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ABSTRACT

CAUSALITY AND CLUSTERING IN COMPLEX SETTINGS

Causality and clustering are at the forefront of many problems in statistics. In this dissertation,

we present new methods and approaches for drawing causal inference with temporally dependent

units and clustering nodes in heterogeneous networks. To begin, we investigate the causal effect

of a timeout at stopping an opposing team’s run in the National Basketball Association (NBA).

After formalizing the notion of a run in the NBA and in light of the temporal dependence among

runs, we define the units under study with careful consideration of the stable unit-treatment-value

assumption pertinent to the Rubin causal model. After introducing a novel, interpretable outcome

based on the score difference, we conclude that while comebacks frequently occur after a run,

it is slightly disadvantageous to call a timeout during a run by the opposing team. Further, we

demonstrate that the magnitude of this effect varies by franchise, lending clarity to an oft-debated

topic among sports’ fans.

Following, we represent the known relationships among and between genetic variants and

phenotypic abnormalities as a heterogeneous network and introduce a novel analytic pipeline to

identify clusters containing undiscovered gene to phenotype relations (ICCUR) from the network.

ICCUR identifies, scores, and ranks small heterogeneous clusters according to their potential for

future discovery in a large temporal biological network. We train an ensemble model of boosted

regression trees to predict clusters’ potential for future discovery using observable cluster features,

and show the resulting clusters contain significantly more undiscovered gene to phenotype relations

than expected by chance. To demonstrate its use as a diagnostic aid, we apply the results of the

ICCUR pipeline to real, undiagnosed patients with rare diseases, identifying clusters containing

patients’ co-occurring yet otherwise unconnected genotypic and phenotypic information, some

connections which have since been validated by human curation.
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Motivated by ICCUR and its application, we introduce a novel method called ECoHeN (pro-

nounced “eco-hen”) to extract communities from heterogeneous networks in a statistically mean-

ingful way. Using a heterogeneous configuration model as a reference distribution, ECoHeN iden-

tifies communities that are significantly more densely connected than expected given the node

types and connectivity of its membership without imposing constraints on the type composition of

the extracted communities. The ECoHeN algorithm identifies communities one at a time through

a dynamic set of iterative updating rules and is guaranteed to converge. To our knowledge this is

the first discovery method that distinguishes and identifies both homogeneous and heterogeneous,

possibly overlapping, community structure in a network. We demonstrate the performance of ECo-

HeN through simulation and in application to a political blogs network to identify collections of

blogs which reference one another more than expected considering the ideology of its’ members.

Along with small partisan communities, we demonstrate ECoHeN’s ability to identify a large,

bipartisan community undetectable by canonical community detection methods and denser than

modern, competing methods.
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Chapter 1

Introduction

In this dissertation, we present new methods and approaches for drawing causal inference

with temporal dependence and clustering nodes in complex network. Particularly, in Chapter 2

we estimate the causal effect of a timeout at stopping an opposing run in the National Basketball

Association (NBA) while accounting for the temporal dependence among runs. In Chapter 3, we

introduce an analytic pipeline for the identification of clusters containing future gene to phenotype

relations in a very large, temporal biological network using the clusters’ relations and attributes.

Finally, in Chapter 4, we introduce an iterative hypothesis testing procedure called ECoHeN to

extract communities of nodes from heterogeneous networks in a statistically meaningful way. We

begin with an informal introduction to network data and terminology in Section 1.1 before a thor-

ough introduction to each respective chapter in Sections 1.2, 1.3, and 1.4.

1.1 Network Data

Complex phenomena, from biological systems (Nacu et al., 2007) to world trade patterns

(García-Algarra et al., 2019), are often modeled as networks (i.e., graphs), which consist of en-

tities (i.e., nodes), connections between them (i.e., edges), and known characteristics about the

entities and the connections (i.e., node and edge attributes). Considering the generalizablity of net-

works, many disciplines have devoted significant efforts to the analysis and application of network

models, including statistics, physics, computer science, biology, and the social sciences. While

following chapters will provide formal notation and definitions, we reserve this subsection as an

informal introduction to network data and terminology using four real world networks of increas-

ingly complexity.

Suppose we were interested in the relationships among NBA players while on the basket-

ball court. Each network in Figure 1.1 characterizes the passing patterns of the 2017-18 Denver

Nuggets basketball team in various ways and with increasing complexity, keeping only players
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(a) Simple, homogeneous network. (b) Simple, heterogeneous network.

(c) Heterogeneous multigraph. (d) Heterogeneous multigraph with attributes.

Figure 1.1: Four real world networks depicting the passing patterns of the 2017-18 Denver Nuggets basket-
ball team. Each node represents a Nuggets player with at least 100 recorded passes in the 2017-18 basketball
season. The existence of an edge between two players signifies that at some point during the season, the ball
was successfully passed between the two players. Each network is of increasing complexity, including (a)
a simple, homogeneous network, (b) a simple, heterogeneous network, (c) a heterogeneous multigraph, and
(d) a heterogeneous multigraph with a node and edge attribute. In panels (c) and (d), the weight of connec-
tion (indicated by the width of the line) corresponds to the number of passes between pairs of players. In
panel (d) the size of the node is proportional to a player’s height while an edge between players is solid if
the pair are compatriots and dashed otherwise.

involved in at least 100 passing plays in the season. In each network, the professional basketball

players are represented as the nodes of the network (i.e., circles), and two players are connected

via an edge (i.e., a line) if the ball was successfully passed between the players during the season.

2



Figure 1.1a is an example of a homogeneous network since each node is of the same type: a bas-

ketball player. Noting that a basketball player’s role and function on the basketball court is largely

defined by his assigned position, one may wish to treat the network as a heterogeneous network,

as in Figure 1.1b, where each player is distinguished by his designated position. In heterogeneous

networks, each node is assigned a single node type such as center, forward, or guard which can be

visualized as the color of the node and serves to distinguish the nodes’ function in the network.

Notice, there are characteristically more edges emanating from nodes representing guards, largely

because guards tend to be the best ball handlers. By coloring nodes to differentiate their function in

a network, edges take on inherently different meaning, reflecting the relationship between specific

types of players rather than just between players, in general.

The edges in Figures 1.1a and 1.1b characterize the existence (or lack thereof) of a pass

between two players in the given season. These networks are deemed simple since (1) no two

nodes have more than a single edge between them (i.e., no multi-edges), and (2) no node has

an edge that connects it with itself (i.e., no loops). In reality, there are often numerous passes

between pairs of players in a given season, implying the existence of multiple edges between pairs

of players if an edge is defined as a pass between two players. Figure 1.1c represents the number

of passes between a pair of players by the relative width of connection between them. In this

case, the network in Figure 1.1c would be deemed a heterogeneous multigraph since multi-edges

are permitted. The degree of a node is the number of edges emanating from the node, formally

called the number of incident edges. While the interpretation of degree depends on the network

considered, in this case, the degree of a node characterizes the number of passing plays in which a

player was involved.

Players in the NBA tend to be particularly tall and hail from across the globe. Like a player’s

weight or net worth, height is a measurable feature of each player, ergo a node attribute. Like

the number of years players have been teammates, whether players are compatriots is a measur-

able characteristic about a pair of players, ergo an edge attribute. Figure 1.1d is a heterogeneous

multigraph with a node and edge attribute. In particular, the size of each node is proportional to

3



each player’s height. Furthermore, passes are distinguished according to whether the players are

compatriots (solid) or not (dashed). Similar to Figure 1.1c, the width of the edge corresponds to

the number of passes between the two players.

Notably, each network depicted in Figure 1.1 is undirected since the edges are bidirectional.

If one wanted to make a distinction between the player who threw the ball and the player who

caught the ball during a passing play, then the edges would be directional much like the path of

the ball. Adding direction to the edges in Figure 1.1 would make them directed passing networks.

Rather than consider the number of passing plays each player is involved in, we would consider

the number of throws and catches each player has in the directed passing network, i.e., a node’s

out- and in-degree, respectively.

1.2 Causal Effect of a Timeout in the NBA

In the summer of 2017, the National Basketball Association (NBA) reduced the number of

total timeouts, along with other rule changes, to regulate the flow of the game. With these rule

changes, it becomes increasingly important for coaches to effectively manage their timeouts. Un-

derstanding the utility of a timeout under various game scenarios, e.g., during an opposing team’s

run, is of the utmost importance. There are two schools of thought when the opposition is on a run:

(1) call a timeout and allow your team to rest and regroup, or (2) save a timeout and hope your

team can make corrections during play. This chapter investigates the credence of these tenets using

the Rubin causal model framework to quantify the causal effect of a timeout in the presence of an

opposing team’s run. Too often overlooked, we carefully consider the stable unit-treatment-value

assumption (SUTVA) in this context and use SUTVA to motivate our definition of units in light of

temporal dependence among runs. To measure the effect of a timeout, we introduce a novel, inter-

pretable outcome based on the score difference to describe broad changes in the scoring dynamics.

This outcome is well-suited for situations where the quantity of interest fluctuates frequently, a

commonality in many sports analytics applications. We conclude from our analysis that while

comebacks frequently occur after a run, it is slightly disadvantageous to call a timeout during a run

4



by the opposing team and further demonstrate that the magnitude of this effect varies by franchise.

We demonstrate that the inferential conclusions herein are robust to various run definitions but may

be sensitive to unmeasured or unobserved confounders.

1.3 Identification of Clusters Containing Undiscovered Rela-

tions

Due to gaps in scientific knowledge, most patients with unusual medical conditions never

get a diagnosis. While biological networks have long been used to infer new connections and

improve diagnostic reach, rarely are differences between nodes in the network accounted for in

the process. We introduce a novel, analytic pipeline for the identification of clusters containing

undiscovered gene to phenotype relations in a large, temporal heterogeneous network composed

of human genes, abnormal phenotypes, and the relations among and between them. Employing

a combination of canonical and modern, node attribute-aware network clustering algorithms, we

identify a set of small, heterogeneous clusters from the network at different snapshots. We show

the resulting clusters contain significantly more undiscovered gene to phenotype relations than ex-

pected by chance. We introduce a metric to score these clusters according to their potential for

future discovery and train an ensemble model of boosted regression trees to relate this quantity

for contemporary clusters to observable cluster attributes. Using this model to rank and prior-

itize clusters for practitioners, we demonstrate the pipeline’s ability to identify and recommend

novel clusters containing the co-occurring yet otherwise unconnected genotypic and phenotypic

information of real patients with undiagnosed diseases. The ranked clusters of the contemporary

network can be used as a diagnostic aid or as a scope with which bioinformatic researchers can

direct resources and funding for future studies and investigations.
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1.4 Extracting Communities from Heterogeneous Networks

Community discovery is the general process of attaining assortative communities from a net-

work: collections of nodes that are densely connected within yet sparsely connected to the rest

of the network. While community discovery has been well studied, few such techniques exist for

heterogeneous networks, which contain different types of nodes and possibly different connectiv-

ity patterns between the node types (see Figure 1.1c, for example). In this chapter, we introduce

a framework called ECoHeN, which extracts communities from a heterogeneous network in a

statistically meaningful way. Using a heterogeneous degree configuration model (HDCM) as a

reference distribution, ECoHeN identifies communities that are significantly more densely con-

nected than expected given the node types and connectivity of their membership. Specifically, the

ECoHeN algorithm extracts communities one at a time through a dynamic set of iterative updating

rules, is guaranteed to converge, and imposes no constraints on the type composition of extracted

communities. To our knowledge this is the first discovery method that distinguishes and identifies

both homogeneous and heterogeneous, possibly overlapping, community structure in a network.

We demonstrate the performance of ECoHeN through simulation and in application to a political

blogs network to identify collections of blogs which reference one another more than expected

considering the ideology of their members.
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Chapter 2

The Causal Effect of a Timeout at Stopping an

Opposing Run in the NBA

2.1 Introduction

In game five of the 2019 National Basketball Association (NBA) finals, the Toronto Raptors’

Kawhi Leonard scored ten straight points to give the Raptors a 103-97 lead over their opponents,

the Golden State Warriors. The Toronto Raptors’ coach, Nick Nurse, called a timeout immediately

after Kawhi’s last basket with three minutes and five seconds left on the clock. Following the time-

out, the Toronto Raptors’ offense became stagnant, scoring only two points during the remainder

of the game, while the Warriors scored nine. The Golden State Warriors won 106 to 105. After

the game, Nick Nurse was chastised for his decision to call a timeout (Boren, 2019; Curtis, 2019;

Lauletta, 2019). ESPN commentator Stephen A. Smith even blamed Nick Nurse for the Raptors’

loss, citing his timeout as the disturbance to the Raptors’ run, i.e., when one team (Raptors) has

significantly outscored the other team (Warriors) in a short period of time (ESPN, 2019). At the

heart of this commentary is the belief that timeouts cause a disruption to a team that is on a run,

i.e., scoring during a run. If true, this would be valuable information for coaches who must choose

when and under what circumstances to call a timeout.

The NBA is pressuring coaches to call fewer timeouts. In the summer of 2017, the NBA

reduced the total number of timeouts from 18 to 14, among other rule changes, to regulate the

flow of the game (Aschburner, 2017; Pina, 2019). With fewer timeouts, it becomes increasingly

important for coaches to effectively manage their timeouts. Thus, understanding the utility of a

timeout under various in-game scenarios, e.g., during an opposing team’s run, is of the utmost

importance.
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Whether to call a timeout during an opposing run is highly debated among professional

coaches. There are two schools of thought when the opposition is on a run: (1) call a timeout

and allow your team to rest and regroup, or (2) save a timeout and hope your team can make the

needed corrections during play. According to Yousuf (2018), coach Rick Carlisle of the Indiana

Pacers and recently with the Dallas Mavericks is known for calling timeouts in “an obvious situa-

tion, like stopping a run by the opponent ...” He tends to coach by the first philosophy. On the other

hand, coach Mike D’Antoni, most recently of the Houston Rockets, tends to refrain from calling

a timeout, citing his trust in his team’s ability to “break runs up with their stellar plays” (Yousuf,

2018). He tends to coach by the second philosophy. This chapter investigates the credence of

these two coaching philosophies by estimating the causal impact of a timeout in the presence of an

opposing team’s run.

Runs are largely studied within the context of the hot hand phenomenon, or the belief that a

player’s current shooting success is indicative of their short-term, future shooting success (Avugos

et al., 2013; Gilovich et al., 1985; Koehler and Conley, 2003; Miller and Sanjurjo, 2018). The

literature surrounding the efficacy of timeouts in the NBA exists but is relatively sparse. Saavedra

et al. (2012) define a timeout factor to gauge team performance after a timeout relative to their

average, allowing the authors to study the relationship between the timeout factor and the scoring

dynamics. They found the timeout factor played a minor role in the scoring dynamics. Permutt

(2011) studied the efficacy of timeouts at stopping an opposing team’s momentum, as defined by

six unanswered points. To estimate the effectiveness of timeouts in these situations, the short-term

performance of teams when a timeout was called was compared to that when a timeout was not

called. This simple comparison fails to account for self-selection bias: bias attributed to the coach’s

right to choose when to call, or not call, a timeout.

Technological advances such as player and ball tracking cameras/radar are producing vast

quantities of previously unimaginable data. This necessitates that professional teams and re-

searchers must increasingly rely on statistics to better understand the nature of the game. For exam-

ple, Franks et al. (2015) apply spatial-temporal methodology to player movement data in order to
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create advanced defensive metrics in the NBA. Deshpande and Evans (2020) use non-parametric

Bayesian analysis and imputation methods to track how completion probability evolves through

receivers’ routes in the National Football League (NFL). In addition to player movement analyses,

Zimmerman et al. (2019) apply outline analysis to make inference on the geometric attributes of

the called strike zone in Major League Baseball (MLB). Furthermore, a larger comparison of team

strength within and competitiveness across sports leagues is estimated using Bayesian state-space

modeling in Lopez et al. (2018). In this chapter, we leverage the vast play-by-play data provided

by the NBA to estimate the causal impact of a timeout, an oft-debated topic.

Experimental studies within sports, however, are largely impossible due to the importance

placed on each coaching decision. At the same time, sports fans, commentators, and analysts enjoy

questioning the causal impact of such decisions. Examples include questioning the causal effect of

going for it on fourth down in the NFL (Yam and Lopez, 2019), clearing the puck in the National

Hockey League (Toumi and Lopez, 2019), or taking a pitch during a 3-0 count in MLB (Vock and

Vock, 2018). When experiments are impractical or impossible, causal inference, a field dedicated

to estimating causal effects from observational data, is used. In the context of the NBA, Assis et al.

(2020) estimate the causal effect of a timeout on team performance through scoring dynamics

before and after a timeout. They concluded timeouts have no effect on teams’ performances, yet

they considered all timeouts in a game. We restrict our analysis to include only those timeouts

called in response to a run. To our knowledge, no study has explored the effectiveness of timeouts

at stopping an opposing run through a causal lens.

In this Chapter, we seek to estimate the causal effect of a timeout at stopping an opposing

run. We start by describing the data and formalizing the notion of a run in Section 2.2. In Section

2.3, we review the Rubin causal model and carefully define the units with a discussion of the

appropriateness of the stable unit-treatment-value assumption (SUTVA) in this context. We then

describe the matching framework and results before introducing a novel outcome metric. Finally,

in Section 2.4, we discuss the causal estimate, as well as provide estimates for the causal effect by
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franchise. In Section 2.5, we investigate the sensitivity of results to alternative run definitions and

to unmeasured confounders. We conclude with a discussion in Section 2.6.

2.2 Data and Notation

2.2.1 Data

The NBA provides access to a wealth of information related to the performance of teams and

individuals, as well as game-specific data, through the league’s website (NBA, 2020). A popular

R (R Core Team, 2020) package, nbastatr (Bresler, 2019), allows programmatic access to

the NBA’s data via the league’s Application Programming Interface (API). Using these tools, we

acquired play-by-play data for each regular season game played during the 2017-2018 and 2018-

2019 seasons. There are 30 teams in the NBA and every team plays 82 regular season games for a

total of 1,230 unique games. All the events that occur during a game are recorded and are exposed

through the API. In total, the entire play-by-play data set from the 2017-18 and 2018-19 seasons

consists of 1,144,461 events, each described by 18 variables. On average, there are approximately

465 time-ordered events per game (standard deviation 33.9).

An event in the play-by-play data set is any time-stamped action that is recorded by the score-

keeper during the game. For example, events may include a made (or missed) field goal, a rebound

after a missed field goal (offensive or defensive), a foul, a timeout, among others. Specific events

from the Houston Rockets at Denver Nuggets game on February 1, 2019 include James Harden

making a three point shot approximately six minutes into the first period “Harden 25’ 3PT Jump

Shot (10 PTS)”, Nikola Jokic grabbing a defensive rebound with three minutes left in the fourth

period “Jokic REBOUND (Off:4 Def:0),” and as is of key importance to this work, the Nuggets

calling a fourth-period timeout immediately after another James Harden three pointer “NUGGETS

Timeout: Regular (Full 5 Short 0).”

In this analysis, we term a play to consist of a set of simultaneous events, as tagged by the

play clock. For example, when a foul is committed, two free throws may follow. At the time of

the foul, the clock is stopped, and the fouled player attempts his two free throws. The foul and
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the subsequent free throws occur at the same point in time in the game since the clock is stopped.

The foul along with the two free throws are three events which make up one play, according to our

definitions.

We simplify the data set by recording each timeout and reducing each play to be represented

by a single event. Specifically, we retain the last recorded scoring event in the play, unless the play

contained no scoring events, in which case we retain the last event in the play. In this process of

removing unnecessary events, we create an indicator variable associated with each play to docu-

ment whether a timeout was called. In total, there were 778,828 plays in the 2017-18 and 2018-19

NBA seasons.

2.2.2 Notation

The principle question in this investigation is whether or not a timeout has an effect on a game

following a “run,” where a run, colloquially, is when one team significantly outscores the other in

a short amount of time. Particularly, we are interested in the timeout’s effect on the team that is not

“on the run” (i.e., not scoring during the run). To address this question, we first formally define a

run in the context of the data available through the NBA’s API.

Let t represent the time in minutes in an NBA game, t ∈ [0, 48], and denote the home team

score and the away team score as h(t) and a(t), respectively. Note that we ignore over-time in

this analysis. Define the score difference at time t, ∆(t), as the home score minus the away score:

∆(t) = h(t)− a(t).

Critical to our subsequent development, we define a run at time t to be a change in the score

difference of at least nine points within the prior two minutes of game time, formally called the

pre-treatment window. Therefore, we characterize a run by the change in the score difference (run

point total) and the time required to realize that change (run duration).
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Formally, we define the run duration at time t, denoted δt, as the shortest amount of time taken

to attain the greatest net change in the score difference to time t in the two minutes prior to time t:

δt = min

{
argmax

d

(
|∆(t)−∆(t− d)| : 0 < d ≤ 2

)}
. (2.1)

The signed run point total at time t, s(t), is taken to be the most extreme net change in the score

difference if a run has occurred. That is,

s(t) =





∆(t)−∆(t− δt), |∆(t)−∆(t− δt)| ≥ 9

NA, otherwise

. (2.2)

If s(t) > 0, then the home team is on the run at time t, and conversely, the away team is on the

run at time t if s(t) < 0. The run point total, r(t), is subsequently defined as the magnitude of

the signed run point total, r(t) = |s(t)|. The sign of a signed run point total lends clarity to which

team is on the run at time t, a necessary component in defining an interpretable outcome. Of the

26,052 plays involving a timeout, 1,149 of them were identified as runs.

To illustrate the concepts defined above, consider the March 2, 2019 game between the New

Orleans Pelicans and the Denver Nuggets, played in Denver, Colorado. The score difference for

this game is given in Figure 2.1a and points in time meeting the criteria of a run are indicated in

the rug of the plot, colored by the team on the run.

As expected, the majority of plays throughout the game are not runs, and hence the signed

run point total, s(t), is NA during that time. During the first period of this game, there are three

time intervals when the run criteria are met and two such time intervals in the third period. For the

purposes of this analysis, we define the opposing team as the team on the run at time t and the BiT

(big trouble) team as the team which may seek to benefit from a timeout at time t.

Consider the first run of the game, highlighted in Figure 2.1b. At roughly two and a half

minutes into the game, the Nuggets went on a nine point run in 1.76 minutes. Therefore, at t =

2.65, the run duration is δ2.65 = 1.76, where the signed run point total is s(2.65) = 9, implying a
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Figure 2.1: Panel (a) shows the score difference over the course of the game, and panel (b) zooms in to
focus on the first six minutes of the game. The horizontal bars (rug) at the bottom of each plot indicate
intervals of time when the run criteria are satisfied, colored by the team on the run (opposing team). If the
score difference has a positive trajectory immediately prior to the rug, then the home team (Nuggets) was
the opposing team, and if it has a negative trajectory, the away team (Pelicans) was the opposing team. The
vertical line at 2.65 minutes in the panel (b) denotes a timeout by the Pelicans, when the run point total,
r(2.65), was nine points and the run duration, δ2.65, was 1.76 minutes.

run point total r(2.65) = 9 (see Figure 2.2). At this time, the Pelicans may (or may not) choose

to call a timeout in an effort to thwart the Nuggets’ run, necessarily defining the Nuggets as the

opposing team and the Pelicans as the BiT team.

To further clarify the definition of the run duration in (2.1), consider Figure 2.2a where the

greatest net change in the score difference to time t = 2.65 is attained on the interval between

1.76 and 2 minutes prior to t = 2.65 when the score remains constant. Any point in time within

this interval would satisfy the requirements of d in (2.1); however, the outer minimum operation

ensures we consider the least amount of time it took the Denver Nuggets to achieve a nine point

swing in the score difference, the greatest net change in the score difference to time t = 2.65 in the

pre-treatment window.

Of the 778,828 plays discussed above, 31,081 are classified as a run play (i.e., play occurring

when the run criteria are satisfied) and 26,052 involved a timeout. There were 1,149 run plays with

a timeout and 29,932 run plays without a timeout among the 31,081 run plays.
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2.3 Methodology

2.3.1 Rubin Causal Model

To isolate the causal effect of a timeout, we would ideally perform a randomized experiment.

In the context of our problem, this could be as easy as flipping a coin on the bench to determine

whether or not a team should call a timeout during an opposing team’s run. However, this is

obviously impractical due to the importance of each NBA game and the emphasis placed on each

coaching decision therein. Thus, we consider how we can leverage the existing observational data

to isolate the causal effect of a timeout.

The obvious concern when using observational play-by-play data is that game situations when

timeouts are called are likely fundamentally different than game situations when timeouts are not

called, bias attributed to the coach’s right to choose when to call a timeout. To tackle this type

of problem in general, Rubin’s causal inference framework (Rubin, 1974, 1976, 1977) aims to

restructure the data to make it most similar to that which might have been observed from a ran-

domized experiment. This restructuring attempts to remove discrepancies between the distributions

of covariates of the timeout (“treated”) and no timeout (“control”) groups, commonly referred to

as covariate imbalance. For example, suppose we identify two instances when an opposing team

was on a run: one where a timeout was called and one where a timeout was not called. To fairly

compare the subsequent impacts on the game based on these actions, we must account for which

team is in possession of the basketball. Unsurprisingly, in instances when a team called a timeout,

that team had possession 84.9% of the time, whereas for plays when a team did not call a timeout,

that team had possession only 69.8% of the time. This is to be expected as a team can only call a

timeout when they have possession, or there is a break between plays, i.e., a dead ball. However, it

is important to consider this covariate, among others, when comparing subsequent changes in the

game score as it is far less likely for the score to change in a team’s favor in the minute immediately

following the timeout, or no timeout, if that team does not initially have the ball.

We consider a matching approach to address the covariate imbalance between runs that in-

clude a timeout and runs that did not include a timeout and, hence, reduce bias in the estimation
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of the treatment effect (Rosenbaum and Rubin, 1985; Stuart, 2010). Effectively, for each run with

a timeout, henceforth denoted RwT, we find a run without a timeout, henceforth denoted RwoT,

that most closely matches the in-game situation of the RwT. To formally place this effort in the

causal inference framework, we briefly review the standard causal modeling notation as it relates

to our specific problem. Let Ti be a binary treatment indicator variable, equal to 1 if a timeout is

called for the ith unit (defined in Section 2.3.2) and 0 if no timeout is called. Further, let Yi be

the observed outcome for unit i (defined in Section 2.3.5) and Xi be the set of covariates for unit i

(introduced in Section 2.3.3).

The potential outcomes model expresses the observed outcome Yi as

Yi =





Yi(0), Ti = 0

Yi(1), Ti = 1

(2.3)

where Yi(1) and Yi(0) denote the potential outcome when a timeout and no timeout is called, re-

spectively. If we observed both potential outcomes for all units, we would naturally estimate the

average effect of a timeout as the average difference between the outcome with a timeout minus

that without, E[Yi(1) − Yi(0)]. Unfortunately, the pair (Yi(0), Yi(1)) is not directly observable;

instead, we observe (Yi, Ti). Under random treatment assignment, we could estimate the expected

outcomes under timeouts and no timeouts with empirical averages. However, as previously men-

tioned, there may be clear differences between the situations when a timeout is called and situations

when a timeout is not called, since coaches self-select to enter the treated group. We intentionally

narrow our focus here to the average causal treatment effect on the treated (ATT), denoted

ATT = Ex|T=1

[
E [Yi(1)− Yi(0) | Ti = 1, Xi = x]

]
. (2.4)

This is the estimand for the average treatment effect for those plays where a coach chose to call a

timeout and motivates the matching framework.
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In order for ATT to be estimable, strong ignorability must hold (Heckman et al., 1998, 1997;

Smith and Todd, 2005). This requires two assumptions: conditional independence and positivity.

Further, the applicability of the Rubin causal model is founded on the stable unit-treatment-value

assumption (SUTVA), which states that (1) there are no hidden variations of treatments (i.e., only

one form of a timeout), and (2) there is no interference among the units (i.e., timeout applied to

one unit does not affect the outcome for another unit) (Imbens and Rubin, 2015). We explore these

assumptions as they relate to our data in subsequent sections.

2.3.2 Treatments and Controls: Defining the Units

There are four criteria required of the jth play occurring at time tj to be considered a unit in

our sample: (1) a team is on a run, (2) there is no timeout in the pre-treatment window, (3) there

is no timeout in the post-treatment window, and (4) the pre-treatment and post-treatment windows

are not truncated by the end of the period.

We define the pre-treatment window for the jth play as the two-minute interval prior to time

tj (see Figure 2.2a) and the post-treatment window as the one-minute interval of time following

tj (see Figure 2.2b). Using the pre-treatment window, we assess whether a run has occurred at

time tj , while the post-treatment window is used to measure the impact of the intervention at time

tj (see Section 2.3.5). When one of these intervals contains the beginning or end of a period, the

interval is said to be truncated, and the play is disregarded. If a play meets criteria (1) - (4), the

play is included in our sample and deemed a treatment unit if a timeout is called at tj and a control

unit if no timeout was called at tj .

Therefore, associated with each unit is a three-minute interval of game time used to assess

whether a run occurred at tj , characterize whether or not a timeout was called at tj , and measure

the effect of the intervention at tj . When these time intervals overlap, we need to focus on potential

violations of the SUTVA. As such, criteria (2) and (3) in the unit definition above are aimed at

mitigating serious violations while maintaining a reasonable control pool for matching on time-

dependent covariates.
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Figure 2.2: In panel (a), the larger dashed box indicates play occurring in the pre-treatment window of the
play of interest denoted by the dashed, vertical line. The smaller shaded box marks the shortest interval of
time contained within the pre-treatment window which captures the most extreme net change in the score
difference up to the play of interest. If the change in the score difference is greater than 9 in absolute value,
then the play of interest is considered a run, the magnitude of the score change is the run point total, and the
length of the interval marked by the shaded box is the run duration. Any play occurring in the rug of the plot
is considered a run play, colored by the opposing team: the team on the run. In panel (b), the shaded box
indicates play occurring in the post-treatment window of the play of interest. The post-treatment window
is the interval of time used to compute the outcome of the intervention occurring at the time of the play of
interest.

In the following two subsections, we describe all possible violations of SUTVA in the context

of our problem, and discuss which are resolved and unresolved by criteria (2) and (3). In discussing

these criteria in detail, consider a time t when the run criteria are met. If a timeout is called

at time t, this play is potentially a treatment and if no timeout is called at time t, this play is

potentially a control. However, there are a number of reasons why this play might be eliminated

from consideration for our study.

Criterion 2: Timeout in the Pre-treatment Window

The pre-treatment window is used to assess whether the play at t is considered a run play or

not. The existence of a timeout in the pre-treatment window suggests heterogeneous versions of

the treatment. For example, if there was no timeout at t, then the play would be under consideration

as a potential control. However, the play should not seriously be considered a control unit because
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the coach recently conferred with his team. Doing so would violate the assumption of no hidden

variation among control units. Furthermore, if there was a timeout at t, then the coach will have

talked to his team at least twice in a short time window. It is fathomable having back-to-back

timeouts would be more effective at stopping a run, and we would expect different outcomes than

that with a single timeout. This too would be a violation of the assumption of no hidden variation

among treated units. In either case, the play at time t is removed to preserve the assumption of no

hidden variation.

Criterion 3: Timeout in the Post-treatment Window

The post-treatment window is used to measure the impact of the treatment at time t. The ex-

istence of a timeout during this time obfuscates the effect of the intervention at t. We interpret this

as a second intervention. For example, suppose the BiT team scores six points quickly after time t

and the opposing team calls a timeout. In this case, the outcome for the unit at time t is possibly

truncated by the subsequent intervention. This would be a direct violation of the assumption of no

interference if the latter timeout is a unit in the study. As such, the play at time t is removed from

consideration.

Final Units

After invoking criteria (1) - (4), we examine the distribution of the covariates by treatment

group (see Appendix A.8). We remove units with a moneyline larger than 2,400 in absolute value

to reasonably justify the positivity assumption. After removal, there remain 4,684 runs in the

sample, 834 of which are RwTs and 3,850 of which are RwoTs, the final units for our study.

The Chicago Bulls have the most RwTs in the analysis set with 41, whereas the Oklahoma City

Thunder and the San Antonio Spurs are tied for the fewest with 19. The median number of RwTs

per franchise is 27.5 with an interquartile range of 8.5. On the other hand, the most and fewest

number of RwoTs in the analysis set belong to the Los Angeles Clippers and Denver Nuggets with

257 and 56, respectively. The median number of RwoTs per franchise is 109.5 with an interquartile
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Table 2.1: List of covariates with descriptions. The Las Vegas spread, over-under, and moneyline are
proxies for the teams’ comparative skill and offensive/defensive abilities. The distributions of each covariate
by treatment group are provided in Appendix A.8.

