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ABSTRACT 

 

 

 

THE EFFECTS OF TEMPERATURE-ELEVATION GRADIENTS ON SNOWMELT IN A 

HIGH-ELEVATION WATERSHED 

 

 

 

 The majority of snowmelt in the western U.S. occurs at high elevation where 

hydrometeorological measurements needed for monitoring snowpack processes are often in 

complex terrain. Data are often extrapolated based on point measurements at lower elevation 

stations and the elevation to be modeled. In this study, we compute near-surface air temperature-

elevation gradients and dew point temperature-elevation gradients (TEG and DTEG, 

respectively) and compare values to widely accepted rates (e.g., environmental lapse rate). 

Further, the implications on snowmelt modeling of TEG and DTEG versus accepted 

temperature-elevation gradients are quantified using two index snowmelt models, 1) temperature 

and 2) temperature and radiation. TEG and DTEG were found to be highly variable and during 

nighttime often influenced by cold air drainage. Several modeling scenarios were applied that 

manipulated air temperature and dew point temperature, via incoming longwave radiation. When 

compared to the control scenario, these scenarios ranged in snow-all-gone date by -1 to +6 days. 

The model utilizing observed air temperature and an estimated DTEG performed most similarly 

to the control scenario. Thus, the estimated DTEG is adequate for index snowmelt models used 

in similar domains; however, further investigation should be done prior to applying the 

environmental lapse rate or other estimated TEG values.  
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CHAPTER 1. INTRODUCTION 
 
 

 
1.1 Background 

Accurately estimating water availability in a snowpack is critical for water managers since 

the western US water supply depends on snow accumulation and ablation (Pagano et al., 2004). 

Primary drivers for the accumulation of snow are cold air temperature for precipitation to fall as 

snow and persistence of colder than freezing temperatures to maintain the snowpack (Sospedra-

Alfonso et al., 2015). Conversely, snowmelt is primarily driven by incoming shortwave and 

longwave radiation in mid-latitudes (Sicart et al., 2006). The spatial distribution of snow water 

equivalent or SWE (liquid water in a snowpack) has a substantial impact on snowmelt runoff 

magnitude in the Western US, making estimates of SWE key in forecasting water supply 

(Sexstone & Fassnacht, 2014). For much of the western US, water supply forecasts are made 

through regressions between historical runoff volumes, SWE measured at SNOTEL stations and 

snow courses (Church, 1933; Pagano et al., 2004; Schneider & Molotch, 2016). However, an 

issue in snow hydrology is that data are collected at different scales than are needed for 

forecasting (Blöschl, 1999). In the mountains, the majority of snowmelt occurs at high elevation 

where there are few hydrometeorological measurements to fully understand snowpack processes 

(Rolland, 2003). In addition to understanding the spatial variability of snow, melt rates and 

timing are required to accurately estimate snowmelt runoff characteristics, including the onset of 

melt and peak melt. Often these are estimated using snowmelt models (e.g., Follum et al., 2015, 

2019; Hock, 1999; Kampf & Richer, 2014; Webb et al., 2017; Zhang et al., 2015). 

Generally, snowmelt models fall into two categories: physically-based energy balance 

models, and empirical temperature index models (Hock, 2003). Often snowmelt modeling uses 
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the temperature index method due to its satisfactory performance and the wide availability of air 

temperature data, despite its computational simplicity (Hock, 2003). Such models are valuable to 

simulate snowmelt since temperature and precipitation are the only forcing variables (Follum et 

al., 2015). These models are based on an assumed relation between snowmelt and air 

temperature: 

M=MFi(Ta-Toi)                                                                                                (Equation 1-1), 

where M represents the melt water per unit time, MFi is a melt factor in melt degree per unit 

time, Ta is the air temperature over a specific time, and Toi is the temperature at which melting is 

initiated. The melt factor, often considered as a function of time (Fassnacht et al., 2017), 

generally increases as solar radiation and elevation increase while sensible heat flux and albedo 

decrease (Hock, 2003). In temperature index models, air temperature is used as an index of the 

energy exchange between the snow surface and air (Anderson, 2006). However, air temperature 

is most directly correlated with longwave radiation (Ohmura, 2001), which represents only one 

component of the radiation budget. Additionally, temperature index models generally do not 

account for slope and aspect (Follum et al., 2015). 

Studies have added radiation components to temperature index models to account for 

energy processes (Brubaker et al., 1996; Cazorzi & Dalla Fontana, 1996; Dunn & Colohan, 

1999; Follum et al., 2015; Hamlin et al., 1998; Hock, 1999; Rango & Martinec, 1996). Hamlin 

(1998) sums Equation 1-1 with net radiation multiplied by a radiation melt factor (MFHi):  

M=MFTi(Ta-Toi)+MFHi(HK*+HL*)                 (Equation 1-2), 

where HK
* is the net shortwave radiation and HL

* is the net longwave radiation. When net 

radiation is added, the melt factor for air temperature becomes solely based on a temperature 
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melt factor (Hamlin et al., 1998). The added radiation components in the temperature index 

model yield more accurate snowmelt outputs (Follum et al., 2015, 2019; Hamlin et al., 1998; 

Kustas et al., 1994). In a case study of a small watershed in southern Colorado, the temperature 

index model with radiation provided better snow cover area estimates than the temperature index 

model in 75% of Landsat5 images (Follum et al., 2015). Additionally, another study found that 

the temperature index model with radiation generally improved the snowmelt estimates when 

compared to the index model using solely air temperature. Moreover, runoff was generated using 

snowmelt computations from both models and the temperature index model with radiation 

produced better results when compared to lysimeter data (Kustas et al., 1994).  

Due to a lack of spatial measurements in a basin, near-surface air temperature, an essential 

meteorological variable in hydrologic modeling and critical in understanding mountain 

processes, is often extrapolated based on point measurements and elevation (Blandford et al., 

2008; Collados-Lara et al., 2021; Harlow et al., 2004; Immerezeel et al., 2014; Lundquist & 

Cayan, 2007; Lute & Abatzoglou, 2020; Navarro-Serrano et al., 2018; Rolland, 2003; Shen et al., 

2016). Such extrapolated near-surface air temperatures are commonly applied in hydrologic 

models (Garcia et al., 2013; Immerezeel et al., 2014; Kampf & Richer, 2014; Kulshrestha et al., 

2018; Minder et al., 2010; Misra et al., 2020; Wang et al., 2016; Zhang et al., 2015). Generally, 

the change of temperature with elevation in the free atmosphere, the environmental lapse rate 

(ELR), averages about -6.5 °C/km  (Barry & Chorley, 1987). In practice, the change in near-

surface air temperature-elevation gradient (TEG) is assumed to equal the environmental lapse 

rate. As indicated by the negative sign of the ELR, temperature typically decrease with 

increasing elevation. However, in some domains there can be increases of temperature with 

increased elevation, due to cold air drainage or pooling (Collados-Lara et al., 2021; Navarro-
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Serrano et al., 2018). Cold air pooling is a stagnant layer of air that is colder than the air above it 

and often are diurnal and form during the evening or night and decay in the early morning. The 

cold air drainage or pooling are common features of mountainous topography (Whiteman et al., 

2001). Additionally, the TEG varies temporally (seasonally and diurnally) and geographically 

(Blandford et al., 2008; Collados-Lara et al., 2021; Lundquist & Cayan, 2007; Lute & 

Abatzoglou, 2020; Navarro-Serrano et al., 2018; Rolland, 2003; Shen et al., 2016). Although 

there is a general understanding of TEG and the governing processes (e.g., radiative processes 

and atmospheric dynamics), estimating and applying to hydrologic modeling remains difficult. 

Dew point temperature or relative humidity (RH) is critical when modeling energy and 

water balances, since it represents atmospheric moisture. The temperature at which the air will be 

saturated is the dew point temperature, i.e., when the air temperature equals the dew point 

temperature, the air is saturated (Feld et al., 2013). Incoming longwave radiation and latent heat 

flux are influenced by dew point temperature (Ruckstuhl et al., 2007). Air temperature and water 

vapor are often used to estimate incoming longwave radiation (Flerchinger et al., 2009). Greater 

dew point temperatures increase incoming longwave radiation since water vapor increases the 

atmospheric emissivity. When there is a small difference between air temperature and dew point 

temperature (i.e., vapor pressure deficit), there is less evaporation or sublimation occurring, 

which results in less latent heat exchange, i.e., less surface cooling (Feld et al., 2013). Despite 

the importance, atmospheric moisture, often represented as dew point temperature, is sparsely 

measured at high elevations with complex terrain. Similar to TEG, often only one point 

measurement is available and dew point temperatures are extrapolated from that measurement 

(Kunkel, 1989). Additionally, dew point temperature generally shows a decrease with elevation 
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(Feld et al., 2013). Other dew point temperature estimation methods include assuming it is equal 

to minimum daily temperature (Running and Ramakrishna, 1987).  

