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Abstract— Eigendecomposition is a common technique that
is performed on sets of correlated images in a number of
computer vision and robotics applications. Unfortunately,
the computation of an eigendecomposition can become pro-
hibitively expensive when dealing with very high resolution
images. While reducing the resolution of the images will
reduce the computational expense, it is not known a priori how
this will affect the quality of the resulting eigendecomposition.
The work presented here provides an analysis of how different
resolution reduction techniques affect the eigendecomposi-
tion. A computationally efficient algorithm for calculating
the eigendecomposition based on this analysis is proposed.
Examples show that this algorithm performs very well on
arbitrary video sequences.'

I. INTRODUCTION

Eigendecomposition-based techniques play an impor-
tant role in numerous image processing and computer
vision applications. The advantage of these techniques,
also referred to as subspace methods, is that they are
purely appearance based and that they require few online
computations. Variously referred to as eigenspace methods,
singular value decomposition (SVD) methods, principal
component analysis methods, and Karhunun-Loeve trans-
formation methods [1], [2], they have been used extensively
in a variety of applications such as face characteriza-
tion [3], [4] and recognition [5]-[9], lip-reading [10], [11],
object recognition [12]-[15], pose detection [16], [17],
visual tracking [18], [19], and inspection [20]-[23]. All of
these applications are based on taking advantage of the fact
that a set of highly correlated images can be approximately
represented by a small set of eigenimages [24]-[31]. Once
the set of principal eigenimages is determined, online
computation using these eigenimages can be performed
very efficiently. However, the offline calculation required
to determine both the appropriate number of eigenimages
as well as the eigenimages themselves can be prohibitively
expensive.

The resolution of the given correlated images, in terms
of the number of pixels, is one of the factors that greatly
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affects the amount of calculation required to compute
an eigendecomposition. In particular, many common al-
gorithms that compute the complete SVD of a general
matrix require on the order of mn2 flops, where m is
the total number of pixels in a single image and n is
the number of images. Many users of eigendecomposition
techniques would like to use as high a resolution as is
available for the original images in order to maintain as
much information as possible; however, this frequently
results in an impractical computational burden. Thus users
are typically forced to downsample their images to a lower
resolution using a “rule of thumb” or some ad hoc criterion
to obtain a manageable level of computation. The purpose
of the work described here is to provide an analysis of
how different resolution reduction techniques affect the
resulting eigendecomposition. This analysis is then used
to modify the fastest known eigendecomposition algorithm,
proposed by Chang et al. [31], to improve its computational
efficiency without sacrificing the quality of the resulting
eigenimages.

The remainder of this paper is organized as follows.
Section II provides a review of the fundamentals of ap-
plying eigendecomposition to related images. An overview
of Chang’s algorithm is given in Section III, while the
limitation of its computational efficiency, due to working
with the highest resolution, is pointed out in Section IV.
An analysis of a simple example is also provided in
Section IV that explains why downsampling by selecting
random pixels can be more effective than using simple
filtering techniques. This analysis motivated a fast SVD
algorithm, outlined in Section V, to quickly compute the
desired portion of the eigendecomposition based on a user-
specified measure of accuracy. In Section VI, we evaluate
the performance of our algorithm on a set of arbitrary video
sequences. Finally, some concluding remarks are given in
Section VIIL

II. PRELIMINARIES

A grey-scale image is an h x v array of square pixels
with intensity values normalized between 0 and 1. Thus,
an image will be represented by a matrix X € [0, 1)"*".
Because we will be considering sets of related images, the
image vector x of length m = h x v can be obtained
by “row-scanning” an image into a column vector, i.e.,
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x = vec(X7). The image data matrix of a set of images
X4, -+, X, 1s an m X n matrix, denoted X, and defined
as X = [x1---Xy,], where typically m > n. We consider
only the case where n is fixed, as opposed to cases where
X is constantly updated with new images.