Covariates Description

Big Trouble (BiT) Team The team which may seek to benefit from a timeout during
an opposing run.

Opposing Team The team on the run, heavily outscoring the BiT team in a
short amount of time.

Run Point Total The magnitude of the most extreme change in the score dif-
ference in the pre-treatment window. This is denoted r(t).

Run Duration The shortest amount of time taken to attain the most extreme
change in the score difference to time t. This is denoted δt.
Equivalently, this is the shortest amount of time taken to
attain the run point total.

Time Left The amount of time left in the game (in minutes). This is
equivalent to 48− t.

Win Probability The BiT team’s probability of winning the game at the time
of treatment according to the NBA statistics API.

Signed Score Difference
(SSD) at Beginning of Run
(BOR)

The score difference (expressed as the BiT team score
minus opposing team score) when the run began. Pos-
itive (negative) values indicate the BiT (opposing) team
was leading when the run began. This is equivalent
to − sgn(s(t))∆(t− δt).

Signed Score Difference
(SSD) at End of Run (EOR)

The score difference (expressed as the BiT team score mi-
nus opposing team score) at the time of treatment. Pos-
itive (negative) values indicate the BiT (opposing) team
was leading at the time of treatment. This is equivalent to
− sgn(s(t))∆(t).

Possession Indicator Indicator for ball possession at the time of treatment, equal
to 1 if the BiT team has possession and 0 otherwise.

Home Indicator Indicator for home court advantage, equal to 1 if the BiT
team is home and 0 otherwise.

Week in Season The week in the season.
Over/Under The Las Vegas over-under prior to the game.
Spread The Las Vegas spread (expressed as the BiT team score mi-

nus opposing team score) prior to the game.
Moneyline The Las Vegas moneyline prior to the game, assuming a

negative value if the BiT team is favored and a positive
value otherwise.
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range of 76.5. The number of units is also broken down by period in the game and presented in

Table 2.2.

Table 2.2: Number of runs with a timeout (RwT) and runs without a timeout (RwoT) by period present in
the analysis set.

First Second Third Fourth Total
Runs with a Timeout 266 195 231 142 834
Runs without a Timeout 1,078 1,026 1,154 592 3,850
Total 1,344 1,221 1385 734 4,684

More details regarding the number of observations remaining after each criterion is applied

are provided in Appendix A.4 along with a summary of the data preparation discussed herein.

While the criteria account for the major violations to the SUTVA, there remain minor violations

that are not addressed by our criteria. A full expose of these situations is given in Appendix A.1.

2.3.3 Propensity Score Model

The strong ignorability assumption must hold in order to estimate the average treatment effect

on the treated. Since there are many factors which influence a coach’s decision to call a timeout,

we utilize a propensity score model to estimate the probability of calling a timeout in each game

scenario and use it in matching treated units to control units. After careful consideration of avail-

able covariates for a game situation, those listed in Table 2.1 are included in the propensity score

model as potentially predictive of a coach’s decision to call a timeout.

We estimate the probability that the BiT team calls a timeout conditioned on the pre-treatment

covariates using a generalized additive model (GAM) (Hastie and Tibshirani, 1990). To gauge

the predictive validity of the model, we partition the units randomly into a training set (70%)

and a testing set (30%). We estimate the model using the training set and assess its predictive

accuracy on the test set. Averaging over 1,000 Monte Carlo splits, the proportion of classified

treatments (controls) that are treatments (controls) is 0.612 (0.847), indicating a reasonable model
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for predicting the treatment group to which each unit belongs. The estimated propensities on the

entire set of units are provided in Figure 2.3a as evidence for covariate imbalance between treated

and control units. More details regarding the propensity score model can be found in Appendix

A.5.

Figure 2.3: Panel (a) shows that the propensity to call a timeout, estimated using the pre-treatment covariates
in Table 2.1, differs between the treated (timeout) and control (no timeout) groups. This signifies significant
covariate imbalance between the groups, which impedes the ability to compare them directly. Panel (b)
shows the distribution of propensity scores after matching are quite similar.

2.3.4 Matching

In seeking to calculate the treatment effect, the naïve approach would be to develop an out-

come of interest and calculate the difference in means between the treated units and the control

units identified in Section 2.3.2. As seen in Figure 2.3a and discussed in Section 2.3.1, game sit-

uations when timeouts are called are fundamentally different from when timeouts are not called.

To mitigate the ill effects of self-selection bias, we employ a matching procedure with propensity

scores (Lopez and Gutman, 2017; Rosenbaum and Rubin, 1983; Stuart, 2010).

Two common approaches are generally used to balance covariates: matching on the distance

between the covariate vectors, such as Mahalanobis distance, or matching based on the estimated

propensity scores. Here we employ a hybrid approach introduced by Diamond and Sekhon (2013)

that matches based on the distance between the covariate vectors and the propensity scores through
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minimization of a generalized version of Mahalanobis distance (GMD). In this approach, the GMD

has a weight parameter, and the weights of the covariates and propensity score are chosen to

minimize the largest individual discrepancy using p-values from Kolmogorov-Smirnov tests and

paired t-tests. This estimation procedure is implemented in the Matching package in R using

a genetic search algorithm (Sekhon, 2011). Details regarding the function arguments used can be

found in Appendix A.3.

In practice, every observation in the treated group is matched to an observation in the group

of potential controls in a one-to-many fashion. That is, a potential control can feasibly serve as the

control for more than one treatment. As an example, the identified match for the treated unit in

Figure 2.1 is a play from February 06, 2019 when the Washington Wizards played the Milwaukee

Bucks in Milwaukee. The identified match featured a run of nine points attained in 1.73 minutes.

At the time of treatment, there were 38.08 minutes left in the game. In both situations, the BiT

team was away and did not have possession at the time of treatment. The probability of calling a

timeout (estimated from the GAM) was 0.32 for the RwT versus 0.28 for the matched RwoT. Thus,

we see that in both scenarios the covariates were largely comparable. For more detail regarding

covariate balance, including the distribution of the covariates by treatment group after matching,

see Appendix A.8.

According to the Love plot (Zhang et al., 2019), presented here in Figure 2.4, matching im-

proves the balance among the covariates, except for variables week in season and the signed score

difference before and after the run. However, for these three variables, the standardized bias was

already near zero, and the change is arguably negligible. Most notably, we observe a marked im-

provement in the distribution of the propensity scores after matching (see Figure 2.4 and Figure

2.3b). Further, the standardized bias for each variable is less than 0.2 in absolute value, suggesting

no covariate imbalance in the matched cohort (Stuart, 2010).

To rigorously assess the balance of the matched cohorts, hypothesis testing is used to check

for discrepancy in each of the covariates listed in Table 2.1 as well as the estimated propensity

score. For discrete and continuous variables, bootstrapped Kolmogorov-Smirnov tests were ap-
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Figure 2.4: Standardized bias is often used to gauge covariate balance before and after matching or other
trimming procedures. The propensity to call a timeout is largely imbalanced before implementing the match-
ing algorithm, well past the recommended threshold of ±0.2. After matching, no covariate exceeds the
recommended threshold.

plied, shown to have correct coverage in Abadie (2002). Multiple comparison correction is per-

formed to control the false discovery rate at 0.05 (Benjamini and Hochberg, 1995). For binary

variables, t-tests are used, and chi-squared tests are used for categorical variables. Before match-

ing, a discrepancy between the distribution of covariates associated with treatments and controls

was identified in all covariates listed in Table 2.1 except for week in season (see Appendix A.8).

A distributional discrepancy was also identified in the estimated propensity score. After matching,

there was no evidence of a discrepancy in covariate distributions for any of the listed covariates or

the estimated propensity score. Hence, genetic matching appears to yield a matched cohort similar

in both the covariates and the propensities.

2.3.5 Outcome

The goal of the outcome measure is to quantify the BiT team’s response to a run following a

timeout (or lack thereof). Naturally, we first considered the change in the score difference from the

time of treatment to the end of the post-treatment window. This approach, however, ignores any

mid-window scoring, potentially treating two fundamentally different responses the same simply

because they share the same start/end points. For example, suppose the BiT team scores five points

after the time of treatment followed by five points by the opposing team. This would correspond
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to no change in the score difference, and is thus equivalent to a situation when neither team scored

during the post-treatment window.

To address this concern, we subsequently considered the most extreme change in the score

difference occurring in the post-treatment window. Unfortunately, this method suffers from a

similar problem as described above. For example, suppose the opposing team continued their run

in the post-treatment window, scoring five points before the BiT team answered with a three-point

shot. This response is treated the same as if the opposing team scored five unanswered points in

the post-treatment window and the BiT team scored zero. Finally, we considered using the change

in the BiT team’s win probability during the post-treatment window (Yam and Lopez, 2019), but

such an approach relies on the unknown model used to produce this measure, is time variant over

the course of a game, and is heavily dependent on the score difference at the time of the treatment.

The clear drawbacks of the initially proposed outcome measures suggested a new method

for quantifying a team’s response during the post-treatment window was needed. Our goal is to

capture how the score difference holistically changes in the entirety of the post-treatment window

without punishing (or rewarding) the BiT team for the score difference at the time of treatment.

To this end, we develop the outcome for the ith unit, denoted yi, as the integrated, centered-score

difference, defined by

yi = − sgn
(
s(ti)

) ∫ ti+1

ti

[
∆(x)−∆(ti)

]
dx, (2.5)

where ti is the time of the treatment for the ith unit, s(ti) is the signed run point total at time ti,

and sgn is the sign function. Notice that the integrand is the score difference centered by that at

the time of treatment. This ensures we do not penalize (or reward) the BiT team for play occurring

before the time of treatment. This outcome measures the BiT team’s response to the opposing

run following an intervention (either a timeout or no timeout), such that positive values indicate

evidence of stopping the run, zero indicates a scoreless response or an even exchange in scoring,

and negative values indicate evidence of a continued run. Figure 2.5 shows the outcome for three

different units on the same score difference curve.
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If the home team is on the run at time ti then the score difference had a positive trajectory in

the pre-treatment window. In this case, a continuation of this increasing trend in the post-treatment

window signifies a negative response to the treatment (see Figure 2.5a). Conversely, if the score

difference started decreasing after the time of treatment, this would indicate a positive response

by the BiT team to the treatment (see Figure 2.5c). The negative sign in the outcome definition in

(2.5) ensures the measure aligns with intuition: the first scenario has a negative outcome and the

second scenario has a positive outcome.

The sign of the signed run point total is used to create an interpretable outcome, regardless

of which team is on the run at time ti. Contrary to the example just given, if the away team is on

the run at time ti, then the score difference is trending negatively in the pre-treatment window and

the signed run point total would be negative, s(ti) < 0. The sign function cancels the negative

sign in the front of (2.5), which is desirable as positive trajectories in the score difference in the

post-treatment window then result in a positive outcome. If the outcome is zero, there is either no

scoring in the post-treatment window or the BiT team exchanged points with the opposing team at

an even rate (see Figure 2.5b).

The outcome for the example highlighted in Figure 2.1 is 0.80 and is shown again in Figure

2.6a. Similarly, the outcome for its selected match is -1.93 and is shown in Figure 2.6b. The key

desirable property of this outcome is its ability to classify the response to the timeout on a spectrum

where negative values indicate failure in stopping the run, zero indicates no change of score or an

even exchange of scoring, and positive values indicate success in reversing the run. The larger the

magnitude of the outcome, the more extreme the response to the run.

2.4 Results

With a balanced, matched cohort of treated and control units, we turn to estimating the causal

effect of a timeout. Histograms for the outcomes in the treatment and control groups are given

in Figure 2.7. First, note that a large portion of the outcome distribution for both the treated

and control cohorts is greater than zero, indicating that the BiT team often has some level of a
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Figure 2.5: The shaded area represents the integral in (2.5). Panel (a) shows the score difference changed
at a rate of 3.47 points per minute for the opposing team during the post-treatment window, signifying a
negative response to the run following the timeout. Panel (c) shows a score difference that changed at a rate
of 4.08 points per minute for the BiT team, a positive response to the run following the timeout. In the panel
(b), the opposing team and the BiT team swapped points at a near even rate, neither a negative nor a positive
response to the run following a timeout.

Figure 2.6: The outcome for the timeout highlighted in Figure 2.1 is shown in panel (a), and the matched
control is shown in panel (b). In panel (a), the New Orleans Pelicans positively responded to the Denver
Nuggets run when a timeout was called; however, within the selected match, the Washington Wizards nega-
tively responded to the Milwaukee Bucks’ run when no timeout was called. The dashed regions outline the
post-treatment window for each unit.

comeback, regardless of whether there is stoppage in play. We interpret this as evidence that

momentum shifts are common, and thus should be expected.
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The estimate of the average treatment effect on the treated is visualized by the difference

between the mean of the treated group and the mean of the control group of the matched cohort

(shown by the dashed lines in Figure 2.7). The estimated average treatment effect on the treated

is −0.35 with an Abadie-Imbens standard error (Abadie et al., 2004) of 0.07 and an associated

p-value of p < 0.001. Hence, on average, it appears slightly disadvantageous to call a timeout

in the presence of an opposing run. While these results may seem counterintuitive, the negative

estimate aligns with the unmatched, naïve estimate of -0.08. This measured effect, however, is

insignificant until employing formal causal methodology to account for the inherent self-selection

bias associated with observational studies.

Due to the non-deterministic nature of the matching algorithm, we re-ran the matching step

in our analysis to study the variability in the estimated ATT due to different matched cohorts.

Twenty realizations of the estimated ATT are presented in Appendix A.6, indicating that results

were consistent across different matched cohorts.

Figure 2.7: The distribution of the outcome for each intervention group within the matched cohort. The
estimated average treatment effect of −0.35 is given by the mean of the treated group (blue vertical line)
minus the mean of the control group (red vertical line).

Acknowledging that the effectiveness of a timeout in stopping an opposing run may vary

across teams due to, say, the maturity of the players or the ability of the coach to strategize a

comeback, we estimated the ATT for each franchise individually. The average treatment effect on
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the treated for franchise f , ATTf , is defined

ATTf = E [Yi(1)− Yi(0) | Ti = 1,Bi = 1] , (2.6)

where Bi = I{f is the BiT team for the ith unit}. The matching procedure does not guarantee covariate bal-

ance within franchise. Therefore, we employ a hypothesis testing approach to assess whether or

not the covariates are sufficiently balanced when conditioning on the BiT team’s identity (see Ap-

pendix A.8). After controlling the false discovery rate at 0.05 to account for multiple comparisons

(Benjamini and Hochberg, 1995), there are no significant findings, indicating it is reasonable to

assume the treatment is ignorable when conditioning on the BiT team’s identity.

To estimate ATTf for each franchise, the matched treated and control units were partitioned

based on the BiT franchise of the treated unit and the average within-matched-set mean differences

in outcome was computed. Some franchises obviously were associated with more treated units than

others (see Appendix A.7), so bootstrapped samples were created to quantify the variability of the

causal estimator in (2.6), as in Yam and Lopez (2019). The results are given in Figure 2.8.

Immediately, we notice that twenty of the thirty franchises exhibit negative point estimates for

their franchise average treatment effect on the treated. For these franchises, the negative estimated

effect suggests, on average, the opposing team scores at a faster rate when a timeout is called than

when it is not called during an opposing run. To assess statistical significance of these estimates and

address the multiplicity problem, paired permutation tests are conducted for each of the franchises,

and the two-sided p-values are recorded. After computing the unadjusted p-values, we employ the

strategy suggested in Benjamini and Hochberg (1995) to control the false discovery rate at 0.05.

After accounting for multiple comparisons, there are two significant, negative franchise treat-

ment effects on the treated: those corresponding to the Indiana Pacers and the Utah Jazz. Rela-

tively small sample sizes may have contributed to the lack of significant findings after accounting

for multiple testing. None of these positive effects withstand statistical significance. Data and code

to reproduce results are provided in Appendix A.9.
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Figure 2.8: Estimated average treatment effect for the treated for each franchise with a 95% confidence
interval based on a non-parametric bootstrap. Ignoring the multiplicity problem, there are ten significant
results at a significance level of 0.05. Computing the unadjusted p-values with paired permutation tests and
controlling the false discovery rate at 0.05, the adjusted p-values are provided on the right margin. After
accounting for multiple testing, the Indiana Pacers and the Utah Jazz have significant, negative average
treatment effects on the treated. For these franchises, the opposing team scores at a significantly faster rate
concluding a timeout than when a timeout is not called during an opposing run.
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2.5 Sensitivity Analysis

A sensitivity analysis is employed to assess the robustness of the results (1) with regard to the

specification of a run, and (2) in the presence of unobserved confounding. In this work, a run is

characterized not only by the magnitude of the change in the score difference (run point total) but

also the time taken by the opposing team to attain said change (run duration). While few would

argue the importance of these two attributes in defining a run, there is no universal agreement on

what values constitute a run. We define a play to be a run if it features a nine-point change in

the score difference attained in the prior two minutes. Considering the average NBA possession

is conservatively 15 seconds (Beuoy, 2021), a two-minute window allows for approximately eight

possessions, or four possessions per team. The current definition was motivated by the simple

scenario: four defensive stops and at least three three-point shots made yields a drastic change in

the game in a short amount of time. We acknowledge that this definition is arbitrary and should be

explored more carefully. Therefore, we examine the sensitivity of our results relative to different

combinations of run point total thresholds (7, 8, 9, and 10 points) and limits to the run duration

(1.5, 2, 2.5, 3 minutes). For each combination, we replicate the analysis and report the findings

in Table A.1 of Appendix A.2. As can be seen, the estimated effect is negative and significant for

each combination, indicating robustness to alternative run definitions.

Aside from the run specification, it is important to consider the robustness of the perceived

effects to unmeasured or unobserved confounders. While matching methods can adjust for ob-

served confounding (assessed through covariate balance before and after matching), the impact of

unobserved confounding on the estimated effect must be explored through a sensitivity analysis

(Rosenbaum, 2007). Following the recommendations of Rosenbaum (2013), we let Γ represent

the magnitude of the bias from nonrandom treatment assignment and estimate the ATT and con-

fidence interval for the ATT as in (2.4) at various Γ. The results are illustrated in Figure 2.9.

When Γ ≈ 1.50, the confidence interval for the treatment effect includes 0, indicating a materi-

alistic change in the inferential conclusions of this study. While these results imply sensitivity to

unobserved confounding, it is important to note that the 95% confidence interval is known to be
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conservative (Rosenbaum, 2015). As stated by Liu et al. (2013), this method assumes a situation

in which “the unobserved confounder perfectly predicts the outcome of interest," an unrealistic

assumption in practice. As a result, sensitivity to unobserved confounders is likely overstated.

Figure 2.9: Provided a bias of Γ in the treatment assignment, the shaded region illustrates the interval of
point estimates possible, and the solid black lines illustrate the (conservative) 95% confidence interval. The
confidence interval includes 0, indicating no effect, at Γ ≈ 1.50, the magnitude of bias from nonrandom
assignment necessary to alter the conclusions herein. While these results indicate the study may be sensitive
to unobserved confounding, the degree to which is likely overstated (Rosenbaum, 2015).

2.6 Discussion

While the idea of a “run” is commonly used within the context of basketball, there is no

formal mathematical definition. Part of the novelty of this work is formalizing the colloquial

understanding of a run as it pertains to professional basketball, while developing an interpretable

outcome which captures the relative performance of each team in a game where the score changes

frequently. After proposing a framework with which to study runs, we employed causal methods

to estimate the potential gain (or loss) attributed to a timeout during a team’s run. We find that,

on average, calling a timeout worsened the non-run team’s short-term performance compared to if

no timeout was taken during an opposing run. In particular, the Indiana Pacers and the Utah Jazz
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short-term performance significantly declines from a timeout compared to if no timeout was taken,

on average. No teams, on average, exhibit a significant gain in their short-term performance from

a timeout compared to if no timeout was taken.

One important variable which is not considered within this analysis is substitutions that occur

when a timeout is called. These are reasonably assumed to have a positive impact on the out-

come but cannot be included within the matching procedure since these substitutions occur after

or simultaneously with the treatment. That said, more substitutions actually exist within the group

of treated units, when a timeout is called, than in the group of control units, when a timeout is

not called. This suggests the effect of a timeout may actually be less than that estimated in this

analysis.

There are choices made in defining units which could be addressed by generalizing the causal

methods used. For example, plays occurring in the last minute of a period are excluded from this

analysis. Since the outcome requires a succeeding one minute of game time after intervention, any

play occurring in the last minute of a period is akin to a censored observation and is thus omitted.

Currently, for a given play at time t, if there are timeouts in the pre-treatment window (two minute

interval of time prior to t), then that play is excluded from the analysis on the basis of multiple

variations. The number of timeouts and the time between timeouts could be used to create a more

general, non-dichotomous treatment regime and is an area of future work.

Causal inference is becoming a popular tool for sports analysts due to the observational nature

of sporting events. However, despite the rise in popularity, too often little emphasis is placed on

closely examining whether the stable unit-treatment-value assumption (SUTVA) is reasonable.

In this work, we prioritize this discussion by not only defining units but describing how their

definition was motivated by adherence to SUTVA. Aside from the honest exposition surrounding

SUTVA, we also take great care in defining an interpretable outcome which measures relative

short-term performance well. This outcome is flexible and well suited for applications where the

quantity to measure is susceptible to short term fluctuations, but the interest is in the average
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change. Other phenomena that might benefit from the modeling tools introduced here include

stock prices, approval ratings, and of course, score differences in professional sports.
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Chapter 3

The Identification of Network Clusters Containing

Undiscovered Gene to Phenotype Relations

3.1 Introduction

Since the Hippocratic Corpus, scholars have continually searched for the causes of disease,

and in many cases, have succeeded. In 1989, a group of investigators led by Dr. Lap-Chee Tsui

identified a mutation to a gene that mediates the transport of chloride and sodium ions across the

membranes of cells controlling mucus, sweat and digestive juices as the cause of cystic fibrosis

(CF) (Busch, 1990). This discovery marked the first disease causing gene to be identified for any

disease. Since then, thousands of such diseases known as genetic disorders have been identified

(e.g., Crohn’s disease, Huntington’s disease, and sickle cell disease) (Cleveland Clinic, 2021) with

many more undoubtedly undiscovered.

Genetic disorders are caused by mutations to the genome contained in the deoxyribonucleic

acid (DNA) of chromosomes. The Human Genome Project estimates there are between 20,000 to

25,000 genes in the human genome, many of which are responsible for the synthesis of a protein

(International Human Genome Sequencing Consortium, 2004). Since proteins direct cellular func-

tion, alterations to the DNA of a gene (known as genetic variants) can have severe consequences

on one’s function and health in the form of abnormal phenotypes. As with other diseases, a genetic

disorder is often characterized in the context of its abnormal phenotypes: observable characteris-

tics or traits associated with a disease. For example, some abnormal phenotypes associated with

CF include elevated sweat chloride, exocrine pancreatic insufficiency, and asthma, each reasonably

associated with the underlying mechanism for the disease. While a disease’s phenotypes need not

imply the mechanism of the disease, understanding the relationships among and between one’s

genotypic and phenotypic information can help practitioners improve diagnosis and management
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for patients with undiagnosed conditions. In this chapter, we present a new method for the identi-

fication of collections of genes and phenotypes ripe for future discovery.

The current state of knowledge about phenotypes and the human genome are summarized

by various biological ontologies, described in Bard and Rhee (2004) as “formal way[s] of rep-

resenting knowledge in which concepts are described both by their meaning and their relation-

ship to each other.” Ontologies provide medical practitioners with a common vocabulary with

which to diagnose and treat patients. Two examples are the Human Phenotype Ontology (HPO)

(Köhler et al., 2017) and the Search Tool for Retrieval of Interacting Genes/Proteins (STRING)

(Szklarczyk et al., 2016). The genetic variant that causes cycstic fibrosis—the CF transmem-

brane conductance regulator—is denoted as CFTR in STRING, and some common cystic fibrosis

phenotypes—elevated sweat chloride, exocrine pancreatic insufficiency, and asthma—are denoted

as HP:0012236, HP:0001738, and HP:0002099 in HPO, respectively.

Aside from standardizing medical terminology, ontologies also provide researchers with a

tractable way to represent and study biological processes. The known relationships among and be-

tween phenotypes and the human genome can be integrated into a heterogeneous network (i.e.,

graph), which consists of the biological entities (i.e., nodes), connections between them (i.e.,

edges), and known characteristics about the biological entities and the connections (i.e., node and

edge attributes). The network representation is deemed heterogeneous since the biological enti-

ties are distinguished by their identity in the network (i.e., node types)—some representing genes

and others representing phenotypes. By combining the data of various biological ontologies into

a single, heterogeneous network, we are able to potentially exploit the mesoscopic topology of

the network (i.e., the intermediate topological scale of organization between nodes) to improve

diagnostic reach. In particular, nodes naturally tend to link together or “cluster” into groups which

are densely connected within group yet sparsely connected to the rest of the network. These latent

clusters are often related to the functionality of the group and may aid a practitioner in diagnosis

when their patients’ medical information is seemingly unconnected.
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Many methods exist to identify missing or undiscovered links in real, biological networks

but rely on local or global measures of topology. Classically, the potential or propensity for an

unconnected node pair to form a connection is scored via local measures of connectivity, such

as the number of shared neighbors, the Jaccard coefficient of neighbor sets, or the preferential

attachment (i.e., the degree product) between pairs of nodes (Liben-Nowell and Kleinberg, 2003).

Similarly, another assortment of methods score absent links via global measures of connectivity,

such as the shortest path length, random walk (with restart), or the Katz Index (Martínez et al.,

2016). A recent class of methods uses community structure as a proxy for the mesoscopic topology

of a network, either scoring absent links according to a partition of a network into communities or

identifying links as missing if their proposed existence improves measures of community structure

(Ghasemian et al., 2020).

In this chapter, we propose a novel analytic pipeline for the identification of clusters containing

undiscovered gene to phenotype relations (ICCUR) in a very large, temporal heterogeneous bio-

logical network. In particular, ICCUR identifies and ranks subgraphs (clusters) of a network ac-

cording to their predicted potential for future discovery using insights drawn from the clusters of

the prior snapshot of the network. ICCUR can be considered a new approach to link prediction us-

ing community structure with mechanisms to score clusters rather than individual node pairs. We

demonstrate ICCUR’s ability to identify clusters with co-occurring genes and phenotypes linked

together in the later snapshot of the network more than expected by chance. Importantly, the results

of the pipeline can be potentially used as a diagnostic aid by clinicians as it will return a collection

of ranked clusters pertaining to a patient’s known genetic variants and abnormal phenotypes. We

verify ICCUR’s utility as a diagnostic aid by applying it to data from MyGene2, a web-based plat-

form which connects persons with rare, undiagnosed diseases to clinicians or researchers working

with individuals with similar medical profiles. We demonstrate ICCUR’s ability to identify and

recommend novel clusters containing unconnected phenotypic and genotypic information of pa-

tients with undiagnosed disease.
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The organization of this chapter is as follows. In Section 3.2, we discuss the temporal bio-

logical network of interest and its construction. In Section 3.3, we introduce the ICCUR pipeline,

including (1) how to identify dense, reasonably sized heterogeneous clusters, (2) how to character-

ize clusters’ undiscovered relations and score their potential for future discovery, (3) how to predict

clusters’ potential for future discovery using observable cluster features, and (4) how to rank clus-

ters according to model predictions. We fit ICCUR pipeline to the temporal biological network

and validate the ICCUR pipeline in Section 3.4. In Section 3.5, we apply the results of the ICCUR

pipeline to real, undiagnosed patients with rare disease, identifying clusters containing patients’

co-occurring yet otherwise unconnected genotypic and phenotypic information, some connections

which have since been validated by human curation. We conclude with a discussion in Section 3.6.

3.2 Data and Notation

A genetic disorder is often characterized by the abnormal phenotypes and genetic variants

associated with the disease. Known relationships between and among phenotypic and genotypic

information are provided by biological ontologies. In this section, we discuss the two biological

ontologies utilized in this work, outline how these ontologies are combined into a large, temporal

heterogeneous biological network, and provide formal notation. A mockup of a subset of the

network is provided in Figure 3.1 to illustrate the structure of the network and underlying data

sources.

3.2.1 Biological Ontologies

Human Phenotype Ontology (HPO)

The Human Phenotype Ontology (HPO) (Köhler et al., 2017) integrates phenotypic informa-

tion across scientific fields and databases, providing resources for the analysis of human disease.

By design, HPO is a directed acyclic graph (DAG), where each node is a phenotype and edges indi-

cate that the receiver node (child) is a subclass of sender node (parent). Each child is a more specific

instance of its parent phenotype. For example, patients presenting with elevated sweat chloride and
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(a) Mockup of Gt−1 (b) Subgraph of Gt−1

Figure 3.1: Panel (a) is a mockup used to represent the biological network at time t− 1. A small subgraph
of the mockup is colored and provided in panel (b) to illustrate the data sources and characteristic features
of the real network. Dashed lines are used to represent edges absent from the network at time t − 1 subse-
quently added to the network at time t; that is, undiscovered relations at time t − 1. Phenotype (in blue) to
phenotype (P2P) relations are derived from HPO, and gene (in orange) to gene (G2G) relations are derived
from STRING. Gene to phenotype (G2P) relations are derived from HPO using information from OMIM
and Orphanet.

exocrine pancreatic insufficiency may be noted for phenotypes HP:0012236 and HP:0001738 in

HPO, respectively. As illustrated in Figure 3.1b, elevated sweat chloride is the child of abnor-

mal sweat homeostasis (HP:0040127), which is also the parent of abnormal sweat electrolytes

(HP:0040128). Elevated sweat choloride is distantly related to exocrine pancreatic insufficiency;

the shortest path between the two phenotypes traverses through the root node—phenotypic abnor-

mality (HP:0000118)–with a shortest path length of nine. As of 2021, HPO documented 20,279

relationships between 16,041 phenotypic abnormalities. There is one connected component, mean-

ing there exists a path from any node in the network to any other node in the network. The average

shortest path length between pairs of phenotypic abnormalities is 10.2, and the ratio of relation-

ships present to total number of possible relationships (i.e., edge density) is less than 0.001.

Search Tool for Retrieval of Interacting Genes/Proteins (STRING)

The Search Tool for Retrieval of Interacting Genes/Proteins (STRING) (Szklarczyk et al.,

2016) integrates publicly available knowledge on protein-protein interactions, providing a large

scale model for cellular processes in humans. By design, STRING is graph where nodes are

genes and an edge exists between two genes if they encode interacting proteins. All protein-
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protein interactions are determined based on experimental data, computational prediction methods,

or public text collection. For example, CFTR (the CF causing gene) is connected to SLC9A3R1

(another protein coding gene) in STRING (see Figure 3.1b). This connection in part stems from the

work of Castellani et al. (2012) which demonstrated that SLC9A3R1 codes for a protein “involved

in PKA-dependent activation of CFTR.” As of 2021, STRING documented nearly six million

relationships between 19,384 genes. There are two connected components, which means that

there are two separate subgraphs or portions of the network that have no connection or link to

each other. In other words, there is no way to reach a node in one component from a node in

the other component through the edges or connections in the network. The average shortest path

length between pairs of genes is 2.041, and the edge density is less than 0.031. When computing

the average shortest path length, we do not take into account the connections between nodes that

belong to different components. In other words, we only consider the node pairs within the same

component to calculate the average shortest path length.

Online Mendelian Inheritance in Man (OMIM) and Orphanet

In this chapter, connections between genotypic and phenotypic information are derived from

annotation files produced by HPO. HPO makes use of the Online Mendelian Inheritance in Man

(OMIM) (Hamosh et al., 2005) and Orphanet (Weinreich et al., 2008) databases, each providing

information on disease, genes, and genetics information. OMIM summarizes a genetically deter-

mined phenotype and provides hyperlinks to other databases, such as DNA and protein sequences,

PubMed references, and many others. Orphanet provides information on rare diseases, such as the

related genetic variants and phenotypic information associated with each disease. As illustrated in

Figure 3.1b, CFTR is linked to exocrine elevated sweat chloride, exocrine pancreatic insufficiency,

and asthma—those phenotypic abnormalities commonly reported by patients diagnosed with cystic

fibrosis; however, in total, CFTR is linked to 83 phenotypic abnormalities. As of 2021, HPO doc-

umented nearly 197,926 relationships between 8,753 phenotypic abnormalities and 4,702 genes

using information from OMIM and Orphanet. There are ten connected components. The average

shortest path length between a phenotypic abnormality is 3.428, and the edge density is 0.004.
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Similarly to STRING, we only consider the node pairs within the same component to calculate the

average shortest path length.