1.2 Previous Work 

Since air temperature is a required forcing variable in snowpack and hydrological 

models, determining an accurate TEG is essential. Several studies across different regimes have 

assessed the most accurate way to estimate TEG and compared the observed value to the ELR 

(Blandford et al., 2008; Collados-Lara et al., 2021; Immerezeel et al., 2014; Lundquist & Cayan, 

2007; Minder et al., 2010; Shen et al., 2016). Harlow et al. (2004) indicated the ELR was 

applicable to a study area in south-eastern Arizona, but this region does not have topographic 

effects seen in TEG in mountainous regions where the ELR may not be suitable (Blandford et al., 

2008; Collados-Lara et al., 2021; Lundquist & Cayan, 2007; Minder et al., 2010). Over a 10,000 

km2 area in south-central Idaho, the ELR grossly overestimated minimum and average 

temperatures and a monthly TEG, computed from synoptic weather type, was the most accurate 

(Blandford et al., 2008). Several other studies report that the TEG value should be used 

seasonally (summer TEG are greatest) or monthly, rather than annually (Immerezeel et al., 2014; 

Kulshrestha et al., 2018; Navarro-Serrano et al., 2018). Lute & Abatzoglou (2020) have found 

that using less than 5 temperature sensors can produce TEG error of several degrees Celsius per 

kilometer (°C/km). Observed TEG have been computed for various sized domains ranging from 

the hillslope scale (Collados-Lara et al., 2021) to the country of Spain (Navarro-Serrano et al., 

2018). Collados-Lara et al. (2021) compared TEG of different spatial scales and reported that 

micro-scale analyses is necessary for validation of climatic products in mountains regions since 

the coarse-scale TEG did not show inversions or follow the ELR. 
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Multiple studies have focused on the impacts of changing the TEG values and the 

importance it has to the sensitivity and accuracy in the model (Garcia et al., 2013; Gardner & 

Sharp, 2009; Immerzeel et al., 2014; Kampf & Richer, 2014; Li & Williams, 2008; Martinec & 

Rango, 1986; Minder et al., 2010; Richard & Gratton, 2001; Tercek et al., 2021; Wang et al., 

2016; Zhang et al., 2015), such studies have ranged in basin size from 64 km2 to over 100,000 

km2 (Garcia et al., 2013; Wang et al., 2016). The TEG used in various models have been 

estimated using observed temperatures based on linear regression (Garcia et al., 2013; Immerzeel 

et al., 2014; Kampf & Richer, 2014; Minder et al., 2010; Richard & Gratton, 2001; Zhang et al., 

2015), PRISM datasets (Garcia et al., 2013; Minder et al., 2010), Theissen weighted polygons of 

observed temperatures (Richard & Gratton, 2001), predetermined TEG using monthly variations 

for the Northern Hemisphere (Liston & Elder, 2006), and operational high resolution numerical 

weather prediction model simulations (Minder et al., 2010). A study in the Oregon Cascade 

Range indicated the snowmelt was most delayed when the ELR was used compared to weather 

stations and temperature modeled from the PRISM dataset (Garcia et al., 2013). Minder et al. 

(2010) found that using 200 m elevation zones in the Washington Cascades, the snowmelt 

shifted a full month earlier when the TEG was changed from -6.5 ºC/km to -4.0 °C/km. 

Additional studies have shown that the sensitivity to the TEG used can show a 15 to 62% 

difference in simulated discharge (Wang et al., 2016; Zhang et al., 2015). 

Similar to TEG, dew point temperature-elevation gradients (DTEG) are a rate of change 

in dew point temperature with elevation. Studies have estimated the DTEG using extrapolation 

from a point measurement, PRISM, an empirical relationship between air temperature and dew 

point temperature, mesoscale atmospheric models, a constant RH across a basin, and free-air 

observations (Cramer, 1961; Franklin, 1983; Kimball et al., 1997; Kunkel, 1989; Running & 
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Ramakrishna, 1987; Wigmosta et al., 1994). DTEG values determined from extrapolation of a 

point measurement have ranged from -1.25 (Cramer, 1961; Franklin, 1983) to -5.8 ºC/km 

(Kunkel, 1989). Kunkel (1989) use monthly DTEG by varying the vapor pressure coefficient, 

which are estimates from radiosonde data for several stations averaged by month. Franklin 

(1989) and Cramer (1961) assume a constant DTEG. Running et al. (1983) assume dew point 

temperature to be equal to the minimum daily air temperature. Whereas, Kimball et al. (1997) 

incorporates the minimum and maximum daily air temperature, and the ratio of PET to annual 

precipitation. Feld et al. (2013) includes all of the above dew point temperature methods and 

compares the values with elevation changes to observed. It was found that the WRF model 

produced the best results when compared to observed values (Feld et al., 2013).  

While several studies have examined techniques to estimate DTEG, few studies have 

applied these techniques to quantify the hydrological impacts. Feld et al. (2013) utilized 

temperature (applying the ELR) and RH (assumed constant) to determine the dew point 

temperature. To understand the implications of using different dew point temperature 

estimations, Feld et al. (2013) added scenarios of ± 2 ºC to the base dew point temperature over a 

7-year period. With these scenarios, Feld et al. (2013) found an average of ± 2 W/m2 incoming 

longwave radiation and ± 3 days in snow-all-gone. Notably, dew point temperature estimation 

errors increased during the summer when evapotranspiration (ET) was at its largest. Therefore, 

properly estimating dew point temperature or DTEG is essential for basins where ET is an 

important driver (Feld et al., 2013).  

1.3 Research Motivation 

There have been studies located within the Cache la Poudre basin that have focused on 

TEG (Collados-Lara et al., 2021; Kampf & Richer, 2014). While Collados-Lara et al. (2021) 
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focused on fine-scale temperature measurements (i.e., 50-m spacing, the data were not applied to 

modeling due to the limited temporally extent. DTEG has not been studied in Cache la Poudre 

basin. Using techniques and background information from previous local studies, we focused on 

a finer spatial scale (i.e., sensors located every 50 m of elevation increase) and the impacts of 

TEG and DTEG on snowmelt modeling over an 8.8 km2 watershed. Further, this study is located 

nearby the Cameron Peak Fire, which burned over 200,000 acres and is the largest fire in 

Colorado history (< https://source.colostate.edu/csu-team-lands-nsf-award-to-study-streams-

snowpack-in-cameron-peak-fire-area/>, accessed September 5, 2021). Understanding TEG and 

DTEG in subalpine to alpine environments within the Cache la Poudre can contribute to the 

extensive research that is being completed to understand wildfire impacts, specifically in 

persistent snow zones. 

Since snowmelt, ecological, and hydrological modeling efforts use TEG and DTEG to 

estimate forcing data (temperature and RH) from station data across an area with variation in 

elevation, this study evaluates the significance of TEG and DTEG for a small snow-dominated 

watershed that is located within alpine and subalpine environments. This research examines the 

impact of using observed TEG and DTEG versus published values to model snowmelt at high 

elevation watershed. Furthermore, as the climate changes, understanding TEG and its importance 

to snowmelt timing is essential for water resource managers. This study provides insight to 

researchers and managers on whether utilizing the published TEG or DTEG is appropriate for 

estimating runoff in headwater environments. 
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CHAPTER 2. RESEARCH INVESTIGATION 
 
 
 

2.1 Introduction 

Across the western US, water supply forecasts are made through regressions between 

historical runoff volumes or SWE measured at snow course and SNOTEL stations (Pagano et al., 

2004; Schneider & Molotch, 2016). However, data (e.g., air temperature, dew point temperature, 

relative humidity, snow depth, SWE, etc.) are often collected at different scales than those 

needed for forecasting (Blöschl, 1999). In mountainous regions, a majority of snowmelt occurs at 

high elevation where there are few hydrometeorological measurements to monitor snowpack 

processes (Minder et al., 2010). Due to this lack of hydrometeorological measurements, data  

(i.e., air temperature and dew point temperature) are often extrapolated based on points 

measurements and elevation (Blandford et al., 2008; Collados-Lara et al., 2021; Harlow et al., 

2004; Immerezeel et al., 2014; Lundquist & Cayan, 2007; Lute & Abatzoglou, 2020; Navarro-

Serrano et al., 2018; Rolland, 2003; Shen et al., 2016). Such extrapolated near-surface air 

temperatures are commonly applied in hydrologic models (Garcia et al., 2013; Immerezeel et al., 

2014; Kampf & Richer, 2014; Kulshrestha et al., 2018; Minder et al., 2010; Misra et al., 2020; 

Wang et al., 2016; Zhang et al., 2015).  

Generally, the change of temperature with elevation in the free atmosphere, known as the 

environmental lapse rate (ELR), averages about -6.5 ºC/km (Barry & Chorley, 1987). In practice, 

the ELR is used to represent the change in near-surface temperature-elevation gradient (TEG). 

