
NOTE TO USERS

This reproduction is the best copy available.

UMI'

DISSERTATION

Interaction Space Abstractions: Design

Methodologies and Tools for Autonomous Robot

Design and Modeling

Submitted by

Carl L. Kaiser

Mechanical Engineering

In partial fulfillment of the requirements
For the Degree of Doctor of Philosophy

Colorado State University
Fort Collins, Colorado

Fall 2009

UMI Number: 3400991

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

UMT
Dissertation Publishing

UMI 3400991
Copyright 2010 by ProQuest LLC.

All rights reserved. This edition of the work is protected against
unauthorized copying under Title 17, United States Code.

ProQuest LLC
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, Ml 48106-1346

COLORADO STATE UNIVERSITY

August 21, 2009

We hereby recommend that the dissertation prepared under our supervision by

Carl Kaiser entitled, "Interaction Space Abstractions: Design Methodologies and Tools

for Autonomous Robot Design and Modeling" be accepted as fulfilling in part

requirements for the degree of Doctor of Philosophy.

Committee on Graduate Work

Committee Member - David Alciatore

Committee Member - L/uis Bjostead

Advisor - Wade O. Troxell

Department Head - Allan Kirkpatrick

11

ABSTRACT OF DISSERTATION

Interaction Spaee Abstractions^ Design Methodologies and

Tools for Autonomous Robot Design and Modeling

Current abstractions, design methodologies, and design tools are useful but

inadequate for modern mobile robot design. By viewing robotics systems as an

interactive and reactive agent and environment combination, and focusing on the

interactions between the two, particularly those interactions that result in task

accomplishment, one arrives at the interaction space abstraction.

The role of abstractions, formalisms and models are discussed, with emphasis on

several specific abstractions used for robotics as well as the strengths and shortcomings

of each. The role of design methodologies is also discussed, again with emphasis on

several currently used in robotics. Finally, design tools and the use thereof are briefly

discussed.

The concept of interaction spaces as an abstraction and a formalism is developed

specifically for use in robot design. Types of elements within this formalism are

developed, defined, and described. A formal nomenclature is introduced for these

elements based on Simulink blocks. This nomenclature is used for descriptive models

and the Simulink blocks are used for predictive models.

The interaction space abstraction is combined with the concept of exploration-

based design to create a design methodology specifically adapted for use in descriptive

modeling of autonomous robots. This process is initially developed around a simple

wall-following robot, then is expanded around a multi-agent foraging system and an

iii

urban search and rescue robot model, each of which demonstrates different aspects and

capabilities of interaction space modeling as a design methodology.

A design tool based on iterative simulation is developed. The three

specific examples above are used to perform quantitative simulation and the results are

discussed with emphasis on determination and quantification of factors necessary for task

accomplishment. These simulations are used to illustrate how to explore the design space

and evaluate trade offs between design parameters in a system.

Carl L. Kaiser

Department of Mechanical Engineering

Colorado State University

Fort Collins, CO 80523

Fall, 2009

iv

Acknowledgements

As with any significant undertaking, this dissertation would not have happened

without the help and support of many people who are often not fully recognized. In

particular I would like to thanks the numerous friends as well as my parents without

whom I may have given in to the temptation to lay this aside unfinished. Many people

have listened sympathetically and offered both empathy and advice at times when I

needed it.

I also owe a debt to my committee and in particular, my advisor Wade Troxell,

for their advice, encouragement and teachings. This undertaking would also have been

impossible without the financial support of the Department of Mechanical Engineering

and the College of Engineering in the form of fellowships and assistantships.

