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ABSTRACT OF DISSERTATION 

ESTIMATION OF STRUCTURAL BREAKS IN NONSTATIONARY TIME 

SERIES 

Many time series exhibit structural breaks in a variety of ways, the most obvious 

being a mean level shift. In this case, the mean level of the process is constant 

over periods of time, jumping to different levels at times called change-points. These 

jumps may be due to outside influences such as changes in government policy or 

manufacturing regulations, Structural breaks may also be a result of changes in 

variability or changes in the spectrum of the process. The goal of this research is 

to estimate where these structural breaks occur and to provide a model for the data 

within each stationary segment. The program Auto-FARM (Automatic Piecewise 

AutoRegressive Modeling procedure), developed by Davis, Lee, and Rodriguez-Yam 

(2006) , uses the minimum description length principle to estimate the number and 

locations of change-points in a time series by fitting autoregressive models to each 

segment. 

The research in this dissertation shows that when the true underlying model 

is segmented autoregressive, the estimates obtained by Auto-PARM are consistent. 

Under a more general time series model exhibiting structural breaks, Auto-PARM's 

estimates of the number and locations of change-points are again consistent, and the 

segmented autoregressive model provides a useful approximation to the true process. 

Weak consistency proofs are given, as well as simulation results when the true process 

is not autoregressive. 
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An example of the application of Auto-PARM as well as a source of inspiration 

for this research is the analysis of National Park Service sound data. This data was 

collected by the National Park Service over four years in around twenty of the National 

Parks by setting recording devices in several sites throughout the parks. The goal 

of the project is to estimate the amount of manmade sound in the National Parks. 

Though the project is in its initial stages, Auto-PARM provides a promising method 

for analyzing sound data by breaking the sound waves into pseudo-stationary pieces. 

Once the sound data have been broken into pieces, a classification technique can be 

applied to determine the type of sound in each segment. 

Stacey Hancock 
Department of Statistics 
Colorado State University 
Fort Collins, Colorado 80523 
Fall 2008 
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Chapter 1 

INTRODUCTION 

1.1 The Change-Point Problem 

In recent years, there has been considerable development in non-linear time series 

modeling. One prominent subject in non-linear time series modeling is the "change-

point" or "structural breaks" problem. The change-point problem considers obser

vations ordered by some index, usually time, and postulates that their distribution 

changes at some unknown point in the sequence. The main objective is to detect the 

changes and estimate their locations. According to Zacks (1983), "The change-point 

problem can be considered one of the central problems of statistical inference...." 

The most common change considered is a mean shift, where the mean of the process 

is piecewise constant. These jumps may be due to outside influences such as changes 

in government policy or manufacturing regulations. Structural breaks may also result 

from changes in variability, changes in the spectrum, or changes in some other feature 

of the process. Other examples of change-point problems can be found in Jassby and 

Powell (1990), who consider problems in ecological time series data, and Dias and 

Embrechts (2004), who discuss finance and insurance applications. 

Change-point analysis, as discussed here, is concerned with a posteriori detection 

of change-points with a fixed sample size. Another area of research is the sequential or 

"on-line" study of changes in a process. Sequential methods are often used in problems 

of statistical control of industrial processes. For example, when manufacturing a 

product, data is collected and analyzed in real time, and the goal is to detect a 

change in the product as soon as possible after it occurs. Cumulative sum procedures 
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(CUSUM) are popular sequential change-point detection methods. See Zacks (1991) 

for a review of sequential methods. 

Fixed sample change-point analysis can be broken into two main problems: hy

pothesis testing and estimation. Hypothesis testing is concerned with testing a null 

of no change-points versus an alternative of one or more change-points. See Bhat-

tacharya (1994), Haccou and Meelis (1988), James, James and Siegmund (1987), 

Picard (1985), and Yao and Davis (1986) for a more comprehensive review of testing 

for change-points and for further references. This dissertation is concerned with the 

estimation side of the change-point problem. Rather than testing if change-points 

are present, we estimate the number of change-points and the change-point locations, 

then fit models to each segment. Estimating the change-points not only determines 

if one or more change-points are present, but gives further information about the 

number and locations of the change-points. 

The majority of the early literature on change-point estimation assumes inde

pendent normal data. In their seminal paper, Chernoff and Zacks (1964) examine 

the problem of detecting mean changes in independent normal data with unit vari

ance. Both Yao (1988) and Sullivan (2002) estimate the number and locations of 

changes in the mean of independent normal data with constant variance, and Chen 

and Gupta (1997) examine changes in the variance of independent normal data with 

a constant mean. Some research considers the change-point problem without as

suming normality, but still assumes independence. For example, Lee (1997) assumes 

independent observations from an exponential family, and Hawkins (2001) explores 

maximum likelihood change-point estimates for a general exponential family. Also, 

Lee (1996) considers a nonparametric approach for independent data with no distri

butional assumption. Other papers that explore change-points in independent data 

include Bhattacharya (1987), Jandhyala and Fotopoulos (1999), Yao and Au (1989), 

and Yao (1987). Bayesian approaches have also been explored, e.g., Fearnhead (2006), 

Perreault et al. (2000), Stephens (1994), Yao (1984), and Zhang and Siegmund (2007). 
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Recent literature is starting to focus more on detecting changes in dependent 

data, though the majority of this literature concerns hypothesis testing. Research 

on the estimation of the number and locations of the change-points includes Davis 

et al. (1995), who consider change-points in autoregressive processes, Kiihn (2001), 

who assumes a weak invariance principle, and Kokoszka and Leipus (2000) on the 

estimation of change-points in ARCH models. This dissertation examines a method 

for estimating the number and locations of the change-points that does not assume 

independence nor a distribution on the data, e.g., normal, and does not assume 

a specific type of change. The method can detect changes in the mean, variance, 

spectrum, or other model parameters. 

1.2 Automatic Piecewise Autoregressive Modeling (Auto-PARM) 

Davis et al. (2006) developed a procedure for modeling a non-stationary time 

series by segmenting the series into blocks of different autoregressive processes. A 

random process {Xt} is said to follow an autoregressive model of order p (or AR(p)) 

with mean p if 

Xt - P = </>i(AVi - P) H + 4>P{Xt-p - AO + <ret 

where {et} is a white noise process with mean zero and unit variance, and cp(z) = 

l — <j)\z — - • - — (f)pz
p 7̂  0 for all \z\ < 1. The condition on the autoregressive polynomial 

cj)(z) ensures that the process is causal. Autoregressive models have the unique ability 

to model any covariance function up to a certain lag. More precisely, for every non-

singular covariance matrix Tp+1 = {7(1 — j)}?j=x of a stationary process, there is a 

causal AR(p) process whose autocovariances at lags 0, . . . , p are exactly 7(0), . . . , 

7(p) [8]. This property makes autoregressive models ideal for approximating non-

autoregressive processes. 

The modeling procedure of Davis et al. (2006), referred to as Auto-PARM 

(Automatic Piecewise Autoregressive Modeling), uses a model selection criterion 
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called minimum description length to estimate the number of change-points, the lo

cations of the change-points, the autoregressive model orders, and the autoregressive 

model parameters. The class of piecewise autoregressive models that Auto-PARM fits 

to an observed time series {yt} with n observations is as follows. For j = 1 , . . . , m, 

denote the change-point between the j th and (j + l)st autoregressive processes as Tj, 

where r0 := 1 and rm + 1 :— n + 1. Then the j th piece of the series is modeled as an 

autoregressive process 

Yt=Xtj, t = T J _ I , . . . , T J - 1, (1.1) 

where {Xtj} is the causal AR(pj) process 

ipj := ((f>jfl, (f>j,i, • • •, 4>jtPj,(7j) is the parameter vector corresponding to this AR(pj) 

process with 4>jtPi ^ 0, and the sequence {et} is a white noise process with zero mean 

and unit variance. To ensure identifiability of the parameters, the model assumes 

that tpj ^ V'j+i f°r a n y j = l , . . . , m . That is, between consecutive segments, at 

least one of the AR coefficients, the process mean, the white noise variance, or the 

AR order must change. Note that if we denote the mean of the jth segment as fj,j, 

then 4>jto = Hj(l — <pjti — ••• — 4)jiPj). Given an observed time series {?/t}™=i> Auto-

PARM obtains the "best"-fitting model by finding the "best" combination of the 

number of change-points m, the change-point locations T\,... ,rm, and the AR orders 

Pi,... ;pm+\- Once these parameters are specified, we can easily compute maximum 

likelihood estimates of the AR parameters i/> • for each segment. 

The model selection criteria that Auto-PARM uses to obtain the best-fitting 

model is called minimum description length (MDL). The minimum description length 

principle is a method for model selection developed by Jorma Rissanen in the 1980's 

(see, e.g., [40] and [41]). Underlying the concept of MDL is the insight that any 

regularity or pattern in the data can be used to compress the data [17]. In terms of 



5 

coding theory, the "best" model for the data is the one that describes the data with 

the shortest code length, or the least amount of memory space required to store the 

data. Rissanen developed a universal coding system in which the code length of a 

data set using a given model can be expressed as the sum of the code length of the 

fitted model plus the code length of the residuals given the fitted model. In other 

words, the data can be described as patterns in the data plus leftover "noise". This 

interpretation is not unlike model selection criteria which fit a model to the data by 

minimizing the likelihood plus a penalty term for model complexity, however, MDL 

prevents overfltting automatically and does not require the often ad hoc estimation of 

a tuning parameter for the penalty term nor the assumption of an underlying "true" 

model. Using MDL as a model selection criteria has many other advantages. For 

example, MDL chooses a model that trades off goodness-of-fit with model complexity, 

adhering to the principle of parsimony. For further review and discussion on minimum 

description length, see Lee (2001), Hansen and Yu (2001), and Griinwald et al. (2005). 

If we denote the whole class of piecewise AR models by M. and any model from 

this class by T e M, then the MDL principle defines the "best"-fitting model from 

M as the one that produces the shortest code length that completely describes the 

observed data y = (yi,y2, • • •, yn)- Denoting the code length of an object z using 

model T by CL^(z), the code length of the observed data can be expressed as 

CLr{y) = CLF{f) + CLF{e\T\ 

where CL^i^T) is the code length of the fitted model jF and CL^^J7) is the code 

length of the corresponding residuals e = y — y conditional on the fitted model F. 

Thus, deriving expressions for CL^^F) and CLjr{e\^F) results in an expression for 

CLjp(y). The MDL principle states that the best-fitting model is the model T that 

minimizes CL^(y). Using Rissanen's results for encoding integers, bounded integers, 



and maximum likelihood estimates, we obtain the code length of the fitted model JF, 

CLj:{P) = log2 m + (m + 1) log2 n 
m+l m+l _ n 

+ E log2 Pj + E ^ r — log2 n,-, 
i = i j = i 

where n, is the number of observations in the ji'th segment. Rissanen demonstrated 

that the code length for the residuals e given the fitted model T is given by the 

negative of the log-likelihood of the fitted model T. Assuming the segments are 

independent, we can apply quasi-likelihood inference procedures to obtain the ap

proximation 

m+l r 

2 ~^~"> 2 " 0 1 ' n ' T CLAe\P) - E log2 e. 

*• - 1 

where V^ is an estimate of the covariance matrix of the vector of observations in 

the jth segment. 

Using logarithm base e rather than base 2, and using the standard approximation 

to the likelihood for AR models, we define the minimum description length for the 

piecewise autoregressive process model (1.1) used by Auto-PARM as 

MDL(m,ri , . . , , rm ; j9i , . . . ,pm + i ) = logm+ (m + l)logn 
m+l m+l Q m+l 

+ E l°ZPi + E ^ 1(W + E T los(2™J), (1.2) 

j = i j = i j = i 

where <jj is the Yule-Walker estimate of the white noise variance in the j th segment 

(see [13] for further details on the derivation of the MDL).1 Auto-PARM selects 
the best-fitting model for y as the model T G M that minimizes (1.2), which is 

l rrhe consistency proofs in the following chapters use conditional maximum likelihood estimates 
rather than Yule-Walker estimates. We can think of using conditional maximum likelihood estimates 
as being true the to MDL principle since these estimates then result in the exact -21og(likelihood) 
term (assuming a normal distribution on the errors) rather than the approximation that results from 
using Yule-Walker estimates. In the end, the Auto-PARM estimates are weakly consistent in both 
cases. 
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equivalent to choosing the model with the minimum code length CL^(y). If the 

number of change-points m is zero, logm is taken to be zero. Likewise, if an AR 

order pj is zero, logpj is defined to be zero, Of the five terms in (1.2), the first term 

represents the code length for m, the second the code length for n\,..., nm + 1 (which 

determine T\,..., rm), the third the code length for the AR orders p\,... ,pm+i, the 

fourth the code length for the AR model parameters, and the fifth the code length 

for the residuals given the fitted model. The best-fitting model is then found by 

minimizing the MDL with respect to the number of change-points, m, the change-

point locations, TJ, . . . , rm, and the AR orders, P i , . . . ,pm+i- Note that once these 

parameters are specified, the AR parameters within each fitted segment, ipj, can be 

easily estimated using maximum likelihood. This minimization is carried out using a 

genetic algorithm which is a numerical minimization technique that mimics natural 

evolution. See Pasia et al. (2005) for a review of genetic algorithms and Davis et al. 

(2006) for implementation details in Auto-PARM. 

1.3 Statement of the Problem 

This dissertation explores the theory behind Auto-PARM. Davis et al. (2006) 

showed that if the true number of change-points is known, the estimated change-point 

locations obtained by Auto-PARM are consistent for the true change-point locations 

if the underlying model is assumed to be piecewise autoregressive. They also demon

strated through simulations that the estimated number of change-points seems to be 

a consistent estimator for the true number of change-points. This research will prove 

that the estimated number of change-points and the estimated AR orders are weakly 

consistent for the true number of change-points and the true AR orders, respectively, 

and under certain circumstances, are strongly consistent. In addition, we will show 

that the estimated number and locations of change-points are weakly consistent as

suming only that the underlying process is piecewise stationary, strongly mixing and 
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satisfies a few other minor assumptions. This has implications for Auto-PARM's ap

plicability to real data in which the assumption of a piecewise autoregressive model 

is overly restrictive. 

Previous consistency proofs for the number of change-points in the change-point 

literature have been demonstrated by, e.g., Yao (1988), Lee (1995), Lee (1996), Lee 

(1997), and Kuhn (2001). Many of these papers use a modified version of the BIC for 

model selection, and all of the papers aside from Kuhn (2001) assume independent 

observations. In general, we will prove consistency by considering the difference 

between the MDL with the true number of change-points and the MDL with the 

wrong number of change-points. Strong or weak consistency follows if the MDL for 

the wrong model is larger than the MDL for the correct model for large n almost 

surely or in probability, respectively. An outline of the results is as follows. 

In Chapter 2, we show that, assuming the true process follows a piecewise au

toregressive model, the estimated number of change-points and the estimated AR 

orders are consistent for the true number of change-points and the true AR orders, 

respectively. As a tool for the proofs, in Lemmas 2.1 and 2.2 and Theorem 2.1, we 

use conditional maximum likelihood estimates in the MDL rather than Yule-Walker 

estimates. We first address the case where the true process has no change-points. 

Lemma 2.1 assumes that the AR order of the true process is known, and shows that 

the MDL using m > 1 change-points is larger than the MDL using no change-points 

for large n with probability 1. Lemma 2.2 extends Lemma 2.1 to the case where the 

AR orders are estimated from the data. Lemmas 2.1 and 2.2 imply that the estimated 

number of change-points and the estimated AR orders are strongly consistent for the 

true number of change-points (0) and the true AR order when the underlying process 

has no change-points. Theorem 2.1 uses Lemmas 2.1 and 2.2 to prove that if the true 

process has rrio > 0 change-points, then the estimated number of change-points and 

the estimated AR orders are weakly consistent for mo and the true AR orders. The 

last section of Chapter 2 shows that the estimated number of change-points and the 
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estimated AR orders are still weakly consistent for the true number of change-points 

and the true AR orders when we use Yule-Walker estimates in the MDL. Lemmas 

2.3 and 2.4 show weak consistency in the case where the underlying process has no 

change-points, and Theorem 2.2 shows weak consistency when the underlying process 

has m0 > 0 change-points. 

Chapter 3 shows consistency of the Auto-PARM estimates when the underly

ing process is not necessarily piecewise autoregressive, but piecewise stationary and 

strongly mixing, and satisfies some other general assumptions. The second section 

mimics the consistency proofs in Davis et al. (2006) to show that under this general 

model, when the number of change-points is known, if we choose a large enough AR 

order for each fitted segment, the estimated change-point locations are again strongly 

consistent for the true change-point locations. This result is stated as Theorem 3.1. 

In the third section, we adapt the arguments for Lemma 2.1 and Theorem 2.1 to show 

that the estimated number of change-points is weakly consistent for the true number 

of change-points if large enough AR orders are fit to each segment. These results are 

stated as Lemma 3.1 and Theorem 3.2. In the last section of Chapter 3, we describe 

some simulations using Auto-PARM on non-autoregressive data. 

Chapter 4 addresses a specific application of Auto-PARM to sound data ob

tained by the National Park Service. In this project, the National Park Service was 

interested in determining the proportion of man-made sounds in the parks. We used 

Auto-PARM to break the sound waves into approximately stationary segments, and 

then applied a classification algorithm to each segment. We also explored a method 

of windowing the sound wave and using linear discriminant analysis to classify each 

window. This second method of windowing the data showed promising results, and 

future work may include examining this problem in more detail possibly using statis

tical learning methods. 



Chapter 2 

CONSISTENCY OF AUTO-PARM ESTIMATES FOR A PIECEWISE 

AR PROCESS 

2.1 Introduction 

Consider the problem of modeling a nonstationary time series by segmenting the 

series into blocks of different autoregressive (AR) processes. Let m denote the number 

of change-points, and for k — 1 , . . . , m, denote the change-point between the kth and 

(k + l)st AR processes as rfc, where TQ :— 1 and rm+1 := n + 1. Let Pi,... ,pm+i denote 

the AR orders of the m + 1 segments. As described in Chapter 1, the number and 

locations of change-points plus the autoregressive orders, (m, TJ, . . . , Tm,p\,... ,pm+\), 

are estimated by minimizing the minimum description length (MDL), 

MDL(m,Ti , . . . , rm ;pi , . . . ,pm + i ) = logm + (m + l)logn 
m+1 m+1 r. m+1 

+ ^ l o g P f c + X ; ? * ± i l o g n f c + J i ; ^ l o g ( 2 7 r ^ ) l (2.1) 

fc=i fc=i fc=i 

where o\ is the conditional maximum likelihood estimate of the noise variance when 

fitting a pfcth order AR model to the fcth segment, and n^ is the number of obser

vations in the /cth segment, k = 1 , . . . ,m + 1. Note that the dependence of the 

minimum description length on the autoregressive coefficient parameter estimates is 

only through the white noise estimates, b\. 

This chapter shows consistency of the estimates obtained by minimizing the 

MDL. Davis et al. (2006) showed that if the true process follows a piecewise auto

regressive model, and the number of change-points is known, then the estimated 
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change-point locations are strongly consistent. We will prove that the estimate of the 

number of change-points and the estimated AR orders are weakly consistent. The 

proof of consistency will rely on detailed behavior of the sample covariances, which 

we examine through the functional law of the iterated logarithm. In the next section, 

we will introduce the functional law of the iterated logarithm and show how it applies 

to the sample covariances of autoregressive processes. In Section 2.3, we will review 

the piecewise autoregressive model introduced in Chapter 1. Conditional maximum 

likelihood estimation will be discussed in Section 2.4. Section 2.5 proves consistency 

of the estimated number of change-points and the AR orders for the case where there 

are no true change-points. Section 2.6 uses the results from Section 2.5 to show the 

main consistency result for the estimates of the number of change-points and the AR 

orders. 

The MDL defined in (2.1) uses conditional maximum likelihood estimates for the 

white noise variances. Alternatively, Davis et al. (2006) use Yule-Walker estimates in 

their implementation of the MDL. We use conditional maximum likelihood estimates 

as a tool to simplify the consistency proofs. In practice, Yule-Walker estimates are 

preferable due to computational speed and stability (numerical), and resulting causal 

estimates. We will address this difference in Section 2.7, denoting the MDL using 

Yule-Walker estimates as MDLy, and show how the consistency results extend to 

the case where the MDL is defined with Yule-Walker estimates. The only difference 

in the consistency results between conditional maximum likelihood estimation and 

Yule-Walker estimation is in the case where the true process has no change-points. 

When we use conditional maximum likelihood estimation in this case, we can show 

that consistency holds almost surely. However, when using Yule-Walker estimation, 

because Yule-Walker estimates use partial sums of the sample autocovariance function 

in which the sum index starts at t = 1 + h rather than from t = 1, we can only show 

consistency in probability. 
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2.2 Functional Law of the Iterated Logarithm 

An underlying principle used in this dissertation when proving consistency is the 

functional law of the iterated logarithm. Some background on this principle will help 

in understanding the proofs that follow. Suppose we are given a sequence {Yt} of 

independent and identically distributed random variables with mean 0 and variance 

1, and define the partial sum 

n 

1=1 

There are three fundamental asymptotic results about the behavior of Sn as n —> oo: 

the strong law of large numbers, the central limit theorem, and the law of the iterated 

logarithm. The strong law of large numbers states that 
s-U a.s. 

n 
The central limit theorem states that 

5 L£W(0 ,1 ) . 
n 

Notice that the strong law of large numbers normalizes Sn by dividing by n, which 

results in a constant, the mean, as its limit. On the other hand, the central limit 

theorem provides a normalizing factor for Sn that results in a distributional limit 

with a random variable as its limit. This difference in limits is due to the size of the 

normalizing factor. In the strong law of large numbers, the normalizing factor n is 

too large to determine an exact order of convergence for Sn, but in the central limit 

theorem, the normalizing factor y/n is too small. The law of the iterated logarithm 

addresses the delicacy of the normalizing factor by giving the exact normalizing factor 

necessary to insure that the supremum of the limit points is 1 and the infimum of the 

limit points is — 1. It states that 
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Sn = O ( \/n log log n 1 a.s. 

Equivalently, the law of the iterated logarithm can be stated in terms of the sample 

mean: 
S In 

P | limsup = = 1 | = 1. 
flog log n 
n 

Heyde and Scott (1973) proved a law of the iterated logarithm for stationary 

processes, and Hannan and Quinn (1979) used this result on sample partial auto

correlations to show consistency of AR order estimates. We will use the law of the 

iterated logarithm on sample covariances within each stationary segment of the pro

cess. However, since the boundaries between fitted segments are not fixed, we need 

a functional law of the iterated logarithm to determine the order of convergence for 

sample covariances with random boundaries found by minimizing the MDL. 

Strassen (1964) defined a functional law of the iterated logarithm for independent 

and identically distributed processes. Consider the continuous function r\n on [0,1] 

obtained by linearly interpolating 

Vn (-) := Sk 

\nj A/2'U log log n 

at t = k/n, k — 1 , . . . , n,2 In other words, for k < nt < k + 1, 

rjn(t) := (2nloglogn)~a/2 (Sk + {nt - k)Yk+l). 

Consider the set 

K := {./ e C[0,1] : /(0) = 0, / absolutely continuous, / / 2 < 1}. 
Jo 

Note that if / G K, then \f(t)\ < 1 for all t e [0,1] and K is uniformly bounded 

[5]. Let L({r]n}) be the set of a.s. limit points of the sequence of functions {r]n}. 

2The function rjn need not be a linear interpolation. Any continuous function such that the 
values of rjn(k/n) match the values Sfc/y^nloglogn is sufficient. 
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Then Strassen's functional law of the iterated logarithm (FLIL) states that L({rjn}) 

coincides with K a.s., and for any continuous functional 8 on C[0,1], L({6(i]n)}) 

coincides with 0(K) a.s. For example, letting 

S 
6(Vn) := Vn(l) = 

Jn 

y/2n log log n 

results in the basic law of the iterated logarithm. 

2.2.1 Applying the FLIL to Autoregressive Processes 

Throughout the consistency proofs in this dissertation, we use the functional 

law of the iterated logarithm on the sample covariances and sample means of auto

regressive processes. In this subsection, we will describe how to apply the FLIL to 

AR processes and discuss sufficient conditions in order for the FLIL to hold. 