As indicated by the negative sign of the ELR, temperatures typically decrease with increasing 

elevation. However, in some time periods and locations temperature increases with elevation, 

due to cold air drainage and pooling (Collados-Lara et al., 2021; Follum et al., 2015; Lundquist 
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& Cayan, 2007; Navarro-Serrano et al., 2018; Rolland, 2003).  Additionally, the air temperature-

elevation gradient varies temporally (seasonally and diurnally) and geographically (Blandford et 

al., 2008; Collados-Lara et al., 2021; Lundquist & Cayan, 2007; Lute & Abatzoglou, 2020; 

Navarro-Serrano et al., 2018; Rolland, 2003; Shen et al., 2016). Although there is a general 

understanding of TEG and the governing processes (e.g., radiative processes and atmospheric 

dynamics), estimating and applying to hydrologic, meteorological, snowpack modeling remains 

difficult due to microscale temperature variability. 

Dew point temperatures represent atmospheric moisture content and are essential for 

modeling the water balances and partially energy balances. Dew point temperature, which is a 

surrogate for vapor pressure, influences both incoming longwave radiation and latent heat flux 

(Ruckstuhl et al., 2007). Incoming longwave radiation is a function of air temperature, water 

vapor (Flerchinger et al., 2009), cloud cover, and other atmospheric conditions. Higher dew point 

temperatures increase incoming longwave radiation since water vapor raises the emissivity of the 

atmosphere (Rangwala et al., 2010). Additionally, a smaller difference between air and dew 

point temperature results in reduced evaporation or sublimation. Despite its importance to the 

water cycle, atmospheric moisture is seldom measured (Feld et al., 2013). Similar to air 

temperature, extrapolation from lower elevations is often used to estimate dew point 

temperatures (Feld et al., 2013). Additionally, the gradients are generally negative, meaning a 

decrease in dew point temperature as elevation increases. Kunkel (1989) estimated the dew point 

temperature-elevation gradient (DTEG) to be an average of -5.1 ºC/km over the months of May 

and June.  

Due to its computational simplicity, snowmelt modeling often uses a temperature index 

method due to its satisfactory performance and the wide availability of air temperature data 
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(Hock, 2003; Ohmura, 2001). Such models are valuable to simulate snowmelt since temperature 

and precipitation are the only forcing variables (Hock, 2003). Studies have added radiation 

components to temperature-index models to account for energy processes that are typically 

dominant controls on snowmelt rates, especially in mid-latitudes (Brubaker et al., 1996; Cazorzi 

& Dalla Fontana, 1996; Dunn & Colohan, 1999; Follum et al., 2015; Hamlin et al., 1998; Hock, 

1999; Rango & Martinec, 1996). The addition of radiation components into the temperature 

index model can yield more accurate snowmelt outputs mostly due to the increase in net 

shortwave radiation as the melt season progresses (Follum et al., 2015, 2019; Hamlin et al., 

1998; Kustas et al., 1994).  

Studies have explored the impacts of variable TEG and DTEG, and their sensitivity in 

modeling (Feld et al., 2013; Garcia et al., 2013; Gardner & Sharp, 2009; Immerzeel et al., 2014; 

Kampf & Richer, 2014; Li & Williams, 2008; Martinec & Rango, 1986; Minder et al., 2010; 

Richard & Gratton, 2001; Tercek et al., 2021; Wang et al., 2016; Zhang et al., 2015). A study in 

the Cascade Range of Oregon determined that snowmelt was most delayed when the ELR was 

used compared to weather stations and temperature modeled from the PRISM dataset (Garcia et 

al., 2013). Using 200 m elevation zones in the Washington Cascades, Minder et al. (2010) found 

that the modeled snowmelt shifted a full month earlier when the lapse rate was changed from -

6.5 °C/km to -4.0 °C/km. The sensitivity of the TEG values used produced a 15 to 62% 

difference in simulated discharge amount (Wang et al., 2016; Zhang et al., 2015). 

Two studies within the Cache la Poudre basin focused on TEG (Collados-Lara et al., 2021; 

Kampf & Richer, 2014). Collados-Lara et al. (2021) found that at the fine-scale (10s of meters 

verticals over 100s of meters) the temperature-elevation gradients were positive, often an order 

of magnitude larger than coarse (one measurement every 15 km) scale TEGs, while Kampf and 
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Richer (2014) adjusted the TEG from -6.0 to -9.0, with a baseline of -8.0 °C/km to model 

snowmelt runoff and found minimal differences in snowmelt. Using techniques and background 

information from previous local studies, we focused on a finer spatial scale and the impacts that 

TEG and DTEG have on modeling snowmelt over an 8.8 km2 watershed. This study will inform 

water managers whether widely used temperature-elevation gradients are accurately estimating 

snowmelt by comparing a dense network of temperature sensors to estimated values and their 

impacts on snowmelt. In addition to understanding the importance of TEG and DTEG on 

snowmelt, this study is essential because it is located nearby the Cameron Peak Fire, which 

burned over 200,000 acres, and is the largest fire in Colorado history (US Forest Service 

InciWeb). Understanding TEG and DTEG in subalpine to alpine environments within the Cache 

la Poudre can contribute to the extensive ongoing to understand wildfire impacts, especially in 

the persistent snow zone. 

In this study, we compute TEG and DTEG and compare to widely accepted rates used for 

temperature extrapolation (Barry & Chorley, 1987; Kunkel, 1989; Liston & Elder, 2006). The 

influence of season, aspect, time of day, and wind speed are utilized to understand TEG and 

DTEG patterns. Additionally, the implications on snowmelt modeling of TEG and DTEG versus 

accepted temperature-elevation gradients are quantified. A variety of methods using the 

temperature and radiation index model is completed to understand the influence air temperature 

and dew point temperature (as a surrogate of vapor pressure) have on snowmelt. This research 

poses the following questions: (1) how does TEG vary temporally and spatially compared to 

values in literature, and can this variability be explained from other meteorological variables, (2) 

how does DTEG vary temporally and spatially compared to values in literature, and can this 
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variability be explained from other meteorological variables, (3) how do observed and published 

TEG and DTEG affect snowmelt modeling.  

2.2 Study Area and Datasets 

2.2.1 Joe Wright Creek Study Area 

Joe Wright Creek above Joe Wright Reservoir (JWC; USGS gauge number 06746095), is 

located within the Cache la Poudre River basin in north-central Colorado (Figure 2-1). It is an 

8.8 km2 snowmelt-dominated watershed ranging in elevation from 3,041 to 3,673 m, with an 

average elevation of 3,288 m. The watershed slopes range from 0 to 56 degrees with an average 

of 16 degrees with dominant aspects being east, southeast, and northwest. It flows into Joe 

Wright Reservoir, constructed to receive water added from the Michigan Ditch, a trans-basin 

water diversion from the Michigan River. JWC consists of subalpine forest (approximately 

60%), mainly coniferous, and alpine tundra (approximately 40%). Within the alpine and 

subalpine, 20.4% is perennial snow/ice, 0.1% developed, 9.1% barren land, 60.8% evergreen 

forest, 9.6% herbaceous, and 0.1% woody wetlands (USGS National Land Cover Database, 

accessed September 15, 2021).  

The Natural Resources Conservation Service (NRCS) Joe Wright snow telemetry 

(SNOTEL) station <https://www.wcc.nrcs.usda.gov>, located near the center of JWC watershed 

(Figure 2-1), measures SWE, precipitation, air temperature (since 1998) and snow depth (since 

2004). Air temperature, precipitation, snow depth, and SWE. In addition to the SNOTEL station, 

the Cameron Pass Colorado Avalanche Information Center (CAIC) meteorological station is 

located 2 km south of JWC (Figure 2-1). It has been in operation since 2011 and measures 

temperature, relative humidity, dew point temperature, wind speed, wind directions, snow depth, 
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incoming and outgoing shortwave radiation, incoming and outgoing longwave radiation, and net 

radiation. 

Based on Joe Wright Snow Telemetry (SNOTEL) data, from water years (WY) 1980 to 

2020, the average annual peak SWE was 672 mm, on average occurring May 1st (ranging from 

March 9 to June 1), and average complete melt out date (i.e., first day during melt that SWE 

equals 0 mm) was June 17th (ranging from May 15 to July 11). Melt generally occurs between 

April and June at JWC when the average air temperature is 5.56 ºC. The average annual 

accumulated precipitation was 1,129 mm (<https://www.wcc.nrcs.usda.gov>, accessed 

September 15, 2021). 

The study focuses on May and June 2020 and 2021 since snowmelt predominantly occurs 

between these two months. Figure 2-2 provides hourly air and dew point temperature for this 

period. The air temperature for both years during May and June generally ranges between -5 to 

25 ºC. The air temperature in June 2021 is greater than June 2020 (Figure 2-2). The dew point 

temperature generally ranges between -15 to 10 ºC (Figure 2-2). Wind rose diagrams are 

presented in Figure 2-3 for May and June 2020 and 2021. The wind speeds are greater in 2020 

and in both years the dominant wind direction is the southwest (Figure 2-3).  

 In addition to the CAIC radiation data, an anemometer from the CAIC weather station 

was used to determine hourly wind speed and direction. A wind rose for May and June 2020 and 

2021 are presented in Figure 2-3. As shown in Figure 2-3, wind direction is most often from the 

southwest. 

