precisely control cellular activity

in living organisms. It employs genetically engineered light-sensitive proteins, like T7 polymerase

[23], which allow researchers to manipulate their activity by illuminating them with specific light

wavelengths [24]. This has enabled precise and dynamic control over gene expression, enabling

researchers to engineer and manipulate cellular processes at higher precision without the need

for chemical diffusion. Their applications are far reaching, from inducing behavioral changes in

mice [25], to controlling gene regulation [23, 26].

One way to use optogenetics to control cell signaling is to cluster proteins together using light-

responsive protein tags. This effectively drops protein concentrations by confining them to small

regions [27]. This can be used to inhibit or activate signaling pathways, depending on the specific

proteins being targeted.

PID controllers have been used to regulate the intensity and duration of light exposure in op-

togenetics, providing a precise means to control the activation or deactivation of light-sensitive

proteins. This enables researchers to finely tune the manipulation of cellular processes in opto-

genetic experiments, facilitating the study of dynamic biological control of gene regulation. So

called, "cyborg" cells have been developed using computer controlled optognetics enhanced with

PID controllers.
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1.0.4 Noise and stochasicity

Noise and stochasticity are intrinsic to gene regulation [28], creating an unpredictable aspect

within many cellular behaviors. In this realm, fluctuations in molecular processes and interactions

can lead to varying gene expression levels, even in genetically identical cells. This inherent noise

arises from factors such as random molecular collisions, environmental variability, and the discrete

nature of chemical reactions. Understanding and quantifying this noise are critical for deciphering

how cells make decisions [29], respond to stimuli, and maintain robustness in the face of uncer-

tainties. This noise is often a detrimental effect, making biological experiments challenging to

interpret and disrupting the functionality of synthetic biological systems.

While noise is traditionally viewed as a nuisance, recent research highlights its functional sig-

nificance. Stochasticity can drive phenotypic diversity, facilitate rapid adaptation to changing envi-

ronments, and even synchronize cellular responses in populations. Understanding and harnessing

the impact of noise in gene regulation is essential for comprehending the robustness of biologi-

cal systems, and it holds promise for designing more effective synthetic biological circuits in the

future. Researchers employ mathematical techniques like Finite State Projection (FSP) [18, 19]

Gillespie Stochastic Simulation Algorithm (SSA, [30, 31]), and statistical moments analyses, to

model and analyze these stochastic systems [32, 33].

The Finite State Projection is a computational and mathematical method used in the analysis

and modeling of systems with noise. The finite state projection begins with the Chemical Master

Equation defined over infinite space of possible chemical states [34] and truncates these into a

finite space of states plus an error term. Probability can flow out of any state except the error state.

This analysis allows for the observation of how probability distributions evolve over time, while

also providing insights into the degree of simulation accuracy. The finite state project has been

used to simulate the evolution of protein and mRNA statistics over populations of cells [19], and

to create new control problems for gene regulation.

The Gillespie Stochastic Simulation Algorithm [30, 31] is a computational method used in

stochastic models of biology and chemical kinetics. It is designed for simulating and modeling
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stochastic chemical processes in discrete chemical systems using stoichiometries and associated

propensities. This algorithm is valuable for modeling time series behaviors of stochastic processes

such as gene regulation and population dynamics, as it enables the modeling of inherent random-

ness and fluctuations in these processes more accurately. The initial SSA algorithm was developed

for well-mixed systems but simulations for spatially varying systems have been developed by cre-

ating SSA algorithms for each volume in space and modeling their diffusion [35].

When the number of molecules is large relative to its propensity SSA simulations can become

prohibitively expensive to calculate and ordinary differential equations (ODE) offer a computa-

tionally efficient alternative for analysis. Researchers have used ODEs to study complex nonlinear

systems for cellular processes and gene regulation, exploring a range of behaviors, including bi-

furcations [36], oscillations [37] and developing synthetic biological modules with good control

performance [21] or other interesting behaviors [38, 39].

Despite extensive efforts to control noisy biological processes within cells, the strategies for

addressing the control of noisy systems in gene regulation have remained simple. Often, these

models rely on ordinary differential equations (ODEs) combined with assumed Gaussian noise to

account for measurement variability. Conventional thinking for this approach of control theory

suggests that any noise system will always have worse control performance than a deterministic

one. In contrast, we hypothesize that consideration of the full probability distributions of system

heterogeneities may yield improved control opportunities. While it is possible to robustly control

systems despite the presence of noise, the exploration of control techniques utilizing master equa-

tion analysis as a foundation for noise-exploiting control theory remains underdeveloped. This

concept will be further built upon in the theoretical developments of chapters two and three, while

chapter four will discuss practicalities of microscope automation that are necessary before practical

implementation of these strategies.
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1.0.5 Single cell microscopy

Fluorescent single-cell microscopy is a technique that uses fluorescent labels and specialized

microscopes to study chemical species (e.g., DNA, RNA, and proteins) within individual cells,

offering high-resolution insights into cellular behavior. These techniques involve labeling specific

cellular structures, proteins, or molecules with fluorescent markers, which emit light when exposed

to specific wavelengths. This emitted light is captured by a specialized microscope, allowing

researchers to visualize and analyze the distribution, behavior, and interactions of these labeled

species within a single cell. Single-cell fluorescence microscopy has enhanced the understanding

of cellular processes by providing insights into phenomena such as intracellular signaling, protein

trafficking, and the central dogma of biology [40].

Single-cell microscopy allows researchers to identify heterogenous populations in a sample of

cells. Quantitative data at the single-cell level are important for conducting rigorous statistical

analyses. Single-cell microscopy produces datasets that can be statistically analyzed, unveiling

valuable insights into their underlying biological and mathematical models based on the hetero-

geneity of cellular responses. At the single-cell level, it is possible to understand how heterogenous

populations of cells evolve over time. The collection of data to describe the evolution populations

of cells can often reveal interesting models which predict behavior well.

Single-cell microscopy provides spatial context to cellular events. It allows researchers to pre-

cisely locate specific molecules or structures within individual cells and study their sub-cellular

distribution, facilitating a better understanding of cellular organization and function. The co-

localzation of fluorescent signals reveals associations between biological species, and these signals

have been used to provide insights into the central dogma of biology.

1.0.6 Fluorescent labeling

Fluorescent labeling of biological species in combination with high powered microscopes allow

researchers to examine and localize various protein and RNA behaviors within a cell. The various

labeling techniques such as green fluorescent protein (GFP), MS2, and single molecule fluores-
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cence in situ hybridization (smFISH) have enabled a wide range of imaging tools for molecular

biologists.

GFP fluorescent cell imaging utilizes green fluorescent protein to label and visualize specific

cellular structures or proteins. It has been instrumental in tracking protein localization [41], visu-

alizing gene expression mechanisms, monitoring dynamic processes within living cells [42] and

facilitated the investigation of protein-protein interactions [43]. Moreover, it has been indispens-

able in live-cell imaging, making it possible to capture real-time events and dynamic behaviors

within cells. Unfortunately, the long folding time of GFP [44] makes it impossible to use to to

track translation dynamics which occur at the minute or sub-minute time scales [45].

MS2 is a fluorescence imaging method to study the dynamics of RNA molecules within living

cells. In this technique, an mRNA of interest is tagged with multiple MS2 binding sites, and a

fluorescent protein is fused to the MS2 coat protein. When the MS2 sites within the RNA interact

with the MS2 coat protein-GFP complex, a fluorescent signal is emitted, enabling researchers to

visualize and track the movement, localization, and behavior of RNA molecules in real time.

Single-molecule Fluorescent in situ hybridization (smFISH) imaging is a molecular biology

technique for visualizing and pinpointing individual RNA sequences within cells and tissues [46,

47]. By using fluorescently labeled DNA or RNA probes that are complementary to the target

sequences, smFISH allows researchers to precisely locate and quantify RNA in its native environ-

ment.

Real-time nascent chain tracking, allows scientists to monitor and analyze the creation and

movement of nascent chain mRNA in living cells with high precision using fluorescent tags with

fast binding affinity [40,45,48,49]. These new imaging techniques have revealed real time behav-

iors for frame-shifting [50], apoptosis [51], and translation dynamics [52].

The combination of fluorescent labeling tools with new microscopy techniques like highly

inclined and laminated optical sheet (HiLo) [53] enable the acquisition of high quality images with

less noise. This combination can capture high-quality images with reduced background noise and

enabling imaging for longer periods of time or for more axial z-planes with less photo-damage.
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HILO’s ability to selectively illuminate a thin section of the sample at an angle, combined with the

specificity of fluorescent labeling, ensures precise and detailed imaging of cellular processes.

1.0.7 Image processing

Image processing plays an important role in fluorescence microscopy, where image processes

can improve image quality and extract scientifically relevant information from images. Through

the application of image processing techniques, researchers can efficiently generate data that would

otherwise require a multi-step, labor-intensive process. This streamlines the analysis of fluores-

cence microscopy data.

Convolutional neural nets (CNN’s) are a class of deep learning-based tools designed for cell

segmentation in images. Cellpose [54] is an implementation of a CNN which identifies masks

of cytoplasm and nuclei in cells using a U-Net structure. U-Nets are a type of CNN that are

specifically designed for image segmentation. They have a U-shaped architecture, with an encoder

path that extracts features from the input image and a decoder path that reconstructs the segmented

image from the extracted features.

Spot tracking algorithms used fluorescence microscopy, assist in studying dynamic biologi-

cal processes at the cellular and molecular levels. Spot tracking algorithms like can track the

movement and behavior of these fluorescently labeled entities over time. FISH-quant software has

been developed to accelerate the collection of spot count data from FISH experiments [55]. They

enable researchers to investigate biological processes such as intracellular transport, protein traf-

ficking, and cell migration. By accurately tracing the trajectories of individual fluorescent spots,

researchers can derive insights into the underlying mechanisms of cellular functions.

The combination of microscope automation, high-throughput image analysis, and advanced

decision-making enables the statistical analysis of experimental designs using Fisher information.

Fisher information is a mathematical concept that can be used to quantify the amount of informa-

tion that an experiment can provide about a model. Fisher information techniques can be used to

design experimental designs that maximize the amount of information that can be obtained from
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a given amount of data. When combined with large data acquisitions, this technology has the

potential to greatly improve the likelihood of the model given a dataset [56].

The development of fluorescence microscopy techniques and image processing techniques has

been critical to the analysis of cellular behavior. The creation of ‘smart microscopy’ and automa-

tion tools that enable the collection of population data statistics from single-cell data can begin to

answer how heterogenous behaviors in single-cell experiments is poised to increase the rapidity at

which such experiments can inform us about model likelihoods and parameter estimates. Chapter

four discusses the development of an automated microscope in more detail, which is heavily mo-

tivated by modern developments in FIM for single-cell experiment design under circumstances of

noisy experiment al measurements [57].
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Chapter 2

Stochastic Control of Static Systems

1 Synthetic biology seeks to develop modular bio-circuits that combine to produce complex,

controllable behaviors. These designs are often subject to noisy fluctuations and uncertainties, and

most modern synthetic biology design processes have focused to create robust components to mit-

igate the noise of gene expression and reduce the heterogeneity of single-cell responses. However,

deeper understanding of noise can achieve control goals that would otherwise be impossible. We

explore how an "Optogenetic Maxwell Demon" could selectively amplify noise to control multi-

ple cells using single-input-multiple-output (SIMO) feedback. Using data-constrained stochastic

model simulations and theory, we show how an appropriately selected stochastic SIMO controller

can drive multiple different cells to different user-specified configurations irrespective of initial

condition. We explore how controllability depends on cells’ regulatory structures, the amount of

information available to the controller, and the accuracy of the model used. Our results suggest

that gene regulation noise, when combined with optogenetic feedback and non-linear biochemical

auto-regulation, can achieve synergy to enable precise control of complex stochastic processes.

Keywords: synthetic biology, autoregulation, gene regulation noise, optogenetic feedback control,

single-input-multiple-output control, Maxwell’s Demon

2.1 Introduction

Synthetic biology seeks to develop and characterize biological circuits and modular compo-

nents that can be reliably re-engineered, re-assembled, and controlled to produce complex biolog-

ical behaviors [58]. The design and implementation of modular components as simple functional

1Reprinted with permission from May, M (2021, November 18). Exploiting Noise, Non-Linearity, and Feedback for

Differential Control of Multiple Synthetic Cells with a Single Optogenetic Input. ACS Synthetic Biology, 10(12),

3396–3410 Copyright 2023 American Chemical Society. https://pubs.acs.org/doi/full/10.1021/acssynbio.1c00341

As first author, MPM was the primary researcher on this paper and was responsible for all simulations and writing of

the initial manuscript.
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units [59] capable of being assembled to perform desired regulatory needs has yielded powerful

capabilities of synthetic cells to perform specific actions in response to specific stimuli [60]. Early

advances led to the development of programmed cells that are capable of complex logic like switch-

ing, self-regulation, and fast acting control [61]. Genetically engineered switches were originally

built in bacteria [62], but have been extended to yeast [63], mammalian cells [64], and even multi-

cellular plants [65]. In turn, these simple switches have led to more complex engineered biological

systems and biotechnologies capable of performing tasks like controlling cells to behave as digital

displays [4].

Much of the design process for synthetic biology has focused directly on building better biolog-

ical components, such as creating more sophisticated gene regulatory structures [66–68], introduc-

ing new response elements or reporters [40], or introducing more orthogonal cellular signals [69].

Development work on gene regulatory structure has led to substantial advances in phenotype con-

trol in plant biology and targeted or modified protein turnover in therapeutics [70, 71]. Improve-

ments to response reporters and the experimental techniques used to analyze cells, especially in the

form of fluorescent protein reporters [72,73], real time single-gene MCP-MS2-based transcription

elongation assays [74], and nascent chain translation elongation assays [40, 45, 48, 49] has made

it possible for cells to transmit their internal states to human observers. These technologies allow

for more observation and control, not just at the protein level, but at the gene and RNA levels

as well. Advances in cellular signals have also introduced the potential for synthetic regulatory

modules in separate cells to communicate with one another and control multicellular population

dynamics [75–77]. For example, by considering a simple model for the effect of cellular quorum

sensing on cell densities, simple circuits can be tuned to control cell densities [78].

Although the above advances have been developed primarily to control autonomous biological

behaviors, these improvements to regulatory structures, response reporters, and signaling capabil-

ities can also provide a framework to allow observers or external electronic devices to monitor

cellular environments and dynamically reprogram the cellular logic. When coupled to advances in

microfluidics, these capabilities introduce a new part-biology-part-machine (or cyber-organic [79])
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paradigm that adds new possibilities for distributed external and internal biological control of syn-

thetic biological circuits [80]. In particular, recent developments in optogenetics [81, 82] have

greatly increased the speed and sensitivity by which external signals can be communicated from

humans or machines to cells. Using these advances in microfluidics and light-activated gene reg-

ulatory elements is rapidly improving the potential to integrate carbon- and silicon-based circuits,

which in turn is making hybrid bio-electronic circuits far more powerful than before.

A key challenge to integrating cell-based genetic circuity with electronic control is that an

uncountable number chemical species and regulating bodies must diffuse and interact with one

another in space and time within each cell. Tractable analysis requires immense simplifications of

these infinitely complex and chaotic dynamics, and such simplifications naturally result in large

uncertainties that can only be accounted for through the introduction of approximate models with

stochastic analyses. One of the greatest challenges to improving externally controlled cellular

behaviors is that this ‘noise’ in gene regulation introduces large amounts of single-cell hetero-

geneity which must accounted for [83–85]. Under the context of this noise, cellular responses are

probabilistic–their distributions may shift gradually and even be statistically predictable under en-

vironmental or genetic manipulations [19, 86, 87], but individual cells appear to behave at random

with very little information about their instantaneous external environment [88]. Unfortunately,

this noise makes it difficult to precisely predict how or when an individual cell will respond to

a new environmental stimulus. Although recent work has shown that external feedback can con-

trol and reduce cellular heterogeneity within a large population [89], it may seem unlikely that

any feedback control strategy could reliably guarantee that specific cells within a population will

respond as desired, and independently of their initial conditions.

Most efforts on external feedback control in synthetic biology have focused on the use of

chemical or optical inputs to manipulate cell population averages [90] or to control individual cells

within a larger population [90]. Such efforts can be classified as single-input-single-output (SISO)

or multiple-input-single-output (MISO) control in that they seek only to push cells to a single phe-

notype. For example, recent experimental and computational studies [91–93] have used periodic
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chemical input fluctuations to control one cell or a population of multiple cells to be as close as

possible to the same unstable fixed point, a task that is similar to the inverted-pendulum problem

in classical control theory. Other recent work has sought to control multiple individual cells, each

with their own tailored optogenetic inputs [81], which corresponds to multi-input-multi-output

control (MIMO). SISO and MISO control are limited to control only a single cellular response at

a time, while MIMO requires advanced hardware such as digital micro-mirror devices that devote

a separate input to each individual cell [81, 94]. However, the combination of synthetic biological

designs, precise external controls, and quantitative measurements and models of single-cell noise

could create new opportunities for single-input-multiple-output (SIMO) control, where multiple

individual cells could be controlled to achieve different phenotypes, but requiring only a single

input signal. In this article, we explore the potential of a noise-enabled SIMO control strategy

that is similar to a hypothetical Maxwell’s Demon (MD), who watches the random process and

identifies short instances in time when specific cells have randomly increased sensitivities to small

perturbations [95]. In the context of synthetic biology, we explore how advances in fast fluorescent

reporters allow this MD to watch biological responses; how noise breaks the symmetry between

identical cells in identical environments; and how advances in optogenetics may enable the MD to

drive specific cells toward specific phenotypes, even when each cell always experiences the exact

same input signal as every other cell.