Suppose the process {Xt} follows the causal AR(p) model with mean // 

Xt - // = </>i(Xt-i - ii)-\ h <j)p(Xt-p - //,) + att 

where {et} is a white noise process with mean zero and unit variance. It is always 

assumed that the AR process is causal. That is, we can write 

oo 

Xt- fx^'Y^^i aet-v 
3=0 

for t — 0, ± 1 , . . . , where Y1T=Q l^il < °° anc^ V̂o = !• The coefficients ipj are deter

mined by the relation ip(z) = YlTLo^j^ = V</)(z) where 4>{z) = 1 — 4>\ Z — • • • — 0r,Zy. 7=0 "3 — / r\^J » v u u ^ VV / — Vl-0- ~rp 

If we observe a sample of size n from this process, the sample autocovariance 

function (ACVF) is defined for 0 < h < n — 1 as 

(h) = i J2(Xt-X)(Xt^h-X) (2.2) 
t=l+h 

i n 

= — / „ XtXt-h — X , 
n 

t=l+h 
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where X is the sample mean. Let 7(h) = Cov(Xt, Xt-h) be the true covariance 

between Xt and Xt-h- Then Hannan (1974) showed, under very general conditions, 

the uniform convergence of sample autocovariances a.s. to the true covariances, 

lim sup Y){h) — 7(/i)| = 0, a.s., 
n-*oc0<h«x 

where ^(h) :— 0 for h > n. An et al. (1982) improved on the order of this result by 

showing that if p(n) = 0(logn)a for some a < 00, then 

max |7(/i)-7(ft)l = 0 I \-\og\ogn) . (2.3) 
0<h<p(n) \ \ Tl I 

For a sequence {Xt} of real-valued random variables with finite variance defined 

on the probability space (fl, Jr
1 P), one measure of dependence, introduced by Rosen

blatt (1956), is the set of strong mixing coefficients. For any two sigma algebras A 

and Bin (ft,.F,P), let 

a(A,B) = sup \P(Af]B)-P(A)P{B)\ 
A£A;BeB 

= sup \Cov(lAlB)\ < 1/4. 
AeA-BeB 

Then the strong mixing coefficients {«n}n>o °f the sequence {Xt} are defined by 

an = supfcGZ a(Tk, Qk+n), where Tk = o{Xt : t < k) and Qi = a{Xt : t> I). We make 

the convention that a0 = 1/4. The sequence {Xt} is called a strong mixing sequence 

if lim^oo an = 0. One can think of a strong mixing sequence as one in which 

observations become independent as the lag between them tends to infinity. Rio 

(1995) showed that the functional law of the iterated logarithm holds for stationary 

strong mixing sequences under the following condition. Suppose {Xi}iez is a strictly 

stationary and strong mixing sequence of real-valued mean zero random variables, 

with sequence of strong mixing coefficients {an}n>Q. Define the strong mixing function 

a(-) by a(t) = aqt] and denote the quantile function of \XQ\ by Q. Then the functional 

law of the iterated logarithm holds for the sequence {X,t}ieZ if 

/ ar\t)Q2(t)dt<oo. (2.4) 
Jo 

file:///-/og/ogn
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This condition simplifies if the process is strong mixing at a geometric rate. In this 

case, the functional law of the iterated logarithm holds if 

E(X*\og+\XQ\) <oo (2.5) 

(see Rio (1995) for proof). 

In order to apply the functional law of the iterated logarithm to sample co-

variances of a stationary strong mixing process, the cross products {XtXt-h) in the 

sample covariances must also satisfy the assumptions in Rio (1995). Assume for no-

tational convenience that the mean of the process is zero. Under the assumption that 

the mean is zero, we can use the function 

1 n 

r(h):=-YtXtXt-h (2.6) 

t=\ 

for the sample covariance rather than (2.2) since (2.6) has the same asymptotic prop

erties as (2.2) (see Brockwell and Davis (1991) p. 226). Assume the process {Xt} 

is strong mixing at a geometric rate. Then the processes {XtXt-h} are also strong 

mixing at a geometric rate, and we can apply the functional law of the iterated log

arithm to the sample covariances as long as the cross product processes {XtXt_h} 

satisfy (2.5). That is, the process {Xt} must satisfy the condition 

E{X4
0log+(X2

Q))<oo. (2.7) 

Note that condition (2.7) is automatic if the (4 + <5)th moment is finite for some 6 > 0. 

Thus, assuming strong mixing at a geometric rate and (2.7), if we let 

0(Vn) := inf K (i)} = M{-=Sk ) , 
o<t<i k y yjin log log n J 

where 
XtXt-h — E(XtXt-h) 

y/Var{XtXt-d sk-E 
t = i 
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then we can apply the functional law of the iterated logarithm to sample covariances 

calculated using the change-point locations that minimize the MDL. In other words, 

e.g., for an AR(p) process {Xt} with mean zero, the function 

/ ( A ) : = inf , (%.M--y{h))/y/Var(XtXt-h) 
0<A<1 2 log log n 

is bounded by one in absolute value a.s., where 7OA(^) *S ^n e s a m p l e covariance calcu

lated between observations X\ and X[\t] and *y(h) is the true autocovariance function 

of the process. This implies that inf0<A<i(7o:A(^) — l(h)) is 0(y/\og logn/n) for 

each fixed h, and thus, sup0<^<P inf0<A<i(7o:A(/i) - l(h)) is 0(y/\og log n/n) for 

some upper bound P < oo. 

Remark 1. When examining sample covariances, we can assume without loss of 

generality that the process mean \i is zero since the distribution of Xt — X is invariant 

to //. To show that the FLIL holds for the mean-corrected cross products used in the 

sample covariance function (2.2), consider, e.g., 

-. [sn] 

- V ( X t - X)2 = (Xt - M)2 - 2(X - n)(Xt - fi) + (X - /i)2, (2.8) 
n /—J 

t=i 

where s G (0,1). If we subtract off the variance of the process from the first term 

of (2.8), this term satisfies the functional law of the iterated logarithm. The second 

two terms in (2.8) are both of order log log n/n since each consists of a product of 

two random variables which each satisfy the FLIL. By the same argument, the FLIL 

will hold for cross-covariances (1/n) Y^t-li^t — X)(Xt-h — X). 

In many of the proofs, we use conditional maximum likelihood estimates for the 

AR parameters. This estimation method will be discussed in more detail in Section 

2.4, but we will state here the assumptions necessary for the FLIL to hold in this 

case. When fitting an AR(p) process, conditional maximum likelihood estimation 
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uses a definition of the sample covariance that includes initial unobserved values 

X-.p,X-p+i,... ,XQ. In other words, conditional maximum likelihood estimates use 

for the sample covariance, where Xa:b :— Ylt=aXt/(b — a + l). It follows from previous 

arguments that for a stationary strong mixing process {Xt} satisfying (2.7), the FLIL 

holds for 7*(/i). However, in order to apply the FLIL to these sample covariances when 

using conditional maximum likelihood estimation, we must show that the FLIL holds 

for 7*(/i) when we condition on any initial values X-p, X_ p + 1 , . . . , X0-

Suppose {Xt}^ follows an AR(p) process with mean /i conditioned on some 

initial values X_p, X_ p + 1 , . . . , X0- Then this conditional process can be expressed as 

t - i 

Xt - \i = ^2 ^o aet-j + aot(Xo - n) + • • • + apt(X^p - fi), 

where ait is a function, depending on t, of sums and products of (f>i,... ,<pp for i = 

0 , . . . , p. Defining the stationary process 

oo 

X't-n = ^i)j aet-j, 
i=o 

it follows that 

oo 

Xt -X't = ^2 V't+j ae-j + aot(XQ -fj)-\ h Opt(X-p - n). 
3=0 

If we assume that Y^t^t+j at~i tends to zero at a geometric rate as t goes to 

infinity, then since each coefficient ait tends to zero at a geometric rate, Xt - X't also 

tends to zero at a geometric rate a.s. as t goes to infinity. 

Remark 2. We can show that the functional law of the iterated logarithm ap

plies to the sample covariances of the process {Xt} conditioned on initial values 

X..p,X-p+i,..., XQ for some prespecifled upper bound P by showing that the dif

ference between the sample covariances for this process and the sample covariances 
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for the stationary process {X't} over an interval [1, [sn]] are of order \ / l o g l o g n / n 

uniformly in s where s G (0,1). This can be shown by considering the difference 

[sn\ 

- 2_^(XtXt-h - x'tx[_h) 
t=\ 

[sn\ [sn\ 

- ]T(x4 - x't)xt-h + - Y,(xt.h - xih)x[ 
II ll *—~— n 

=: I + 11. 

Note that \ijjj\ < Cr^ for some fixed C > 0 and 0 < r < 1. Therefore, 

[sn] / oo 

I| < -Y^at(\X.p\ + ... + \X0\)\Xt.h\ + -Y^l'£r^\e.j\\Xt.h 

\sn] 

t=\ \ j = 0 

n ^ 
j = o 

l-^t-Zil 

Choose a > 0 such that a l og r < —1/2 and write 

[a log n] 

'I - ; 5 > ) + i E . (•) n 

=: A + B. 

t=[o logn]+l 

Examining the first sum, we see that 

A < C(|X_p| + ... + |Xo|) + C£V'|e_ 
j = 0 

la log nj 

Now 
[a log n] 

- V IX^I < -[alogn]M[a 
n A—' n 

t=i 

n 

logn] 

t = i 

where M[aiogn] = rnaxi<t<[aiogn] |X t_k|. By Markov's inequality, we have 

- l 

> e 
n 

p|!^[,/!!l^!| Mv, 
n 

— Z-2a ^°sn p 
a logn / /log logn 

- l 

< £ • 
(a logn)5 E\Xt-h 

n \ v n 

4 

Xt-h\ > e 

(log log n) 
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Thus, by Borel-Cantelli, 

logn / /log log n\ 
-^~M[alogn] = o l y I a.s. 

Turning to B, we have 
n 

|B| < Cralog"(|X_J3| + --- + | X 0 | ) - ^ | X t _ , 
n 

4=1 

t=[o logn]+l 

< O ( ^ = ) + 0 ( 1 ) ^ - 1 1 | ^ | 

= 0 
'log logn 

n 

by the choice of a. 

2.3 Piecewise Autoregressive Process 

In order to show that the estimates obtained by minimizing the MDL are consis

tent, we need to assume a true model for the data. Throughout this dissertation we 

denote the true value of a parameter with a zero in the subscript or superscript when 

necessary (except for the AR coefficient parameters <t>k,j and white noise variances af). 

We assume in this chapter that the true process follows a piecewise autoregressive 

model with m0 change-points where the AR order in the kth segment is denoted by 

pi, k = 1 , . . . , m0 + 1. The change-point between the fcth and (k + l)st AR processes 

is denoted by r°, where TQ := 1 and r^0+1 := n + 1. We define A0 = (A°,.. . , A^0) 

such that 0 < A° < • • • < A l̂o < 1 and r° = [X°kn\ for k = 1 , . . . , mo, where [x] 

denotes the integer part of x. We set A° := 0 and A°rto+1 := 1, and define [XQTI] := 1 

and [AjL+1ro] := n + 1. Defined in th is way, knowledge of A^ determines r®, and b o t h 

will equivalently be referred to as "change-points", X°k being a "relative change-point". 

This is the standard setup when deriving asymptotic results in the change-point prob

lem. As n tends to infinity, the number of observations in each segment, n^, also tends 

to infinity, but time is re-scaled to the interval [0,1] (see [13]). 
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Let {ekit}, k = l , . . . , r a 0 + 1, be independent sequences of independent and 

identically distributed (iid) random variables with mean zero and unit variance. Then 

for given initial values ALp, A\_p+1, ..., XQ with P a preassigned upper bound, AR 

coefficient parameters <pktj, k — 1 , . . . , TTIQ + 1, j = 1, . . . ,p°k, and noise parameters <J\, 

. . . , amo+i, the piecewise autoregressive process {Xt} is defined as 

Xt = (pkfi + (f>k,iXt-i + • • • + cpktPoXt_po + akekit for £ G [rfc_i, rfc). (2.9) 

where i/>fc := ((j)k0,(f)ki,,.. ,(pk o,ak) is the parameter vector corresponding to the 

causal AR(pfc) process in the kth segment and ipk ^ î fc+i f°r a n y ^ = l)---iTOo 

(i.e., between consecutive segments, at least one of the AR coefficients, the process 

mean, the white noise variance, or the AR order must change). Note that if we 

denote the mean of {Xt} in the kth segment by [ik, then the intercept (pkio equals 

//fc(l — <pk,\ — • • • — 0fc,Pfc), and for t 6 [rk^i,Tk), we can express the model as 

Xt~ Vk = <t>k,l{Xt-i - Ilk) -\ + ^fc,p°(^t-p£ _ Vk) + <7kCk,t-

In order for the functional law of the iterated logarithm to apply to the sample 

covariances of this process, we will need to assume throughout this dissertation that 

the process 

Al. is strong mixing at a geometric rate, and 

A2. satisfies the moment condition (2.7) within each segment. 

When estimating the change-points, it is necessary to require sufficient separation 

between the change-point locations in order to be able to estimate the AR parameters. 

Choose e > 0 small such that 

e « min (A? - A ^ ) , (2.10) 
i=l,...,mo+l 

and set 

Al
m = {(Ai,. . . , Am) : 0 < Ai < • • • < Am < 1, Afe - Afc_a > e, k = 1 , . . . , m + 1} , 

(2.11) 
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where A0 := 0 and Am+i := 1. Setting p° = (p®,... ,p^0 + 1) , ^n e parameters m0, A0, 

and p° are then estimated by minimizing the MDL over m < M, 0 < p < P, and 

A £ Ae
m, where M and P are preassigned upper bounds for m and p*.. Denote these 

estimates by 

m, A , p = arginf < —MDL(m, A;p) > . 
m<M, 0<p<P, AeA^ t n J 

Though not explicit in the notation, it is important to note when studying asymptotic 

properties that the estimates m, A, and p all depend on n. 

Davis et al. (2006) showed that when the true number of change-points, mo, is 

known, the estimated change-point locations, \k, are strongly consistent for the true 

change-point locations, X°k, That is, A —> A0 a.s. as n —> oo. We would like to show 

that the estimated number of change-points, m, and the estimated AR orders, p, are 

also consistent estimators for m0 and p°, respectively. 

For large n, it is easy to show that the estimated AR orders will not underestimate 

the true AR order, so in our consistency proofs, we only need to consider the case 

where the estimated AR orders might overestimate the true AR order. To see this, 

consider the special case where ra0 = 0 and the true AR order is p where the pth AR 

coefficient, 4>p, is not zero. Suppose we fit an AR(p — 1) model to the observations. 

Then the estimated variance converges to the minimum of E(XP — a0 — a\Xp^\ — 

• • • — ap_iXi)2 over all a0 , . . . , op_i, which is greater than the true noise variance. 

Therefore, underestimating the true AR order results in an increase in the last term 

of (2.1) by an amount of 0(n). Likewise, for large n, the estimated number of change-

points, m, will not underestimate the true number of change-points. Consider the 

MDL using m change-points where m < rn0. Even though the penalty term for the 

MDL with m change-points is smaller than the penalty term for the MDL with mo 

change-points, when we divide by n, the difference in penalty terms goes to zero. The 

estimated white noise variance(s) under a model with too few change-points will be 

larger than the true white noise variance(s) for large n with probability 1, and thus, 
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the difference (MDL(m) — MDL(m0))/n converges to a positive constant as n tends 

to infinity. 

2.4 Conditional Maximum Likelihood Estimation 

Before stating any results, we develop notation for the conditional maximum 

likelihood estimates of the autoregressive parameters. Consider fitting an AR(pk) 

model with mean fik to the kth segment, i.e., the segment starting with observation 

Tk-i = [Afc_in] and ending with observation rk — 1 = [Xkn] — 1, 1 < k < m + 1. For 

simplicity, let a — rfc_i, b = rk — 1, and p = pk- Assume we are given initial values 

X-p, X^p+i, ..., X0 for the process. Let 

Xn-h = 
Xa+i 

(2.12) 

and 

K,-

V *> / 

/ 1 Xa-\ Xa-2 • • • Xa-P \ 
1 Xa Xa^i ... Xa-p+x 

(2.13) 

\ 1 Xb~i Xb~2 • • • Xh-p J 

Then the projection of Xa:fe onto the linear subspace spanned by the columns of M^.b 

is 

P M , (Xa:6) = M ^ : b , 

where 

^a:b M : / M ^ ) _ 1 M - / X a , 

= CU o:6' ^ a : 6 ' • • • ' Va-.b 
kPP 

T 
^0 
Ja:b> <t>Pa:b 

is the conditional maximum likelihood estimate of the intercept <j?a.b and autoregressive 

coefficients, cf)p
a.b = (0^b , . • •, ^„p

b)T, when an AR(p) model is fit to the kth. segment 
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[a, b]. The conditional maximum likelihood estimate of <J\ is then 

Xa : 6 - MlJP
a.M 

~2 _ 1 

1 
XQ:fe - M £ 6 < p (2.14) 

[(Afc - \k-i)n] 

For the remainder of this paper, we will use the divisor (Afc — \k-i)n rather than 

[(Afc — Afc„i)n] in (2,14). Since 

1 1 1 
[xn\ xn [xn]2 \ n 2 / 

this substitution will have no effect on the asymptotic results. 

2.5 Case of No Change-Points (m,0 = 0) 

We will prove consistency of the estimates for the number of change-points and 

the AR orders by first focusing on the case where there are no change-points in the 

underlying process. Lemmas 2.1 and 2.2 state strong consistency results for this 

specific case. Lemma 2.1 assumes the AR order is known, and Lemma 2.2 extends 

Lemma 2.1 to the case where the AR order is unknown and estimated by minimizing 

the MDL using conditional maximum likelihood estimation. 

Assume throughout this section that the true process follows the causal AR(p) 

model with mean fj, and no change-points 

Xt = fa + faXt^ + • • • + <j>pXt-p + aet, i = l , . . . , n , (2.15) 

where 4>0 = ^(1 — 4>\ — • • • — <pp) and the noise sequence {et} is iid with mean zero 

and unit variance. Initially, we will assume that the AR order p is known, and will 

fit the following two models to the dataset: 

Model 1: Fit an AR(p) model with no change-points. 

Model 2: Fit a piecewise AR(p) model with m relative change-points, 

XeAL. 
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The MDL for Model 1 is 

ir\ _ i _ 0 nry 

MDL(0;p) = log n + log p-I —logn + — log (2nd-2) 

T) I A yi 

= "~g— logn + l o g p + ~ [log(27r) + log (a2)] , 

where <r2 is the conditional maximum likelihood estimate of the AR(p) noise variance 

over the entire dataset. The MDL for Model 2 is 

MDL(m, X;p,... ,p) — logm + (m + 1)(logn + logp) 

ro+l p + 2 

fc=i 

+ 2 ^ 2—~~ s ( *' 
fc=i 

/ p + 4 N 

= log m + (m + 1) I log n + log p 

n 

2 

fc=i 
m+l 

log(27r) + ^ ( A f c - A ^ 1 ) l o g ( T 2 

and <J\ is the conditional maximum likelihood estimate of the AR(p) noise variance 

in the A;th segment, k — I,... ,m,+ l. The next result states that the estimate of the 

number of change-points is strongly consistent when there are no true change-points 

and the AR order is known. 

Lemma 2.1. Assume the true process {Xt} follows the AR(p) model given in (2.15) 

with no change-points (mo — 0) and initial values X^p, X-p+\,..., XQ, and satisfies 

assumptions Al and A2. Then with probability 1, for any m > 1, 

MDL(0;p) < inf MDL(m, X:p,... ,p) 

for n large. 
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Proof. Let A = argmin {-MDL(m, A;p , . . . ,p )} , and consider the quantity 
X&A* 

n 
[MDL(m, A;p, . . . ,p) - MDL(0;p) 

2 log m , A. log n 2m log p 
+ rn(p + A)-

n n n 
m + l 

+ Y^ log(Afc - Afc-i) 
n 

m + l 
k=l 

+ ^{\k-\k^)\oga2-\oga2 (2.16) 
k=\ 

We will show that (2.16) is strictly positive for n large with probability 1. The first 

four terms in (2.16) are positive, and each of these terms converges to zero at a rate of 

either \/n or log n/n. Since there are no change-points in the true process, a\ —> a2 

as n —* oo for all k = 1 , . . . , m + 1. Thus, since a2 also converges to a2, the quantity 

m + l 

^ ( A f c - Afc^i)log<7^ - l o g a 2 (2.17) 
k=\ 

converges to zero as n —> oo. We will use the functional law of the iterated logarithm 

on a Taylor series expansion of (2.17) to show that this quantity is of order log log n/n. 

Since log n/n > log log n/n for n large, the lemma follows. 

First consider the kth. fitted segment. For simplicity of notation, let a — fk^\ = 

[Afc_in] and b = fk — 1 = [Afcn] — 1. Then the conditional maximum likelihood estimate 

for the mean and autoregressive coefficients in the Aith segment is 

W r i \ / rP t^*= ML'MU M^Xa:fe, 
- i 

XV T, (2.18) 

where Xa:b is defined in (2.12), and M^.b is defined in (2.13). The conditional maxi

mum likelihood estimate of the variance in the fcth segment is 

Xa:b - MP
a:bi>a:t 

(Afe - Afc_i)n' 

Substituting (2.18) into (2.19) and taking norms, we obtain 

(2.19) 

CTj. = 

(Afe - Afe_i)n t—a 

a:b a:b T x? - xlMI, ( M*/M* J M * / ^ * a:b a:b 

- 1 

x„ 
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^6 
If we define the sample means Xa-i-b-i :— ]_)*=_ Xt-i/((^k ~ Afc-i)n) for i — 0 , 1 , . . . , 

and define the matrix V := < T»—i—r- Y]L„ Xt_;Xf_7- > , then we can express 

M_/M_ : 6 as 

M_„TM*6 = (Afc - Afc_i)n f 1 ^ 

_____ _____ _____ __— n 

where X is the p x l vector X := (X0_i :&_i,..., Xa_p:ft_p) . Using the formula for the 

inverse of a block matrix (e.g., p. 51 of [6]), we can express the inverse of M^:6 M^.b 

as 

(MS:. 
T ML ~l - 1 I 1 + X (V - X X )"XX - X (V - X X ) ~ l 

:b lVXa:bJ ~ (Afc - Afc__)n V - ( V - X J - V x ( V - X X V 

Similarly, we can write 

M £ / X 0 : 6 = (Afc - Afc_x)n ( X*b ) . 

where w is defined to be the p x 1 vector 

W := ((A.-Lon --i« XfX*-1' • • ' ' (Afc-)L)« --la Xt^t-p) • 

Note that the above expressions imply that the estimated AR parameter vector can 

be written as 

xa : 6-x>-xx)-V-xxa : b) \ / #> 
,:b (\-XXTy (w-XXa:b) J \ #.:6 

Now through tedious but straightforward algebra, by using the shortcut formula for 

sample covariances 
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we can write log a2, as a function of the sample covariances, 

log °l = 9 I ( l b - -
\(Xk - \h~\)n^a 

h-h 

i,j = 0,...,p 

where 

g{uij • hj = 0, . . . ,p ) = log «oo - [uoi,--- ,u0p) Mli=i 
- i 

/ UM \ 

\ u0p J 

Note that ity = Uj% for all i,j — 0,...,p, so that g is actually a func

tion of only p(p + \)/n + p + 1 independent (or free) variables. However, 

for ease of notation, we will treat the vector (utj : i,j = 0, ...,p) as 

( ^ 0 0 , Woii • • • > "Op; '"lOi ' u l l i • • • J u l p i • • • i u p0 i U p l i • • • , Upp). 

Since the logo-2, terms only depend on the sample covariances, and the sample 

covariances are invariant to shifts in the mean, we can assume without loss of gen

erality that the process mean is zero (/i = 0) for the remainder of the proof. Under 

this assumption, let ^(i) = E (XtXt-i) denote the true covariance between Xt and 

Xt-i, and let 7 = (7(1* — j\) : i,j — 0 , . . . ,p) be the vector of covariances ranging 

over lags 0 , . . . , p defined in such a way to match the indices of the vectors of sample 

covariances, 

1 
7fe : = 

[Ak - Ak-i)nt=ak 

ak-r.bk-i){-X-t-j -^ ak~j:bk-j) '• 

hj = 0 , ...,p , 

for segments k = 1 , . . . ,m + 1 where ak := rk^\ and bk := rk — 1. Carrying out a 

second order Taylor expansion about 5(7) on each of the logo-2, terms and the logo-2 
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fc=i 

term in (2.17), we obtain 

m+l 

^2(k - \k-i)loga2
k - log a2 

"m+l 

i 
"m+l 

J2(h - Afc_i)Vp(7)(7fc - 7) - V5(7)(7 - 7) 
=I 
m+l 

E ( ^ - ^ ) ( ^ - 7 ) T V 2 < 7 ( 7 D ( 7 , - 7 ) 

fc=i 

1 
+ 2 

fc=l 

( 7 - 7 ) i V 2
5 ( 7 * ) ( 7 " 7 ) (2.20) 

where 7 := (± E L i ( ^ - » ~ A"i_i:n_i)(Xt_j - X W ; n - j ) : i,j = 0, . . . ,p). The term 

Vg("y) is the gradient of 5(7/^ : i,j = 0, . . . ,p ) evaluated at 7. The Hessians of 

g(uij : i, j = 0 , . . . , p) evaluated at 7^ for k = 1 , . . . , m + 1 and at 7* are denoted by 

V2g(ll) a n d V2(7(7*), respectively. The variables 7* and ~f*k are between 7 and 7 or 

between 7 and -yfc, respectively, for k = 1 , . . . , rn + 1, and each variable converges to 

7 almost surely as n goes to infinity. 