2.2.2 Field Datasets 

A network, totaling 16 to 18 sensors, of Blue Maestro Tempo Disc ™ sensors 

(<http://www.bluemaestro.com>, accessed September 15 ,2021), herein referred to as BM 
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sensors, were installed on a west and east transect of JWC ranging in elevation from 3,051 to 

3,453 m to measure hourly temperature and relative humidity (Figure 2-1). The temperature 

sensors were installed in April and May 2020 with a few additional sensors added in April 2021. 

Four snow surveys were conducted in May and June 2021 collecting snow depth, SWE, and bulk 

density measurements within and near JWC based on elevation (Figure 2-1). Their location was 

recorded with a hand-held GPS unit.  

2.2.3 Spatial Datasets 

The USGS National Land Cover Database was used for JWC and surrounding areas 

<https://datagateway.nrcs.usda.gov>. The land cover map utilized includes 30 m by 30 m pixels. 

The land cover map was used to depict forested versus unforested land. A DEM extracted from 

the USDA NRCS website was utilized to determine elevations of the BM sensors. The resolution 

of the DEM was 10 m by 10 m (<https://datagateway.nrcs.usda.gov>, accessed July 1, 2021). 
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Figure 2-1. Map of Joe Wright Creek (JWC) study area. The triangles represent temperature and 
RH sensors. The diamonds represent the Joe Wright SNOTEL and Cameron Pass CAIC station.  



22 

 

Figure 2-2. Joe Wright hourly air and dew point temperature for May and June 2020 and 2021. 

 

Figure 2-3. Wind rose from the CAIC Cameron Pass weather station for May and June 2020 and 
2021. 
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2.3 Methodology 

2.3.1 Temperature and dew point temperature elevation gradients 

While the temperature and relative humidity sensors collected hourly data continuously 

from April 2020 to June 2021, the focus was on the snowmelt seasons (i.e., May through June). 

The BM sensors were installed with alternative double funnel systems with air holes for flow 

(Hubbart, 2011) and attached on the north side of evergreen trees to reduce direct solar loading 

(Lundquist & Huggett, 2008) at approximately 2-m above ground surface, as per Collados-Lara 

et al. (2021) and Kingston et al. (in review). Snow accumulation causes the height of the sensor 

above the snow to decrease, which could affect the temperature measurement. However, snow 

accumulation and ablation are generally uniform across the domain. On each transect, the BM 

sensors were placed every 50 m of elevation gain (Figure 2-1). The sensor temperature accuracy 

(air and dew point) is generally within 0.3 ºC of the actual temperature and a resolution of 0.1 ºC, 

while the humidity accuracy is generally within 3% with a maximum uncertainty of 4% 

<bluemaestro.com>.  

The air temperature time series were assessed graphically to identify obvious outliers 

from the range of air temperature across all sensors for each time step. A range threshold of 20 

ºC was used to further identify possible outliers, since most of the ranges for hourly time steps 

fell within this range. If a 20 ºC range was identified for a time step, the data from each sensor 

were compared to the measurements from the previous and subsequent time steps. Outliers at 

individual sensors were due to two factors: a sensor was being installed at that time step which 

was usually warmer than the ambient air, or a sensor was beginning to drift due to a low battery 

and shut down shortly after the drift began. Data identified as outliers were removed from the 

dataset.  
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For each time step, the hourly TEG was computed as the slope of the temperature versus 

elevation. Additionally, coefficient of determination (R2) values, and the significance of the 

correlation were determined per Collados-Lara et al. (2021a). To better understand TEG patterns, 

TEG were examined over each melt snowmelt season, daily and nightly, and by transect (west 

versus east). Additionally, daily averages were computed. During the snowmelt period, daytime 

hours represented 08:00 and 18:00 and nighttime hours were 17:00 to 07:00 of the next day. 

These time frames were selected by evaluating the TEG quantities when they were negative, 

positive, and averaging when those changes occur.  

Dew point temperature (Td) was used to evaluate observed vapor pressure gradients with 

elevation, in a similar manner as air temperature. To determine vapor pressure (ea), the following 

equation (Dingman, 2015) was used: 

𝑒௔ = 6.112 × 𝑒𝑥𝑝(ೌ×೅೏)್శ೅೏                                                                            (Equation 2-1),  

where a is a constant equal to 17.62, b is a temperature constant equal to 243.12 (World 

Meteorological Organization, 2008). Equation 2-1 can be applied since dew point temperature is 

the temperature at which the vapor pressure is saturated.  

 An anemometer from the CAIC weather station was used to determine hourly wind speed 

and direction. A wind rose for May and June 2020 and 2021 are presented in Figure 2-3. The 

wind speed and direction values were utilized to understand the relationship between such 

measurements and TEG and DTEG. The wind speed data were classified into one m/s wind 

speed bins when used to compare wind speed and temperature-elevation gradients.  
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2.3.2 Observed SWE and snowmelt 

SWE was measured using a Snow-Hydro coring tube <snowhydro.com> throughout the 

2021 melt season (Figure 2-1 and Table A-2). Three snow cores were taken from each sampling 

location, and results were averaged. For each snow core, depth was measured, and mass of snow 

was recorded; SWE was computed using the mass of snow and the known volume of the coring 

tube. At each repeated SWE measurement location, it was noted whether the canopy was open or 

closed (Fassnacht et al., 2017). The repeated SWE measurements were combined with fresh 

snow added from Joe Wright SNOTEL with an applied precipitation gradient (Liston & Elder, 

2006) to understand the change of SWE during the melt season for application of the snowmelt 

model. SWE measurements at the highest elevation, with the most repeated measurements, and 

an open canopy (similar to Joe Wright SNOTEL) were used to investigate the accuracy of the 

snowmelt model (further discussed in Section 2.3.3.  

2.3.3 Snowmelt modeling 

To capture the sensitivity of TEG and vapor pressure (a surrogate for DTEG) on 

snowmelt, scenarios were run using different temperature and/or vapor pressure values 

depending on the modeling equation (Table 2-1). The scenarios used a combination of observed 

temperature, temperature computed using the ELR (-6.5 ºC/km; applied to the SNOTEL data), 

temperature computed using the Liston and Elder (2006) air temperature lapse rate (-8.15 

ºC/km), observed vapor pressure, and lapsed vapor pressure from a BM sensor (similar in 

elevation to the Joe Wright SNOTEL since RH is not provided with SNOTEL data) using the 

Kunkel (1989) dew point temperature lapse rate (-5.1 ºC/km). Model scenarios are identified in 

Table 2-1. Snowmelt was determined at a paired BM sensor and snow sampling location 

beginning on May 1, 2021 to the melt out date.  
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2.3.3.1 Temperature index modeling  

The temperature index model computed melt (M) as a function of air temperature (Ta): 

M = MFTi (Ta – Toi)       (Equation 2-2), 

where M represents the melt water per unit time, MFTi is temperature melt factor, Ta is the air 

temperature per unit time, and Toi is the reference temperature. Equation 2-2 was run using 

variable melt factors from Fassnacht et al. (2017); a continuous set of melt factors was not 

available for the Joe Wright SNOTEL station so the MFTi values from the nearby Lake Irene 

SNOTEL station were used. The continuous melt factors from Fassnacht et al. (2017) are 

presented in the appendix. For the temperature index model, the reference temperature was set to 

0 ºC. In Table 2-1, these are obs T & simpler model and local lapse T & simpler model. The 

temperature index model was run to evaluate its performance compared to the temperature and 

radiation index model. 

2.3.3.2 Temperature and radiation index modeling 

The temperature and radiation index modeling equation is utilized in the first five 

scenarios in Table 2-1. This model builds on the temperature index model (equation 2-2) by 

adding net shortwave (HK*) and longwave (HL*) radiation, as follows:  

M=MFTi(Ta-Toi)+MFHi(HK*+HL*)                                                       (Equation 2-3), 

where MFHi is a radiation melt factor, and HK* + HL* represent net radiation (Hamlin et al., 

1998). A radiation melt factor was determined for non-vegetated areas. The melt factors and 

reference temperature were optimized using a nonlinear optimization approach with observed 

snowmelt for the 2021 season (i.e., from the Joe Wright SNOTEL). The reference temperature 

was assumed to be constant at 4.58 ºC based on the optimization from melt at the Joe Wright 
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SNOTEL. The snowmelt model was run on a daily time step and hourly temperatures above 4.58 

ºC were summed for each day. Similarly, hourly net radiation was summed per day. Using the 

same optimization technique as the reference temperature, the MFTi value was 1.77 and the MFHi 

was 0.15.  

The Kunkel (1989) dew point temperature lapse rate (-5.1 ºC/km) was derived using a 

vapor pressure coefficient (0.37 m-1) and the temperature constant (a), and a dimensionless 

constant (b) used in equation 2-4 (WMO, 2008). Using the observed dew point temperature (Td ) 

from a BM sensor, Td lapsed to the same elevation as the point snowmelt model elevation (model 

scenarios obs T & lapse Td and local lapse T & Td). The vapor pressure, air temperature, and 

cloud cover are used to compute the incoming longwave radiation (Equation 2-4) with 

temperature and cloud cover to compute the effective atmospheric emissivity (Equation 2-5), 

which are covered in detail below.  