Through simulation of multiple models that have been parametrized from existing bulk level

optogenetic control experiments, we demonstrate that realizing an optogenetic MD for use in ge-

netic regulation applications requires not only careful consideration of the cellular regulatory sys-

tems to be controlled, the fluorescent sensors to be observed, and the optogenetic inputs to be

delivered, but it is also necessary to build predictive stochastic models and deterministic SIMO

control algorithms to serve as its brain. In this article, we use a combination of simulations and

theoretical analyses to explore how existing biological parts could be combined with models in

the context of optogenetics to control the gene expression of multiple cells at once, even when

both cells receive the same light signal at the same time and have the exact same genetics. We
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then introduce a new probabilistic model predictive control (pMPC) strategy that can in principle

control multiple cells to different phenotypes, even when only observing a single cell. Finally, we

show that controls that are designed and optimized using one approximate model of the biological

system can be effective to control a much more complex biological process whose mechanisms are

not considered during the controller design.

2.2 Results and Discussion

We start by defining a set of two models, each with a different level of complexity, to describe

the dynamics of optogenetically activated T7 polymerase in temporally-varying light conditions.

We then use experimental data from Baumschlager et al [23] to independently constrain each

of these models to the same data. We then take the simpler of the two models and extend it

to include a typical auto-regulation module, and we examine the performance of this extended

model under different fluctuating input signals at different frequencies using deterministic and

stochastic analyses. We then show how intrinsic noise in the system dynamics can be utilized by a

feedback controller to break symmetry in the process and force a system of two cells each to obtain

specified phenotypes and independent of initial conditions. We then propose a new probabilistic

model predictive controller scheme that is capable to differentially control multiple cells even when

only one is directly observed. Finally, we demonstrate in principle that an optogenetic controller

that is identified using a coarse-grained simplified model is capable to control behavior of a more

complicated system with different and hidden dynamics.

2.2.1 A data-constrained model for light-induced T7 polymerase activation

and gene expression

We begin by developing an unregulated model (denoted asMU ) to describe the light-induced

activation of an optogenetically controlled T7 polymerase as studied in Baumschlager et al [23].

As depicted in Fig. 2.1A, this system contains two light activated T7 domains (T7n and T7c) that

are produced at constant rates kn and kc, and which degrade in a first order decay process with rate
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Figure 2.1: Diagrams of models for light-induced gene regulation with and without auto-regulation. (A)

The full physical model (MU ) describes the full mechanistic processes of T7 polymerase dimerization and

gene activation in addition to protein production and degradation. (B) A simplified model (M′
U ) lumps

together all T7 dimerization and gene activation dynamics so that protein is produced at a light-controlled

rate. (C) The simplified model is extended (M′
A) to include auto-regulation through the addition of a

secondary promoter. (D) The full mechanistic model is also extended (MA) through inclusion of the same

auto-regulation promoter.

γM . These domains dimerize when subject to light activation leading them to form an active T7

polymerase at a light dependent rate of u(φ) and the complex dissociates at a rate of ki1 and decays

at a rate γT . The T7 polymerase dimer can bind to, or unbind from, the gene at rates of kf2 and ki2,

respectively. When bound, active protein production occurs at a rate of kf1, where transcription

and translation are lumped into a single event. Proteins are assumed to degrade according a first

order rate process with rate γP . These interactions are described by the following reactions
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∅ ↔ T7n,

∅ ↔ T7c,

T7n + T7c ↔ T7 ,

T7 → ∅ ,

T7 + goff ←→ gon ,

gon −→ P + gon ,

P −→ ∅ ,











































































(2.1)

where the first two bidirectional reactions describe production and decay of T7n and T7c; the

third bidirectional reaction describes light-induced reversible dimerization, where the light induc-

tion level is denoted as φ and its effect is modeled by the function u(φ); the fourth unidirectional

reaction describes the decay of the T7 dimer; the fifth bidirectional reaction describes the T7 asso-

ciation and dissociation to the gene; and final two unidirectional reactions describes the production

and degradation for the resulting protein product, where transcription and translation have been

lumped into a single reaction. The rate for each reaction is given directly above or below its

respective arrow.

The ODE forMU can be written in vector form as

d

dt
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−u(φ)[T7n][T7c] + ki1[T7] + kn − γM [T7n]

−[T7n][T7c] + ki1[T7] + kc − γT [T7c]

u(φ)[T7n][T7c]− ki1[T7]− kf2[T7](gtotal − [gon]) + ki2[gon]− γT [T7]

kf2[T7](gtotal − [gon])− ki2[gon]

kf1[gon]− γP [P ]

























,

(2.2)

where we have assumed a fixed number of gene copies [gtotal] = [gon]+[goff ] to remove the variable

[goff ] from the equations. Once written in this form, Model MU can be integrated numerically

for any given set of initial conditions and parameters. The model parameters were then fit to
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Table 2.1: Parameters of the full model system.

Parameter Name Parameter Value Units

kn 2.00× 10−1 molecules/min

kc 6.00× 10−1 molecules/min

ki1 2.00× 102 min−1

γM 5.00× 10−2 min−1

γT 5.00× 10−2 min−1

ki2 5.00× 10−1 min−1

kf2 5.00× 10−1 molecules/min

kf1 1.42× 10−2 min−1

γP 2.03× 10−2 min−1

the experimental data from Baumschlager et al [23], in which the system was subjected to three

different levels of UV radiation:

φ(t) =























320 Watts/cm2, for 0 ≤ t < 270 minutes,

0 Watts/cm2, for 270 ≤ t < 570 minutes,

20 Watts/cm2, for 570 ≤ t minutes.

The parameters ofMU and {u(φ1), u(φ2), u(φ3)} are simultaneously fit to the measured time se-

ries fluorescent protein trajectory. This fit suggests u=[0.4060, 0.00, 0.0400] molecules−1min−1

when φ=[320, 0, 20] Watts/cm2, respectively. To interpolate for intermediate values of light inten-

sity, the function u(φ) is then defined as the cubic spline of the three data points and is shown with

a red line in Fig. 2.2B. The resulting fit of the model to the data is shown by the red dashed lines

in Fig. 2.2A, and the remaining parameters of the model fit are shown in Table 2.1.

Having determined a baseline ODE-based model that yields a good fit to existing experimental

data for the system’s temporal response, in the next sections we will specify a much simpler, but

less accurate, version of this model and use that approximate model to perform stochastic analyses,

suggest design modifications, and specify a controller that can drive differential gene expression

among two or more cells using a single external input signal.
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Figure 2.2: Parameter estimation of full and reduced unregulated models, MU and M′
U , respectively.

(A) Fits ofMU (red line) andM′
U (blue line) to experimental data from Baumschlager et al. [23] (black

dots).(B) Calibration curves representing the conversion of light [Watts per cm2] to the associated reaction

rates forMU (red) andM′
U (blue). (C) Steady state histograms predicted by modelsMU (red) andM′

U at

inputs that are calibrated to results in an average expression of 20 molecules per cell.

2.2.2 A substantially reduced and approximate model for T7 activation and

gene expression

Although we were able to find many good parameter sets so that model MU could match

the data [23], identification of a single unique ‘best’ parameter set is infeasible due to the high

number of parameters, severe limitations on available experimental data, and sloppiness [96] in

the model parameters. Finding a simpler, but better constrained model would not only help to

reduce sensitivity to unknown parameters, but could also dramatically reduce computational costs

when using that model for design decisions or for the specification of feedback control strategies.

To simplify these model reactions and to obtain a more identifiable parameter set, we next propose

a simple generalized birth-death model in which the protein production rate is given by k0+u′(φ),

where k0 is the baseline production rate with no light input, and u′(φ) is a light-dependent control

input function. We use the apostrophe notation (·)′ to denote use of the reduced model in which

the units of the control signal at a given light intensity have been adjusted to molecules per minute.

Under this simple rule and assuming linear decay at rate γP , the approximate dynamics of P (t) are

written simply as:

dP

dt
= k0 + u′(φ)− γPP. (2.3)

In this model, which we denote as M′
U , the parameters k0 and γP and the specific values of

u′(φ) at φ ∈ {320, 0, 20} Watts/cm2 are again simultaneously fit to capture the time dynamics of
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Table 2.2: Parameters of the reduced model system.

Parameter Name Parameter Value units

γP 2.03× 10−2 1/min

k0 1.00× 10−4 molecules/min

the experimental data [23]. This fit suggests u′(φ)=[0.4060, 0.00, 0.1044] molecules/min when

φ=[320, 0, 20] Watts/cm2 respectively, and the cubic spline of these three data points yields the

calibration curve u′(φ) as shown in Fig. 2.2B (blue line). The resulting fit of modelM′
U is shown

in the solid blue line Fig. 2.2A, and the remaining parameters for the reduced model are shown in

Table 2.2.

We next extended both the original model and the simplified model to include discrete stochas-

tic events for protein production and degradation, as well as for T7 dynamics for the full model.

Using the exact same parameter values as for the ODE analysis, we then simulated the model using

the Stochastic Simulation Algorithm (SSA, [30]). Fig. 2.2C shows the probability distribution of

P sampled using 105 independent SSA runs, each simulated to 3000 minutes and only using the

last data point of each simulation for either the full model (red) or the simplified model (blue).

Both models provide reasonably good, but not identical, matches to the mean protein levels and

the overall time scales as shown in Fig. 2.2A, and we observed strong agreement in their stationary

distributions. However, it remains to be seen if the differences in architecture and time scales need

to be accounted for when we use the simplified model (M′
U ) to guide our modification of the gene

regulatory system and to design a feedback controller that remains effective even when applied to

the more complex original model (MU ).
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Table 2.3: Hill function parameters for auto-regulation motif.

Parameter Name Parameter Value Units

κ 4.06× 10−1 molecules/min

γ 2.03× 10−2 min−1

β 20 molecules

α 8 unitless

k0 1× 10−4 molecules/min

2.3 Results

2.3.1 Addition of an autoregulation motif creates light-dependent bistability

Starting from the simplified model, M′
U , we next asked if a common auto-regulation motif

could be added to introduce light-dependent bistability for the system and so that we could explore

how that added motif would impact the controllability of the overall system. Fig. 2.1C shows a

schematic of the new model denoted as M′
A, which has auto-regulation due to the addition of a

secondary promoter that is self-activated by protein P to produce more of itself. To incorporate

this auto-regulation behavior, a Hill function production rate is assumed with high cooperativity,

and the new rate equation becomes:

dP

dt
= u′(φ) + k0 + κ

Pα

Pα + βα
− γP, (2.4)

where the first term u′(φ) corresponds to the control input as a function of light input; the sec-

ond and third terms correspond to the Hill function activity of the auto-regulation promoter with

leakiness k0, and the final term corresponds to the first order decay of the protein. The Hill pa-

rameters (β, α) ofM′
A are chosen in order to exhibit bi-modal behavior in the dynamics of P . All

parameters of this auto-regulatory model are shown in Table 2.3.

Fig. 2.3A shows bifurcation diagrams for the simplified unregulated and auto-regulated models,

M′
U andM′

A, respectively. These diagrams show that as the light input sweeps slowly from zero

to 0.5 Watts per cm2, bifurcation and hysteresis become apparent in the auto-regulated model (M′
A,
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Figure 2.3: Input-output analysis for the simplified model with and without auto-regulation (ModelsM′
U

andM′
A). (A) Bifurcation (hysteresis) analyses ofM′

U (red shades) andM′
A (blue shades). Solid (dashed)

lines depict the change in the steady state solution as UV intensity is increased (decreased). Bi-modality

(i.e., two possible steady states at the same control input) and hysteresis (i.e., different paths of solid and

dashed lines) only occur for M′
A. (B) Sinusoidal input used for temporal excitation shown for two peri-

ods. (C) Steady state temporal behavior of M′
A under sinusoidal input shown for two periods. Dashed

lines correspond to high initial conditions, and solid lines correspond to low initial conditions. Different

colors correspond to different input signal frequencies: fast (0.01 RPM, red/orange), slow (0.001 RPM,

blue shades). All plots show steady state temporal response after a transient time of at least two oscilla-

tion periods or 3500 minutes, whichever is longer. (D) Same as (C) but with frequencies 0.0043522 RPM

(red/orange) and 0.0043525 RPM (blue shades). TheM′
A maintains memory of initial condition provided

that input frequency is greater than a critical value (i.e., solid and dashed lines remain distinct). (E) Capabil-

ity of ModelM′
A to track inputs assuming stochastic fluctuations as analyzed using an extended SSA [30]

with extra reactions [97].

light/dark blue), but these effects are not observed in the unregulated model (M′
U , orange/red). For

either model, low and high light inputs each result in a single stable point at low or high expression,

respectively. For intermediate light inputs, however, two history-dependent stable points coexist

forM′
A, and it is possible for two cells to maintain different stable points (or phenotypes) provided

that the light intensity remains in the bi-stable region and that the cells begin in the separate basins

of attraction for the different stable points.

In the hysteresis plots of Fig. 2.3A, it is assumed that the light input sweeps very slowly so

that the response reaches equilibrium at each light level before subsequent changes. However, in

the context of feedback control, we are more interested in how cells respond to light fluctuations

at faster, transient time scales. Therefore, we next test the stability of input-to-output behaviors

under time-varying inputs. We start simulations for two cells with identical parameters, but at

different initial conditions (i.e., one at a high initial concentration of 40 molecules per cell and

another at a low concentration of 0 molecules per cell), and we subject these both to the same
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sinusoidally-varying input signal whose range encompasses both bifurcation points as shown in

Fig. 2.3B. Fig. 2.3C shows the steady state trajectories for two pairs of such systems, where

dashed lines correspond to trajectories that start at low initial conditions and solid lines correspond

to trajectories starting at high initial conditions. In all cases, the system is subject to at least four

cycles or 3500 minutes so that transient dynamics have had time to decay, and the time axis is

scaled to show the response over two oscillation periods. Fig. 2.3C (blue shades) shows that when

the input frequency is slow (ωslow = 0.001 rotations per minute (RPM)), the system loses memory

of its initial condition and the trajectories from both initial conditions decay to a single trajectory.

However, when the frequency is fast (red and orange trajectories, ωfast = 0.01RPM ), the system

can maintain memory indefinitely. Fig. 2.3D shows that the cut off frequency for this maintenance

of memory is sharp in that memory is possible at a frequency of ωc (blue shades) but is lost at

a slightly slower frequency of ωc − ε, where ωc = 0.0043525 (red/orange) RPM is the critical

frequency and ε = 3× 10−7 RPM is a small perturbation to that frequency.

2.3.2 Intrinsic noise can drive cells to switch phenotypes

Using deterministic analyses of the bistable model, we have seen that two cells with different

initial conditions maintain separate phenotypes as they respond to the same fluctuating input signal.

The flip side of this deterministic result is that two fully converged solutions of the same ODE

never diverge, such that two cells starting at the exact same initial condition will never express

unique phenotypes even when bi-stability is possible. However, low copy numbers of important

regulatory molecules (DNA, RNA and proteins) often result in stochastic fluctuations in cellular

concentrations (also known as ‘intrinsic noise’) that dramatically affects both of these results.

When added to a bistable deterministic process, noise can drive two cells starting at the same

initial phenotype to diverge or even drive two cells to exchange phenotypes by chance over time

[98, 99]. With this possibility in mind, we next ask how noise would affect the ability of cells to

track a temporally varying input signal. For this, we examined the production and degradation

reactions and converted modelMA to an equivalent discrete stochastic model with the exact same
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rate parameters, and we explored how discrete intrinsic noise of stochastic models could be used

drive cells to separate phenotypes. To extend the SSA to approximate time-varying inputs, we

adopted an approach similar to that in Voliotis et al [97], and added a fast ‘null event’ reaction

that updates the clock and input signal value on a time scale that is much faster (i.e., average

of 100 events per period of the input signal) than that of the input signal fluctuations. We then

compared the ODE and the SSA analysis of M′
U under a sinusoidal input with moderate input

frequency of ω = 5.00 × 10−3 RPM > ωc for which the ODE trajectories maintain memory

of their initial conditions. Although the ODE solutions (smooth lines in Fig. 2.3E) will never

converge, the stochastic trajectories (purple fluctuating trajectories) switch occasionally between

the two fluctuating phenotypes. In other words, with the addition of noise to the system, each

cell can slowly ‘forget’ its original configuration. Moreover, the probability of switching depends

on the transient stochastic state of the process and the frequency and amplitude of external input

fluctuations. Previous studies have observed similar effects for how noise creates variation in a

population of cells, and past feedback control efforts have sought to counteract this variation to

keep all cells at a chosen (and in some cases unstable) phenotype [91–93]. In the next section, we

do not try to reduce variability among cells, but rather we seek to exploit the condition- and time-

dependent disruption of symmetry to push one cell to a chosen phenotype while forcing another

cell or group of cells toward a different chosen cell fate.

2.3.3 Finite State Projection analyses uncover effective strategies to differ-

entially control two cells using a single input

We consider a system of Nc cells, each with identical regulatory mechanisms and parameters,

but whose fluctuating protein concentrations at time t are denoted by x̃1(t), x̃2(t), . . ., which we

can arrange into the vector X̃(t) = [x̃1(t), x̃2(t), . . .]
T . Here, the notation (̃.) denotes that the cor-

responding quantity (e.g., protein copy number) is the result of a stochastically fluctuating process.

Our overall goal is to design a feedback control law to force X̃(t) as close as possible toward an ar-

bitrary target state T̂. For an example with two cells, T̂ = [T̂1, T̂2]
T = [30, 10]T would correspond
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to having the first cell in the high expression phenotype and the second cell in the low expres-

sion phenotype. In general, this fluctuating control signal could depend on measurements of X̃(t)

and/or the current time according to some as yet to be determined control function ũ = u(X̃(t), t).

We define a cost function as the expected squared Euclidean distance between X̃(t) and T̂ at

steady-state, which can be written as

J = lim
t→∞

E{|X̃(t)− T̂|22}

= lim
t→∞

∑

i,j,...

P (x̃1(t) = i, x̃2(t) = j, . . .)
(

(i− T̂1)
2 + (j − T̂2)

2) + . . .
)

= lim
t→∞

∑

i,j,...

Pij...(t)Cij... = CP∞, (2.5)

where C is a constant vector of squared Euclidean distances of each state from the target, and P∞

is the steady-state probability mass vector (i.e., the stationary probability for each unique value of

X̃).