The first quantity in (2.20) is zero since Y2T~i ( ^ ~ ^fc-i) = 1- The second 

quantity is of order O (log log n/n) since 

m+l m+l 

]T(Afc - Afc_i)(7* - 7) ~ (7 ~ 7) = Yl^k - Afc_i)7fc - 7 
fc=i 

m+l 

fc=l 

2_^(^k — Xk-i, 
fc=l (Afc - Afe^i)n 

7,, Xt-iXt-j 
t = Tk-l 

X, 

( l ^ - -

\ n t=l 

Tfc-i-irrfc-l-i^ffc-j-j^ffc-l-j : ^ J — 0, . . . , p 

j : 7,J = 0, . . . , p 
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.. / f l — 1 T2 — 1 n 

= -1 / J xt-iXt-j + y J xt^iXt^j + • • • + y xt-iXt-
\ t—l i=fl t=Tm 

n 

- ^2 xt-iXt-j • i, j = 0 , . . . , p 

JL . EliT1 xt-i. HH'i xt~j I _ £lUm **-<. ElUm
 X*-J 

\x n n (l _ Am) n n 

E n -y v-^n y 

n n 
: i , j = 0 , . . . ,p 

— Q + O ( - log log n ] = 0 ( - log log n 

The last line follows by the functional law of the iterated logarithm for partial sums 

of Xt-i (since we are assuming /J, = 0) and because Aa and (1 — Am) are bounded away 

from zero. When necessary, we can apply the functional law of the iterated logarithm 

by looking at the partial sums as 

T f c - l f f c - l " T f c - 1 - 1 

E (•) = £(•)- E « -
t=ffc_i t=i t=i 

Thus, (2.20) becomes 

m + 1 - / l \ 
^ ( A f c - A j f c _ i ) l o g ^ - l o g a 2 = 0 ( - l o g l o g n J 
fc=i ^ ' 

£ > * - >*-i)&k - 7 ) r V 2 . 9 ( 7 D(7, - 7) " (7 " 7) T V 2 . 9 (y)(7 - 7) 

Within the second order term of the Taylor series expansion, we can apply the func

tional law of the iterated logarithm to the sequences of mean-corrected cross-products 

as demonstrated in Section 2.2.1. It is then readily seen that the second order term 

in the Taylor series expansion is of order log log n/n with probability 1. Thus, (2.16) 

becomes 

- [MDL(m, A;p, . . . ,p) - MDL(0;p)] 

U= m{p + 4 ) ^ + 0(±)+0(Ww), (2.21) 
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which is greater than zero for large n with probability 1. • 

Still under the assumption that the data follow the AR(p) process defined in 

(2.15), now we will fit a model to the data which does not assume that the AR order 

of the true process is known: 

Model 3: Fit a piecewise autoregressive model to the dataset with m 

relative change-points, A G Ae
m. Estimate the autoregressive orders from 

the data, and denote these orders by p l 5 . . . ,pTO+1. 

Then the minimum description length for Model 3 is 

m+l 

MDL(ra, A; p i , . . . , pm+i) = log m + (m + 1) log n + ^ logpfc 

fc=i 
m+l „ 0 m+l / . . N 

+ E H1 log (<A< - A-)n) + E (
 2

 )n ̂  (2-2«) • 
k=\ k=\ 

Recall that the minimum description length for Model 2 is 

MDL(m, A;p, . . . ,p) = logm + (m + l)(logn + logp) 

k-\ k=\ 

and the minimum description length for Model 1 is 

nr\ _J_ Q 77 

MDL(0;p) = logn + logpH———logn + — log (2ira2) 
Zi Zj 

nr\ __L_ A y~i 

= ~Y~ loS "- + logp + - [log (27ra2)] . 

The next lemma states that with probability 1, the minimum description length for 

Model 1 is strictly smaller than the minimized MDL for Model 3 for n large, implying 

that the estimate of the number of change-points and the AR order estimates are 

strongly consistent when there are no true change-points. 
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Lemma 2.2. Assume the true process {Xt} follows the AR(p) model given in (2.15) 

with no change-points (mo — 0) and initial values X^p, X-.p+\,..., XQ, and satisfies 

assumptions Al and A2. Then with probability 1, for any m, > 1, 

MDL(0;p) < inf MDL(m, X;pu ... ,pm+1) 

for n large. 

Proof. Let A = argrnin{MDL(m, A;pi , . . . ,pm+i)}. Note that 
xeAc

m 

MDL(m, A;pi,... ,pm+i) - MDL(0;p) 

= MDL(m,X;pi,...,pm+i) - MDL(m, X;p,... ,p) 

+ [MDL(m, A; p,..., p) - MDL(0; p) 

We know from Lemma 2.1 that MDL(m, X;p,... ,p) — MDL(0;p) > 0 for n large with 

probability 1. Therefore, to prove Lemma 2.2, we need only show that 

MDL(m, A;pj , . . . ,pm+1) - MDL(m, X;p,... ,p) > 0 

for n large with probability 1. 

For Model 3, since the estimated AR orders will not underestimate the true AR 

order p for n large, it suffices to consider the case of fitting an autoregressive model 

of order p+ 1 to the kth segment, and autoregressive models of order p to each of the 

other m segments, so pk — p + 1 and pj = p for j ^ k, where p is the true order of 

the process. Then 

2 
- [MDL(m, X;pt,... ,pm+1) - MDL(m, A;p, ...,p)] 
n 

2( log(p+l ) - logp) , loglAfe-Afc,:) 
— f_ . 

n n 
+ ~ p + Ch - k-i) ( l o g ^ i - l o g ^ ) . (2.22) 

We will show that logo-! + 1 - \ogal = 0(\oglogn/n), and the result follows. 

file:///ogal


33 

Again define a — ffe__i = [Afc_in] and b = fk — 1 = [Afcn] — 1, 1 < /c < m + 1. 

Recall that 

1 
(T fc,p+l 

(Afe - Afc_i)n 
Xa:(, — P M P + I (Xa;b) 

where P M P + I (Xa:(,) is the projection of Xa;fe onto the (p+2)-dimensional column space 
a:b 

of 

/ 1 Xa-i Xa^2 • • • Xa-P Xa^(j,+i) \ 

Mp
ar = 

1 Xa Xa-\ • • • Xa^p+\ Xp 

\ 1 Xb-\ Xb~2 • • • Xb-p Xb-{P+x) ) 

= ( 1 X0_i;6_i Xa_2:6-2 ' - - Xa_p:6_p Xa_(p+1):b_(p_t_1) J . 

This projection is equivalent to the projection of Xa:f, onto the (p + 2)-dimensional 

column space of 

/ 1 Xa-l — Xa-l-b-l • • • XQ_(p+l) - Xa._(p+l);b_(p+l) \ 

M ^ 1 := 
1 Xa — l a - l i - l Xp — Xa-(p+l):6-(p+l) 

\ 1 Xb-l — X0_i :6_i • • • Xh-{p+\) — Xa^(p+i) :b_(p+1) y 

— ( 1 Xa_i:(,_i — X0_i;(,_il ••• Xa^(p+1):5_(p+1) — Xa_(p+1):(,_(p+l)l ) , 

denoted by PJCTP+I (Xa :b). Since the second through (p + 2)nd columns are orthogonal 
a;b 

to the first column of M ^ , it is not difficult to show that 

P M P + 1 (Xa :b) = Xa:bl + P^I P+l (Xa:fe — ^ o : b l ) 
a:b xvxOa:b 

where M 0 a : b is the matrix M ^ with the first column removed, 

/ Xa-i — Xa-i-,b-i • • • XQ_(p+i) — X 

M v+l 
ivi 0 a : b 

Xa — Xa^l;b~l 
(p+l)_^ ^a-(p+l):6-(p+l) 

Xp — ATa_.(p+i):b_(p+i) 
D \ 

\ Xb-i — xa-i-,b-\ • • • Xb-(p+i) — xa_(p+1):fe^(p+1) y 

( X a_i- ,6_i — A 0 _ i : ( , _ i l • • • Xa_(p+.i) ;j,_(p-)-l) — A^a_(p+i):6-(pH 1 ) 1 ) 

Therefore, the estimated white noise variance when fitting an AR(p +1 ) model to the 

A;th segment becomes 

a k,p+i 
(Afc - Afc_i)n 

Xa:fo — A ^ l — P^j p+i (Xa:j, — Xa:bl) 
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Likewise, the estimated white noise variance when fitting an AR(p) model to the fcth 

segment can be expressed as 

1 ~2 _ 
°k,p ~ 

(A* - Xk-i)n 

"v J) 

where M0a.{, is defined accordingly. 

Let Ya:6 = Xa:6 - Xa:bl. Then 

X0:6 — Xa.bl — PM0P.6 (X0:b — Xa:\X) 

!> P + 1 

Moa;(l — (Y0_i:6_i • • • Ya^(p+1):fe__(p+1)) , 

~ p+1 
and we can express the projection of Ya:(, onto the column space of M0a:6 as 

* M P + l Y a : 6 MQa:b <Pa:b 

tCb ' Ya-l:b-l + 

= (ip+1,1Y 
V-ri,:/; X o-

1:6-1 

2 p + l , p + l v 
Pa:b * a - ( p + l ) : f > - ( P + l ) 

I I P + t P V 
' ' -1" r a : 6 x a-p:b-p 

+ 
2.P+1.P+1 
ya:fe P M 0 ' , ( Y « - ( P + I ) : i - ( P + 1 ) ) + P M n ? . , . ( Y < * - ( P + l ) : M P + l ) ) 

where 

i p + i 
<Pa:fe 

./r P + 1 T T 
-1 _ P + 1 T ^ 

Moa:b
 JM0; :b j M 0 ; 6

 jYQ;b 

?p+ l , l ? p + l , p + l N 

°a;b ' • ' ' ' ™a:b 

and 

P M 0 f l : 6 ( Y a - (P+l) : ^(P+l) ) _ Ya-(p+l):fe-(p+l) - PM0^ : 6(Ya-(p+l):6-(p+l))-

The projection of Ya_(p+i):b_(p+i) onto the column space of P ^ v will be denoted as 

p 

FMoP
a:b(

Ya-(p+l):b-(p+l)) = M o « : b 0 a : 6 = ^<t%bY°-J,b-j, 

3 = 1 

where we use (j> rather than 0 to distinguish the estimated coefficients 

~ P / — p rp ~" p \ *• ~ p rp 

^a-.b— ( M 0a :6 M 0 a : b ) M 0 o : b Y a_(p + 1) : f c_(p + 1) 
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from the estimated coefficients 

fc = (M0l/Mol.yM0
P

a:b
TYa.M. 

Since PM0^ : Ya-(P+i):i,-(p+i) is in the span of M0^; b> 

= 4>Va-.b^a-\:b-l H h < ^ b Y a - p : & - P ' 

and thus the difference between the conditional maximum likelihood variance esti

mates in the fcth segment is 

1 -2 _ ~2 
ak,p ak,p+l 

(Afc — Afc_i)n 

1 

(Afc - Afc_i)n 
1 

Ya:fe - M0a:6 0a:b 

2 

(Afe - Afc_i)n 
P+I,P+I 
a:b PMof„JYB~(P+1):l,^P+1)' 

Note that 

1 

(Afc - Afc_i)n 
1 

Pivt p Y a _ ( p + i ) : Mo^ (p+l):f>-(p+l) 

Y„ 

where 

u 

(Afc - Afc_i)n 
(p+l):6-(p+l) u T V _ 1 u , 

(Afc-lfc_i)n S t = a ( ^ t - P - 1 ~ ^ a - p - l : 6 - p - l ) ( ^ t - l - ^ a-l:b-l) 

\ (Afc-Afc-i)n E ( = « ( ^ ( - P - 1 ~ AT a -p - l : 6-p - l ) (A y ' t - p - Xa^p..b-p) J 

and V = {vij )P
i =1where 

J%3 

1 

(Afc - A f c_!Jn t = 0 

1 b _ _ 
7« ~ — / . ( - X ' t - i - Xa-i:b-i)(Xt-j - Xa-j:b-.j). 
( A f c - A f c _ i ) n ^ 
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From this observation, it is readily seen that 

1 
cP > 0, (Afc-Afc_0n PM„: !6(Y-C^>*-b*i>: 

with probability 1, as n goes to infinity, where 

cp = min E[Xt_p-i - (aQ + a^X^i -\ h apXt-p)] . 
ao,ai,.,.,ap 

Therefore, if we can show that [4^'b
1'p+1) = O (log log n/n), it follows that 

loS °l,P ~ l o§ H,P+i = O (lo§ loS "A0-

Recall that £ ' = ( M o ^ M o * * 1 ) M O S ^ Y ^ - We would like to apply 

the functional law of the iterated logarithm on the (p + l)st component of (pa.b , 

denoted by ^!"b'
v+l • As discussed in Section 2.2.1, we can apply the functional law 

of the iterated logarithm to the sample covariances of the process {Xt}. Assume the 

true order of the kth segment is p. Then adapting the argument given on p. 171 

of Brockwell and Davis (1991), where we assume inner products are dot products in 

Euclidean space, we have, 

€ P+I.P+I _ 

Y a _( p + i ) : b _( p + i ) - P]vioP ;bYa-(p+i) :fc_(p+i) 

Ya ;b, Ya_(p+1) :b^(p+1)) - Y7j=\ â'fe (Ya:6> Ya_j-i6_j) 
(2.23) 

Ya-(p+l):6-(p+l) - Xjj=a ^a:b^a-j,b-j 

where PM 0 ; ; Y I - ^ D ^ - ^ I ) = M o L f c = E?=i €lY^]^3-

Define stj('r) = YJt=i Yt-iYt-j for r = 1, 2 , . . . , and 7(|i - j\) = Cov(A"t) Jft+ti_j|). 

To apply the functional law of the iterated logarithm on cf^+
b 'p+1, we need to show 

that it is a function of the Sy(.)'s. Consider the numerator of (2.23) 

p 

(Ya-.b, Ya_(p+1).b_(p+x)) - 2_^ <fai (Ya-.b, Ya_,-)6_j) 
J = l 

6 

Hw-^) - i ; | f f iL y ^ 
t=a 3=1 t=a 
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where £t=oyt**-(p+i) = s0,P+i{b)-s0}P+l(a-l) and Y%=a
YtYt-3 = s o , # ) - s o , j ( a - l ) 

By the projection theorem, the denominator of (2.23) becomes 

l|2 

Y a-(p+l):b-(p+l) - / J
lfai

Ya-j,b-j\ 

Y0_(p+l):6_(p+l) J - II 2 ^ (f^Ya-jfi-j 
3 = 1 

Y, a-(p+l):6-(p+l) M Oa:b0a :6 

= E F*2-b+i) - ^ : ^ M O : / M o : t 0 : : , 
t—a 

As in the numerator, ]£t=a *t-(P+i) = Sp+i.p+i(6) - sp+i,p+i(a - 1), and 

Mo^/MoL 7 , Yt-iYt-j 
t=a 

P 

= ^ ( 6 ) - % ( « - ! ) 
i j = l 

In both the numerator and the denominator of (2.23), 4>a:b is a function of the Sjj(.)'s 

since 

0a:fe Moa:b M0a :6) M0o;fc Ya_(p+1):6^(p+1) 

\sij(b) - ^ - ( a - 1) \ 

Therefore, (2.23) becomes 

1 fe 

sP,p+i(&) - s P : P + i ( a - 1) J 

? P + I , P + I _ 

°a:b ~ b — a 
t=a 

b-a + 1 
Z x 

b-a + 1 Moa/MoL M0a:6 Ya;b 

1 b 

b-a + 1 

1 
5 * b-a + 1 

- l 

Y ^ M 0 ; f e x 

6 - a + l M0:b
j M 0 a:6 

1 P T^ 

b-a + 1 
M 0 ; b

j Ya 

= h \h~Z—7T^'(&) -Sij{a- l))\i,j = 0, l , . . . , p + l j , 
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whereZ = ( E L ^ - I E L ^ - P ) . Let 7 ( | t - ; |) = C o v ^ , ^ ^ ) . Using 

a first order Taylor expansion about 7 = (-y(|i — j|); i, j = 0 , 1 , . . . , p + 1) on 0 ^ 'p+ , 

C T ' P + 1 = M 7 ( | * - J | ) ; M = O , I , . . . , P + I) 

+ v/i (7(|i - j I); z, j = 0, l , . . . ,P +1) (b_l + 1s - 1 \ , 

where s = (sy(fe) — sy(a — 1); i, j = 0 , 1 , . . . ,p + 1). Note that ^ - ^ goes to -y(\i — j\) 

as r goes to infinity. Since a = [A^-in] and b = [A n̂] — 1, for any i,j — l,...,p, 

1 
( s ^ - s ^ a - l ) ) - 7 ( | ' i - j | ) 6 - a + 1 

_ 1 / s ^ A j f e n - l J - S i ^ A f c - i n - l ) 

Afc - Xk-i ^ n 

1 / Sjj(Xkn- 1) - (Afcn- 1)7(N- j 

h - Xk-i V n 

Sjj&k-in ~ 1) - (Afc-in - l)7(|if - j | ) _ 2-y(|z - j/'|) 
n n 

{Xk ~ ^k-\)l{\i - j\) 

= l ^ K v ^ l o g , o g ' i ) + 0 ( v s l o g l o g " J - 0 U l l ' (224) 

where (2.24) follows by the functional law of the iterated logarithm. Since 

k - k - i > e > 0 and h(-y(\i - j\);i,j = 0,1,... ,p+l) = (j?+l*+l = 0, then 

(fathV+1) = 0(loglogn/n). By induction, l o g a ^ - \oga2
kp+s = O (loglogn/n) 

for any positive integer 5. Since the segment k was arbitrary, the result holds for any 

segment or segments. • 

2.6 Consistency of the Number of Change-points and AR Orders Esti
mates 

Lemmas 2.1 and 2.2 imply that if the true model is an autoregressive process 

with no change-points, then for any m > 1, the minimum description length for 

a fitted model with m change-points will be larger than the minimum description 
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length for a fitted model with no change-points for large n with probability 1. In 

other words, when the true model has no change-points, m is a strongly consistent 

estimator of 0, and p\,.. . ,Pm+i are all strongly consistent estimators of the true AR 

order, p. Now we would like to show that if the true number of change-points is 

mo > 1 and the true AR orders are p? , . . . , P™0+i, then m i s a consistent estimator 

for m0 and (pi , . . . , Pm+i) is consistent for (p°,. . . ,p^0 + 1) . Since we can only show 

that the difference between minimum description lengths for a model with the true 

number of change-points and a model with more than the true number of change-

points includes terms Op(l/n) rather than 0 ( l / n ) , we only obtain weak consistency 

of m and (px , . . . ,p™+1). 

Assume throughout this section that the true model is the piecewise autoregres-

sive process defined by (2.9). In order to prove weak consistency for the estimator of 

the number of change-points and the AR order estimates, we need only compare the 

following two fitted models: 

Model V: Fit a piecewise autoregressive model to the dataset with mo 

relative change-points, A € Al
mQ, where the AR orders, p? , . . . ,Pm0+i' a r e 

known. 

Model 2': Fit a piecewise autoregressive model to the dataset with m0 + 1 

relative change-points, a. G At
 +i • Estimate the autoregressive orders 

from the data, and denote these orders by pi,... ,pm o + 2 . 

If we can show that the MDL for Model 2' is larger than the MDL for Model V for 

large n in probability, then it follows that the MDL for a model with mo + s change-

points for any 1 < s < M — m0, where M is a prespecified upper bound for the fitted 

number of change-points, is larger than the MDL for Model 1' (the true model) for 

large n in probability. Since for large n, the estimated number of change-points cannot 

underestimate the true number of change-points with probability 1, this implies that 
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the MDL for a model with TO changepoints, where m ^ m0 and TO < M, is larger 

than the MDL for a model with TO0 change-points for large n in probability, and thus, 
P 

rh —» TO0 as n tends to infinity. 

The minimum description length for Model 1' is 

inf MDL(TO0,A;p?,...,p^0+1), 

where 

. - . . . . . , - m o + l 

MDL(m0,\]p°x,...,p
0

mo+l) = log TO0 + (m0 + l)logn 
mo + l mo + 1 0 I o 

+ E lo§^ + E ^f- lo§((^ - A*-» 2 
fc=i fc=i 

mo+l / x x N 

+ 2^ ~~~2—~log(27R7w> 
fc=l 

f̂c m0 *s the conditional maximum likelihood estimate of the process variance when 

fitting an autoregressive model of order p°k to the kth of the TO-O + 1 segments, and 

A^ is defined in (2.11). The minimum description length for Model 2' is 

inf MDL(m0 + l , a ; p i , . . . , p m o + 2 ) , 

where 

MDL(m0 + l ,a ;pi , . . . ,pm o+2) = log(m0 + 1) + (TO0 + 2) logn 

mo+2 m 0 + 2 - , r, 

+ E l o g ^ ' + E ~±Y~ log^aj ~ ^-^ 
m 0 + 2 / x 

E l a,- — a,'_i n „ , 
{ J

 2
J V log(27r^|TOO+1), 

i = i 

a"? IJ is t he condit ional m a x i m u m likelihood es t imate of t he process variance when 

fitting an autoregressive model of order pj to the jth of the m0 + 2 segments, and 

Ae
mo+l is defined in (2.11). Let 

A = argmiiJ -MDL(m0, A;p?,... ,p°m +1) > , 
Ae^0 I n J 
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and 

a = argmin^ -MDL(m0 + l , a ; p i , . . . ,pmo+2) \ • 

The next theorem states that the estimated number of change-points and the esti

mated AR orders are weakly consistent for their respective true parameters when 

the true process follows a piecewise AR model and meets the assumptions for the 

functional law of the iterated logarithm to hold for sample covariances within each 

segment. 

Theorem 2.1. Assume the true process {Xt} follows the AR(p) model given in (2.15) 

with ra0 change-points and initial values X^p, X-p+\,..., X0, and satisfies assump-

tions Al and A2. Then rh —> mo, where rh is the estimated number of change-points 

obtained by minimizing the MDL defined using conditional maximum likelihood white 

noise estimates. 

P 
Note that the statement rh —>• m0 is equivalent to the statement 

l imPf inf {MDL(m,a ;p 1 , . . . ,p m + 1 )}>MDL(m 0 ) A;p° , . . . ) p^ 0 + 1 ) ) = 1 
\ m<M / 

for a fixed upper bound M. We will show that this result follows if 

lim P (MDL(m0 + 1,6t\Pi,... ,pmo+2) > MDL(m0, X°;p°v ... ,p°mo+1)) = 1. 
n—>oo 

Before we prove Theorem 2.1 in the general case, we will outline the proof for 

the simple case where the true number of change-points is m0 = 1, each segment 

follows an autoregressive model with mean zero and order 1, and we fit AR(1) models 

to the data. Let A be the true relative change-point location3, i.e., r = [An] is the 

observation at which the change occurs. Denote the autoregressive coefficient in the 

first segment by 4>\ and the autoregressive coefficient in the second segment by 4>2-

3For this simple case, we drop the zero superscript on the true parameters for notational conve
nience. 
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Likewise, denote the white noise variances in the first and second segments by o\ and 

a2, respectively. Thus, fa ^ fa and/or o\ ^ o\. Compare two fitted models: 

1. Fit AR(1) models to two segments with relative change-point location A. 

2. Fit AR(1) models to three segments with relative change-point location esti

mates a.\ and &2 obtained by minimizing MDL(2, a l5 a2; 1,1) with respect to 

(ai,a2) € A\, where A\ is defined in (2.11). 