A four-component radiometer (incoming shortwave, outgoing shortwave, incoming 

longwave, and outgoing longwave) was installed at the Joe Wright SNOTEL during the winter of 

2021. However, due to datalogger failure, the dataset is limited and could not be utilized for this 

study. Therefore, the four-component radiometer data from the CAIC Cameron Pass –

meteorological station were used for snowmelt modeling. The limited radiation data from the Joe 

Wright SNOTEL were compared to the CAIC radiation data to determine the similarity of the 

data. Each radiation component from both stations were plotted together to determine suitability.    

Although radiation variables are not uniform in a mountain watershed, the incoming 

shortwave, outgoing shortwave, and outgoing longwave radiations were assumed to be consistent 

across JWC (Follum et al., 2015). However, the incoming longwave radiation (HL-in) was 

assumed to vary spatially by elevation as a function of temperature and vapor pressure. 
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Assuming that the cloud cover was similar between the CAIC station and across JWC (Follum et 

al., 2015), the CAIC incoming longwave radiation was used to estimate cloud cover, similar to 

the approach of Fassnacht et al. (2001) who used daytime shortwave radiation for this purpose. 

The incoming longwave radiation (HL-in) can be computed as follows: 

HL-in=Ξatmos σ Ta
4                                                                            (Equation 2-4),  

where Ξatmos is the effective atmospheric emissivity, σ is the Stefan-Boltzman constant (5.67 x 

10-8 W/m2/K4), and Ta is observed air temperature in degrees Kelvin (Dingman, 2015) .The 

effective atmospheric emissivity in Equation 2-4 can be computed as a function of cloud cover 

(Ccloud): 

εatmos=(0.53+0.065ea)(1+0.4Ccloud)                                                 (Equation 2-5), 

where ea represents vapor pressure (Dingman, 2015).  

 Since the CAIC outgoing shortwave radiation was unrealistically low (a maximum of 400 

W/m2) for melt season 2021, albedo was modeled using the Joe Wright SNOTEL data to identify 

the occurrence of snowfall, simulate albedo decay after snowfall, and use albedo to determine net 

shortwave radiation. The first order decay model was used to estimate albedo of snow (αs) (U.S. 

Army Corps of Engineers, 1956): 

 𝛼௦ = [𝛼௦(௧ିଵ) − 𝛼௦ି௠௜௡]𝑒ି௞∆௧ + 𝛼௦ି௠௜௡                (Equation 2-6), 

where k is a decay coefficient (set to 0.01 per hour, as per Verseghy, 1991), and Δt is the time 

step in hours. An albedo minimum value (αs-min) of 0.5 was used if the snowpack was melting (Ta 

> 0 oC) and 0.7 when melt was not occurring (Ta ≤ 0 oC). For time steps with fresh snow, which 

was determine as a positive precipitation value and an increase in snow depth at the SNOTEL 
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station, the albedo was reset to 0.84 (Verseghy, 1991). The net shortwave radiation was 

computed as the product of incoming shortwave radiation and one minus albedo. 

Table 2-1. Model scenarios to understand sensitivity of air temperature and vapor pressure in 
snowmelt modeling 

Model Air Temperature (T) Dew point temperature (Td) 
obs T Observed Observed 
ELR T ELR Observed 
local lapse T Liston and Elder (2006) T 

lapse rate 
Observed 

obs T & lapse Td Observed Kunkel (1989) Td lapse rate 
local lapse T & Td Liston and Elder (2006) T 

lapse rate 
Kunkel (1989) Td lapse rate 

obs T & simpler 
model 

Observed N/A 

local lapse T & 
simpler model 

Liston and Elder (2006) T 
lapse rate 

N/A 

 

2.4 Results 

2.4.1 Observed air temperature and TEG 

The TEG values are determined by assessing the air temperature over an elevation 

gradient over time. Figure 2-2 provides an example of air temperature differences over elevation 

in the early morning and afternoon on the same date. As shown in Figure 2-2, there is an increase 

in air temperature with elevation on May 21, 2021 at 05:00, which would produce a positive 

TEG. Conversely, there is a decrease in air temperature with elevation on May 21, 2021 at 14:00, 

which would produce a negative TEG. The TEG values predominantly range between -20 to 20 

ºC/km (Figure 2-5). Generally, correlations are poor at TEG values approaching 0 ºC/km with R2 

values less than 0.25 (grey points in Figure 2-5). For positive TEG values, a stronger correlation 

was observed where TEG values were between 10 to 20 ºC/km. Overall, the strongest 

correlations were observed near the ELR or TEG values less than -5 ºC/km. For snowmelt season 

2020, the TEG values were variable throughout the whole season, whereas, in 2021, the month 
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of May had fewer positive TEG values than the rest of the dataset (Figure 2-5). Similar temporal 

patterns and ranges of TEG values were observed when the years were separated by transect 

(Figure 2-6). However, the average R2 value improved when parsed by transect, with an average 

R2 of 0.45 for each transect compared to an average R2 value of 0.33 when combined (Table 2-2). 

For a specific year, transect, or a combination thereof, the average TEG values were mostly 

negative and ranged from -2.9 to 0.9 ºC/km (Table 2-2). Figure 2-7 shows that TEG is often 

positive between hours late PM and early AM hours. Conversely, TEG values are generally most 

negative between hours late AM and early PM hours. The R2 values based on time of day are 

variable and indicate no clear correlation between air temperature and elevation, beyond having 

stronger correlations for larger values (positive or negative), was observed (Figure 2-7). 

Since hourly TEG was variable, average daily and average hourly TEG were computed 

(Figure 2-8) between May and June. When excluding TEG values with an R2 less than 0.2, the 

daily median TEG ranges from -8.7 to 13.8 ºC/km with an average R2 of 0.37 (Figure 2-8). Few 

daily TEG values have a R2 greater than 0.5 (only 11 percent), but such values range from -7.6 to 

-4.7 ºC/km. Therefore, when the correlation between elevation and near-surface air temperature 

is stronger, the observed TEG values were similar to the ELR and Liston and Elder (2006) TEG. 

Additionally, when TEG is evaluated by average hourly value (Figure 2-8), the TEG are positive 

at night (from hours 00:00 to 07:00 and 21:00 to 23:00), and hourly average TEG values are 

negative during the day (from 08:00 to 20:00; Figure 2-8), which is similar to the hourly trends 

seen in Table 2-3 and Figure 2-7. 

Excluding TEG values with an R2 less than 0.2, the positive and negative TEG values 

were evaluated in 1 m/s wind speed bins (Figure 2-9). Overall, wind speed was greater in 2020 

than 2021. For the maximum wind speed bins for both 2020 and 2021 (8 to 9 m/s and 4 to 5 m/s, 
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respectively), the TEG values are only negative, and the average TEG for wind speeds faster 

than 4 m/s is -5.10 ºC/km. Conversely, the average TEG for wind speeds slower than 4 m/s is 

0.03 ºC/km. However, wind speeds less than 4 m/s account for 83 percent of the measurements.

Figure 2-4.Air temperature over an elevation gradient on May 21, 2021 at 05:00 and 14:00. 
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Figure 2-5. Hourly TEG values for the 2020 and 2021 snowmelt seasons. The shading of the 
points represents the R2 value with lighter colors being less of a correlation between air 

temperature and elevation. The red line represents the ELR (-6.5 ºC/km).  

 

Figure 2-6. TEG values for the 2020 and 2021 snowmelt seasons separated by transect. The east 
transect is represented in the top graphs and the west in the bottom graphs. The shading of the 

points represents the R2 value with lighter colors being less of a correlation between air 
temperature and elevation. The red line represents the ELR.  
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Figure 2-7. TEG (top) and R2 values (bottom) based on date and time of day. Positive TEG 
values are represented in yellow to red and negative in blue. R2 values are represented on a 

grayscale with darker representing a stronger correlation between air temperature and elevation.  



34 

 

Figure 2-8. Daily median TEG computed from hourly TEG for May through June 2020 and 2021 
(top) and average hourly TEG for May and June 2020 and 2021 (bottom). Daily TEG values 

with poor correlations (less than 0.2 R2) were not included. The red line represents the ELR in all 
plots.  
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Figure 2-9.Wind speed compared to positive (top) and negative (bottom) TEG for 2020 and 
2021. 

Table 2-2. Average TEG, DTEG, and R2 values isolated by year, transect, or both. 