The SVD of X is given by

X =vuxvT, (D)

where U € R™*™ and V' € R"*™ are orthogonal, and
¥ = [84 0|7 € RM*" where ¥4 = diag(oy, - - - ,0,) With
0y, > 09 > -+ >0, > 0and 0is an n by m — n
zero matrix. The SVD of X plays a central role in several
important imaging applications such as image compression
and pattern recognition. The columns of U, denoted 1,
i =1,---,m, are referred to as the left singular vectors or
eigenimages of X, while the columns of V, denoted v;, ¢ =
1,--- ,n, are referred to as the right singular vectors of X.
The corresponding singular values measure how “aligned”
the columns of X are with the associated eigenimage.

In practice, the singular vectors G; are not known or
computed exactly, and instead estimates &1, - - - , &, which
form a k-dimensional basis are used. For quantifying the
accuracy of these estimates, one of the measures we will
use is the “energy recovery ratio” [31], denoted p, and
defined as

k N
> i lleF XI5
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p(Xvélv T 7ék) =
where |- || » denotes the Frobenius norm. Another measure
we will use is the degree to which these estimates span the
subspace of the first k* true eigenimages, which will be
referred to as the subspace criterion, -y, given by

1 k  k*
(=P CR N 3)

i=1 j=1

which is 1 if the entire subspace is spanned.

III. CHANG’S EIGENDECOMPOSITION ALGORITHM

As described earlier, calculation of the estimates of the
singular vectors 0y, - -- , U+ of X is a very computation-
ally expensive operation when m and n are very large.
Reducing this computational expense by exploiting any
correlation between image vectors has been the subject of
much previous work [24]-[31]. The algorithm proposed by
Chang et al. [31] is currently the fastest known algorithm
for this purpose. This section provides an overview of
Chang’s algorithm with the following sections discussing
how low-resolution estimates can be used to improve its
computational efficiency without sacrificing the quality of
the resulting eigenimages.

The technique in [31] is motivated by the observation
that the SVD of X can be determined in a closed form
when the images are derived by a planar rotation of a single
image, thus resulting in X7 X being circulant. The real
eigendecomposition of such an X7 X is given by

XTX =HDHT, 4)

where D is an m X n diagonal matrix containing the
eigenvalues of X7 X as its diagonal elements, while H
consists of n eigenvectors of X7 X as its columns and it
is given by

H f—
- \/i[io e, Sf, R, Sh }

1
3 Co —50
1

2 73 C1 —3S1
1
ﬁ Cn—1 —Sn—1

where f; gives the i column of the Fourier matrix Flrsxn)s
¢ = cos(k6), and s = sin(k6). Thus ¥ and V corre-
sponding to an unordered SVD of X can be computed in a
closed form. In particular, the square roots of the diagonal
entries of D are the singular values of X, and V = H.
Finally, U can be calculated using U¥ = XH. This
analysis indicates that for planar transformations, the right
singular vectors of X are pure sinusoids of frequencies that
are multiples of 27 /n radians and the frequencies of the
(ordered) right singular vectors increase linearly with their
index.

Although the above analysis does not hold true for gen-
eral 3-D transformations, the empirical results in [31] show
that for correlated images, their right singular vectors are
approximately spanned by a handful of harmonics that are
dominated by low frequencies. Consequently, by projecting
the row space of X to a smaller subspace spanned by a
few of the harmonics, the computational expense associated
with calculating the SVD can be significantly reduced. This
forms the basis for Chang’s eigendecomposition algorithm.

Specifically, if p is such that the power spectra of the
first k singular vectors are essentially restricted to the band
[0, 27p/n], then it is shown in [31] that the first k& singular
values 01, --- ,0% and the corresponding singular vectors
ﬁl, e ,ﬁk of X H, serve as excellent estimates to those
of X, where H,, denotes the matrix comprising the first p
(p < n) columns of H. It is also shown that when p is
the smallest number such that p(X 7T, ﬁl, cee flp) > pu, the
quantity p(X, ay, - ,ﬁk) will exceed p for some k < p,
thus achieving the user-specified reconstruction ratio, .