As described in Methods, the master equation for a finite number of cells subject to a fluctuating

state- or time-dependent input signal can be written as

d

dt
P = (A0 +Bu

′(t))P, (2.6)

where P ∈ R
nNcN

′

≥0 is the non-negative probability mass vector for all possible states; A0 ∈

R
nNcN

′

×nNcN
′

is an uncoupled infinitesimal generator; u′(t) ∈ R
nNcN

′

≥0 is a (potentially time vary-

ing) vector of non-negative control inputs with one entry for every distinct state in the system’s

state space; and B is a fixed tensor that operates on u
′ to adjust the master equation to account for

the optogenetic input. Explicit examples for the construction of quantities A and Bu
′ for different

control laws are provided in Methods.

At first, we consider the special case where the control signal depends only on the current state

at each instant in time. In this case, the vector u′ is constant with respect to time and depends only

on the enumeration of the possible states. As such, the infinitesimal generator in Eq. (2.6) reduces
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to a time-homogeneous master equation for a standard discrete state Markov process. We note that

the control signal ũ′(t) may still fluctuate due to changes in X̃ and can be written using the notation

ũ′(t) = u
X̃′(t) to denote that the index of the vector u′ is specified by the instantaneous state X̃(t).

By changing the specification of u′, we can further simplify this class to consider several differ-

ent types of state-based control rules. Here we consider three different possibilities: an UnAware

Controller (UAC) that has no information about any cells to make its control decision:

u
UAC
X̃(t)

= uUAC = constant, where u
FAC is the same for every X̃(t)); (2.7)

a Fully Aware Controller (FAC) which has complete knowledge of all cells x̃1, x̃2, . . . and therefore

uses the full state vector to make its control decisions:

u
FAC
X̃(t)

= uFAC(x̃1, x̃2, . . .), where u
FAC has a unique element for every X̃(t), (2.8)

and a Partially Aware Controller (PAC) which uses only information of a single cell, e.g., x1, to

make its control decisions:

u
PAC
X̃(t)

= uPAC(x̃1), where u
PAC changes only with x̃1(t). (2.9)

For our specific case of modelM′
A, the FSP truncation size is n = 50, and the number of species

is N ′ = 1; thus for two cells (Nc = 2), the matrix A0 ∈ R
2500×2500.

With the formal definition of the cost function J from Eq. (3.14) and the CME from Eq. (2.6),

we can then compute the gradient of the cost function with respect to the control law as (see

derivation in SI):

∇u(J) = C(A0 +Bu
′)−1

BP. (2.10)

Having specified the cost function gradient with respect to the controller, we run an optimization

algorithm (see Methods) to search along the gradient to find local minima for the cost function. We

note again that for each of these optogenetic Maxwell’s Demon control strategies, every cell expe-
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riences equal inputs at every instant in time, although the magnitude of that single input changes

in time as the cells fluctuate to different states.

Starting with the unaware (UAC) and fully aware (FAC) controllers, we used the FSP approach

and local optimization (see SI for details on the optimization procedure) to find a locally optimal

control strategy in the form of the constant uUAC or the two-dimensional scalar field uFAC(x1, x2),

and with and without the addition of auto-regulation to the model. The resulting optimal controllers

are presented in the top row of Fig. 2.4, where the color at each point represents the control input

magnitude uxAC(x1, x2) as a function of the species quantities x1 for the first cell and x2 for the

second cell. In the figure, a vector field of white arrows depicts the net direction of probability flow

due to the combined action of the internal auto-regulatory effects and the feedback control input

uxAC(x1, x2) on the system. For practical implementation, the control input u′(φ) = uxAC(x1, x2)

would be converted to light intensity through inversion of the calibration curve in Fig. 2.2B (blue

line). The middle row of Fig. 2.4 shows the resulting steady state joint distribution of each con-

dition, and in the bottom row of Fig. 2.4 shows the corresponding marginal distributions, with

cell one in solid blue lines and cell two in dashed red lines. Fig. 2.4 shows that symmetry is

broken only in the case where the cells’ genetic design includes auto-regulation and the feedback

controller contains knowledge of the cells (i.e., the far right row of Fig. 2.4). In this best-case sce-

nario, the two cells are very effectively driven each to their own unique and pre-chosen phenotype,

irrespective of their initial conditions. If feedback is included without auto-regulation, the cells’

distributions are made tighter at some intermediate value between the target values for cell one and

cell two; this results in a slightly better numerical cost value, but it becomes even less likely that

both cells will reach their target phenotypes at the same time as compared to the uncontrolled situ-

ation (compare first and second row in Fig. 2.4). Conversely, if auto-regulation is included without

feedback (i.e., the light level is fixed at some optimal value), the cells exhibit a bimodal distribution

with some cells near each target value, but there is no means to control which cell expresses which

phenotype, and the cost function is again worse than the case with no auto-regulation (compare first

and third rows of Fig. 2.4). These data taken together suggest that auto-regulation and feedback
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Figure 2.4: Optimized control laws and performance results for cells and different combinations of regu-

latory structure and control strategy. (Top row) Optimized control input versus cells’ states, uxAC(x1, x2)
(colormap at far right). White vectors plotted over the control inputs represent the net flow of probability at

that point in state space. (Middle row) Resulting joint probability distribution (P(x1, x2), colormap at far

right). The target point T = [30, 10]T is denoted by a white circle. (Bottom row) Corresponding marginal

distributions for the cells P(x1) (blue) and P(x2) (red) and time-averaged cost function, J . Leftmost col-

umn shows results with no auto-regulation and a constant control signal. Second column shows the result

with no auto-regulation and feedback control strategy. Third column shows the result with auto-regulation

and constant control signal (UAC in text). Rightmost column shows the results for auto-regulation and fully

aware feedback control (FAC in text).

control, in addition to intrinsic single-cell noise, are all critical to the break symmetry and enable

differential control of multiples cells using a single input. Specifically, noise breaks the symmetry

of cell behavior and allows cells to switch independently between phenotypes, feedback helps to

reinforce this noise and steer cells toward desired phenotypes, and auto-regulation helps stabilize

cell behaviors once they have attained their desired phenotypes.

2.3.4 Effective differential control of many cells using a single input is pos-

sible, even when observations are limited to a single cell of interest.

We next examined a more general problem to control an arbitrary number of cells simultane-

ously. In this case, we consider a situation where the controller acts on many cells simultaneously

with the goal of steering a single observed cell (x1) to one state and all remaining unobserved cells
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to another state. To handle this problem, we first utilize a partially aware controller (PAC) that

observes only x̃1(t) and ignores the states of all other cells. Fig. 2.5 compares the results of this

simplified controller (middle column) to those of the two-cell controller from the previous section

(left column). The resulting control law, uPAC(x1), is optimized to find the best control signal

input for each possible value x1 of the observed cell, and the top row of Fig. 2.5 shows that this

optimal PAC controller depends only on the observed cell (x1 axis) but is constant with respect

to all unobserved cells (x2 axis). Despite the simplicity of this control strategy and the fact that

it requires only knowledge of the instantaneous expression of the single observed cell, the second

and third rows of Fig. 2.5 show that the PAC controller effectively breaks symmetry to force the

observed cell to a high expression phenotype while most unobserved cells are correctly directed to

the low expression phenotypes.

Although the partially aware controller under-performs compared to the fully aware controller

for the case of exactly two cells (compare middle and left columns of Fig. 2.5), the advantage

of the PAC is that it works equally well, and without any modification, for any arbitrarily large

number of unobserved cells (Supplemental Fig. S1). In contrast, to use the FAC for more than two

cells requires modification, such as training of a higher rank tensor representation of the control

algorithm, or defining a control law based on the mean, median, or some other statistical quantity

for the groups of cells to be assigned to each phenotype. Unfortunately, the former high-order

tensor approach is computationally intractable using existing methods, and the latter approach

rapidly loses performance as the number of cells is increased. For example, when the controller

is based on the observation of x̃1 and the mean of the remaining cells {x̃2, x̃3, . . .} (FACM, see

Supplemental Information), we observe that for any more than a single cell in the second group,

the PAC outperforms the FACM (Supplemental Fig. S1, compare FACM and PAC controllers).
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Figure 2.5: Control laws and performance for strategies to control many cells at once using partial knowl-

edge only of a single observed cell. Each row shows: (top) the control law u
′
X̃
= uxAC(x̃1, x̃2), (middle) the

resulting joint probability distribution (P(x1, x2)), and (bottom) the marginal distributions for the observed

cell P(x1) (blue) and remaining cells P(x2) (red). The middle column shows results for the partially aware

controller (PAC in text), where the control depends only on the single observed cell (u′
X̃

= uPAC(x̃1)).
The rightmost row shows results for the probabilistic model predictive controller (pMPC), which also ap-

plies to an arbitrary number of cells. For the pMPC, the process is non-Markovian in that the controller

(u′
X̃

= upMPC(x̃1, P̃(xi 6=1)) depends not only upon the state of observed x̃1, but also on the predicted

probability vector for the unobserved cells, P̃(xi 6=1). To enable comparison to previous two-cell cases, the

leftmost column shows the results for the fully aware feedback control (FAC) with only two cells. Color

bars are shown to the right of each row.

2.3.5 A probabilistic Model Predictive Controller (pMPC) can improve the

control of many cells using a single observer and a single input signal.

In the previous section, the PAC control was based on only the observation of a single observed

cell, and had no information about the other cells that it was also seeking to control. However,

knowing the history of the input signal (i.e., the light intensity over time in the past), the FSP

approach allows for the possibility that the controller can estimate the probability distribution of

all non-observed cells. With this possibility in mind, we next explored a new class of controller

that could use direct knowledge of the protein expression in the observed cell, the known control

input signal at the current time, and a probabilistic model to predict the distribution of expression
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in the unmeasured cells. Specifically, we use the FSP approach to integrate our prediction of the

probability distribution for the unobserved cells as:

d

dt
P̃uo = (A0 +Bũ′(t)) P̃uo, (2.11)

where P̃uo ∈ R
n
≥0 is the estimate of the probability mass vector for the protein expression in the

unobserved cells, A0 ∈ R
n×n is the infinitesimal generator for a single cell in the absence of any

control input, and the scalar variable ũ′(t) > 0 is the instantaneous input signal that is produced

by the controller. We note that the probability mass vector estimate P̃uo is the result of a stochastic

process that depends upon the full history of the input signal ũ′(t).

Using this prediction for the unobserved cells, the pMPC controller law can now be defined as

upMPC(x̃1, t) = cx̃1 + zx̃1P̃uo(t) (2.12)

or written in vector form for all possible values of x̃1 as:

ũ
pMPC(t) = c+ ZP̃uo(t) (2.13)

where c = [c0, c1, . . . , cn−1]
T is a constant vector in R

n, and Z ∈ R
n×n is a matrix of linear weights

which adjusts the input based off of the estimated unobserved probability distribution P̃uo. In our

practical implementation, we assume that the controller in Eq. (2.13) is piecewise constant with

respect to P̃uo over a time step of 0.5 min, but it changes instantaneously with each even that af-

fects the observed cell x̃1. The weights of c and Z are then jointly optimized to minimize the cost

function, J . The simple formulation of the control law in Eq. (2.13) admits the possibility for non-

achievable negative values of light in order to construct a computationally tractable optimization

procedure. However, in testing the controller, this non-physical situation is corrected by saturat-

ing negative control signals to zero in the true test of the system (see Supplemental Information).

We note that this approximation to allow for negative control signals in the control law specifi-
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cation and subsequent correction to saturate these to zero in the control law test suggest that the

pMPC controller identified here is sub-optimal. However, despite this non-optimal design, Fig. 2.5

shows that the resulting non-optimized pMPC (J=130) controller outperforms the fully optimized

PAC (J=138), demonstrating that probabilistic model predictions can be used to improve control

performance even in the absence of observations for many of the cells under its control. Having

succeeded in our main goal to determine if probabilistic predictions could improve control results

in principle, we leave the fine tuning of the specific pMPC control strategy to future investigations

and more sophisticated control design strategies.

For a closer look at how the pMPC approach works to control observed and unobserved cells

alike, Figs. 2.6A shows an example control input over time, and Fig. 2.6C shows the resulting

trajectories over time for the observed cell (blue), the predicted probability distribution for un-

observed cells (gray shading), and a representative unobserved cell (red). We reiterate that the

controller has no direct knowledge of the red line. From the figure, it is clear that observed cell is

well maintained near to its target value with low variability. Moreover, Fig. 2.6C shows that knowl-

edge of the fluctuating input signal is sufficient to yield good predictions of the unobserved cell

response (compare red line with dark gray shading), although as expected there are periods of poor

predictions when the specific unobserved cell samples the higher or lower tail of the predicted dis-

tribution (e.g., at about 1900 minutes for the red curve in Fig. 2.6C). In addition to outperforming

the PAC approach in terms of the overall cost function, the pMPC provides additional predictions

for when the controller is effective, or when unobserved cells are more likely to escape from their

intended phenotype. To illustrate this Figs. 2.6B shows the probability of observing fifteen or less

protein molecules in the unobserved cell. When this probability exceeds a 90 percent threshold

the control is expected to be effective, and the region is labeled as orange in Figs. 2.6B and Figs.

2.6C. Figs. 2.6D shows the marginal distributions averaged over all times, and Fig. 2.6E shows

the marginal distribution only for the periods of time when the probabilistic model predicts its

own effective control of the unobserved cells (orange regions). By focusing only on these times

identified as successful by the controller, the cost function of the controller substantially decreases
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Figure 2.6: Control signal and response versus time for pMPC control. (A) Control signal generated by

the pMPC controller. (B) Probability that unobserved cell is 15 or less versus time. When the probability is

greater than 0.9 (orange line), then the system is considered to be in a “effective control" state. (C) Predicted

transient distributions for unobserved cells (gray), observed cell (blue), and a single unobserved cell (red).

Orange regions correspond to effective control times. (D) Time averaged performance of the control law in

terms of marginal distributions for the observed call (blue) and unobserved cells (red). (E) Average of the

pMPC performance, when considering only effective control periods.

from J = 130 to J = 58. These results suggest that predicted dynamic information about the

unobserved cells can not only be used to improve the quality of the controller, but that the pMPC

can also be used to self-assess when control is working well, and when it is not.

2.3.6 Controllers designed using simplified models can be effective to con-

trol more complicated processes with hidden mechanisms and dynam-

ics.

We next ask how well could controllers designed using simplified stochastic models work when

they are applied to control more complex systems that contain additional hidden states and which

have unknown dynamics or time delays. To perform this analysis, we first account for the differ-

ence in meaning and units for the input signal u′(φ) used in the reduced auto-regulation models

(M′
A in Fig. 2.1C) and its analog u(φ) used in the full auto-regulation model (MA in Fig. 2.1D).
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Figure 2.7: Calibration and use of controllers for use with a new, more complex model. (A) Calibration

curve identified to match steady state ODE of simple and complex auto-regulation model (M′
A and MA

from Fig. 2.1C,D). (B) Steady state analyses show that the calibrated inputs result in similar hysteresis

behavior for bothM′
A andMA. (C) Input-output response analysis shows thatMA with calibrated inputs

closely matches behavior ofM′
A at ultra slow frequencies (0.0001 RPM), but (D) the more complex model

begins to lag at slow frequencies (0.001 RPM). (E) At fast frequencies of 0.01 RPM, the complex auto-

regulation modelMA is able to retain memory of its initial conditions and again exhibits similar phenomena

compared to the simplified model.

By using steady state ODE analyses ofM′
A andMA, we quantified the calibration curve to map

inputs between the two models as shown in Fig. 2.7A. After calibration of the input signals, we

verified that the full and reduced auto-regulation models result in similar bifurcation diagrams as

shown in Fig. 2.7B. However, although calibration allows us to match both the quasi-steady (i.e.,

very slow) and fast fluctuating input responses of the two models (Figs. 2.7C,E, respectively), the

temporal responses to slow input frequencies are qualitative and quantitatively different, as can be

observed by the different input-to output time lags and amplitudes in Fig. 2.7D.

Having calibrated the controller for the full model to match the response of the simpler model,

we then take the UAC, FAC, and PAC controllers from above and apply them directly (i.e., without

any further tuning or optimization) to the full mechanistic model with auto-regulation. Despite

the differences in temporal behaviors between the two models, the previously identified UAC and

FAC controllers still work to break symmetry and drive both cells toward the correct differentiated

phenotypes as shown in Fig. 2.8. We note that with further modifications, the control laws de-

rived using the simplified model could certainly be improved for use in the more complex system.

However, our primary goal was to explore how well designs made in one context should perform
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Figure 2.8: Full Models are paired with the calibrated controllers (top row) to solve for the joint proba-

bility distributions (middle row) and marginal probability distributions (bottom row). As before both auto-

regulation and feedback are needed to break symmetry and control fails if either of these are missing (right-

most three columns). The fully aware controller (FAC, fourth column) successfully works to control two

cells with the complex dynamics, and the partially aware controller (PAC, rightmost column) successfully

can control a single observed cell to one phenotype and an arbitrary number of unobserved cells to another

different phenotype.

when used in another different context, and subsequent fine tuning for the complex model is left

for future investigations.

Conclusion

The treatment of noise in synthetic biology has largely been centered around the management

of noise as a nuisance property that needs to be mitigated or eliminated. Despite improvements

to minimizing noise in bio-circuits, noise largely remains a fundamental physical limit due to the

combination of very small cell sizes, where single molecular events have increased importance,

and increasing complexity of synthetic circuits, where most dynamical influences are unknown or

unmeasured. The results here show how a few increasingly common synthetic biology motifs–such
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as optogenetic transcription factors, activatable polymerases and auto-regulation promoters–can

in principle be combined to form regulatory modules and integrated with new external feedback

controllers not only to mitigate intrinsic noise, but even to exploit that noise to achieve new multi-

cellular behaviors.