3.2.2 Network Construction

Ontologies are updated periodically to reflect current understanding of biology. We create

a heterogeneous network for each year 2019, 2020, and 2021 by merging the labeled nodes and

edges of each biological ontology discussed in Section 3.2.1 at each snapshot. Note, we have three

snapshots to demonstrate and validate the ICCUR pipeline. Each network is composed of genes

(e.g., CFTR), phenotypes (e.g., HP:0012236), and the relationships both among and between them,

reflecting the state of knowledge at the end of 2019, 2020, and 2021. Gene to gene (G2G) relations

are constructed from STRING. Phenotype to phenotype (P2P) relations are constructed from HPO,

and gene to phenotype (G2P) relations are constructed from HPO using information from OMIM

and Orphanet, as shown in Figure 3.1b. The edges are encoded as binary and undirected; that is,

any relationship weight or direction is subsequently ignored.

The temporal network is large, consisting of roughly 35,000 nodes and 6,000,000 edges at

each snapshot. Earlier generations of the network tend to have fewer nodes and edges than their

successors, and thus the average internal degree is negligibly decreasing with time. The network at

each snapshot has two connected components. Additional information about the network at each

snapshot, including the access dates for each ontology, is provided in Table 3.1.

Table 3.1: Information about the temporal network, Gτ , including the number of nodes (|Vτ |), number of
edges (|Eτ |), and average degree (∆τ ) at each snapshot τ ∈ {19, 20, 21} denoting the year. Each network is
composed of data collected from HPO, OMIM/Orphanet, and STRING with the listed dates of access.

Access Date for Data Sources

Snapshot Network |Vτ | |Eτ | ∆τ HPO OMIM/Orphanet STRING

2019 G19 33.9K 5.9M 350.35 2019-11-08 2019-09-02 2020-10-17
2020 G20 34.9K 6.1M 347.92 2020-12-07 2020-08-25 2021-08-12
2021 G21 35.7K 6.2M 346.61 2021-10-10 2021-10-10 2022-09-30
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3.2.3 Notation

Let Gτ = (Vτ , Eτ ) denote the undirected, simple, binary biological network at snapshot τ . The

node set at time τ is Vτ = (1τ , 2τ , . . . , nτ ), where nτ is the total number of nodes at time τ . Each

node is either a phenotype or a gene. The identity of each node in the network (i.e., a phenotype or

a gene) is referred to as its node type. We let Tτ denote an nτ -dimensional vector of node types at

time τ where the uth
τ element of Tτ is a 1 if node uτ is a phenotype; otherwise, the uth

τ element of Tτ

is a 2. When necessary, the node type of an arbitrary node uτ is denoted in bracketed superscript,

such that u[1]
τ implies that node uτ is a phenotype and u

[2]
τ implies that node uτ is a gene.

Since each node is either a gene or a phenotype, the node set can be partitioned as Vτ =

V
[1]
τ ∪ V

[2]
τ where V

[1]
τ denotes the node set containing |V [1]

τ | phenotypes, V [2]
τ denotes the node set

containing |V [2]
τ | genes, and V

[1]
τ ∩ V

[2]
τ = ∅. The network Gτ is a simple, binary network meaning

that there is either precisely zero or one edge between each pair of nodes. The edge set of Gτ

can be partitioned according to adjacent nodes’ types: Eτ = ∪1≤k≤l≤2E
[kl]
τ where E

[kl]
τ contains

the links between nodes of type k and nodes of type l. If v[k]τ is adjacent to u
[l]
τ at time τ , then

{v
[k]
τ , u

[l]
τ } ∈ E

[kl]
τ . Since Gτ is undirected E

[kl]
τ = E

[lk]
τ .

3.3 Methodology

In this section, we introduce the analytic pipeline to identify clusters containing undiscovered

gene to phenotype relations (ICCUR). Presented in Algorithm 3.1, the ICCUR pipeline takes as

input two snapshots of a temporal, biological network, (Gt−1, Gt), and returns as output a ranked

collection of densely connected subgraphs of Gt, where the ranking is according to the potential for

future discovery of the subgraphs based on insights drawn from the identified subgraphs of Gt−1.

The resulting ranked collection of subgraphs can be filtered according to patients’ phenotypic and

genetic information, serving to aid clinicians in diagnosis when patients’ medical information is

seemingly unconnected.

The ICCUR pipeline is composed of four operations: Discover, Score, Train, and Rank,

each illustrated in Figure 3.3.1. To describe these operations, we consider an arbitrary biological
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Algorithm 3.1: The ICCUR pipeline identifies a collection of heterogeneous clusters from a biological
network Gt ranked according to their potential for undiscovered gene to phenotype relations using insights
drawn from the previous snapshot of the biological network, Gt−1. The operations Discover, Score, Train,
and Rank are illustrated in Figure 3.3.1 and discussed in Section ??.

network composed of genes and phenotypes, denoted G = (V , E). Let B denote an arbitrary

collection of sets of nodes; that is, B = {Bw}w∈[W ] such that Bw ⊆ V and zw := |Bw| for all

w ∈ [W ] := {1, 2, . . . ,W}. Furthermore, let R denote a subset of the collection of unobserved

edges in G, excluding possible self-loops; that is,R ⊆ V × V − E .

We describe each operation of ICCUR in Section ?? before detailing the pipeline in Section

3.3.2. First, we describe how to identify small, densely connected clusters composed of genes

and phenotypes from G (see Figure 3.2a (Discover)). Second, we introduce a metric called the

potential for future discovery, used to compare the number of undiscovered relations, R, between

nodes in Bw for all w ∈ [W ] (see Figure 3.2b (Score)). Third, we detail how to train an ensemble

model of boosted regression trees to predict Bw’s potential for future discovery using observable

features about Bw for all w ∈ [W ], particularly useful when the potential for future discovery is

unobservable (Figure 3.2c (Train)). Finally, we detail how to rank sets of nodes in B according to

model predictions (see Figure 3.2d (Rank)).
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Figure 3.2: Four operations used in the ICCUR pipeline. Discover in panel (a) identifies a collection of
small, densely connected heterogeneous clusters from a biological network, G = (V, E). Score in panel (b)
counts the number of undiscovered relations,R, between nodes in Bw, denoted νw, and quantifies the rarity
of νw with a metric called the potential for future discovery, denoted πw. Train in panel (c) constructs a
flexible regression model to relate πw for each Bw to observable features about Bw. Lastly, Rank in panel
(d) ranks each Bw with predictions made from a model f .
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3.3.1 ICCUR Toolpack

Discover Dense, Heterogeneous Clusters

Provided a biological network G, the Discover operation returns a collection of small, densely

connected heterogeneous clusters identified from G. The collection of clusters is denoted C =

{Ch}h∈[H] such that Ch ⊆ V , Ch ∩ V [k] ̸= ∅ for k ∈ {1, 2}, and G[Ch] (i.e., the induced subgraph) is

particularly dense for all h ∈ [H]. To attain such a collection of sets, we rely on existing community

discovery methods. Community discovery (i.e., clustering) is the general process of attaining

communities (i.e., clusters) from a network: collections of nodes that are densely connected within

yet sparsely connected to the rest of the network.

There are many existing methods to identify communities from simple, homogeneous net-

works (see Fortunato (2010); Lancichinetti and Fortunato (2009) for a review). By comparison,

there are relatively few methods for simple, heterogeneous networks, designed to account for dif-

ferences in nodes and the resulting differences in the connectivity patterns between pairs of node

types (e.g., Yang et al. (2013); Zhang and Chen (2020)). Since no single community discov-

ery algorithm is universally optimal (Peel et al., 2017), we consider a collection of communities

identified from several well-known community discovery methods: Greedy (Clauset et al., 2004),

Walktrap (Pons and Latapy, 2006), Infomap (Rosvall and Bergstrom, 2007b), CESNA (Yang et al.,

2013), and ZCmod (Zhang and Chen, 2020).

The community detection methods considered for this study carry different objectives and

capture a broad range of communities. Greedy, Walktrap, and Infomap are designed for homoge-

neous networks, so node types on V are ignored when applying these methods. By comparison,

CESNA and ZCmod are both “node type aware,” each accounting for node type with different

assumptions and constraints about the type composition of the community structure. A summary

of each method is provided in Table 3.2 and a detailed account of each method is provided in

Appendix B.1.

For our purposes, clusters need to be reasonably small to allow for further investigation by

practitioners. Choobdar et al. (2019) recommends at least three but no more than 100 nodes per
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Table 3.2: Clustering and subclustering methods considered in this study. The complexity and method
objectives are provided, where n denotes the number nodes and m denotes the number of edges. Methods
designed to account for differences in nodes are deemed “node type aware” (NTA). References and further
details are provided in the descriptions of Appendix B.1.

Class NTA Method Complexity Objective

Clustering Greedy O(n log2 n) Modularity
Walktrap O(n2 log n) Distance based on random walks
Infomap O(m) Map equation

✓ CESNA O(m+ n) Latent space likelihood
✓ ZCmod O(m2) Heterogeneous modularity

Subclustering Paris O(m) Distance based on node pair sampling

cluster when attempting to identify disease-relevant modules in a variety of gene and protein net-

works. Considering the size of G in our application, the clustering methods used are largely net-

work partitioning methods—the most scalable of network clustering methods. However, network

partitioning methods often fail to find reasonably small communities in large networks (Fortunato

and Barthelemy, 2007; Leskovec et al., 2010). Clusters in real networks often exhibit hierarchical

structure, such that larger clusters are composed of smaller clusters which can be further divided.

Leveraging this fact, we use an agglomerative, hierarchical clustering method called Paris (Bonald

et al., 2018) to subdivide clusters attained from the clustering methods in Table 3.2 into “subclus-

ters” meeting specified size constraints and retain only those subclusters containing both genes and

phenotypes. These H heterogeneous subclusters of G are denoted C = {Ch}h∈[H].

Formally, the Discover step first identifies a collection of clusters from G using a variety of

network clustering methods (Table 3.2). The resulting collections of clusters are denoted C̃ =

{C̃(m)}m∈M , where M denotes the set of clustering methods considered and C̃(m) denotes the

collection of clusters identified from G with method m. Using Paris, each cluster C̃(m) ∈ C̃

is subdivided into densely connected “subclusters” with no more than 100 nodes each. We let

C = {Ch}h∈[H] denote the collection of H subclusters (henceforth referred to as clusters) of G

containing both genes and phenotypes.
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Score Sets’ Undiscovered Relations

Provided a biological network G, a set of nodes Bw, and a set of newly discovered relations

R, the Score operation counts the number of undiscovered relations between nodes in Bw, denoted

νw, and quantifies the rarity of νw with a metric called the potential for future discovery, denoted

πw. In particular, πw compares νw to what is expected from random, dense subgraphs of equal size.

To proceed, we formally define νw, introduce a null model based on snowball sampling, and define

πw—the result of the Score operation.

Undiscovered Relations Between Nodes in Bw The number of undiscovered relations between

nodes in Bw is denoted νw, where

νw = |{{u, v} ∈ R : u, v ∈ Bw}|. (3.1)

The set of undiscovered relations, R, are provided as dashed edges in the mockup in Figure 3.1;

hence, the corresponding subgraph in Figure 3.1b would have a corresponding ν = 1 to reflect

the single undiscovered relation. To assess the rarity of such an observation given the size of the

subgraph, we introduce a null model based on snowball sampling.

Snowball Sampling Null Model When interested in the number of undiscovered relations be-

tween nodes in Bw, an appropriate null model should account for both the number of nodes in Bw

and the relative density of Bw. For example, suppose Bw is the set of 26 densely connected nodes

provided in Figure 3.1b. To assess whether one undiscovered relation is noteworthy, it would be

inadequate to compare against what might be expected from a set of 100 nodes, since more nodes

harbor more opportunity for connection. Furthermore, it would be inadequate to compare against a

set of nodes which are topologically distant from one another or otherwise unconnected, since un-

connected nodes of a well-connected module tend to have a higher likelihood of being functionally

related in biological networks (Gillis and Pavlidis, 2012; Wolfe et al., 2005). Therefore, we pro-

46



pose gauging the relative extremity of νw by comparing νw to a reference distribution constructed

over the finite collection of snowballed subgraphs of G.

(a) Wave 0 : n = 1 (b) Wave 1 : n = 8 (c) Wave 2 : n = 18

(d) Wave 3 : n = 33 (e) Paring down : n = 26 (f) Snowballed subgraph

Figure 3.3: Snowball sampling a subgraph of size zw := |Bw| = 26 starting at a randomly selected node,
starred in panel (a). Waves of neighbors are selected until the node count exceeds 26. Following, nodes are
removed uniformly at random until a subgraph of size zw is attained. Panels (b) through (d) demonstrate
three waves of selecting neighbors followed by removing seven nodes selected uniformly at random in
panel (e). Nodes are labeled according to the wave they were added. Provided in panel (f), the snowballed
subgraph is dense and maintains 26 nodes, as desired.

Traditionally used to recruit and study hidden populations (Parker et al., 2019), snowball

sampling is a mechanism for attaining subgraphs of specified size through network ties—referred

to here as snowballed subgraphs. One can construct a random, snowballed subgraph of size zw

by picking a node uniformly at random from the network and then selecting “waves” of neighbors

until a total of zw nodes are selected. If the final wave breeds more nodes than necessary, excess

nodes are removed from the final wave uniformly at random to reach a total of zw nodes. This
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process is illustrated in Figure 3.3 for zw = 26, corresponding to the size of the subgraph provided

in Figure 3.1b.

First, a node is selected uniformly at random from the network, illustrated by the gold star

in Figure 3.3a. The neighbors of the starred node comprise the first wave of the snowball sample,

each marked by a 1 in Figure 3.3b. Since there are fewer than 26 nodes, neighbors of any node

selected in the first wave comprise the second wave of the snowball sample, each marked by a 2 in

Figure 3.3c. Since there are still fewer than 26 nodes, a third wave is sampled, each marked by a 3

in Figure 3.3d. With 33 nodes having surpassed the target of 26, seven nodes from the third wave

are selected uniformly at random and discarded as in Figure 3.3e. The final subgraph, illustrated

in Figure 3.3f, is the induced subgraph from the nodes selected through snowball sampling. By

construction, the subgraph is well-connected and maintains exactly 26 nodes, as desired.

Potential for Future Discovery (PFD) Metric To characterize the extremity of νw, we introduce

a scoring metric for Bw called the potential for future discovery (PFD):

πw := π(νw; zw,G,R) =

∫

N0

I(ν < νw) dF (ν; zw,G,R), (3.2)

where F is the distribution of ν over the finite collection of snowballed subgraphs of G and N0 is

the set of non-negative integers. The PFD is interpreted as the proportion of snowballed subgraphs

with fewer undiscovered relations between internal nodes and is comparable across different sized

sets of nodes. Specifically, if πw > πw
′ , then Bw harbors more undiscovered relations than Bw′

when compared to what is expected from respectively sized clusters. In this sense, sets with a

larger PFD are arguably more valuable for practitioners trying to better understand the underlying

relationship among otherwise unconnected phenotypic and genotypic information.

The distribution F is difficult to attain since the relative likelihood of subgraph being gener-

ated through snowball sampling is unknown. Hence, rather than compute (3.2) exactly, we esti-

mate the quantity by sampling snowballed subgraphs using the generative process just described

(see Figure 3.3) and computing v for each sampled snowballed subgraph. Denote the collection of
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sampled snowballed subgraphs of G with size zw as Sw = {Sb}b∈[B]. Then, the potential for future

discovery, πw, can be estimated as

π̃w := π̃(νw; zw,G,R) =
1

B

∑

b∈[B]

I(νb < νw), (3.3)

where νb is the number of undiscovered relations between nodes in Sb.

Train a Model to Predict the PFD Metric

While the PFD is a useful metric to compare the number of undiscovered relations in different

sized sets of nodes, it can only be calculated when a set of undiscovered relations R is given—

newly discovered edges, so to speak. Provided a collection of sets of nodes B and their respective

PFDs, similarly denoted π = {πw}w∈[W ], the Train operation constructs a flexible ensemble model

of regression trees to relate πw for any Bw to observable features of Bw (see Table 3.3). Features

can include both node meta-data and meta-data on Bw.

In what follows, we discuss the features and describe the chosen model. We then discuss the

training regime and optimal model specification in terms of cross-validated loss. Once specified,

the model is used to predict the PFD for a set of nodes when the PFD for such set is unobservable.

Features In many networks, members of a community have both structural and functional sim-

ilarities (Clauset et al., 2004), which vary drastically between communities. Here, we attempt to

predict a set of node’s potential for future discovery using structural and functional properties of

the set. All features considered are provided in Table 3.3 and include both biologically inspired

metrics (e.g., disease and tissue specificity) and network topology metrics (e.g., Newman-Girvan

modularity and hub dominance).
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Table 3.3: Features used as input to a DART model trained to predict the PFD for Bw. The features describe
both biological (Bio) and network topological (Net) aspects of Bw. A brief description for each is provided,
along with a range of values and the mean absolute SHAP value (Lundberg and Lee, 2017) for variable
importance. Larger mean absolute SHAP values indicate the feature has relatively more influence on the
model predictions. The range and mean absolute SHAP value correspond to when the pipeline is fit to
(G19,G20) in Section 3.4.1.

Type Feature Description Range SHAP

Bio Diseases (D) Number of diseases for which cluster genes are en-
riched.

0 - 33 0.12

Sig. GO Number of significant GO enrichment terms after
a Bonferroni correction (Gene Ontology Consor-
tium, 2019; Mi et al., 2019).

0 - 1358 0.08

CT specificity Proportion of genes participating in cell type en-
richment.

0.00 - 1.00 0.06

D specificity Proportion of genes participating in disease enrich-
ment.

0.00 - 1.00 0.23

PLoFa Number of predicted loss of function (PLoF) vari-
ants associated with a gene in the cluster (Kar-
czewski et al., 2020).

0 - 4440 0.06

Gene ratio Number of genes in a cluster divided by cluster
size.

0.01 - 0.99 0.40

Net Size Number of nodes in cluster. 3 - 100 0.24
TPR Triangle participation ratio, defined as the fraction

of community nodes that belong to a triad.
0.00 - 1.00 0.14

AID Average internal degree, defined as the average de-
gree of all nodes in cluster.

1.33 - 58.33 0.05

HubD Hub dominance, defined as the ratio of the internal
degree of the cluster’s most connected node with
respect to the theoretically maximal degree within
the community

0.10 - 1.00 0.39

AE Average embeddedness of all nodes in cluster
where the embeddedness of a node is its internal
degree with respect to its overall degree.

0.00 - 0.96 0.15

Edges inside Number of edges internal to the community. 2 - 2711 0.03

Surprise Quality metric assuming that edges between nodes
emerge randomly according to a hypergeometric
distribution (Traag et al., 2015).

1.85 - 9.04b 0.02

IED Internal edge density, defined as the number of in-
ternal edges divided by the number of possible in-
ternal edges.

0.02 - 0.96 0.09

Significance Estimates how likely a partition of dense communi-
ties appear assuming a random graph (Traag et al.,
2015).

3.33 - 10.53b 0.03
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Expansion Number of edges per community node that point
outside the cluster.

-0.92 - 7.90b 0.00

Cut Defined as the fraction of existing edges leaving the
community.

0.00 - 0.08 0.04

Conductance Time required for a random walk on the cluster to
achieve its stationary distribution.

0.17 - 1.00 0.08

NG modular-
ity

The number of internal edges minus the expected
number of internal edges where edges are lain ran-
domly to preserve the degree of each node (New-
man, 2006).

0.99 - 1.00c 0.06

a Summarized with a max, median, mean, standard deviation, and sum of values. The sum yields the largest mean
absolute SHAP value of 0.058, others can be found in Figure B.2.

b Log transformation applied.
c Exponential transformation applied.

Many of the biologically inspired features are derived from a Gene Ontology (GO) term en-

richment analysis (Ashburner et al., 2000; Gene Ontology Consortium, 2019). GO enrichment is

a popular technique in bioinformatics, allowing researchers to profile a set of genes (i.e., those

in Bw) based on the functional characteristics of each gene. In particular, a set of genes are as-

signed (possibly multiple) GO terms to describe the molecular function, biological process, and

cellular component of the set—including terms like estrogen binding, protein mannosylation, and

postsynapse, respectively. Using PANTHER (Mi et al., 2019), we conduct the enrichment tests on

the subset of genes in Bw using the Gene Ontology classification system. We retain the number

of significant GO terms, the number of tissues and diseases associated with the gene set, and the

proportion of the gene set participating in enrichment. The number of predicted loss of function

(PLoF) variants associated with each gene in Bw is computed with gnomAD (Karczewski et al.,

2020).

Network topologically inspired features are meant to characterize the edge structure of Bw

relative to the rest of the network, and discriminate sets in B. Some features are relatively simple,

including the number of genes and phenotypes, total number of edges, and average number of

connections in Bw. Others are more specialized and measure things like how well-knit or cohesive

Bw is (e.g., average embeddedness, conductance, and triangle participation ratio), the degree of

hub-and-spoke topology inBw (e.g., hub dominance), and the propensity for nodes inBw to connect
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to external nodes (e.g., expansion, cut, and normalized cut). Measures of topology are computed

using Python (Van Rossum and Drake, 2009) packages NetworkX (Hagberg et al., 2008) and

CDlib (Rossetti et al., 2019).

Model Description We train a multiple additive regression trees with dropout (DART) model

(Vinayak and Gilad-Bachrach, 2015) to model Bw’s potential for future discovery, denoted π̃w, as a

function of the observable features of Bw, denoted x
⊺
w. Implemented in the R (R Core Team, 2022)

package XGBoost (Chen and Guestrin, 2016) for scalability, the DART model is a generalization

of a multiple additive regression trees (MART) model (Friedman and Meulman, 2003) with an

added “dropout” rate parameter to overcome issues of model over-specialization. The dropout rate

controls the rate at which trees are dropped or “muted” during boosting and is shown to reduce

over-specialization and overfitting.

In general, tree based models require no parametric assumptions, allowing for complex re-

lationships among the features and the response. Furthermore, boosted tree models are robust to

collinearity (Chen et al., 2018). They are widely used, and when compared to other ensemble

methods, provide exemplary results for logistic objectives (Carreras and Marquez, 2001; Li, 2012;

Opitz and Maclin, 1999).

Model Training and Fit While incredibly flexible, DART models (like other gradient boosting

models) include a host of hyperparameters that ought to be tuned to minimize loss and avoid a

suboptimal fit. For a comprehensive list of hyperparameters, see Chen et al. (2022). The hyper-

parameters we tune are provided in Table 3.4 along with the description, range, and calculated

optimal value for each according to the cross-validated loss specified.

To decide the optimal value of each hyperparameter, we consider a grid of 100 parameter

combinations. To reasonably cover the parameter space with 100 points (i.e., parameter combina-

tions), we use the principle of maximum entropy and maximize the entropy of the distribution of
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Table 3.4: Hyperparameters to the DART model used to estimate each cluster’s PFD. A description and
range of values for each parameter is provided along with the optimal values attained via a five-fold
cross-validation. The “optimal” values minimize the cross-validated RMSE when the pipeline is fitted to
(G19,G20) in Section 3.4.1.

Parameter Alias Description Range Optimal

learning rate eta Shrinkage factor for the fea-
ture weights; used to prevent
overfitting

0 - 0.1 0.043

minimum loss reduction gamma Minimum reduction in loss
to continue partitioning a leaf
node on a tree

0 - 30 < 0.001

maximum number of trees nrounds Maximum number of boost-
ing iterations to consider

2 - 2000 141

maximum tree depth max_depth Maximum depth of a tree 1 - 15 12
subsample ratio subsample Subsample ratio of the train-

ing instances
0.1 - 1 0.38

dropout rate rate_drop Fraction of previous trees to
drop during dropout

0 - 1 0.11

skip rate skip_drop Probability of skipping the
dropout procedure during a
boosting iteration

0 - 1 0.86

points. Implemented in the R package dials (Kuhn and Frick, 2022), we choose the 100 points

such that the determinant of the spatial correlation matrix between points is maximized—shown

equivalent to maximizing the entropy of the distribution of points in Johnson et al. (1990). Us-

ing five-fold cross-validation, we compute the average root mean squared error (RMSE) for each

parameter combination. In a given fold, if the RMSE does not improve for 50 boosted iterations,

then training will stop. The parameter combination resulting in the smallest, cross-validated aver-

age RMSE is deemed optimal.

Once the optimal parameter combination is identified, the model is trained on the entire matrix

of features X⊺ such that the wth row of x⊺
w. The optimal DART model, f , takes a vector of cluster

features of B∗, denoted x
⊺
∗, as input and outputs B∗’s predicted potential for future discovery,

denoted π̂∗ ∈ (0, 1); that is, f : x⊺
∗ → (0, 1). In full generality, one could train a variety of models

to predict a number of scoring metrics using a plethora of different features. With our application
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in mind, we focus on training a flexible model to predict the potential for future discovery from the

set of features provided in Table 3.3.

Rank Sets According to Model Predictions

Provided a collection of sets of nodes B = {Bw}w∈[W ] and a model f : x⊺
w → (0, 1) where

x
⊺
w is a row vector of features of Bw listed in Table 3.3, the Rank operation ranks the collection of

sets B according to the collection of predictions π̂ = {π̂w}w∈[W ] where π̂w = f(x⊺
w) for w ∈ [W ].

To this end, we first compute the features of Bw listed in Table 3.3 for w ∈ [W ]. Following,

we compute the set of predicted PFDs: π̂ = {π̂w}w∈[W ]. Let w(i) be the rank index of the ith

largest value of π̂, breaking possible ties uniformly at random. Then, the collection of ranked sets

is denoted Bord = {Bw(i)}i∈[W ], where Bw(i) is the set of nodes with the ith largest predicted PFD.

3.3.2 ICCUR Pipeline

Provided two ordered snapshots of a temporal, biological network, Gt−1 and Gt, the ICCUR

pipeline returns a collection of densely connected clusters of Gt, ranked according to their potential

for future gene to phenotype relations using insights drawn from the identified clusters of Gt−1 (see

Algorithm 3.1). To identify and rank clusters at time t according to their potential for future gene

to phenotype relations, we first identify a collection of dense, heterogeneous clusters from Gt−1,

denoted C
t−1 = {Ct−1

h }h∈[H], using Discover on Gt−1.

We then characterize the degree to which each cluster, Ct−1
h , harbors gene to phenotype re-

lations subsequently introduced at time t. The collection of newly discovered G2P relations is

given by the set difference between the G2P relations at time t and the G2P relations at time

t − 1: E
[12]
t − E

[12]
t−1. Using Score on Gt−1, C

t−1
h , and E

[12]
t − E

[12]
t−1 for all h ∈ [H], we calculate

each cluster’s potential for future discovery, denoted π̃t−1
h . If π̃t−1

h > π̃t−1

h
′ for h, h

′

∈ [H], then

Ct−1
h contains more newly discovered gene to phenotype relations than Ct−1

h
′ compared to what

is expected from respectively sized clusters. Denote the collection of clusters’ estimated PFD as

π̃
t−1 = {π̃t−1

h }h∈[H].
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While the PFD is a useful way for practitioners to compare clusters, it cannot be calculated

for clusters at time t if t+1 has yet to occur. Hence, using Train on C
t−1 and π̃

t−1, we fit a flexible

regression model to relate a cluster’s potential for future discovery to observable cluster features.

The resulting model is denoted as f t−1 to emphasize that it is trained on the potential for future

discovery and features of clusters identified from Gt−1, for which both quantities are observable.

At this point, we have used operations from Section ?? to better understand how clusters iden-

tified at time t − 1 capture undiscovered gene to phenotype relations subsequently introduced at

time t. To identify and rank a collection of clusters of Gt according to their potential for future dis-

covery, we use Discover on Gt to identify C
t = {Ctw}w∈[W ]—a collection of dense, heterogeneous

clusters of Gt. Following, we use Rank on C
t to predict the potential for future discovery for each

cluster identified from Gt and rank them accordingly. The ranked collection of clusters is denoted

C
t
ord = {C

t
w(i)}i∈[W ] where Ctw(i) has the ith largest predicted potential for future discovery.

3.4 Results

3.4.1 Pipeline Fitting

We fit the ICCUR pipeline to the pairs of biological networks (G19,G20) and (G20,G21). The

total number of clusters identified by the Discover steps of the ICCUR pipeline is provided in Table

3.5, along with some basic information about the clusters. Aside from 2019, the majority of genes

and phenotypes are assigned to a cluster each year. The clusters tend to be reasonably small, with

a median size of about 22 nodes and an interquartile range of about 35 nodes each year. For each

cluster, we compute the ratio of densities (RatD), which measures how dense a cluster is internally

relative to the rest of the network. The clusters tend to have a ratio of densites of about 23 with a

an IQR of about 21. For each year, the ratios of densities are much larger than one, indicating that

each cluster is largely more dense internally than to the rest of the network.

When fitting the ICCUR pipeline to (G19,G20), clusters identified from G19 are scored accord-

ing to newly discovered gene to phenotype relations subsequently introduced in 2020. Similarly,

clusters identified from G20 are scored according to newly discovered gene to phenotype relations
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Table 3.5: The number of clusters (N) identified by the Discover steps of the ICCUR pipeline in each year,
along with the number of genes and phenotypes assigned to a cluster, the median and IQR of cluster size,
and the median and IQR of cluster ratio of densities (RatD). As expected, each cluster is reasonably small
and more dense internally than to the rest of the network.

Nodes in a Cluster Size RatD

Year N Genes (%) Phenotypes (%) Median IQR Median IQR

2019 1474 13,810 (71) 5640 (39) 22 43 22.92 20.68
2020 3412 17,410 (89) 12,231 (80) 21 30 23.38 21.11
2021 3656 17,864 (91) 12,821 (80) 23 35 25.03 21.66

introduced in 2021 when fitting the ICCUR pipeline to (G20,G21). The distributions of the PFDs

for 2019 and 2020 clusters are provided in Figure B.2, along with the distributions of cluster fea-

tures described in Table 3.3 for 2019, 2020, and 2021 clusters. The PFD is highly varied over the

range of zero and one with a low density mode near zero and a high density mode near one. The

high density mode near one indicates that the clusters identified in 2019 and 2020 largely capture

more undiscovered gene to phenotype relations than expected from dense, respectively sized clus-

ters randomly attained through snowball sampling. The cluster features appear fairly stable over

time, even though the identified clusters are different each year.

The hyperparameters provided in Table 3.4 minimized the average, cross-validated loss when

fitting the ICCUR pipeline to both (G19,G20) (with an RMSE of 0.213) and (G20,G21) (with an

RMSE of 0.191). Hence, the fitted models, f , are an ensemble of relatively few, complex trees.

Each tree is complex in terms of an incredibly small minimum loss reduction and large maxi-

mal depth of each tree; however, the moderately large learning rate and relatively few boosting

iterations combat the complexity of each individual tree.

When the clusters used to create the training data, i.e., X⊺, overlap significantly with each

other, it is reasonable to be concerned about independence in the training data and in the folds used

for cross-validation. We demonstrate in Appendix B.2 that clusters are largely more dissimilar than

similar; that is, there is little substantial pairwise overlap between the clusters used to create the

training data. Furthermore, we demonstrate that the optimal model’s complexity remains consistent
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after controlling the pairwise overlap among the clusters. Hence, the complexity of the optimal

DART model is a result of better out-of-sample performance and not a manifestation of highly

dependent units present in the training and validation folds.

To better understand what each feature contributes to model predictions when fitting the IC-

CUR pipeline to (G19,G20), we leverage SHAP (SHapley Additive ExPlanations) values (Lundberg

and Lee, 2017). The mean absolute SHAP value is provided in Table 3.3 as an aggregate measure

of feature importance where relatively larger values indicate the feature has a relatively larger in-

fluence on model predictions. We found that gene ratio and hub dominance were most influential

among the biologically and network topologically inspired features, respectively. A detailed ac-

count on SHAP values is provided in Appendix B.3, along with a summary of each cluster feature’s

marginal impact on model predictions.

3.4.2 Pipeline Validation

When the ICCUR pipeline is fit to (G19,G20), the clusters attained from G20 are ranked ac-

cording to their estimated potential for future discovery using insights drawn from clusters attained

from G19. Nevertheless, having observed the 2021 biological network, G21, we also have the ob-

served potential for future discovery for each of the clusters attained from G20. With both the

estimated and observed PFD for each of the 2020 clusters, we conduct an out-of-sample validation

of the ICCUR pipeline. We verify that (1) the clusters identified by the ICCUR pipeline contain

co-occurring yet otherwise unconnected genes and phenotypes more than expected by chance, and

(2) the rankings induced by the estimated PFD are largely concordant with those induced by the

observed PFD.