v

Table of Contents

Table of Contents...... 1

Table of Figures 7

Table of Tables 11

Chapter 1 -Introduction ...12

1.1 Abstractions 12

1.2 Abstractions for Robot Design14

1.3 Interaction Spaces and Design Theories......................15

1.5 Thesis Statement.. 16

1.6 Synopsis... 17

Chapter 2 - Abstractions, Methodologies, and Tools for Robot Design..........19

2.1 The Role of Abstraction in Design..19

2.1.1 Elements of Abstraction...21

2.1.2 System Dynamics...22

2.2 Design Methodologies...23

2.2.1 Top Down and Bottom Up Design ...24

2.2.3 Exploration Based Design..25

2.2.4 Behavior Based Design. , 27

2.2.5 Generalized Design Methodologies .29

2.3 Robotic Design Abstractions29

2.3.1 Task, Environment, and Agent. ...31

2.3.1.1 -TEA Defmitions..32

2.3.2 Affordances 33

1

2.3.3 Petri Nets 34

2.3.4 Geometric Representations.......34

2.3.5 Sense-Plan-Act . 35

2.3.6 Schema 37

2.4 Design Tools37

2.4.1 Geometric Simulations.... 38

Chapter 3 - Adding Structure to Interaction Spaces and Defining Notation for

Interaction Space Models 40

3.1 Interaction Spaces......,...4Q

3.2 Reactive Agent/ Reactive Environment......................................,.............,........44

3.3 Defining and Using Interactions and Cycles 46

3.4 Multi-Agent Systems...48

3.5 Understanding the Role of Information and Data Types...................................50

3.5.1 Binary Data...50

3.5.2 Discrete Data..51

3.5.3 Continuous Data...51

3.6 Basic Functional Block..51

3.6.1 State Blocks 52

3.6.1.1-Features 52

3.6.1.2-Attributes 53

3.6.1.3 -Properties..53

3.6.2 Reaction Blocks....53

3.6.2.1-Signals54

2

3.6.2.2-Information........................ .54

3.6.2.3-Behaviors..54

3.6.3 System Dynamic Implementation55

3.6.4 Controlling Functional Blocks 56

3.7 Stochastic Blocks. ,56

3.7.1 Random Number Generator Blocks 57

3.7.2 Random Decision Maker Block....58

3.7.3 Noise Blocks 58

3.8 Tasks..59

3.8.1 Task Accomplishment for Perceptive Tasks..59

3.8.2 Measuring Task Accomplishment in Physical Tasks60

Chapter 4 - Descriptive Models 61

4.1 Modeling Elements..61

4.1.1 Combining Functional Blocks ..61

4.1.2 Developing Pseudo Code and Meanings..62

4.2 Steps in the Modeling Process...63

4.2.1 Defining the Problem..... ..64

4.2.2 Creating Initial Cycles ..65

4.2.3 Adding Additional Interactions65

4.2.4 Adding Discrete Signals 66

4.2.5 Adding Analog Signals...67

4.2.6 Adding Uncertainty ..67

4.2.7 Measuring Task Accomplishment 68

3

4.3 Refining the Model........68

4.4 Muramador Model70

4.4.1 Defining the Problem70

4.4.2 Creating Initial Cycles 71

4.4.3 Adding Additional Interactions to the Basic Model...........74

4.4.4 Adding Discrete Signals 79

4.4.5 Adding Analog Signals 85

4.4.6 Adding Uncertainty to the Model.88

4.4.7 Determining Task Accomplishment...91

4.4.8 Suggested Additions for the Muramador Model ..91

4.5 Multi-Agent Foraging Model ..93

4.5.1 Defining the Problem.........94

4.5.2 Addressing the Multi-Agent Issue..95

4.5.3 Foraging Model..95

4.5.4 Measuring Task Accomplishment..101

4.5.5 Improvements and Additions.. 102

4.6 Urban Search and Rescue Victim Detection Model..102

4.6.1 Defining the Problem...105

4.6.2 GSVD Model 106

4.6.3 Measuring Task Accomplishment...... .107

4.6.4 Additions and Improvements.. 109

4.7 Prototyping.. 109

Chapter 5 - Predictive Modeling I l l

4

5.1 Developing Predictive Models112

5.2 Implementing a Simulation.. 112

5.2.1 Simulink Implementation of Basic Functional Block 113

5.2.2 Simulink Implementation of Other Blocks 116

5.3 Measuring and Interpreting Results......117

5.4 Muramador Simulations ..118