Our work compliments that of previous efforts to develop single- and multiple-input-single-

output (SISO and MISO) control for synthetic biology applications [91, 92] that have primar-

ily sought to control one cell at a time or to control an entire population of cells to all reach

the same phenotype. Specifically, we have demonstrated new types of optimizable single-input-

multiple-output (SIMO) stochastic controllers that rely on the integration of noise, non-linear auto-

regulation, and feedback to simultaneously control of multiple cells using a single chemical or

optogenetic input. The first of these, the fully aware controller (FAC), assumes full knowledge of

each individual cell’s behavior and achieves the best control performance. The disadvantage of the

FAC is that it requires knowledge of each individual cell (i.e., optical tracking and image process-

ing analyses) and computationally intensive operations both to solve multi-dimensional chemical

master equations and to search very high dimensional spaces for optimal controllers. However, a

second partially aware controller (PAC) requires only the knowledge of a single cell of interest, yet

the PAC can control that cell to one phenotype and drive all others to an alternate phenotype with

an accuracy almost equal to the FAC. The advantage of the PAC is that it is very easy to implement

and optimize as the dimension of the control law must only consider the single observed cell. The

third controller introduces a probabilistic model predictive control (pMPC) strategy that computa-

tionally predicts the probability distribution of all non-observed cells based on integration of the

chemical master equation under the known history of the applied input signal. Although we envi-

sion that similar control strategies may have applications in other fields, such as for autonomous

vehicle or smart grid applications, to our knowledge, the proposed pMPC approach is the first ex-

ample of a hybrid control strategy that predicts and exploits noise and feedback to simultaneously

and differentially control multiple identical agents using a single control signal.
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In addition to noise, one of the most important challenges in model-driven synthetic biology,

is that many important regulatory mechanisms are currently unknown, even for simple biological

systems. Similarly, very few parameters are known at any level of certainty, and most of these

parameters vary from cell to cell or situation to situation. Moreover, it is already extremely com-

putationally expensive to combine all known mechanisms into a single computational model, and

although such models can be useful to reproduce a variety of biological behaviors [100,101], such

whole cell models are far too inefficient to enable the vast numbers of different simulations needed

to optimize a design or control strategy. To circumvent these concerns, we demonstrated how a

highly simplified phenomenological model could be used to design a controller that could be easily

recalibrated using steady state dose-response measurements and then applied directly to a control

a more complex system with hidden dynamics and with qualitatively and quantitatively different

dynamic response features. Although it is common practice to use simple deterministic models to

guide engineering design of modern complex devices, this demonstration in the context of stochas-

tic single-cell processes suggests that there is also hope for similar applications of simple models

in synthetic biology.

Although the potential of our computational results remains to be verified through independent

experimental investigation, we believe that this numerical demonstration of the potential for a new

control paradigm not only opens new possibilities for integrated “cyber organic" approaches in syn-

thetic biology [23,80–82], but could also offer insight into natural cellular differentiation processes

where cellular states are sensed, and control signals are transmitted, by neighboring cells. For ex-

ample, it has been suggested that stochastic fluctuations in expression lead embryonic stem cells to

achieve substantial, and functionally relevant heterogeneity in Nanog expression, where transiently

low Nanog expression cells are prone toward differentiation, whereas high Nanog expression cells

are less likely to differentiate [102]. As such, it might be interesting to explore the possibility that

temporally controlled fluctuations in Nanog transcription factors [103,104] could selectively direct

specific neighboring cells to differentiate while maintaining others in the stem state. Overall, we

envision that advancing synthetic biology motifs, especially an increasing diversity of orthogo-
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nal transcription factors and promoters [68, 105], improved live cell reporters [40, 106], and faster

and more specific optogenetically controlled transcription factors inputs [82], will integrate syn-

ergistically with new probabilistic model predictive control analyses to improve future efforts to

understand how noise, non-linearity, and feedback combine to drive cell fate decisions in appli-

cations ranging from synthetic biofuel and biomaterial production to developmental dynamics or

regenerative medicine.

2.4 Methods

2.4.1 Definition of Models in Terms of Stoichiometries and Propensities

To introduce our numerical approaches, consider a generic cell regulatory process that contains

N ′ distinct chemical species that interact with each other through M ′ different reactions. At any

point in time, the current state of the process in a single cell can be described by an N ′-element

vector x = [x1, . . . , xN ′ ]T ∈ X , whereX denotes the set of all possible states (e.g., the nonnegative

spaces RN ′

≥0 for a continuous process or ZN ′

≥0 for a discrete process). The definition of the full state

X for multiple cells is easily concatenated to consider a set of Nc individual cells

X = [xcell 1
1 , . . . , xcell 1

N ′ , . . . , xcell Nc

1 , . . . , xcell Nc

N ′ ]T , (2.14)

with an appropriate change to the total numbers of species (N ≡ NcN
′) and reactions (M ≡

NcM
′).

Under the assumption of a well-mixed spatial environment within each cell, one can define

the dynamics of such a process by specifying the reaction stoichiometry vector and reaction rate

for each µth reaction [107]. The stoichiometry vector, sµ ∈ Z
N is the net integer change in

molecules after exactly one event of the µth chemical reaction (i.e., sµ ≡ X(after µth reaction) −

X(before µth reaction)). For continuous processes, the reaction rate, fµ(X,Λ, u) is a scalar that

defines the speed at which the µth reaction would be expected to occur given the current state

X(t), fixed physical parameters Λ and time- or state-varying control parameter u(X, t). For
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discrete stochastic chemical reactions, the reaction rate is replaced with a propensity function

wµ(X,Λ, u)dt, which describes the probability that a single µth reaction would occur in the next

infinitesimal time step of length dt given X(t), Λ, and u(X, t). For reduced order models M′
U

andM′
A, we replace u with u′ to denote the change in units needed for consistency with the model

reduction.

2.4.2 ODE Representation of Models

Using these simple definitions, one can easily write an ordinary differential equation (ODE) to

define a deterministic description of the process dynamics as:

dX

dt
=

M
∑

µ=1

sµfµ(X,Λ,u), (2.15)

= Sf(X,Λ, u(X, t)), (2.16)

where S = [s1, ..., sM ] ∈ Z
N×M is the stoichiometry matrix, and f(X,Λ, u(X, t)) = [f1, . . . , fM ]T ∈

R
M
≥0 is the vector of non-negative reaction rates. For any given stoichiometry matrix S, and reaction

rate function vector, f(X,Λ, u), the rate of change of X described by Eq. (2.15) can be integrated

numerically to describe the system dynamics over time.

2.4.3 Discrete Stochastic Representation of Models

For discrete stochastic systems, the specification of the reaction stoichiometry and propensity

functions is sufficient to generate individual trajectories of the process using Gillespie’s Stochastic

Simulation Algorithm (SSA, [30]). Alternatively, one can also use these two properties to uniquely

define the Chemical Master Equation (CME, [34]) as:

d

dt
P (X) = −

M
∑

µ=1

wµ(X(t),Λ, u(X, t))P (X)+
M
∑

µ=1

wµ(X−sµ,Λ, u(X−s, t))P (X−sµ). (2.17)
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For this discrete state description, one can always enumerate all possible states as {X1,X2, . . .} ≡

X and define a probability mass vector as the similarly ordered probabilities, P ≡ [P (X1), P (X2), . . .]
T .

Because the CME in Eq. (2.17) is linear in every term P (Xi), it is often written in matrix format:

d

dt
P = AP, (2.18)

where the square matrix A is known as the infinitesimal generator and is defined directly from Eq.

(2.17) as

Aij =























−
∑M

µ=1 wµ(Xj,Λ, u(Xj, t)), for i = j,

wµ(Xj,Λ, u(Xj, t)), for Xi = Xj + sµ

0, otherwise.

(2.19)

We note that the summation of µ = 1 to M = NcM
′ accounts for the increase in the number

of possible reactions due to the existence of multiple cells. Because each term Xi refers to a

specific enumerated state vector that is fixed in time, in the special case where u ≡ u(Xi) (i.e.,

where u depends only on the current state and does not depend explicitly on time), the matrix A

is constant with respect to time. For convenience, we can define the control parameter in vector

form u = [u(X1), u(X2), . . .]. The final CME model with control can be written in simple form

by separating the infinitesimal generator into it basal and control induced components as:

d

dt
P = (A0 + Bu)P. (2.20)

In this formulation, although the dynamics of each identical cell was independent and uncoupled in

the basal infinitesimal generator A0, the added infinitesimal generator from the control input, Bu,

can introduce coupling between cells. As an example, consider the fully aware controller (FAC)

for two cells. The ith state is written Xi = [xi1, xi2]
T , and the control infinitesimal generator can
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be written as:

[Bu]FAC
ij =



































−2uFAC(xi1, xi2), for i = j,

uFAC(xi1, xi2), for Xi = Xj + [1, 0]T ,

uFAC(xi1, xi2), for Xi = Xj + [0, 1]T ,

0, otherwise.

(2.21)

Similarly, for the partially aware controller (FAC) for two cells, the control infinitesimal generator

can be written as:

[Bu]PAC
ij =



































−2uPAC(xi1), for i = j,

uPAC(xi1), for Xi = Xj + [1, 0]T ,

uPAC(xi1), for Xi = Xj + [0, 1]T ,

0, otherwise.

(2.22)

As discussed in the main text, in either case, the coupling introduced by the control infinitesimal

generator [Bu]FAC or [Bu]PAC is sufficient to break symmetry and encourage cells toward desired

differential expression phenotypes.

2.4.4 Solution Scheme for Chemical Master Equation

To solve the CME in Eq. (2.20), we use the Finite State Projection (FSP [108]) approach,

which truncates the allowable state space for every species and results in a finite dimensional

ODE. However, it should be noted that the state space of a single arbitrary chemical species is

given by the ordered set [0, 1, ..., n− 1] up to some truncation limit n. The state space of multiple

species, is enumerated by forming a tuple of all possible species available, each up to a similar

maximum number. For a system of Nc cells with N ′ chemically reacting species, where each

species can range up to a maximum of n− 1 copies per cell, the number of distinct states is nN ′Nc ,

which quickly becomes intractable when n, Nc, or N ′ is large. For this reason, model reductions,

simplifications, or approximations are essential, especially when these models are to be used with

millions of different parameter sets when searching for optimal control strategies. Further, it is

40



important to test and verify if control strategies designed and optimized using such simplified

models will continue to be effective when applied to more general and more complex systems.

2.4.5 Fitting of models to data

Fits of the reduced model to experimental data was performed numerically by optimizing both

the set of model parameters and the calibration variables in unison. Since the parameter fits of

M′
U did not reveal a single set of unique parameters which fit data, the decay rate was calculated

by hand by fitting the middle region of Fig. 2.2A and then fitting the parameters after fixing the

protein decay rate. Fitting theMU to experimental data using calibration was performed by hand

since mathematical tools to fit data often yielded poor results by becoming stuck in local minima.

These hand fits were also constrained such that the decay rate of the protein is the same decay rate

inM′
U .
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Chapter 3

Stochastic Control of Dynamical Systems Under

Variations of Scale and Parameter Uncertainty

2 Previous research has focused to enable robust control performance despite the presence of

noise, but understanding how controllers may exploit that noise remains incomplete. Motivated by

Maxwells-Demon, we previously proposed a cellular control regime in which the exploitation of

stochastic noise can break symmetry between and allow for specific control of multiple cells using

a single input signal (i.e., single-input-multiple-output or SIMO control). The current work ex-

tends that analysis to include uncertain stochastic systems where system dynamics are are affected

by time delays, intrinsic noises, and model uncertainty. We find that noise-exploiting controllers

can remain highly effective despite coarse approximations to the model’s scale or incorrect estima-

tions or extrinsic noise in key model parameters, and these controllers can even retain performance

under substantial observer or actuator time delays. We also demonstrate how SIMO controllers

could drive multi-cell systems to follow different trajectories with different phases and frequen-

cies. Together, these findings suggest that noise-exploiting control should be possible even in the

practical case where models are aways approximate, where parameters are always uncertain, and

where observations are corrupted by errors.

Keywords: Stochastic Control, Gene Regulation, Optogenetics

3.1 Introduction

Uncertain fluctuations, or ‘noise,’ is a common theme throughout many fields of engineering,

and robust control is a frequent concern when attempting to control any human-made system such

2Chapter 3 is published on biorxiv as: M. P. May, B. Munsky, ‘Exploiting Intrinsic Noise for Heterogeneous Cell

Control Under Time Delays and Model Uncertainties’, bioRxiv, 2023, https://doi.org/10.1101/2023.10.07.561335

As first author, MPM was the primary researcher on this paper and was responsible for all simulations and writing of

the initial manuscript.
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Figure 3.1: Single-input-multiple-output (SIMO) control of multiple cells using a single optogenetic

input. (A) Schematic of the light-activated genetic system with auto-regulation. (B) Diagram of the stochas-

tic SIMO control problem using two optogenetic cells sharing a single input. (C) Noise exploiting controllers

were optimized to define a fully aware control input (I) and a partially aware control input (III), where the

control signal (color scale) depends on the observed expression within the cell or cells (x- and y-axes). (II

and IV) Corresponding steady state marginal distributions for the different cells (red and blue) under these

controllers demonstrate a clear a break in symmetry. Dashed lines represent the control target objective.

Control performance (RMSE) is show above each distribution.
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as vehicles [109], chemical processes [110], or biology [21]. Noise arrises from many sources,

occasionally from quantum events and thermally-induced fluctuations, but more commonly from

unknown or uncharacterized physical processes, and as such, these fluctuations usually cannot be

efficiently reproduced or predicted using purely physical or mechanistic models. Rather, statistical

models are usually employed where key mechanisms or dynamics are subject to stochastic varia-

tions or inputs that act as a proxy for random or un-modeled fluctuations elsewhere in the system.

In this context, much effort has been placed on enhancing the robustness of controlled processes,

where uncertain or unpredictable variations in internal or external parameters are modeled as in-

trinsic or extrinsic noise [111]. For many macroscopic, human-engineered systems, the resulting

system dynamics can be modeled effectively simply by combining a deterministic (i.e., noise-free)

model with additive noise (usually assumed to be Gaussian under arguments based on the central

limit theorem) [112], and most current approaches seek to control the system to minimize varia-

tions that result from the noisy inputs.

Analyses of noise and control theory are equally relevant to understand the basic biological

processes of gene transcription regulation [113]or mRNA translation regulation [51]or to modify

these processes for practical use [23, 114]. However, at this mesoscopic scale of cellular biology,

where transcription factors compete to activate or deactivate individual genes or where mRNA or

protein molecules are present at just a few copies (or none at all) per cell, the additive noise model

is much less realistic. In this case, Brownian motion, discrete stochastic gene regulation, and noisy

mRNA dynamics collectively generate a fundamentally stochastic environment that cells must

effectively manage. At this scale, the order or timing of a single reaction event (e.g., the binding

of a transcription factor to a promoter) can have dramatic consequences that could last for several

cellular generations (e.g., the activation or repression of a gene that promotes unfettered cell growth

and differentiation). The cell’s drive towards homeostasis requires dealing with the inherently

chaotic and noisy processes that reside within it, and despite these challenges, cells generally

demonstrate strong capability to survive these noisy processes. When seeking to understand how

such systems evolve or react, the central limit theorem and the Gaussian noise may not apply, and
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a more detailed statistical analysis of probabilistic behavior is needed uncover hidden properties of

cellular control mechanisms.

One emerging field that is particularly dependent on the integration of control and noise is

synthetic biology, which aims to develop modular [66] and orthogonal [69] components to sense

and manipulate [80] complex logical systems, enabling them to exhibit a wide range of advanced

biological behaviors [4]. Advances in optogenetics have enhanced the ability to reliably actu-

ate embedded systems within cells, offering the potential to exert precise temporal and spatial

control on cellular components [23, 80, 82, 115]. These developments have facilitated computer-

programmable regulation of cellular protein production through external optogenetic inputs and

smart microscope techniques [91, 94, 116]. These digital-synthetic actuators enable fine-tuned,

computer-modulated control of cellular systems, previously unattainable, with faster response

times compared to chemical diffusion [23, 81] . Classical and modern control methods like PID

control and model predictive control have been implemented in such systems [117]to control syn-

thetic systems to different stable points.

It has recently been shown that new control techniques that leverage the complete probability

distribution information of the system could actually harness the noise of single-cell gene regula-

tion to achieve more complicated control objectives. For example, inspired by the genetic toggle

switch from Kobayashi et al. [118], Szymanska et al. [95] showed that noise could be exploited

to achieve independent control of multiple cells using a single input, even despite uncertain pa-

rameters or time delays due to maturation of fluorescent proteins or limited observation of the

regulatory proteins. In May et al. [119], we identified a simplified stochastic model to reproduce

data measured in Baumschlager, et al. [23] for the expression from a transcription promoter under

the optogenetic control of a UV-activated T7 polymerase (see model in Figure 3.1A, top promoter).

We then proposed the addition of a positive auto-regulation (Figure 3.1A, bottom promoter) to help

maintain an elevated expression phenotype in the presence of UV excitation, and we demonstrated

how a Single-Input-Multiple-Output (SIMO) multicellular controller could control multiple cells

to arbitrary phenotypes using only a single input.
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This paper extends the analysis of the SIMO multicellular control problem by examining the

impact of model uncertainties and fluctuating control objectives on the control performance. These

uncertainties include coarse-grained approximations of the system dynamics, errors or extrinsic

variations in the system parameter, and time delays between the observation of the cellular dynam-

ics and actuation of the control process. In the following ‘Methods’ we introduce our formulation

of the chemical master equation (CME) to analyze the discrete stochastic distribution of cellular

responses; we define multiple controllers and demonstrate the computation of their effects on cell

dynamics; and we show how the control law can be optimized to improve performance. In the

‘Results’ section, we explore the how model approximations, parameter inaccuracies, and time de-

lays affect control performance, and we demonstrate a simple scheme for controlling cells to track

a dynamically changing reference signal. Using discrete stochastic models based on the chemi-

cal master equation, we demonstrate that combining biochemical noise, nonlinear auto-regulation,

and a single optogenetic feedback could control two genetically identical cells with different initial

conditions to follow different desired trajectories at different frequencies and phases.

3.2 Methods

In May et al. [119], we developed two models for the description of an optogenetically con-

trolled gene expression system. These first model consisted of six species to describe the light-

activated association of two T7 split domains (species 1 and 2) which combine to form an active

T7 polymerase (species 3) under optogenetic excitation. The active polymerase could then asso-

ciate with inactive T7 promoters (species 4), resulting in the formation of an active allele (species

5) that could then transcribe and translated to produce the desired protein product (species 6).