We would like to show that 

lim P(MDL(2, dx, d2; 1,1) > MDL(1, A; 1)) = 1, 
n^oo 

where MDL(1, A; 1) is the MDL for the first fitted model, and MDL(2, aua2; 1,1) is 

the minimized MDL for the second fitted model. Equivalently, we show that 

lim P(MDL(2, au a2; 1,1) > MDL(1, A; 1) 
n-*oo 

V ctj, a2 : e < ax < a\ + e < a2 < 1 — e) = 1. (2.25) 

In proving (2.25), we can assume without loss of generality that a.\ < A < a2 since if 

A < a\ or a2 < A, the same argument can be applied to the fitted segments (0, a.\) or 

(a2,1), repectively, as the argument we will use for the fitted segment (aj,«2) when 

«i < A < a2. Therefore, (2,25) follows if each of the following statements hold. 

(i) lim P(MDL(2, QJ, a2; 1,1) > MDL(1, A; 1) V au ot2 : 
n—»oo 

e < «i < A - (log log nf'/ log n; A + e/2 < a2 < 1 - e) = 1. 

(ii) For each finite positive integer N, 

lim P(MDL(2,a i ,a 2 ; l , l ) >MDL(1,A;1) \/aua2 : 
n—>oo 

A - N/n < aa < A; A + e/2 < a2 < 1 - e) = 1. 
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(iii) For every 8 > 0, there exists a positive integer N such that 

P(MDL(2, a j , a2; 1,1) > MDL(1, A; 1) V a , , a 2 : 

A — (log log n) 2 / log n < ax < A — N/n; 

A + e/2 < a2 < 1 - e) > 1 - 5 

for sufficiently large n. 

In addition to these three statements, three corresponding statements where a2 

(rather than Qi) is allowed to be close to A must hold. These corresponding state

ments can be proven in a similar manner as the previous three statements, and thus, 

it suffices to show only that the above three statements hold. 

Consider the difference 

-[MDL(2, a1; a2; 1,1) - MDL(1, A; 1)1 
n 

2log 2 + 3(log a-i + log(a2 - «i) + log(l - a2) 

- l o g A - l o g ( l - A ) ) j + ^ 
J n 

+ ai log a\)2 + (a2 - «i) log b\2 + (1 ~ a2) log a\2 

- [Xloga2
lA + (1-X) logal,} 

= 0 ( - ) +0[^) +ailog<T2o + (a2-a1)log<T2 
ji) \ n 

+ (1 - a2) loga2
)2 - [A log a2

 x + (1 - A) log a2 J . 

We will show that the probability this difference is positive for any a.\ and a2 with 

e < OL\ < A < A + e/2 < a2 < 1 — e converges to one as n tends to infinity. The penalty 

terms, 0(l/n) and 0(logn/n), are positive, so we need only show that the remaining 

terms are of a smaller order than the first two terms in probability. Partition the 

interval [0,1] into the intervals (0, CKJ), (CKJ, A), (A, a2), and (a2,1). The fundamental 

idea of the proof is to break the term 

a 1 loga 2
2 + (Q2 - a i ) log b\2 + (1 - a 2 ) l o g a 2

2 

- [ A l o g ^ + U - A ) ^ ^ ] (2.26) 
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into a sum over our partition of intervals. Then we can look at each true segment 

individually, and show that the difference between the terms in the two fitted models 

within each true segment is either positive or of smaller order than log n/n. The 

method we use to compare terms within each true segment will differ depending on if 

(i) (log log n)2/log n < A — ax, 

(ii) A — ot\ < N/n for some positive integer N, or 

(iii) N/n < A — ax < (log log n) 2 / log n for some positive integer N. 

These three cases correspond to statements (i), (ii), and (iii) made earlier. 

In order to look at (2.26) as a sum over the true segments, we must determine 

how to break up the terms from the fitted segments. The segments (0,ax) and 

(a2,1) do not contain any true change-points, so we can leave the terms axlogaj2 

and (1 — a2)log6"|2 as is. However, the interval (011,0:2) contains one true change-

point, A, so we will break up the term (o2 — ai)logcr|2
 a s follows. Let <p be the 

autoregressive coefficient estimate when fitting an AR(1) model to the second fitted 

segment, (0:1,0^). Then 

(a2-ai)log<3"L = (c*2 - a i ) l o g 
Er= pc2n\ — \ 

ain\ 
xt - <j>xt-x 

(a2 — ax)n 

= ( a 2 - a i ) l o g 

Define 

and 

Then we can write 

\a2r1}—1 

t=[Xn\ 
(a2 -ax)n 

\t=[ain] 

[An]-1 

RSS2il:= J2 (Xt-0Xt-i 
t—[ct\n} 

[02"] —1 

RSS2>2:= Y, (*t-<£*i-i) • 
t=[An] 

(a2 - ax) log b\2 = (a2-ax) log 
RSS2>i RSS2i2 

(a2 — ax)n (a2 — otx)n\ 

file:///a2r1}�
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Keep in mind that since (j> is calculated using observations [o^n],. . . , [«2n], even 

though RSS2,i is a sum over observations [a in] , . . . , [\n], it also depends on the ob

servations [An],..., [a2n]. Likewise, RSS2,2 depends on all of the observations between 

[ajn] and [«2n] even though it is a sum only over observations [An],..., [a2n]. 

We will first show that statement (i) holds. If A — ax > (log log n)2/log n, or 

equivalently, if A — a- » log log n/log n, and if A + e/2 < a2, then for large n, 

(a2 - a-) log 6-3,2 = ("2 - ai) log 

= ( « 2 ^ a i ) l o g 

RSS2ii RSS2,2 
T (a2

 — oc\)n (a2 — «i)nj 
A — a- RSS2J a2 — A RSS2)2 

where 

a2 — ex 1 (A — a.\)n a2 — a- (cx2 — A)n 

RSS2li \ , / >N, ( RSS2,2 A 
r —— + (a2 - A) log - 77-
(X-ai)nJ \{a2-\)nj 

RSS21 A ( RSS2 2 \ 
-——-— + (a2 - A log ^— , 
( A - a - J n / \(a2-X)nJ 

[An]-1 

T)CQ* \ / D Q C * 
. r t o o 2 1 \ , N / sxoo2 2 

> ( A - a - ) log [y——-— + (a2 - A) log 

rloo2 1 '• 

T>CQ* . 
n o o 2 ) 2 • 

= J2 (^t-^t-i) . 
t=[a\n} 

[a2n]-l 

= ^ (xt-<£2Xt-i) , 
t=[\n] 

4>\ is the AR(1) coefficient estimate fit to the segment (a-, A), and 02 is the AR(1) 

coefficient estimate fit to the segment (A, a2). The first inequality follows by concavity 

of the log function. The second inequality holds since, by definition, the conditional 

maximum likelihood AR coefficient estimates used in RSS2 - are fit to the segment 

(a-, A), by minimizing the quantity 

[An]-1 

t—[a\n] 

with respect to a. Likewise, 

[a2«] — 1 

RSS*,2 -=argmin{ J^ (Xt - aXt^)2 

t=[Xn] 
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The term (2.26) now becomes for large n, 

i.2 «i loS ^1,2 + ("2 - «i) log o-2i2 + (1 - a2) log o-3i 

- [Alog^ + U-AJloga^ 

> ai log a? 2 + (A - ai) log ( — 2\- ) - A log b\ 1 

\(A — a\)n 
P Q Q * 

^ \ M / n D 0 2 , 2 
(a2 - A) log ' (a2 - A)n 

+ (1 - a2) log ̂ 2 - (1 - A) log o\x (2.27) 

If we expand the first term in brackets using a second order Taylor series expansion 

on each of the log functions, as in (2.20) in the proof of Lemma 2.1, then we can show 

that the constant and first order terms cancel, and we are left with the second order 

terms. The first order terms are exactly zero rather than of order log log n/n as in 

the proof of Lemma 2.1 since in this case, we are assuming the mean of the process 

is zero, and thus can study asymptotics without estimating the mean. If we were to 

estimate the mean, i.e., minimize the quantity (Xt — a0 — aiXt-i]2 for the residual 

sum of squares, then the first order terms would again be of order log log n/n a.s. In 

Lemma 2.1, by applying the functional law of the iterated logarithm, we were able 

to show that the second order terms were o(logn/n) with probability 1, but since ot\ 

may now be within e of A, it is not clear if the functional law of the iterated logarithm 

still holds. This is because the second order terms involve sums of the type 

W - H - l Y Y 

(A — a.\)n 

and the functional law of the iterated logarithm may not apply to these sums if a\ is 

too close to A. We will show t h a t if A — ax > (log log n ) 2 / l o g n, t h e functional law of 

the iterated logarithm between observations [ain] and [An] still holds. 

Let 7 denote the vector of estimated covariances for the segment (at, A), 

'y-v[An]-l Y2 \r^[^n]~l y y y-\[An]-l y y y-\[An]-l yi \ 
l^t=[arn\/^t l^t=\pcxn]^t^t-\ L^t=,\ain\^t-\^t l^t=\axn\^t-\ \ 

7 := (A — ot\)n ' (A — a.\)n (A — a.\)n (A — a.\)n 
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Then the "(i,j)th" component of 7 — 7 for i,j — 0,1, where 7 is the vector of true 

covariances for the segment (0, A), is 

Eau(^-^-i-7(ii-jD) 
(A — a\)n 

1 (YSt'iXt-iXt-i-^i-m 
\ — oc\\ n 

n 

which, by the law of the iterated logarithm, is bounded by 

OfyMoglognj 
(2.28) 

A — a\ 

Since A — a\ » log log n/ log n, (2.28) is o(l), implying that 7 —> 7, and hence the 

term 7* in the second order term of the Taylor series expansion (which is between 7 

and 7) converges to 7. Thus, the corresponding second order term is bounded by 

,. .log log n/n log log n/n / logn 
(A - « ! ) — — = — == 0 (A — «i)2 A — o.\ \ n 

Since this is of smaller order than the penalty terms when we subtract 

(2/n)MDL(l,A;l) 

from 

(2/n)MDL(2,ai )a2 ; l , l ) ) 

and since the second term in brackets of (2.27) is of order log log n/n by Lemma 2.14, 

we conclude that 

/2 
lim P( -[MDL(2, QI ,Q 2 ; 1, 1) - MDL(1, A; 1)] > 0 V a.u a2 : 

n-+oo \n 

A - «! > (log log nf I log n; A + e/2 < a2 < 1 - e J = 1. 

4We can apply Lemma 2.1 to the segment (A, 1) since a2 - A > e/2, treating e/2 as the "e" in 
Lemma 2.1. 
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Next consider statements (ii) and (iii), where ( log logn) 2 / logn > X — oc\. In 

statement (ii), since A — «i < N/n for some positive integer N, we cannot consider 

the quantity RSS2 i/[(A — a\)n] since this quantity does not necessarily converge to 

the true variance in the first segment. Instead, since RSS2,i only depends on a finite 

number of terms and hence is Op(l), we can use the fact that 

RSS2,i _ „ / 1 \ 

(a2 - ai)n p \nj ' 

In this case, letting y :— RSS2,2/((«2 — X)n) for simplicity of notation, 

RSS21 RSS2.2 
(a2 - <*i) log £2,2 = (a2-an)\o£ 

— (a2 - a^ log 

(«2 ~ o.i)n (a2
 — o-x)n 

On 
n + 

a2 - X 

a2 - otx 
•y 

+ 
CX\ 

= ( a 2 - a i ) l o g 

= («2 - «l)l0g 

OL2
 — Oi\ 

1 

y . y 
a2 - OL\ 

. . . A - «! a 2 - «i 
Op ( - ) - — • y + - • y 

«2 — Ot\ a2 — oc\ 

0„\-)+y 
n 

(2.29) 

since A — a.\ — 0(l/n). If we perform a Taylor expansion on the log function about 

y, then (2.29) becomes 

R), («2 -ai)(logy + --Op[-
V y \n 

where R is a remainder term with order Op(l/n
2). Therefore, 

(a2 - a i ) log <72i2 = ( c*2 -a i ) log ( 77 7 ^ ) + Op 

which equals 

(a2 - A) log 
RSS2 

(a2 - X)n 

+ ov[-(a2 — X)n/ ' \n/ 

since (A — a^) log (RSS2,2/[(«2 — ^) n D = Op(l/n). By the definition of conditional 

maximum likelihood estimates, for large n, 

(a2 - a i ) log a\2 > (a2 - A) log f 
(a1~X)n)+U'\nl' 
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where RSS2 2 is defined as before. This implies that for large n, '2,2 

ai log <r2)2 + (a2 - «i) log CT|I2 + (1 - a2) log afi2 

> ^log^ + ^ - ^ l o g ^ ^ - ^ - j + O ^ - j 

+ (l-a2)log£f i2, 

and, therefore, (2.26) becomes 

«i l o§ ^ u + (a2 - «i) log o-2,2 + (1 - a2) log a|i2 - [A log b\x + (1 - A) log a\x 

> «i log o\2 + Op I - J - A log a2
a 

(a2 - A) log 
RSS 2,2 + (1 - a2) log <r3

2
 2 - (1 - A) log a\x 

The first term in brackets is Op(log log n/n) by a Taylor series expansion argument. 

The second term in brackets is again of order log log n/n a.s. by Lemma 2.1. Thus, 

(2.26) is greater than or equal to something of order log log n/n in probability, and 

therefore, for each finite positive integer N, 

lim P(MDL(2, £*!, a2; 1,1) > MDL(1, A; 1) V aa, a2 : 
n—>oo 

A - N/n < «a < A; A + e/2 < a2 < 1 - e) = 1. 

Now consider statement (hi): N/n < A — ot\ < (log log n) 2 / logn for some positive 

integer N. We showed previously that 

RSS2,i (a2 - a a ) l oga 2 i 2 > (A-ax) log 

+ (a2 - A) log 

(A — a\)n 
RSS 2,2 (2.30) 

( a 2 - A)n, 

by concavity of the log function. In this case, we will show that with high probability, 

RSS2,x/((A — ot\)n) is greater by a fixed (small) constant n > 0 than the true variance 

in the segment (0, A), o\. This will allow us to replace RSS2,i in the inequality (2.30) 

with (A — a.\)n{o\ + n) for some small n > 0. 
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Suppose that (pi ^ <p2. Intuitively, since oc\ —» A as n tends towards infinity, 

for large n, the fitted AR coefficient in the segment (ai ,a2) , 4>, should be close to 

the true coefficient of the segment (A, 1), 02, rather than the true coefficient of the 

segment (0, A), <fii. Thus, if we define 

c ;= E (Xt+i - <p2Xt) , 

where {Xt} is a stationary process following an AR(1) model with AR coefficient 4>\ 

and white noise variance a2, then if N —> oo, RSS2jl/[(A — a,\)n] converges to c in 

probability as n —> oo, and 

c = E (Xt+i - <hXtf 

= J B[(0 1 X f -0 2 X t ) + ( X t + 1 - 0 1 X t ) ] 2 

= ^((0! - fo)Xt)
2 + E[2(<pi - (h)Xt(Xt+1 - <j>xXt)} 

+ E(Xt+1 - <l>xXt)
2 

= E(((f)l-cf>2)Xt)
2 + a2 

> a\. 

The cross-product term is zero since Xt+i = 4>\Xt + cri^t+i where {et} is white noise 

with mean 0 and unit variance, Xt is independent of {cj}j>t, and thus, 

E(Xt(Xt+1 - faXt)) = a1E{Xtet+l) = 0. 

We would like to show that for every 5 > 0, there exists a positive integer N 

such that with probability greater than 1 — 5, 

H.SS21 c -f- a 
2 

> —^-L (2.31) 
(A — ot\)n 2 

for every a\ such that [(A — a.i)n] = N + 1, N + 2,..., (log log n)2. Recall that RSS2,i 

depends not only on a.\, but also on ce2, since the fitted AR coefficient in the residual 

sum of squares is calculated between observations [a.in] and [a2n]. 
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To prove (2.31), first assume that the fitted coefficient between a\ and a2 is 

exactly the true AR(1) coefficient of the second true segment, 02. Then 

[An]-1 

t=[a in ] 

Since the process {Xt} is stationary in reverse time, we have, with probability 1, 

E (Xt - faXt-i) 

t = - i 

as K goes to infinity. This implies that for every 5 > 0, there exists an iV > 0 such 

that with probability greater than 1 — 5, 

£ K 2 
t=-\ 

for all K > N. Now, stationarity of the process implies that with probability greater 

than 1 — 5, 
RSS2>i c + u\ 

(A — «i)n 2 

for all ax such that [(A - ax)n] = N+ 1,N+ 2,..., (log log nf. 

To remove the assumption that the fitted coefficient is the true second coefficient, 

note that for any 4>', 

Er=*i [(** - hxt-r)2 - {xt - 0%-Q2] 
K 

= W - <H) ^ + (02 - W ) )~ ^ • 

It follows that for any 5 > 0, there exists iV > 0 and (small) r > 0 such that with 

probability greater than 1 — 5, 

E ; £ i ( * « - ^ * t - i ) 2 c + 2 ^ 
# 3 

for all K > N and all 4>' satisfying |02 —0'| < v. Finally, note that the fitted coefficient 

in the segment (c*i, a2) with (log log n)2 < (A — «i)n and (a2 — A)n > en/2 should be 

close to 4>2 with high probability. 
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Therefore, since (2.31) holds, in the case where </>i 7̂  </>2, for any 5 > 0, there 

exists an integer N > 0 such that with probability greater than 1 — 5, 

RSS2,i 
> a\ + r\ (2.32) 

(A — o.\)n 

for every ct\ such that [(A — aj)n] = AA + 1, A/ + 2 , . . . , (log log n)2 and for some 77 > 0. 

Thus, for N/n < A — a,\ < (log log n)2/ log n and for A + e/2 < a2 < 1 — e, 

/ M -2 ^ / \ M / R-SS2.1 \ , / x N l / RSS2,2 
(a 2-ai) log<T 2 2 > (A-Qijlog yr \ - + (a2 - A) log (A — ati)nj \ ( a 2 —A)n 

RSS2)2 
> (A - ax) log (fff + 77) + (a2 - A) log f 

for large n with high probability, so (2.26) becomes 

(a2 - A)n 

3,2 Qi log a i 2 + (a2 - «i) log <J2i2 + (1 - a2) log a, 

- [Woga^ + il-X^oga^] 

> [ax l o g a ^ + (A - ai) log (a? + 77) - A l o g ^ J 

Rbb2 o 

+ (a2 - A) log 
(a2 - A)n 

(1 - a2) log <r3
2

 2 - (1 - A) log a\x (2.33) 

Consider the first term in brackets in (2,33). Let 4>i:ai denote the fitted AR 

coefficient between observations 1 and [na\] — 1, and let (f)\.,\ denote the fitted AR 

coefficient between observations 1 and [nX] — 1. Then 

°\A = An 

and 

Define 

-2 _ J2t=l (Xt+l - <S>\:axXtY 
(Ti 9 — -'1,2 

~2 

a\n 

a (A — a.\)n 
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Then since 

we have 

which implies 

[An]-1 [An]-1 

t = l t= l 

Ana-! j < ainffj 2 + (A — ai)naf, 

^1,1 < y ^i>2 

A — OL\ 
0"i . 

Also, since d\x, a\2, and a\ all converge to of as n goes to infinity, by choosing N 

large enough, we have \a\l — of | < r/, |of 2 — of | < rj', and |of — of | < rj' with high 

probability, where rf is a small positive number depending on rj to be determined 

later. If \a\2 — a\\ < rj' and |of — of| < rj', then the first term in brackets in (2.33) 

becomes 

ax log of2 + (A - ai) log (of + 7?) - A log of a 

> a.\ logoff + (A - «i) log (o"i + rf) - A log 

> «i log of2 + (A - «i) log (of + 77) - A log 

Oil ~2 A — «i 0̂ 

T ^2 + -^ra^ 
y ^1,2 + —j— (Vi+V) 

a 1 
= aj logoff + (A - aj) log (of + 77) - A log [of]2 + ( l ~ y ) (<?l + v' ~ ^1,2 

= ai log of >2 + (A - ai) log (of + 77) 

> (A - a,)[iogW + „) - iog*y - A (1 - ?i) ( ^ - 1 ) 

since log(l + x) < x, and thus, 

«i log of 2 + (A - «i) log (a2 + 77) - A log a\x 

> (A-

> (A-

a i ) 

« i ) 

log 

log 

V ^1 ,2 / 

^ of + 77 A 

V o f + 7/7 

-i + v' + 1] 
< 2 

erf — rf 
(2.34) 
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since o\ — rf < a2
2 < a\ + rf'. Now we choose rf > 0 so small that the term inside 

the brackets in (2.34) is positive. This implies that for any given 5 > 0, there exists 

a positive integer N such that 

P(ax log a2
l}2+ {X-al) log (aj + rj) - Xloga2

hl > 0 

V ax = A - N/n, X-(N + I)/n,..., A - log log n/log n) > 1 - 5 

for large n. Again, the second term in brackets in (2.33) is of order log log n/n by 

Lemma 2.1. Thus, (2.26) is greater than or equal to something nonnegative plus 

something of order log log n/n in probability, and therefore, for every 5 > 0, there 

exists a positive integer N such that 

F(MDL(2, aua2) 1,1) > MDL(1, A; 1) V au a2 : 

A — (log log n) 2 / log n < OL\ < A — N/n; 

A + e/2 < a2 < 1 - e) > 1-5 (2.35) 

for sufficiently large n. 

In the case where fa = fa = </>, but aj ^ ffj) the argument is slightly modified. 

Note that since the three fitted autoregressive coefficients for the segments (0, a\), 

(ai,a2), and (a2,1) should all be close to the true autoregressive coefficient, <fi, we 

have RSS2a/((A - ax)n) -> a2 and RSS2,2/((a2 - A)n) -> tr2
2. Define 

fl:=4-l-log(4). 

Since x > log(l+x) for all x ^ 0, we know that R > 0. By expanding log(u+w(v — u)) 

about u using a Taylor series expansion, we can show that there exists a small c > 0 

such that for every u, v, w satisfying \u — o\\ < c, \v — o\\ < c and 0 < w < c, 

log{u + w{v — u)) > logu H—w{v — u) —. 
Hi O 

Since limc^o('(V'w — 1 — log{v/u)) = i?, by continuity, R > 0 implies that 

v / v \ 27? 
- - 1 - log ( - ) > — 
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for u and v satisfying \u — o\\ < c and \v — o\\ < c (if necessary, making c smaller). 

Then, since 

[1 — w) logu + wlogv = logu + wlog ( — j 

,'v 2iT 
< logu + w I 1 — 

U 3 , 

it follows that 

log [(1 — w)u + wv] = log[it + w(v — u)} 

> logu H—w(v — u) 
u 3 

> (1 — w)\ogu + wlogw -\——- (2.36) 

for every u, v, w satisfying \u — a\\ < c, \v — a\\ < c and 0 < w < c. Letting 

(A — ai)/(ai2 — ai) = w, RSS2,i/((A — a.i)n) = v, and RSS2,2/((o;2 — A)n) = u, we can 

now apply (2.36) to (a2 — a\) log<r|2 as follows: 

( « 2 — « l ) logO"22 = («2 — a\)\og[%UV + (1 — Vj)u) 

> (a2 — «i)[(l — w) logu + wlogv + wR/3] 

= (a2- A) logu + (X-al)(logv + R/3) 

> (a2 - A)log?i+ (A - ai)logQ, 

where Q is any number satisfying Q > a\ and logQ < loga\ + R/3. (Note that (5 

plays the role of a\ + r] in (2.32).) The first inequality above holds if \u — a\\ < c, 

\v — o\| < c and 0 < iu < c. For n large, w < c since A — ax < (log log n) 2 / log n. 

Also, for large n and large AA, RSS2,i/((A — a)n) and RSS2i2/((tt2 — A)n) are close to 

Cj and of, respectively, with high probability. The second inequality holds when v is 

close to a\. It follows that the above inequality holds with probability greater than 

1 — 5 if iV is large enough. 

Therefore, for N/n < A — a.\ < (log log n)2/ log n and for A + e/2 < a2 < I — £, 

(a2 - « i ) logo\2 > (a 2 -A) logf- ; — ^ - J + (A - ai)log<5 
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for large n and large N with high probability, so (2.26) becomes 

«i log<T2
?2 + (a2 - «i)log0-32 + (1 - a2)log<72

2 

- [Aloga^ + Cl -AJ loga^J 

> [«! log o-j2 2 + (A - on) log Q - A log a2 J 

/ RSS2 2 \ 
+ a2 - A log ^~-

+ (1 - a2) log <73
2
>2 - (1 - A) log a2

2il . 