Clusters Contain Newly Discovered Gene to Phenotype Relations Ideally, clusters identified

by the ICCUR pipeline should contain newly discovered relations between genes and phenotypes

more than expected if undiscovered G2P relations were lain uniformly at random. Between 2019

and 2020, a total of 77,227 relations were added between a pair of unconnected genes and pheno-

types in G19. Of the 77,227 new G2P edges, precisely 844 are internal G2P edges, meaning they
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are incident to a gene and phenotype found co-occurring in a cluster identified from G19 by the

ICCUR pipeline. While the fraction of new, internal edges is relatively small, we investigate the

significance of 844 new, internal edges.

In total, there are approximately 280 million ways to construct a new G2P edge and approx-

imately 196 thousand ways to construct a new, internal G2P edge in G19. If the new G2P edges

were lain uniformly at random between pairs of unconnected genes and phenotypes in G19, then

the random number of new, internal G2P edges would be hypergeometrically distributed for which

the probability of observing at least 844 new, internal G2P edges would be less than 2.2 × 10−16.

A similar result holds for those clusters identified from G20. Hence, the clusters identified by the

ICCUR pipeline contain more undiscovered G2P relations than expected by chance.

Estimated Rankings are Concordant with the Observed When the ICCUR pipeline is applied

to (G19,G20), the estimated rankings should align with the rankings associated with the observed

potential for future discovery. To verify this fact, we compute Kendall’s coefficient of concordance

W (Kendall, 1948), a measure of interrater reliability where W = 0 suggests no agreement be-

tween raters and W = 1 suggests perfect agreement between raters. We attain a Kendall’s W of

0.83, which suggests the estimated rank largely aligns with that observed. Therefore, we conclude

the DART model is a reliable judge of clusters’ relative potential for future discovery. The claim

of a non-zero W withstands statistical significance with p < 2.2× 10−16, correcting for ties.

Notably, a collection of 870 clusters from 2020 are tied with the largest observed PFD >

0.9999. Each of these clusters harbored more new, internal G2P relations than all of the 10,000

snowball samples. To gauge the DART model’s ability to rank highly the observed collection of

clusters ripe for discovery, we identify the 870 clusters with the largest predicted PFD and compute

the overlap between the predicted collection and the observed collection. Precisely 510 of the 870

clusters (about 59%) tied for the largest PFD were ranked in the top 870 clusters according to

their predicted PFD, again providing evidence the predicted rankings provided by ICCUR are

informative.
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3.5 Application to Rare Disease Diagnosis

The network G21 reflects our modern understanding of biology. When the ICCUR pipeline

is fit to (G20,G21), the clusters attained from G21 represent the “contemporary clusters” whose

potential for future discovery is unobserved. To demonstrate the utility of the ICCUR pipeline

as a diagnostic aid, we collect real, anonomyzed patient information from MyGene2 and identify

clusters containing patients’ otherwise unconnected genotypic and phenotypic information, some

relations which have since been validated by human curation.

MyGene2 (Chong et al., 2016) is a web-based platform that connects persons with rare, undi-

agnosed diseases to clinicians or researchers working with individuals with similar phenotypic and

genotypic information. MyGene2 allows users to upload and publicize patient background infor-

mation, genotypic information, and phenotypic information, where the amount of information and

degree of privacy is determined by the users. Some users publicly provide patient photos, back-

ground, entire gene sequence variations, and a long list of abnormal phenotypes, while other users

choose to upload a single suspected genetic variant and a few abnormal phenotypes accessible only

to those who have contributed to MyGene2, such as other families, clinicians or researchers. We

scrape all publicly available MyGene2 profiles, 912 in total, and find 115 of these profiles contain

no direct connections among the list of genetic variants and abnormal phenotypes. We posit that

these are patients with an undiagnosed, rare disease.

Patient 1930, referred to here as Jane Doe, is an eleven year old female with gait ataxia,

seizures, pancreatits, and weight loss, among 13 other documented phenotypic abnormalities. Jane

has two variants in genes SSPO and NBEA. Despite being listed as “candidate genes” (meaning

either of the variants could be responsible for her condition), there are no established relationships

between any of Jane’s phenotypes and her genetic variants. While her medical information is seem-

ingly unconnected, the ICCUR pipeline identifies a cluster containing gene NBEA and phenotype

HP:0001824 (weight loss), provided in Figure 3.4. The cluster identified by the ICCUR pipeline

containing part of Jane Doe’s medical profile may be used by practitioners and clinicians for hy-
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pothesis generation, potentially establishing a relationship between Jane Doe’s genetic variant to

NBEA and her struggle with weight loss.

Figure 3.4: A cluster identified by the ICCUR pipeline pertaining to Jane Doe’s phenotypic and genotypic
information. Each node in the cluster is sized proportional to its eigenvector centrality in G21. The resulting
cluster suggests a relationship between NBEA and weight loss (HP:0001824) via the shortest path (high-
lighted in black) of length of three: NBEA←→ CYFIP1←→ GIPC1←→ HP:0001824. Each node along
the shortest path is bolded, and all labeled nodes are direct neighbors to either NBEA or weight loss.

While generally associated with seizures, autism, and other neurological disorders (Kushima

et al., 2018; Mulhern et al., 2018), NBEA has been shown to contribute to feed intake in mice

and associated with body mass index in humans (Olszewski et al., 2012), despite no current di-

rect relationship having been established in the biological ontologies for humans. Nevertheless,

variants to NBEA are associated with weight loss in more patients than Jane Doe (Cantwell et al.,

2021). Although a direct relationship between variants to NBEA and weight loss are not uni-

versally recognized, clinicians and researchers associated with Harvard’s Undiagnosed Diseases

Network (Ramoni et al., 2017) identified Jane’s genetic change to NBEA as “causing the partici-

pant’s symptoms,” (UDN, 2022) further validating our findings.
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Like Jane Doe, for each of the 115 patients with undiagnosed conditions, we test the ICCUR

pipeline’s ability to identify and rank clusters pertaining to these patients’ otherwise unrelated

phenotypic and genotypic information. For 14 MyGene2 patients, we find 17 gene to phenotype

pairs co-occurring in 19 different clusters attained from ICCUR, each provided in Table 3.6 along

with the clusters’ predicted PFD. Except Infomap, each clustering method identified at least one

relevant gene to phenotype relation. CESNA, the only overlapping method considered, identified

the largest number gene to phenotype connections relevant to the MyGene2 patients. Some rele-

vant gene to phenotype pairs were identified in multiple clusters; for example, gene SCN2A and

phenotype seizures were co-occurring in four clusters identified by CESNA. Except one, all of the

gene to phenotype pairs are separated by a path length of two. The only exception is that of Jane

Doe and the identified relationship between NBEA and weight loss (HP:0001824). The terms are

separated with a path length of three through two intermediate genes: NBEA←→ CYFIP1←→

GIPC1←→ HP:0001824, as seen in Figure 3.4.

3.6 Discussion

We propose a novel, analytic pipeline for the identification of clusters containing undiscovered

gene to phenotype relations (ICCUR) in a large, temporal heterogeneous biological network com-

posed of genes, abnormal phenotypes, and the established relationships among them. The network

is constantly evolving to reflect our most modern understanding of protein-protein interactions (via

G2G relations), the level of classification in abnormal phenotypes (via P2P relations), and impor-

tantly, disease (via G2P relations). Often, patients with seemingly unrelated genetic variants and

phenotypes never receive a diagnosis. ICCUR offers these patients an avenue for diagnosis by

allowing practitioners to identify clusters of the network ripe for future discovery and pertaining to

their patients’ otherwise unconnected genetic variants and abnormal phenotypes. ICCUR is a new

approach to link prediction using community structure with a mechanism to score clusters, rather

than individual node pairs.
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Table 3.6: Gene to phenotype pairs provided by patients’ with rare, undiagnosed disease found co-occurring
in a cluster identified by the ICCUR pipeline. The MyGene2 patient ID and cluster ID are provided followed
by the cluster’s estimated potential for future discovery.

Patient Information Cluster Information

ID Gene Phenotype ID Method π̂

27 SCN2A HP:0001250 (Seizure) 15778 CESNA 0.99
27 SCN2A HP:0001250 (Seizure) 21373 CESNA 0.99
27 SCN2A HP:0001250 (Seizure) 24273 CESNA 0.99
27 SCN2A HP:0001250 (Seizure) 1940 CESNA 0.82
75 BGN HP:0010503 (Fibular duplication) 585 ZCmod 0.33

1292 TNNT3 HP:0002804 (Arthrogryposis multiplex
congenita)

1321 Walktrap 0.97

1292 TNNT3 HP:0002804 (Arthrogryposis multiplex
congenita)

968 Greedy 0.97

1635 SPTBN5 HP:0001250 (Seizure) 22018 CESNA 0.94
1922 FAT2 HP:0001310 (Dysmetria) 15553 CESNA 0.95
1930 NBEA HP:0001824 (Weight loss) 84 Walktrap 0.54

1932 HUWE1 HP:0000739 (Anxiety) 9175 CESNA 0.99
1943 SHANK2 HP:0011968 (Feeding difficulties) 3199 CESNA 0.98
1948 CHD2 HP:0001250 (Seizure) 9175 CESNA 0.99
1950 SATB2 HP:0001999 (Abnormal facial shape) 14105 CESNA 0.99
1950 SATB2 HP:0000202 (Oral cleft) 5816 CESNA 0.95

2197 C17orf62 HP:0006532 (Recurrent pneumonia) 6379 CESNA 0.99
2197 C17orf62 HP:0001744 (Splenomegaly) 6379 CESNA 0.99
2234 DROSHA HP:0000252 (Microcephaly) 24074 CESNA 0.98
2527 TRAPPC5 HP:0000011 (Neurogenic) bladder 745 Walktrap 0.80
2527 TRAPPC5 HP:0000011 (Neurogenic) bladder 420 Greedy 0.80

2584 PYROXD1 HP:0003715 (Myofibrillar myopathy) 24123 CESNA 0.99
2584 PYROXD1 HP:0003198 (Myopathy) 24123 CESNA 0.99

The novelty of the ICCUR pipeline is its ability to rank and prioritize clusters for practitioners

according to their potential for future discovery using insights drawn from the identified clusters

of the previous year’s biological network. Using a generalization of a multiple additive regression

trees model, the ICCUR pipeline is trained to predict a cluster’s potential for future discovery us-

ing biologically and network topologically inspired features about the clusters, nodes, and edges.

Using these estimates, ICCUR ranks clusters accordingly. The ICCUR pipeline is shown to iden-
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tify clusters containing future G2P relations more than expected by chance. Furthermore, using

principles of cross-validation, predicted rankings align with the rankings associated with observed

potential for future discovery.

When the results of the ICCUR pipeline are applied to real, anonymized patient information,

the ICCUR pipeline offers meaningful clusters for 14 of 115 patients with rare, undiagnosed con-

ditions. The resulting clusters can be used for hypothesis generation and further investigation by

clinicians to aid in diagnosis and management. These clusters have been demonstrated useful and

validated by research in at least one case, that of Jane Doe (patient 1930). While we have demon-

strated the utility of ICCUR for clinical diagnosis, the ranked clusters of the modern biological

network can also act as a scope with which bioinformatic researchers can direct resources and

funding for future studies and investigations.

3.6.1 Strengths, Limitations, and Future Directions

The ICCUR pipeline is a scalable solution for the identification of small, dense heteroge-

neous clusters in very large, heterogeneous networks. The resulting ranked clusters are stored and

accessed using the developmental software available on GitHub (Martin, 2022). The application

allows practitioners to access, filter, and sort clusters by the number of internal genes and phe-

notypes matching their patient’s medical profile and/or the cluster’s potential for future discovery.

The application also visualizes other biologically useful information pertaining to the clusters, such

as the internal genes’ GO tissue enrichment and predicted loss of function.

A computationally burdensome step in the ICCUR pipeline involves the approximation of

clusters’ potential for future discovery. If the likelihood of a subgraph being generated through

snowball sampling were known, then we could analytically compute the PFD in (3.2) and avoid

the computationally burdensome approximation in (3.3). Hence, it stands to formally characterize

the distribution of subgraphs generated through snowball sampling, an area of future work. Fur-

thermore, since the clusters identified from the network are heterogeneous, a more appropriate null

model in this context would control for the number of genes and the number of phenotypes in the
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cluster, rather than simply the number of genes and phenotypes. Another area of future work is

to generalize the ICCUR pipeline to either compute or approximate the PFD in (3.2) where F is

the distribution of ν over the finite collection of snowballed subgraphs with prespecified number

of nodes of each node type.

Finally, while there has been notable progress in the development of methodology to iden-

tify communities (i.e., clusters) from homogeneous networks, relatively few methods exist for a

more general heterogeneous network. Existing methods which take into account differences be-

tween nodes and their interconnections tend to make assumptions about the community structure

of heterogeneous networks. For example, CESNA (ZCmod) assumes communities in a hetero-

geneous network should have relatively similar (different) node types. An area of future work

is the development of a community discovery method which accounts for existing differences in

the connectivity patterns between pairs of node types without making assumptions or imposing

constraints on the type composition of the resulting community structure.
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Chapter 4

ECoHeN: A Hypothesis Testing Framework for

Extracting Communities from Heterogeneous

Networks

4.1 Introduction

Complex phenomena, from biological systems (Nacu et al., 2007) to world trade patterns

(García-Algarra et al., 2019), are often modeled as networks (graphs) which consist of entities

(nodes), connections between them (edges), and known covariates about the entities and the con-

nections (node and edge attributes). Many disciplines have devoted significant efforts to the anal-

ysis and application of network models including statistics, physics, computer science, biology,

and the social sciences. One focus that has garnished much attention is community discovery: the

general process of assigning nodes to collections whose members are densely connected within the

collection yet sparsely connected to the rest of the network, calling these relatively dense subsets

of nodes communities (Girvan and Newman, 2002). After community members were shown to

embody structural and functional similarities (Newman and Girvan, 2004), a flurry of algorithms

designed to partition a graph to create this disparity in connectedness within and between partitions

were proposed, e.g., (Radicchi et al., 2004; Wu and Huberman, 2004). The process of partitioning

a network is generally referred to as community detection.

The rapid growth of literature in community detection prompted several comparative stud-

ies in the late 2000s (Fortunato, 2010; Lancichinetti and Fortunato, 2009) and generalizations to

community detection in the 2010s (Psorakis et al., 2011; Traag and Bruggeman, 2009; Yang et al.,

2013). One generalization of interest is a shift from community detection, a graph partitioning

problem, to community extraction, a set-identification problem. Community extraction methods

seek to discover communities from a network one at a time, allowing for arbitrary structure in the
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rest of the network. Unlike community detection methods, community extraction methods read-

ily identify background nodes, defined as nodes that are not preferentially attached to any well-

defined community, and overlapping community structures, where nodes may belong to more than

one community. While some extraction methods seek to optimize an extraction criterion (Wilson

et al., 2017; Zhao et al., 2011), others seek to define the statistical significance of a community’s

connections under a global null model (Lancichinetti et al., 2011; Wilson et al., 2014), a strategy

we follow here.

There has been notable progress in the development of methodology for extracting commu-

nities from homogeneous networks; however, few methods exist for a more general heterogeneous

network. Formally defined in Section 4.2, a heterogeneous network is a network with different

types of nodes. Most networks representing real systems are in fact heterogeneous (Shi et al.,

2016). For example, large-scale biological systems are often represented as heterogeneous net-

works (Alshahrani et al., 2017; Piñero et al., 2016), where the biological entities, i.e., nodes, are

distinguished by their biological function, i.e., node types. These networks comprise node types

like proteins, diseases, phenotypes, and genetic variants (Callahan et al., 2020). Often extreme

interest is placed on understanding fundamental relationships both among and between these bi-

ological entities. While community discovery is a common tool in this setting (Choobdar et al.,

2018), few methods are designed to identify communities which are densely connected consid-

ering the node types of the community members. Thus, practitioners are forced to either ignore

node type altogether, treating the network as homogeneous, or adapt standard community discov-

ery methods to analyze subgraphs of the heterogeneous network separately. In either case, any

information gleaned from differences in the rates of connectivity between nodes of different type

are subsequently ignored.

Knowing, for example, that a link between a gene and a phenotype is relatively rare compared

to a link between two genes or a link between two phenotypes is valuable information when de-

termining whether a set of nodes composed of both genes and phenotypes should be deemed an

assortative community. Relatively few connections between the genes and the phenotypes of this
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set might be deemed substantial when considering the general propensity for nodes of these types

to share a connection in the network. However, this is an unattainable conclusion if communities in

a heterogeneous network are not determined according to the topology of the network as it relates

to the node types of the community membership.

A disparity in connectedness related to node type is not unique to biological networks. McPher-

son et al. (2001) describe the tendency for kindred individuals to connect as homophily, where

homophily can occur on categories such as gender, class, or political ideology. Conditioning, for

example, on political ideology and accounting for the relative propensity for political actors to

connect can provide rich information about the underlying community structure, including com-

munities of mixed political ideology which are undetectable using contemporary methods. Meth-

ods designed to account for the heterogeneity in the node types and different connectivity patterns

between pairs of node types tend to assume communities should be densely connected with (a)

similar node types among the community members, e.g., (Li et al., 2018; Liu et al., 2014; Sen-

gupta and Chen, 2015; Smith et al., 2016), or (b) dissimilar node types among the members, e.g.,

(Zhang and Chen, 2020). As a result, existing methods facilitate the discovery of homogeneous or

heterogeneous community structure, but not both.

In this chapter, we introduce ECoHeN: an algorithm designed to extract communities from

heterogeneous networks. The significance of connectivity between a node and a set of nodes is

measured using a p-value derived from the reference distribution under a heterogeneous degree

configuration model. Using these p-values, ECoHeN extracts communities one at a time through

a dynamic set of iterative updating rules which are guaranteed to converge. ECoHeN is a gener-

alization and refinement of an extraction method ESSC which stands for extraction of statistically

significant communities (Wilson et al., 2014). Unlike ESSC, ECoHeN accounts for existing dif-

ferences in the connectivity patterns between pairs of node types to identify communities that are

more densely connected than expected given the node types and connectivity of its membership.

Existing community discovery methods for heterogeneous networks have treated the discovery of

homogeneous and heterogeneous community structure as two separate objectives requiring sepa-
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rate algorithms. In comparison, ECoHeN makes no assumption and places no constraint on the

resulting type composition of each community, allowing ECoHeN to distinguish and identify both

homogeneous and heterogeneous community structures that may overlap and can identify nodes

that are not preferentially attached to any community.

We start by formally defining a heterogeneous graph and outlining notation in Section 4.2. In

Section 4.3.1, we introduce the heterogeneous degree configuration model (HDCM), a null model

for studying heterogeneous networks. In Section 4.3.2, we provide the theoretical foundation for

ECoHeN before outlining the algorithm in Section 4.3.3 and discussing the algorithm’s parameter

choices in Section 4.3.4. We illustrate the performance of ECoHeN relative to other methods

in Section 4.4 before applying ECoHeN to a well-known political blogs data set in Section 4.5.

Finally, we conclude with a discussion in Section 4.6.

4.2 Heterogeneous Networks

Heterogeneous networks are a special case of a more general class of networks known as

node-attributed networks. Consistent with the terminology of Wasserman et al. (1994), node-

attributed networks consist of a structural dimension with nodes and interactions among them, a

compositional dimension containing the attributes (also called features or meta-data) for the nodes,

and an affiliation dimension describing the group memberships. Since known affiliations can be

expressed as node attributes, we interpret affiliation as being some latent membership to be learned

through community discovery. We use the term heterogeneous network to mean a node-attributed

network whose nodes are distinguished by a categorical feature called node types. Informally, a

heterogeneous network is a node-colored network where each unique color represents a unique

node type.

Heterogeneous networks are common in the social and biological sciences. For example, the

political blogs network introduced by Adamic and Glance (2005) is a heterogeneous network in

which political blogs, represented as nodes, are distinguished by their political ideology, repre-

sented as node types (liberals in blue and conservatives in red, as in Figure 4.1a). Used to rep-
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resent large-scale biological processes, knowledge graphs are another example of heterogeneous

networks where biological actors, represented as nodes, are differentiated by their biological func-

tion in the network, represented as node types. Common node types in a knowledge graph include

genetic variants, proteins, and phenotypes (Callahan et al., 2020). A smaller, contrived example of

a heterogeneous network is provided in Figure 4.1b to help solidify notation and concepts to come.

This network has two node types, depicted in blue and orange. If multiple categorical features are

present, we encode each possible combination of features as a different type.

(a) Political blogs network (b) Toy heterogeneous network

Figure 4.1: Panel (a) is a force-directed layout of the political blogs network: a network of political blogs
and the hyperlinks between them. Each blog, represented as a node, is colored according to the political
ideology, i.e., its node type, where red is used to indicate conservative ideology and blue is used to indicated
liberal ideology. Panel (b) is a toy example of a heterogeneous network G with 11 nodes and 15 edges,
implying |V| = 11 and |E| = 15. There are five type one nodes (colored in blue) and six type two nodes
(colored in orange), implying |V [1]| = 5 and |V [2]| = 6. The edge set consists of nine within-type edges
(four among type one nodes and five among type two) and six between-type edges, implying |E[11]| = 4,
|E[22]| = 5, and |E[12]| = 6.

Formally, let G = (V , E) denote an observed, undirected heterogeneous network with n nodes

labeled 1, . . . , n and K node types labeled 1, . . . , K. The node set V =
⋃K

k=1 V
[k] where V [k]

denotes the node set containing |V [k]| nodes of type k and V [k] ∩ V [l] = ∅. When necessary, the
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(a) G[11] = (V [1], E[11]) (b) G[22] = (V [2], E[22]) (c) G[12] = (V [1] ∪ V [2], E[12])

Figure 4.2: Decomposition of the toy network example provided in Figure 4.1b into two unipartite sub-
graphs (G[11], G[22]) and a bipartite subgraph (G[12]). Each subgraph G[kl] contains nodes of type k and l

and the observed links between them highlighted. The degree of 3[1], d(3[1]), is three. The type 1 degree of
3[1], d[1](3[1]), is two, and the heterogeneous degree sequence of node 3[1] is d(3[1]) = (2, 1).

node type of an arbitrary node u is denoted in bracketed superscript such that u[l] implies that

node u is of type l ∈ {1, . . . , K}. Let T denote an n-dimensional vector of node types where

the uth element of T provides the node type of node u. We allow the heterogeneous network G

to be a multigraph, meaning there could be self-loops or multi-edges; if there are no self-loops or

multi-edges, the heterogeneous network is deemed simple. Figure 4.1b, for example, is a simple,

heterogeneous network with two node types. The edge multiset of G can be partitioned according

to adjacent nodes’ types: E = ∪1≤k≤l≤KE
[kl] where E [kl] contains the links between nodes of type

k and nodes of type l. If v[k] is adjacent to u[l], then {v[k], u[l]} ∈ E [kl]. Since G is undirected

E [kl] = E [lk].

Partitioning the node and edge sets motivates the fact that G is the collection of K unipartite

and K(K − 1)/2 bipartite subgraphs. Figure 4.2 highlights the two unipartite subgraphs and

one bipartite subgraph that when augmented together yield the heterogeneous network depicted in

Figure 4.1b. Let G[kl] = (V [k] ∪ V [l], E [kl]) denote the subgraph composed of type k and type l

nodes and the connections between them. If k = l, then G[kk] is a unipartite subgraph; otherwise,

G[kl] is a bipartite subgraph. Since edges are assumed bidirectional, G[kl] is equal to G[lk].

Important for subsequent development, the degree of u[l], denoted d(u[l]), is the number of

edges incident to u[l]. At times, it will be useful to consider the number of edges incident to u[l]
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also incident to a type k node; we refer to this quantity as the type k degree of u[l], denoted as

d[k](u[l])1. We let

d(u[l]) =
(
d[1](u[l]), . . . , d[K](u[l])

)
(4.1)

denote the heterogeneous degree sequence of u[l], providing the number of type k nodes adjacent

to u[l] for all types k ∈ {1, . . . , K}. Note that d[k](u[l]) represents degree of u[l] in G[kl], such that

d(u[l]) =
∑

k d
[k](u[l]) represents the degree of u[l] in G.

4.3 Methodology

We now outline a method to extract communities from heterogeneous networks which we re-

fer to as ECoHeN. ECoHeN is designed to account for differences in connectivity patterns between

nodes of various types. At its core, ECoHeN evaluates the significance of connectivity between

a node and a set of nodes using a p-value derived from the reference distribution arising from a

heterogeneous degree configuration model (HDCM). Using these p-values, ECoHeN extracts com-

munities one at a time through a dynamic set of iterative updating rules which are guaranteed to

converge. Identified communities are more densely connected than expected given the node types

and connectivity of its membership, allowing for the discovery of both homogeneous and hetero-

geneous community structure. Resulting communities may overlap and exclude nodes altogether

which are not preferentially attached to any community.

We start by introducing the HDCM in Section 4.3.1. In Section 4.3.2, we define a p-value

for the hypothesis that an arbitrary node is well-connected to an arbitrary set of nodes and provide

a theorem for the asymptotic distribution of a random variable under the HDCM which serves

as the foundation for a reasonable approximation of the p-value. In Section 4.3.3, we introduce

the ECoHeN algorithm and discuss initialization, extraction, and convergence. Furthermore, we

1Allowing for self-loops and multi-edges can complicate the interpretation and discussion surrounding d[k](u[l]). In an
undirected, simple setting, there is no distinction between counting the number of edges incident to u[l] also incident
to a type k node (i.e., d[k](u[l])) and counting the number of type k nodes adjacent to u[l], so we treat them as the
same objective here. When discussing the number of type k nodes adjacent to u[l], we would count, for example, a
type k node as twice adjacent to u[l] should there exist two edges between them.
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discuss a procedure for paring down the set of discovered communities for practitioners. Finally,

in Section 4.3.4, we discuss the algorithm’s parameter choices.

4.3.1 Heterogeneous Degree Configuration Model

The degree configuration model (DCM) is a classic random network null model defined as the

uniform distribution over the space of networks maintaining a given degree sequence. In the het-

erogeneous network setting, simply fixing the degree of each node ignores the differences among

the nodes and the resulting differences in the types of connections they form. Motivated by Zhang

and Chen (2020), we define the heterogeneous degree configuration model (HDCM) as the uni-

form distribution over the space of networks with node types T maintaining a given collection of

heterogeneous degree sequences, D, where

D = {d(u) : u ∈ V} =
{(

d[1](u), . . . , d[K](u)
)
: u ∈ V

}
. (4.2)

The model, denoted HDCM(T ,D), assumes all edge configurations adhering to the given collec-

tion of heterogeneous degree sequences are equally likely.

One can construct a random, heterogeneous network with node types T and degree collection

D through a generative process informally known as “stub matching." Figure 4.3 provides an

illustration of this process for the toy network example in Figure 4.1b. Initially, each node type

is assigned a corresponding color, e.g., node type one (two) is assigned blue (orange). Starting

with n isolate nodes, each node is assigned a color according to its respective node type provided

in T , e.g., node 3[1] is assigned blue. Colored stubs, which act as half-edges, are attached to

each node according to each node’s heterogeneous degree sequence D, e.g., node 3[1] is assigned

two blue stubs and one orange stub since d(3[1]) = (d[1](3[1]), d[2](3[1])) = (2, 1). Finally, stubs

are attached uniformly at random within constraints dictated by the color of the stubs and nodes.

At each stage, a stub is selected uniformly at random from the set of available stubs. The color

of the stub indicates the color of the node to which it must connect. If, for example, the first

stub selected is an orange stub emanating from a blue node, then it is matched randomly with
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an available blue stub emanating from an orange node. This process is repeated until no stubs

remain. See Figure 4.3 for an illustration of this process. Appendix C.1 provides further discussion

on the similarities and differences between the DCM and the HDCM, and an efficient means for

generating a heterogeneous network from the model through a constrained permutation of the node

labels in the edge multiset E .

Figure 4.3: A schematic of the heterogeneous degree configuration model: a model of a random network
maintaining the collection of heterogeneous degree sequences, D. A generative form of the model begins
with n isolate nodes with node type corresponding to T . Colored stubs, which act as half-edges, are assigned
according to each node’s heterogeneous degree sequence and the adjacent nodes’ type, provided by D. A
stub is selected where the color of the stub selected indicates the color of the node to which it must be
matched. The partnering stub is selected uniformly at random from the set of available partners, and the
process is repeated until no stubs remain.

4.3.2 Defining Significance of Connectivity

We evaluate the significance of the connectivity between an arbitrary node of type l, u[l] ∈ V [l],

and an arbitrary subset of the node set, B ⊆ V , using a p-value derived from the reference distribu-

tion under the heterogeneous degree configuration model. Since each node maintains exactly one

node type, B can be partitioned into K subsets: B = ∪Kk=1B
[k] where B[k] denotes the set of type

k nodes in B. To assess the significance of connectivity between u[l] and the set B, we compare

the observed number of connections between u[l] and nodes in B[k] for all k ∈ {1, . . . , K} to the
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distribution under the HDCM. Let x[k](u[l] : B) denote the observed number of type k nodes in

B (equivalently, in B[k]) adjacent to u[l] for k ∈ {1, . . . , K}. For comparison, let X [k](u[l] : B)

represent the random variable for the number of type k nodes in B adjacent to u[l] in a random

network contrived from the HDCM for k ∈ {1, . . . , K}.

Under the HDCM, if the joint probability of attaining at least as many nodes in B[k] adjacent

to u[l] as observed for all k ∈ {1, . . . , K} is sufficiently small, then we say u[l] is well-connected

to the set B where the joint probability is expressed as

pB(u
[l]) := P

(
K⋂

k=1

{
X [k](u[l] : B) ≥ x[k](u[l] : B)

}
)

(4.3)

=
K∏

k=1

P
(
X [k](u[l] : B) ≥ x[k](u[l] : B)

)
. (4.4)

Small values of pB(u[l]) are unlikely under the assumption that edges were randomly constructed

under the HDCM, providing evidence that u[l] is well-connected to B. In this way, pB(u[l]) is

reminiscent of a p-value for testing the hypothesis that u[l] is well-connected to nodes in B, and if

pB(u
[l]) is less than some prespecified α ∈ (0, 1), then we conclude that u[l] belongs to B. Since

the connections between different pairs of node types are independent in the HDCM, (4.3) is the

product of K simpler probability statements quantifying the connectivity between u[l] and each

node type, as shown in (4.4).

To compute pB(u
[l]), we must characterize the distribution of X [k](u[l] : B): the random

number nodes in B[k] adjacent to u[l] under the HDCM. The exact distribution for X [k](u[l] : B)

is difficult to attain since enumerating every network in the sample space is infeasible even for

networks on the order of 100 nodes. It is possible to approximate the distribution by sampling

networks via HDCM(T ,D), but this process can be memory intensive. Instead, we analytically

characterize the random generative process for the HDCM(T ,D) and provide Theorem 4.3.1,

which describes the asymptotic behavior of X [k](u[l] : B) and provides the theoretical foundation

for a reasonable approximation of pB(u[l]).
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Setup. Let {Gn}n≥1 denote a sequence of observed, heterogeneous networks where Gn = (Vn, En)

and Vn = {1, . . . , n} with node types Tn. The collection of heterogeneous degree sequences of Gn

is denoted Dn. Let {Hn}n≥1 denote a sequence of random, heterogeneous networks where Hn is

constructed via HDCM(Tn,Dn). Let {Bn}n≥1 denote a sequence of sets of nodes where Bn ⊆ Vn,

and let c ≥ 1 be fixed. For each n ≥ 1, let V
[k]
n = {v ∈ Vn : v is of type k} and V [k] ∩ V [l] = ∅

for all k ̸= l such that Vn = ∪Kk=1V
[k]
n . Furthermore, let B

[k]
n = {v ∈ Bn : v ∈ V

[k]
n } such that

Bn = ∪K
k=1B

[k]
n . Let u

[l]
n ∈ V

[l]
n denote a type l node with a type k degree of c, i.e., d[k](u

[l]
n ) = c, and

let F
[k]
l,n denote the empirical distribution of type k degrees of type l nodes in Vn, i.e., the empirical

distribution of {d[k](v) : v ∈ V [l]}.

Here we introduce two necessary assumptions. Assumption 4.3.1 states that the limiting proportion

of type k nodes is non-zero for k ∈ {1, . . . , K}. In particular, no node type vanishes as the network

grows. Assumption 4.3.2 posits the existence of a limiting distribution of the type k degrees of

type l nodes, for which there exists a finite, limiting mean type k degree of type l nodes for all

k, l ∈ {1, . . . , K}. Informally speaking, the general affinity for nodes of type k and l to connect is

limiting for all k, l ∈ {1, . . . , K}.