5.5 Foraging Simulations121

5.6 Victim Detection Simulations ...125

5.7 Exploration Based Design with Predictive Modeling126

5.8 Discussion on Predictive Modeling...128

5.8.1 Multi-Variate Parameterized Simulations..128

5.8.2 Grounding the Simulations... 128

5.8.3 Limitations of Simulink Simulation Environment129

5.8.4 Comparison to Current Methods ..130

5.8.5 Computational Complexity... 130

Chapter 6 - Conclusions and Future Work ...132

6.1 Summary..132

6.2 Conclusions........ ...133

6.2.1 Interaction Spaces and Design............133

6.2.2 Descriptive Modeling .134

6.2.3 Predictive Modeling................135

6.3 Future Work... 135

6.3.1 Real Robots.........135

5

6.3.2 Dealing with Units.....136

6.3.3 Standard Simulation Language..136

6.3.4 Expansion of Standard Modules137

References 138

Appendix A - Implementation and Code for the Simulink Modeling Tools143

A.l -Simulink Implementation of a Stock 143

A.2 Simulink Basic Functional Block Implementation.....148

A.3 - Simulink Uniform Random Number Generator Implementation........ ...149

A.4 - Random Decision Making Block Implementation150

A.5 - Discrete Random Number Generation Block..152

Appendix B - Code for Simulink Models.154

B.l - Muramador Model .154

B . 2 - Multi-Agent Foraging Model... 158

B.3 - GSVD Model ...165

Appendix C - PowerSim Code..176

C.l -Muramador Program Listing (PowerSim) ...176

C.2 Foraging Program Listing (PowerSim)...178

C.3 Victim Detection Program Listing (PowerSim).. 184

6

Table of Figures

Figure 1 -Rosen Model..........................20

Figure 2 - Types of Abstraction 21

Figure 3 - Basic System Dynamic Elements 23

Figure 4 - Top Down and Bottom Up Design 25

Figure 5 - Exploration Based Design.............................. 26

Figure 6 - Vertical Robot Decomposition [1] 28

Figure 7 - Level of Abstraction and Type of Design Process for Various Robot

Abstractions ...30

Figure 8 - Task Environment and Agent Abstraction with Interaction Spaces32

Figure 9 - Sense, Plan, Act Abstraction...36

Figure 10 - Sense, Perceive, Plan, Act Abstraction...36

Figure 11 - Task, Environment, and Agent Abstraction with Interaction Spaces41

Figure 12 - Level of Abstraction and Top Down vs. Bottom Up Characteristics of the

Interaction Space Abstraction Relative to Other Robot Design Abstractions.............43

Figure 13 - Quadrant abstraction of Interaction Spaces ..45

Figure 14 - Interaction Space Cycles...47

Figure 15 - Multi-Agent Quadrant abstraction 49

Figure 16 - Basic Functional Block.. ...52

Figure 17 - System Dynamic Implementation of a Basic Functional Block............... 55

Figure 18 -Uniform Random Number Block..57

Figure 19 - Discrete Uniform Random Number Block58

Figure 20 - Random Decision Making Block 58

7

Figure 21 - Standard Cycle Abstraction62

Figure 22 - Creating an Initial Interaction Space Model ...64

Figure 23 - Options to Refine the Initial model... .,69

Figure 24 - Basic Cycle for the Muramador Model 72

Figure 25 - Muramador Model with Additional Interactions 75

Figure 26 - Muramador Model with Additional Interactions 77

Figure 27 - Muramador Model with Discrete Signals 80

Figure 28 - Muramador Model Additional Discrete Elements..83

Figure 29 - Muramador Model with Analog Signals...86

Figure 30 - Full Muramador Model...89

Figure 31 - Foraging Robots as Implemented by Krieger and Billeter [32]................94

Figure 32 - Foraging Agent Block...96

Figure 33 - Foraging Agent Block Internal Structure..97

Figure 34-Environmental Reaction Block...98

Figure 35 - Environmental Reaction Block Internal Structure....................................98