As in the case where (pi ^ 0 2 , since b\2 —* a2 and afj —> of as n goes to infinity, 

the first term in brackets is nonnegative with probability approaching 1. Again, 

the second term in brackets is of order log log n/n by Lemma 2.1. Thus, (2.26) is 

greater than or equal to something nonnegative plus something of order log log n/n 

in probability, and therefore, for every 5 > 0, there exists a positive integer iV such 

that (2.35) again holds for sufficiently large n. 

Suppose now that the true process still has one true change-point where each 

segment follows an AR(1) model, but now the means of the two true segments, Hi 

and n2, are not necessarily zero. Then when examining residual sums of squares, 

rather than minimizing the quantity J2(Xt ~ aXt~\)2 with respect to a, we minimize 

the quantity Yl(Xt — ^o — ai-^t-i)2 with respect to ao and a,\. In this case, we denote 

the true AR parameters in the first true segment by 01O and 4>\,\-, and the true AR 

parameters in the second true segment by </>2,o and 02,i> where 01>o = /Ji(l — 0i,i) and 

02,o = ^2(1 — 02,i)' F° r cases (i) (loglogn)2/logn < A — a\, and (ii) A — ot\ < N/n 

for some positive integer N, this difference has no effect on the previous arguments. 

For case (hi) N/n < A — a,\ < (log log n) 2 / log n for some positive integer N, we need 

only show again that with high probability, RSS2,i/((A — ot\)n) is greater by n > 0 

than the true variance in the segment (0, A). 
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Under the assumption of case (iii), if we assume 0 ^ ^ 02,i and define 

c := E (Xt+i - 02,o - (p2,iXt)
2, 

where {Xt} is a stationary process following an AR(1) model with mean fi\, AR 

coefficients 0liO = /ii(l — 0i,i) and 0Xil, and white noise variance af, then if Ar —> oo, 

RSS2,i/((A — ai)n) converges to c in probability as n —> oo. To see that c > of, we 

have 

C = E (Xt+i - 02,0 - 02,1^", 2̂ 

= £ ; ( (x m - / i 2 ) -~0 2 ] 1 (x t - / i 2 ) ) 2 

= £ [(0la - M{Xt - /ii) + (Xt+1 - /ia) - 0U(A^ - ^)f 

= i?((01,1-02,1)(Xt~-/y,1))2 + (r1
2 

> of. 

By replacing X4 by Xt — JJL\ in the mean zero argument, (2.35) follows accordingly. 

If 0i,i = 02,i = 0 and of 7̂  o\, the proof of (2.35) is analogous to the proof in the 

mean zero case. 

In the mean zero case, /^ = n% = 0. Now, we may have the case where \i\ ^ fi2-

For case (iii) N/n < A — a\ < (log log n) 2 / log n for some positive integer N, we have 

shown how to prove that with high probability, RSS2,i/((A — a.\)n) is greater than 

the true variance in the segment (0, A) when 0^1 ^ 02,i or when 0^1 = 02>i — 0 and 

of 7̂  cr|. We must now address the possibility that 0Xil = 02,i = 0, of = erf = °"2 a n d 

/L*I 7̂  /i2- In this case, 0i;O = /xj(l — 0) and 02,o = ^2(1 — 0)- As before, if Af —>• 00, 

RSS2,i/((A — a.\)n) converges to c in probability as n —> 00 where c is defined as 

c : = £ ( X t + 1 - 0 2 , o - 0 X ( )
2 

with {ATt} a stationary process following an AR(1) model with mean ^ j , AR 

coefficients 0j 0 and 0, and white noise variance a2. We can show that c > a2 as 
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follows: 

c = E (Xt+1 ~ ^o ~ <pXt)
2 

= E((Xw-fi2)-cP(Xt-fi2))
2 

= E [{Xt+1 - / / a ) - <j>{Xt - fn) + (m - /x2)(l - <f>)]2 

= £ ( a e m ) 2 + 2(/i! - /i2)(l - <f>)aE(et+i) + (»i - /i2)2(l - 0)2 

= a2 + ( ^ - ^ 2 ) 2 (1 - 4>f 

> a2. 

The rest of the argument to show (2.35) follows as in the case where (j>iti ^ <̂ 2,i-

Keeping the outline of the proof for this special case in mind, we will now prove 

Theorem 2.1. 

Proof of Theorem 2.1. It suffices to show that 

lim p(MDL(77io + l )a;pi ) . . . )Pmo+2) > MDL(m0, A;p?,... , p ° + 1 ) ) = 1 

since this implies 

lim P inf {MDL(m,d;p 1 ) . . . )pm + 1 )}>MDL(mo )A;p? ) . . . ,p^ 0 + 1 ) = 1 , 

where M is a prespecified upper bound, and the result follows. 

By definition of A, 

MDL(m0, A;p°,. . . ,p^0+1) < MDL(m0, A°;p?,... ,p°mo+1), 

where A0 is a vector of the true change-point locations. Therefore, we need only show 

that 

lim P (MDL(m0 + l , d ; p x , . . . ,pmo+2) > MDL(m0, A°;p°,... ,p°mo+1)) = 1. (2.37) 
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Equivalently, as the simple case outlined above, we can show that 

lim P(MDL(m0 + l , a ; p i , . . . ,pmo+2) 
n—>oo \ 

> MDL(m0, A°;p?,... , p ^ + 1 ) V a e ^ 0 + 1 ) = 1 (2.38) 

where Ac
mo+l is defined as in (2.11), 

Consider the difference 

2 
[MDL(m0 + 1, a; ft,... ,pmo+2) - MDL(m0, A

u;p?,... X 0 + i ) ] 

mo+2 

21og(m0 + 1) - 21ogm0 + J ^ (2 log ft + (ft + 2) log(aj - %_i)) 

mo+l 

- ^ (21ogp2 + (P°k + 2)log(A°fc - \U)) 

-, \ mo+2 mo + l 

^ ) K Eft-Erf] 
mo+2 mo+l 

+ Yl (al ~ a'J~1^ l 0 g ^lmo+1 ~ X ] (A£ ~ Afe-l) l 0 S &tmo 
j=l fc=l 

n/ \ n 
mo+2 mo+l 

+ J2 ("j - «J-l) log^,mo+l - S (^ ~ A°"l) 10S^Lo- (2'39) 
j = l fc=l 

Since for large n, the estimated AR orders are greater than or equal to the true AR 

orders, the sum of the O (1/n) and O (log n/n) penalty terms in (2.39) is strictly 

positive for large n. The O (1/n) term itself may not be positive, but since it goes 

to zero faster than the O (log n/n) term and since the O (log n/n) term is strictly 

positive, the sum of the two terms is strictly positive for large n. Therefore, it suffices 

to show that for all a G A€
m +x, 

mo+2 mo + l ,-. \ 

Y l (al ~ a3~^ l o S a i ,mo + l - 5 3 (Afc - A L l ) l o S ^ , m o ^ °V ( —^~ ) • 
j=l fc=l ^ ' 

(2.40) 

This will imply (2.38), and the theorem follows. 
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We will show (2.40) by combining the two summations on the left side of the 

equality into one sum over the true segments, and applying the arguments demon

strated previously to each term within the sum. In other words, rather than summing 

the terms (a, — <x,_i) l o g a | m o + 1 over the indices of the fitted change-point locations, 

j = 1 , . . . , m,Q + 2, we will break up each term and sum over the indices of the true 

change-point locations, k = 1 , . . . ,mo + 1. Then within each true segment, we can 

look at the difference between the Model 2' term and the Model V term. This will 

require some fairly complicated notation, so please bear with us. 

We first give the argument for the case where the true process has mean zero in 

every segment, and then describe extensions to the non-zero mean case at the end. 

First focus on the j t h fitted segment, (otj-i,aj). If this segment does not contain 

any true change-points, there is no need to partition the interval further. Suppose, 

however, the segment contains 1 true change-point, denoted by Aj,.), where and k(j) 

denotes the index of the true change-point contained in the jfth fitted segment. We 

can partition the interval ( o ^ i , <x,) into the 2 sub-segments («.,_!, A°,.-.), (AJL-NJO,-), 

and write 

(« j - a j - i ) l og^ 2 ,mo+ i 

= ( « j - « j - l ) 1 0 g 

= (aJ -a3-l)l°g 

-: {pcj — Oj_i) log 

a,n 1-1 Pi\ IPjPj Y 

[a* — a ;-_ijn 

\ 

(a, - a7-_!)n I ^ ^ 

1 

( a , — aij-.i)n 
(RSSj^i -f- RSSj^) (2.41) 

where ((/>aJ-_i:a-, • • •, yd^v-aj) is the vector of conditional maximum likelihood AR co

efficient estimates when fitting an AR(pj) model to the j t h fitted segment, (aj_i, a , ) , 

and RSSj ; l is defined to be the residual sum of squares over the ith sub-segment of 

the j t h fitted segment. Notice that both of the residual sums of squares, RSS^j, are 
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based on the fitted AR coefficients between observations [aj-ift] and [Qjn] — 1, SO the 

index i only specifies the limits of the sum. 

In the case where the fitted segment (c^-i,^-) contains one true change-point, 

this segment corresponds to (0:1,012) in the simple case demonstrated previously. In 

other words, we need only consider the cases 

(i) (log log n)2/log n < X°k(j) - o ^ i , 

(ii) Au.j — Oj-i < N/n for some positive integer N, or 

(hi) N/n < A°o — Oj_i < (log log n)2 / log n for some positive integer N. 

Then, using the same arguments as in the simple case, but applying Lemma 2.2 rather 

than Lemma 2.1 to account for the estimated AR orders, for case (i), 

/Ao _ J
a]_\n 

p q c * 

v-W* (aj_A» )n 

where 

and 
[a^ n] — 1 

R S SI2- E (^-^u*-—#&%*-*) ' 
*=[A2(,,nl 

are the residual sum of squares over the ith sub-segment of the jth fitted segment, 

but using AR coefficients estimated only within that sub-segment rather than using 

the entire j th fitted segment. For case (ii), 

RSS* 
(aj - <Xj-i) logajm o + 1 > Op (-) + {aj - \°k{j)) log I 

Ji,2 

i.aJ-Ku))nl ' 
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and for case (iii), 

(otj - aj_i) log o-J,mo+1 > (A£(j) - aj_i) log (a2
k{j) + 77) 

for some small 77 > 0 where o\u\ is the true variance in the /c(j)th true segment. 

Suppose now that (<x,_i,Oj) contains more than one true change-point. In the 

simple case, since there was only one true change-point, we only needed to consider 

when either ot\ was close to A, or when a2 was close to A, but both o.\ and a2 couldn't 

be close to A simultaneously. Now, both <x,_i and a,- could potentially be close to a 

true fitted changepoint. We will address this case by adding a fictitious fitted change-

point at the center of each true segment completely contained within the j th fitted 

segment. This can only reduce the log-likelihood term of the fitted MDL, 

mo+2 

3=1 

but we can show that even with this reduction, the MDL of the fitted model is still 

greater than the MDL corresponding to the true model. With the addition of the 

fictitious fitted change-points, each fitted segment will then contain either no true 

change-points or one true change-point. 

For each true segment that does not contain a fitted change-point, add a fictitious 

fitted change-point at the center of this segment. For instance, if (A° — A°_j) does 

not contain any fitted change-points, add a fitted change-point at (A° + X°k_1)/2. 

Once we have added the necessary fictitious fitted change-points, re-label the fitted 

change-points as a[, a'2,..., oimo+h where b > 1. It follows that 

mo+2 mo + 1 

] T (aj - aj_i) logalmo+1 - ^ (Ag - A°^) loga£mo 

mo+b mo+1 

^ J2 K" - a'j-l) l0§ alm0+b ~ J2 (A£ _ A°~l) l0g C 
j=\ fc=l 
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Ai + W - A2a)) log ' R S ^ 2 

K-A°(> 
mo+1 

- E^-AtJlog^, (2.42) 
fc=i 

where <j2
m +b is the estimated variance within the re-labeled j th fitted segment and 

Aj is 

(ii) Op(l/n), or 

(ui) (Afc(i) - ai-i) ^(^(i) + V) f o r s o m e *7 > 0, 

depending on how close a^_x is to A L . Note that since a0 := 0, if the first fitted 

segment contains one true change-point, then Ax must equal A5log(RSSJ1/(A5n)). 

Note also that if the jfth fitted segment does not contain any true change-points, then 

the term in brackets in (2.42) is simply 

( a ^ - o ^ ) log <r2
mo+6. 

The next step is to combine the two sums in (2.42) into one sum, indexed over the 

true change-points. In order to make this step, we need some further notation for the 

re-labeled fitted change-points contained within the kth true segment. Consider the 

kth true segment, (X^_i, A°). This segment must contain at least one re-labeled fitted 

change-point, so we can break the segment into sub-segments, with the partition 

being determined by the re-labeled fitted change-points contained in the kth true 

segment. Let r^ + 1, 0 < r^ < mo, be the number of fitted change-points contained 

in (A°_x , A°). T h e n we can par t i t ion (A°_1 , A°) into t he rk + 2 intervals (A°__1,
 a'~(k\)) 

{ot'-,ky a'jiks+1), • • •, (a'jtk)+rk, A°), where j(k) denotes the index of the first re-labeled 

fitted change-point contained in the fcth true segment. Then we can re-index 

mo+b 

j,mo+b ]T K - ^ - i ) log ̂  
3 = 1 
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according to the true change-points as follows; 

mo+b 

^2 (a'j - a'j-x) log almo+b 

mo+b 

* E 
mo + l 

= E 
/e=i 

^ + W - A°(J)) log 

Kw- A f e - i ) l o g 

R S S j 2 

^ - A ° f e ( i ) ) n 

RSS Jj(fc),2 

m A2-i)n 

(fc)+i — a j ( f c ) + * - l ^ ° S ^ j ( f e ) + * / m 0 + 6 + ^'(fc)+^fc + l , (2.43) 

where for k — 1 , . . . , mo + 1 and i = 1 , . . . , r^, <5,2(fc)+j „>0+fc is the conditional maximum 

likelihood estimate of the variance when fitting an AR(ftj(k)+l) model to the (j(k)+i)th 

re-labeled fitted segment, and Aj^)+rk+\ is defined as before for the (j(k) + r^ + l)st 

re-labeled fitted segment. Thus, the difference (2.42) becomes 

mo+b mo+l 

Yl K' _ a''J-^ lQS alm0+b - J2 ̂  ~ A^l) l0g ̂  
J = l 

2 
k,mo 

fc=l 

m o + l 

a E K(fc)~ALi) lo£ 
RSS J(fc),2 

{a'm - A°_> 

+ EK-;(fc)+i a j ( f c )+ i -i)loga j(fc)+i,m0+b 

i = l 

+ ^(fc)+rfc+i-(ASJ-AjJ_1)log^i, mo 
(2.44) 

Now, within each summand of (2.44), we can apply the same arguments as in the 

simple case using Lemma 2.2 rather than Lemma 2.1, and (2.40) follows. Note that if 

we compare the MDL of Model V to the MDL of a model with m0 + s change-points, 

1 < s < M — mo, rather than to the MDL of a model with mo + 1 change-points, the 

proof is identical. 

For the case where the means of each segment are not necessarily zero, we can 

follow an argument similar to that used in the simple case of one true change-point 

as demonstrated previously. When calculating the estimated white noise variances, 
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rather than minimizing the quantity TJ(Xt — a>\Xt-\ — . . . — apXt^p)2, the estimates 

minimize the quantity YK^-t — «o — Oi-Xt-i — • • • — apXt-p)2. Since Lemmas 2.1 and 

2.2 hold for non-zero means, the result follows, • 

2.7 Consistency of Auto-PARM Estimates Using Yule-Walker Estima
tion 

In the previous section, we used conditional maximum likelihood white noise vari

ance estimates in the definition of the minimum description length. However, Auto-

PARM uses Yule-Walker white noise estimates. Yule-Walker estimation is specific 

to an autoregressive model of order p where the estimates are obtained by equating 

the sample and theoretical autocovariances at lags 0, 1,. . . , p. Due to its computa

tional simplicity via the Durbin-Levinson algorithm, Yule-Walker estimation is the 

most common method of estimating autoregressive parameters. Also, Yule-Walker 

estimates always produce a causal estimated model and have the same asymptotic 

distribution as the conditional maximum likelihood estimates (see Section 8.10 in [8]). 

In this section, we will show that the estimates of the number of change-points and 

the AR orders are still weakly consistent when using Yule-Walker estimates. 

First, we will define the Yule-Walker estimates of the autoregressive coefficients 

and white noise variance. We then show that the difference between Yule-Walker 

estimates and conditional maximum likelihood estimates is Op(l/n). This result 

allows us to extend Lemmas 2.1 and 2.2 and Theorem 2.1 to prove that the estimate 

of the number of change-points is weakly consistent when using Yule-Walker estimates 

in the MDL. Lemmas 2.3 and 2.4 consider the case where the true process has no 

change-points (mo = 0). Theorem 2.2 extends the weak consistency results of Lemmas 

2.3 and 2.4 to the case where m0 > 0. 

For an autoregressive model of order p with mean /i, 

Xt - fj, = 0i(X t_i - fi)-\ h 4>p(Xt^p - fi) + aet, 
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where et is a white noise process with mean zero and unit variance, the Yule-Walker 

estimate of the AR(p) coefficient vector is defined as 

where Tp is the sample covariance matrix {^(i — j)}fJ=1 and -jp = (7(1), • • • ,j{p))T-

The Yule-Walker estimate of the white noise variance is then 

a2 = 7(0) - <j> %, 

and the Yule-Walker estimator of the mean \x is the sample mean, X = ]T}™=1 Xt/n. 

In a sample of size n, Yule-Walker estimates use the following definition of the 

sample covariance: 

7(/») = - Y,(Xt-X)(Xt-h-X). 
it 

t=l+h 

In contrast, conditional maximum likelihood estimation (in our formulation) uses the 

sample covariance 

I n — — 
V(h) = - £ ( * ' - Xl:n){Xt-h - *l_h:n-h), 

t=x 

where Xa:i, := Ylt=aXt/(b — a + 1). This is not quite equivalent to 
-J2(Xt-X){Xt-h-X) 

t=\ 

where X = Xi:n, but the two quantities have the same asymptotic properties. 

Assume again that the true model is piecewise autoregressive, as defined in (2.9), 

but we now estimate the number of change-points, change-point locations, and AR or

ders, (m0, rf,. . . , r^ 0 ,p5 , . . . ,pm o + i) , by minimizing the minimum description length, 
m+l 

MDLy(?ri, A;p) = log m + (m + 1) log n + y j logPfc 
k=\ 

m+l „ 

+ ^ ^ l o g ( ( A f c _ A f c _ l ) n ) 

fc=l 

m + l / , , x 

+ £ - Xk~',^fc-l)niog(2^), (2.45) 
fc=i 
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with respect tom<M,0<p<P, and X e A^, where a\ is the Yule-Walker 

estimate of the noise variance when fitting a p^th order AR model to the fcth segment. 

Here we adapt the proofs of Lemmas 2.1 and 2.2 and Theorem 2.1 for Yule-Walker 

estimates. The fundamental difference between the proofs using conditional maximum 

likelihood estimation and the proofs using Yule-Walker estimation is in the definition 

of the sample covariances. Therefore, we would first like to quantify the order of the 

difference between the two sample covariance definitions. 

For notational simplicity, assume that the mean of the process is known to be 

zero. Consider the case where there are no change-points in the true process, i.e., 

mo — 0. Suppose we fit one change-point to this data at observation r = [An], Using 

conditional maximum likelihood estimation, the sample covariances in the last fitted 

segment involve terms like 
1 n 

(1 — X)n ^—' 

However, if we use Yule-Walker estimation, the sample covariances in the last fitted 

segment will involve terms like 

1 n 

T\ o ~ /_, XtXt-h. 

We can examine the difference between the two sample covariances in the last fitted 

segment as follows: 

n 

1 n , n 

E XtXt-h / v XtXt^h 

t=[\n] t=\Xn}+h 

— \X[Xn)X[\n]-h + • • • + X[^„]+ft_iX[A„]_i 

* [ A „ ] - I | . ( 2 - 4 6 ) 

Note that A is not treated as being fixed in the expression above. Define (2.46) as 

W\ : = |^ [An]^[An]-h | + ' - ' + | ^ [ A n ] + h - l ^ [ A n ] - l | • 
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Using stationarity of the process, then, for any M > 0, 

P\ max 
0<A<1 

.. n - n 

— / , XtXt^h — — / , XtXt-h 
t=[Xn] t=[Xn]+h 

> M 

< Pi- max Wx > M 

\n O<A<I 

< nP (Wo > nM) 

n < :E(WQ) 
nM 

—> 0 as M —> oo, 

where the last inequality follows by Markov's inequality. This implies that 

sup 
0<A<1 

-. n -. n 

— y J xtxt^h — y xtxt^h 
t=[An] t=[\n\+h 

and in general, when fitting m change-points, 

Tk(h) - %(h) = Op 

= 0„ 

n 
(2.47) 

where %(h) is the conditional maximum likelihood sample covariance in the kth fitted 

segment, and 7fc(/i) is the Yule-Walker sample covariance in the A;th fitted segment. 

In the case where there are one or more change-points in the true process, still 

assuming that the mean of each segment is zero, we can again show (2.47) by the 

following argument. Assume there are rao > 1 true change-points and we fit m > 

1 change-points to the data. Denote the true relative change-point locations by 

^?) • • • > ^ 0
 a n d the fitted relative change-point locations by a 1 ; . . . , am. Then the 

difference between the two sample covariance definitions in the kth fitted segment, 

k — 1,... ,m + 1, can be examined through the expression 

[akn\-\ 1 [akn]-l 

n n /—' n ^—' 
XtXt. 

t=[Qfc-in] t=[ak-in]+h 

= x iX , [ a f c _ 1 n ] y v [ a f c „ j " ] ^ f t -I + X[ak_in]+h-iX[ak_in]-i 

< \X[ak_in]X[ak__in}^h\ H + \Xlak_in]+h-iX[ak_in]-i\ (2.48) 
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For large enough n, the indices of the h terms in (2.48) can be split over at most 2 

true segments. Suppose, for example, that the sum (2.48) straddles the true relative 

change-point A°_r Then for t — [a^in],.... [a^-in] + h — 1, the distribution of the 

cross-product XtXt-h corresponds to one of three possibilities: (1) t — h < [A°_jn] 

and t > [Ag_an], (2)t,t-h< [Aj^n], or (3)t,t-h> [Ag_xn]. 

Let n be large enough so that [A°n] — [A°_an] > h for any j = 1 , . . . , m0 + 1, and 

define (2.48) as 

Wafc_i := \X[ak__in}X[ak_in}^h\ H h \X[ak_in]+h-iXiak_in]-.i\. 

Then Wak_1 may take on n distinct sets of indices, where each set of indices corre

sponds to one of 2hmQ + 1 distributions (m0 + 1 possibilities if Wak_x lies entirely in 

one true segment plus (2h — l)ra0 possibilities if Wak_1 straddles two true segments). 

Let Vi,..., V2hm0+i be random variables corresponding to the 2/im0 + 1 possible dis

tributions of Wak_1, and let nu i = 1 , . . . , 2/im0 + 1, be the number of I47
afc_1's that 

have distribution V%, which implies YliJil°+ K% = n- Then, for any M > 0, 

[akn\-\ [cckn}-\ \ 

- V xtxt..h - - T xtxt^h > M 
n *—* n *—* I 

t=[afc_in] t=[a f c_1n]+/i / 

< P | - max Wa. , > M 
\ n Q<ak-!<1 

2/imo+l 

< ^ iuP(Vi>nM) 

2 h m 0 + l E V T / \ 

< y ^ 
—> 0 as M —> oo, 

where e is defined in (2.10), and thus, (2.47) again holds. 

If the mean of each segment is not necessarily zero, the previous argument be

comes slightly more complicated. We can use the shortcut formulas 

[akn]-l 

^h) = (ak - ak^)n ^ XtXt~h ~ ^Lml^m-i, 
t=\ak_xri\+h 

P\ max 
0 < Q f c „ ! < l 

vafe_i+f<afc<l 



70 

and 

T(h) = 
1 

[a f c n]- l 

(«fc - afe_i)n 
/ j -X-t-X-t-h -^[afc_in]:[o;fcn]-l-^[afe_in]-f t :[a f cn]-l- / i ) 

t=["fc- l"] 

then look at the differences 

[a f cn]- l 

(afe - afe-i)n 
/ _, XtXt-h 

1 

t=[a f c_1n] 
afc - afc_i)n 

[a f c n]- l 

/ v XtXt-h 
t=[ak-in}+h 

and 

-^ [a fc_in]:[Q fcTi]-l-^ [afc_m]-ft :[afcn]-l-/ i ^ [ a f c - H ^ n ] - ! 

separately. The supremum over 0 < a^-i < 1 of the first difference is again O p ( l / n ) , 

and it is straightforward to show that the supremum over 0 < ak-i < 1 of the second 

difference is also of order 1/n in probability. 