Assumption 4.3.1. |V
[k]
n |/|Vn| → γ[k] as n → ∞ for all k ∈ {1, . . . , K} such that γ[k] ∈ (0, 1)

and
∑K

k=1 γ
[k] = 1.

Assumption 4.3.2. There exists a cumulative distribution function F
[k]
l on [0,∞) with

0 ≤ µ
[k]
l

:=

∫

R+

x dF
[k]
l (x) <∞,

such that F
[k]
l,n

d
→ F

[k]
l and µ

[k]
l,n

:=
∫
R+ x dF

[k]
l,n(x)→ µ

[k]
l as n→∞ for all k, l ∈ {1, . . . , K}.

Theorem 4.3.1. Under Assumptions 4.3.1 and 4.3.2, if {X
[k]
n (u

[l]
n : Bn)}n≥1 denotes the se-

quence of random variables of the number of type k nodes in Bn adjacent to u
[l]
n in Hn, then
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dTV

(
X

[k]
n (u

[l]
n ,Bn), Y

[k]
l,n (Bn)

)
→ 0 as n→∞, where Y

[k]
l,n (Bn) ∼ Binom(c, p

[k]
l,n(Bn)) and

p
[k]
l,n(Bn) =

∑
w∈B

[k]
n
d[l](w)

2I(k=l)|E
[kl]
n |

. (4.5)

This theorem states that the total variation distance, dTV , between the distribution of the number of

type k nodes in a subset of the node set adjacent to an arbitrary node of type l and the distribution

of a binomial random variable tends to zero as the network grows. Given this result, one can

reasonably approximate the significance of connectivity between a node, u[l], and a set of nodes,

B, as
∏K

k=1 P

(
Y

[k]
l (B) ≥ x[k](u[l] : B)

)
. However, the parameter in (4.5) depends on whether u[l]

is an element of B, capturing the possibility of u[l] connecting with itself when u[l] is in B. This is

unsatisfactory as it impacts the convergence of ECoHeN. Therefore, in Corollary 4.3.1, we provide

an alternative specification of (4.5) that disregards the possibility of u[l] connecting to itself. This

result mirrors Theorem 4.3.1 since the density of self-loops in the HDCM tends to zero as the

network becomes large.

Corollary 4.3.1. Under Assumptions 4.3.1 and 4.3.2, if Y
[k]
l,n (u

[l]
n ,Bn) ∼ Binom(c, p

[k]
l,n(u

[l]
n ,Bn))

where

p
[k]
l,n(u

[l]
n ,Bn) =

[∑
w∈B

[k]
n
d[l](w)

]
− I(k = l)I(u

[l]
n ∈ Bn)c

2I(k=l)|E
[kl]
n | − I(k = l)c

, (4.6)

then dTV

(
X

[k]
n (u

[l]
n ,Bn), Y

[k]
l,n (u

[l]
n ,Bn)

)
→ 0 as n→∞.

Provided Corollary 4.3.1, one can then reasonably approximate the significance of connectivity

between a node, u[l], and a set of nodes, B, as p̂B(u
[l]) =

∏K

k=1 P

(
Y

[k]
l (u[l],B) ≥ x[k](u[l] : B)

)
,

where p̂B(u
[l]) is no longer dependent on whether u[l] is in B, taking on the same value in either

case and allowing us to characterize the convergence properties of ECoHeN in Section 4.3.3. We

provide a proof of Theorem 4.3.1 and Corollary 4.3.1 in Appendix C.2.
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4.3.3 ECoHeN Algorithm

The ECoHeN algorithm comprises three operations: Initialization, Extraction, and Refine-

ment. At the initialization step, a collection of seed sets of nodes is chosen, where B0 denotes a sin-

gle seed set. Following, each seed set is iteratively updated according to the set of {p̂Bi
(u) : u ∈ V}

until no nodes are included or excluded, where Bi denotes the set after i updates. The result-

ing collection of non-empty sets of nodes represent the extracted communities and is denoted

CT = {Ct}t∈T , where Ct denotes a single extracted community. Lastly, the collection of extracted

communities are refined according to a practitioner’s preferences, such as desired community sizes

and maximal pairwise overlap between communities. The refined communities are denoted CH ,

where H ⊆ T . The full algorithm is presented in Algorithm 4.1, with supplemental extraction

routines provided in Appendix C.4. We detail each component of the algorithm in the following

subsections:

Initialization

By default, the collection of seed sets, denoted B0, consists of the neighborhood of each node

in the observed network G = (V , E). The neighborhood of a node u ∈ V is the set including u and

all nodes adjacent to u, that is, N(u) = {u} ∪ {v ∈ V : {u, v} ∈ E}. Hence, the collection of seed

sets considered is B0 = {N(u) : u ∈ V}. There are other ways to define seed sets; for example,

locally optimal neighborhoods has been used in other works (Gleich and Seshadhri, 2012; Whang

et al., 2013).

Extraction

Provided a prespecified significance level α ∈ (0, 1) and a seed set B0 ∈ B0, the extraction

procedure iteratively updates the set through a two-step, dynamic procedure until no nodes are

recommended for inclusion or exclusion. We denote the set of nodes after i updates as Bi and

the complement as Bc
i = V − Bi. At each iteration, external nodes, being all u ̸∈ Bi, which are

well-connected to Bi are added to Bi. Since this involves |Bc
i | tests, a false discovery rate (FDR)

correction (Benjamini and Hochberg, 1995) is evoked. The intermediate set containing Bi and
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Algorithm 4.1: Pseudocode for the ECoHeN algorithm. We include pseudocode for the extraction rou-
tines AddWellConnected and RemoveLooselyConnected in Appendix C.4.
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any additions is denoted B+
i . Following, internal nodes, being all u ∈ B+

i , which are no longer

well-connected to B+
i are removed. Again, since this involves |B+

i | tests, an FDR correction is

evoked. The set following any removals is denoted Bi+1 as this completes one iteration of the

update procedure. The procedure continues in this way until no nodes are added or removed, that

is, until Bi = B
+
i = Bi+1.

Maximal Allowance In ECoHeN’s predecessor ESSC, all nodes are simultaneously considered

for inclusion and exclusion at each iteration, yet this does not have to be the case. In fact, the choice

of how many nodes’ memberships (either in Bi or in Bc
i ) are updated can have major implications

on whether the update procedure converges necessarily and the number of iterations required until

convergence. We define the maximal allowance at iteration i, denoted µi, to be the maximum

number of nodes permitted into Bi and the maximum number permitted out of B+
i at iteration

i. If µi = |V| for all i, the update routine is relatively fast but can result in cycles: the infinite

alternation between two sets of nodes (problematic in Wilson et al. (2014) and Bodwin et al.

(2018)). If µi = 1 for all i, the update routine converges but may take unnecessarily many iterations

to converge. As such, we propose initializing the maximum allowance to a large value and then

progressively decreasing it to guarantee convergence while reducing the number of iterations. We

propose defining the maximal allowance using an exponential decay function parameterized by an

initial learning rate, ξ ∈ [0, 1], and a decay rate, ϕ ∈ [0, 1]:

µi = max(1, ⌊ξϕi−1|V|⌋). (4.7)

The learning rate controls the maximal allowance on the first iteration, and the decay rate controls

the maximal allowance thereafter. Together, ξ and ϕ control the scale of updates where smaller

values of ξ and ϕ necessitate small, micro-level changes to Bi at each iteration, and larger values

of ξ and ϕ allow for larger, macro-level changes to Bi at early iterations. The outer maximum

operation in (4.7) ensures that if the number of nodes dictated by the floor function reaches zero

before convergence, then one node is permitted to transition into and out of Bi until convergence.
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Setting ξ = ϕ = 1 (ξ = ϕ = 0) is equivalent to setting µi = |V| (µi = 1) for all i; each are

problematic as previously discussed.

We first characterize the convergence properties of the extraction procedure in Theorem 4.3.2

before discussing the practical implications.

Setup. Let G = (V , E) denote an observed, heterogeneous network. In the extraction procedure,

let p̂B(u
[l]) =

∏K

k=1 P

(
Y

[k]
l (u[l],B) ≥ x[k](u[l] : B)

)
for any set B by Corollary 4.3.1 where u[l] is

an arbitrary node of type l and Y
[k]
l (u[l],B) ∼ Binom(d[k](u[l]), p

[k]
l (u[l],B)).

Theorem 4.3.2. Let α ∈ (0, 1), ξ ∈ [0, 1], and ϕ ∈ [0, 1) be fixed constants. Suppose B0 ⊆ V

denotes a seed set for the extraction procedure. If there exists a j such that |Bi| < |V|/2 for all

i ≥ j, the extraction procedure will not cycle.

Based on Theorem 4.3.2, setting ϕ < 1 is enough to guarantee ECoHeN will never cycle between

two sets, no matter the choice of ξ. While we cannot prove theoretically that ECoHeN will not al-

ternate between more than two sets (e.g., a three-set cycle), this phenomena has not been observed

empirically. When ξ = 1 and ϕ < 1 − ϵ for small ϵ > 0, the maximal allowance is relatively

large for many early iterations, often prompting early convergence compared to ξ = ϕ = 0, while

simultaneously guaranteeing convergence. The impact of ξ and ϕ on the quantity and quality of

communities found via simulation is documented in Section 4.3.4. We provide a proof of Theorem

4.3.2 in Appendix C.2.

Refinement

The extraction procedure identifies a collection CT = {Ct}t∈T of communities based on the

collection of seed sets B0. In many applications, only communities with certain properties are

considered desirable. For example, the DREAM challenge, described in Choobdar et al. (2018),

required all communities submitted for competition be non-overlapping and contain 3-100 mem-

bers. In other settings, community discovery is used as an aid for link prediction (Soundarajan and

Hopcroft, 2012), in which case fully connected communities are not of interest. The refinement
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process reduces the collection of discovered communities to a subset CH , H ⊆ T , of communities

satisfying the requested constraints.

While the constraints on size and connectedness are easily implemented, refining a collection

of communities based on overlap requires more care. Let β ∈ [0, 1] denote a user specified max-

imum pairwise overlap between communities based on the Jaccard similarity measure, denoted

J . The refinement process begins by identifying the largest community Ch, h ∈ T , and letting

H = {h}. Following, we identify the largest community Ch∗ , such that h∗ ̸∈ H and J(Ch∗ , Ch) ≤ β

for all h ∈ H , and set H = H ∪ {h∗}. The process continues until no additional communities

maintain the overlap constraint dictated by β, i.e., until for all h∗ ̸∈ H there exists an h ∈ H such

that J(Ch∗ , Ch) > β. The refinement procedure is similar to that of Wilson et al. (2017).

4.3.4 Parameter Choices

ECoHeN is implemented as an R package ECoHeN (Gibbs, 2022) available on GitHub with

the full algorithm, including all extraction routines, provided in pseduocode in Algorithm 4.1 and

Algorithm C.1 of Appendix C.4. The extraction procedure is implemented in C++ for efficiency

with parallelized extractions across initial seed sets. ECoHeN allows the user to specify the signif-

icance level α, learning rate ξ, and decay rate ϕ. A brief description of each parameter, the param-

eter ranges, and default recommendations are provided in Table 4.1. The significance threshold, α,

controls how conservative one would like to be in defining a community; smaller values of α result

in fewer, smaller communities which tend to be incredibly densely connected compared to the rest

of the network. Larger values of α result in more, larger communities which are less dense.

The learning and decay rates control the maximum allowance at each iteration of the extrac-

tion procedure and should be set together. If ξ = ϕ = 0, then the extraction procedure provides the

greatest resolution in identifying a single community from background noise (see Appendix C.3);

however, there are a number of downsides associated with this setting, including the extraction of

many communities with substantial pairwise overlap, many required iterations before convergence,

and most notably, the identification of communities in truly random networks (see Appendix C.3).
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Table 4.1: Descriptions and notation for each parameter along with default suggestions. Defaults are set to
speed up the extraction procedure with guaranteed convergence and minimal loss in the power to discover
communities.

Parameter Default Description

Significance level
• α ∈ (0, 1)

0.10 Determines whether p̂B(u) is small (large) enough to justify the
inclusion (exclusion) of node u to the set B for each u at each
iteration of the extraction procedure.

Learning rate
• ξ ∈ [0, 1]

1 Controls the maximal allowance on the first iteration of the ex-
traction procedure; ξ = 1 allows for large changes to B on the
first iteration.

Decay rate
• ϕ ∈ [0, 1]

0.99 Controls the maximal allowance after the first iteration of the ex-
traction procedure; ϕ = 1− ϵ for small ϵ allows for large changes
to B for many iterations, often reducing the number of iterations
until guaranteed convergence.

When ξ = ϕ = 1, the extraction procedure often requires fewer iterations until convergence

and results in fewer communities with less pairwise overlap; however, convergence of the algo-

rithm is not guaranteed. Notably, when ξ = ϕ = 1, densely connected communities of interest

may be unidentified as the extraction procedure may cycle between densely connected sets of nodes

until a maximum number of iterations is reached and the extraction procedure is terminated.

Setting ξ = 1 and ϕ < 1 guarantees that ECoHeN will converge and resolves issues with

identifying communities in random networks, allowing ECoHeN to escape the low conductance

seed sets; however, communities may still have substantial pairwise overlap. The problem is abated

for ϕ closer to one which is also shown in Appendix C.3, whereby the algorithm is best able to

identify a single community from background noise when ξ = 1. Based on these findings, the

default choice for the learning and decay rates are ξ = 1 and ϕ = 0.99, respectively. The refinement

procedure further reduces the degree of pairwise overlap in the final set of identified communities

when β < 1.
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4.4 Simulation Study

In this section, we investigate the conditions for which ECoHeN identifies simulated commu-

nity structure. We leverage an extension of the classic stochastic block model, referred to here as

the heterogeneous stochastic block model (HSBM), to generate the heterogeneous networks under

study. Described in Zhang and Chen (2020) for two node types and implemented in Gibbs (2022)

for K node types, the HSBM is a flexible framework for generating networks with numerous node

types and is detailed in Appendix C.3. In this study, we consider networks with 500 red (i.e., type

one) and 500 blue (i.e., type two) nodes split between a background block and a high connectiv-

ity block (HCB). Nodes are assigned to blocks according to the parameter p where connections

between nodes are determined stochastically according to parameters {b, r11, r22, r12}. We detail

these parameters in the following paragraph using Figure 4.4 to motivate their definition.

Each network under study is generated from the HSBM with parameters {b, r11, r22, r12}. The

parameter p is the proportion of nodes of each type assigned to the HCB. A larger p corresponds to

a larger community size. Connections between nodes are sampled according to Bernoulli random

variables with expectation dependent on the block assignment and node type of each node. The

probability of connection between two nodes is b, interpreted as the background rate, if each node

be a member of the background block or members of different blocks (i.e., one in the background

and one in the HCB). The probability of connection between two nodes in the HCB is b + rij

where rij provides the additive increase in the probability of connection between nodes of type i

and j. Figure 4.4 is constructed with parameters p = 0.45, b = 0.05, r11 = 0.25, r22 = 0.20, and

r12 = 0.10.

We wish to characterize ECoHeN’s ability to identify two classes of community structure:

heterogeneous and homogeneous community structure. The network presented in Figure 4.4 em-

bodies heterogeneous community structure provided rij > 0 for all 1 ≤ i ≤ j ≤ 2. In particular,

when r12 > 0, nodes of different type in the HCB have a higher propensity to connect compared

to the background, implying the existence of one heterogeneous community composed of both red

and blue nodes. When rii > 0 for i ∈ {1, 2} and r12 = 0, nodes of different type in the HCB con-
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Figure 4.4: The adjacency matrix of a network generated under the HSBM with parameters p = 0.45,
b = 0.05, r11 = 0.25, r22 = 0.20, and r12 = 0.10. Node type is illustrated by the colored bars adorning
the axes, and links are illustrated by black dots. Nodes are assigned to blocks according to p where edges
are sampled independently according to Bernoulli probabilities. Two nodes connect with probability b if
each are in the background block or do not share a block. The parameter rij , 1 ≤ i ≤ j ≤ 2, provides
the additive increase in the rate of connection between nodes of type i and j if each node is in the HCB.
Connections between nodes in the HCB are bordered in a black square. When rij > 0 for all 1 ≤ i ≤ j ≤ 2,
the network embodies heterogeneous community structure with one community composed of red and blue
nodes. When rii > 0 for i ∈ {1, 2} and r12 = 0, the network embodies homogeneous community structure
with two communities: one composed of red nodes, and one composed of blue nodes. When rij = 0 for all
1 ≤ i ≤ j ≤ 2, the network is an ER network with no underlying community structure.

nect at the same rate as the background, implying the existence of two homogeneous communities:

one composed of red nodes and one composed of blue nodes. When rij = 0 for all 1 ≤ i ≤ j ≤ 2,

the network is a heterogeneous analog of an Erdős-Rényi-Gilbert (ER) network (Erdős and Rényi,

1960; Gilbert, 1959) with probability of connection b. ECoHeN’s ability to assign all nodes to the

background in ER networks is explored in Appendix C.3.

For each class of community structure, we consider a range of HCB sizes and network con-

nectivity patterns. Three community discovery methods designed for homogeneous networks (i.e.,

ESSC (Wilson et al., 2014), Infomap (Rosvall et al., 2009), and Walktrap (Pons and Latapy, 2006))

and two community discovery methods designed for heterogeneous networks (i.e., ECoHeN and

ZCmod (Zhang and Chen, 2020)) are applied. While no community discovery method is univer-
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sally optimal, Infomap and Walktrap tend to partition a network into smaller, more dense modules

than other canonical community detection methods (Smith et al., 2020) and outperform many com-

peting methods for a variety of benchmarks (Javed et al., 2018). ESSC is a special case of ECoHeN

when the number of node types is one, i.e., the network is homogeneous, justifying its inclusion.

To our knowledge, ZCmod is the only existing community detection designed to identify hetero-

geneous community structure. We ignore node type when applying ESSC, Infomap, and Walktrap

on the simulated networks.

One-hundred networks are generated for a given simulated condition and are referred to as

replicates. For each replicate, we apply the aforementioned community discovery methods and

record the respective set of discovered communities. For each method and each replicate, we

compute the maximum Jaccard similarity measure between the underlying community structure

and the set of discovered communities. A value near one (zero) indicates the community was near

perfectly identified (not identified) by the method. ECoHeN, ESSC, and ZCmod are implemented

in the ECoHeN package (Gibbs, 2022), whereas Infomap and Walktrap are implemented in the

igraph package (Csardi and Nepusz, 2006) of the R programming language (R Core Team,

2022).

4.4.1 Heterogeneous Community Structure

To generate heterogeneous networks with heterogeneous community structure, we fix b =

0.05, and let rii ∈ (0.15, 0.20, 0.25, 0.30) for i ∈ {1, 2} and r12 ∈ (0.025, 0.05, 0.075). We allow

the proportion of nodes assigned to the HCB to vary according to p ∈ (0.05, 0.10, 0.15, 0.20).

Hence, we consider a total of 192 simulated conditions. Random networks under these settings

have heterogeneous community structure, particularly one community composed of red nodes and

blue nodes.

Figure 4.5 shows the results for identifying the heterogeneous community when r11 = r22.

ECoHeN and ZCmod’s ability to identify the heterogeneous community notably improves as the

within-HCB, within-type density (i.e., b+rii) increases and the within-HCB, between-type density
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Figure 4.5: Each method’s ability to identify the heterogeneous community is shown as a function of the
size of the heterogeneous community. As the density of within-type and between-type links increases, ECo-
HeN identifies the heterogeneous community with increasingly better precision and marked improvements
for small, heterogeneous communities. In nearly all simulated conditions, ECoHeN performs as well or
better than ZCmod. The performance of ESSC and Walktrap is highly varied compared to ECoHeN and
ZCmod, often varying between 0.5 and 1 (e.g., r12 = 0.075 and rii = 0.25). Unlike ECoHeN and ZCmod,
these methods fail to account for node type, ergo fail to recognize the heterogeneous community for some
replicates and instead identify the two homogeneous subsets of the HCB.
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(i.e., b + rij) increases. On the other hand, ESSC and Walktrap’s ability to identify the heteroge-

neous community improves for increasing rii and r12 but with more variability and less precision

compared to ECoHeN and ZCmod. In general, Infomap fails to find any communities, consistently

returning a trivial partition of 1000 communities each containing one node. ECoHeN performs as

well or better than ZCmod at each simulated condition, consistently outperforming ZCmod at iden-

tifying small, heterogeneous communities (i.e., when p is small). Since ZCmod is a modularity

optimization method, it appears to suffer from a known resolution limit characteristic of modularity

optimization methods (Fortunato and Barthelemy, 2007), struggling to recover small communities

with a reasonable degree of accuracy. For larger values of p, ECoHeN performs similarly to ZC-

mod in its ability to recover the heterogeneous community. When r12 = 0.05 and rii = 0.15,

ECoHeN can identify larger simulated heterogeneous communities with reasonable accuracy, but

there is significant variability in the results. As the density of community links increases (i.e.,

r12 or rii increases), ECoHeN demonstrates improved accuracy with less variability, reaching a

natural inflection point where its performance significantly improves. A broad range of simulated

conditions are considered and presented in Appendix C.3.

For many settings (e.g., r12 = 0.075 and rii = 0.25), the maximum Jaccard for ESSC and

Walktrap will vary from 0.5 to one with the median often equal to 0.5 or one. In these settings,

ESSC and Walktrap identify the heterogeneous community for some replicates (resulting in a Jac-

card of one) and the homogeneous communities for other replicates (resulting in a Jaccard of

0.5). On the other hand, ECoHeN and ZCmod consistently identify the heterogeneous commu-

nity in these settings, recognizing that the within-HCB, between-type density is larger than the

background rate (e.g., 2.5 times larger when r12 = 0.075), albeit much less than the within-HCB,

within-type density. By comparison, ESSC and Walktrap will only identify the heterogeneous

community when the overall density of the HCB is sufficiently high because the between-type

density is sufficiently high.
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4.4.2 Homogeneous Community Structure

To generate heterogeneous networks with homogeneous community structure, we fix b =

0.05, and let rii ∈ (0.15, 0.20, 0.25, 0.30) for i ∈ {1, 2} and r12 = 0. Again, we allow the pro-

portion of nodes assigned to the HCB to vary according to p ∈ (0.05, 0.10, 0.15, 0.20). Random

networks under these settings have homogeneous community structure, particularly two commu-

nities: one composed of red nodes, i.e., the red community, and one composed of blue nodes, i.e.,

the blue community. We start by investigating each method’s ability to identify the red community

when r11 ∈ (0.20, 0.25, 0.30) and r22 = 0.25 for a total of 36 simulated conditions.

Figure 4.6: Each method’s ability to identify the red, homogeneous community is shown for varying red
community sizes p. As the density of red-to-red links increases, ECoHeN identifies the red community with
increasingly better precision and is notably better when the red community is small. ECoHeN can recover
both homogeneous and heterogeneous community structure; however, the tradeoff for this functionality is a
reduction in power for identifying homogeneous communities. Nevertheless, ECoHeN’s ability to recover
the homogeneous community far surpasses ZCmod, which requires each community maintain at least one
node of each node type.

Figure 4.6 shows the results for identifying the red community when the density of blue-

to-blue links in the HCB is fixed according to r22 = 0.25. As the density of red-to-red links

in the HCB, controlled by r11, increases, ECoHeN can identify the red community with increas-

ingly better precision and with marked improvements for small, homogeneous communities (i.e.,

when p is small). There are no such improvements from ZCmod which requires each discovered
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community maintain at least one node of each type. At the same time, ESSC and Walktrap con-

sistently outperform ECoHeN and ZCmod at identifying homogeneous community structure. This

is not surprising considering these methods identify communities irrespective of node type. While

ECoHeN is designed to identify both homogeneous and heterogeneous community structure, the

tradeoff for this functionality is a reduction in power for identifying homogeneous communities.

This is unsurprising as ECoHeN considers both same-type and between-type edges simultaneously,

rather than just same-type edges, looking for evidence of excess connectivity.

Comparing methods designed for homogeneous networks, ESSC performs better or similarly

to Walktrap at identifying dense, homogeneous communities. Infomap continues to return a trivial

partition of 1000 communities containing one node each, incapable of identifying a community

amongst background noise. The results over all simulated conditions, provided in Appendix C.3,

demonstrate that the density of blue-to-blue links in the HCB, controlled by r22, does not impact

any method’s ability to identify the red community. Furthermore, the results for identifying the

blue community are provided in Appendix C.3 along with a broad range of simulated conditions.

4.5 Empirical Study

To illustrate the utility of ECoHeN in practice, we extract communities from the political

blogs network of Adamic and Glance (2005). This iconic network consists of political blogs (rep-

resented as nodes) and the hyperlinks between them (represented as undirected edges). Collected

shortly after the 2004 U.S. presidential election, the largest connected component of the political

blogs network consists of 1222 blogs and 16,714 links. As seen in Figure 4.1a, blogs were clas-

sified according to their political ideology based on a text analysis of their content, where the 636

red nodes represent conservative leaning blogs and the 586 blue nodes represent liberal leaning

blogs. There are drastically more connections between blogs of the same political ideology (pre-

cisely 15,139) than connections between blogs of differing political ideology (precisely 1,575).

This translates to a propensity of connection between liberal (conservative) blogs of 0.043 (0.039),

whereas the propensity of connection between liberal and conservative blogs is 0.004.
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The political blogs network has been studied time and time again within the community dis-

covery literature (Jin, 2015; Karrer and Newman, 2011; Newman, 2006, 2013), and in this vast

body of work, political ideology is conflated with community structure. Authors deem their com-

munity discovery methods successful after dividing nodes into groups which largely align with the

observed political ideology. However, this is arguably a rather trivial partition of the nodes which

provides little insight about the connections between liberals and conservatives. Peel et al. (2017)

further warn against treating node meta-data, like political ideology, as ground truth for community

structure, recognizing that (1) community discovery is largely task dependent for which no method

is universally optimal, and (2) the political blogs network has substantial substructure that is often

overlooked in favor of the traditional narrative. By conditioning on political ideology, ECoHeN

identifies communities of blogs which are densely connected considering the political ideology of

each community’s members.

When ECoHeN is applied to the political blogs network with the political ideology labels,

81 communities are found. For reasons discussed in Section 4.3.3, the number of communities is

likely overstated due to a significant amount of overlap among the discovered communities. As

such, these 81 communities are refined such that each community has at least four nodes with a β =

0.10 for maximum Jaccard overlap, which results in a set of 15 communities that overlap yet are

largely distinct. The largest partisan (homogeneous) and bipartisan (heterogeneous) communities

identified by ECoHeN are presented in Figure 4.7.

To gauge the quality of the 15 communities extracted by ECoHeN, we compute the ratio of

densities (RatD) for each community; that is, we compute the density of links among community

members divided by the density of links between community members and the rest of the network.

Figure 4.8 provides the RatD for all ECoHeN communities. The RatD for all liberal (conservative)

blogs is a natural baseline when assessing the assortativity of communities composed near entirely

of liberals (conservatives). In general, a RatD of one implies that the density of links within a set

of nodes is equivalent to the density of links to the rest of the network and is a natural baseline
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Figure 4.7: The largest partisan and bipartisan communities identified by ECoHeN. Panel (a) depicts the
largest conservative community which consists of 12 blogs with a ratio of densities of 23.8. Panel (c)
depicts the largest liberal community which consists of 11 blogs with a ratio of densities of 20.8. The
colored polygons in panel (b) provide the origin of each partisan community in the political blogs network.
Furthermore, the largest community found by ECoHeN is a bipartisan community provided in panel (b)
which consists of 73 blogs with a ratio of densities of 8.5.

when assessing the assortativity of an identified community regardless of community members’

political affiliation.

For comparison, we apply ZCmod and Walktrap to the political blogs network, attain respec-

tively 11 and 5 communities with at least four members, and compute the RatD for each identified

community. To assess political composition of each community, we compute the proportion of

liberals (equivalently, conservatives) in each community. Figure 4.8 provides the RatD for each

identified community along with the size and political composition of the community. When the

network is partitioned irrespective of political affiliation with Walktrap, at least one community is

largely comprised of liberals and one community is largely comprised of conservatives, a rather

trivial partition. When the network is partitioned via heterogeneous modularity maximization us-

ing ZCmod, the resulting communities must maintain at least one node of each node type, a rather
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stringent assumption. In comparison, ECoHeN is able to identify small, bipartisan and partisan

communities, each with a connection density higher than competing methods.

Figure 4.8: The ratio of density (RatD) for each of the 15 communities extracted from ECoHeN (circles),
11 communities detected from ZCmod (triangles), and five communities detected from Walktrap (squares)
along with the size of the communities. Each community is colored according to the proportion of liberals
(equivalently, conservatives) in the community where bluer (redder) points are largely composed of liberals
(conservatives). Blacker points illustrate bipartisan communities. The black horizontal line illustrates the
expected RatD in a random network. The blue (red) horizontal line illustrates the RatD provided all liberals
(conservatives). As opposed to ZCmod, ECoHeN can identify both partisan and bipartisan communities.
The largest bipartisan community found by ECoHeN features a RatD nearly 1.6 times larger than the largest
ratio of densities attained via ZCmod. Walktrap partitions the network into at least two large communities
which align with political ideology, a trivial partition which provides little insight about the connections
between liberals and conservatives.

Both ECoHeN and ZCmod result in communities whose links are relatively more dense in-

ternally than to the rest of the network; however, the ratio of densities observed from ECoHeN

communities are much higher than those communities from ZCmod. The larger RatD is partly

because (1) the ECoHeN communities tend to be smaller than the ZCmod communities and (2) the

fact that ZCmod is a partitioning method and must assign each node to a community, potentially

diluting the density of otherwise well-connected collections of nodes. Nevertheless, the largest

ECoHeN community (shown in Figure 4.7b has a RatD that is about 1.6 times larger than the

ZCmod community with the largest RatD, both of which are largely bipartisan communities.
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This application highlights the importance of conditioning on node type when performing

community discovery. Since partisan links are particularly common compared to bipartisan links,

the partisan communities identified by ECoHeN are also particularly dense—denser than the nat-

ural baseline induced from taking all liberals or all conservatives, respectively. On the other hand,

the RatD required by ECoHeN to consider a set of bipartisan nodes a community is naturally lower,

a testament to the strengths of ECoHeN as it leverages differences in the connectivity between node

types. If a less connected political party, say independents, were included in the network, ECo-

HeN would be uniquely positioned to identify both partisan and bipartisan communities including

independents since ECoHeN identifies communities considering the density with respect to type

and does not place constraints or assumptions on the political composition of each community.

4.6 Discussion

ECoHeN is a generalization of an existing community extraction method called the extraction

of statistically significant communities (ESSC). ECoHeN iteratively updates a candidate commu-

nity by assessing the significance of connections between each node and the candidate community

through a reference distribution derived under the heterogeneous degree configuration model. Like

its predecessor ESSC, ECoHeN can identify background nodes and overlapping communities, two

common properties of realistic networks. Compared to ECoHeN, many community discovery

methods assign background nodes to otherwise tightly connected communities, reducing the over-

all density of the community, and assume that communities are disjoint, unrealistically positing

that no node may be tightly connected to more than one collection of nodes. Unlike ESSC, ECo-

HeN takes advantage of differences between nodes’ types and any resulting differences in the

density of connections between them to identify communities. A key advantage of ECoHeN is its

ability to discover communities that are topologically dense with respect to the node types of each

community’s members without making assumptions or imposing constraints on the resulting type

composition of each community. ECoHeN is the first extraction method capable of identifying

both homogeneous and heterogeneous community structure. Furthermore, ECoHeN can be pa-
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rameterized such that it is guaranteed to converge, resolving issues with cycles present in ESSC’s

implementation.