Figure 36 - Environmental Properties Block...99

Figure 37 - Environmental Properties Internal Structure100

Figure 38 -Multi-Agent Foraging Model....101

Figure 39 - Typical RoboCup Terrain and a Typical Victim with the Good Samaritan

in front of it ..104

Figure 40 - Additional Typical RoboCup Terrain with the Good Samaritan 104

Figure 41 - Crowd at the RoboCup Competition in 2006 ...105

Figure 42 - GSVD Framework Model with Basic Element107

8

Figure 43 - Simulink Implementation of a Basic Functional Block...113

Figure 44 - Simulink Implementation of a Basic Functional Block................. .114

Figure 45 -Dialog Box to Set the M-file 114

Figure 46 - Simulink Stock 115

Figure 47 - Dialog Box to Input the Initial Value of the Stock.. .115

Figure 48 - Random Decision Making Block..116

Figure 49 - Random Decision Block Dialog Box116

Figure 50 - Random Number Generation Block.... ...117

Figure 51 -Discrete Uniform Random Number Generator...................117

Figure 52 - Muramador Model of the Presence of a Wall (Time Units are Arbitrary)

...119

Figure 53 - Muramador Cumulative Wall Time (Units are Arbitrary but Consistent)

Figure 54 - Muramador Instantaneous Wall Distance (Units are Arbitrary)............. 120

Figure 55 - Average Distance from the Set Point..121

Figure 56 - Agent Foraging Output (Units are Arbitrary) ...122

Figure 57 - Agent Object Found Output (Units are Arbitrary).................................. 122

Figure 58 - Individual Agent Energy Level....123

Figure 59 - Instantaneous Nest Energy Level for a Typical Power Sim Run 123

Figure 60 - Maximum Number of Times Steps (5000 possible) to Complete Nest

Energy Loss (out of 20 runs) .124

Figure 61 - Average Nest Energy as a Function of Agent Energy Usage and the Value

of an Energy Module125

9

Figure 62 - Average Number of Victims Found Based on Environmental Noise and

Sensor Effectiveness ,126

Figure 63 - Exploration Based Design with Predictive Modeling127

Figure 64 - Stock 143

Figure 65 - S-Function Dialog Box for a Stock....... ,144

Figure 66 - Stock User Dialog Box for Setting the Initial Value ...144

Figure 67 - Stock Mask Initialization..... 145

Figure 68 - Basic Functional Block Implementation... 148

Figure 69 - Uniform Random Number Generator Block Internal Structure149

Figure 70 - Uniform Random Number Generator Block Mask Initialization150

Figure 71 - Internal Structure of a Random Decision Making Block........................151

Figure 72 - Random Decision Maker Function Dialog Box......................................l51

Figure 73 •* Random Decision Maker Block Mask Parameter Set Up.......................152

Figure 74 - Discrete Uniform Random Number Generator Block Internal Structure

...152

Figure 75 - Discrete Uniform Random Block Mask Initialization............................153

Figure 76 - Muramador Framework Model without Basic Modeling Agent154

Figure 77 - PowerSim Muramador Model...............................176

Figure 78 - Foraging Agent PowerSim Model178

Figure 79 - Foraging Agent Environment PowerSim Model .179

Figure 80 - Left Side of the USAR PowerSim Model..............................184

Figure 81 - Right Side of the USAR PowerSim Model...185

10

Table of Tables

Table 1 - Muramador Basic Cycle... ..74

Table 2 - Muramador 1st Set of Additional Interactions 76

Table 3 - Muramador 2nd Set of Additional Interactions 79

Table 4 - Muramador 1st Discrete Model 82

Table 5 - Muramador Model Additional Discrete Elements 85

Table 6 - Muramador Model with Analog Blocks 88

Table 7 - Muramador Model with Uncertainty..91

11

Chapter 1 - introduction

Robotics in its current form has been enabled by the digital computer.