In extending Lemmas 2.1 and 2.2 and Theorem 2.1, we can use (2.47) to show 

that for the fcth fitted segment found by minimizing the MDL calculated using Yule-

Walker estimates, the difference between the conditional maximum likelihood white 

noise estimate, denoted by <5^2, and the Yule-Walker white noise estimate, denoted 

by a%, is O p ( l / n ) . 5 Since each of these estimates are functions of sample covariances, 

we use the mean value theorem for multivariable functions and (2.47) to show that 

T 
log cr^ - log a^ = Op 

n 
(2.49) 

The extensions of Lemmas 2.1 and 2.2 and Theorem 2.1 will then follow immediately 

from this result. 

Assume that the true process follows the pieccwise autorcgressive model defined 

in (2.9). Though (2.49) holds for the non-zero mean case, for notational convenience, 

we will only show the proof for the case where the true process mean is zero. The 

5We use a "~" rather than "A" on the conditional likelihood estimates since the estimates 
are obtained using estimated change-point locations found by minimizing the MDL calculated with 
Yule-Walker white noise estimates. 
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extension to the non-zero mean case follows accordingly. Suppose we fit a piecewise 

AR model to the data with m change-points and estimated change-point locations 

Ai , . . . , Am, where the estimated locations are found by minimizing the MDL calcu

lated with Yule-Walker estimates with respect to A € Ae
m. Then, by definition, the 

Yule-Walker estimate of the white noise variance for an AR(p) model in the A;th fitted 

segment is a function of the sample covariances: 

°l = 7fc(0) - ll^kllk^ 

where l \ p is the sample covariance matrix of the fcth fitted segment, {%(i — j)Yi,j=n 

lk,P ~ (7fc(l)' • • •' %(P))TJ
 a n d the sample covariance function in the kth segment is 

defined as 

7* CO = 
1 

Tfc-i 

J2 x*x> t-hi 
(Afc- Afc_i)nt=ffc_i+/l 

where f^-i = [Afc_in] and fk = [A^n]. Therefore, for k — 1 , . . . , m + 1, we can write 

T f c - 1 

log o\ = g 
1 

where, as in the proof of Lemma 2.1, 

^ Xt-iXt-j-.iJ = 0,...,p 

g(uzj : i,j = 0, ,..,p) = log 
UQI \ 

^00 —
 ( M Q I , . . . , UQ. <PJ {^}L = 1 

^0p / J 

Note that the definition of the function g(-) is the same for both the conditional 

maximum likelihood and Yule-Walker estimates; only the argument of the function 

changes. If we replace %(h) by the conditional maximum likelihood estimate %{h) 

using the estimated change-point locations found by minimizing the MDL calculated 

with Yule-Walker estimates, then 

log^fc =g 
(Afc - Afc_i)n 

J2 Xt-iXt^:i,j = 0... V 
t=fk-i 
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Note that the conditional maximum likelihood sample covariances %{h) obtained 

using the Yule-Walker estimated change-point locations are different than the condi

tional maximum likelihood sample covariances %{h), which use the estimated change-

point locations found by minimizing the MDL calculated with conditional maximum 

likelihood variance estimates. This will be employed in the proofs later in the section. 

First assume that the true process has no change-points (mo = 0). Denote the 

true covariance between Xt and Xt-h by -f(h) = E [XtXt-h], and let 7 = (7(|z — j\) : 

i, j — 0 , . . . ,p) be the vector of covariances ranging over lags 0 , . . . ,p defined in such 

a way to match the indices of the vectors of sample covariances, 

/ 1 v^1 

Ik •= 7c ~ 2^ xt-iXt-j : *, 3 = 0,. 
(A*. - Afc_i)n 

,P 

and 

t=Tk-i + \i-J\ 

t fc- l 

ll ••= 7^ 1 — Yl Xt-*Xt-3 :i,j = 0,...,p 

for k — 1 , . . . , m + 1. By the mean value theorem for multivariable functions, the 

difference in white noise variance estimates becomes 

log of- log a\ = g(il)-g(ik) 

= V^(7)(7i;-7*) 

= °P(1) (2-50) 

where the variable 7 is between 7* and 7, and converges to 7 almost surely as n tends 

to infinity. The gradient of g(utj : i, j = 0 , . . . ,p) evaluated at 7 is denoted by V<?(7). 

It is important to note that in (2.50), a*k
2 is calculated using the estimated change-

point locations found by minimizing the MDL which uses Yule-Walker estimates. 

Again, this is not the same quantity as the estimated white noise variances obtained 

by minimizing the MDL using conditional maximum likelihood estimates. This will 

be apparent in the proofs that follow. 
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It is straightforward to show (2.49) for the case where rao > 1 by defining 7 as the 

linear combination of true covariances to which the sample covariances converge. For 

the case where the true segment means are not necessarily zero, we calculate sample 

covariances using the mean corrected observations. Again, the previous arguments 

will ensue if we define 7 as the linear combination of true covariances to which the 

mean corrected sample covariances converge. 

We can now extend Lemmas 2.1 and 2.2 and Theorem 2.1 to the case where 

Yule-Walker estimation is used. Note that when Yule-Walker estimates are used, the 

results corresponding to Lemmas 2.1 and 2.2 show consistency in probability rather 

than almost surely. 

Lemma 2.3. Assume the true process {Xt} follows the AR(p) model given in (2.15) 

with no change-points (mo = 0) and initial values X^p, X-p+\,..., XQ, and satisfies 

assumptions Al and A 2. Then for any m > 1, 

lim P{MDLY(0]p) < inf MDLy(m, A;p, . . . ,p) J = 1. 
n^oo y XeA^ J 

Proof. Let A = argmin ||MDLy(m, A;p,... ,p)}, and consider the quantity 

^ [MDLr(m, A;p,... ,p) - MDLy(0;p)] 

21ogm . ^logn 2mlogp 
= h m(p + 4) 1 

n n n 

+ Y] log(Afc - Afc_i) 
k=\ 

+ Yl^Xk ~^k-i)^ogal -logo-2 

fe=i 

= m ( p + 4 ) ^ i ^ + o f i j + ^ ( A f t - A ^ 1 ) l o g ^ - l o g < 7 2 (2.51) 

We will show that (2.51) is strictly positive for n large in probability by showing that 

the quantity 
TO+l 

^(A f c -A f c_i) log<T 2 - loga 2 (2.52) 
fc=i 



74 

is of order log log n/n in probability. 

Let a*2 denote the conditional maximum likelihood estimate of the white noise 

variance in the A:th fitted segment where the change-point locations are obtained 

by minimizing MDLy(m, A;p, . . . ,p), and a*2, the conditional maximum likelihood 

estimate of the white noise variance for the entire data set. Then by (2.49), (2.52) 

can be expressed as 

m+l 

5 3 [(Afc - V- i ) log erf + (Afe - Afc_i)(log^ - log erf 

- log a*1 + (log a*1 - log az) 
m+l , ^ 

= Y,{\k-h-i)logcr?-\oga*2 + Opl-). (2.53) 
fc=i ^ n ^ 

Denote the fitted change-point locations obtained by minimizing the 

MDL calculated using conditional maximum likelihood estimation by 

a — argmina6/4e {|MDL(ra, a ; p , . . . ,p)}, and the conditional maximum like

lihood white noise variance estimates using these fitted locations by <rf. Then (2.53) 

is greater than or equal to 

m+l 

Y,(&k - cVi) logaf - log a*2 + OJ-) 
fc=i ^ n ' 

which, by Lemma 2.1, is 0(log log n/n). Therefore, (2.51) becomes 

2 

n 

which implies 

[MDLy(m, \;p,... ,p) - MDLy(0;p)] 

log n ( 1 \ ( \ 
m(p + 4) h O [ - + Ov\ - log log n 

n \n J \n 

2 rMDLy(m, A;p, . . . ,p) - MDLy(0;p)] 
logn n 

C i ^ , n / * ' \ i n / l o g l o g n 
= m(p + 4) + 0 1 + Op' 

log n) \ log n 

= m (p + 4) + O p ( ' ^ ^ V (2.54) 
' logn / 
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Since m > 1, for any e > 0, there exists an integer N such that 

0„ 
log log n 

logn 
< 

rn(p + 4) 

for all n > N. It follows that 

P ( MDLy(0;p) < inf MDLy(m, A;p, . . . ,p)) > 1 - e 

for n large, and the result follows. • 

The extension of Lemma 2.2 to the Yule-Walker case again follows from (2.49). 

Lemma 2.4. Assume the true process {Xt} follows the AR(p) model given in (2.15) 

with no change-points (m0 = 0) and initial values X^p, X-p+\,..., XQ, and satisfies 

assumptions Al and A2. Then for any m > 1, 

lim P fMDLy(0;p) < inf MDLy(m, \;pu... ,pm+i)) = 1, 
n^oo \ XeA^m J 

where p i , . . . ,p m +i are estimated from the data by minimizing the MDL calculated 

with Yule-Walker estimates. 

Proof. Let A = argmin {MDLy(m, A;pj , . . . ,p m + i )} . Note that 

MDLy(m, A;pi, . . . ,pm+1) - MDLy(0;p) 

= MDLy(m,A;pi,. . . ,pm+i) - MDLy(m, A;p, . . . ,p) 

+ [MDLy(m, A;p, . . . ,p) - MDLy(0;p) 

We know from Lemma 2.3 that MDLy(m, A;p, . . . ,p) — MDLy(0;p) > 0 for n large 

in probability. Therefore, to prove Lemma 2.4, we need only show that 

lim p (MDL y (m,A;p i , . . . , p m + i ) - MDLy(m, A;p, . . . ,p) > o) = 1 (2.55) 

As in the proof of Lemma 2.2, it suffices to consider the case of fitting an auto-

regressive model of order p-\-1 to the kth segment, and autoregressive models of order 
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p to each of the other m segments, so pk = p + 1 and pj = p for j ^ k, where p is the 

true order of the process. Denote the conditional maximum likelihood white noise 

variance estimate when fitting an AR(p) model to the segment (Xk-i,Xk) by a*k
2

p. 

Then by (2.49), 

2 
- [MDLy(m, A;pi, . . . ,pm+i) - MDLy(m, A;p, . . . ,p 
n 

2( log(p+l ) - logp) , log(Afc-Afc_i) 
n n 

+ —^~ + (xk - Afc_i) (log<7fc>p+1 - log<r£p) 

= ° ( ^ ) + " ^ + (~Xk _ A*-i) [ (1 OS^,P+I ~ loS^S+i) 

+ Oogcr^ - logff^p) + (loga*2
p+1 - log all) 

= ° G)+^T+0p G O + C h - Vi) (log^+i - log*&) • 
Since the specific change-point locations had no effect on the argument in the proof 

of Lemma 2.2, loga^2
p+1 — logcrj^ = 0(log logn/n), and thus (2.55) follows. • 

We can also use (2.49) to easily extend Theorem 2.1 to the Yule-Walker estima

tion case. 

Theorem 2.2. Assume the true process {Xt} follows the AR(p) model given in (2.15) 

with mo change-points and initial values X^P, X-p+\,..., XQ, and satisfies assump-
P 

tions Al and A2. Then in —> mQ) where in is the estimated number of change-points 

obtained by minimizing the MDL defined using Yule- Walker white noise variance es

timates. 

Proof. As in the proof of Theorem 2.1, the statement m —>• m0 is equivalent to the 

statement 

lim Pi inf {MDLy(m,d ;p 1 , . . . , p m + 1 )}>MDL y (m 0 ,A ;p? , . . . , ^ 0 + 1 ) = 1 
m<M / 
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for a fixed upper bound M. By previous arguments, this result holds if 

lim P (MDLy(m0 + 1, d ;p i , . . . ,pmo+2) > MDLy(m0, A;p?,... ,pm0+1) J = 1. 

For any vector a G A^o+1, consider the difference 

-[MDLy(m0 + 1, a ; p i , . . . ,pmo+2) - MDLy(m0, \°;p°v . . . ,Pmo+1)] 

/•. \ mo+2 mo + 1 

where crJimo+i is the Yule-Walker estimate of the white noise variance when fitting an 

AR(pj) model to the segment (CCJ-I, OLJ), &l>mo is the Yule-Walker estimate of the white 

noise variance when fitting an AR(p°) model to the segment (A°__1;A°), A0 denotes 

the true change-point locations, and the O(log n/n) term is strictly positive. Denote 

the conditional maximum likelihood estimate of the white noise variance when fitting 

an AR(pj) model to the segment (a^-i, a,-) by d-*2
mo+1, and the conditional maximum 

likelihood estimate of the white noise variance when fitting an AR(p°k) model to the 

segment (A°_1, A°) by o~l2
mo- Then we can write the difference between the two 

in (2.56) as 

sums 

mo+2 

£ Yl [("J ~ a3~^ k g ^ m o + l + (a3 ~ a3~l) ( ^ g ^ m o + l ~ l o g ^ , m 0 + l ) 

mo + 1 

- E [(A° - A°-i) l o § ^ o + (A° - XU) (iog*u - iog^2
mo) 

fc=l 

(
-. x mo+2 mo + 1 

" + E ^ - ^ ) l ° g ^ 2 m o + l - E ( A ° - A ° ^ ) 1 0 g ^ o ' (2-57) 
' ' j = l fc=l 

where the last equation follows by (2.49). By Theorem 2.1, 

mo+2 mo+1 • , \ 

j = l k=\ ^ ' 

and the result follows. D 



Chapter 3 

CONSISTENCY OF AUTO-PARM ESTIMATES FOR A PIECEWISE 

STATIONARY PROCESS 

3.1 Introduction 

In the previous chapter, we showed that the estimates of the number of change-

points and the AR orders obtained by Auto-PARM are weakly consistent when the 

underlying model is piecewise autoregressive. Davis et al. (2006) showed that the 

estimated change-point locations are strongly consistent under this model when the 

true number of change-points is known. In this chapter, we will relax the assumption 

that the underlying model is piecewise autoregressive, and examine the behavior of the 

estimated change-point locations and number of change-points under a more general 

model. In fact, we only need to assume the underlying process is stationary and 

strong mixing plus a few easily met assumptions to show that the estimates of the 

change-point locations and the number of change-points are consistent. 

The first section shows that when the true number of change-points is known, 

the estimated change-point locations are strongly consistent under a general station

ary strong mixing model. In the second section, we show weak consistency of the 

estimated number of change-points assuming a stationary strong mixing model plus 

conditions to ensure that the sample covariances satisfy the functional law of the 

iterated logarithm. The third section demonstrates some simulation results when the 

underlying process is not piecewise autoregressive. 
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3.2 Estimating the Change-Point Locations 

Assume {Yt}™=1 is a segmented stationary process such that the jth segment is 

modeled as 

^ t = -^t-Tj-i+ij) Ti-i < t < Tj> (3-1) 

where r0 := 1, rmo+\ :— n + 1 , and for each j = 1 , . . . , m0 + 1 , {Xt,j}^i is a stationary 

ergodic process with mean jij := E{Xt,j) and, for /i = 0, 1, . . . , autocovariance func

tion '"fj(h) := Cov(Xtj, Xt+tlj). We assume that the pieces {Xttj}, j — 1 , . . . , m0 + 1, 

are independent. The next section will require further assumptions on the underlying 

process, but the results in this section only require that the underlying process is 

segmented stationary ergodic with finite second moment where changes between seg

ments are in the mean or autocovariance function. Define the relative change-points 

0 < A j < • • • < X°mo < 1 such that Tj = [A°n] ([x] is the integer part of x), where 

K = 0, A^o+1 = 1, and [0] ;= 1. 

We will emulate the proofs in the Appendix of Davis et al. (2006) which show that 

the estimated relative change-points fj/n are strongly consistent for the true relative 

change-point locations A!-, j = 1 , . . . , m0 under the assumption that m0, the number 

of change-points, is known. When the true model is piecewise autoregressive, the 

change between segments may be in the mean, variance, or autoregressive parameters. 

Changes in the variance or autoregressive parameters are equivalent to changes in the 

autocovariance function. Under the weaker assumption that the process is stationary, 

we will assume that for j = 2 , . . . , m0 + 1, either ^ ^ ^j-i or there exists an h such 

that -fj(h) ^ jj-i(h). 

Throughout this section, we will approach the problem by assuming that each 

stationary segment of {Yt} has mean zero, as in [13], though the results can easily be 

extended to the non-zero mean case. Thus, changes between segments will be in the 

covariance functions. That is, for every j = 2 , . . . , mo + 1, there exists an h such that 

7j(/i) T̂  7j_i(/i). First, we need the following result from Davis et al. (2006). 
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Proposition 3.1. [Proposition A.l of Davis et al. (2006)] Suppose that {Xt} is a 

stationary ergodic process with E\X\\ < oo. Then, with probability 1, the process 

sn(s) = -Txt 
n ^—' 

t=\ 

converges to the process sEX\ on the space D[0,1], the space of functions on the 

interval [0,1] that are right-continuous and have left-hand limits. 

Proof. See Davis et al. (2006). 

Recall that the zero mean autoregressive model of order p is 

Xt = <l>xXt-X + ••• + <pvXt„v + Zt, 

where Zt is a white noise process with mean zero and variance a2. The Yule-Walker 

estimate of the AR(p) coefficient vector is defined as 

where Fp is the sample covariance matrix {j(i — j)Yij=\ a n d 7 P = (7(1)> • • • il(p))T-

The Yule-Walker estimate of the white noise variance is then 

a2 = 7(0) - 4> 7p . 

The following proposition states that if we fit an autoregressive model of order p to 

a stationary ergodic process, then the estimates of the autoregressive coefficients and 

the white noise variance converge to quantities determined by the covariance function 

of the process. The proof of this proposition follows the proof of Proposition A.2 in 

Davis et al. (2006). 

Proposition 3.2. Suppose that {Xt} is a stationary ergodic process with E(X\) = 0, 

E\X\Xi+h\ < oo for all h = 0,1, . . . , P, and covariance function j(h) := E(XiXi+h). 
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For r,s 6 [0,1] (r < s) and p = 0 , 1 , . . . , P, let cf)(r, s,p) and a2(r, s,p) be the Yule-

Walker estimates of the AR(p) coefficient vector and process variance, respectively, 

based on fitting an AR(p) model to the data X[rn\+i,..., X[sny Then, with probability 

1, 

0(r, s,p) -* 4»{p) and a2(r, s,p) -> cr2(p), 

where (p(p) and o~2(p) are defined in the proof. 

Proof. Assume 1 < p < P. Define the sample covariance function 

[an] — h 

i{h) •= r n — n 5Z xt+hXu 
\sn\ — \rn\ l~J 

and let Tp be the sample covariance matrix {^(i — j)}? -=1 and 7 p = (7(1), . . . , l{p))T• 

Then 0(r, s,p) and <j2(r, s,p) are defined as 

0(r,s,p) = f p 1 7 p and a2(r, s,p) = 7(0) - 4>{r, s,p)T^fp. 

Since <p(r, s,p) and a2(r, s,p) are continuous functions of the sample covariances, their 

asymptotic properties will follow immediately from the asymptotic properties of j(h). 

We can examine the asymptotic properties of 'j(h) by considering 

[sn] 

rw := Yl x^x<> 
since 7(/i) and 7*(/i) have the same limiting behavior and, using the same argument 

as in the proof of (2.47), 7*(/i) - 'j(h) = Op(l/n). Because {Xt} is a stationary 

ergodic process, {Xt+hXt} is also a stationary ergodic process. Applying Proposition 

3.1, let Bh be the probability one set on which the partial sum process for {Xt+h^t} 

converges, and set 
p 

B=f]Bh. 
h=0 

Since P(B) = 1, for h = 0 , . . . ,p, 

sn — rn <̂—' 
L J l J t=[rn] + l 
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1 (s — r)n 

[(s — r)n]J (s — r)n 
2_j Xt+hXt 

i=[rn]+l 

(s — r)n 
[(s — r)n]J s — r 

1 

1 L""J -. I ' " J 

/ _, xt+hxt — 2_j xt+hxt 
n t = i n t=i 

s — r 
sEiX^Xi) - rEiX^hXt)] = j(h) 

as n goes to infinity with probability 1. Thus, for each h — 0 , . . . ,p, 7(/i) 

n —> oo with probability 1, and therefore, 

and 

(p(r,s,p) = Tp
ljp ->• r p

1
7 p = : 0 ( p ) , 

<T2(r,s,p) = 7 ( 0 ) - 0 ( r , s , p ) r 7 p -»• 7(0) - (f>(p)TJp =: <r2(p), 

7(/i) as 

as n goes to infinity with probability 1, where Fp = {7(2 — j)}? • 1 and 

7 p = ( 7 ( l ) , . . . , 7 ( p ) ) T . 

In the case where p = 0, we model Xt as a white noise sequence with mean zero 

and variance a2. The estimate of a2 is 7(0), which converges to 7(0) = a2 =: cr2(0) 

with probability 1. • 

The next proposition extends Proposition 3.2 to a piecewise stationary ergodic 

process with mean zero. The proof of this proposition follows the proof of Proposition 

A.3 in Davis et al. (2006). 

Proposition 3.3. Suppose that {Yt} is the segmented stationary ergodic process de

fined in (3.1) where \ij = 0 for each j = 1 , . . . , m0 + 1. For r, s G [0,1] (r < s) and 

p = 0 , . . . , P, let 4>Y (r, s,p) and crY(r, s,p) be the Yule- Walker estimates of the AR(p) 

coefficient vector and process variance, respectively, based on fitting an AR(p) model 

to the data Y{rn}+\, • • • 1 Y[sn]- Then, with probability 1, 

4>Y(r,s,p)^ 4>Y(jp) and aY(r, s,p) -> aY
2{p), 

where 4>Y(p) and crY
2(p) are defined in the proof. 
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Proof. For the fcth true segment, k — 1 , . . . , mo + 1, let Bl be the probability one 

set on which 
[ns] [ns] [ns] [ns] 

t = l t=l t=\ t = l 

converge as n —>• oo for all i,j = 1 , . . . ,p. Set 
mo + l 

B* = n ^ 
fc=i 

and note that P (5*) = 1. Since r, s e [0,1], r < s, then r <G [A°_X,A°) and s e 

(A°_1+fc, A°+fc], for some i = 1 , . . . , m0 + 1 and A; = 0 , . . . , m0 + 1 — i. That is, r is in 

the ith segment, and s is in the (i + k)th segment. Then for w 6 B*, we have 
\sn] — h 

0y(/ i ) = r 7 / , Yt+hYt 
\sn\ - \rn\ f-' 
L J L J t = TO +1 

(s — r)n 

\(s — r)n]J s — r 

[\°n]~h 

n 
/ J Xt + h-Tl-l+l,lXt~Tt-.1 +1,1 

t=[rn] + l 

[A?+1n]-h 

+ 1 E * 
t=[A?n]+l 

4+ft-Tj + l , i+ 

\sn\~h 

lXt-n + 1,-1+1 

H 1" ~ 7 v •X't-Ti+fc-i + l.i+fe-^'t-ri+fc-i + l.i+fc 0(11 

t=[>?_1+fcn] + l 

(A? ^ r)7i(/i) + (A°+1 - A?)7i+i(/i) + ••• + ( * - A?_ 1 + f c )W>0 
s — r 

= : a07»(^) + --- + afc7»+fc('1) 

by Proposition 3.2. For 1 < p < P , let fy>p be the sample covariance matrix {IY(H 

i2)Yiul2=1
 a n d 1Y,P = ( M l ) . • • • > 7y(p))T . Then 

- i 

</>y (J", s. P) = rK,p7y,P -> ( E a jF '+'.P 1 E a^+<-p 
Vj=0 / 1=0 

= : 0y( r , s,p) (3.2) 

and 

er; •(r ,s,p) = 7y(0) - ^ y ( r , s , p ) r 7 y ] P ' - • ^ a^+^O) - </>y(r, s,p)T J2aHi+i,f 
1=0 i=0 

= : a 
*2, r, s,p) (3.3) 

file:///sn/~h
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where Ti+hp = {%+l(ix - i2)}?lii2==1 and -yl+l)P = (7 i+ l(l), • • • ,7*+/(p))T- Note that if 

k = 0, 

</>y(r,s,p) = T;^itP 

and 

^y =7 i (0 ) -7 j p r r p
1

7 i i p . 

If p = 0, no AR coefficients are estimated, and 

4 ( r , 5 , 0 ) = 7y(0) -+ ]T>7i+<(0) =: af2(r, s,0). 