The second, much simpler, single-species model was developed by assuming quasi-steady equi-

librium for the first five species. Both models were independently parameterized using the same

experimental data from Baumschlager et al. [23]. Furthermore, an extension was made to each

model to incorporate a secondary self-activated promoter-gene construct, where the expression

rate was determined by a Hill function 3.1. Through simulations, we showed that a feedback con-
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trol law could be designed to force multiple cells to different and individually chosen equilibrium

states using a single optogenetic control signal. We also showed that when this control law was

parametrized using the simple model, it could be used effectively to control the behavior of the

more complicated system, thus demonstrating that control performance could remain high despite

inaccuracies in the model. In the current work, we adopt the simpler of the two models and ex-

tend our analyses to consider the effects of additional model inaccuracies, including coarse-grained

model approximations, parameter errors, and time delays, and we also explore the possibility that

a single optogenetic control signal could drive the system to track temporally-changing reference

signals. Section 3.2.1 introduces the model; Section 3.2.2 develops a Master Equation description

of the models probabilistic dynamics; Section 3.2.3 defines a control objective and optimizes that

metric to obtain a baseline control law; and Sections 3.2.4 and 3.2.5 introduce uncertainties into

the model related to the granularity of the model approximation or the introduction of time delays,

respectively.

3.2.1 Model

To assess the impact of model approximations on the implementation of noise-enhanced control

strategies, we begin with the one-species model proposed by May et al. [119] (Figure. 3.1A). This

model comprises two reactions for production and degradation of the key protein. The nonlinear,

UV-dependent production is defined by the following equation:

ν1(x, t) = κ
xη

xη + βη
+ k0 + u(UV (t)), (3.1)

where x is the instantaneous protein level; κ is the maximum strength of the auto-regulation pro-

moter; β is the concentration at which auto-regulation promoter reaches its half maximal strength;

η is the cooperativity in the auto-regulation promoter; k0 is the leakage rate from both promoters;

and u(UV (t)) is the UV-dependent strength of the T7 promoter. Feedback enables the external

modulation of the light input using the state of the system, thereby controlling the T7 promoter

strength as a function of state rather than time and eliminating the explicit time dependance in
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Table 3.1: Baseline Model Parameters

Parameter Value Units Meaning

κ 0.406 1/min maximal production rate

β 20.0 molecules concentration at half-max activation

η 8.00 unitless cooperativity factor

k0 0.0001 1/min promote leakage rate

γ 0.0203 1/min degradation/dilution rate

u(t) variable 1/min applied control signal

u(UV (t)). Protein degradation is assumed to be a first order process with rate γ:

ν2(x) = γx. (3.2)

All baseline parameters describing the auto-regulation promoter, κ, η, β, and k0, and the degrada-

tion rate γ are presented in Table 1 [119] and are fixed throughout the current study.

3.2.2 Stochastic analyses of the model

To describe the discrete stochastic behavior of the above model for a population of Nc cells, we

define the current state of the system as the tuple of the non-negative numbers of proteins in each

cell: Xi = [x1, x2, . . . , xNc
]i ∈ Z≥0, where the index i denotes the enumeration of the state within

the countably infinite set of all possible states, i.e., Xi ∈ X = {X1,X2, . . .}. The stoichiometry

vector, sµ, for reaction number µ is then defined as the change in state following that reaction event

(e.g., Xi → Xi + sµ). Specifically, the 2Nc possible reactions are defined in pairs corresponding

to production (µ ∈ {1, 3, 5, . . .}) and degradation (µ ∈ {2, 4, 6, . . .}) as:

s1 = e1, s2 = −e1,

s3 = e2, s4 = −e2,

...

s2Nc−1 = eNc , s2Nc = −eNc , (3.3)
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where each ei ∈ Z
Nc is is a Euclidean vector (i.e., unity for the ith entry and otherwise zero). The

corresponding propensity functions are:

w1(X) = u(X, t) + κ
xη
1

xη
1+βη + k0, w2(X) = γx1,

w3(X) = u(X, t) + κ
xη
2

xη
2+βη + k0, w4(X) = γx2,

...

w2Nc−1(X) = u(X, t) + κ
xη
N

xη
N+βη + k0, w2Nc(X) = γxN . (3.4)

These definitions of the stoichiometry and propensity functions allow us to implement the

Gillespie stochastic simulation algorithm (SSA) [30,107] to generate representative trajectories of

the stochastic process. At each step, two random numbers are generated to determine the time

and the type of the next reaction. Given the current state X, the time until the next reaction is

distributed according to an exponential random with rate parameter equal to the inverse of the sum

of the propensity functions:

Pr(δt = τ) =
∑

wi(X) exp
(

−
∑

µ = 12Nc−1wµ(X)τ
)

, (3.5)

and an instance of this random variable, δt, can be sampled from this distribution using the expres-

sion:

δt = − log

(

r1

2Nc−1
∑

µ=1

wµ(X)

)

, (3.6)

where r1 is a uniform random variable between zero and one. The probability for the specific

individual reaction Rk to fire from all possible reactions is given by:

Pr(Rk) =
wk

∑

w2Nc−1
µ=1 (X)

, (3.7)
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and which specific reaction that fires at time t + τ is a categorical random variable pulled from

Pr(Rk). The SSA is then simulated by stepping through time one reaction at a time and updating

the state of the system by adding the stoichiometry of the reaction to the state of the system.

However, a more direct analysis of the chemical master equation (CME) is necessary to quan-

tify performance and optimize the controller design. The high dimensional CME is a linear ODE

that describes the time-dependent changes in probability mass of all possible states. Using the

specified reaction propensities and stoichiometries, the CME can be expressed as:

d

dt
P (Xi) =

2Nc
∑

µ=1

(−wµ(Xi)P (Xi) + wµ(Xi − sµ)P (Xi − sµ)) . (3.8)

For convenience, the CME can also be formulated more compactly in matrix-vector form as:

d

dt
P = (A0 + BuC)P, (3.9)

where P = [P (X1), P (X2), . . .]
T is the enumerated probability mass vector for all possible states

of the system; A0 is the infinitesimal generator of the stochastic process due to the autoregula-

tion promoter and degradation events; uC = [uC(X1), u
C(X2), . . .]

T is the collection of control

inputs associated with each state; and BuC is the contribution that these control inputs make to the

infinitesimal generator when included into the feedback process.

More specifically, the zero-control infinitesimal generator, A0, is constructed according to:

[A0]ij =























−
∑2Nc

µ=1 wµ(Xj), for i = j,

wµ(Xj), for Xi = Xj + sµ

0, otherwise,

(3.10)

51



and the feedback infinitesimal generator, Bu
C , of the controller is constructed according to

[Bu
C]ij =



































−Ncu
C(Xj), for i = j

uC(Xj), for
Xi = Xj + eic ,

and ic = 1, . . . , Nc

,

0, otherwise,

(3.11)

where uC(Xj) is the specification of the controller, C, in terms of the current instantaneous state,

or its partial observations.

For a given controller, the equilibrium distribution of the system (P∗) can be found by solving

Eq. 3.9 and is given by:

P
∗ = null(A+ BuC). (3.12)

In principle, the master equation in Eq. 3.9 could contain an uncountably infinite number of

states, and therefore the exact solution as well as the null vector in Eq. 3.12 may not be computable

exactly. To address this issue, we first truncate the system at a finite number for each species and

then apply a reflecting boundary condition, resulting in a finite dimensional master equation. To

assess the time interval over which this truncation is valid, we also solve the Finite State Projection

[108] for the same truncation, which allows us to compute an upper bound on the truncation error

as a function of time.

3.2.3 Quantification and optimization of control performance

In the SIMO control of stochastic processes, a single input is applied simultaneously to all

systems at once, and therefore a control signal that acts beneficially on one cell may destabilize

other cells. An effective controller must strike a balance among the desired behaviors of all cells

in the system. To quantify overall performance success, we define the steady state performance

error, J , as the expected steady state Euclidean distance of the process from the specified target

state, T:

J = E{|X−T|2}. (3.13)
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The squared score is easily calculated by applying a linear operator to the steady state probability

distribution P
∗ (Eq. 3.12) as follows:

J2 = limt→∞ E{|X(t)−T|22},

=
∑

i1,i2,...
P ∗(x1 = i1, x2 = i2, . . .) [(i− T1)

2 + (j − T2)
2 + . . .] ,

= CP
∗, (3.14)

where C is simply a vector that contains the squared Euclidian distance of each state from the

specified target T, i.e., Ci = |Xi − T|22. As a result of this calculation, J is a non-negative scalar

that is zero only if P∗ is a delta distribution located exactly at the target vector T.

We consider two controller designs: the fully aware controller (uFAC) that bases its control sig-

nal on simultaneous protein count observations from both cells, and the partially aware controller

(uPAC) that relies only on observations from a single cell:

u
FAC = u(x1, x2), (3.15)

u
PAC = u(x2), (3.16)

where x1 and x2 are discrete integers greater than or equal to zero that represent the instantaneous

number of proteins in cell one and cell two. Despite their differences in their observation data,

both the FAC and the simpler PAC are optimized to achieve the same goal, namely to drive both

cells to their respective set points.

Optimization of uFAC and u
PAC were performed using a gradient descent method to minimize

J . Since the square root is a monotonically increasing function, minimizing J2 results in the same

control as would minimizing J directly. Therefore, we calculate the negative gradient −d(J2)

du(.) and

adjust parameters a small step du(.) in that direction. For example, the calculation of the gradient
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for the FAC controller is given by:

d(J2)

duFAC
= C

dP

duFAC
, (3.17)

where dP
duFAC can be solved using general minimized residual calculation of

A
dP

duFAC
= Bu

FAC . (3.18)

In [119], controllers were optimized to minimize J2 for a single target state T = [10, 30], but

in this work they are extend to different arbitrary target points.

3.2.4 Scaling for system granularity

In realistic applications, models are never exact, but are often chosen as simplifications of

known processes. For example, when analyzing discrete stochastic chemical kinetics, it is com-

mon to project the CME onto lower-dimensional spaces using finite state projection [108], time

scale separations [120], Krylov subspaces [121], principle orthogonal decompositions [56], or

other coarse meshes [18,122]. Similarly, measurements are also always inexact and in many cases

may only provide information about relative changes – for example, although fluorescent proteins

usually cannot be counted exactly, one may reasonably assume that a cell’s total fluorescence in-

tensity varies linearly with the fluorescent protein concentration. To explore how mismatches in

the assumed system scale (e.g., arising from model approximations or relative measurements) af-

fect the controllability of the cellular process, we define a granularity parameter (α = M ′/M ) that

linearly scales each species’ population to increase (α > 1) or decrease (α < 1), while maintaining

the dynamics and general behavior of the model. To apply this granularity parameter, we assume

that each propensity function, wµ (Eqns. 3.4) is rescaled to a different level of discreteness by

substituting

w′(X) = w(X/α). (3.19)
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For example, the production and degradation of protein in cell one would become:

w′
1(X) = u(X/α, t) + κ (x1/α)η

(x1/α)η+βη + k0,

w′
2(X) = γx1/α. (3.20)

We note that in order to reuse a control law that has been defined for one level granularity and

apply it to a system at another level of granularity, the inputs to the controller must also be scaled

by 1/α before computing the control level assigned to the current state, e.g., uC = uC(X/α).

Because identification of the original control formulation, uFAC(x1, x2) and u
PAC(x1) only con-

sidered integer values for (x1, x2), control signal values at fractional state values after rescaling

(x1/α, x2/α) are calculated using 2D cubic interpolation from the control values at the nearest

integer state values. Finally, to provide a consistent metric for relative scoring, the definition of

the performance score is also adjusted according to scale magnitudes. For example, in the two cell

system the new steady state performance error would become:

(J2)′ =
∑M ′

i=0

∑M ′

j=0 P
∗(x1 = i, x2 = j)((i/α−T1)

2 + (j/α−T2)
2),

= C
′
P

∗. (3.21)

We reiterate that the system parameters and control law were defined and fixed using the the base

granularity (α = 1), and to simulate a practical application where scales may be unknown or

variable, these are not recomputed or refit upon changing the system granularity.

3.2.5 Observation and actuation time delays

Delays are inherent to any realistic control system, and in this case delays would be expected

to arise due to the time needed for various biochemical reactions such as the formation of complete

polymerases, activation of promoters, transcription and transport of mature mRNA, and the trans-

lation and maturation of protein [123]. Additional delays would also arise from data analysis, de-

cision making, and actuation dynamics. To investigate the effects of observation or actuation time
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delays on control performance, we devised a simple time-delay stochastic simulation algorithm.

This algorithm records the state history after each stochastic reaction, enabling reconstruction of

the population history of the species and the time delayed control input propensity. Using this

information, the time-delayed control signal at time t can be specified as:

uτ (t) =











0, for t ≤ τ,

uC(x1(t− τ), x2(t− τ)), for t > τ,
(3.22)

where τ is the time delay between observation and actuation, uC is the previously optimized control

law (e.g., uFAC or u
PAC), and x gathered from the state history. We note that the time delay

stochastic process was only simulated using the SSA because to our knowledge an appropriate

direct FSP/CME integration procedure has not yet been developed. The Extrande method [97] was

used to update the control input at an average frequency of 50 updates per minute, far exceeding

the dynamics of the system.

3.2.6 Tracking Time-Varying Trajectories

Because optimizing the control law for a static set point as described in Section 3.2.3 requires

differentiation of the CME (Eq. 3.9) with respect to the control signal at each state, this calculation

is approaching the limits of current feasibility. Extending these calculations to optimize controllers

for a dynamically moving set point is much harder and would likely require intractable numeri-

cal simulation or development of new mathematical approaches that are beyond the scope of the

current study. To circumvent this challenge, we instead propose a simple alternative in which the

controller sweep though a piecewise constant set of controllers each designed for a specific static

target point along the desired trajectory.

Our goal is to control the system to follow a specific target trajectory, T(t). We choose a

discrete set of K target points along this trajectory:

{T1,T2, . . . ,TK} , (3.23)
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and for each individual target Ti, we optimize to find a corresponding controller, ui = u(Ti).

Finally, to implement the control at any given time, t, we find the index of the nearest precomputed

target state:

î(t) = argmini |T(t)−Ti|2 , (3.24)

and assign that controller. Under this piecewise constant controller law, the full time-varying CME

becomes

d

dt
P = A+Buî(t)(x). (3.25)

3.3 Results

As developed in the Methods section, we focus on a SIMO controller where all cells receive

the same input at every instant of time. For this, the control signal depends upon the observed

state, e.g., u(t) = u(x) as developed above and illustrated in Fig. 3.1(I,III). These controllers have

been optimized to break symmetry so that multiple cells can be controlled to different targets as

illustrated in Fig. 3.1(II,IV), and we quantify performance according to the RMSE error introduced

in Eq. 3.14. To explore how such controllers may perform in realistic settings where the models

are approximate and parameter are unknown or extrinsically variable, we now fix the parameters

of those controllers and explore performance robustness to different types of model uncertainties,

including parameter errors or variations (Section 3.3.1), incorrect assumptions on system scales

(Section 3.3.2) and time delays (Section 3.3.3). Finally, in Section 3.3.4, we extend the control

analysis to consider the performance of the controller for tracking variable reference signals with

different frequencies and phases.

3.3.1 Stochastic SIMO Optogenetic Control can Remain Effective Despite

Small Parameter Errors or Extrinsic Uncertainties

Real stochastic processes always have unknown or uncertain mechanisms and parameter val-

ues. Although model structures and parameter estimates can often be obtained through fitting to

training data, these estimates will never be perfect due to unavoidable measurement errors or lim-
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Figure 3.2: Parameter sweeps using the FAC and PAC show a broad range of control performance in cell

1 (A), in cell 2 (B), and in both cells (C). Columns show each parameter in the model, rows show the cell

which has its parameter perturbed.
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ited data sets. Even with plentiful and precise training data, model and parameter uncertainties are

inevitable due to the fact that even genetically identical single-cells exhibit heterogeneity in pa-

rameters due to extrinsic variations. To asses the control performance under such parameter errors,

we performed sensitivity analysis on each model parameter for each cell, then on both cells simul-

taneously. For each parameter, uFAC (solid lines) and u
PAC(dashed lines) control performance was

examined across a parameter perturbation range from one-tenth to ten-fold of the original values.

Figure 3.2A shows the results for these parameter sweeps when a single parameter in Cell 1 is

varied (all other parameters are fixed), and Figure. 3.2B shows the control performance when a

single parameter in Cell 2 is varied. Finally, 3.2C shows the performance change when a single

parameter is changed simultaneously in both Cell 1 and Cell 2 at the same time.

Modifications of parameters were found to produce a broad range of effects. For example,

increasing β in Cell 1 quickly worsens performance while increasing β in Cell 2 improves per-

formance (compare second column in Figure. 3.2A and 3.2B). In some cases, the effects on per-

formance are not monotonic; for example, increasing κ in Cell 1 (Figure. 3.2A, leftmost column)

would be highly advantageous up to a limit after which the control performance degrades rapidly.

In other cases (such as for the promoter leakage rate, k0), the effect of parameter perturbations

on performance is insignificant even for relatively large (s=10) perturbations, suggesting that this

parameter is not important to control performance. Figure 3.2C shows that even when parameters

of both Cell 1 and Cell 2 are jointly changed, these changes could also improve or detract from

control performance. In particular, the analysis shows that control performance could be improved

by modifying the system design either to increase the auto-regulation promoter strength (κ) or its

cooperativity (η) or to decrease the promoter binding constant (β) or the protein degradation rate

(γ). We note that co-optimization of both the system and the controller law would allow for further

improvements to the performance.
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3.3.2 Controllers trained using one assumed level of granularity can remain

effective at other levels of granularity.

We next explored how the granularity of the system would affect the differential control of

the multi-cell system. Specifically, we define the level of granularity using the parameter α as

described in Section 3.2.4 and which affects the propensity functions and scoring according to

Eqns. 3.19-3.21. Effectively, larger α corresponds to systems where larger numbers of individ-

ual molecules are needed to achieve the same concentration (e.g., larger volumes), while smaller

α corresponds to situations where smaller population sizes can achieve that concentration (e.g.,

smaller volumes). We previously optimized the controllers uFAC and u
PAC based on a the default

assumption that α = 1, and we wished to know what would be the consequences if this same

controller were to be applied to a system that has a different granularity.