Variable Year Transect 

Average TEG 
or DTEG 
(standard 
deviation) 

Average R2 

(standard 
deviation) 

TEG 2020-21 East and west -1.50 (±8.11) 0.33 (±0.27) 
TEG 2020 East and west -1.44 (±8.45) 0.36 (±0.26) 
TEG 2021 East and west -1.55 (±7.75) 0.30 (±0.27) 
TEG 2020-21 East -0.04 (±8.97) 0.45 (±0.34) 
TEG 2020-21 West -2.85 (±8.95) 0.46 (±0.30) 
TEG 2020 East -0.95 (±8.46) 0.50 (±0.32) 
TEG 2020 West -1.78 (±9.89) 0.44 (±0.29) 
TEG 2021 East 0.86 (±9.37) 0.40 (±0.35) 
TEG 2021 West -3.93 (±7.77) 0.47 (±0.31) 
DTEG 2020-21 East and west -6.26 (±9.17) 0.27 (±0.29) 
DTEG 2020 East and west -5.70 (±4.62) 0.39 (±0.24) 
DTEG 2021 East and west -6.80 (±12.10) 0.15 (±0.17) 
DTEG 2020-21 East -6.77 (±10.94) 0.45 (±0.28) 
DTEG 2020-21 West -5.78 (±1.46) 0.29 (±0.27) 
DTEG 2020 East -6.58 (±4.88) 0.52 (±0.25) 
DTEG 2020 West -4.75 (±5.52) 0.42 (±0.29) 
DTEG 2021 East -6.95 (±14.68) 0.37 (±0.29) 
DTEG 2021 West -6.82 (±13.64) 0.16 (±0.17) 
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Table 2-3. Average TEG and R2 values isolated by year and time of day for May through June 
2020 and 2021. Daytime values represent 08:00 to 18:00 and nighttime values 17:00 to 07:00.  

Year and time step Average TEG and 
standard deviation 

R2 average and 
standard deviation 

Full day 2020 and 2021 -1.50 (±8.11) 0.33 (±0.27) 
Full day 2020 -1.44 (±8.44) 0.36 (±0.26) 
Full day 2021 -1.55 (±7.75) 0.30 (±0.27) 
Daytime 2020 and 2021 -5.97 (±5.52) 0.28 (±0.24) 
Daytime 2020 -6.15 (±5.69) 0.30 (±0.23) 
Daytime 2021 -5.78 (±5.35) 0.26 (±0.25) 
Nighttime 2020 and 2021 2.29 (±8.01) 0.38 (±0.28) 
Nighttime 2020 2.55 (±8.34) 0.41 (±0.28) 
Nighttime 2021 2.03 (±7.67) 0.34 (±0.28) 

 

2.4.2  Observed dew point temperature and DTEG 

Dew point temperature elevation gradients (DTEG) were quantified as a surrogate for 

vapor pressure gradients, since the two are directly related. The DTEG generally ranged 

between -20 to 10 ºC/km (Figure 2-10 and Figure 2-11). This range is smaller than observed for 

TEG (Figures Figure 2-5 andFigure 2-6). For 2020 and 2021, the dew point temperature was 

poorly correlated, i.e., low R2 values, when DTEG was small, i.e., approaching 0 ºC/km. 

Positive DTEG had stronger correlations for values of 5 to 10 ºC/km. Conversely, for negative 

DTEG, the strongest correlations were observed from -5 to -20 ºC/km (Figure 2-10), which are 

in the range of the Kunkel (1989) DTEG. The DTEG correlations were poorer in 2021 

compared to 2020 (Figure 2-10), especially for the west transect in 2021, which also had the 

largest range (Figure 2-11). The average DTEG parsed by transect, year, or a combination 

ranged between -6.95 to -4.75 ºC/km with R2 values ranging from 0.17 to 0.29 (Table 2-2). As 

shown in Figure 2-12, more positive DTEG values are generally observed during nighttime or 

early morning hours with variable R2 values.  
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Unlike TEG, daily median DTEG were not parsed based on a R2 value of 0.2 since in 

2021 that only includes 13% percent of the data. The difference between daily TEG correlation 

in 2020 and 2021 was notable (Figure 2-13). In 2021, four BM sensors were installed in the 

alpine. To understand if the new BM sensors were influencing the poor correlation, the DTEG 

values were recomputed for 2021 without the new alpine BM sensors. The average R2 for daily 

DTEG increases when the four alpine BM sensors are removed (0.29 to 0.36) and a total of 30 

percent of the DTEG values have a R2 greater than 0.2 (Figure 2-13). Even with the four alpine 

BM sensors removed, there are poor correlations in May and early June. 

Even more so than TEG, during higher winds, positive DTEG values were not observed 

(Figure 2-14). However, positive DTEG occurred 6 percent of the time. Dividing the dataset by 

wind speed bin (Figure 2-14), the average DTEG ranges from -6.73 to -5.72 ºC/km. When 

considering only positive DTEG, the mean ranged from 4.68 to 7.91 ºC/km (Figure 2-14). 

Overall, positive DTEG values did not occur when wind speeds were high.  
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Figure 2-10. DTEG values for the 2020 and 2021 snowmelt seasons. The shading of the points 
represents the R2 value with lighter colors being less of a correlation between dew point 

temperature and elevation. The red line represents the Kunkel (1989) dew point temperature 
lapse rate (-5.1 ºC/km).  

 

Figure 2-11. DTEG values for the 2020 and 2021 snowmelt seasons separated by transect. The 
east transect is represented in the top graphs and the west in the bottom graphs. The shading of 
the points represents the R2 value with lighter colors being less of a correlation between dew 

point temperature and elevation. The red line represents the Kunkel (1989) dew point 
temperature lapse rate. 
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Figure 2-12. DTEG (top) and R2 values (bottom) based on date and time of day. Positive TEG 
values are represented in orange to red and negative in yellow to blue. R2 values are represented 

on a grayscale with darker representing a stronger correlation between dew point temperature 
and elevation.  
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Figure 2-13. Daily median DTEG for May through June for 2020 and 2021 (top) and daily 
median DTEG for May through June 2020 and 2021 where R2 less than 0.2 and four alpine BM 

sensors are not included (bottom). The red line represents the Kunkel (1989). 
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Figure 2-14. Wind speed compared to positive (bottom) and negative (top) DTEG for 2020 and 
2021.  

2.4.3 Snowmelt modeling 

All scenarios (Table 2-1) produce similar snowmelt results (Figure 2-15). Scenarios ELR 

T, local lapse T, and local lapse T & Td have the latest SAG dates (June 24, June 25, and June 

24, respectively; Table 2-4). Model scenario obs T & lapse Td was most similar to the base case 

(model scenario obs T; Figure 2-15). Model scenario obs T, the base case, best fit the observed 

SWE. On May 12, the observed SWE was 693 mm, and the base case was only 2% less at 680 

mm, while on May 27, they were the same at 606 mm. On the last SWE observation on June 10, 

the model base case SWE (293 mm) was 29% greater than observed (220 mm). 

Using only the temperature index approach (scenarios obs T & simpler model and local 

lapse T & simpler model) overestimated SWE for the first part of the snowmelt season (Figure 2-

15). However, model scenario obs T & simpler model, performs well toward the end of 
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snowmelt season with a one-day difference in SAG date compared to the base case, scenario obs 

T (Table 2-4). The largest SAG difference was 6 days later from model scenario local lapse T 

compared to the base case (Table 2-4). Overall, the temperature and radiation index model and 

temperature index model performed well compared to observed SWE.   

To better understand the implications, cumulative melt from model scenario obs T was 

used as the base case, and each treatment scenario were compared to it (Figure 2-16). As shown 

in Figure 2-16, model scenario ELR T performs better than model scenario local lapse T when 

compared to observed values. Model scenarios obs T & local lapse Td and obs T & simper model 

both use observed air temperatures and outperform all treatment scenarios. Model scenario obs T 

& simpler model uses the temperature index snowmelt model, whereas model scenario obs T & 

lapse Td uses the temperature and radiation index model. Model scenarios local lapse T and local 

lapse T & simpler model had the largest RMSE and both used the Liston and Elder (2006) TEG. 

Model scenario local lapse T & Td, which uses the Liston and Elder (2006) TEG, followed after 

model scenarios local lapse T and local lapse T & simpler model suggest this TEG is not 

representative of JWC. 
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Figure 2-15. Snowmelt modeling using varying air temperature and vapor pressure gradients 
beginning on May 1st, 2021 to SAG for each scenario. The triangles represent observed SWE 

values. 

 

Figure 2-16. A comparison of cumulative melt for model obs T (control) and all treatment 
scenarios. The black line represents the 1:1. 
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Table 2-4. SAG date for each snowmelt model scenario 

Model 2021 SAG date 
obs T June 19 
ELR T June 24 
local lapse T June 25 
obs T & lapse Td June 18 
local lapse T & Td June 24 
obs T & simpler model June 18 
local lapse T & simpler model June 22 

 

2.5 Discussion 

2.5.1 Observed air temperature and TEG 

In this study, we found that hourly TEG are highly variable (Figure 2-5, Figure 2-6, and 

Figure 2-7) and often are not similar to the ELR or Liston and Elder (2006) TEG. The ELR is 

more similar to a wet adiabatic lapse rate and the Liston and Elder (2006) TEG is more similar to 

a dry adiabatic lapse rate. The dry adiabatic lapse rate assumes the parcel of air is dry and a wet 

adiabatic lapse rate assumes as the air parcel rises, water condenses and produces heat, which 

warms air around it (Dingman, 2002). In May 2021, hourly TEG ranges less than May 2020 

(Figure 2-10). The onset of melt in 2021 did not begin until mid- to late-May, whereas in 2020 

melt started prior to May 1. In May 2021, the snowpack was still accumulating until mid to late-

May. This could influence the TEG correlation. Since there is high variability in hourly TEG, the 

daily median TEG was also computed (Figure 2-8). The nighttime positive values are inversions 

or cold air drainage, as seen in late summer by Collados-Lara et al. (2021). Inversions are often 

from downslope winds moving from high elevations (i.e., katabatic winds) influenced by the 

higher density of cold air (Clements et al., 2003). Several studies have encountered nightly cold 

air drainage (Collados-Lara et al., 2021; Follum et al., 2015; Lundquist and Cayan, 2007; 

Navarro-Serrano et al., 2018; Rolland, 2003). On a hillslope scale, Collados-Lara et al. (2021) 

found the inversions to be up to 250 ºC/km, which is an order of magnitude greater than TEG 
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found in this study. On a macroscale, Navarro-Serrano et al. (2018) found inversions to have up 

to -5 ºC/km TEG value. Other influences on inversions can include daytime shortwave radiation, 

where there is greater heating at higher elevations (Kattel et al., 2015); this was not evaluated in 

this study since net shortwave radiation was assumed to be constant across the study domain.  