In summary, Chang’s algorithm makes use of the fact
that the analytical expressions for the eigendecomposition,
based on the theory of circulant matrices, can serve as a
good approximation to the eigendecomposition of arbitrary
video sequences. The algorithm shows better computational
efficiency, because the SVD is computed on a much smaller
matrix X H)p,, which is formed by reducing X in the
temporal dimension. However, one can still improve this
computational efficiency by operating on lower resolu-
tion images. The appropriate manner of downsampling to
achieve these low-resolution images is the topic of the next
section.
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I'V. EFFECT OF SPATIAL REDUCTION TECHNIQUES

In our recent work [32], a mathematical framework
was provided for quantifying the effect of varying the
resolution of the images on the eigendecomposition that
is computed from those images. Image data matrices at
different resolutions were formed and the corresponding
SVDs were calculated. The analysis showed that the right
singular vectors of correlated images are not appreciably
affected by image resolution. Therefore the SVD of high-
resolution images can be accurately estimated from the
right singular vectors obtained from low-resolution im-
ages. These observations motivated several modifications
to Chang’s algorithm that can improve its computational
efficiency.

One can observe that the first two steps in Chang’s
algorithm, i.e., the calculation of the value p and the
computation of the SVD of X H,, still requires a significant
amount of time, because the algorithm always works with
the full spatial resolution of the images. Hence it is
desirable to reduce the images in the spatial dimension first.
In this section, two different image reduction techniques
are considered: box filtering and random pixel selection.
The effect that these techniques have on the spatial and
the temporal properties of X will be illustrated using a
simple example.”

Consider an m by 2 image data matrix X. Because
the box filtering technique acts like a low pass filter, it
is convenient to represent X as

[Ha|H,6]

[ S ik |30 Ak ] C®
=1 =1

where the m x m orthogonal matrix H has the form (5) and
a, 3 are m x 1 coefficient vectors. The correlation matrix
for X is given by

X =

YTy - (Ho)'Ha (Ho)THB
- | (HB)"Ha (HP)"HB
_ |: Z?il az2 Z:r;l i3 :| (7
Y B >, g

Now consider reducing the image vectors in X using
simple box filtering with the integer reduction factor r.
If the pixels in both the image vectors in X are ordered
so that a pixel in the low-resolution image vectors can
be obtained by box-filtering the consecutive pixels in
the corresponding high-resolution image vectors, then the
resulting low-resolution image data matrix is given by

. T+ A+ T Tiz At F T2
Xb:_ . . s (8)
r : :
+ Tm1 Ta2 T

T4+ - + T2

where d = m — r + 1. For simplicity of presentation,
consider the case where m = 4 that gives the following

2Other image reduction techniques such as nearest neighbor and bicubic
interpolation were also implemented. The performance of these techniques
was comparable to that of box filtering.

high-resolution image data matrix:

o1 +V2as+as B+ V26 + B

Y., — L —V2a3 — oy — V2083 — Ba ©)
2 —V2as +ay — V2B + B
a1 +V2a3— s Bi+V285— B

The box filtered image data matrix is then given by

201 + V25 — V2a3 261 + V282 — V255

X = 200 — V20 +V2as 261 — V262 + V203
(10)
and the corresponding correlation matrix is
xix=y |5 0] (11
where
a = 202 +a3+ ag — 2003,
b = 20pB + azf — a3 — azf + azfs,
c = 267+ 05+ 55— 200 (12)

If we compare (11) with (7), we can observe that the
box filtering eliminates the highest frequency component
altogether and amplifies the DC component by 2. Thus, it
makes the low-frequency components more dominant and
reduces the importance of the high-frequency components.
This changes the spatial and the temporal properties of the
original images resulting in different singular values and
singular vectors for X and Xj.

An alternative method for determining a reduced res-
olution version of an image is to randomly select pixels
from X. Thus, with the reduction factor r, any % rows
from X can be selected to form the low-resolution image
data matrix X,. If we try to reduce Xyo in (9) using
this technique with » = 2, then we obtain any of the
(‘21) = 6 different possible X,’s with equal probability,
ie, P(X,,) = &, fori=1,2,---,6. If we denote each
XTTi X,, by RX;, then the expectation of these correlation
matrices gives

E[RX] =
=1
6
1

= —RX;
=1 6

— 1{ 21?:1 a2 Z%l @if3i
2 Z =1 a;f3; Zi:l 612
1
§X42X42. (13)

Note that the right singular vectors and their relative
importance are the same at both the resolutions (although
the corresponding singular values are halved for X,),
indicating that X, reflects the same properties as X.