To explore this tradeoff, control performance scores for the u
FAC and u

PAC controllers were

calculated at different levels of granularity (α) between 0.2 and 2.0. Figure 3.3 (A - F) shows the

joint probability distributions (left plots) and marginal probability distributions (right plots) of the

system at a low granularity (α = 0.2), the original granularity (α = 1.0), and at an increased

granularity (α = 2.0).

Figure 3.3G shows the trend of the performance versus alpha for both the FAC (solid cyan

line) and the PAC (solid magenta line) controller. This improvement in performance appears to

approach a small value as the granularity goes to infinity, but since the size of the FSP increases

with the square of the system size, systems much larger than α=2 (where A0 ∈ R
104×104) become

more difficult to calculate using master equation techniques. To bypass this limit in the FSP,

sixteen SSA simulations were used to sample the CME of a system with a much larger volume of

α=100. Each SSA was run for 5 × 107 minutes and only the last 4 × 107 minutes were sampled

to estimate the stationary distribution and calculate the performance score. The performance score

estimates of this high granularity SSA using the FAC and PAC were 2.03 and 5.24 respectively,

which are plotted as dashed lines in Figure. 3.3G. Although it is unclear if further performance

improvements could be obtained with further increases to the system scale, for all cases considered
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so far, we found that both controllers monotonically improved with increased α and that uFAC

always outperforms the u
PAC.

The effect that granularity has on the control performance depends on two competing phe-

nomena: First, because the controller was optimized for one level of granularity (α = 1), one

might expect that the controller would become worse if the granularity were incorrect. However,

at large granularity, we find that the opposite is true - the control performance actually improves

when applied to an incorrect model. The reason for this surprising result is that relative amplitude

of stochastic fluctuations (i.e., the standard deviation divided by the mean) in a chemical process

decreases with the inverse square root of the process scale [124]. In other words, the process

becomes more predictable and therefore more controllable. At the extreme as the system size

increases, the dynamics converge towards a deterministic process, except for certain exceptional

initial conditions lying on manifolds that would separate different steady state behaviors [125].

However, this improvement in the steady state performance does not come without a cost.

Although higher granularity reduces noise and makes it easier to maintain desired states once they

have been achieved, noise is necessary to break symmetry between the two cells’ dynamics in order

to achieve those states in the first place. This tradeoff is illustrated in Fig. 3.3(H), which plots the

control performance over time after changing the control goal to exchange the low- and high-target

cells with one another. From the figure, we can see although steady state control performance

improves for higher values of α, the time taken to reach that steady state performance increases

with α, suggesting that larger-volume system may become more susceptible to times delays or less

able to track variable reference trajectories.

3.3.3 Heterogeneous control can remain effective despite moderate time de-

lays

In general, feedback control can only be effective if one can quickly make measurements, com-

pute adjustments to the control signal, and implement the needed changes within an appropriate

amount of time relative to the characteristic timescale of the system. As the time required for
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Figure 3.3: Systems with increased granularity are less noisy and have better control performance. (A-C)
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distributions as α increases from 0.2 (top row) to 2.0 (bottom row) . (D-F) Joint (left) and marginal (left)

distributions using the PAC controller at different levels of granularity.

any of these steps increases, control performance will be degraded, perhaps even leading to large

fluctuations or instability. To explore how time delays affect the noise-enhanced controllers uFAC

and u
PAC, we generated large sets of time-delayed stochastic simulations (see Section 3.2.5) for

different lengths of the time delay. Each SSA was sub-sampled for 1000 times over 10000 minutes

of simulation time after a burnin period of 10000 minutes.

Figure 3.4 shows the joint distributions (left) and marginal distributions (right) at varying levels

of time-delay, with panels A-C showing results for the FAC controller and panels D-F showing

results for the PAC controller. Figure 3.4G summarizes these results by plotting the score of both

controllers versus the time delay. From the figures, it is clear that performance is rapidly degraded

as the delay approaches and then exceeds the characteristic time (τc = 1/γ = 49 min) set by the

degradation rate of the process (yellow dashed line). At very small time delays (τ < 3.4 min), the

FAC outperforms the PAC but at moderate time delays (τ > 3.4 min) the PAC outperforms the

FAC.
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Figure 3.4: Effects of time delay on control performance. (A-C) Joint (left, color scale shown at top)

and marginal distributions (right) of the controlled system at different levels of time delay using the FAC

controller. The target state, T is denoted by a small circles on the left panels and dashed lines on the right
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RMSE control performance versus time delay for both FAC (blue) and PAC (green). Letters A-F correspond

to panels A-F. Dashed red line corresponds to optimal performance with no feedback (i.e., constant input).

Dashed yellow line corresponds to characteristic system time, τc = 1/γ.
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Figure 3.5: Joint effects of granularity and time delay on control performance. (A-I) Joint probability

distributions at different combinations of τ (rows) and α (columns). Overall RMSE shown at top. (J) Heat-

map of control performance versus (τ, α). Points A-I correspond to panels A-I. Dashed yellow line shows

characteristic time τc = α/γ/. (K) Controlled system trajectory for α = 4.0 and τ = min (denoted by red

star in panel J).

At high time delays, both controllers lose their asymmetry, resulting in significantly worse

performances (RMSE = 32 and 23) and even perform worse than under a simple constant control

input without feedback (depicted by a horizontal red line in Fig. 3.4G).

As discussed in the previous section, increasing the granularity of the system α reduces the

randomness to improve the steady state performance but at the cost of slowing down the controller

response. To explore the joint effects of time delays and granularity, Fig, 3.5J shows the FAC

steady state control performance as a function of the time delay and system granularity (τ, α)

using thirty-two stochastic simulations simulated to steady state at each combination. Control

performance errors measured by RMSE improved as α increased when the delays were small

(τ = 1 min and τ = 10 min) but not when τ = 100 min.

Recalling that under the system granularity rescaling (Eq. 3.20), as α changes, the effective

degradation rate scales according to γ′ = γ/α. Therefore, the critical limit for the delays should
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Figure 3.6: FAC control laws and performance for different target points. (A) Optimized control

input for target T = [20, 25], with target point denoted by star. (B) Corresponding steady state response

distribution. Marginal distributions for x1 and x2 on right and below. (C,D) Same as (A,B) but for T =
[10, 25]. (E) FAC control performance (RMSE) versus targets T = [T1, T2]. Stars correspond to target

points in panels A-D. Dashed diagonal shows line of symmetry.

also change with the system scale according to τc = 1α/γ. Figure3.5(J) depicts this characteristic

line and shows that as the time delay approaches and then exceeds this level, the steady state

performance becomes dramatically worse.

Finally, to understand the model of failure at these longer delays, it is interesting to examine

trajectories induced by the controller just below this characteristic delay. For parameter set denoted

by the red star in Figure. 3.5(J), Figure. 3.5(K) shows the controlled response after a long burn in

period to achieve steady state. In this case, the application of feedback after a delay leads to a

strong oscillatory behavior and worse performance than that achieved without any control at all.

This observation further stresses the importance of considering time delays when designing such

controllers.
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3.3.4 With noise-induced control, a single input can drive multiple cells to

follow different temporal trajectories.

We next optimized the FAC controller and calculated its performance for the two-cell system

over a two dimensional domain of discrete target points Ti = [Ti1, Ti2] between between five

and forty-five. For example, Fig. 3.6 (A) shows the optimized FAC control input of the system

when the target is T = [20, 25], and Fig. 3.6 (B) shows the corresponding steady state probability

distribution of the controlled system. Figure 3.6 (C and D) show the the same thing but for a

different target state of T = [10, 25]. Figure 3.6(E) shows the overall steady state FAC control

performance over the entire domain of static set points, and illustrates that some regions are easier

to attain than others.

We developed a method (Section 3.2.6) to control the system dynamics to follow a predefined

path T(t) by alternating between 32 different pre-computed controllers along each path. We con-

sidered three representative pathways, including an in-sync reference point (Fig. 3.7B1) where

TB
1 (t) = 20 sin(2πft) + 10, and TB

2 (t) = 20 sin(2πft) + 10;

a phase lagged reference point (Fig. 3.7C1) where

TC
1 (t) = 20 sin(2πft) + 10, and TC

2 (t) = 20 cos(2πft) + 10;

and a frequency separated reference point (Fig. 3.7D1) where

TD
1 (t) = 20 sin(2πft) + 10, and TD

2 (t) = 20 cos(2πft) + 10.

For each reference signal, the driving frequency was defined as f = 10−4 cycles per minute.

All FSP simulations were calculated under the time varying control law, and Figs. 3.7(B2, C2,

and D2) show the corresponding response distributions (shading) and median responses (lines)

for two cells x1 and x2 in red and blue, respectively. Regions with purple shading depict the
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Figure 3.7: Tracking time-varying reference signal. (A) Schematic of SIMO control to drive two cells

to follow different trajectories. (B1) Reference signal for x1 (red) and x2 (blue). (B2) Controlled response.

Distributions shown in shading. Median shown in lines. Three periods are shown after decay of transient

dynamics. (B3) RMSE performance over time. (B4) Phase space of reference signal. (B5) Time-averaged

distribution of tracking error. (C1-C5) Same as (B1-B5) but for phase-lagged reference signal. (D1-D5)

Same as (B1-B5) but for reference signal with two different frequencies and phases.
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exact overlap of red and blue, when both cells have the same distribution of response. From Figs.

3.7(B2, C2, and D2), we observe that the SIMO control system can effectively drive the system

to follow all three input trajectories, including when the two reference trajectories have different

phases and frequencies (panel D2). To quantify the overall performance, Figs. 3.7(B3, C3, and D3)

show the root mean squared error as a function of time, and Figs. 3.7(B4, C4, and D4) show the

time-averaged error distribution for the system response relative to the time varying target. From

these figures, we observe that all trajectories result in short RMSE spikes during short transient

periods when the controller passes through the regions of poor control (i.e., through regions found

in Fig. 3.6E to have high RMSE errors). Overall, the simulations show that the synchronous control

performed best with an average RSME of 6.9. When the system is driven with a phase-lag, the

average RSME of the score increases to 8.2, and when driven at a different frequency, the average

RMSE goes up to 8.6.

In general, a given control system cannot effectively track a reference signal that changes faster

that the system’s natural time scale. Since it was shown that increasing granularity (α) improves

steady state control performance (Fig. 3.4G) but also lengthens this time scale (Fig. 3.4H), one

should expect that these competing effects of granularity would also affect the types and speeds

of signals to which the system can respond. To examine how driving frequency and system scale

affects control performance, 64 SSA trajectories of the phase-separated dynamic controller were

simulated over a two dimensional domain of points (α, f) for 32 cycles after reaching steady state.

Figure 3.8(A) shows the desired reference signal for the system, and Fig. 3.8(B) shows the mean

of the system response when the frequency is f = 10−4 cycles/min and the granularity is α = 4.0.

Figure 3.8(C) shows the corresponding control performance over normalized periodic time as α is

held at 4.0 and f is increased from f = 10−4 cycles/min to f = 10−2 cycles/min and f = 10−0

cycles/min leading to average control performances of 6.2, 16.1, and 15.0 respectively. Figure

3.8D,E extends this analysis to plot the average control performance over different combinations

of α and f . The characteristic frequency (given by the predicted τ−1
c over a range of α) is plotted

as the yellow dashed line.
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Figure 3.8: Tracking a time-varying signal at different frequencies and system scales. Control perfor-

mance analyzed over a domain of f, α pairs show worst control performance at moderate frequencies near

1e − 2 due to phase lag. Tracking reference signals when α = 5 span a range between 50 and 150 species

(A). Stochastic simulations driven using a phased lagged controller at α = 5 and low frequency show tighter

control compared to α = 1 (B). Systems driven at moderate frequency show worse control performance than

high frequency or low frequency (C). Control performance only of phase-lagged system only improves with

increasing α and low f .
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In particular, the heat map of control performance over (f, α) shows that the worst perfor-

mance occurs at moderate f near f = 10−2 cycles/min and that control performance is best when

granularity is high and frequency is low 3.8(E). More specifically, we find that strong perfor-

mance was attainable only if the driving frequency was kept lower than a characteristic frequency

fc ≡ 1/τc = γ/α, which is denoted by the dashed line in Fig. 3.8E.

3.4 Conclusion

Noise, whether it arises from inherently stochastic processes or from unknown or unmodeled

interactions, can play a critical role in the performance of feedback control. For the field of syn-

thetic biology, this noise has typically been avoided and genetic systems have primarily been en-

gineered to be as robust as possible to these uncertain fluctuations. In contrast, many natural

cellular processes exist and thrive in settings where single-molecule events such as gene activation

leads to large relative fluctuations, and where response heterogeneity is unavoidable. Key results

from [119] showed that certain controllers could exploit this noise to achieve objectives that would

not be possible in a deterministic setting. With such controllers, a single regulatory signal, such as

an optogenetic input, could drive two or more two genetically identical cells to different, arbiltrar-

illy chosen fates using just a single input signal and irrespective of the cells’ initial conditions.

The effectiveness of any model-based controller depends upon the accuracy of the model with

which that controller has been optimized, and as the real system deviates from its idealized model,

the control performance will naturally be affected. In this work, we explore the effects of several

such deviations, including uncertainties or errors in parameters, mismatches in assumptions for

systems scale, and times delays.

Regarding parameter values, our perturbation analyses (Fig. 3.2) showed that control perfor-

mance is strongly affected by the system parameters. We found that whether parameters were

incorrect in all cells (e.g., due to systematic errors in the model) or for just one cell at a time (e.g.,

due to extrinsic noise in the cells themselves) affected the control performance in different way.

In most cases, small changes could be tolerated, whereas large changes, especially to certain key

70



parameters, could be catastrophic. Moreover, we found that there can be room to improve control

performance by adjusting system parameters, suggesting that joint optimization of the controller

with the system itself could lead to even stronger performance. Armed with such insight into which

parameters are the most sensitive and which can safely be ignored, one could in principle focus

measurement efforts to more precisely quantify the critical parameters and focus design efforts to

reduce variability in key aspects of modular parts.

The size of the system also plays an important role in its control performance. For a fixed

concentration, as the volume of a chemical reaction system increases, it becomes less noisy, and its

dynamics approach that of deterministic process. At this limit, symmetry can no longer be broken,

and feedback control cannot independently drive different cells to different fates. On the other

hand, deleterious fluctuations also become smaller, so larger systems can more easily maintained

maintain their desired phenotypes. Overall, we have shown (Fig. 3.3A-G) that the removal of

noise through system granularity led to better steady state control performance, but such systems

were found to take a much longer time to achieve steady state (Fig. 3.3H). Interestingly, this result

could have implications on the malleability of cells at different stages of their growth cycle, where

differentiation of smaller cells (e.g., those immediately after division) may be more susceptible to

control signals, while larger cells (e.g., mature cells that have already established their phenotypes)

may be relatively impervious to external signals.

Although our objective was to determine how well control performance would be maintained

under different system sizes, we were surprised to find that controllers designed at one level of

granularity (e.g., α =1) worked surprisingly well to control systems at much larger granularities.

From a practical perspective, the ability to analyze a model at one system scale and then effectively

apply it to another could be highly beneficial. Since the computation time of the FSP solution to the

CME grows with the square of the number of states, this can cause an explosion in computational

requirements for large systems. Our results suggest a promising alternative in which one could

learn or optimize a controller using FSP analyses for a computationally feasible number of states

and later apply them to larger systems that cannot be solved using current techniques.
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Time delay analysis (Fig. 3.4) showed that increasing time delay decreased control perfor-

mance. However, we also found that not every controller was equally affected by time delays. In

particular, we found that at intermediate and larger time delays, a partially aware controller that

has less information can outperform a fully aware controller (Fig. 3.4G). We believe this is hap-

pening because a controller with more information can afford to be more aggressive to implement

its control, and time delay can cause this aggression to backfire.

The control of cells to two slowly changing dynamic reference signals using a single global

input by the use of a noise-exploiting controller showed good control performance for a variety of

signals. These analysis could be extended to include faster frequency by numerical calculation or

by alternative error-probability adjustments.
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Chapter 4

Microscopy Automation

3 A combination of microscopy automation, high-throughput image processing pipelines, and

decision-making algorithms is needed to improve the gathering of high quality data at a fast rate,

and is needed to accelerate the analysis of heterogenous cell populations. Image processing al-

gorithms to reproducibly determine spot counts (e.g., to count the number of mRNA of a given

species within each cell as using smFISH) are integral in determining the likelihood of gene regu-

lation models and to correctly selecting the right model for a given biological process. We demon-

strate a new integrated pipeline to automate the image collection including: (i) quickly search in

two-dimensions to find fields of view with cells of desired phenotypes, (ii) targeted collection of

three-dimensional image data for these chosen fields of view, and (iii) streamlined processing of

the collected images for rapid segmentation, spot detection and tracking, and cell/spot phenotype

quantification.

4.1 Introduction

Fluorescent labeling encompasses a range of techniques that have become important tools in

molecular biology for identifying protein and mRNA behavior in cells. Fluorescent labels using

green fluorescent protein (GFP), the MS2-MCP RNA tagging, and single-molecule fluorescence

in situ hybridization (smFISH) enable researchers to label DNA, RNA or protein molecules in

cells. When exposed to light of a particular wavelength using a laser, these markers emit fluo-

rescent signals, which can be captured by specialized microscopes. Fluorescent imaging enables

the localization and movement of important biological molecules for the study of gene expres-

3Chapter 4 is in preparation for publication and describes a collaborative effort with Dr. Luis Aguilera (Image pro-

cessing and microscope emulation) in Brian Munsky’s laboratory and Dr. Tatsuya Morisaki (Microscope construction

and control) in Tim Staseviche’s laboratory. MPM’s contributions to this section are in the development of control

software to automate the microscopy, image processing tools to process images as they are taken, and decision rules

to adjust microscope settings as needed during the process.
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Acquire Process DecideA

Figure 4.1: Schematic of the high level Acquire-Process-Decide process. High level automation builds

upon mid level automation by acquiring acquiring large datasets, processing them quickly using distributed

machines, and making decisions about the next acquisition depending upon the results of the processed data.

sion, the investigation of cellular interactions, and the visualization of dynamic processes in living

organisms.