Steady improvements in computing and other technologies such as sensors and

actuators have led to widespread use of robotics in many tasks. Other tasks have

remained relatively free of robotic involvement on any large scale; in some cases

because relatively little effort has been made, and in other cases because effective

robots have eluded designers despite substantial efforts.

Each robot operates within an environment; these environments can range

from carefully engineered to relatively unstructured and uncertain. Generally two

approaches exist to dealing with robots in complex environments. Where practical,

one can seek to reduce the effective complexity of the environment. This has

generally been the case with industrial robots and many research robots. In many

cases, redesigning the environment is impractical or undesirable. It is with these

cases that the remainder of this dissertation will be concerned.

1.1 Abstractions

If, as has been discussed, an environment cannot or should not be modified, it

is necessary to find a way of understanding the environment. It is also necessary to

develop an abstraction of the task if the task is significantly complex. Moreover, it is

likely that any robot capable of performing a "complex" task would itself be difficult

to understand without some tool to assist in description and understanding.

Abstraction is a generalized tool for understanding complex phenomenon.

Formally introduced in Chapter 2, abstraction can generally be thought of as a mental

12

model. Abstraction is used throughout engineering design. As examples, consider

the concept of current symbolizing a flow of electrons (in and of itself an abstraction

of a more complicated physical reality) or the concept of enthalpy in thermodynamics,

which is actually a more abstract, and for some situations more useful, way of

expressing probabilistic movement and behavior of atoms. The behavior of the atoms

is in and of itself a simplification of the interplay of various quarks and subatomic

forces.

The examples above represent formal abstractions. It is also possible to have

informal abstractions. Informal abstractions are more internalized mental models; for

example, most children develop the abstraction that throwing a ball harder results in it

flying farther. This has nothing to do with the formalized abstraction of projectile

motion, or with the more complex abstraction of various gravitational and

aerodynamic theories.

Informal abstractions are essential to everyday life. Individuals rely on

generalized mental models to anticipate the effects of their actions. Likewise, modern

engineering relies on more formal abstractions to predict behavior of the surrounding

world and thus design devices that work. Although the devices work in the real world,

it would be difficult for the engineer to deal with subatomic forces and particles while

designing a building. Abstraction allows these effects to be aggregated and dealt with

on a macroscopic scale.

Formal abstractions such as those most commonly used in engineering are

well documented and have been evaluated experimentally to reveal limitations, such

as the breakdown of Newtonian physics at speeds that are a significant fraction of the

13

speed of light. The risk of all abstractions, but especially informal abstractions, is

applying them in situations where they are invalid. To return to the abstraction of

throwing the ball, an unstated limitation of this abstraction is that the ball must leave

the hand traveling in the right direction. Most adults unconsciously add this to their

movements when throwing a ball, but watching a two-year-old quickly reminds one

that this is a refinement of earlier childhood abstractions. More formal abstractions

can also suffer from this limitation as evidenced by unexpected failures of various

devices from the Tacoma Narrows bridge to the space shuttle Columbia. In general,

the more informal the abstraction the more risk there is of applying it incorrectly or of

two individuals applying it differently.

In addition to allowing for prediction, abstraction also facilitates

communication and documentation. For well over a century, the three-view

dimensioned drawing was the engineering communication tool of choice for

mechanical objects. These drawings were not physically the objects but rather

abstractions of the objects. The abstractions were not needed to design the objects,

but rather to document and communicate the form of the object. This abstraction was

only useful for communication because it was a formal abstraction with an agreed-

upon relationship to the real world.

1.2 Abstractions for Robot Design

To design a complete robotic system it is necessary to consider the task, the

environment, and the robot. Moreover, it is necessary to consider (and therefore in a

complex system, abstract) the interactions between these three elements. After

introducing some necessary concepts in Chapter 2, the remainder of this dissertation

14

will focus on the interactions between the task, the environment, and the agent; how

these interactions can be abstracted; and how those abstractions can be used.