The empirical results (refer to Fig. 1) for arbitrary video
sequences also depict a similar behavior for both the reso-
lution reduction techniques. For all the video sequences, the
pp values decrease rapidly even for small reduction factors,
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Video #1 (p = 15) Video #2 (p = 6)

Fig. 1. This figure shows the plots for the first four video sequences used
in this paper. The image data matrices at different resolutions are formed
after reducing the original images from m = 240 X 352 to the lower
resolutions of 120 x 176,60 x 88,30x44,15x22,10x15,8x 12,4 X6,
and 2 x 3. Each subplot title gives the video number and its corresponding
p value (plotted with a horizontal dashed line) at the highest resolution,
where p is the smallest number of frequency harmonics required to get
p > 0.95 in (2). The horizontal axis gives the resolution of low-resolution
images in one dimension, while the plots p, and p; give the p values at
the lower resolutions when the images are reduced using random pixel
selection and box filtering, respectively. For the random pixel selection
approach, the images are reduced for four different times to calculate four
different p values and the maximum p value is assigned to p;.

indicating that box filtering makes the first few frequency
components in the low-resolution images more dominant
than they actually are in the high-resolution images. On
the other hand, the p, values are (almost) always above
the “true” p values for all the video sequences, indicating
that random pixel selection does not significantly alter the
temporal properties of high-resolution image sequences.
(This behavior is quite intuitive as we are working with
the pixels themselves rather than their averages.) The
above analysis motivates a modified version of Chang’s
algorithm, which is the topic of the next section.

V. FAST EIGENDECOMPOSITION ALGORITHM

Our objective is to determine the first k left singular
vectors of X. Using the analysis of the resolution reduction
techniques in the previous section, we now make the
appropriate modifications to Chang’s algorithm to improve
its computational efficiency. Random pixel selection is used
to reduce X in the spatial dimension and then Chang’s
method is used to reduce it further in the temporal dimen-
sion. We first present an overview of our algorithm and
then expand on the details.

1) Generate the Fourier matrix, F(,xn), and its real

counterpart, H,xy) for X(mxn)-

2) Randomly select n pixels from each image in X to

obtain the n x n reduced image data matrix X,,.>

3The same permutation of n pixels is used over all m images, however,
the order of these randomly selected pixels in the reduced images does
not matter.

3) Determine the smallest number p such that

i1 [ X hil[3

p(X;l:vflla"' ’}Al ) =
! X 1%

>, (14)
where p is the user-specified reconstruction ratio.

4) Compute the reduced SVD of (X, Hp)mxp) =
(Un)(nxp)(Sn)(po)(Vn>£>><p)'4

5) Repeat Steps 2 through 4 for three more times and
concatenate all S,,V,I" matrices to form

— Snl an; -
S Vi
A,{sz) = T ’
S“S‘/ng
[ SuaVar, |

where s is the maximum of the four values of p and
P is the sum of all values of p.°

6) Compute the reduced SVD of Aixp)y =
(Us)(sxs)(SS)(SXP)(‘/S),(TPXP)-

7) Compute Z(,xs) = (Hs)mxs)(Us)(sxs) to get an
initial estimate of right singular vectors of X.6

8) Perform Steps 2 and 3. If p > s, perform Step 4
and compute Z"*" = (H,)(V,,). Then compute the
component of Z"°V that is orthogonal to Z using

w=I[I-2Z"22v, for i=1,---,p, (15)