Single-molecule fluorescence in situ hybridization (smFISH) imaging offers several advan-

tages, including the ability to pinpoint and quantify individual RNA molecules within cells or

tissues. This high-resolution technique enables the study of gene expression, spatial organization,

and co-localization of transcripts, providing insights into the molecular mechanisms underlying

various biological processes. By utilizing specific RNA tags and fluorescent proteins, MS2 flu-

orescence microscopy enables researchers to gain insights into the real-time dynamics of gene

expression and mRNA transport processes at a single-molecule level [126, 127].

Fluorescent labels and magnified optics enable researchers to collect data at the single-molecule

level, to show important localization behaviors within cells that reveal protein and mRNA function.

By tracking and visualizing the spatial distribution and movement of these molecules, key details

about cellular dynamics and interactions can be determined. This approach also allows for the

investigation of sub-cellular individual protein behavior at a fine scale, but also facilitating the

analysis of protein behavior over cellular populations.

Image processing of fluorescent microscopy slides is a key step in the analysis of biological

specimens and cellular structures. This process involves a series of computational techniques de-
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signed to enhance the quality of raw microscope images, extract relevant information, and generate

meaningful insights. Simple image processing can encompass tasks such as noise reduction, and

contrast enhancement to improve image quality but more advanced types of image processing like

deconvolution or spot detection also exists. Additionally, segmentation of cell nuclei and cyto-

plasm from images, enables the data collection of cell-specific data. Further quantitative analysis,

like measuring fluorescence intensity or tracking object movement over time, can be conducted to

derive valuable data for analysis.

Highly inclined and laminated optical sheet (HiLo) microscopy is an imaging technique that

enhances signal to noise ratios by illuminating the sample at an angle [53]. More specifically, it

achieves optical sectioning and improved contrast by selectively illuminating the sample with a

thin plane of inclined light, enabling capture of images with less noise background but at the cost

of needing multiple image stacks along the z direction. To acquire these three dimensional images,

stacks of images must be acquired as the sample moves up and down perpendicular to the imaging

plane. Advances in software have enabled the automation of acquisitions of datasets without the

need for understanding low level hardware details.

Recent advancements in microscopy automation have enabled new ways to acquire and an-

alyze microscopy data using software tools to automate [128–131] and identify cells [54, 132].

Automation can be used to automatically acquire images at different focal planes, time points, or

wavelengths. This can be used to create images of cells over time, to track cell movement over

time, or to study the dynamics of cellular processes. This not only reduces human intervention

but also enhances the type of data collected and the reproducibility of experiments. While there

are different automation tools for image acquisition, there is a need for new tools that can acquire

data, process images, and make decisions on cell phenotypes in a simple and efficient manner.

Additionally, using high throughput methods to process data increases the response speed of the

microscope.

Leveraging microscopy for accelerated data acquisition, coupled with post-processing pipelines

that extract scientific insights from experiments and enable data-driven decision-making, repre-
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sents a robust approach to automate high-level cell detection and data processing. The incorpora-

tion of high-throughput image and data processing ensures rapid system response times, facilitating

efficient and real-time analysis in research and experimentation. These tools enable the gathering

of data while ensuring that each field of view meets specified criteria for image quality.

Emulating microscopy by generating simulated images offers several benefits, including re-

ducing the material costs and acquisition time required to prepare for collection of real data. This

accelerates development and facilitates the creation of accurate imaging protocols. Most impor-

tantly, an accurate simulator of cellular images allows researchers to test and optimize image anal-

ysis algorithms on a controlled dataset with known ground truth, which can then be used to test

different strategies and improve the accuracy and efficiency of subsequent image processing tasks

in real experiments.

4.2 Methods

4.2.1 Levels of automation increase the level of abstraction for acquiring

datasets

Low level automation was implemented on a HiLo microscope which could interface with

hardware using a custom device manager and through an open source microscopy software called

Micromanager [129]. Micromanager serves as a device manager that enable the control of asso-

ciated hardware via commands sent over serial ports in order to actuate physical hardware that

control the physical aspects of microscope.

Mid-level automation in the microscopy system was achieved through the utilization of Mi-

cromanager and Pyromanager [128, 133], a Python API designed for Python interaction with Mi-

cromanager. Micromanager provides a framework for acquiring image datasets, by building upon

the low-level hardware automation. Pycromanager is a Python interface for interacting with Mi-

cromanager through Python, with extensibility though callback functions. Mid-Level automations

were developed using multi-dimensional acquisitions through Pycromanager which could acquire

images without needing low level automation details.
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High-level automation of the microscope was achieved by connecting multiple mid-level au-

tomation processes with data processing and decision making capabilities which alter the settings

of the next acquisition. This integration formed an Acquire-Process-Decide pipeline, enabling the

system to make informed decisions based on the results of analyzed data, and to perform higher

levels of abstraction than the mid-level automation. An example of such a pipeline would be to

"image z stacks of all found cells in a gridded region that have at least 3 cells", or to "find 20 cells

in a region and image a movie of each cell". Such processes would require an initial acquisition

to determine potential locations, post-processing images to find the specified number of cells, de-

ciding to make a new acquisition to image positions which only had 3 or more cells in them, and

then acquiring the final dataset. Finally, computational time of the data processing was accelerated

using multiple machines in order to speed up the entire Acquire-Process-Decide process time.

4.2.2 High Throughput Image Processing Enables Quick Acquisition of Cell

Population Statistics

The development of image processing pipelines was expedited through the utilization of li-

braries containing image processing steps which could be linked together to form an image pro-

cessing pipeline and a repository of pre-built pipelines to correct images and gather relevant data

from image datasets. These resources accelerated the implementation of complex image analysis

workflows, and when combined with distributed computing it enables efficient extraction of spot

count data and cell masks from microscopy data.

Data post-processors used image pipelines and image computations to extract relevant infor-

mation from image datasets. A library of post processors to find image statistics, determine cell

masks, count the number of spots per cell, count the number of cells per image, and identify large

bright puncta corresponding to transcription sites were developed to enable the collection of pro-

cessed image data.

Microscopy image emulators were developed to simulate the acquisition of image data without

the need for a microscope. These emulations work by cutting out images of real cells from real
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Image Emulation

Library Emulated Image

Figure 4.2: Image emulations using nuclei fluorscence data. Pseudorandom image emulation was per-

formed by cutting up segmented nuclei and cytoplasms of real cell images and saving them to a library. The

components are randomly selected and pseudo-randomly placed into the canvas without overlap when a new

image canvas is emulated.

experimental images and pasting them pseudo-randomly into a blank canvas without overlap (Fig-

ure 4.2). Once the loop of the acquisition is started, smaller images are cut out of the image canvas

depending on the position of the virtual stage. New canvases are made on each acquisition and

data acquisition with the same settings yields different images depending on the outcome of the

pseudo-random emulation. Image emulators were important to create reliable synthetic data for

cell detection to evaluate cell detection performance metrics from known emulation ground truth

data.

4.2.3 Acquire Process Decide Pipelines Enables High Level Automation and

Decision Making

An ‘acquisition ticket’ was made to describe all variables and functions needed to perform a

specific type of multi dimensional microscopy image acquisition, like defining positions to image,

image exposure times, laser intensities, and more. Acquisition tickets were used with Pycroman-

ager to perform multi dimensional acquisitions to acquire images. Acquisition tickets provide a

convenient and efficient way to automate complex microscopy experiments, enabling researchers
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to focus on designing and analyzing their experiments rather than programming detailed acquisi-

tion sequences.

A high level automation ‘grid search’ protocol was developed to find cells in a large grid and

then perform image collection on images with at least three cells in them. In more detail, this

involves acquiring an initial set of images on a grid, using Cellpose cell detection to determine

the number of cells in the ROI, reject ROI with fewer than the accepted number of cells, and then

acquire either z-stacks or a time series movies of accepted fields of view. Image processing using

machine learning was performed on distributed machines to speed up decision making times. A

similar protocol was developed which used mean intensity as a faster yet less accurate metric to

determining cells counts.

A ‘find cells’ protocol was developed to image a large unconnected grid and to image the ROI

with the most cells in them until a desired number of cells were found. More specifically, the

program started by acquiring proposal images of ROI over a large area, counting the number of

cells in each ROI using a cell detection algorithm, sorting the sequence of locations based on the

number of cells found in the ROI and imaging fields of views with the most cells first until the

desired number of cells were imaged and finishing the acquisition when the desired number of

cells was found.

Automation pipelines were analyzed on (1) emulated images, (2) on a fixed slide of fluores-

cently labeled DUSP1 mRNA in Dexamethazone stimulated HeLa cells, and (3) on a fixed slide of

fluorescently labeled H128 HeLa cells with bright red puncta corresponding to transcription sites.

For the DUSP1 slide, DUSP1 exons were fluorescently labeled with CY5 (red), while GAPDH

exons were labeled with CY3 (green). In the case of the H128 HeLa cells, slides were labeled with

three fluorphores: MCP-GFP(Blue), GAPDH exons Cy3 (green). [134]. The fluorescently labeled

H128 HeLa were chosen for their bright puncta.

An image puncta detector was created to identify highly active transcription sites which were

visually identified as a very bright puncta in the image. The Laplacian of Gaussians (LoG) is

an image processing technique used to detect and identify spots within an image. It operates by

79



convolving the image with a Gaussian smoothing filter to suppress noise and enhance the features

of interest. Then, the Laplacian operator is applied to highlight regions of rapid intensity change

within the smoothed image. The puncta detector score of the entire image was given by the maxi-

mal activation of the LoG in the image.

Sensitivity and specificity were used to analyze various image quantifications like machine

learned cell count, mean intensity, and LoG puncta score. Sensitivity (true positive rate) measures

the accuracy of identifying the number of cells in a positive image, while specificity (true negative

rate) assesses the test’s ability to correctly rule out negative samples. We used sensitivity to analyze

the accuracy of various image quantifications. Ground truth was established through manual cell

counting or from data taken from the emulator.

We developed a method for finding the sharpest image in a z-stack by capturing images in

the z-dimension and selecting the one with the highest relative sharpness. This calculation uses a

sharpness kernel to measure the detail in each pixel of the image, and the overall sharpness of the

image is calculated as the sum of the convolved detail image. This enabled the imaging of sharp

images.

4.3 Results

The ‘grid search’ protocol utilized an image emulator to capture sixty-four images in an eight

by eight grid. Cellpose nuclei detection was applied with a diameter of 250 and a flow-threshold

of 0.4, recording cell counts in each ROI. Images with three or more nuclei were accepted and are

displayed in Figure 4.3(A)(green boxes). Acceptance ratios and computation times are provided

below. Figure 4.3(B) shows an example of the image processing to mask a z-stack of emulated

nuclei. Figure 4.3(C) shows plots of actual cell counts from the image emulator’s ground truth

data. True positives (green circles), false positives (red circles), true negatives (black x), and false

negatives (red circles) were plotted by comparing estimated and true cell counts.

Examination of the accepted fields of view for the image emulator shows good match with

expectations. Fields of views with three or more cells were generally accepted with decent ac-
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4.3.1 Validations of Automated Image Search with known ground truth
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Figure 4.3: Automated data acquisitions using the image emulator. An eight by eight grid of images

was acquired using the ‘grid search’ procedure using an image emulator that replaces acquired images with

emulated ones. (A). Images which were believed to contain three or more nuclei using Cellpose were

highlighted in green boxes, and an acceptance ratio was measured to be twenty-three out of sixty-four total

images. (B) Images of Cellpose nuclei masks show good match with expectation, but missing a dim nuclei

in the bottom right edge. (C) Correlations (R2 = 0.822) and sensitivity (ǫ = 0.870) suggest accurate

determination of the number of nuclei.

curacy and a few exceptions. Under the acceptance criteria of three of more cells, an acceptance

ratio of 23/64 was seen in the emulated images. Scatter plots of detected cell count versus ground

truth cell count show a good correlation with an R2 value of 0.870 which suggests that the true

number of cells and the detected number of cells match well. Z-stack images were acquired from

positions that were detected to contain three or more cells Figure 4.3(B). Image masks created by

Cellpose were generally accurate, but missed nuclei can be seen in the bottom right of the Z-Stack

Figure 4.3(B,left) which does not appear in the mask. System sensitivity and specificity for the

emulation was calculated using estimated cell count as the data, and true cell counts as the ground

truth. An accuracy rate was calculated by taking the total number of true positives divided by
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the number of true or false positives. The sensitivity of 0.870 suggests that the accuracy of true

positives is high.

4.3.2 Demonstration of automated search to find and quantify smFish mea-

surements of DUSP1 in HeLa Cells
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Figure 4.4: Automated data acquisitions of fluorescently labeled mRNA. An eight by eight grid of

images was acquired using the ‘grid search’ procedure using smFISH stained cytoplasmic GAPDH exons.

(A) Images which were believed to contain three or more cells using the Cellpose cytoplasm model were

labeled in green. Image acceptance ratios (42/64) and acquisition times are shown in the bottom. (B)

Correlations (R2 = 0.550) and sensitivity (ǫ = 0.757) of the Cellpose detection method can be seen. (C)

Correlations (R2 = 0.631) and sensitivity (ǫ = 0.804) of the mean intensity detection method show similar

accuracy and sensitivity to Cellpose for this set of images.

The ‘grid search’ automation protocol was evaluated on a fixed sample of HeLa cells with

Cy3 labeled GAPDH exons on an eight by eight loose grid of images for a total of sixty-four

images. Since these data are not emulated, ground truth for this data were created from cell counts

measured by eye. Cells at the edge of the image were considered in the image if more than half the

cell was believed to be in the ROI. Image acceptance ratios and runtimes for the system to acquire-
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process-decide were gathered for the real system and shown on the bottom. Images were accepted

using two different methods and compared later, either using Cellpose, or using a whole image

mean intensity greater than 2500. These metrics were used to estimate if three or more cells were

in the image. Correlations, sensitivities and specificities for the Cellpose detection method, or the

mean value detection method are shown in figure (Figure 4.4(B) and Figure 4.4(C)) respectively.

Although correlations using the real data decreased, explanation might be using a human to create

a ground truth for erratic data.

Examinations of real ROI show cytoplasmic images instead of nuclear images obtained with the

image emulation. Despite the machine learning model’s adjustment to focus on cytoplasm instead

of nuclei, it is apparent that the models exhibited lower accuracy compared to their performance

with nuclear stains in the emulation dataset. This discrepancy can potentially be attributed to the

presence of more background noise in the real data, occasional bright artifacts that were not cells,

and increased cell density, all of which render image processing more error-prone. An R2 value

of 0.550 and a sensitivity of 0.757 corroborate the less precise identifications in real ROI images,

in stark contrast to the ǫ value of 0.870 achieved in the emulation dataset. Alternatively, given the

higher cell density in real data compared to emulated data, it may be advisable to employ more

stringent criteria for selecting ROI in high-density images. Notably, the total image acquisition

and analysis time for 64 images was 64.6 seconds for an average of 1.01 seconds per image.

We assessed two methods for their capacity to estimate images containing at least three cells:

the Cellpose method and the Mean Intensity method. An image was considered to have three or

more cells if a specific measurement surpassed a particular threshold. For Cellpose, this threshold

was set at three detected cells, while the Mean Intensity method employed a threshold of 2500

average pixel intensity.

Scatter plots depicting the performance of each detection method revealed an R2 value of 0.550

for the Cellpose detection method and an R2 value of 0.631 for the mean intensity method. Sensi-

tivity analysis indicated that the mean intensity detection method exhibited higher sensitivity than

the Cellpose method (ǫ = 0.804 versus ǫ = 0.757). Despite using the same image dataset, the mean
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intensity method detected more true positives (0.828) compared to the Cellpose method (0.641). It

is worth considering that one possible reason for the Cellpose method’s suboptimal performance

could be related to the need for further training to enhance detection performance.

4.3.3 Cellpose is a reliable indicator for cell detection
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Figure 4.5: Median image processing on two slides. The mean intensity method and the Cellpose identifi-

cation method were compared using grid searches on two different slides with the same imaging conditions.

(A) The mean intensity method was used to determine which regions of interest (ROIs) to keep for re-

imaging. Images were predicted to have three or more cells if the median intensity was greater than 2500.

Scatter plots of slide one data and slide two data show large discrepancy between the two slides. (B) The

same images were then analyzed using Cellpose. Scatter plots of slide one and slide took look much more

uniform.

The ‘grid search’ automation was evaluated on two different slides with fluorescently labeled

GAPDH. Images from these two datasets were analyzed for the presence of at least three cells

using either the mean intensity method or the Cellpose method. Scatter plots of the mean intensity

versus true intensity were made for both slides (Figure 4.5(A)), and using Cellpose (Figure 4.5).

Scatter plots of the mean intensity versus true intensity show a large difference in intensity

values between the two slides (Figure 4.5), with an average intensity near 3000 for slide one and
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an average near 1000 for slide two. This large difference in mean intensity between two slides

makes the 2500 cuttoff for determining cells in an image work well for slide one but not for slide

two. As a result, no positives are detected in slide two using this method and the rate of false

negatives becomes 0.75.

Scatter plots of mean intensity versus true intensity reveal a large difference in intensity values

between the two slides (Figure 4.5), with an average intensity of around 3000 for slide one and

around 1000 for slide two. This large difference in mean intensity makes the 2500 threshold for

determining cells in an image may work well for slide one but not for slide two. Therefore mean

intensity is not a good indicator over different samples, although corrections through renormaliza-

tion for each slide could correct this concern. On the other hand, the strong overlap in the scatter

plot in Figure 4.5(B) shows that Cellpose is still able to accurately segment cells in both slides,

regardless of the difference in average intensity. This can be confirmed with an average sensitivity

of ǫ = 0.860 and a detection rate of 0.719 between the two slides was measured by taking the radio

of true positives versus the total number of cells. This makes Cellpose a more reliable ‘off-the-

shelf’ method for cell segmentation across a variety of samples despite being substantially slower

and marginally less accurate for a single slide.