The temperature inversions generally occurred during the night and into the early 

morning hours, indicating a diurnal pattern. This can occur diurnally based on synoptic 

meteorological conditions, which includes negative net radiation (i.e., low solar radiation), clear 

conditions, high atmospheric pressure, and light winds. During these conditions, the net radiation 

and the surface begins to cool (i.e., radiation cooling). Since cooler air is denser, it begins to 

drain downslope and is replaced by warmer air above, which causes the inversion (Daly et al., 

2009). When there are higher wind speeds, these layers (cold and warm) mix and inversions are 

not observed. Since cold air drainage can be associated with calm nights (i.e., low wind speeds), 

this study considered wind speed and whether there was a relationship between positive or 

negative TEG (Figure 2-9), similar to Clements et al. (2003) and Collados-Lara et al. (2021). 

When higher wind speeds occurred, there were negative TEG values, thus a relationship between 

wind speed and TEG exists. However, the anemometer used for this study was located 3.2 km 

south of the study domain and located on an east aspect. Only 5 of the 18 BM sensors are located 

on an east aspect. A comparison between wind direction and positive and negative TEG were 

evaluated and no significant relationship was identified. An analysis similar to the automated 

algorithm for cold air drainage or pooling explained in Lundquist et al. (2008) prior to using the 

ELR or published TEG values could provide insight. The automated algorithm uses DEMs to 

analyze slope, aspect, curvature, and percentile elevation relative to surrounding terrain to see if 
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the air is draining or pooling (Lundquist et al., 2008).  If cold air drainage is found within the 

study domain, using different nighttime and daytime TEG could provide better accuracy.  

2.5.2 Observed dew point temperature and DTEG 

In this study, hourly DTEG values were compared to the Kunkel (1989) value of -5.1 

ºC/km (Figure 2-10, Figure 2-11, and Figure 2-12). Similar to TEG (Figure 2-5, Figure 2-6, and 

Figure 2-7), there is high variability in hourly values, thus daily values were also evaluated 

(Figure 2-13). Overall, daily and hourly DTEG were less variable than TEG and behaved more 

similarly to published values. Another difference between the TEG and DTEG behavior is that 

there was a stronger relationship between wind speed and DTEG (Figure 2-9 and Figure 2-14).  

The average hourly DTEG of -1.5 ºC/km (Table 2-2) is similar to the Franklin (1983) 

DTEG of -1.25 ºC/km. The Franklin (1983) DTEG used observed dew point temperatures from a 

watershed in north Idaho. Conversely, the average daily DTEG for May and June 2020 and 2021 

was -5.1 ºC/km, which equals the Kunkel (1989) DTEG. Feld et al. (2013) reported that 

assuming linear trends for DTEG (Kunkel, 1989) is not always appropriate. However, the Feld et 

al. (2013) study site was in Sierra Nevada, which has a wetter climate than JWC and thus 

generally more atmospheric moisture.  

There are stronger correlations between dew point temperature and elevation in May 

2020 than 2021 (Figures Figure 2-10,Figure 2-11, Figure 2-12, and Figure 2-13). As stated in the 

previous section, May and June 2020 represent the full melt period, whereas in 2021, the 

snowpack was still accumulating in May. Therefore, there was likely more atmospheric moisture 

in May 2021 than May 2020 resulting in a less linear correlation between dew point temperature 

and elevation. Another difference between May 2020 and 2021 is there were four additional BM 

sensors installed to represent the alpine conditions. As shown in Figure 2-13, removing the 
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alpine BM sensors improved the linear dew point temperature-elevation correlation. Further 

investigation into the dew point temperatures in the alpine and other meteorological influences 

that occurred in 2021 are needed to understand the poor correlation between dew point 

temperature and elevation.  

2.5.3 Snowmelt modeling 

The SAG date for the treatment model scenarios ranged from a 1 to 6-day difference 

when compared to the base case (obs T), which could yield a shift in peak snowmelt runoff. 

Conversely, Minder et al. (2010) found snowpack shifts a month earlier when changing the lapse 

rate by 1.5 ºC/km in the Cascade Mountains, which is a similar change between the Liston and 

Elder (2006) TEG and the ELR used in this study. Overall, model scenarios that used observed 

air temperatures (obs T & lapse Td and obs T & simpler model) perform best (Figure 2-16 and 

Table 2-4). When estimating air temperatures in snowmelt modeling, the ELR provides better 

estimates than the Liston and Elder (2006) TEG. Due to the inversions that occur, the average is 

shifted and becomes less negative making the ELR more suitable. The average TEG is negative 

between 08:00 to 19:00 when incoming shortwave radiation is at its greatest (Figure 2-8). 

Consequently, a large portion of snowmelt occurs during those hours making the ELR suitable 

regardless of the strong inversions that occur.  

In model scenarios obs T & lapse Td and local lapse T & Td, the DTEG was manipulated 

to understand the importance of vapor pressure on incoming longwave radiation and its effect on 

snowmelt. Model scenario obs T & lapse Td performs almost identically to the base case (Figure 

2-15). Therefore, when using the temperature and radiation index snowmelt model, the Kunkel 

(1989) DTEG is suitable. Model scenario local lapse T & Td also used the Kunkel (1989) DTEG, 

but the model most likely performs second worst (after model scenario ELR T) since the 
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differences are due primarily to the use of the constant Liston and Elder (2006) TEG. Since dew 

point temperature is less variable than air temperature, dew point temperature has little impact on 

snowmelt. Dew point temperature (or vapor pressure) is a function of emissivity, which is a 

variable in incoming longwave (Equations 2-4 and 2-5). Therefore, dew point temperature has a 

less direct effect on snowmelt modeling than air temperature. However, since dew point 

temperature can influence losses or gains due to sublimation, a model that incorporates the latent 

heat flux could show more sensitivity to dew point temperature (Feld et al., 2013). Our SAG 

results (Table 2-4) when manipulating DTEG were similar to Feld et al. (2013) in that there was 

a difference of a few days between observed and estimated.  

This study found that the complexity of the snowmelt index model used (equation 2-2 

versus 2-3) is not as important for model performance as using observed air temperature. While 

model scenarios obs T & simpler model and local lapse T & simpler model (both temperature 

index model), underpredict in the beginning of the season, the SAG dates are satisfactory when 

compared to the base case (June 18 and June 22, respectively; Table 2-4 and Figure 2-13 and 

Figure 2-14). Since variable melt factors are used in the temperature index model it accounts for 

increases of net shortwave radiation as the melt season progresses (Fassnacht et al., 2017). 

Although the temperature index snowmelt model is simple, it can be an adequate alternative in 

JWC or similar regimes when net radiation data are not available (Hock, 2003; Ohmura, 2001). 

Conversely, Follum et al. (2019) found that in Senator Beck Basin, Colorado, adding radiation to 

the temperature index model improved performance.   

Since net radiation was not measured at the point snowmelt modeling location, several 

components were estimated. Due to issues with the measured shortwave radiation, it was 

estimated using daily albedo; this has been shown to be less accurate than a variable daily albedo 
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(Reimanis, 2021). Additionally, incoming shortwave radiation and outgoing longwave radiation 

were assumed to be similar between the modeling point location and the CAIC weather station, 

as per Follum et al. (2015). From the performance of the snowmelt model scenarios on May 12 

and 27 compared to observed SWE (Figure 2-16), the estimations were sufficient. There is a 

notable difference (29.5 percent difference) from observed SWE for model scenario obs T (base 

case) on June 10. This large difference could be based on the melt factors being calibrated from 

the Joe Wright SNOTEL. At Joe Wright SNOTEL, SAG occurred on June 11, whereas at the 

snowmelt modeling location (point SWE-17 in Figure 2-1), there was still more than 200 mm of 

SWE. Therefore, the melt factors may not account for the conditions that occurred after June 11. 

Conversely, the daily temperature melt factors used in the temperature index snowmelt model 

from Fassnacht et al. (2017) were calibrated using the Lake Irene SNOTEL station, since melt 

factor data were missing for several semi-monthly periods at the Joe Wright SNOTEL. 