1.3 Interaction Spaces and Design Theories

The process of developing a theory of design in a particular field is largely

related to developing correct formal abstractions and knowing when and how to apply

each one systematically so that gaps are not created. The abstractions themselves

often come from the physical sciences, but can also come from engineering practice;

for example, the behavior-based architecture for robotics proposed by Brooks [1] is

an abstraction for how to build a robot control system. Also necessary is the design

process (abstractions of how to undertake a design) for a particular field. As

discussed above, any of these abstractions can be either formal or informal or some

combination of the two. As a design theory matures, these abstractions become more

formalized. In general this process leads to more efficient and successful designs.

An interaction space is the set of all possible interactions between the robot

and the environment. [2,3] The goal of robot design is to create a system that will act

in that portion of the interaction space that will result in accomplishing the task.

Interaction spaces focus specifically on the features and reactions of the agent and

environment that trigger the desired interactions. Interaction spaces will be

developed in further detail in Chapter 2.

Interaction spaces are used to more formally abstract the process of task

accomplishment within a robotics system. The interaction space in and of itself is an

abstraction but is primarily intended to help a designer apply other existing

abstractions to a design.

15

As it currently exists, the interaction space abstraction only allows the

designer to organize the abstractions that make up the interaction space. Interaction

spaces do not currently help a designer to develop these abstractions, decide what

abstractions should be used, or help to ensure a complete overall picture of the system.

These tasks require a design process also sometimes referred to as a design

framework. Such a process or framework does not currently exist around interaction

space modeling. Much of the remainder of this dissertation will focus on developing

such a framework.

Abstractions used for documentation and communication of robot design are

common and often overlap with existing design fields; however, communication of

the interaction between the robot and the environment and the relationship of those

interactions to task accomplishment is generally not well documented in a formalized

abstraction. Interaction space modeling is intended to bridge this gap.

15 Thesis Statement

By viewing robotics systems as an interactive and reactive agent and

environment combination, and focusing on the interactions between the two,

particularly those interactions that result in task accomplishment, the abstraction of

interaction space models can be developed.

Interaction space modeling (based on the interaction space abstraction) can be

used inside a formal framework with both an agent and an environment state

represented, as well as agent and environment reactions. By defining interaction

cycles between these components, a designer can formalize knowledge and

assumptions about the interaction of the agent and environment as well as task

16

accomplishment. Standard functional blocks can be used to implement these models

and should be added iteratively in a bottom up fashion to help the designer implement

an exploration-based design process and provide a design methodology.

Further expansion of the concept of interaction space modeling combined with

a mathematical framework provided by system dynamics can lead to predictive

models that function as design tools. These design tools can provide both qualitative

and quantitative insight into individual requirements necessary for system level task

accomplishment.

By considering the agent and environment as equal reactive systems, and by

iteratively refining the understanding of task accomplishment as an interaction

between the two, the focus remains on the system level design instead of clever

engineering or technology.

1.6 Synopsis

Chapter Two of this dissertation focuses on the fundamentals of formalized

design. The role of abstraction is discussed, with emphasis on several specific

abstractions used for robotics as well as the strengths and shortcomings of each of

these. The roie of design methodologies is also discussed, again with emphasis on

several currently used in robotics. Finally, design tools and their use are discussed

briefly.

Chapter Three of this dissertation uses the concept of interaction spaces as an

abstraction, and formally develops the abstraction specifically for use in robot design.

Types of elements within this abstraction are developed, defined, and described. A

17

standard nomenclature is introduced that is used throughout the remainder of the

dissertation.

Chapter Four combines the abstraction described and developed in Chapter

Three with the concept of exploration-based design to create a design methodology

specifically adapted for use in descriptive modeling of autonomous robots. This

process is initially developed around a wall-following robot, a multi-agent foraging

system, and an urban search and rescue robot model, each of which demonstrates

different aspects and capabilities of interaction space modeling as a design

methodology.

Chapter Five takes the interaction space abstraction from Chapter Three and

the interaction space methodology from Chapter Four and creates a design tool based

on iterative simulation. The three specific examples from Chapter Four are used to

perform quantitative simulation and the results are discussed with emphasis on

determination and quantification of factors necessary for task accomplishment.