D 

We are now ready to prove that the estimated change-point locations converge 

to the true change-point locations a.s. when the true number of change-points rno is 

known. If we fix the fitted autoregressive order large enough such that covariances 

between true segments differ at some lag between zero and the fixed autoregressive 

order, and fit autoregressive models of this order to the data, then the estimated 

change-point locations will converge to the true change-point locations. Note that we 

cannot choose the autoregressive order too large since we only have a finite number of 

observations in each segment. The proof of this result follows the proof of Proposition 

A.4 in Davis et al. (2006). 

Theorem 3.1. Suppose that {Yt} is the segmented stationary ergodic process defined 

in (3.1) where fij = 0 for each j = 1, . . . ,m0 + 1. Choose p* such that for each 

j — 2 , . . . , mo + 1, there exists an h € {0, . . . ,p*} such that lj(h) ^ 7^_i(/i). Let Ae
m 

be defined as in (2.11). If 

A = arg min < —MDLy(m0, A;p*) > , 
xeA'mo [n J 

where p* — p*l and 1 is an (m0 + 1) x 1 vector of ones, then A —»• A0 a.s. 
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Proof. Let B* be the probability one event described in the proof of Proposition 

3.3. For cu E B*, suppose that A /> A0. Then, since the sequence of A is bounded, 

there exists a subsequence {n'k} such that A —» A* on the subsequence for some 

A* = (A*,..., A^J. It follows that 

r, mp + l 

-MDLy(m0 , A;p*) -> £ (A* - A ^ J l o g o f (A*_1; A*,p*), 
i=i 

where o*y is defined in (3.3), within the proof of Proposition 3.3. 

Consider the j'th limiting segment, (A*L1; A*). If A°_a < \*^1 < A* < A° for some 

i = 1 , . . . , mo + 1, then 

ffy (A;_I, A ; I P * ) = 7,(0) - T ^ r - ^ 7 ^ • 

Note that this quantity is the one-step mean squared prediction error based on the 

previous p* observations. In other words, o"y?(A^_:, X*,p*) = E(Xt,i — A\j)2, where 

Xt,i = 0p*l,i-ATt —l,i + • • ' + (fip*p*,iXt-p*yi, 

and 

0p*;» = (<Vi,i! • • •' <?W,i)T = r»>*7i)P* • 

Since F p̂* is nonsingular, the one-step prediction coefficients are uniquely determined, 

and, by the projection theorem, the one-step mean squared prediction error is the 

minimum error over all possible coefficients. 

If A°_j < A*_j < A° < • • • < A°_1+fe < A* < X°i+k for some i = 1 , . . . , ra0 + 1 and 

k = 1 , . . . , TUQ + 1 — i, then 

k / k \ T / k \ _ l f c 

aY (A*_!,A*,p*) = J^aj7 i+j(0) - I 5^a,7 l + ; > p , J I J^a , r i + , ,p . \ ]Ta,7 J + , ; P . , 
1=0 \l=0 / \ (=0 / Z=0 

where 

(ao, a i , . . . , afc_i, a/c) 

•*• / \ 0 \ * \0 \0 \0 \0 \ * \0 \ 
• ~ 77" 7J VAi Aj-1> Ai+1 Ai ' • • • ' Ai+k~\ Ai+k-2> Aj Ai+k-l) • 

A, - A •_! 
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We can again think of <T^Y(\*_,1} A*,p*) as a one-step mean squared prediction error, 

but since the prediction coefficients are calculated over more than one true segment, 

the prediction coefficients do not minimize the prediction error. Therefore, 

> a0a*Y
2(Xlv A°,p*) + a ^ A ? , A°+1,p*) + • • • 

+ ak-lOy [Ai+k_2,
 Ai+k-vP ) + ak&Y (A+fc-D Ai+fc>P I 

By strict concavity of the log function, 

(AJ-AJ.Jlog^CA^.AJ.p*) 

> (A* - \)_x) [a0 l o g o f f , Xlp*) + ax log(rf
2(A°, A°+1,p*) + • 

+ afc_a logay2(A°+^2, A ^ i . p * ) + afc log try2 ( A ^ , ! , X°i+k,p*) 

= (A? - A*„a) l o g ^ A ^ , A°,p*) + (A?+1 - A?) loga^A?, A°+1,p*) + • • • 

+ (Aj+fĉ j - At+fc_2) log ay (Ai+fc_2, Ai+fc_!,p*) 

+ (A;-AV1)log42(A»+H,A°+fclP*). 

This implies that 
r, mo + 1 

lim -MDLy(m0 ,A;p*) > V (A? - A?_:) l o g a ^ A ^ , A°,p*) 
n—>oo ?7, *—• 

i=\ 

2 
= lim -MDLy(m0,A;p*) 

n—>oo n 

> lim -MDLy(m0 ,A;p*), 
n—»oo fi 

where the last inequality follows from the definition of A. Since this is a contradiction, 

we conclude that A —» A0 a.s. • 

3.3 Estimating the Number of Change-Points 

As in the previous section, we will assume the underlying process {^t}"=i is a 

segmented stationary process such that the j th segment is modeled as 

Yt = Xt_T 1 + 1 J ) Tj-i <t<Tj, (3.4) 
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where r0 := 1, rmo+i := n +1, and for each j = 1 , . . . , TUQ +1, {^t,j}£i is a stationary 

process with mean \ij := E(Xttj) and, for h = 0, 1, . . . , autocovariance function 7j(/i) 

:= Cov(Xtj,Xt+h,j)- Recall from Chapter 2 that Rio (1995) showed the functional 

law of the iterated logarithm holds for stationary strong mixing sequences under 

condition (2.4). Therefore, if we assume the underlying process 

Al. is strong mixing at a geometric rate, and 

A2. satisfies the moment condition (2.7) within each segment, 

then we can again apply the functional law of the iterated logarithm on the sample 

covariances to prove consistency of the estimate of the number of change-points. 

Many general processes satisfy these conditions, for example, linear processes 

with geometric coefficient decay and generalized autoregressive conditional het-

eroscedastic (GARCH) models under certain conditions. Examples of linear processes 

with geometric coefficient decay include all autoregressive moving average (ARMA) 

models. In particular, Athreya and Pantula (1986) showed that an ARMA(p, q) pro

cess {Xt} where 

Xt — 4>\Xt^i — • • • — 4>vXt-p = et + 9iet-i + • • • + 6qet-q 

is strong mixing if 

(i) £( log+ | e i | ) <oo, 

(ii) the distribution of ex has a nontrivial absolutely continuous component, 

(iii) X0 = (X0,X-i,..., Xi_p) is independent of {et}, 

(iv) {et} are independent and identically distributed random variables, and 

(v) <f>(z) = l-(/>iz (j)pz
p ± 0 for all \z\ < 1. 



Another interesting example is the GARCH (generalized autoregressive conditionally 

heteroscedastic) process, which plays a central role in modeling financial time series 

with volatility. For example, it is well known that the GARCH(1,1) process is geo

metrically strong mixing (see, e.g., Proposition 5 in [9]). We will demonstrate the 

application of Theorem 3.2 to a piecewise moving average process (ARMA(0,<?)) and 

a piecewise GARCH process through simulations in the next section. 

Lemma 2.1 stated that if we assume the process is AR(p) with no change-points, 

then the estimate of the number of change-points is strongly consistent. We can now 

relax the assumption that the process is AR(p) and generalize Lemma 2.1 as the 

following result. 

Lemma 3.1. Assume the true process {Xt} follows the model given in (3-4) with no 

change-points (mo — 0) and satisfies assumptions Al and A2. Then with probability 

1, for any order p = 0,1, . .. , 

MDL(0;p) < inf MDL(ra,A;p, ...,p) 

for n large, where 

MDL(0;p) = y—— logn + logp+-[log(27r) + log(<T2)], 

and 

'p + 4 
MDL(m, X;p,... }p) = logra + (ra + 1) f—-—logn + logp 

, r, rn+l 

n 
+ 2 

771+1 

log(27r) + ^(A f c-A f e_1)log (r2 
k=l 

As before, a2 is the conditional maximum likelihood estimate of the AR(p) noise vari

ance over the entire dataset, and &l is the conditional maximum likelihood estimate 

of the AR(p) noise variance in the kth segment, k = 1, . . . ,m + 1. The set Ac
m is 

defined in (2.11). 



Proof. The proof of Lemma 3.1 follows the same argument as the proof of Lemma 

2.1. For simplicity of notation, assume the mean of the process is zero. The argument 

for a non-zero mean follows accordingly. Let A = argmin {|MDL(m, A;p , . . . ,p )} , 

and consider the quantity 

- [MDL(m, A;p, . . . ,p) - MDL(0;p)] 

2 1 o § m
+ m ( p + 4 ) l o S n • 2 m l ° S P 

n 

p±2 
n 

n n 
m+1 

H Yl lo§(^ ~ ^-i) 
fc=l 

771+1 

] T (A*. - Xk-i) log o\ - log a2 (3.5) 
fc=i 

Recall that we can write log function of the sample covariances, 

log °l = 9 
(Afe - Afc_i)n t = 

J^Xt - iX t - j : M = 0 , , . . , ; 
t=a 

where 

^ ( ^ : i , j = 0, . . . ,p) = log "^00 — I'^Ol) • • • , ""OpJ N-K^i 
«oi \ 

u0p J 
Let 7(1) = E[XtXt-i] denote the true covariance between Xt and Xt-%, and let 

7 = (-/(|z — j\) : i, j = 0 , . . . ,p) be the vector of covariances ranging over lags 0 , . . . ,p 

defined in such a way to match the indices of the vectors of sample covariances, 

b 
I J- > 

Ik • = Y^Xt^Xt^j : i,j = 0 , . . . ,p 
( A f e - A f e _ i ) n t=a 

k = 1 , . . . , m + 1. Then since c/(-) is a continuous function, by the strong law of large 

numbers, 5(7*.) converges to 5(7) with probability 1. The equation (2.20) follows, 

and the rest of the proof matches that of Lemma 2.1. • 

Lemma 3.1 states that for any fixed autoregressive order p, if the true process 

has no change-points, then the estimated number of change-points will converge to 
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zero a.s. The next result generalizes Theorem 2.1 for a fixed fitted AR order. If we 

fix the fitted AR order such that covariances between true segments differ at some lag 

between zero and the fixed AR order, then the estimated number of change-points 

will converge to the true number of change-points in probability. 

Theorem 3.2. Assume the true process {Yt} follows the model given in (3.4) with 

TUQ change-points and satisfies assumptions Al and A2. Choose p* such that for each 

j = 2 , . . . , mo + I, there exists an h G {0, . . . ,p*} such that 'jj(h) ^ 7J_1(/i), and fit 

AR(p*) models using the minimum description length. Then rh —> mo, where rh is 

the estimated number of change-points obtained by minimizing the MDL defined using 

conditional maximum likelihood white noise estimates with fixed AR order p*. 

Let 

A = arg ^min { -rMDL(m0, A; p*mo+l) 
^^•m0 I ^ 

and 

d - arg min <̂  -MDL(m0 + 1, a, p*mo+2) , , 

where p*mo+2 = P*hn0+2, P*mo+\ = P*^m0+\, xm is an m x 1 vector of ones, and Ae
m is 

defined in (2.11). Then, as in Theorem 2.1, Theorem 3.2 follows if 

ton P (MDL(m0 + 1, a;p*mo+2) - MDL(m0, A ;p^ + 1 ) > o) = 1. 

As in the special case preceding the proof of Theorem 2.1, we will first examine 

the case where the process mean is zero and mQ — 1 with true relative change-point 

location A. Assume we fit AR(p*) models to the data and compare two fitted models: 

1. Fit AR(p*) models to two segments with relative change-point location A. 

2. Fit AR(p*) models to three segments with relative change-point location esti

mates 6ii and &2 obtained by minimizing MDL(2,o;1, a2;p*,P*) with respect to 

(ai,a2) G A2, where A2 is defined in (2.11), 
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We first show that 

lim P(MDL(2,di,d2;p*,p*) > MDL(1, A;p*)) = 1. 
n—too 

where MDL(1, A;p*) is the MDL for the first fitted model, and MDL(2,di,d2;p*,P*) 

is the minimized MDL for the second fitted model. Equivalently, we can show that 

lim P(MDL(2,a1,a2;p*)p*) > MDL(l,A;p*) 
n—>oo 

Vfl i ,a 2 : e < ai < cxi +e < a2 < I — e) = 1. (3.6) 

The main difference between the proof of Theorem 2.1 and the proof of Theorem 

3.2 is in the treatment of the white noise variance estimates. In Theorem 2.1, we 

assumed that the underlying process followed a piecewise autoregressive model. We 

no longer make that assumption for the proof of Theorem 3.2, and thus must consider 

the behavior of the white noise variance estimates under less restrictive assumptions. 

Note that when the process is not piecewise autoregressive, these estimates are not 

necessarily estimating a white noise variance, but rather, are estimating the one-step 

prediction error in their respective fitted segments. 

Assume, without loss of generality, that a\ < A < a^, and consider the white 

noise variance estimate within the segment («i,a2) , 

ry^ ™ ^ , . . „, ,.., , . . , .. „.,, < 

2,2 (a2 — a.\)n 

where the autoregressive coefficient estimates <p\,..., <f>p* are calculated by minimizing 

the quantity 
[ct2n] — l 

/ J \Xt ~ OiVt_i — • • • — ap*Yt_p*) , 
t=[oc\n] 

with respect to a±, . . . , ap*. We can again break b\2 into two sums, 

1 
^2,2 = 

[ H - i N 2 

^ [Yt - 4>iYt-i <fip*Yt-p* 
t=[ain] 

(a?2 ~~ ot\)n 

[agn] —1 
vp*It-p J2 (Yt-kYt-i k*Yt^

2 

t=(An] 
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If a.\ and a 2 are not too close to A, then, 

1 
^"2,2 > 

(«2 — Oi\)n 

[An]-1 

. i=[ain] 

3p*, l i t -p* 

where </>i. 1 5 • • • , <Pp* 

[a2n] — l 

t=[An] 

i is the minimizer of 

V>2^t-p* 

[An]-1 

/ , (Xt — &Xt-\ — • • • — tip*Vt-p*) , 

and 01 ,2 , . . . ,<j>p*,2 is t he minimizer of 

[ « 2 ? l ] - l 

E (y t-aiy t-i vyt_p..)2) 
t=[\n] 

both with respect to a,\,..., ap*. This inequality holds by definition of conditional 

maximum likelihood estimation and does not rely on any assumption about the true 

process. Define the residual sum of squares quantities as follows: 

[An]-1 

RSS2>1 := Yl (Yt-kX-i-
£=[ain] 

[Q2T»]-1 

RSS2,2 := ]T (Yt-faYt^-
t=[Xn] 

[An]-1 
RSS2,i == E ( * W i , i ^ - i ' 

t=[a\n] 

[aznj — l 

RSS^2 := J^ (Yt-faYt^ 
t=[Xn] 

y 
o*11—p* 

b *y . JP *• t~p 

<f>p* ,iYt-p* 

3* , 2 ^ - 0 * 

As in the special case before the proof of Theorem 2.1, without loss of generality, 

assume e < « i < A < A + e/2 < a 2 < 1 — e, and consider the following three cases: 

(i) (log log n) 2 / log n < A — «i , 

(ii) A — «i < N/n for some positive integer N, or 
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(iii) N/n < A — ax < (log log n) 2 / log n for some positive integer N. 

If (i) holds, we can use the above argument to break the term 

«i log ̂ 1,2 + ("2 - «i) log <T2,2 + (1 - a2) log a\_2 

- [Alogo-^ + C l - A J l o g a y (3.7) 

in the difference between the two minimum description lengths, 

|[MDL(2,o;i,a2;p*,P*) — MDL(1,X;p*)}, into a sum over the intervals (0,cti), 

(aa,A), (A,a2), a n d («2,1) as in (2.27). Then, by the functional law of the iterated 

logarithm and Lemma 3.1, (3.7) is of order log log n/n. 

If (ii) holds, the argument used in the proof of Theorem 2.1 when A — a\ < N/n 

for some positive integer iV carries over directly to this proof since the argument does 

not use the assumption that the underlying process is autoregressive. Thus, (3.7) is 

again Op(log log n/n) in this case. 

Now assume (iii) holds, N/n < A — a.\ < (log log n)2/log n for some positive 

integer N, We know that 

( a 2 - a i ) l o g ^ 2 > (X-ai)\og[r ~ - ) 
\{A — a\)n j 

+<•»-*>* ( < S 0 (3'8) 
by concavity of the log function. In the proof of Theorem 2.1, we showed that with 

high probability, RSS2,i/((A — ot,\)ri) is greater by a fixed constant n > 0 than the 

true variance in the segment (0, A). When we only assume stationarity, we can look 

at RSS2ji as prediction error, as in the proof of Theorem 3.1, and show that with high 

probability, RSS2,i/((A — oci)n) is greater than the minimum prediction error for the 

process in the first true segment. 

We will first define notation for the true one-step prediction coefficients in the kth 

true segment, k = 1,2. Let the one-step predictor in terms of the past p* observations 

for the kth true segment be denoted as 
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where Xt has mean zero and autocovariance function 7fc(/i). The one-step prediction 

coefficients are calculated by 

H'p* ,k *• k,p*ik,p*' 

where TKr := {^k{\i - j|)}f*=1 and 7fcj,. := (7^(1),... ,7fc(p*))T-

Intuitively, since a\ —> A as n —> 00, the estimated AR coefficients used to calcu

late RSS2,i will converge to the true one-step prediction coefficients for the segment 

(A, 1). This is because the coefficients in RSS2,i are calculated within the interval 

(0:1,0:2) which converges to (A, 02). Let 

c := E (Xtii — 0P* 1,2-^-1,1 — • • • — 4>p*p*^Xt-p\i) 

Then RSS2,i/((A — a-i)n) converges to c, where, assuming (/y^i ^ 4>P*i,2 for at least 

one i — 1 , . . . ,p*, 

c > E (Xt}i — 0p*i,i-^t-i,i — • • • — 4>P*V*,\Xt-p*t\) 

since <£p» 1 minimizes the one-step prediction error for the process in segment (0, A). 

If we replace a\ by E (Xt,i — 0Pn,1^-1,1 — • • • — <pP*v\\Xt^p^if in (2.33), then (2.35) 

follows. 

Proof of Theorem 3.2. The proof of Theorem 3.2 follows the proof of Theorem 

2.1 directly by treating the residual sums of squares as one-step estimated prediction 

errors rather than estimated variances. If we replace <y\u\ by the true prediction error 

in the k(j)th true segment, 

E (Xttk(j) — <fip*i,kti)Xt-i,k(j) — • • • — 4>p*p*tk(j)Xt~p*,k(j)) , 

in case (iii), where k(j) denotes the index of the true change-point contained in the 

jfth fitted segment in the case where the j th fitted segment contains exactly one true 

change-point, then the rest of the proof follows accordingly. • 
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In Lemma 3.1 and Theorem 3.2, we used conditional maximum likelihood estima

tion in the definition of the MDL. However, the results again extend to Yule-Walker 

estimation as in the last section of Chapter 2. 

3.4 Simulation Results 

Davis et al. (2006) conducted five simulation experiments evaluating the practical 

performance of Auto-PARM. In this section, we add to these simulation experiments 

by conducting simulations when the true process is not piecewise autoregressive. 

3.4.1 Piecewise Moving Average Process 

For this experiment, we simulated 1000 observations from the model 

( Zt + 0.9Zt_i if 1 < t < 400 , , 
1 \ Z t - 0.9Zt_i if 401 < t < 1000, l j 

where Zt ~ IIDA^O, 1). A realization from this model is shown in Figure 3.1. 

20O 400 600 800 1000 

Figure 3.1: Realization from the process in (3.9). 

The spectral density functions of the two moving average processes are shown in 

Figures 3.2 and 3.3, and the autocorrelation functions and partial autocorrelation 

functions are shown in Figures 3.4 and 3.5. 
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Mattel Spectrum 

Figure 3.2: Spectral density function for first segment in (3.9), 

Model focdrum 

Figure 3.3: Spectral density function for second segment in (3.9). 

We simulated 500 realizations of the process in (3.9) and applied Auto-PARM to 

each realization. All 500 applications of Auto-PARM detected two segments, with a 

mean change-point location of 401.0 and standard deviation 3.0. A histogram of the 

change-point location estimates is shown in Figure 3.6. The average estimated AR 
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Mode l P.*CF 

Q S 1P IS 2D 25 3D 35 4 0 • S 10 I S ZD ZS 3D 35 43 

Figure 3.4: Autocorrelation and partial autocorrelation functions for first segment in 
(3.9). 

Mode l pfiC? 

D S 1D I S ZD 2S 3D 3S 41 

Figure 3.5: Autocorrelation and partial autocorrelation functions for second segment 
in (3.9). 

order in the first segment was around 6, and around 7 in the second segment. Table 

3.1 lists the relative frequencies of the AR order estimates. 

We also applied Auto-PARM to 500 different realizations with the additional 

constraint that the fitted autoregressive order was 5. Again, every application of 
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o 
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385 390 395 400 405 410 415 420 

Figure 3.6: Change-point location estimates. 

Table 3.1: Relative Frequencies of Auto-PARM AR order estimates. 

Order 

Pi 
P2 

0 
0 
0 

1 2 
0 0 
0 0 

3 
0.8 
0 

4 
13.8 
1.0 

5 
21.8 
10.0 

6 
29.2 
19.6 

7 
19.6 
27.4 

8 
9.4 
20.2 

9 
3.0 
11.2 

10 
1.6 
6.8 

11 
0.6 
2.0 

>12 
0.2 
1.8 

Auto-PARM detected two segments. The average change-point location was 401.0 

and standard deviation 2.9, which was very similar to the results when the AR order 

was fit from the data. Table 3.2 summarizes the AR parameter estimates obtained by 

Auto-PARM in the 500 realizations. Note that the true process is not autoregressive, 

but the autoregressive model provides a useful approximation to the true model. 

The change between segments is reflected in the first, third, and fifth AR coefficient 

estimates. The magnitudes of these coefficients are nearly the same between segments, 

but in the first segment, the coefficients are positive, whereas in the second segment, 

they are negative. For the simulation experiment where the AR order was fit to the 

data, in the case where the fitted AR orders were 5 for both segments, the average 
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AR parameter estimates are nearly the same as the average estimates for the fixed 

AR order simulation. The standard deviations of the parameter estimates are slightly 

smaller when the AR order is estimated from the data, but this is most likely due 

to the small number of realizations which resulted in an AR(5) to AR(5) fit. Only 

ten of the 500 realizations fit AR orders of 5 to both segments. A summary of these 

estimates is shown in Table 3.3. 

Table 3.2: Summary of AR parameter estimates with AR order fixed at 5. 

Segment 
1 

2 

Mean 
SD 

Mean 
SD 

0i 
0.81 
0.05 
-0.82 
0.04 

02 
-0.64 
0.06 
-0.65 
0.05 

Parameter 
03 

0.47 
0.06 
-0.48 
0.05 

04 
-0.32 
0,06 
-0.32 
0.05 

05 
0.15 
0.05 
-0.16 
0.04 

a2 

1.06 
0.08 
1.06 
0.06 

Table 3.3: Summary of AR parameter estimates with AR order fit to data where the 
estimated AR orders were both 5. 

Segment 
1 

2 

Mean 
SD 

Mean 
SD 

01 
0.84 
0.03 
-0.84 
0.03 

02 
-0.65 
0.05 
-0.67 
0.03 

Parameter 
03 

0.50 
0.06 
-0.51 
0.03 

04 
-0.35 
0.04 
-0.33 
0.04 

05 
0.17 
0.03 
-0.17 
0.03 

a2 

1.04 
0.06 
1.05 
0.06 

3.4.2 Piecewise GARCH Process 

Generalized Autoregressive Conditional Heteroscedastic (GARCH) models are 

commonly used for analyzing financial time series. The GARCH model takes into 

account excess kurtosis (heavy tails) and changes in volatility, two common stylized 

facts about financial data. It can provide accurate forecasts of variances of asset 

returns through its ability to model time-varying conditional variances, and has wide 

applications in financial time series data, which include risk management, portfolio 
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management and asset allocation, option pricing, foreign exchange, and the term 

structure of interest rates [34]. 

We say {Zt} follows a GARCH (p, q) model if it is a causal strictly and weakly 

stationary solution of 

Zt = Vhet, {e*}~IID(0,l), 
v i 

ht = ao + YsUiZl. + ^Piht-r, (3.10) 
i=l i = l 

where «o > 0, oti > 0, and A > 0 for each i [7]. The equations (3.10) have a causal 

weakly stationary solution if and only if 

p i 

J^a. + ̂ A < 1, 

in which case there is exactly one such solution. The random variable ht is the condi

tional variance of Zt given Zs, s <t. The GARCH(p, q) model is a generalization of 

the ARCH(p) model [15], where the ARCH(p) model is equivalent to a GARCH(p, q) 

model with q = 0. 