where I is an n x n identity matrix. If ||w]|| > € for
any z?*V, update Z = [Z,W] and s = s + 1, where
€ is some user-specified threshold.
9) Repeat Step 8 until p < s for four consecutive times.
10) Compute E(nxs) = X(mxn)Z(nxs) that gives an
approximate basis for the left singular vectors of X.
11) Find the orthonormal basis for E using the reduced
QR decomposition, i.e., E(y,xs) = E(mXS)R(SXS).
12) Return Efy,x ).
13) Optionally, check if £ < s by finding &1, -, €
such that p(X, &1, ,€x) > u.
We will now explain the above steps in more detail. Steps
2 through 4 compute the p value for X,, and the SVD of
the X, H, matrix. Here we will describe why n pixels are
selected as the resolution of the downsampled version of an
image. Recall that it is always true that p < n (typically
with p < n) for any image data matrix [31], therefore
more than n pixels in each column in the reduced image
data matrix are never needed to preserve the rank of X,
at p. However, if the resolution is selected at a value less
than n, one always runs the risk of artificially reducing the
rank below p.
Once the SVD of X, H), is calculated, (H))(V,) gives
the right singular vectors of X,. These right singular
vectors can be considered as a “good” approximation of

4X,, Hp is readily available after Step 3.

SAll S, V,T matrices should be padded with the appropriate number
of columns of zeros if necessary, so that each of them has s columns.

6 H, consists of the first s columns of H in (5).
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their high-resolution counterparts [32]. However, different
X,’s require different numbers of harmonics to satisfy
the user-specified reconstruction ratio, because the random
pixels used to create a specific X,, may not accurately
represent the temporal properties of the entire X. Hence
Steps 2 through 4 are performed four times to improve the
probability of accurately representing the high-resolution
image data matrix. The number of times to repeat Steps
2 — 4 was empirically determined (on average) to optimize
computational efficiency.’

Step 5 concatenates all S, V,I' matrices to form the
matrix A whose range will approximately span the dom-
inant right singular vectors of X [32]. The SVD of A
is computed in Step 6 to find its range, given by Us.
Thus, (H;)(Us) computed in Step 7 can be considered
as a good initial estimate of the right singular vectors of
X. Note that if V,,’s are used instead of S, V,,’s to form
A, then Step 7 will result in an unordered estimate of the
right singular vectors of X. To obtain an ordered estimate,
the right singular vectors in each V,, are scaled by their
corresponding singular values before being concatenated
in Step 5.

Fig. 1 shows that even after performing Steps 2 and 3
four different times, the maximum p values for Videos 3
and 4 were below the “true” p values. Hence Steps 8 and 9
are performed to check if there is any new information
available in additional samplings of X. If the new infor-
mation in any z}°V is above a threshold, the Z matrix
is updated. When no columns are added to the Z matrix
for four consecutive times, the algorithm assumes that the
final Z matrix provides a “good” basis for the right singular
vectors of X.% In short, Steps 2 through 9 are performed
to find the approximate right singular vectors of X.

Step 10 computes the approximate basis for the left
singular vectors of X, while Step 11 computes the corre-
sponding orthonormal basis using the QR decomposition.
Step 13 optionally computes the minimum subspace that
will satisfy the user-specified reconstruction ratio.

We now briefly analyze the computational expense of
our algorithm. The cost incurred in Step 2, i.e., constructing
X,, from X requires O(n?) flops, while the estimation of
the smallest number p in Step 3 requires O(n?p) flops.
In Step 4, the cost of computing the SVD of the n x p
matrix X, H,, requires O(np?) flops. Step 5 performs Steps
2 through 4 four times requiring O (n?)+0(n?p)+0(np?)
flops. In Step 6, the cost of computing the SVD of the
s x P matrix A requires O(sP?) flops, while finding
the initial estimate of the right singular vectors of X in
Step 7 requires O(ns?) flops. Steps 8 and 9 that check
if any new information should be added to Z requires
O(n?) + O(n*p) + O(np?) flops and is repeated an un-
known, but typically small, number of times. In Step 10,
multiplication of X with Z requires O(ms?) flops and the

7Using more than four iterations may be unnecessary and using fewer
than four may require more iterations of the more computationally
expensive Step 8.

8The value four was empirically determined to make it highly unlikely
that the number of columns in Z is far from the true value of p.

QR decomposition of E in Step 11 requires O(2ms*—2s%)

flops. Finally, determination of the minimum dimension &
in Step 13 requires O(mnk) flops. If s < n < m, then
the total computation required is O(2ms* — 2s%), which
is the cost of the QR decomposition.