Chapter Six Reviews the new work presented in this dissertation, discusses the

conclusions that can be drawn from this work, and suggests future avenues of

research to capitalize on the beginning made here.

Finally, a number of appendices are provided to give implementation details

not relevant to the general discussion of interaction spaces, but necessary to replicate

or expand this work in the future.

18

Chapter 2 - Abstractions, Methodologies, and Tools

|QP Robot Oggffjfl

When discussing design, three broad categories of formalization are available.

Design abstractions reduce the complexity of a system to a level comprehensible to a

designer and allow the designer to communicate his or her ideas to others who are

familiar with the abstraction. Design methodologies provide a process to assist the

designer in the creative process and in accounting systematically for the steps

necessary to create a functional system. Design tools provide quantitative insight into

the functionality and behavior of a system and allow for reduced physical

experimentation during the design process. Each of these formalizations is critical to

design in the modern world of limited time and resources and global competition.

2 J The Role of Abstraction in Design

The concept of abstraction is fundamental to design. The real world is

infinitely complex, or at least so nearly infinite as to be effectively so for the purposes

of current human capabilities. By contrast, an abstract model (mental or otherwise)

of the real world is understandable, allows prediction, and often provides sufficient

correlation with reality that conclusions derived from the model are effectively

correct in the real world. The practice of design consists of the selection of an

acceptable solution to a problem from among the many possible solutions. This can

only be carried out via the development of a mental or physical model of the problem

and solution.

19

A tool for understanding abstraction is the Rosen Model [4] shown in Figure 1.

The Rosen Model, itself an abstraction, envisions the real or material world on the left

side of an imaginary line. Within the real world, events occur due to causality,

explained in other words as the normal flow of time and the laws of nature. On the

right side of the same line, the abstract world exists. Within the abstract world,

events "occur" based on execution of formal constructs; in other words, predictions

are made according to the model that defines the abstract world. To move between

the two worlds, an encoding or decoding process must take place. The encoding

process is the mental process that takes place to transform the infinite complexity of

the real world to the finite complexity of an abstraction; the decoding process is the

application of the abstraction to infer real world results. The quality of the encoding

and decoding processes represent the accuracy and precision with which predictions

made in the abstract world will apply to the real world.

Decode
Real World Abstract World

1

Encode

Figure 1 - Rosen Model

20

There are several abstractions that are currently used to develop models for

autonomous systems. A brief overview of the most common, as well as those

particularly relevant to the work in the remaining portion of this dissertation, is

provided below.

2.1.1 Elements of Abstraction

In addition to abstraction, which is discussed above, it is also important to

understand the distinction between abstraction and other related concepts such as

formalisms, models, and realizations (see Figure 2). As shown in the Rosen Model,

there is an encoding process from the real world to the abstract world. In some cases

this encoding process can take the place of an informal removal of detail (here

referred to as the process of abstraction) while in other cases a formalism exists that

explicitly guides the move from the real world to the abstract world. In this case the

process of abstraction is still being applied but it is guided by the formalism. An

example of this would be the application of Newton's Second Law to abstract the

motion of a projectile. Other less rigid formalisms are possible; the key aspect is that

they represent a clearly communicable and documented encoding.

Abstraction

>-

Formalism

-<

Model Construction Realization

Figure 2 - Types of Abstraction

21

A model is what is created when one or more formalisms are applied to create

an abstraction of a system. A model should be a representation of system behavior.

Models can be both descriptive (i.e., what does happen) or predictive (i.e., what the

system will do).

As shown in the Rosen Model, in order to move out of the abstract world and

back into the real world, a decoding process is needed. In engineering, this decoding

process is a multi-stage process as a system is designed and built. A physical system

that has been built is a realization of the model.

2.1.2 System Dynamics

A formalism that will be used within this dissertation is system dynamics.