Generalizations of ECoHeN are possible and an area for future work. One particular gen-

eralization of interest is the extension to directed, heterogeneous multigraphs which would be

possible by generalizing the heterogeneous degree sequence of each node to include both in- and

out-degrees. Other avenues of work include the derivation of a finite sampling distribution for the

measure of connectivity pB(u) as defined in (4.4) and a temporal network extension. Furthermore,

while ECoHeN extracts communities parallelized across the initial seed sets and is partially imple-

mented in C++ for efficiency, scalability to large networks is still a concern. One way to improve

scalability is to reconsider how the method is initialized (e.g., define locally optimal seed sets for

heterogeneous networks), and conduct tests for inclusion and exclusion locally (e.g., test only di-

rect neighbors for inclusion in the extraction procedure). The implications of such changes on the

multiple testing correction and convergence properties of the algorithm is also an area of future

work.
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Chapter 5

Discussion

5.1 Overview

In this dissertation, we presented new methods and approaches for drawing causal inference

with temporally dependent units and clustering nodes in a network. Particularly, in Chapter 2 we

estimated the causal effect of a timeout at stopping an opposing run in the National Basketball

Association (NBA) in light of the temporal dependence among runs. In Chapter 3, we outlined

an analytic pipeline for the identification of clusters containing undiscovered gene to phenotype

relations in a very large, temporal heterogeneous biological network. Finally, in Chapter 4, we

introduced an iterative hypothesis testing procedure called ECoHeN to extract communities from

heterogeneous networks in a statistically meaningful way. There are numerous ways the work

presented here could be built upon. In this chapter, we discuss a possible characterization of the

collection of snowballed subgraphs and an extension to heterogeneous networks. Furthermore, we

discuss how the ECoHeN algorithm can be made more scalable for its motivating application: the

large, biological network in Chapter 3.

5.2 Snowballed Subgraphs

Defined in Section 3.3.1 and illustrated in Figure 3.3, snowball sampling is a generative pro-

cess for attaining subgraphs of specified size through network ties, originally developed by Cole-

man (1958) and Goodman (1961) to study the structure of social networks. Associated with any

finite network is a finite collection of subgraphs possibly attained through snowball sampling. That

is, if the network is finite, the sample space of snowballed subgraphs is finite; however, the like-

lihood of a subgraph being generated through snowball sampling is unknown. If this distribution

were known, we could, for example, analytically compute the potential for future discovery in (3.2)

and avoid the computationally cumbersome approximation provided in (3.3). This solution, how-
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ever, does not address another issue highlighted in Section 3.6, which is that snowball sampling

does not control the number of nodes of each type, only the total number of nodes.

In this section, we clearly define the sample space of snowballed subgraphs, that is, subgraphs

attained from snowball sampling. While the concept of snowball sampling is not well-defined for

heterogeneous networks, we can extend our definitions to incorporate constraints on the number of

nodes of each type, rather than simply the number of nodes. Using our definitions, we outline the

sample space of snowballed subgraphs in a heterogeneous network with constraint on the number

of nodes of each type in each subgraph. Finally, we postulate how the probability of attaining

each subgraph through snowball sampling could be connected to our definitions and demonstrate

how our definitions could be used to sample snowballed subgraphs uniformly at random without

enumerating the entire sample space of snowballed subgraphs.

To illustrate the utility of our definitions and demonstrate its applicability to homogeneous

and heterogeneous networks, we consider the homogeneous and heterogeneous networks shown

in Figure 5.1, denoted G = (V,E) and G = (V , E), respectively. Notice, a relevant subgraph

of the network is highlighted for each network. Furthermore, the edge structure of each network

is identical; however, the heterogeneous network distinguishes between different types of nodes

(illustrated by color) and their interconnections. To avoid degeneracies regarding isolates, we

assume relevant networks have one connected component.

5.2.1 Sample Space for Homogeneous Networks

Snowball sampling from a homogeneous network yields subgraphs with minimally short path

lengths between nodes. Let Ṽ ⊆ V be a subset of the node set. We could formally say that an

induced subgraph G[Ṽ ] is a snowballed subgraph of G of size |Ṽ | if there exists a node v ∈ Ṽ

whose path length to every other node in Ṽ is shortest and minimal. That is, the path length

between v and every other node in Ṽ in G[Ṽ ] is the shortest distance between the two nodes in G

(i.e., shortest), and there does not exist a shorter path between v and any node in V − Ṽ in G (i.e.,

minimal).
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(a) G = (V,E) (b) G = (V, E)

Figure 5.1: Examples of a simple, homogeneous network, G, and a simple, heterogeneous network, G,
used to exemplify a characterization of snowballed subgraphs in homogeneous and heterogneeous networks
based on path length. In each network, a subgraph composed of five nodes and six edges is highlighted.

To motivate this definition, consider the set Ṽ = {1, 6, 7} from G and v = 6, for example. The

induced subgraph, G[Ṽ ], is a triangle. In this case, the path from node 6 to node 7 is the shortest

path between the two nodes, similarly for the path between node 6 and node 1. Furthermore, there

does not exist a node in V − Ṽ with a shorter path to node 6. Hence, the subgraph G[Ṽ ] is a

snowballed subgraph of G of size 3. Less trivially, consider Ṽ = {6, 7, 8} and v = 7. The induced

subgraph, G[Ṽ ], mimics a line. The path from node 7 to node 6 is the shortest path between the

two nodes, similarly for the path between node 7 and node 8. Furthermore, there does not exist a

node in V − Ṽ with a shorter path to node 7; however, there are other nodes with as short of a path

(i.e., nodes 1, 2, and 9). Hence, G[{6, 7, 8}] is a snowballed subgraph of G but so is G[{6, 7, 1}].

Finally, consider Ṽ = {1, 3, 10}. The induced subgraph, G[Ṽ ], is composed of the connection

between nodes 1 and 3 and an isolated node 10. Since node 10 is isolated from node 1 and 3 in the

induced subgraph, the distance between them is assumed infinite. Since the distance between node

1 and node 10 in G, for example, is two, the path lengths between nodes in G[Ṽ ] fail to pass the

shortest criterion. Hence, the induced subgraph G[Ṽ ] is not an induced snowballed subgraph of G.

Through enumeration, there are 26 different subgraphs of size three possibly attained from

G in Figure 5.1a via snowball sampling. In total, there are 165 ways to construct a subgraph

from G of size three. Applying our path length criteria to each of these 165 tuples of three nodes,
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we find there are precisely 26 induced subgraphs fitting our definition of a snowballed subgraph

(i.e., induced snowballed subgraphs). This suggests that our definition for an induced snowballed

subgraph may provide a characterization for the sample space of subgraphs of a given size possibly

attained through snowball sampling.

5.2.2 Extension to Heterogeneous Networks

In Chapter 3, an approximation to the distribution of snowballed subgraphs is used to score

and rank clusters identified from the gene and phenotype network according to their potential

for undiscovered gene to phenotype relations. By construction, the clusters identified from the

network are heterogeneous whereas each snowballed subgraph need not be. This means a cluster’s

PFD is potentially overstated by failing to control the number of genes and phenotypes in each

snowballed subgraph. A more appropriate null model for heterogeneous networks would account

for the number of nodes of each type in and the relative density of a set of nodes. For example,

if we are interested in computing the PFD of a cluster C with six genes and three phenotypes, we

might wish to compare to a distribution of well-connected subgraphs with precisely six genes and

three phenotypes. Outlining a generative process to attain such subgraphs is difficult as one can

fall victim to the pigeonhole principle; imagine, for example, starting with a gene adjacent to ten

phenotypes. In this case, there would be no way to attain a set of six genes and three phenotypes

with snowball sampling.

To address these concerns, we could extend the definition of induced snowballed subgraphs to

define a collection of subgraphs with a specified number of nodes of each type whose path lengths

are minimally short within type. Let Ṽ ⊆ V denote a subset of the node set. Similar to V , the

subset Ṽ =
⋃K

k=1 Ṽ
[k] where Ṽ [k] denotes the subset of Ṽ containing |Ṽ [k]| nodes of type k and

Ṽ [k] ∩ Ṽ [l] = ∅. We say that an induced subgraph G[Ṽ ] is a snowballed subgraph of G with size

(|Ṽ [1]|, . . . , |Ṽ [K]|) if there exists a node v[l] ∈ Ṽ [l] whose path length to every other node in Ṽ is

shortest and minimal within type. That is, the path length between v[l] and each u[k] ∈ Ṽ [k] in G[Ṽ ]
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is the shortest distance between the two nodes in G (i.e., shortest), and there does not exist a shorter

path between v[l] and any node in V [k]− Ṽ [k] in G (i.e., minimal within type) for k ∈ {1, 2, . . . , K}.

Consider the set Ṽ = {1[1], 2[1], 6[2], 7[2], 10[2]} from G and v = 2, for example. The induced

subgraph, G[Ṽ ], is composed of two blue nodes, three orange nodes, and six edges between them—

the highlighted subgraph in Figure 5.1b. In this case, the path between node 2 and every other node

in V is shortest. Furthermore, the path lengths are minimal within type since there does not exist

an external blue node with a shorter path length to node 2, similarly for external orange nodes.

Notice, for example, the distance between node 2 and node 6 is two, but the distance between node

2 and the external orange nodes (i.e., nodes 8, 9, 10, and 11) is no less than two. Similarly, the

distance between node 2 and node 1 is one, but the distance between node 2 and the external blue

nodes (i.e., nodes 3, 4, and 5) is no less than one. Hence, G[V ] is an induced snowballed subgraph

of G of size (2, 3). In total, there are 200 ways to construct a subgraph from G in 5.1b with two

blue nodes and three orange nodes. Applying our path length criteria to each, there are 18 induced

snowballed subgraphs of size (2, 3).

On the other hand, consider the node type agnostic set Ṽ = {1, 2, 6, 7, 10} from G. The

induced subgraph, G[Ṽ ], is composed of five nodes and six edges between them—the highlighted

subgraph in Figure 5.1a. Since the edge structure in G and G is the same, we’ve verified the

path lengths to node 2 are shortest; however, the path lengths are not minimal since node 3 has a

smaller distance to node 2. In fact, no node in Ṽ satisfies the minimal criterion. Hence, the induced

subgraph G[Ṽ ] is not an induced snowballed subgraph of G of size 5. This example illustrates that

our definition of a snowballed subgraph and generalization to heterogeneous networks depends

both on the structure of the edges and the node types.

5.2.3 Future Work

Problematically, since not every snowballed subgraph (attained through snowball sampling)

is uniquely identified by an individual seed node selected uniformly at random, the likelihood of a

subgraph being generated by snowball sampling is unknown. For future work, we hope to charac-
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terize the distribution of snowballed subgraphs and establish a connection between the probability

of a network being generated from snowball sampling and the number of seed nodes which could

possibly generate the subgraph. We believe that the likelihood of a snowballed subgraph being

generated from snowball sampling is related to the number of nodes, v, in the subgraph which sat-

isfy the minimal condition of our definition. If true, one could derive the likelihood of a snowballed

subgraph if one could enumerate the possible snowballed subgraphs.

Often, however, enumerating the sample space of snowballed subgraphs is infeasible given

the size of the network and/or the size of the cluster. In this case, one can use snowball sampling

to approximate the (currently) unknown distribution of subgraphs attained through snowball sam-

pling. Another approach would be to consider the uniform distribution of snowballed subgraphs.

If the sample space cannot be enumerated, it is unclear how to sample from the uniform distri-

bution of snowballed subgraphs using a generative process like snowball sampling, but it can be

done using our definitions. For example, to sample a snowballed subgraph of size three uniformly

at random from the network in Figure 5.1a, draw without replacement three nodes from the node

set {1, 2, . . . , 11} and check if the tuple is an induced snowballed subgraph, by definition. If not,

repeat until a subgraph whose path lengths are both shortest and minimal is attained. While this

process can be computationally burdensome with many rejections, the distribution of snowballed

subgraphs is uniform without needing to enumerate the sample space.

5.3 Scalability of ECoHeN

ECoHeN was motivated by the biological network presented in Chapter 3. Problematically,

however, ECoHeN is not scalable to the biological network motivating its creation. Investigations

into options for increasing the scalability of ECoHeN would lead to greater applicability of the

method to large networks. Two ways to improve the scalability of ECoHeN is (1) to test locally

for the inclusion and exclusion of nodes and (2) to redesign how the maximal allowance is param-

eterized at each iteration.
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Suppose a practitioner supplies a list of genetic variants and abnormal phenotypes as a seed

set for ECoHeN. By design, ECoHeN will refine this seed set to a community (possibly empty)

through a two-step, dynamic procedure by iteratively including any well-connected external nodes

and subsequently removing any loosely connected internal nodes. By design, ECoHeN tests all

external nodes for inclusion even though the only ones likely added are neighbors of nodes in

the current candidate set. Hence, testing only the subset of external neighbors for inclusion may

improve the scalability of ECoHeN since the set of neighbors for each node can be computed and

stored once.

Another way to improve the scalability of ECoHeN is to redesign how the maximal allowance

is parameterized at each iteration. The maximal allowance places restriction on the number of

nodes possibly allowed into or out of the candidate set with each iteration. By reducing the maxi-

mal allowance to one with each iteration, we are able to guarantee that ECoHeN will never cycle

between two candidate sets. We proposed initializing the maximum allowance to a large value

and then progressively decrease it according to an exponential decay function. This, however,

can result in ECoHeN alternating between two candidate sets for a finite number of iterations un-

til the maximal allowance decreases to one. Another way to guarantee convergence while fixing

these inefficiencies in implementation would be to let the maximal allowance be |V| until a single

alternation is detected. When a single alternation is detected, reduce the maximal allowance to

one at which point the extraction procedure will refine the candidate set one node at a time until

convergence.
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Appendix A

Causal Effect of a Timeout in the NBA

A.1 Characterizing SUTVA

To address violations of the SUTVA, criteria (2) and (3) in the unit definition in Section 2.3.2

were introduced. These criteria handle issues with hidden variation and interference attributed to

plays involving a timeout occurring in the pre-treatment or post-treatment window. While mitigat-

ing serious violations to the SUTVA, these criteria allow a reasonable control pool for matching

on time-dependent covariates. All violations to the SUTVA are provided in Figure A.1, grouped

by those cases which are resolved and unresolved by the current criteria.

By removing instances which feature a timeout in the pre-treatment or post-treatment window,

we largely address concerns with overlapping windows among those units in the treated group

(Figures A.1a, A.1b, and A.1c) and curtail issues with hidden variations (Figure A.1a). The only

complication remaining are overlapping instances where the intersection between the windows is

relatively small (Figures A.1d and A.1f).

Furthermore, units in the control group still experience overlapping windows (Figure A.1e).

To resolve the issue with overlapping control units, controls would need to be removed until the

remaining set of controls maintain mutually disjoint windows. Clearly, this set is not unique and

defining the optimal set of controls to remove is unclear. In contrast, maintaining overlapping

controls allow for more precision when matching on time-dependent covariates. For example,

seconds after an instant of a RwoT is likely also a RwoT; however, these two RwoTs differ in their

run duration, calculated by (2.1). If we were to remove one of these instances to ensure the pool

of controls do not overlap, then matching on time-dependent covariates such as run duration and

time left in the game may suffer. As a result, we recognize the slight violation of SUTVA so not to

introduce bias in the matching procedure.
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Figure A.1: Possible violations of SUTVA for a fixed play at time t. The criteria resolves issues with inter-
ference and hidden variation pertaining to runs with timeouts (RwTs), being the treatment units; however,
SUTVA also requires non-interfering runs without timeouts (RwoTs), being the control units. This assump-
tion is relaxed to adequately match of time-dependent covariates such as run duration and time left in the
game and to maintain a reasonable sample size for the analysis.

After matching, we investigate the degree of overlapping windows in the matched cohort of

controls. Since the matching procedure allows a control to serve as the matched counterfactual

for more than one treatment, then the controls are not necessarily unique. Of the 834 matched

controls, there are 617 unique controls. Of the 617 unique controls included in the matched cohort,

the maximal number of disjoint windows we can construct from these 617 unique controls is 561.

So, of the 617 unique controls, at most 561 of them have non-overlapping windows. While we

allowed for overlapping windows in the group of controls, after employing the matching algorithm,

the number of overlapping windows within the cohort of matched controls is minor.
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A.2 Sensitivity to Run Definition

The analysis herein is replicated for various definitions of a run obtained by considering four

different run point totals and four different pre-treatment window lengths (see Section 2.5 and

Table A.1). Regardless of specific choice in run definition, the estimated causal effect of a timeout

is negative and significant, aligning with the presented results. This indicates that the results are

robust to the characterization of a run.

Table A.1: Results of the analysis for various definitions of a run. In particular, the inference drawn is
relatively the same, illustrating robustness of the results to the characterization of a run.

N Results

Points Pre-Trt Window Units RwT RwoT ÂTT SE p

7 1.5 20,603 2,626 17,977 -0.23 0.04 < 0.001
7 2.0 34,005 3,694 30,311 -0.25 0.03 < 0.001 *
7 2.5 41,520 4,285 37,235 -0.28 0.03 < 0.001 *
7 3.0 43,821 4,472 39,349 -0.26 0.03 < 0.001 *

8 1.5 6,816 1,090 5,726 -0.38 0.06 < 0.001
8 2.0 13,677 1,911 11,766 -0.31 0.05 < 0.001
8 2.5 18,868 2,470 16,398 -0.34 0.04 < 0.001
8 3.0 21,618 2,745 18,873 -0.26 0.04 < 0.001 *

9 1.5 1,600 325 1,275 -0.37 0.14 0.010
9 2.0 4,684 834 3,850 -0.35 0.07 < 0.001
9 2.5 7,547 1,204 6,343 -0.31 0.06 < 0.001
9 3.0 9,572 1,459 8,113 -0.28 0.05 < 0.001

10 1.5 370 103 267 -0.51 0.20 0.009 **
10 2.0 1,446 297 1,149 -0.50 0.16 0.001
10 2.5 2,923 532 2,391 -0.43 0.13 0.001
10 3.0 4,139 710 3,429 -0.44 0.09 < 0.001

∗ match tolerances were relaxed after run time exceeded seven days (see Appendix A.3)
∗∗ propensity score model failed to converge
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A.3 Genetic Matching Algorithm

The genetic matching procedure used to construct a matched cohort has several arguments

that dictate the speed of the process. A few of these arguments include the the population size,

wait generation, maximum generation, and the distance tolerance (Sekhon, 2011). Since the the-

ory proving genetic matching yields reasonable solutions is asymptotic in the population size,

generational change yields improvement in optimization, and the distance tolerance defines the

closeness of a proposed match, the population size and generations are set reasonably high while

the tolerance is set reasonably low. In particular, the arguments used are a population size of 8,000,

wait generation of 4, max generation of 100, and tolerance of 0.00001. At these values, the opti-

mization routine yields a solution before the generational limits are met. However, for definitions

of a run yielding many observations (marked by * in Table A.1), the optimization routine was man-

ually stopped after running for one week. At this point, we relaxed the arguments until the routine

reached a run time less than one week. The following arguments are used for such run definitions:

population size of 1,000, wait generation of 2, max generation of 15, and tolerance of 0.1. At

these relaxed constraints, the optimization routine yielded a solution after nearly three days. On

the other hand, the run definitions yielding relatively few observations (marked by ** in Table A.1)

induced complications in estimation of the propensity score. When fitting the generalized additive

model discussed in Section 2.3.3 to this data set, the procedure failed to converge. We recommend

caution in interpreting results demarcated by asterisks.

A.4 Data Preparation and Manipulation

After gathering play-by-play data for the 2017-18 and 2018-19 seasons, data preparation is

needed before defining and identifying runs. We start by collapsing multi-row plays (e.g., a foul

and free throws) into one row. This is achieved by recording whether a timeout was called when

the clock is stopped and retaining the last recorded scoring event. If there were no scoring events,

the last event is retained. In exploring the data, we find that some rows are simply empty and

others correspond to a game which is clearly misreported, taking on an infeasible score in the
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time reported. These rows are removed from the data set. Since overtime is not included in the

analysis, rows timestamped after the fourth period are also removed. Furthermore, the data set is

limited to instances in time when the score keeper noted some change in the game; however, time

is continuous and ought to be treated as such. To this end, we expand the play-by-play data set to

contain rows every five seconds. This approach is not suspect since it is safe to assume that the

score remains constant if no change in the score is reported. This allows us to more aptly capture

runs without timeouts. Lastly, pseudo-plays (dubbed plotting plays) are rows added to the data

set before and after any play dictating a change of score in the data set. These plays cannot be

considered a unit (removed from consideration by criteria 2 and 3), and are only used to plot the

score differential over time, making it a step-wise function to reflect the instantaneous change in

score. If a play at time t marks a change in the score difference, then a plotting play is added at

t− ρ with the score difference prior to t and another is added at t + ρ with the score difference at

t where ρ is arbitrarily close to zero.

After preparing the data set for analysis, every play is evaluated based on (2.2). Any play

maintaining a signed run point total of NA is removed. As such, only run plays remain, and

evaluating whether a timeout was called during that run is now possible. To quail concerns with

SUTVA violations, we introduce criteria (2) through (4) in Section 2.3.2. We start by removing

any run play containing the beginning or end of the period in pre-treatment or post-treatment

window (criterion 4) before removing any run play containing a timeout in the pre-treatment or

post-treatment window (criteria 2 and 3).

Upon addressing concerns with SUTVA violations, we turn to potential issues with positiv-

ity by removing any run play with a moneyline greater than 2400 in absolute value. After their

removal, we are left with 4,684 run plays which are deemed units for the analysis. Of these run

plays, 834 are runs with a timeout (RwTs) and 3,850 are runs without a timeout (RwoTs). More

details regarding how many observations are removed with each step can be found in Table A.2.
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Table A.2: Number of observations remaining after each step of the data analysis: including data prepara-
tion, criteria for defining units, and positivity concerns. In total, there are 4,684 units, 834 of which are runs
with timeouts and 3,850 of which are runs without timeouts.

Observations Runs with
a Timeout

Runs without
a Timeout

Gathering Data

Procure data with nbastatR package
in R.

1,144,461

Data Preparation

Collapse multi-row plays into one
row.

778,828

Remove misreported games, over-
time plays, and empty rows.

617,187

Discretize time to five second inter-
vals.

2,036,030

Create plotting plays. 2,813,946

Invoke Criteria

Play must be a run. 31,081 1,149 29,932

Windows must be uncensored. 27,340 1,101 26,239

Windows must exclude a timeout. 4,730 838 3,892

Address Positivity

Consider moneyline less than 2,400
in absolute value.

4,684 834 3,850

A.5 Propensity Score Model

After compiling the pre-treatment covariates listed in Table 2 of Chapter 2, we start by fitting

a generalized additive model using all variables but those corresponding to team identity (both

the BiT team and the opposing team). Initially, we decided to omit team as a matching covariate

since no coach employs a universally consistent timeout strategy (see Appendix A.7). While some
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Table A.3: True negative and positive rates (TNR/TPR) and negative and positive predicted values
(NPV/PPV) estimated using 70/30% cross-validation and 1,000 Monte Carlo splits. The full model which
yields larger estimated propensities for many units yields a marked improvement in the true positive rate
with a negligible decline in the true negative rate. Furthermore, the full model yields marked improvements
in both the negative and positive predicted values. This implies a betterment in the proportion of classified
treatments (controls) which are actually treatments (controls).

TNR TPR NPV PPV

Restricted Model 0.987 0.089 0.834 0.599
Full Model 0.974 0.185 0.847 0.612

coaches openly claim to strictly adhere to a particular timeout dogma, we’ve demonstrated this to

be false. Our belief is that the act of calling a timeout is predominately driven by the covariates

with which we originally constructed the propensity score and conducted the matches. We failed

to include team as a matching dimension, feeling an exact match might attenuate the importance of

some of the other matching variables. After further investigation, we find that ignoring team iden-

tity yields a matched cohort which is significantly unbalanced in terms of the BiT team (p < 0.001)

and marginally unbalanced in terms of the opposing team (p = 0.06). We decide to investigate the

inclusion of these variables in the propensity score model. To this end, we construct three nested

propensity score models: one including every covariate in Table 2 of Chapter 2, one excluding

opposing team, and one excluding both the BiT and opposing team. We conduct two Chi-squared

goodness-of-fit tests (Scheipl et al., 2008; Wood, 2013; Young et al., 2011) for nested GAMs to

assess the inclusion of BiT team and opposing team, respectively. We find strong evidence that

both BiT team (p < 0.001) and opposing team (p < 0.001) should be included in the model.

Comparing the estimated propensities yielded from the full model (including BiT and oppos-

ing teams) and the restricted model (excluding BiT and opposing teams), we notice an increase in

the density of larger propensities (see Figure A.2). In general, plays are assigned a higher propen-

sity, indicating more confidence in a called timeout. To investigate the effects of these changes, we

employ cross-validation with 1,000 Monte Carlo replicates to estimate the increase (or decrease)

in the true positive (negative) rate and the positive (negative) predicted value. For a given replicate,
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the units are partitioned into a training and testing set according to a uniformly at random 70/30%

split. The restricted and full models are fit using the training set, predictions are made using the

testing set, and the metrics are recorded. An average is taken across the 1,000 replicates to estimate

the metrics; the results are provided in Table A.3. Inclusion of BiT and opposing teams leads to a

marked improvement in the true positive rate as well as the negative and positive predicted values

with a negligible decline in the true negative rate. Overall, inclusion of these covariates improves

the proportion of correctly classified runs with a timeout and the proportion of classified runs with

a timeout (runs without a timeout) which are actually runs with a timeout (runs without a timeout).

Figure A.2: Estimated propensities for the full model (including BiT and opposing teams) and the restricted
model (excluding BiT and opposing teams). After including these covariates, more plays are given a larger
propensity score, noted by the larger number of observations above the 45 degree line.
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A.6 Matching Variability

Since the genetic matching algorithm provided in the R package Matching is non-deterministic,

the matching algorithm was initialized at 20 different random seeds and the ATT was estimated

for each of the resulting matched cohorts to explore the variability of the estimator. Figure A.3

shows the ATT estimates and the corresponding 95% confidence intervals for the twenty matched

cohorts. The random seed associated with the estimated ATT closest to the average of the twenty

estimated ATT s was used for the body of Chapter 2. We observe here that the empirical standard

deviation of the estimates closely resembles the theoretically derived Abadie-Imbens standard er-

ror, which explicitly accounts for the uncertainty of the matching procedure.

Figure A.3: Estimated ATT and 95% confidence interval for 20 runs of the matching algorithm. The
dashed, vertical line represents the estimate used in this chapter. Each realization of the matching algorithm
produced consistent results.
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A.7 Treated and Control Franchise Frequency

To investigate each franchise’s strategy in responding to an opposing run (i.e., as the BiT

team), we count the number of runs with and without a timeout before and after matching for each

franchise, provided in Figure A.4. We find that no franchise adheres to one and only one strategy

when faced with an opposing run. In fact, the teams with the fewest recorded number of runs with

a timeout called a timeout at only roughly half the frequency as the team with the most recorded

number of runs with a timeout, 19 versus 41, respectively. Since no franchise adheres to one and

only one strategy, implying any franchise can viably serve as a matched control, positivity is likely

not an issue in estimation of the franchise effects.

Furthermore, since each franchise called a timeout during an opposing run at least 19 times,

the franchise-specific effects of a timeout can be estimated; however, some franchises suffer from

relatively small sample sizes when compared to other franchises. We take this into consideration

by reporting the standard errors alongside the point estimates for the team effects in Figure 8 of

Chapter 2. The standard errors, as expected, ingrain the inequity in the number of observations by

franchise where teams with more observations (Chicago Bulls) have much smaller standard errors

than those teams with fewer observations (San Antonio Spurs).

After matching, we tabulate instances for which each franchise serves as the treatment (BiT

team with a timeout) and matched control (BiT team without a timeout) in Figure A.5. From this

figure, we conclude that no franchise is matched to a concernedly small number of franchises. The

sparsity of the plot is largely a function of the small sample size for several franchises, considering

that slightly more than half of the franchises (19) have fewer runs with timeouts than the number

of franchises (30) in the National Basketball Association (NBA).

A.8 Covariate Balance

To assess covariate balance after matching, distributions of the covariates for the treated and

control units were created and shown in Figure A.6. Before matching, the distribution of the

covariates across treatment groups appear relatively similar for most covariates; however, there ap-
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Figure A.4: The blue horizontal bars indicate the number of runs with a timeout (RwTs) for a given fran-
chise. The red horizontal bars indicate the number of runs without a timeout (RwoTs) for a given franchise.
Each of these runs adhere to the criteria and are thus considered a unit. The matched set allows for esti-
mation of the causal estimand after invoking the assumptions therein. There is no evidence of issues with
positivity in estimating franchise specific effects since all teams exhibit instances of runs with and without
timeouts.

pear to be discrepancies in the BiT team, opposing team, win probability, time left, and possession

across treatment group. Most notably, the distribution of the estimated propensity scores between

the treatment groups was largely different. Aside from covariate imbalance, there appears to be a

potential violation of positivity in the moneyline. After removing plays with a moneyline larger

than 2, 400 in absolute value and invoking the matching procedure, the distribution of the esti-

mated propensity scores appears largely balanced. Many of the discrepancies in the distributions

of the covariates noted earlier seem to no longer exist, such as that in the win probability. Formal

hypothesis testing was applied to each of the covariates to verify these visual interpretations.
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Table A.4: Unadjusted p-values from hypothesis testing to assess for a discrepancy in the distribution of
covariates before and after matching. Before matching, every covariate except for week in season exhibits
imbalance between treatment groups. After matching, every covariate exhibits balance between treatment
groups. In each case, multiple comparison correction is preformed to control the false discovery rate at 0.05,
according to Benjamini and Hochberg (1995).

p-value

Pre-Match Post-Match

GAM Propensity Score < 0.001 0.038
Big Trouble (BiT) Team < 0.001 0.989
Opposing Team 0.046 0.568
Run Point Total 0.002 0.082
Run Duration < 0.001 0.842

Time Left < 0.001 0.502
Win Probability < 0.001 0.064
SSD at BOR < 0.001 0.176
SSD at EOR 0.002 0.138
Possession Indicator < 0.001 0.912

Home Indicator 0.037 0.619
Week in Season 0.297 0.493
Over/Under < 0.001 0.145
Spread 0.003 0.374
Moneyline 0.004 0.112
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Figure A.5: The number of matched controls by franchise for each franchise treated unit. The (1, 2) fill of
the tile plot, for example, illustrates the number of times that an Atlanta Hawks run without a timeout was
matched to a Chicago Bulls run with a timeout. No franchise is matched to a concernedly small number
of franchises. The rows and columns of the tile plot have been arranged by the frequency with which that
franchise serves as a matched control. That is, the New Orleans Pelicans were most often matched as a
control (53), whereas the Denver Nuggets, Phoenix Suns, and Toronto Raptors were tied for least often
matched as a control (14).
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To check for discrepancies in the distributions of discrete and continuous covariates across

treatment groups, bootstrapped Kolmogorov-Smirnov tests were applied. For binary variables,

t-tests were used, and chi-squared tests were used for categorical variables. The raw p-values

for each of these tests before and after matching are provided in Table A.4. Before matching, a

discrepancy between the distributions of covariates associated with treatments and controls was

identified in all covariates and the estimated propensity scores except for week in season which

appeared sufficiently balanced. After matching, there was no evidence of discrepancy in covariate

distributions for any of the covariates or the estimated propensity score. All covariates appear

sufficiently balanced after matching. In each case, multiple comparison correction was preformed

to control the false discovery rate at 0.05, according to Benjamini and Hochberg (1995).

To assess covariate balance when conditioning on franchise, we perform hypothesis testing

to assess potential discrepancies in the distribution of covariates between the treatment units (runs

with a timeout) and control units (runs without a timeout) for each of the fifteen covariates and

each of the thirty franchises. In all, 450 hypothesis tests were performed (15 covariates by 30

franchises), so a multiple comparison correction was performed to control the false discovery rate

at 0.05. We attain an unadjusted p-value for each covariate/franchise combination (see Figure

A.7). There are seven covariate/franchise combinations with an unadjusted p-value less than 0.05

(outlined in red in Figure A.7) with the smallest being p = 0.004, corresponding to possession

with the New Orleans Pelicans. After invoking the multiple comparison correction (Benjamini

and Hochberg, 1995), there is no evidence for distributional discrepancy between matched sets of

covariates for any of the franchises. This suggests it is reasonable to assume covariate balance

when conditioning on the treated team’s identity (i.e., the BiT team’s identity) and to proceed with

estimating the franchises’ respective causal effects.