VI. EXPERIMENTAL RESULTS

We consider the problem of computing the eigende-
composition of images representing successive frames of
arbitrary video sequences. Specifically, we consider eight
video sequences that are used in [31], i.e., 5, 6, 7, 17,
9, 8, 15, and 20 (referred to here as videos 1 through 8,
respectively). Images in the first four sequences and the last
four sequences have resolution of 240 x 352 and 240 x 320,
respectively.

Our algorithm was used to calculate the partial SVD of
X for each set, with ;x = 0.95 and € = 1075. Table I
shows a breakdown of the average time required for the
different steps in the proposed algorithm. It shows that the
first ten steps do not take much time as compared to Step
11 that computes the orthonormal basis for £ using QR
decomposition. The table also shows that the calculation
of the first k& eigenimages in Step 13 requires a significant
amount of time. Thus a user may prefer to stop after Step
12 and simply use all s eigenimages. The total time for
Steps 1 — 12 is given in the column labelled “part”. If
one indeed needs to know the minimum subspace, then
the total time required for our algorithm is given in the
“Total” column.

The proposed algorithm was run ten different times for
each video sequence and the mean values for k, “Time”,
s, and « were calculated. (Mean values for s and k values
were rounded to the nearest integer.) Table II summarizes
the performance of the algorithm, showing k*, k, p, s, 7,
and the computation times.® Compared to the direct SVD,
the speedup factors with our algorithm are in the range of
2.99 —148.14, depending on the value of s. The difference
between p(X, 0y, -+ ,Gx+) and p(X, éy,--- , &) for each
set was less than 0.13%, with an average of 0.07%, which
reveals that {é;,---,é;} provides a very good approxi-
mate basis for the first £* eigenimages {11, , Uy~ }.

VII. CONCLUSION

We have explained how different image resolution reduc-
tion techniques affect the eigendecomposition computed
using those images and have shown that downsampling
using randomly selected pixels is more effective than
simple filtering techniques. Using the low-resolution prop-
erties of correlated images, we have been able to improve
the fastest known eigenspace decomposition algorithm to
obtain a more computationally efficient algorithm. The
proposed algorithm enjoys the advantage of making use of
the similarity within the images as well as the similarity
between the images. Examples show that the algorithm
performs very well even on arbitrary video sequences.

Note that there is only one column for % in Table II as these values
remain the same for both the proposed algorithm and Chang’s algorithm.
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TABLE I
TIME REQUIRED FOR THE PROPOSED ALGORITHM
(ALL TIMES ARE IN SECONDS)

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

Time required for different steps
Video 2—-5 6 — 10 11 Part 13 Total
1 0.07 0.75 1.34 2.16 4.18 6.35
2 0.05 0.46 0.21 0.72 1.48 2.20
3 0.32 2.53 | 18.40 | 21.25 | 16.96 | 38.21
4 0.32 242 | 17.36 | 20.10 | 1594 | 36.04
5 0.05 0.45 0.32 0.82 1.39 2.21
6 0.04 0.32 0.04 0.40 0.68 1.08
7 0.06 0.56 0.66 1.28 2.87 4.15
8 0.05 0.40 0.20 0.65 1.63 2.28
TABLE II
COMPARISON OF DIFFERENT ALGORITHMS
(ALL TIMES ARE IN SECONDS)
Proposed Chang Direct
Video k | Time s o Time p o Time | k*
1 15 2.1 | 17 | 099 | 157 | 15 | 098 | 67.3 15
2 4 0.8 7 | 1.00 | 12.8 6 | 1.00 | 67.3 4
3 66 | 21.8 | 70 | 0.96 | 743 | 68 | 095 | 67.3 | 63
4 63 | 225 | 71 | 094 | 657 | 65 | 092 | 67.3 | 60
5 4 0.8 71095 | 126 6 | 090 | 622 4
6 1 0.4 2| 1.00 | 11.9 2 | 1.00 | 62.2 1
7 10 1.3 112 1099 | 13.7 | 11 | 099 | 62.2 9
8 5 0.8 8 | 098 | 12.6 71 098 | 622 5
REFERENCES
[11 K. Fukunaga, Introduction to Statistical Pattern Recognition. Lon-

[2]

[6]

[7]

[9]

[10]

[11]

don: Academic Press, 1990.