Though there is an obvious dependence structure in the variables {Zt} of a 

GARCH(p, q) process, the sequence is uncorrelated, that is, E(Z3Zt) = 0 for s ^ t. 

If we apply Auto-PARM to a zero-mean segmented GARCH process, one may ask, 

"what is changing?" The key idea when using Auto-PARM in this case is the variance 

of the process in each segment, i.e., 7^(0), is changing between consecutive segments. 

Therefore, in principle, one could take p* = 0 when applying Theorem (3.2) to a 

segmented GARCH process. However, in the simulation that follows, we allowed 

Auto-PARM to fit AR orders to demonstrate how Auto-PARM detects the lack of 

autocorrelation in the process. The majority of estimated AR orders were zero, 

indicating that the variables in each segment are uncorrelated. 

If we assume that the variance changes between segments, then we can apply 

Theorem 3.2 to estimate changes in a segmented GARCH process. We must also 
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assume that the processes in each segment are strong mixing with a geometric rate, 

have finite fourth moments and satisfy (2.7). For the simulated process that follows, 

this condition can be verified using Proposition 2 in Lindner (2008) . 

In this simulation experiment, we simulated 500 realizations from the piecewise 

GARCH process Zt = yfht&u where 

h. 

( 1.20 + 0.06Zt_i + 0Mht-i if 1 < t < 300 
1.20 + 0.06Zi_i + 0.13Zt_2 

+0.33ht-i + 0.18ht-2 if 301 < t < 800 
0.50 + 0.06Zt_i+0.13Zt_2 

+0.33/1*-! + 0.18ht-2 if 801 < t < 900, 

(3.11) 

where {et} ~ IIDA^(0,1). The theoretical variances in each segment are 12, 4, and 

1.67, respectively. We applied Auto-PARM to each realization. A realization from 

this model is shown in Figure 3.7. 

Figure 3.7: Realization from the process in (3.11) 

Auto-PARM detected two segments in 34.8% of the 500 realizations, and three 

segments in 61.2% (see Table 3.4). The mean change-point location estimates for 

the realizations where Auto-PARM detected three segments are 299 and 782 with 
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standard deviations 33.1 and 80.6, respectively. The mean change-point location 

estimates are very close to the true change-point locations of 301 and 801. When 

Auto-PARM detected only two segments, the mean change-point location estimate 

was 308 with a standard deviation of 31.3. This indicates that Auto-PARM only 

detected the first true change-point in these realizations. Thus, Auto-PARM detected 

the first true change-point in 96% of the realizations. 

Table 3.4: Summary of Estimated Change-points for the Process (3.11). 

Number 
of 
Segments Percent 

Location 
Mean 

Location 
Standard 
Deviation 

2 34.8 308.4 31.3 
3 61.2 298.5 33.1 

782.3 80.6 
4 3.6 
5 0.4 

Since the observations from a GARCH model are uncorrelated over time, we 

would expect that the best autoregressive model fit to the data would have order 

zero. That is, the fitted model would be an estimated mean plus a white noise term 

with mean zero and an estimated variance. Table 3.5 shows the relative frequencies 

of the estimated autoregressive orders in the 500 realizations when Auto-PARM fit 

three segments. The majority of the realizations fit AR(0) models to each segment. 

Table 3.5: Relative Frequencies of Estimated AR Orders for the Process (3.11). 

"Order 0 1 2 3 
Segment 1 97.7 2.0 0.3 0 

2 93.8 4.9 0.7 0.7 
3 81.4 15.7 2.9 0 

From these results, we can see that Auto-PARM performs well even on processes 

that are not autoregressive. Even though GARCH models have a higher order de

pendence structure than second moments, Auto-PARM can detect changes in the 
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process by fitting AR(0) models to the process. These results show that Auto-PARM 

has applications in financial data and other time series data which do not follow 

autoregressive models. 



Chapter 4 

APPLYING AUTO-PARM TO NATIONAL PARK SERVICE DATA 

4.1 Introduction 

Due to a growing concern about manmade noise in the National Parks, the 

National Park Service has been collecting natural sound data in about 20 of the 

388 National Parks. At several sites throughout a park, tripods with microphones 

attached are used to record the surrounding sounds. The purpose of collecting this 

data is to measure and monitor noise pollution. In trying to estimate the proportion of 

sound that is unnatural (manmade), several challenges emerge. First, due to the large 

amount of recordings, the data cannot be analyzed without sampling or automatic 

procedures. Second, when listening to the recordings, humans tend to misclassify 

sounds fairly often. One way to address these challenges is to develop an automatic 

algorithm that can take a large amount of audio data, partition it into homogeneous 

sound segments, and classify each segment as a known type of sound with a low 

misclassification rate. 

In general, this problem can be described as follows. Suppose we have a train

ing data set of realizations from a finite collection of known stochastic processes 

{P\,Vi, • • • ,VK}- We observe a time series X — {x\,... ,xn} which is a concate

nation of realizations from these processes. Thus, the interval [l,n] may be parti

tioned into subintervals [TO := 1,TI), [TI,T2), . . . , [rm,Tm+i := n + 1) such that each 

subset {xt : t £ [7-J_I,TJ)} is a realization from process 7 \ with &j_i ^ ki for all 

i = 1,... ,m+ I, i.e., neighboring segments of X come from different processes. The 

observed data set X in our case is a 1-dimensional audio time series. The observations 



105 

xt are amplitudes, and the training data set of known stochastic processes is a set of 

realizations from different sounds, such as a clap of thunder, the call of a squirrel, or 

the drone of snowmobiles. The goal is to use the training data set to estimate the 

unknown number of segments, m + 1, the change-points, T\,..., rm, and the process 

types fci,..., km+i in the observed series X. Estimating m and r 1 ; . . . , rm is referred 

to as a segmentation problem, and once we have estimates of m and T\, . . . , rm, the 

estimation of k\,..., km+\ can be viewed as a classification problem. 

Auto-PARM provides a straight-forward method of segmenting the sound wave 

into approximately stationary pieces. Once the sound wave is segmented, we can 

apply a classification algorithm to categorize each piece as a specific sound type. If 

consecutive pieces are of the same sound type, they are merged to form one piece. 

4.2 Methods and Results 

4.2.1 Data Preprocessing 

The data consist of 15 recordings of separate sounds commonly heard in the parks 

and two 1-hour recordings of the surrounding environment in Yellowstone National 

Park. We will refer to the recordings of 15 common sounds as the index data set 

and the two 1-hour recordings as the real data. The 15 types of sounds in the index 

set are elk bugling, coyotes, people talking, H-D motorcycle, snow groomer, rotary 

snowplow, 2 stroke snowmobiles, jet, propeller plane, helicopter, LE ranger siren, red 

squirrel, thunder, raven, and mud pots/thermal activity. Originally, we planned to 

use the index set as the training data set and the real data as the observed data to 

be segmented and classified. However, since many of the sounds in the real data were 

not in the index set, we treated the index set and the real data separately, as if each 

data set was an observed data set, but one in which I knew the sound types and break 

points. Thus, each data set served as both a training data set and an observed data 

set. 
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Before analyzing the data, the data needed to be normalized so that sounds could 

be compared without volume influencing the classification process. The most com

mon way to normalize sound data is to use peak normalization. Peak normalization 

multiplies the sound wave by a positive constant so that the maximum absolute value 

of the amplitudes becomes 1. This type of normalization may not be appropriate 

in this case because large outliers can strongly affect the normalization. For exam

ple, during a thunder storm, the loud cracks of thunder will have the most influence 

rather than the longer rumbling sounds afterwards. Thus, we decided to use root 

mean square (RMS) normalization rather than peak normalization. RMS normal

ization differs from peak normalization by using the average RMS power (average 

squared amplitude) as its reference rather than the maximum absolute value of the 

amplitudes. This produces an overall change in loudness to a specified decibel (dB) 

level. Due to the fact that the reference is an average of the loudness, outliers have 

less of an effect than in peak normalization. 

For each index sound, we applied RMS normalization in Adobe®Audition® 1.5 

to each sound type by choosing the smallest dB level such that overclipping was 0%. 

The decibel levels chosen for each sound are shown in Table 4.1. The raven sound 

was not included in the preliminary analysis since it was difficult to isolate the part 

of the sound wave where the raven call was present. 

For the real data, we did not analyze the entire hour at once since the data set 

was so large. Instead, we took a small section of the data, classified the sounds present 

by listening to the data and noting where the sounds changed, and used this section 

for analysis. The sound categories for the real data are jet, jet and snowmobile, people 

(man), people (woman), raven, snowmobile, cross-country skiers, cross-country skiers 

and jet, background noise, other bird, and other. Background noise is when no sound 

is present except for wind or water which is present at all times. Other bird is a 

bird other than a raven. Other is a sound that didn't fall into any of the other 
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Table 4.1: RMS Normalization Levels for Index Set 

Sound Type 
Coyotes 
Elk 
H-D Motorcycle 
Helicopter 
Jet 
Mudpots 
People 
Propeller Plane 
Siren 
Snowgroomer 
Snowmobile 
Snowplow 
Squirrel 
Thunder 

Decibel Level (dB) 
-15 
-16 
-10 
-11 
-11 
-10 
-5 
-8 
-3 
-8 
-7 
-16 
-13 
-8 

categories. RMS normalization was applied to the entire section of data that was 

under consideration. 

Some unresolved issues in data preprocessing need to be considered. RMS nor

malization requires you to specify the size of each window used in calculating the 

RMS value. The default in Adobe®Audition® 1.5 is 50 ms. Also, we normalized 

each index set separately, but one may want to normalize the sound waves simultane

ously, such as in the real data. In addition, sometimes volume of a sound wave may 

be helpful in classification, such as a siren getting louder as it gets closer. These are 

topics for further study. 

4.2.2 Segmentation and Classification Using Auto-PARM and Spectral 
Densities 

The first approach to the problem used the program Auto-PARM to segment 

the data, then used spectral density estimates to classify each segment. Auto-PARM 

estimated change-points and fit an AR model to each segment. The fitted spectral 

densities of each segment were used for classification. We plotted the log spectral 

density for each break using the function spec. ar in the statistical software package 



108 

R. Since there were multiple segments from each sound, comparisons of plots could 

be made both within each sound type and between different sounds. 

We first tried this method on the index data set. For each recording, we applied 

Auto-PARM to detect change-points and to estimate AR parameters. We calculated 

the fitted spectral density for each segment. Looking at the plots, it seemed as though 

there was a lot of variability in spectral densities within each sound indicating that it 

may not be a good classifier. A sample of the log spectral density plots are shown in 

figures 4.1—4.12, It is apparent that for some sounds such as coyote, elk, squirrel and 

thunder, the variability in spectral density fits is very large. Other sounds such as 

motorcycle, helicopter, siren, and snow groomer have low variability between spectral 

density plots. However, many of these sounds have spectral densities that are similar 

to other sounds' spectral densities. For example, the spectral densities of motorcycle, 

helicopter, jet and propeller plane are all very similar. 
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Figure 4.10: Snow Groomer. 
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Figure 4.12: Thunder. 

In order to quantitatively compare two spectral densities, we used the area under 

the squared difference between the two densities as a measure of dissimilarity. In other 

words, given two spectral densities /(A) and g(\), we calculated the area under the 

curve (/(A)—fi'(A))2. For each segment, the spec. ar function in R outputs (frequency, 

density) pairs rather than an explicit function. The default number of pairs is 500, 

and the range of frequencies is between 0 and 0.5. Thus, in order to estimate the area 

under the squared difference function, we used Simpson's rule on these pairs. 

This dissimilarity measure was used to classify sounds in the following manner. 

Auto-PARM was applied to each sound in the index data set. This broke each sound 
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into multiple segments and fit autoregressive models to each segment. A randomly 

chosen segment from the entire index data set was used as the sound we planned 

to classify. We calculated the dissimilarity in the spectral densities between this 

randomly chosen sound segment and every other segment in the index set. For each 

type of sound, we took the minimum dissimilarity as a measure of how close the new 

segment was to that type of sound. Then we took the minimum over all sounds, and 

classified the new segment as the type of sound with the smallest dissimilarity. This 

measure of dissimilarity was not successful in correctly classifying the sounds in the 

index set. Error rates were very high. Since it did not work on the index set, we did 

not try it on the real data. 

4.2.3 Feature Extraction and Linear Discriminant Analysis 

The second approach to this problem eliminated the segmentation procedure and 

instead windowed the data. Using the statistical learning paradigm, we treated each 

window as one observation and concentrated on variables (features) measured on each 

window that could be used in a classification algorithm. The spectral density was no 

longer used as a feature. Thus, we did not need to assume that within each window, 

the sound wave could be modeled as an autoregressive process. With this approach, 

change-points can be estimated using the classification results for each window by 

combining neighboring windows if a specified majority of the windows are classified 

as the same sound. 

Speech recognition literature suggests several features that have the potential to 

successfully discriminate between different sounds. The most successful feature in the 

current literature is the set of mel-frequency cepstral coefficients, and these coefficients 

were used as features in our analysis. See Appendix I for further description of mel-

frequency cepstral coefficients. 

The sound files were read into R and a vector of sound type labels indicating the 

sound type at each sample time was created. We used Matlab to calculate the first 13 
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mel-frequency cepstral coefficients for each window using the rafcc.m function from 

Malcolm Slaney's Auditory Toolbox [43]. The sound type for each window was taken 

to be the sound type of the first sample point in the window. A random sample of 

windows was taken to be the training set for linear discriminant analysis. The other 

windows were used as a test set. The discrira procedure in SAS was used to run 

the linear discriminant analysis, treating windows as observations, sound type as the 

class type, and the 13 mel-frequency cepstral coefficients as 13 explanatory variables. 

For the index set, this method worked well. We used the default window size of 

256 samples with an overlap of 80 samples between consecutive windows. The propor

tions misclassified in the training and test data sets are shown in Table 4.2. The rates 

for the training data set were obtained by cross-validation. None of the squirrel win

dows were misclassified, whereas with the first approach, the fitted spectral densities 

for the squirrel sound varied greatly. The sounds with the highest misclassification 

rate were the H-D motorcycle, helicopter, propeller plane, and siren. 

Table 4.2: Misclassification Rates for Index Data 

Sound Type 
Coyotes 
Elk 
H-D Motorcycle 
Helicopter 
Jet 
Mudpots 
People 
Propeller Plane 
Siren 
Snowgroomer 
Snowplow 
Squirrel 
Thunder 
Total 

Training Data 
0.1214 
0.1288 
0.1813 
0.1847 
0.0266 
0.0485 
0.0135 
0.1852 
0.1503 
0.0184 
0.0425 
0.0000 
0.1711 
0.0979 

Test Data 
0.1438 
0.0993 
0.1700 
0.2011 
0.0225 
0.0289 
0.0083 
0.1806 
0.1959 
0.0120 
0.0563 
0.0000 
0.1712 
0.0992 

The pairwise generalized squared distances between sound types are shown in 

Table 4.3. 
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In terms of these distances, jet and thunder are similar, plow and groomer are similar, 

and propeller plane and helicopter are very similar. These close distances account for 

the large misclassification error rates in these sound types. 

The next step was to try this method on the real data. We tried windowing the 

data both with and without overlap between consecutive windows. The misclassifi

cation rates using a window size of 256 and an overlap of 80 samples are shown in 

Table 4.4. 

Table 4.4: Misclassification Rates for Real Data With Overlap 

Sound Type 
Background 
Jet 
Jet + Snowmobile 
Other 
Other Bird 
People (Man) 
People (Woman) 
Raven 
Snowmobile 
Xcountry Skis 
Xcountry Skis + Jet 
Total 

Training Data 
0.4777 
0.1696 
0.1538 
0.5000 
0.1975 
0.6250 
0.5821 
0.6000 
0.1374 
0.5719 
0.2391 
0.3867 

Test Data 
0.4776 
0.2053 
0.1495 
0.6000 
0.2423 
0.6310 
0.5742 
0.7576 
0.1064 
0.5720 
0.2481 
0.4149 

These rates are much higher than those in the index data set, but the rates for the 

training set are fairly similar for the test set, indicating that the model was not 

overfit. The highest misclassification rates were for background noise, people, raven, 

cross-country skis, and other. 

Pairwise generalized squared distances between sound types in the real data are 

shown in Table 4.5. Misclassification rates using the same window size but without 

overlap are shown in Table 4.6. The test data misclassification rates using no overlap 

are fairly similar to those using an overlap of 80 samples. For the training data, some 

of the misclassification rates increased immensely when the windows did not overlap. 
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Table 4.6: Misclassification Rates for Real Data Without Overlap 

Sound Type 
Background 
Jet 
Jet + Snowmobile 
Other 
Other Bird 
People (Man) 
People (Woman) 
Raven 
Snowmobile 
Xcountry Skis 
Xcountry Skis + Jet 
Total 

Training Data 
0.5057 
0.1164 
0.1623 
1.0000 
0.2162 
0.9375 
0.5000 
1.0000 
0.1087 
0.6547 
0.2290 
0.4937 

Test Data 
0.5068 
0.1532 
0.1642 
0.6250 
0.2143 
0.5294 
0.6349 
0.7778 
0.1283 
0.6151 
0.2380 
0.4170 

When using crossvalidation to determine error rates in the training data, both 

raven and other had 100% error, i.e., none of the windows were classified correctly. 

However, there were only two raven sound windows in the data set and 7 other 

sound windows. In fact, using resubstitution on the training data set gave 0% mis-

classification error for raven; both raven windows were correctly classified as raven. 

Resubstitution gave an error rate of 71.43% for other. Therefore, misclassification 

rates for these sound types should not be trusted in this case due to the small sample 

size for these sounds. The pairwise generalized distances between sound types when 

there was no overlap between windows were very similar to those when there was an 

overlap of 80 samples and thus are not shown here. 

4.3 Future Directions 

The second approach, using mel-cepstral frequency coefficients and linear dis

criminant analysis, produced encouraging results and has the potential to be a suc

cessful method to solving this problem. However, much research must be done with 

other data sets to determine if the approach is applicable to a wide range of sound 

data. In addition, it may be beneficial to investigate more features in addition to the 
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mel-cepstral coefficients, and to try a different classifier, e.g., support vector machines, 

neural networks, or tree-based methods. 

There are other approaches to the problem that are worth investigating. One 

such approach involves hidden Markov models (HMMs). Bayesian approaches using 

hidden Markov models and Markov chain Monte Carlo methods have recently been 

shown to work fairly well on change-point problems. In future work, it will be of 

interest to consider approaching this problem using these methods. 



Chapter 5 

CONCLUSIONS AND FUTURE DIRECTIONS 

This dissertation explores the asymptotic properties of the Auto-PARM esti

mates, in particular, consistency. We show that not only the estimated change-point 

locations, but also the estimated number of change-points and estimated autoregres-

sive orders are consistent for the true values when the underlying model is piecewise 

autoregressive. When the underlying model is not piecewise autoregressive, but is 

piecewise stationary and strong mixing plus satisfies some other small assumptions, 

the estimated number and locations of change-points are still consistent for the true 

values. These results demonstrate the advantages of Auto-PARM and provide a foun

dation for the theory behind the method. 

Auto-PARM can be applied to many different problems in a variety of fields. 

One such application is the segmentation of sound data for the National Park Service. 

This is not a standard application of a change-point problem, but instead combines 

segmentation and classification. Further research is needed to explore classification 

methods, including those from statistical learning theory. Other applications include 

problems in seismology, psychology, economics, finance, and ecology. 

The consistency results proven in this dissertation provide a large piece of the 

asymptotic theory for Auto-PARM. We also plan to examine the asymptotics of the 

estimated autoregressive orders in Auto-PARM when the underlying process is not 

autoregressive. Future research will study the connection between the theory behind 

Auto-PARM using the MDL principle and Bayesian methods. Zhang and Siegmund 

(2007) develop a "modified BIC" model selection criterion for independent normal 
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data with a change in the mean, which estimates the Bayes factor. Their criterion 

appears to be very similar to the MDL criterion. We will explore this connection and 

attempt to derive the MDL criterion for Auto-PARM from a Bayesian perspective. 

Sample size calculations and confidence intervals for the Auto-PARM estimates are 

also of interest. 
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Appendix I: Mel-Cepstral Frequency Coefficients 

The Cepstrum 

Suppose we have a time series x(t) sampled at discrete points in time. In terms 

of sound data, the time series will be the amplitudes of the sound wave. The cepstrum 

of the series, first defined by Bogart, Healy and Tukey [] in a 1963 paper on echoes 

resulting from earthquakes and bomb explosions, is obtained by taking the Fourier 

transform of the log of the power spectral density of the series (Fourier transform of 

its autocovariance function). In other words, 

cepstrum of signal = DFT( log( power spectral density of x(t) ) ). 

There are variants on the definition of cepstrum presented by Bogart, Healy and 

Tukey. It is common to use the inverse Fourier transform of the log of the power 

spectral density rather than the Fourier transform, i.e., 

cepstrum of signal = IDFT( log( power spectral density of x(t) ) ). 

Also, the discrete cosine transform is sometimes used: 

cepstrum of signal = DCT( log( power spectral density of x(t) ) ) . 

The cepstrum can be seen as information about rate of change in the different spec

trum bands. Since taking the spectrum of the original time series converts the infor

mation from time to frequency, doing a Fourier transform again converts the frequency 
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information into how fast the spectrum "crosses zero". The low order cepstral coef

ficients are sensitive to overall spectral slope and the high-order cepstral coeffecients 

are susceptible to noise. 

The word cepstrum comes from mixing the first four letters in the word spectrum. 

This is because the cepstrum is like the spectrum of the spectrum. We can think of 

the spectrum as a "frequency series", which if estimated digitally, will be discrete. 

Analogous to the terms "magnitude" (or amplitude), "frequency", and "phase" in a 

time series, we can use the terms "gamnitude", "quefrency", and "saphe" to describe 

these features in the spectrum. 

The independent variable of a cepstral graph is called the quefrency. The que

frency is a measure of time, though not in the sense of a signal in the time domain. 

For example, if the sampling rate of an audio signal is 44100 Hz and there is a large 

peak in the cepstrum whose quefrency is 100 samples, the peak indicates the presence 

of a pitch that is 44100/100 = 441 Hz. This peak occurs in the cepstrum because the 

harmonics in the spectrum are periodic, and the period corresponds to the pitch. 

Mel Scale 

The mel scale, proposed by Stevens, Volkman and Newman in 1937 [] (J. Acoust. 

Soc. Am 8(3) 185-190) is a perceptual scale of pitches judged by listeners to be equal 

in distance from one another. The reference point between this scale and normal 

frequency measurement is defined by equating a 1000 Hz tone, 40 dB above the 

listener's threshold, with a pitch of 1000 mels. Above about 500 Hz, larger and larger 

intervals are judged by listeners to produce equal pitch increments. As a result, four 

octaves on the hertz scale above 500 Hz are judged to comprise about two octaves on 

the mel scale. The name mel comes from the word melody to indicate that the scale 

is based on pitch comparisons. 

To convert / hertz into m mel use: 
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m = 1127.01048 loge(l + //700), 

and the inverse: 

/ = 700 (eWH27.01048 _ jJ _ 

A graph of the relationship between the mel scale and the Hertz scale is shown in 

Figure 6.1 
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Figure 6.1: Relationship between mel scale and Hertz scale. 

Mel Frequency Cepstral Coefficients (MFCCs) 

Mel frequency cepstral coefficients are calculated by adding one step to the cep-

strum calculation - converting the log spectral density or log Fourier transform to 

mel scale before taking the discrete cosine transform. The steps to calculate the mel 

frequency cepstral coefficients for a window of an audio signal are as follows: 

1. Calculate the DFT of the frame, X(k). 
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2. Filter the squared magnitudes by a mel-filter bank, Hm(k): 

J V - l 

S(m) = log Y^\X(k)\2Hm(k) 
k=Q 

for 1 < m < M. 

3. The MFCC is the DCT of the log-energies S(m): 

CW = Z^ S(m) cos I " M J 

for 0 < n < M — 1. M is 24-40, but only the first 13 coefficients are used. 

The basic difference between the FFT/DCT and the MFCC is that in the MFCC, 

the frequency bands are positioned logarithmically (on the mel scale) which approx

imates the human auditory system's response more closely than the linearly spaced 

frequency bands of FFT or DCT. This allows for better processing of data, for exam

ple, in audio compression. 