4.3.4 Puncta identification leads to data capture of targeted phenotypes.

The ‘grid search’ automation protocol was evaluated on a fixed sample of H128 cells with

bright transcription sites on an eight by eight loose grid of images for a total of sixty-four images.

Each image was labeled by eye to determine the number of bright spots in the image Figure 4.6(A)

and each image was analyzed for puncta using the LoG of the image to detect spots in the image.

Plots of LoG detected versus true puncta counts were made using an inner standard deviation of

two and an outer standard deviation of seven. True positives, false positives (green and red circles),

true negatives and false negatives (black crosses and red crosses) were made Figure 4.6(B).

Images were estimated to contain at least one puncta if the maximum LoG score in the red

channel exceeded 500. A sensitivity analysis of the maximum LoG scores demonstrated a high
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sensitivity of 0.955, indicating that the max LoG score is a robust true-positive indicator for puncta

identification (Figure 4.6(B)). However, it should be noted that max LoG is not a good estimate

to count the number of puncta, as it represents only the highest activation within the entire image

and is only meant to determine if there is one or more puncta in the image. This limitation results

in a weak correlation (R2 = 0.158) between the number of puncta and max LoG, despite the high

sensitivity.
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Figure 4.6: Puncta detection using Laplacian of Gaussians. A ‘grid search’ protocol was analyzed using

MS2 labeling of transcription sites, over an eight by eight grid of images for sixty-four total images. Images

were analysed using a transcription site finder that implemented the max LoG of the image to identify the

presence of any bright puncta. (A) Images with (bottom) and without (top) puncta show a bright spot in the

red channel of the image. (B) Sensitivity analysis of the transcription site finder to determine at least one

puncta in the image shows a sensitivity of ǫ = 0.955.

4.3.5 Data Collection times scales linearly with the number of targeted fields

of view

Image collection times were gathered over a range of ROI between one and 961 under three

different numbers of Z stacks. Collection times are plotted against the number of ROI on a log
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Figure 4.7: Figure of time scales to collect image data. Image collection times were measured for varying

numbers of ROI positions from one to 961 and plotted on a logarithmic scale. The slope of the line in log

space determines the scaling factor of the system when the number of ROIs is large. Slopes of m = 0.947,

m = 0.986, and m = 0.988 were found for one z-stack, three z-stacks, and five z-stacks, respectively. These

results indicate that the scaling factor of the system is near 1, regardless of the number of z-stacks.

log scale and the scaling factor was found for each by taking the slope of the linear portion of the

non-linear curve near 103 in log space (Figure 4.7).

The scale factors of the one z-stack, three-z stack and five z-stack log scale data acquisitions

were found to be m = 0.947, m = 0.986, and m = 0.988 respectively. Since all slopes of the scale

factors are close to one, the time taken to complete an acquisition scales linearly with the number

of ROI. Slopes of acquisition times near one ROI show slopes of 0.238, 0.577, and 0.608 for one

z-stack, three z-stacks and five z-stacks respectively.

Table 4.1: Table of initial imaging, processing, and collection times for an automated search.

Slide 1 Slide 2 Slide 3

Initial Imaging (seconds) 215. 233. 213.

Processing (seconds) 234. 295. 292.

Secondary Imaging (seconds) 840. (70 images) 1050. (87 images) 858. (72 images)

Mean Spot Count 149.1 191.2 130.12

Standard Deviation Spot Count 88.8 153 131
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Initial imaging times, processing times, and collection times were gathered using a ‘find cells’

procedure which finds 100 cells. Specifically, this method entailed capturing a grid of images

across a predefined area, sorting these images based on the estimated number of cells present, and

then revisiting images until at least 100 estimated cells had been imaged. This process prioritized

images with the highest estimated cell counts. Images were acquired in a single channel and using

7 z-stacks. The average initial imaging time amounted to 223.25 seconds for the initial acquisition

of 400 images (Table 4.1). Cell detection, executed using Cellpose, averaged 281.75 seconds for

400 images. Image collection times varied between 840 seconds and 1050 seconds depending on

the number of images needed to complete the acquisition. It’s noteworthy that, despite the initial

request for 100 cells, all final collection acquisitions were achieved with fewer than 100 images.
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Figure 4.8: Slide to slide histograms of spot count frequency. Image processing pipelines were used to

accelerate spot counting of cells over three different slides using Cellpose cytoplasmic masks and an LoG

spot counting methods. Histograms of spot counts per cell are shown in each subplot and variability between

distributions can be observed. Slide three shows a large amount of cells with zero spots detected with respect

to slide one and two.

Image processing pipelines were used to calculate histograms of spot count frequencies per

cell over three different real samples. These samples were masked using Cellpose and spots were

detected using an LoG method that identifies positions within images that contained spots above

an activation threshold of 300 using a inner and outer gaussian σ of two and eight respectively.

Spots in images were localized to individual cells using the masks and the total spot counts within

cells were gathered for each cell in each image. These data was used to create histograms of spot

count frequency. Spot count histograms between samples showed variability between samples.
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Figure 4.8(right) has a large number of cells with zero spots within them when compared to Slide

one and Slide two.

4.4 Conclusion

Automation is a key technology for the development of smart microscopy tools that can auto-

matically optimize experiments. By automating complex acquisition processes that rely on mul-

tiple individual data acquisitions, data processing, and decision making in a streamlined manner,

we can search for and image cells more efficiently and effectively. Here, we demonstrated our

ability to create complex acquisition processes that rely on multiple individual data acquisitions,

data processing, and decision making in a streamlined manner to search and image cells with de-

sired properties and phenotypes. This is a step towards the development of smart microscopy tools

that can automatically optimize experiments and acquire large processed datasets and images from

microscopy slides.

While we observed high sensitivity in image identification, none of the methods were perfect.

While many misidentifications were due to unusual features in the real data (e.g., strange cell

morphologies, bright artifacts), some may have been attributed to poor machine learning settings

that were not trained on these specific images. These identification imperfections can lead to the

capture of incorrect data, which still requires some human intervention to clean up if the error rates

are not low enough.

To create complex optimizations, we developed a library of acquisitions, data processors, and

decisions that could be strung together. This approach allowed us to modularize the automation

process and make it easier to manage. While it is possible to create software that can do high-level

automation, it can come at the cost of increased complexity, making it difficult to maintain and add

new features.

Automated acquisitions will allow scientists to collect more data, more quickly and more ac-

curately. Smart microscopes could be used to perform complex experiments that involve multiple

steps or that require continuous monitoring. By automating experiments and making it easier to
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design and perform new experiments, smart microscopes could accelerate the discovery of models

through brute force data acquisition.

Automation will also enable scientists to design experiments to develop a smart microscope that

can automate the optimization of experiment settings and suggest better experiments that maximize

information. Recent mathematical tools suggest that poor image acquisition settings that decrease

information can be represented by a distortion matrix that increases the space of likely parameters

[57]. Developing Fisher information software could rapidly determine how settings can increase

information content in a fast and automated way. These advances could accelerate the discovery

of models while minimizing time and reagent costs.
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Chapter 5

Conclusion

This work aimed to demonstrate the performance of noise-exploiting control and to develop

automation tools to begin to answer questions about the behavior of cell populations. Motivated

by synthetic biology, biological circuits and optogenetics provide powerful tools for precise control

of biological systems, but noise in these systems can undermine desired control performance.

Noise in control theory was initially addressed through the implementation of ‘robust’ control

techniques. In this area of control theory external disturbances, uncertainties in system parameters,

and sensor measurement noise could severely impact system performance. While robust control

methods have traditionally been effective in managing stochastic systems in spite of noise, there

are opportunities to develop noise-exploiting control methods that enable new control techniques

that were previously thought to be impossible.

In the introduction, we showed that conventional thinking about the control of stochastic sys-

tems has limitations, and that master equation analysis provides opportunities to create a noise-

exploiting controller that works with the noise rather than against it. We also showed that the

development of microscopy automation could enable analyses of cell populations and experiment

information.

In chapter two, we developed and optimized a control theory problem for the simultaneous

control of two similar systems with a single input to two different probability distributions. We

found not only one controller that could achieve this, but multiple controllers with different levels

of observation and prediction which could break symmetry between two cell systems. We also

determined that autoregulation is a key component that contributes to the high performance of

these controllers.

In chapter three, we extended the analysis to include parameter uncertainties, time delays,

intrinsic noise, and a moving reference point. Extending noise-exploiting control theory to regulate
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moving reference points at a fixed frequency despite the noise demonstrates its ability in achieving

precise control.

In chapter four, we developed automated microscopy tools to gather large datasets of single-

cell gene expression data, enabling us to begin answering fundamental questions about the devel-

opment, function, and heterogeneity of cell populations. This required high level automation tools

which could acquire, process, and make decisions.

5.1 Future opportunities

Noise-exploiting control theory offers a promising method to harness and manipulate the in-

herent variability of gene regulation to our advantage. By designing control strategies that embrace

and leverage biological noise, we can potentially enhance the precision and robustness of synthetic

biological circuits. Future opportunities in this domain may involve the design of noise-tolerant

genetic circuits, and the creation of new synthetic control motifs with enhanced capabilities.

The presence of noise poses a significant challenge when creating large synthetic systems, often

requiring the incorporation of complex control motifs to mitigate its effects. Rather than relying

on intricate control mechanisms to combat noise, these controllers embrace and harness noise as a

resource for system improvement.

The development of control theory that challenges conventional wisdom regarding the impact

of noise on control system performance represents a future possibility in the field of control en-

gineering. Historically, conventional thinking has often deemed noise as a hindrance, detrimental

to the precision and stability of control systems. However, the research in chapters two and three

suggests that noise exploiting control could be used to develop new techniques for the control of

such systems.

While our initial focus was on solving a control problem involving two cells and a single control

signal, it’s important to recognize that our solution extends more broadly. In a general sense, we’ve

effectively addressed a control problem that pertains to the manipulation of two targets using just

one input, while harnessing the inherent noise within the system to achieve our objectives. This
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broader perspective underscores the versatility and potential of noise-exploiting control strategies,

as they can be applied to diverse scenarios beyond the specific context of our initial problem.

Biological systems are of interest to control engineers because they exhibit robustness and

adaptability despite the inherent stochasticity and noise associated with molecular processes. By

applying noise-exploiting control principles to biological contexts, we may gain deeper insights

into how living organisms finely tune and utilize noise for their advantage. This interplay could

uncover new methods for understanding living systems.

Automating single-cell microscopy data acquisition has emerged as a powerful tool for re-

vealing the heterogeneous responses within cell populations. By leveraging advanced microscopy

automation, researchers can efficiently capture a wealth of data at the single-cell level, allowing

for a comprehensive exploration of cell population behaviors.

Using Fisher information with large datasets through "smart" software applications could en-

able the optimization of experiment information in an automated and efficient manner. By analyz-

ing large datasets, these software-driven approaches can identify important time points, experiment

variables and settings, thereby guiding experimental setups to maximize information gain while

minimizing resource consumption. This synergy between statistical theory and smart software not

only streamlines the research process but also holds the potential to accelerate discoveries.

In more detail, automations could be acquired using different experimental concentrations,

time-points and imaging settings to find outcomes which make the largest Fisher information ma-

trix possible. Some work has already been done to analyze how exposure times influence these

measurements using a distortion operator which related accepted settings to distorted settings.
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Appendix A

Supplemental Figures

This supplemental information contains additional details from Chapter one about the speci-

fication and optimization of model-controller pairs as well as supplemental figures to support the

minor results that are discussed in the main manuscript.

A.0.1 Formulation and Optimization of Feedback Control Designs

The general tensor form of the FSP under state control can be written:

∂P i

∂t
= ([A0]

i
j + [Bu]ij)P

j. (A.1)

For the partial observation situation where not all states can be observed, we reformulate the FSP

analysis as:

∂P i

∂t
= (Ai

j +Bi
jmM

m
α vα)P j, (A.2)

where the indices {i, j,m} refer to states in the Markov chain, and index α refers to the distinctly

observable subset of those states that define the control inputs; B is the controller tensor as in

the main text; and v the vector of control signals associated with each distinctly observable state.

The control scheme used (i.e., FAC, PAC, or UAC) is defined u = Mv, where M is a lifting

operator which takes the controller as defined on the observable state space v and lifts it into the

proper dimensions to multiply with the control tensor. For the FAC control scheme, the number of

elements in v matches the total number of states (i.e., u = v) meaning that M simply an identity

matrix. For less than complete observation as in the PAC or UAC schemes, a single element of v

can influence multiple parts of the state space, and M is a tall rectangular matrix that contains only

ones or zeros, and u = Mv describes the light activity in each state, while the lower dimensional

v describes the smaller set of unique values of the control input for distinct observable states. With
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the UAC, the M matrix is represented by the N × 1 matrix filled with only ones and v is a scalar

quantity.

Deriving how P changes with small changes in v at steady state gives

∂Ṗ i

∂un
= 0in = ∂n((A

i
j +Bi

jmM
m
k vk)P j), (A.3)

0in = (Bi
jmM

m
k δkn)P

j + ((Ai
j +Bi

jmM
m
k vk)P j

n, (A.4)

∂P j

∂un
= −[(A+BMv)−1]jiB

i
koM

o
nP

k. (A.5)

Finally, plugging this into the definition for the objective score (Eq. 5 in main text), we have:

∂J

∂vn
=

∂(CjP
j)

∂vn
= CjP

j
,n = −Cj[(A+BMv)−1]jiB

i
koM

o
nP

k. (A.6)

With this expression in hand, v can be optimized by starting at an appropriate P and changing v in

the direction of the negative gradient (−J,n), and then updating the new P. The process continues

iteratively until convergence to a local minimum.

A.0.2 Model Predictive Control

The probabilistic model predictive control (PMPC) uses a simple linear machine to generate

light inputs, u(t), according to

u(t) = max{0, c+ ZP
i
nt(t)}, (A.7)

where P̃nt denotes the random probability distribution of the unobserved cells given the history

of u(τ) for τ ∈ (0, t); the vector c provides the bias of the control signal with one entry for

every possible value of the observed cell’s value; and Z is a matrix which takes Pnt and outputs

adjustments to the controller based on the probabilistic predictions for the unobserved cells. In

this formulation, each row of c and Z represents the deterministic control bias and probabilistic

correction for each state of the observed cell, given the history of the control signal. A heuristic
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optimization was performed on the system to tune the entries of c and Z and then simulating the

process for long time periods. In circumstances where the proposed controller produces a non-

physical negative control signals, the control signal is set to zero. Figure A.1(A and B) shows the

weights of c and Z after joint optimization was performed on the system.

A.0.3 Distribution of Objective Scores

Analyses presented in the main text present the objective score, J in terms of the expected

Euclidean distance from the target state (Eq. 5 in main text). Certain controllers yield high vari-

ability in this distance over time in a single trajectory or if sampled for many different cells at a

specific time point. To analyze this variability, SSA simulations were performed using each set

of controllers and the score at each time point was measured. Histograms of score for time-series

trajectories using the FAC, PAC, and pMPC show a long tail distribution of the score (Fig. A.1C).

These data taken together suggest that the score is often much lower than the expected value, but

the average performance, J , is dominated by rare moments in time where the performance is poor,

causing a large temporary increase in score and raising the average despite overall good perfor-

mance. Small changes to the highly weighted tails can yield better average scores while returning

remarkably similar distributions.

A.0.4 Quantification of Controller Performance for Multiple Cells

We considered a set of five controllers, including the FAC, PAC, and pMPC controllers already

described in the main text in addition to two adhoc controller that use (i) the mean of the FAC

controller over all cells to be driven to the second target state (MFAC):

uMFAC({x1, x2, . . .}, xN) =< uFAC(x1, xi>1) >, (A.8)

and (2) the FAC controller evaluated at the mean of all unobserved cells (FACM):

uFACM({x1, x2, . . .}, xN) = uFAC(x1, < xi>1 >). (A.9)
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Figure A.1: Visualization of pMPC Control Law. (A) Weights of c show that the pMPC tends to increase

the controller when the observed cell is below 20, but tends to decrease the control signal when Pnt is

weighted above 20 and turns off when the observed cell is above 30. (Z) Weights of Z show that the pMPC

optimization preferred to weight the control input down when both the observed cell was above twenty five

and the unobserved cell was near ten. (C) Distribution of scores obtained during time trajectory show that

score over time is a heavy tailed distribution. Although the probability of a high score is low, the score value

itself tends to be vary large and can increase variability in simulations as well as attributing large differences

in score for similar looking distributions.

To quantify the performance of each controller under varying numbers of cells, we generated 32

independent simulations over 99,000 minutes (following a 1,000 minute burn in period) while

sampling every 100 minutes using two, four, eight, and sixteen cells in the second group. The

objective score for each simulation was computed by averaging J over its corresponding trajectory.

The lines depicted shown in Fig. A.2A show the median of the 32 independent objective scores

(colored line) as well as the 25th and 75th percentile (shaded regions) versus the number of cells.

These data in Fig. A.2 show that the performance of the FAC, MFAC, and FACM outperform the

UAC, but this performance decreases as the number of cells increases. However, the PAC and

pMPC performance is independent from the number of cells. These data taken together suggest

that the PAC and pMPC are both better controllers once the number of cells is greater than or

equal to two, and attempts to extend the FAC to work on summary statistics from many cells does

not appear to be effective. Improved FAC controllers would be possible using higher order tensor

control formulations (as opposed to summary statistics described here), but the computational

complexity for the design of such control algorithms is currently prohibitive and left to future

work.
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Figure A.2: Performance of stochastic controllers using varying numbers of cells. (A) median score

of 32 simulations using a set of five controllers in colored lines, with 25% and 75% quartiles shown in the

color-shaded region. (B and C) FAC controller joint distribution of two cells chosen from a set of two (B)

or sixteen (C) cells total, shows rapid degradation of performance when more cells are considered. (D and

E) PAC controller joint distribution of two cells chosen from a set of two (D) or sixteen (E) cells total shows

no change in the joint distribution.
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