A. M. Martinez and A. C. Kak, “PCA versus LDA,” IEEE Trans.
Pattern Analysis and Machine Intelligence, vol. 23, no. 2, pp. 228—
233, Feb. 2001.

L. Sirovich and M. Kirby, “Low-dimensional procedure for the
characterization of human faces,” J. Opt. Soc. Amer., vol. 4, no. 3,
pp. 519-524, March 1987.

M. Kirby and L. Sirovich, “Application of the Karhunen-Loeve
procedure for the characterization of human faces,” IEEE Trans.
Pattern Analysis and Machine Intelligence, vol. 12, no. 1, pp. 103—
108, Jan. 1990.

M. Turk and A. Pentland, “Eigenfaces for recognition,” J. Cogn.
Neurosci., vol. 3, no. 1, pp. 71-86, March 1991.

P. N. Belhumeur, J. P. Hespanha, and D. J. Kriegman, “Eigenfaces
vs. fisherfaces: Recognition using class specific linear projection,”
IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 19,
no. 7, pp. 711-720, July 1997.

R. Brunelli and T. Poggio, “Face recognition: Features versus
templates,” IEEE Trans. Pattern Analysis and Machine Intelligence,
vol. 15, no. 10, pp. 1042-1052, Oct. 1993.

A. Pentland, B. Moghaddam, and T. Starner, “View-based and
modular eigenspaces for face recognition,” in Proc. IEEE Comp.
Soc. Conf. on Computer Vision and Pattern Recognition, Seattle,
WA, USA, Jun 21-23 1994, pp. 84-91.

M. H. Yang, D. J. Kriegman, and N. Ahuja, “Detecting faces in
images: A survey,” IEEE Trans. Pattern Analysis and Machine
Intelligence, vol. 24, no. 1, pp. 34-58, Jan. 2002.

H. Murase and R. Sakai, “Moving object recognition in eigenspace
representation: Gait analysis and lip reading,” Pattern Recognit.
Lett., vol. 17, no. 2, pp. 155-162, Feb. 1996.

G. Chiou and J. N. Hwang, “Lipreading from color video,” IEEE
Trans. Image Processing, vol. 6, no. 8, pp. 1192-1195, Aug. 1997.

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

[32]

2712

H. Murase and S. K. Nayar, “Illumination planning for object
recognition using parametric eigenspaces,” IEEE Trans. Pattern
Analysis and Machine Intelligence, vol. 16, no. 12, pp. 1219-1227,
Dec. 1994.

C. Y. Huang, O. I. Camps, and T. Kanungo, “Object recognition
using appearance-based parts and relations,” in Proc. IEEE Comp.
Soc. Conf. on Computer Vision and Pattern Recognition, San Juan,
PR, USA, Jun 17-19 1997, pp. 877-883.

R. J. Campbell and P. J. Flynn, “Eigenshapes for 3D object recog-
nition in range data,” in Proc. IEEE Comp. Soc. Conf. on Computer
Vision and Pattern Recognition, Fort Collins, CO, USA, June 23-25
1999, pp. 505-510.

M. Jogan and A. Leonardis, “Robust localization using eigenspace
of spinning-images,” in Proc. IEEE Workshop on Omnidirectional
Vision, Hilton Head Island, South Carolina, USA, June 2000, pp.
37-44.

S. Yoshimura and T. Kanade, “Fast template matching based on
the normalized correlation by using multiresolution eigenimages,”
in 1994 IEEE Workshop on Motion of Non-Rigid and Articulated
Objects, Austin, Texas, Nov. 11-12 1994, pp. 83-88.

J. Winkeler, B. S. Manjunath, and S. Chandrasekaran, “Subset
selection for active object recognition,” in Proc. IEEE Comp. Soc.
Conf. on Computer Vision and Pattern Recognition, Fort Collins,
Colorado, USA, June 23-25 1999, pp. 511-516.