Therefore, it seems the melt factors are more sensitive to manipulation in the temperature and 

radiation index snowmelt model. Future work should include more observed snow surveys 

throughout the season or SCA data to better understand the performance of the model, and 

calibrating melt factors (if using the temperature and radiation index snowmelt model) at a 

similar elevation or location where the model is being utilized.   

2.6 Conclusions 

We found the hourly TEG and DTEG values to be variable temporally. The average 

hourly TEG value was -1.50 ºC/km (± 8.11). Positive TEG values generally occurred at 

nighttime and negative values during daytime. The ELR is applicable during the daytime for this 

study domain. However, further investigation should be done prior to applying ELR at nighttime 

in similar regimes (e.g., cold air drainage mapping, installing temperature sensors). A 
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relationship between wind speed and positive or negative TEG and DTEG values were observed; 

higher wind speeds correlated with negative TEG and DTEG values. The hourly DTEG value 

was -6.26 ºC/km (±9.17), and was less variable than TEG. The DTEG had poor correlations 

when alpine BM sensors were included. Therefore, further exploration to understand dew point 

fluctuations in the alpine is necessary.  

The ELR resulted in more accurate snowmelt modeling results than the Liston and Elder 

(2006) TEG. Although the ELR performed better than the Liston and Elder (2006) TEG, the 

model scenario incorporating ELR had a later SAG date by 5 days. The Kunkel (1989) DTEG 

performed similarly to observed dew point temperatures and the temperature and radiation index 

model was not sensitive to this manipulation. The temperature index model is a satisfactory 

snowmelt model to utilize when limited meteorological values are available. Additionally, the 

temperature and radiation index model can be utilized with limited meteorological variables if 

net radiation is estimated similar to the procedures used in this study.  
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CHAPTER 3. IMPLICATIONS AND FUTURE WORK 
 

 

 

This research characterized temperature-elevation gradient (TEG) and dew point 

temperature elevation gradient (DTEG) for a small snow-dominated watershed within the Cache 

la Poudre Basin. It also investigated how TEG and DTEG affect snowmelt modeling by using 

observed and published values. We found that generally the ELR is close to the daytime TEG but 

nighttime values are often positive and dissimilar to published values. This difference produced a 

modeled snow-all-gone difference of up to 6 days. The average hourly DTEG value was -1.26 ºC 

colder than the Kunkel (1989) DTEG. This difference between observed DTEG and the Liston 

and Elder Td provided minimal differences in snowmelt when manipulating the incoming 

longwave radiation within the net radiation variable in the temperature and radiation index 

snowmelt model. Melt factors for the temperature index model can be applied to other sites with 

similar regimes based on this study (e.g., Lake Irene SNOTEL and Joe Wright Creek SNOTEL). 

Conversely, melt factors for the temperature and radiation index model did not perform as well 

when applying melt factors developed from a different elevation (Joe Wright SNOTEL) in the 

latter portion of the melt season as net shortwave radiation increase. For example, on June 10, 

2021, model scenario A (base case) is 29.5 percent different than observed SWE and earlier in 

the season there were differences as low as 0.1 percent. 

Extensive research is ongoing within the Cache la Poudre basin to study the impacts of 

wildfire on hydrology, geomorphology, and ecology. Wildfires often cause more pronounced 

spatial variability in hydrometeorological variables (Harpold et al., 2014). With this study, we 

have a better understanding of TEG and DTEG at high-elevation areas within this basin, yet 
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future work can add to this. Such future work includes modeling snowmelt across all elevations 

of the Joe Wright Creek watershed, and translating snowmelt to streamflow. This will ultimately 

indicate how TEG and DTEG affect streamflow characteristics, such as, peak streamflow 

magnitude and timing. Additionally, mapping possible cold air drainage locations (Lundquist et 

al., 2008) could enhance our understanding of the distribution of temperature. Moreover, adding 

additional sensors, particularly anemometers and radiometers, in the alpine or at higher 

elevations beyond just at Joe Wright SNOTEL would help refine snowmelt modeling and 

possibly provide data to assess wind thresholds to estimate TEG or DTEG. For example, if it is 

windy, then cold air drainage does not occur.  

 As the climate continues to warm and meteorological extremes are realized, it is 

important to understand how this may affect water resources. Future evaluations could examine 

how TEG and DTEG would impact snowmelt under future climate change scenarios. In our 

study, the alpine provided variable results and in some of the DTEG analyses, the alpine BM 

sensors were removed to yield an improved correlation. Further research needs to examine 

processes that occur in the alpine and how climate change will impact those processes.  
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APPENDIX A: SITE MAPS AND FIELD DATA LOCATIONS 
 
 

 

Appendix A includes site maps of Joe Wright Creek (JWC) and locations of sensors and SWE 

measurements. The site maps include land cover (Figure A-1), aspect (Figure A-2), and slope (Figure A-

3). Table A-1 includes sensor names, elevation, and installation date. Table A-2 includes SWE 

measurements and collection dates for the 2021 melt season. 

 

 

Figure A-1. Land cover of JWC. 
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Figure A-2. Aspect of JWC.  

 

Figure A-3. Slope of JWC.  
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Table A-1. Temperature and relative humidity sensor elevation and installation date. 

ID Elevation (m) Date installed 
HD1 3059 April 19, 2020 
HD2 3104 April 19, 2020 
HD3 3158 May 1, 2020 
HD4 3216 May 1, 2020 
HD5 3268 May 1, 2020 
HD6 3312 May 1, 2020 
HD7 3370 May 1, 2020 
HD8 3410 April 10, 2021 
HD9 3450 April 10, 2021 
MP1 3051 April 19, 2020 
MP2 3092 April 19, 2020 
MP3 3144 April 19, 2020 
MP4 3197 April 19, 2020 
MP5 3248 April 19, 2020 
MP6 3303 April 19, 2020 
MP7 3358 April 19, 2020 
MP8 3407 April 10, 2021 
MP9 3453 April 10, 2021 
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Table A-2. Date of SWE samples collected in JWC during the 2021 melt season. 

ID 1-May 12-May 27-May 10-Jun 
SWE-1 x       
SWE-2 x       
SWE-3 x       
SWE-4 x   x   
SWE-5 x   x   
SWE-6 x       
SWE-7 x       
SWE-8 x x x x 
SWE-9 x x x x 

SWE-10 x x x x 
SWE-11 x x x x 
SWE-12 x x x x 
SWE-13 x x x x 
SWE-14 x x x x 
SWE-15 x x   x 
SWE-16 x x x x 
SWE-17 x x x x 
SWE-18 x     x 
SWE-19 x     x 
SWE-20   x x x 
SWE-21     x x 
SWE-22   x x x 
SWE-23   x x x 
SWE-24 x       
SWE-25 x       
SWE-26 x       
SWE-27 x       
SWE-28 x       
SWE-29 x       
SWE-30 x       
SWE-31 x       
SWE-32 x   x   
SWE-33 x   x   
SWE-34 x   x   
SWE-35 x   x   
SWE-36 x   x   
SWE-37 x   x   
SWE-38 x   x   
SWE-39 x   x   
SWE-40 x   x   
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APPENDIX B: RESULTS 
 

 

 

Appendix B includes graph of air temperature-elevation gradients (TEG) and dew point 

temperature-elevation gradients (DTEG) for April 2020 through June 2021 (Figures B-1 through B-4). 

Figure B-5 is air temperature versus dew point temperature for May and June 2020 and 2021. Figures B-6 

and B-7 are TEG and DTEG values compared to wind direction. Figure B-8 presents observed snowmelt 

at the Joe Wright SNOTEL versus modeled. Figure B-9 shows the temperature melt factors used in the 

temperature index snowmelt model. 

 

Figure B-1. TEG for April 2020 to July 2021. The red line represents the ELR. The shading of the points 
represents the R2 value. 
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Figure B-2. TEG for 2020 and 2021 season. The shading of the points represents the R2 value. 

 

Figure B-3. DTEG for April 2020 to July 2021. The red line represents the Kunkel (1989) DTEG. The 
shading of the points represents the R2 value. 
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Figure B-4. DTEG for season 2020 and 2021. The shading of the points represents the R2 value. 

 

Figure B-5. Air temperature versus dew point temperature for May and June 2020 and 2021. The blue line 
represents a 1:1 line. 
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Figure B-6. TEG and wind direction for May and June 2020 and 2021. 

 

Figure B-7. DTEG and wind direction for May and June 2020 and 2021. 
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Figure B-8. Observed snowmelt versus modeled snowmelt for May and June 2021 at the Joe Wright 
SNOTEL. The modeled snowmelt uses the temperature and radiation index snowmelt model melt factors 
and reference temperature. The blue line represents a 1:1 line. The NSE between modeled and observed is 

0.97. 

 

Figure B-9. Continuous temperature melt factors incorporated in the temperature index snowmelt 
models (obs T & simpler model and local lapse T & simpler model) developed from the Lake 

Irene SNOTEL station (Fassnacht et al., 2017). 