A.9 Data and Code

Data and code to reproduce the results in the chapter are available in the following public

GitHub repository: https://github.com/ConGibbs10/nba-causal.
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Figure A.6: Distribution of the covariates for each treatment group before and after matching. Visually,
matching appears to yield distributions of covariates which are similar across treatment group.
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Figure A.7: Hypothesis testing was conducted on the matched samples’ covariates for each franchise.
Unadjusted p-values for each covariate/franchise are shown. Seven p-values (outlined in red) maintained
an unadjusted p-value less than 0.05, the minimum of which was p = 0.004, corresponding to possession
with the New Orleans Pelicans. After multiple comparison correction to control the false discovery rate at
0.05, no p-values are statistically significant. Hence, it is reasonable to assume the covariates are sufficiently
balanced when conditioning on the BiT team’s identity.
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Appendix B

Identification of Clusters Containing Undiscovered

Relations

B.1 Clustering Methods

Methods considered for this study need be scalable to the large number of nodes and edges

in Gτ . Furthermore, to capture a broad range of communities, methods should carry different

objectives or make different assumptions about the underlying community structure. We focus

on disjoint and overlapping methods. The disjoint clustering methods considered include Greedy

modularity maximization (Clauset et al., 2004), a Louvain style heterogeneous modularity maxi-

mization ZCmod (Zhang and Chen, 2020), Walktrap (Pons and Latapy, 2006), and Infomap (Ros-

vall et al., 2009; Rosvall and Bergstrom, 2007b). While each method seeks to partition the node

set, the objective function to optimize differs across each method, leading to fundamentally dif-

ferent clusters. CESNA (communities from edge structure and node attributes) (Yang et al., 2013)

and ZCmod (Zhang and Chen, 2020) is an overlapping clustering method which leverages both

edge density and node type to form clusters.

Unlike the Greedy, Walktrap, and Infomap methods, CESNA and ZCmod distinguishes be-

tween genes and phenotypes, treating the biological network as a heterogeneous graph and identi-

fying communities which are topologically dense. However, CESNA assumes community mem-

bers’ should share common node types whereas ZCmod assumes community members’ have dif-

fering node types. That is, CESNA assume a homogeneous community structure whereas ZCMod

assumes heterogeneous community structure. A summary of each method is included below:

Greedy Proposed in Clauset et al. (2004), this clustering method seeks to optimize a modularity

score. In particular, a partition creating the largest disparity between the fraction of edges internal

to the partition and the expected fraction from a random graph with the same degree sequence is
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desired. Since maximizing this quantity is NP-complete in the strong sense (Brandes et al., 2006), a

greedy heuristic is used to find reasonable clusters. To start, each node is considered a community.

At each iteration of the algorithm, two communities that contribute maximum positive value to the

global modularity score are merged. This process continues until no such increase in modularity

is possible. The estimated complexity of this method on sparse networks is O(nlog2n) where n

denotes the number of nodes in the network. Greedy is implemented in the NetworkX package

(Hagberg et al., 2008) of Python.

Walktrap Walktrap was introduced in Pons and Latapy (2006) as a means for clustering a graph

using random walks, positing that short random walks tend to remain within a community. To start,

each node is considered a community. Distances between communities are computed via random

walks, and communities are merged such that there are shorter walks within a community and

larger walks between communities. This process is repeated n− 1 times implying a complexity of

O(mn2) where m denotes the number of edges in the graph, or O(n2logn) for sparse graphs (Xie

and Szymanski, 2011). Walktrap is implemented in the CDlib package (Rossetti et al., 2019) of

Python.

Infomap Rooted in information theory, Infomap discovers communities by minimizing the de-

scription length of an information flow on a graph, a variant of a coding problem (Rosvall and

Bergstrom, 2007a). Information flows are measured across a network using random walks where

groups of nodes for which information flows easily “can be aggregated and described as a single

well connected module” (Rosvall and Bergstrom, 2007b). The authors demonstrate these modules

are synonymous to communities. The map equation, introduced in Rosvall et al. (2009), provides

the theoretical basis for the Infomap algorithm, describing how well information about the original

network is transferred through a given network partition. Mukherjee et al. (2013) estimates that

the complexity of infomap is O(m). This method is available through the Infomap package (Edler

et al., 2022) in Python.
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CESNA Distinct from its competing methods, CESNA (communities from edge structure and

node attributes) discovers communities using the structure of the edges within a graph and the

available node attributes. In particular, CESNA treats the biological network as a heterogeneous

network, distinguishing genes from phenotypes rather than treating them fundamentally the same.

The method posits that a graph arises from its nodes’ attributes and its nodes’ community structure

before inferring the latent community structure via maximum likelihood estimation (Yang et al.,

2013). Discovered communities should be topologically dense and maintain similar node type.

One iteration of CESNA has an estimated complexity of O(m + nk) where k is the number of

node attributes. For this study, the node type (i.e., gene or phenotype) is the only node attribute

considered implying a computational complexity ofO(m+n). This method is implemented using

the Stanford Network Analysis Platform (SNAP) (Leskovec and Sosič, 2016).

ZCmod Like CESNA, ZCMod treats the network as a heterogeneous graph. ZCmod seeks to

optimize a modularity score defined as a function of the topology with respect to the node types,

and identifies communities which are topologically dense and maintain different node types. ZC-

mod uses a Louvain style modularity maximization (De Meo et al., 2011). To start, each node in

the network is assigned to its own cluster: a simple partition. In the first phase of the method,

each node is moved to the cluster which results in the greatest increase in modularity, and this

process is repeated no such increase in modularity is feasible. In the second phase of the method,

an aggregate network is created. The clusters from the previous stage represent the nodes of the

aggregate network. Edges between nodes within and between clusters represent self loops and

weighted edges, respectively, in the new aggregate network. At this point, stage one and two are

iteratively applied until no improvements to modularity are possible. One iteration of ZCmod has

a complexity of O(m) where m is the number of edges; hence, the worst case scenario is O(m2).

This method is implemented on GitHub (Gibbs, 2022).

Clusters in real networks tend to exhibit hierarchical structure such that larger clusters are

assumed composed of smaller clusters which can be further divided. For this study, we use an

agglomerative, hierarchical clustering method based on the distance between node pairs to subdi-
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vide clusters attained from the network clustering methods into “subclusters” of manageable size.

Paris (Bonald et al., 2018), the hierarchical method of choice, produces a dendrogram which can

be cut to produce subclusters. The dendrograms are cut such that the largest resulting subcluster

maintains fewer than 100 members. The Paris algorithm is described below:

Paris Paris is an agglomerative, hierarchical clustering method based on node pair sampling

(Bonald et al., 2018). In particular, the method proposes a distance measure which compares the

joint probability of sampling a pair of nodes, say i and j, to the product of the marginal probabilities

of sampling i and j. In particular, two nodes are relatively close if the probability of sampling j

given that i has been sampled is large compared to the probability of sampling j. To start, each

node is assigned to its cluster. Recursively, the two closest clusters are combined resulting in

a dendrogram. The algorithm is a modification of the Louvain algorithm (Blondel et al., 2008)

where the iterative step is replaced by a single merge, implying a complexity of O(m) where m

denotes the number of edges.

B.2 Pairwise Overlap of Clusters

When the clusters used to create the training data, i.e., X⊺, overlap significantly with each

other, it is reasonable to be concerned about independence between the units of the training data

and in the cross-validation folds. A lack of independence among clusters could engender an overly

complex DART model since dependent units could be split over the training and validation folds

when optimizing hyperparameters. In the following paragraphs, we identify the degree of pair-

wise overlap among the clusters used to create the training data and consider the complexity of

the resulting optimal model should high overlapping clusters be removed from the training data.

We investigate these concerns by considering the results of ICCUR(G20,G21) where the ICCUR

pipeline is provided in Algorithm 3.1. For this fit, the training data are created from biological and

topological cluster features (see Table 3.3) of 3412 small heterogeneous clusters identified from

G20 (see Table 3.5).
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We first demonstrate clusters are largely more dissimilar than similar; that is, there is little

substantial pairwise overlap between the clusters used to create the training data. To measure the

degree of overlap among the 3412 clusters identified from G20, we compute the Jaccard similarity

measure between all
(
3412
2

)
pairs of clusters. Measuring the overlap between clusters Ci and Cj , the

Jaccard similarty measure is denoted J(Ci, Cj) = |Ci∩Cj|/|Ci∪Cj|, where J(Ci, Cj) = 0 implies the

clusters are disjoint, J(Ci, Cj) = 1 implies the clusters are equal, and importantly, J(Ci, Cj) < 0.5

implies the clusters are more dissimilar than similar. Of the 3412 clusters, only 9 pairs of clusters

have an overlap larger than 0.5, as seen in Figure B.1a. In this case, removing nine clusters results

in a pairwise overlap less than 0.5; that is, by removing only 0.26% of clusters, the training data

are constructed from clusters which are more dissimilar than similar. The number and proportion

of clusters satisfying varying maximum pairwise overlap are provided in Figure B.1b.

(a) Clusters with large pairwise overlap (b) Clusters satisfying varying maximum pairwise overlap

Figure B.1: Panel (a) provides the pairwise overlap between all pairs of high-overlap clusters. Only nine
pairs have a Jaccard similarity measure greater than 0.5, indicating that the vast majority of clusters in
the training set are more dissimilar than similar. Panel (b) provides the number and proportion of clusters
remaining when clusters are eliminated sequentially to preserve a pairwise overlap less than some specified
maximum. Only nine clusters (0.26%) need be removed to ensure that every cluster in the training set is
more dissimilar than similar.

We now demonstrate that the optimal model’s complexity remains consistent after training

on clusters more dissimilar than similar. We remove nine clusters from the high-overlap pairs

in Figure B.1a. To decide which cluster from the high-overlap pair is removed, we consider the
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vector of pairwise Jaccard measures associated with each cluster and remove the cluster with the

largest mean pairwise overlap. If the mean pairwise overlap associated with each cluster are equal,

we randomly choose one cluster for elimination according to a Bernoulli random variable with

probability parameter 0.5. We retrain the DART model over the same grid of hyperparameter

values using the 3403 clusters with pairwise overlap less than 0.5, according to Section 3.3.1.

The hyperparameter combinations deemed optimal in Chapter 3 using the full set of train-

ing data and after removal of high-overlap clusters are provided as option A and B in Table B.1,

respectively. After retraining, the average cross-validated RMSE for option B is 0.1907 and op-

tion A is 0.1909, so both hyperparameter combinations have effectively the same out-of-sample

performance. In both cases, the model is an ensemble of deep trees with a small minimum loss

reduction; however the moderately large learning rate and relatively few boosting iterations in op-

tion A, or the very small learning rate and high dropout rate in option B, combat the complexity of

each individual tree. Hence, the complexity of the optimal DART model is a result of better out-

of-sample performance and not a manifestation of highly dependent units present in the training

and validation folds.

Table B.1: The hyperparameters of the DART model were optimized in two different ways: option A using
the full set of training data in Chapter 3 and option B with consideration for cluster overlap in the training
set. When accounting for overlap, both option A and B had similar average cross-validated loss, indicating
that they had nearly equivalent out-of-sample performance.

Optimal

Parameter Alias Range A B

learning rate eta 0 - 0.1 0.043 0.003
minimum loss reduction gamma 0 - 30 < 0.001 < 0.001
maximum number of trees nrounds 2 - 2000 141 1566
maximum tree depth max_depth 1 - 15 12 14
subsample ratio subsample 0.1 - 1 0.38 0.46

dropout rate rate_drop 0 - 1 0.11 0.66
skip rate skip_drop 0 - 1 0.86 0.78
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B.3 Cluster Features

The distribution of the potential for future discovery and each cluster feature over the years

under study is provided in Figure B.2. The distribution of each feature remains relatively stable

over time, possibly explaining why the specification of the DART model was relatively similar

year over year. Furthermore, we see that the observed PFD for each measurable year is largely

non-zero, indicating the ICCUR pipeline’s ability to identify clusters ripe for future discovery.

The first nine features (from cell type specificity to the sum of gene’s predicted loss of function)

are biologically inspired features, deemed possibly predictive of the clusters’ potential for future

discovery. The later features are network inspired features meant to discriminate clusters. These

features can measure things like how well-knit a cluster is (average embeddedness and conduc-

tance), how much of a hub-and-spoke topology the cluster has (hub dominance), and how cohesive

the cluster is (triangle participation rate). By differentiating clusters, we hope to establish associ-

ations between a cluster’s topology and its potential for discovery—associations we can capture

with flexible modeling tools.

While complicated at times, the underlying relationships among the previous year’s clusters’

features and its potential for future discovery are those used to estimate the degree to which con-

temporary clusters may embody future G2P relations via a DART model. While the DART model

is shown to be reasonably predictive, it is not very interpretable—a classical trade off with sta-

tistical models. Hence, to better understand what each feature contributes to model predictions,

we leverage SHAP (SHapley Additive ExPlanations) values (Lundberg and Lee, 2017). Rooted

in game theory, SHAP values provide a means of reverse engineering the output of any predictive

algorithm by quantifying the marginal contribution each feature has on a model prediction. For

a given prediction, a feature’s negative SHAP value indicates, holding all else constant, the value

of the feature decreases the model’s prediction; a positive SHAP value indicates the value of the

feature increases the model’s prediction. The final model’s prediction is then a compilation of each
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Figure B.2: Distribution of cluster features over the years under study. The relationship between the year’s
features are used to estimate the potential for future discovery (PFD). The distribution of each feature re-
mains relatively stable over time.
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features’ marginal contributions, as measured by the SHAP values. For an aggregate measure of

feature importance, one can consider the mean absolute SHAP value, provided in Table B.2 for

the 2019 clusters where larger values indicate the feature has a larger marginal impact or contribu-

tion to model predictions. To better understand the relationship between a feature and the model

predictions, one can consider the relationship between a feature’s support and the corresponding

SHAP values.

These relationships are summarized in Figure B.3 which illustrates the value of a feature and

the impact of that feature’s value on the model’s predictions in 2019. For each feature, there are

as many points as there are clusters in 2019 where the points are colored according to the feature’s

value. The feature values have been standardized to a scale between zero and one where zero

(one) indicates the minimum (maximum) observed. The features are sorted according to the mean

absolute SHAP value (which adorn the axis). Features with a larger mean absolute SHAP value

(e.g., the gene ratio, hub dominance, and cluster size) are marginally more highly influential to

the model predictions. Unsurprisingly, clusters which are more balanced in the number of genes

and phenotypes (i.e., maintain a gene ratio near 0.5) tend to have a higher PFD. Furthermore,

smaller clusters tend to embody a higher PFD. Interestingly, clusters with a large measure of hub

dominance tend to have larger SHAP values, indicating that clusters with a hub-and-spoke topology

tend to have a higher PFD. While this exploration is not intended to be inferential, it helps unveil

the associations driving the model predictions.
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Figure B.3: Relationship between the value of each cluster feature and the marginal impact of the features’
value on the 2019 model predictions. A positive (negative) SHAP value indicates that the value of the feature
marginally increased (decreased) the estimated PFD for that particular cluster. Features with larger mean
absolute SHAP value tend to have a higher marginal contribution to the model predictions.
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Appendix C

Extracting Communities from Heterogeneous

Networks

C.1 Heterogeneous Degree Configuration Model (HDCM)

Assume G = (V , E) denotes an observed, heterogeneous network with the collection of het-

erogeneous degree sequences D. The “Heterogeneous Degree Configuration Model” (HDCM)

section of Chapter 4 provides a generalization of the degree configuration model (DCM) capable

of preserving not only the degree of each node but the heterogeneous degree sequence of each node.

Using the corresponding notation and assumptions provided in the “Heterogeneous Networks” and

“Heterogeneous Degree Configuration Model” sections of Chapter 4, one can efficiently conduct

the stub matching process through a constrained permutation of the node labels in the edge multiset

E . Furthermore, we provide additional details justifying how the HDCM is simply a generalization

of the DCM, equivalent to the DCM when K = 1.

C.1.1 Efficient Generative Process for the HDCM

An efficient, generative process for HDCM(T ,D) is depicted in Figure C.1 and takes ad-

vantage of the existing edge set E . The process begins by partitioning the edge multiset into

K + K(K − 1)/2 subsets according to the observed adjacent nodes’ type: E =
⋃

1≤k≤l≤K E [kl]

where

E [kl] = {{u, v} ∈ E : u is of type k, v is of type l} .

That is, the edge multiset E [kl] ⊆ E is the set of all m[kl] = |E [kl]| undirected links between

nodes of type k and l. To construct a network with the same collection of heterogeneous degree

sequences, we permute the node labels of E [kl] to construct a new edge multiset, denoted Ẽ [kl], for
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each 1 ≤ k ≤ l ≤ K. The process for attaining Ẽ [kl] is dependent on whether k = l or k ̸= l, so

we consider these cases.

Figure C.1: A schematic of the heterogeneous degree configuration model: a model of a random network
maintaining the same collection of heterogeneous degree sequences, D, as an observed network, G. The
process begins by partitioning the edge multiset, E , according to adjacent nodes’ type. Upon completion,
node labels are permuted (or rearranged) within the elements of the partition to preserve the respective type
k degree of each node. The new edge multisets are combined into one edge multiset, Ẽ , where a random
network G̃ = (V, Ẽ) has the same degree collection D.

Case 1: Attaining Ẽ[kl] for k = l. For same type connections, the idea is to permute all node

labels and create adjacent pairs by grouping the reordered node labels two by two. This process

will preserve the number of same type connections for each node. To detail formally, let E [kk]

be structured as an m[kk] by 2 matrix where each row vector provides an observed edge between

two type k nodes. Note, the order of the rows and columns of E [kk] carry no specific meaning

but is used for bookkeeping. Furthermore, if G is a multigraph then there exist duplicate rows.
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Let w = [w1, . . . , w2m[kk] ] denote a row vector (with 2m[kk] entries) attained by concatenating

the transpose of the column vectors of E [kk]. Let w̃ denote a permutation (or rearrangement)

of the entries of w. The random configuration of k to k connections is represented similarly as

an m[kk] by 2 matrix, denoted Ẽ [kl], where the ith row vector of Ẽ [kl] is given by [w̃i, w̃i+1] for

i ∈ {1, . . . ,m[kk]}.

Case 2: Attaining Ẽ[kl] for k < l. For between type connections, the idea is to isolate and

permute node labels of one type, say l, before creating adjacent pairs by joining the permuted

node labels with those node labels of type k. To detail formally, let E [kl] be structured as an m[kl]

by 2 matrix where each row vector provides an edge between a type k node and a type l node,

respectively. That is, the first column vector of E [kl], denoted z, contains only type k nodes and the

second column vector of E [kl], denoted w, contains only type l nodes. Note, the order of the rows

of E [kl], however, carry no specific meaning and is used for bookkeeping. Furthermore, if G is a

multigraph then there exist duplicate rows. Let w̃ denote a permutation (or rearrangement) of the

entries of w. The random configuration of k to l connections is represented similarly as an m[kl]

by 2 matrix, denoted Ẽ [kl], where the first and second columns of Ẽ [kl] are z and w̃, respectively.

The newly attained edge multisets Ẽ [kl] (represented as m[kl] by 2 matrices) for each 1 ≤

k ≤ l ≤ K are combined rowwise (in any order) to attain an m by 2 matrix, denoted Ẽ , where

m := |Ẽ | = |E|. The random network G̃ = (V , Ẽ) has the same collection of heterogeneous degree

sequences as the observed network G. That is, each node in G̃ has the same type k degree for all

k ∈ {1, . . . , K} as in G. The general process for attaining the random edge multiset, Ẽ , from

the observed edge multiset, E , is presented in Figure C.1 where the permutation of node labels

is depicted in Figure C.2. Notice, the process for permuting node labels differs for same type

connections (e.g., E [11] and E [22]) compared to between type connections (e.g., E [12]) as described

in cases one and two.
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Figure C.2: A schematic describing the random permutation of node labels for each element of the parti-
tioned edge multiset. The process for permuting node labels is different for same type connections compared
to between type connections. For same type connections (i.e., those described by E[11] and E[22]), all node
labels as they appear in E[kk] are permuted and paired two by two to create a new edge multiset Ẽ[kk]. For
between type connections (i.e., those described by E[12]), only node labels of type l as they appear in E[kl]

are permuted before being subsequently paired to the type k node labels to create the new edge multiset
Ẽ[kl]. The resulting edge multisets (represented as matrices) are combined rowwise.

C.1.2 Generalization of a Degree Configuration Model

The heterogeneous degree configuration model is a generalization of a degree configuration

model. A formal definition of a degree configuration model (DCM) for a homogeneous network

is provided in Newman (2018, Chapter 13.2); however, Fosdick et al. (2018) provides expan-

sive coverage on the topic. To clarify the similarities and differences between HDCM(T ,D) and

DCM(D), we will consider a random graph, G̃, generated from the HDCM(T ,D) for K = 1 and

K > 1. For a general K, the heterogeneous degree sequence (introduced in the Heterogeneous

Network section of Chapter 4) of node u in G̃ is equal to the observed heterogeneous degree se-
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quence of node u in G for all u ∈ V . That is, node u is connected to the same number of type k

nodes in G̃ as in G for all k ∈ {1, . . . , K}. As a result, node u is connected to the same number of

nodes in G̃ as in G. Thus, the sample space of the HDCM(T ,D) is a subspace of the sample space

of the DCM(D). The two sample spaces are equal when K = 1 (i.e., the network is homogeneous)

since the heterogeneous degree sequence of a node simplifies to a singleton set with the degree of

a node. When K > 1, it is easy to construct an example where the degree of each node is the

same as in the observed graph, but the heterogeneous degree sequences are different. When K > 1

the sample space of the HDCM(T ,D) is a strict subset of the DCM(D). This illustrates how the

heterogeneous degree configuration model is simply a generalization of the degree configuration

model used in Wilson et al. (2014).

C.2 Proof of Theorems

The statement of Theorem 4.3.1, Corollary 4.3.1, and Theorem 4.3.2, along with correspond-

ing assumptions and notation, are provided in Chapter 4. The corresponding proofs are provided

here.

Asymptotic Distribution of X
[k]
n (u

[l]
n : Bn) We address the asymptotic behavior of the random

quantity of interest in (4.4).

Proof of Theorem 4.3.1. From Assumption 4.3.2, we have

µ
[k]
l,n =

∫

R+

x dF
[k]
l,n(x) =

∞∑

t=0

t
N

[k]
l,n(t)

|V
[l]
n |

=
2I(k=l)|E

[kl]
n |

|V
[l]
n |

→ µ
[k]
l (C.1)

as n → ∞ where N
[k]
l,n(t) is the number of type l nodes with a type k degree of t, and E

[kl]
n is the

subset multiset of the edge multiset which contains links between type k nodes and type l nodes.

Equation (C.1) implies

1 = lim
n→∞

2I(k=l)|E
[kl]
n |

µ
[k]
l |V

[l]
n |

(i.e., 2I(k=l)|E [kl]
n | ∼ µ

[k]
l |V

[l]
n |)
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where µ
[k]
l <∞ by Assumption 4.3.2. By Assumption 4.3.1, we have

V
[l]
n

Vn
=

V
[l]
n

n
→ γ[l] ∈ (0, 1) as n→∞ =⇒ 1 = lim

n→∞

|V
[l]
n |

γ[l]n
(i.e., |V [l]

n | ∼ γ[l]n).

Hence, we have 2I(k=l)|E
[kl]
n | ∼ µ

[k]
l γ[l]n. Note, when µ

[k]
l = 0 then X

[k]
n (u

[l]
n ,Bn) = 0, Yn ∼

Binom(c, 0) and dTV

(
X

[k]
n (u

[l]
n ,Bn), Yn

)
→ 0 as n→∞, trivially. We proceed assuming µ

[k]
l > 0

before addressing this edge case formally.

We assume (WLOG) that k ≤ l. We wish to understand the distribution of X [k]
n (u

[l]
n : Bn):

the random number of type k nodes in Bn adjacent to u
[l]
n inHn constructed via the heterogeneous

degree configuration model. We make use of the procedure for sampling a network from the

heterogeneous degree configuration model, denoted HDCM(Vn, En), and discussed in Appendix

C.1. Under the HDCM(Vn, En), the edge multiset En = ∪1≤i≤j≤KE
[ij]
n is partitioned according to

the adjacent nodes’ types (where E
[ij]
n contains the links between nodes of type i and j), the edges

in E
[ij]
n are randomly rearranged to preserve degree (resulting in Ẽ

[ij]
n for all 1 ≤ i ≤ j ≤ K), and

the resulting Ẽ
[ij]
n are combined into one edge set (denoted Ẽn). Each node in a random network

Hn = (Vn, Ẽn) maintains the same heterogeneous degree sequence as observed in Gn = (Vn, En),

implying there are precisely c edges incident to u
[l]
n also incident a type k node in Hn. Let ṽ[k]ni

denote the ith type k node where {ṽ[k]ni , u
[l]
n } ∈ Ẽ [kl] for i = 1, . . . , c. Note that the ordering

carries no specific meaning but is used for bookkeeping. Self-loops and multi-edges complicate

the interpretation and discussion surrounding ṽ
[k]
ni . We refer to ṽ

[k]
ni simply as the ith type k node

adjacent to u
[l]
n ; however, we recognize the elements of {ṽ[k]ni }

c
i=1 are not necessarily unique and

count, for example, a node as twice adjacent to u
[l]
n should there exist two edges between them.

Furthermore, if ṽ[k]ni = u
[l]
n then {ṽ[k]ni , u

[l]
n } would constitute a self-loop; a self-loop increases the

degree of a node by two, so we would say then that u[l]
n is twice adjacent to itself. In a simple setting

(no self-loops and multi-edges), there is no distinction between counting the nodes adjacent to a

node w and counting the nodes incident to an edge which is incident to a node w, so we treat them

as the same objective here.
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To understand the distribution of X
[k]
n (u

[l]
n : Bn), we focus on the adjacent type k nodes,

{ṽ
[k]
ni }

c
i=1, and reveal whether each ṽ

[k]
ni is a member of Bn (equivalently, a member of B[k]

n ). For

i ∈ {1, . . . , c}, let Ai denote a binary random variable indicating whether ṽ[k]ni is a member of Bn.

That is, Ai = 1 if the ith type k node adjacent to u
[l]
n inHn is also in Bn and 0 otherwise. Note that

X
[k]
n (u

[l]
n : Bn) =

∑c

i=1 Ai. Let r[k]l,i (Bn) denote the conditional probability of Ai = 1 conditional

on the previous i− 1 revelations: {A1, . . . , Ai−1}.

Consider r[k]l,1(Bn). In this case, no type k nodes adjacent to u
[l]
n have been revealed, so r

[k]
l,1(Bn)

is the ratio of the number of type k nodes in Bn adjacent to type l nodes to the total number of type

k nodes adjacent to type l nodes:

r
[k]
l,1(Bn) =

(∑
w∈B

[k]
n
d[l](w)

)
− I(k = l)I(u

[l]
n ∈ Bn)

(∑
z∈V

[k]
n

d[l](z)
)
− I(k = l)

=

(∑
w∈B

[k]
n
d[l](w)

)
− I(k = l)I(u

[l]
n ∈ Bn)

2I(k=l)|E
[kl]
n | − I(k = l)

.

The indicators in the numerator ensure we do not count u[l]
n itself when counting the number of type

k nodes in Bn which could be adjacent to u
[l]
n (only a concern when k = l and u

[l]
n ∈ Bn). Similarly,

the indicator in the denominator ensures we do not count u[l]
n itself when counting the number of

type k nodes in Vn which could be adjacent to u
[l]
n (only a concern when k = l). Now, consider

r
[k]
l,2(Bn). One type k node adjacent to u

[l]
n has been revealed. Hence, there is one fewer type k node

which can possibly serve as ṽ[k]n2. If ṽ[k]n1 was revealed to be a member of Bn (i.e., A1 = 1), then there

is also one fewer type k node in Bn which can possibly serve as ṽ[k]n2. Otherwise, if A1 = 0, then

the number of type k nodes in Bn which can possibly serve as ṽ[k]n2 is unaffected; only the overall
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count is affected. Thus,

r
[k]
l,2(Bn) ∈

[(∑
w∈B

[k]
n
d[l](w)

)
− I(k = l)I(u

[l]
n ∈ Bn)− 1

2I(k=l)|E
[kl]
n | − I(k = l)− 1

,

(∑
w∈B

[k]
n
d[l](w)

)
− I(k = l)I(u

[l]
n ∈ Bn)

2I(k=l)|E
[kl]
n | − I(k = l)− 1

]

where the lowerbound arises if A1 = 1 and the upperbound arises if A1 = 0. Arguing analogously

for 1 ≤ i ≤ c, we have that r[k]l,i (Bn) is bounded uniformly on all prior i− 1 revelations by

r
[k]
l,i (Bn) ∈

[(∑
w∈B

[k]
n
d[l](w)

)
− I(k = l)I(u

[l]
n ∈ Bn)− (i− 1)

2I(k=l)|E
[kl]
n | − I(k = l)− (i− 1)

,

(∑
w∈B

[k]
n
d[l](w)

)
− I(k = l)I(u

[l]
n ∈ Bn)

2I(k=l)|E
[kl]
n | − I(k = l)− (i− 1)

]

where the lowerbound arises if Aj = 1 for all j ∈ {1, . . . , i − 1}, and the upperbound arises if

Aj = 0 for all j ∈ {1, . . . , i− 1}. Recall from (4.5) that

p
[k]
l,n(Bn) =

∑
w∈B

[k]
n
d[l](w)

∑
z∈V

[k]
n

d[l](z)
.

We will show that sup1≤i≤c |r
[k]
l,i (Bn) − p

[k]
l,n(Bn)| → 0 as n → ∞ by considering the case when

k = l and k ̸= l.

Case 1: k = l

If k = l, then

r
[l]
l,i(Bn) ∈




(∑
w∈B

[l]
n
d[l](w)

)
− I(u

[l]
n ∈ Bn)− (i− 1)

2|E
[ll]
n | − i

,

(∑
w∈B

[l]
n
d[l](w)

)
− I(u

[l]
n ∈ Bn)

2|E
[ll]
n | − i



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and

p
[l]
l,n(Bn) =

∑
w∈B

[l]
n
d[l](w)

∑
z∈V

[l]
n
d[l](z)

=

∑
w∈B

[l]
n
d[l](w)

2|E
[ll]
n |

.

Hence,

r
[l]
l,i(Bn)− p

[l]
l,n(Bn) ≥

(∑
w∈B

[l]
n
d[l](w)

)
− I(u

[l]
n ∈ Bn)− (i− 1)

2|E
[ll]
n | − i

−

∑
w∈B

[l]
n
d[l](w)

2|E
[ll]
n |

=
i
∑

w∈B
[l]
n
d[l](w)− 2i|E

[ll]
n | − 2I(u

[l]
n ∈ Bn)|E

[ll]
n |+ 2|E

[ll]
n |

2|E
[ll]
n |(2|E

[ll]
n | − i)

≥
i
∑

w∈B
[l]
n
d[l](w)− 2i|E

[ll]
n |

2|E
[ll]
n |(2|E

[ll]
n | − i)

taking I(u[l]
n ∈ Bn) = 1

≥
−i

2|E
[ll]
n | − i

since
∑

w∈B
[l]
n

d[l](w) ≥ 0,

and

r
[l]
l,i(Bn)− p

[l]
l,n(Bn) ≤

(∑
w∈B

[l]
n
d[l](w)

)
− I(u

[l]
n ∈ Bn)

2|E
[ll]
n | − i

−

∑
w∈B

[l]
n
d[l](w)

2|E
[ll]
n |

=
i
∑

w∈B
[l]
n
d[l](w)− 2I(u

[l]
n ∈ Bn)|E

[ll]
n |

2|E
[ll]
n |(2|E

[ll]
n | − i)

≤
i
∑

w∈B
[l]
n
d[l](w)

2|E
[ll]
n |(2|E

[ll]
n | − i)

taking I(u[l]
n ∈ Bn) = 0

≤
i

2|E
[ll]
n | − i

since
∑

w∈B
[l]
n

d[l](w) ≤ 2|E [ll]
n |.

Thus,

|r
[l]
l,i(Bn)− p

[l]
l,n(Bn)| ≤

i

2|E
[ll]
n | − i

≤
c

2|E
[ll]
n | − i

≤
c

2|E
[ll]
n | − c

,
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implying

sup
1≤i≤c

|r
[l]
l,i(Bn)− p

[l]
l,n(Bn)| ≤

c

2|E
[ll]
n | − c

→ 0 (C.2)

as n→∞ since 2|E
[ll]
n | ∼ µ

[l]
l γ

[l]n and c is fixed.

Case 2: k ̸= l

If k ̸= l, then

r
[k]
l,i (Bn) ∈




(∑
w∈B

[k]
n
d[l](w)

)
− (i− 1)

|E
[kl]
n | − (i− 1)

,

(∑
w∈B

[k]
n
d[l](w)

)

|E
[kl]
n | − (i− 1)




and

p
[k]
l,n(Bn) =

∑
w∈B

[k]
n
d[l](w)

∑
z∈V

[k]
n

d[l](z)
=

∑
w∈B

[k]
n
d[l](w)

|E
[kl]
n |

.