S. K. Nayar, H. Murase, and S. A. Nene, “Learning, positioning,
and tracking visual appearance,” in Proc. IEEE Int. Conf. on Robot.
Automat., San Diego, CA, USA, May 8-13 1994, pp. 3237-3246.
M. J. Black and A. D. Jepson, “Eigentracking: Robust matching and
tracking of articulated objects using a view-based representation,”
Int. J. Computer Vision, vol. 26, no. 1, pp. 63-84, 1998.

H. Murase and S. K. Nayar, “Visual learning and recognition of 3-D
objects from appearance,” Int. J. Computer Vision, vol. 14, no. 1,
pp. 5-24, Jan. 1995.

H. Murase and S. K. Nayar, “Detection of 3D objects in clut-
tered scenes using hierarchical eigenspace,” Pattern Recognit. Lett.,
vol. 18, no. 4, pp. 375-384, April 1997.

S. K. Nayar, S. A. Nene, and H. Murase, “Subspace method for robot
vision,” IEEE Trans. Robot. Automat., vol. 12, no. 5, pp. 750-758,
Oct. 1996.

B. Moghaddam and A. Pentland, “Probabilistic visual learning for
object representation,” IEEE Trans. Pattern Analysis and Machine
Intelligence, vol. 19, no. 7, pp. 696710, July 1997.

H. Murase and M. Lindenbaum, “Partial eigenvalue decomposition
of large images using the spatial temporal adaptive method,” IEEE
Trans. Image Processing, vol. 4, no. 5, pp. 620-629, May 1995.
R. Haimi-Cohen and A. Cohen, “Gradient-type algorithms for partial
singular value decomposition,” IEEE Trans. Pattern Analysis and
Machine Intelligence, vol. 9, no. 1, pp. 137-142, Jan. 1987.

X. Yang, T. K. Sarkar, and E. Arvas, “A survey of conjugate gradient
algorithms for solution of extreme eigen-problems for a symmetric
matrix,” IEEE Trans. Acoustics, Speech, and Signal Processing,
vol. 37, no. 10, pp. 1550-1556, Oct. 1989.

C. R. Vogel and J. G. Wade, “Iterative SVD-based methods for ill-
posed problems,” SIAM J. Sci. Comput., vol. 15, no. 3, pp. 736-754,
May 1994.

S. Shlien, “A method for computing the partial singular value
decomposition,” IEEE Trans. Pattern Analysis and Machine Intelli-
gence, vol. 4, no. 6, pp. 671-676, Nov. 1982.

H. Murakami and V. Kumar, “Efficient calculation of primary
images from a set of images,” IEEE Trans. Pattern Analysis and
Machine Intelligence, vol. 4, no. 5, pp. 511-515, Sept. 1982.

S. Chandrasekaran, B. Manjunath, Y. Wang, J. Winkeler, and
H. Zhang, “An eigenspace update algorithm for image analysis,”
CVGIP: Graphic Models and Image Processing, vol. 59, no. 5, pp.
321-332, Sept. 1997.

C. Y. Chang, A. A. Maciejewski, and V. Balakrishnan, “Fast
eigenspace decomposition of correlated images,” IEEE Trans. Image
Processing, vol. 9, no. 11, pp. 1937-1949, Nov. 2000.

K. Saitwal, A. A. Maciejewski, and R. G. Roberts, “Analysis
of eigendecomposition for sets of correlated images at different
resolutions,” in Proc. IEEE Int. Conf. on Robot. Automat., New
Orleans, LA, USA, Apr. 26-May 1 2004, pp. 1393-1398.



	Previous Document
	Print
	Search this CD-ROM
	-----------------------------------

	TL1: 
	0: 
	17550014161378463: Proceedings of 2004 IEEE/RSJ International Conference on


	TL2: 
	0: 
	6176194184298247: Intelligent Robots and Systems


	TL3: 
	0: 
	5102832198526808: September 28 - October 2, 2004, Sendai, Japan


	FileNameBL: 
	0: 
	21797936178647687: 


	IROS04PageNumber: 
	0: 
	8990363143002864: 2707
	27571367622494175: 2708
	6964520506107152: 2709
	3527503079100422: 2710
	6090864251699556: 2711
	03697636213328981: 2712