Hence,

r
[k]
l,i (Bn)− p

[k]
l,n(Bn) ≥

(∑
w∈B

[k]
n
d[l](w)

)
− (i− 1)

|E
[kl]
n | − (i− 1)

−

∑
w∈B

[k]
n
d[l](w)

|E
[kl]
n |

=
(i− 1)

[∑
w∈B

[k]
n
d[l](w)− |E

[kl]
n |
]

|E
[kl]
n |(|E

[kl]
n | − (i− 1))

≥
−(i− 1)|E

[kl]
n |

|E
[kl]
n |(|E

[kl]
n | − (i− 1))

since
∑

w∈B
[k]
n

d[l](w) ≥ 0

=
−(i− 1)

|E
[kl]
n | − (i− 1)

,
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and

r
[k]
l,i (Bn)− p

[k]
l,n(Bn) ≤

∑
w∈B

[k]
n
d[l](w)

|E
[kl]
n | − (i− 1)

−

∑
w∈B

[k]
n
d[l](w)

|E
[kl]
n |

=
(i− 1)

∑
w∈B

[k]
n
d[l](w)

|E
[kl]
n |(|E

[kl]
n | − (i− 1))

≤
(i− 1)|E

[kl]
n |

|E
[kl]
n |(|E

[kl]
n | − (i− 1))

since
∑

w∈B
[k]
n

d[l](w) ≤ |E [kl]|

=
i− 1

|E
[kl]
n | − (i− 1)

.

Thus,

|r
[k]
l,i (Bn)− p

[k]
l,n(Bn)| ≤

i− 1

|E
[kl]
n | − (i− 1)

≤
c− 1

|E
[kl]
n | − (i− 1)

≤
c− 1

|E
[kl]
n | − (c− 1)

,

implying

sup
1≤i≤c

|r
[k]
l,i (Bn)− p

[k]
l,n(Bn)| ≤

c− 1

|E
[kl]
n | − (c− 1)

→ 0 (C.3)

as n→∞ since |E [kl]
n | ∼ µ

[k]
l γ[l]n and c is fixed.

Thus, sup1≤i≤c |r
[k]
l,i (Bn)− p

[k]
l,n(Bn)| → 0 as n→∞, implying dTV

(
X

[k]
n (u

[l]
n ,Bn), Yn

)
→ 0

as n→∞ where Yn ∼ Binom(c, p
[k]
l,n(Bn)).

We now address the trivial cases when µ
[k]
l = 0. Let Yn ∼ Binom(c, 0), implying P (Yn =

0) = 1. Suppose µ[k]
l = 0, and note that X [k]

n (u
[l]
n ,Bn) is a non-negative random variable. Then, for

all ϵ > 0

P(X [k]
n (u[l]

n ,Bn) > ϵ) ≤
E(X

[k]
n (u

[l]
n ,Bn))

ϵ
=

µ
[k]
l,n

ϵ
→

µ
[k]
l

ϵ
= 0

as n→∞ by Markov’s inequality. Hence, dTV

(
X

[k]
n (u

[l]
n ,Bn), Yn

)
→ 0 as n→∞. ■
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Proof of Corollary 4.3.1. To demonstrate that dTV

(
X

[k]
n (u

[l]
n ,Bn), Y

[k]
l,n (u

[l]
n ,Bn)

)
→ 0 as n→∞,

it suffices to show that sup1≤i≤c |r
[k]
l,i (Bn) − p

[k]
l,n(u

[l]
n ,Bn)| → 0 as n → ∞ when k = l and

0 < µ
[k]
l <∞. Using a similar proof strategy, we have

r
[k]
l,i (Bn)− p

[k]
l,n(u

[l]
n ,Bn) ≥ −

2|E
[kl]
n |(c− 1)− c(i− 1)

(2|E
[kl]
n | − i)(2|E

[kl]
n | − c)

,

and

r
[k]
l,i (Bn)− p

[k]
l,n(u

[l]
n ,Bn) ≤

2|E
[kl]
n |(c− 1)− c(i− 1)

(2|E
[kl]
n | − i)(2|E

[kl]
n | − c)

.

Thus,

|r
[k]
l,i (Bn)− p

[k]
l,n(u

[l]
n ,Bn)| ≤

2|E
[kl]
n |(c− 1)− c(i− 1)

(2|E
[kl]
n | − i)(2|E

[kl]
n | − c)

≤
(2|E

[kl]
n | − i)(c+ 1)

(2|E
[kl]
n | − i)(2|E

[kl]
n | − c)

(C.4)

=
c+ 1

2|E
[kl]
n | − c

where (C.4) holds since c ≤ |E
[kl]
n |, implying

sup
1≤i≤c

|r
[k]
l,i (Bn)− p

[k]
l,n(u

[l]
n ,Bn)| ≤

c+ 1

2|E
[kl]
n | − c

→ 0 (C.5)

as n → ∞ since |E [kl]
n | ∼ µ

[k]
l γ[l]n and c is fixed. Equation (C.5) implies convergence in total

variation, a result mirroring Theorem 4.3.1. ■

Convergence of the ECoHeN Algorithm We address the convergence properties of the ECo-

HeN algorithm.

Proof of Theorem 4.3.2. Since ξ ∈ [0, 1] and ϕ ∈ [0, 1), there exists an iteration i
′

such that µi′ = 1

and µi = 1 for all i ≥ i
′

. Furthermore, there exists a j
′

such that |Bi| < |V|/2 for all i ≥ j
′

. Let
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j = max(i
′

, j
′

). For all i ≥ j, the ECoHeN extraction procedure iteratively adds (at most) a one

external node, v ∈ Bc
j , with the smallest FDR adjusted p-value less than (or equal to) α before

removing (at most) one internal node, v ∈ B+
j , with the largest FDR adjusted p-value greater than

α. To illustrate convergence, it suffices to show that a node, v, added to the set Bj at iteration j is

not subsequently removed from the set B+
j = Bj ∪{v} at iteration j. We proceed by contradiction.

Importantly, note that the quantity p̂Bj
(u) for an arbitrary node u of arbitrary type l is the same

regardless of whether u ∈ Bj or u ̸∈ Bj , implying p̂Bj
(v) = p̂B+

j
(v). Let qext := qext(j) = |Bc

j |

denote the number of external nodes, and qint := qint(j) = |B+
j | denote the number of internal

nodes at iteration j. Since qint < qext and p̂Bj
(v) = p̂B+

j
(v), we have ˜̂pB+

j
(v) < ˜̂pBj

(v) where ˜̂p

the FDR adjusted p-value. Intuitively, since the p-value for v is the same regardless whether v is a

member of Bj , then the FDR adjusted p-value for v will be smaller when v is a member of Bj (i.e.,

B+
j ) than when v is not a member of Bj (i.e., Bj) since there are more external nodes than internal

nodes at iteration j. At the same time, since v was added to Bj then pBj
(v) ≤ α. Since v was

subsequently removed from B+
j , then pB+

j
(v) > α. Hence we have α < p̃B+

j
(v) < p̃Bj

(v) ≤ α,

a clear contradiction: α < α. As such, v will never be added and subsequently removed in the

extraction procedure, implying the ECoHeN algorithm will not cycle. ■

C.3 Simulation Study

We provide a detailed account of the heterogeneous stochastic block model: a model for

generating heterogeneous networks with block structure. Furthermore, we discuss the evaluation

metrics used in Chapter 4 and provide a more expansive set of simulated conditions.

C.3.1 Heterogeneous Stochastic Block Model

The heterogeneous stochastic block model (HSBM) is a flexible framework for generating

heterogeneous networks with block structure and is implemented in the R package ECoHeN pro-

vided in Appendix C.4. To describe the size and connectivity of sampled networks, consider a

heterogeneous network with K node types with C blocks. The block sizes are described by the K
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by C matrix N = [nkc]1≤k≤K

1≤c≤C
where nkc provides the number of type k nodes assigned to the cth

block. The connectivity of a sampled network is then summarized by the symmetric matrices P

and R, each of size K by K, which provide the probability of connections between nodes of type

k and l for all k, l ∈ {1, . . . , K}.

To detail, suppose v[k] and u[l] represent two arbitrary nodes of type k and l, respectively. In

particular, the matrix P = [pkl]1≤k≤l≤K provides the probability of connection between two nodes

should these nodes exist in separate blocks. That is, v[k] and u[l] do not share a block, then an

edge is placed between them according to a Bernoulli random variable with rate pkl. The matrix

R = [rkl]1≤k≤l≤K provides the additive increase in the rate of connection between two nodes if they

share a block; that is, v[k] and u[l] share a block, then an edge is placed between them according to

a Bernoulli random variable with rate pkl + rkl where 0 ≤ pkl, rkl ≤ 1 and 0 ≤ pkl + rkl ≤ 1 for

all 1 ≤ k ≤ l ≤ K.

Simulated networks presented in Chapter 4 are generated by parameters b, p, r11, r22, and r12

according to the following matrices of the HSBM:

N(p) =



500(1− p) 500p

500(1− p) 500p


 , (C.6)

P (b) =



b b

b b


 , and (C.7)

R(r11, r22, r12) =



r11 r12

r12 r22


 . (C.8)

Networks of this form maintain two blocks: a background block and a high connectivity block

(HCB) where the parameter p in (C.6) dictates the size of the HCB, ergo, the size of the commu-

nity. The parameter b in (C.7) dictates the background rate. The parameters rij in (C.8) dictate

the type and degree of community structure. Figure C.3 provides three examples of a heteroge-

neous network from this space, including one (a) with heterogeneous community structure, (b)
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with homogeneous community structure, and (c) without community structure, each visualized as

an adjacency matrix with node type illustrated by the colored bars adorning the axes. In partic-

ular, Figure C.3a is said to have heterogeneous community structure as the within-block nodes

are highly connected within node type and (to a lesser degree) between node type, implying the

existence of one heterogeneous community. On the other hand, Figure C.3b is said to have ho-

mogeneous community structure as the within-block nodes are highly connected within node type

yet sparsely connected between node type (equivalent to the background rate, b), implying the

existence of two homogeneous communities: one composed of type one (red) nodes and one com-

posed of type two (blue) nodes. Figure C.3c is a heterogeneous analog of an Erdős-Rényi network;

hence, there is no underlying community structure.

(a) R(0.25, 0.20, 0.10) (b) R(0.25, 0.20, 0) (c) R(0, 0, 0)

Figure C.3: Three example heterogeneous networks generated from the heterogeneous stochastic block
model with fundamentally different community structure. Each network is composed of 500 type one and
500 type two nodes (illustrated by the colored bars adorning the axes) and the subsequent connections
among them. The HCB (outlined in black) contains the connections dictated by rij for 1 ≤ i ≤ j ≤ 2. The
other connections are dictated by the background rate b. Edges are sampled according to the Bernoulli rate
matrices P (b) and R(r11, r22, r12) of (C.7) and (C.8) with background rate specified by b = 0.05.

C.3.2 Evaluation Metrics

The maximum Jaccard similarity measure is used in simulation to capture each community

discovery method’s ability to identify the simulated community structure. For each method, let
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D represent the set of nodes to discover which will vary depending on the underlying community

structure. Let Cm represent a collection of the discovered communities by method m. To gauge

each method’s ability to identify D, we consider the maximum Jaccard similarity measure, denoted

J∗(D,Cm), between the set of nodes to discover, D, and the collection of communities, Cm:

J∗(D,Cm) = max
C∈Cm

|D ∩ C|

|D ∪ C|
:= max

C∈Cm

J(D,C). (C.9)

A value of one indicates that the set D was perfectly identified by the community discovery

method; a value of zero indicates the set D was not identified in any capacity by the commu-

nity discovery method. Hence, the maximum Jaccard similarity measure illustrates each method’s

ability to recover set D where larger values indicate more overlap.

In real networks, there is no established ground truth. To assess the assortativity of a dis-

covered community, C, we compute the ratio of densities. The ratio of densities of C, denoted

RatD(C), is the ratio of the internal edge density, pi(C), to the between edge density, pb(C):

RatD(C) = pi(C)/pb(C) where

pi(C) =
mi

|C|(|C| − 1)/2
, and pb(C) =

mb

|C||Cc|
.

We use mi to denote the number of edges between nodes in C, and mb to denote the number of

edges between a node in C and a node in Cc = V − C. A RatD of one implies that the density

of edges within the set is the same as to the density to the rest of the network, indicating poor

assortativity. Any set with a RatD sufficiently greater than one can arguably be called a community.

The formulation assumes a simple network which holds for every network presented in Chapter 4.

C.3.3 Simulation Study

The simulation study in Chapter 4 features a subset of the results depicting each method’s

ability to identify heterogeneous and homogeneous community structure. This section presents

all other results as well as the effects of ξ and ϕ on the quantity and quality of the communities
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found. We also provide an investigation into each method’s ability to assign nodes to background

in random networks.

Heterogeneous Community Structure

In Chapter 4, we present each method’s ability to identify the heterogeneous community when

rii ∈ (0.15, 0.20, 0.25, 0.30) for i ∈ {1, 2} and r12 ∈ (0.025, 0.05, 0.075); however, a broader

range of simulated conditions are constructed and explored. We present results when r11 = r22

and r11 ̸= r22 before exploring the effects of ξ and ϕ. As in Chapter 4, one hundred networks

are generated at each simulated condition, referred to as replicates. The median maximum Jaccard

similarity measure is plotted at each simulated condition with uncertainty reflected by the range of

first and third quartile.

When r11 = r22 Figure C.4 compares each method’s ability to identify the heterogeneous com-

munity when r11 = r22 at a broader range of simulated conditions. Each point represents the

median maximum Jaccard at each simulated condition. The vertical range represents the middle

50% of observed maximum Jaccard measures. ECoHeN and ZCmod’s ability to recover the het-

erogeneous community notably improves as the within-block, within-type density (i.e., b + rii)

increases and the within-block between-type density (i.e., b + rij) increases. Each method poorly

recovers the heterogeneous community when rii < 0.15. When rii < 0.15, Walktrap generally

seems preferable, having a larger maximum Jaccard. However, ECoHeN and ZCmod outperform

Walktrap if r12 is relatively large, and if r12 is sufficiently large, ECoHeN outperforms each of

the competing methods. When rii ≥ 0.15, ECoHeN performs relatively better than each compet-

ing methods at recovering small heterogeneous communities (i.e., when p is small), especially for

relatively small r12. For larger p, ECoHeN and ZCmod perform similarly well.

When r11 ̸= r22 We now consider simulated conditions when r11 ̸= r22, presented in Figure

C.5. The within-block, within-type densities are provided in the facets. For each community

size, we show the maximum Jaccard for increasing values of r12 which range from 0.025 to r22.
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Each method’s ability to recover the heterogeneous community improves as (1) the density of

red block nodes’ connections increases (down the y-axis facets), (2) the density of the blue block

nodes’ connections increases (right across the x-axis facets), and (3) the density of the within-

block, between-type connections increases (provided by the line type). Characteristically, however,

ECoHeN’s ability to recover the heterogeneous community drastically improves for small increases

to r12, outperforming each competing method at recovering small, heterogeneous communities. By

comparison, ZCmod struggles to identify small, heterogeneous communities, performing well as

the community size increases. When rii > 0.20 for i ∈ {1, 2} (not shown), all methods perform

similarly for large r12. For small r12, ESSC and Walktrap perform relatively worse than ECoHeN

and ZCmod. ECoHeN outperforms ZCmod for small r12, and the two methods perform more

similarly as r12 increases.

Effects of ξ and ϕ We consider setting (ξ, ϕ) to (0, 0), and (1, ϕ) for ϕ = 0, 0.33, 0.66, and

0.99 and running ECoHeN and ESSC to see the effect the parameter settings have on the ability

for the methods to recover the heterogeneous community. The results are provided in Figure C.6.

In general, it appears that setting the maximal allowance to 1 for each iteration of the extraction

with ξ = 0 and ϕ = 0 provides the best resolution for uncovering the heterogeneous community

at a wide range of simulated conditions. When ξ = 1, a larger ϕ provides the best resolution,

suggesting that if we are to speed up the algorithm by increasing the maximal allowance for early

iterations, it is best to allow for a larger maximal allowance for many early iterations. However,

the effect is relatively minute for most simulated conditions, suggesting that the choice of ϕ when

ξ = 1 will have minimal impact on the methods’ ability to recover communities from background.

We do not consider setting (ξ, ϕ) = (1, 1) as this setting is not guaranteed to converge. Should the

user wish to set (ξ, ϕ) = (1, 1), we suggest considering a maximum number of iterations fewer

than the number of nodes in the network.
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Homogeneous Community Structure

In Chapter 4, we present each method’s ability to identify the red community when r11 ∈

(0.20, 0.25, 0.30), r22 = 0.25, and r12 = 0; however, a broader range of simulated conditions are

constructed and explored. We present results for identifying both the red and blue community for

general r11 ∈ (0.15, 0.20, 0.25, 0.30) where i ∈ {1, 2} before exploring the effects of ξ and ϕ.

As in Chapter 4, one hundred networks are generated at each simulated condition, referred to as

replicates. The median maximum Jaccard similarity measure is plotted at each simulated condition

with uncertainty reflected by the range of first and third quartile.

Figure C.7 compares each method’s ability to identify the red community at a broader range

of simulated conditions. Each point represents the median maximum Jaccard at each simulated

condition. The vertical range represents the middle 50% of observed maximum Jaccard measures.

As the red to red density increases within the HCB (along the y-axis facets), ECoHeN can iden-

tify ECoHeN can identify the homogeneous community composed of red nodes with increasingly

better precision, featuring marked improvements for small, homogeneous communities. There are

no such improvements from ZCmod which partitions a network into modules each of which must

maintain at least one node of each node type. Notably, the blue to blue density does not have an

impact on any method’s ability to identify the homogeneous community composed of red nodes.

While ECoHeN consistently outperforms ZCmod, ESSC and Walktrap consistently outper-

form ECoHeN and ZCmod at uncovering homogeneous community structure. This is not surpris-

ing considering these methods identify communities irrespective of node type. By construction,

the within-block, between-type density is no different from the background density for networks

under study. While ECoHeN is designed to identify both homogeneous and heterogeneous com-

munity structure, the tradeoff for this functionality is a reduction in power for uncovering homoge-

neous communities since there is no information gained through a comparison of the within-block,

between-type density to the background. Notably, ESSC performs better or similarly to Walktrap

at uncovering dense, homogeneous communities, and Infomap continues to place each node into

it’s own community, incapable of identifying a community amongst background noise.
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Lastly, Figure C.8 compares each method’s ability to identify the blue community at the same

range of simulated conditions. The resulting conclusions are the same.

Effects of ξ and ϕ We consider setting (ξ, ϕ) to (0, 0), and (1, ϕ) for ϕ = 0, 0.33, 0.66, and

0.99 and running ECoHeN and ESSC to see the effect the parameter settings have on the ability

for the methods to recover the homogeneous communities. The results are provided in Figure

C.9 and C.10. As previously founded, it appears setting the maximal allowance to one for each

iteration with ξ = 0 and ϕ = 0 provides the best resolution for uncovering the homogeneous

communities. When ξ = 1, a larger ϕ provides the best resolution, suggesting that if we are to

speed up the algorithm by allowing a larger maximal allowance for early iterations, it is best to

allow for a larger maximal allowance for many early iterations. We again do not consider setting

(ξ, ϕ) = (1, 1) as this setting is not guaranteed to converge to a solution. Should the user wish to

set (ξ, ϕ) = (1, 1), we suggest considering a maximum number of iterations fewer than the number

of nodes in the network.

No Community Structure

In this section, we investigate each method’s ability to identify background nodes: nodes

which are not preferentially attached to any well-defined community. We generate networks with

no community structure by fixing R = R(0, 0, 0) and letting P = P (b) where b ∈ (0.05, 0.10, . . . , 0.35).

The proportion of nodes assigned to the HCB, p, is meaningless provided the choice of R, so we

fix p = 0.45 as in Figure C.3c. The random networks under this setting are Erdős-Rényi networks

with rate b, so no community structure exists. Equivalently, the set D = ∅. For each b, we produce

twenty replicates.

We compare each method’s ability to identify background. Both ESSC and ECoHeN are

capable of assigning nodes to background; however, since ZCmod, Infomap, and Walktrap are

partitioning methods, they are at an innate disadvantage to identify background nodes. For a

fair comparison, we consider the largest identified community to reflect the background of each

partitioning method. If a trivial partition is assigned (i.e., all nodes are assigned to one community
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or each node is assigned to its own community) then the partition is assumed to identify each node

as a background node. For each replicate, we compute the number of communities found by each

method and the proportion of nodes identified as background nodes. The results are provided in

Figure C.11.

As discussed in “Initialization” subsection of Chapter 4, ECoHeN is initialized at the neigh-

borhood of each node. By nature, the neighborhoods in an Erdős-Rényi network have low conduc-

tance when compared to a random set of nodes. When the extraction procedure is parameterized

to a maximal allowance of one for each iteration (i.e., ξ = 0 and ϕ = 0), the neighborhoods are

updated one node at a time, resulting in a small set of densely connected nodes. Thus, ECoHeN

returns many small communities (see Figure C.11a). As the density of the Erdős-Rényi network

gets larger, the number of communities found by ECoHeN tends to zero and the proportion of

nodes assigned to background approaches one (see Figure C.11c). We demonstrate in the next

subsection that these small communities are indeed particularly dense, at times ten to twenty times

more connected internally than connected to the rest of the network.

To avoid finding communities in a random network, we can parameterize the extraction pro-

cedure such that the maximal allowance is one on the first iteration and tends to one with each

passing iteration by setting the learning rate, ξ = 1, and the decay rate, ϕ < 1. In this case, the

algorithm is guaranteed to converge, and the number of communities found by ECoHeN is negli-

gible for small b and quickly tends to 0 as the b gets larger (see Figure C.11b). In all cases, the

proportion of nodes assigned to background is near one (see Figure C.11d). If one wishes to avoid

finding dense subsets of nodes in an Erdős-Rényi graph, then it suffices to set ξ = 1 regardless

of choice of ϕ. When ξ = 1, a larger choice of ϕ tends to yield slightly better performance at

recovering simulated community structure; however, the impact of ϕ is minimal when ξ = 1.

Investigation of Identified Communities We previously demonstrated that the extraction pro-

cedure parameterized by ξ = 0 and ϕ = 0 provides the best resolution for extracting simulated

heterogeneous and homogeneous communities from background. At the same time, we demon-

strated that such a parameterization results in many small communities in a heterogeneous Erdős-
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Rényi network. Finding communities in an Erdős-Rényi network is not ideal behavior, so we

investigate the characteristics of these identified communities. Considering the heterogeneous and

homogeneous simulations were conducted at a background rate of 0.05, we will be examining the

communities found by ECoHeN when b = 0.05.

In each of twenty replicates, ECoHeN uncovers between 300 and 400 communities (see Fig-

ure C.12). To gauge the assortativity of each identified community, we compute the ratio of densi-

ties for each. In an Erdős-Rényi network, the expected ratio of densities is one, so any set with a

ratio of densities sufficiently greater than one can arguably be called a community.

Each of the communities found by ECoHeN is particularly dense where density scales naturally

with the size of the community (see Figure C.13). The majority of communities found by ECoHeN

are small, and these communities feature a large ratio of densities, sometimes proving twenty times

more dense internally than to the rest of the network. The larger communities found by ECoHeN

tend to have relatively smaller (albeit large) ratio of densities, proving at least five times more

dense internally than to the rest of the network.

To gauge how unlikely it would be to attain the observed ratio of densities, we gather 1000

snowball samples for each community, compute the ratio of densities for each sample, and record

the 95% quantile. Any observed ratio of densities larger than the respective 95% quantile is deemed

sufficiently dense to be considered a community. For computational feasibility, we isolate the

largest community found by ECoHeN at each of the twenty replicates, plotted in Figure C.14 in

relation to the observed ratio of densities. Notice, as the community size increases, the threshold

ratio of densities required decreases as it becomes increasingly unlikely to observe large communi-

ties with a large ratio of densities than a small community with an equally large ratio of densities.

Each of the largest ECoHeN communities is sufficiently dense compared to the respective thresh-

old, indicating that while these communities were attained from an Erdős-Rényi network, they are

still sufficiently dense.

To describe the snowball sampling routine, consider an ECoHeN community of size nC . One

snowball sample is attained by first picking a node uniformly at random and recording its neigh-
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bors. There are nC − 1 nodes left to select. Should there be more neighbors than left to select,

the remaining nodes left to select are chosen from the recorded neighbors uniformly at random.

Otherwise, all of the neighbors are recorded, and the number of nodes left to select is updated ac-

cordingly. The process continues until nC nodes have been selected. Since the snowball sampling

routine results in dense, well-connected sets of nodes, it is a reasonable (albeit computationally

burdensome) null model when assessing community structure in an Erdős-Rényi network.

C.4 Extraction Routines

The “ECoHeN Algorithm” section of Chapter 4 describes the ECoHeN algorithm in depth.

The extraction routines AddWellConnected and RemoveLooselyConnected from Algorithm 4.1

are provided in pseudocode in Algorithm C.1. For the most up-to-date R implementation of

ECoHeN (with a C++ backend), see the following GitHub url: https://github.com/ConGibbs10/

ECoHeN.

166



Algorithm C.1: Pseudocode for the ECoHeN extraction routines AddWellConnected and RemoveLoose-
lyConnected.
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Figure C.4: Each method’s ability to identify the heterogeneous community along with the size of the heterogeneous community. The vertical
interval around the median represents the middle 50%. ECoHeN and ZCmod’s ability to recover the heterogeneous community notably improves as
the within-block, within-type density (i.e., b+ rii) increases and the within-block between-type density (i.e., b+ rij) increases. Each method poorly
recovers the heterogeneous community rii < 0.15. When rii < 0.15, Walktrap generally seems preferable, while ECoHeN and ZCmod perform
similarly in these conditions. When rii ≥ 0.15, ECoHeN performs relatively better than all methods at recovering small heterogeneous communities
(i.e., when p is small), especially for relatively small r12.
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Figure C.5: The within-block, within-type (between-type) densities are provided in the facets (line type). For each
community size, we show the maximum Jaccard for increasing values of r12 which range from 0.025 to r22. ECoHeN’s
ability to identify the heterogeneous community drastically improves for small increases to r12, outperforming each
competing method at recovering small, heterogeneous communities. By comparison, ZCmod struggles to identify
small, heterogeneous communities, performing well as the community size increases.
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Figure C.6: Setting a maximal allowance to one for each iteration with ξ = 0 and φ = 0 provides the best resolution for uncovering the heterogeneous
community at a wide range of simulated conditions. When ξ = 1, a larger φ provides the best resolution, suggesting that if we are to speed up the
algorithm by allowing a larger maximal allowance for early iterations, it is best to allow a larger maximal allowance for many early iterations.
However, the effect is relatively minute for most simulated conditions, suggesting that the choice of φ when ξ = 1 will have minimal impact on the
methods’ ability to recover communities from background.
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Figure C.7: The blue to blue (red to red) community density is provided on the x-axis (y-axis) facets. Each
method’s ability to identify the red community is provided alongside the red community size. As the red to
red density increases, ECoHeN can identify the red community with increasingly better precision, marked
improvements for small, homogeneous communities. There are no such improvements for ZCmod. ESSC
and Walktrap consistently outperform ECoHeN and ZCmod since the between-type density is no larger
than the background. In general, ECoHeN has less power in identifying homogeneous community structure
than ESSC and Walktrap: a tradeoff for the flexibility of finding both homogeneous and heterogeneous
community structure. Notably, the density of blue to blue connections does not impact any method’s ability
to identify the red community.
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Figure C.8: The blue to blue (red to red) community density is provided on the x-axis (y-axis) facets. Each
method’s ability to identify the blue community is provided alongside the blue community size. As the
blue to blue density increases, ECoHeN can identify the blue community with increasingly better precision,
marked improvements for small, homogeneous communities. There are no such improvements for ZCmod.
ESSC and Walktrap consistently outperform ECoHeN and ZCmod since the between-type density is no
larger than the background. In general, ECoHeN has less power in identifying homogeneous community
structure than ESSC and Walktrap: a tradeoff for the flexibility of finding both homogeneous and heteroge-
neous community structure. Notably, the density of red to red connections does not impact any method’s
ability to identify the blue community.
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Figure C.9: The parameter setting (0, 0) provides the best resolution for uncovering the homogeneous
communities. When ξ = 1, a larger φ provides the best resolution, suggesting that if we are to speed up the
algorithm by allowing a larger proportion of the node set to transition into and out of the candidate set, it is
best to allow a large proportion to transition for more iterations.
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Figure C.10: The fundamental conclusions are the same as founded and discussed in Figure C.9 as they
pertain to block type II (blue) nodes.
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(a) (ξ, φ) = (0, 0) (b) (ξ, φ) = (1, 0.99)

(c) (ξ, φ) = (0, 0) (d) (ξ, φ) = (1, 0.99)

Figure C.11: The learning, ξ, and decay, φ, rate control the scale of changes when updating a candidate
set from initialization to convergence. While the parameter setting ξ = 0 and φ = 0 (microscopic changes)
provides the best resolution for uncovering a community amongst background noise, it results in many small
densely connected communities in a random network (see panels (a) and (c)). On the other hand, when ξ = 1
and φ < 1 (macroscopic changes), ECoHeN identifies each node in a random network as background. Early
macroscopic changes allow ECoHeN to break out of the low conductance initializations (see panels (b) and
(d)). A practitioner’s guide to selecting ξ and φ are provided in the “Parameter Choices” subsection of
Chapter 4.
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Figure C.12: When b = 0.05, ECoHeN uncovers between 300 and 400 communities for each of the 20
replicates.

Figure C.13: Each of the communities found by ECoHeN across the 20 replicates is particularly dense.
Small communities necessitate a higher ratio of densities to be deemed a community, sometimes twenty
times more dense internally than to the rest of the network. The larger communities found by ECoHeN tend
to have relatively smaller, albeit still large, ratio of densities, proving to be at least five times more dense
internally than to the rest of the network.
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Figure C.14: The largest communities across the twenty replicates are isolated and plotted with respect to
the observed ratio of densities. To gauge how unlikely it would be to attain the observed ratio of densities,
we gather 1000 snowball samples for each community, compute the ratio of densities for each sample, and
record the 95% quantile. Any observed value larger than the 95% quantile is deemed sufficiently dense
and arguably embodies community structure (even for a random network). Each of the largest ECoHeN
communities maintains a ratio of density that is roughly twice as large as the estimated respective 95%
quantile.

177


	Abstract
	Acknowledgements
	Dedication
	Introduction
	Network Data
	Causal Effect of a Timeout in the NBA
	Identification of Clusters Containing Undiscovered Relations
	Extracting Communities from Heterogeneous Networks

	The Causal Effect of a Timeout at Stopping an Opposing Run in the NBA
	Introduction
	Data and Notation
	Data
	Notation

	Methodology
	Rubin Causal Model
	Treatments and Controls: Defining the Units
	Propensity Score Model
	Matching
	Outcome

	Results
	Sensitivity Analysis
	Discussion

	The Identification of Network Clusters Containing Undiscovered Gene to Phenotype Relations
	Introduction
	Data and Notation
	Biological Ontologies
	Network Construction
	Notation

	Methodology
	ICCUR Toolpack
	ICCUR Pipeline

	Results
	Pipeline Fitting
	Pipeline Validation

	Application to Rare Disease Diagnosis
	Discussion
	Strengths, Limitations, and Future Directions


	ECoHeN: A Hypothesis Testing Framework for Extracting Communities from Heterogeneous Networks
	Introduction
	Heterogeneous Networks
	Methodology
	Heterogeneous Degree Configuration Model
	Defining Significance of Connectivity
	ECoHeN Algorithm
	Parameter Choices

	Simulation Study
	Heterogeneous Community Structure
	Homogeneous Community Structure

	Empirical Study
	Discussion

	Discussion
	Overview
	Snowballed Subgraphs
	Sample Space for Homogeneous Networks
	Extension to Heterogeneous Networks
	Future Work

	Scalability of ECoHeN

	Causal Effect of a Timeout in the NBA
	Characterizing SUTVA
	Sensitivity to Run Definition
	Genetic Matching Algorithm
	Data Preparation and Manipulation
	Propensity Score Model
	Matching Variability
	Treated and Control Franchise Frequency
	Covariate Balance
	Data and Code

	Identification of Clusters Containing Undiscovered Relations
	Clustering Methods
	Pairwise Overlap of Clusters
	Cluster Features

	Extracting Communities from Heterogeneous Networks
	Heterogeneous Degree Configuration Model (HDCM)
	Efficient Generative Process for the HDCM
	Generalization of a Degree Configuration Model

	Proof of Theorems
	Simulation Study
	Heterogeneous Stochastic Block Model
	Evaluation Metrics
	Simulation Study

	Extraction Routines