System dynamics [5,6] is a feedback loop based technique for abstracting difficult-to-

quantify situations, particularly in the business and economic world. In particular,

system dynamics is used to model, understand, and communicate the complex

interactions of related components of a system. System dynamics models contain the

six basic elements shown in Figure 3. Stocks represent quantities and can most

generally be thought of as real numbers. Flows represent a change in a stock.

Auxiliaries are used to decompose complex logical or mathematical statements. Data

arrows indicate connections between elements of a model, and denote the

transmission of the value of one element to the other element. Constants are exactly

that and do not change throughout the simulation. Sources and sinks can be thought

of as stocks with value infinity.

22

Symbol

<2
XT' K o

o
o

Name

Stock

Source/Sink

Flow

Auxiliary

Constant

Data Arrow

Figure 3 - Basic System Dynamic Elements

System dynamics as a formalism tends to focus on cause and effect

relationships, and as such can be useful when considering the interaction space

abstraction discussed below. In addition, most system dynamics texts, such as those

referenced above, emphasize an iterative bottom up modeling approach.

2.2 Design Methodologies

Design is the application of an abstraction, usually through a formalism, to

create a model. From this model, predictions about the efficacy of particular

solutions are then evaluated in an attempt to determine an optimal solution. This

description, while common, does not adequately address the issue of determining

23

possible solutions. Within the field of robotics, the determining possible solutions

step is often addressed in a vague process of brainstorming or similar activities.

While these activities are indisputably useful, they are more effectively applied as

part of an overall design methodology such as the exploration based design process

discussed below.

2.2.1 Top Down and Bottom Up Design

Most design methodologies can be broadly classified as either top down, or

bottom up [1,7,8]. A bottom up design strategy involves getting the simplest possible

element of a solution working and tested. Additional elements of the solution are

then added incrementally with full testing and verification at each step. Thought is

not given to the design of later increments while a particular piece is designed. By

contrast, a top down strategy focuses on the simultaneous design of the entire system.

In theory, all aspects of a solution would be completely known prior to construction

of any element.

In practice, the top down, bottom up distinction is really a spectrum as shown

in Figure 4. Bottom up design is used principally when a field is not well understood

and when design tools and abstractions are poor, while top down design is more

common in mature fields with well-understood abstractions, methodologies, and

design tools.

24

Natural Progression Over Time }
Wright
Flyer

Most Current
Mobile
Robots

Economic
Viability Boeing 777

mm ^~' vfc

Top Down
• Design Tools
• Faster
• Low Development Cost
• Requires Deep Knowledge

Bottom Up
• Prototyping
• Slower
• High Development Cost
• Requires Shallow Knowledge

Figure 4 - Top Down and Bottom Up Design

2.2.3 Exploration Based Design

Exploration based design (EBD) [9,10] views design as a narrowing

refinement of constraints. Initially, one starts out with all potential solutions to a

problem (a solution space). Based on understanding of constraints and criteria, a

designer is able to eliminate large portions of the solution space. Exploration through

analysis, modeling, or prototyping of remaining segments of the space is used to

further refine and quantify constraints and criteria in order to eliminate additional

solution space regions. Gradually a designer narrows in on a single solution that best

meets the constraints and criteria as they are understood.

Exploration Based Design begins with three elements: K<j„, K<jm, and Rj. Kdm

is designer knowledge of the domain. This includes knowledge of how to perform a

particular task; for example, that turning a doorknob and either pushing or pulling

opens an unlocked door. K<jn represents knowledge of how to design in a particular

field and can be broadly said to represent past experience of the designer plus any

25

formal methods that are to be used. R; is a set of initial requirements, often in a

qualitative form and rarely at a sufficient level of detail to begin choosing solutions.

In an EBD process, illustrated in Figure 5, a designer would then use Kdn, Kdm and

other properties to generate a better set of requirements. This would then eliminate a

portion of the solution space, allowing a more detailed refinement loop to be

subsequently implemented on the requirements. When applied in an iterative fashion

this will, in theory, lead to a design that solves the problem at hand.

Identified
Needs or
Desires

Realization of
Needs or
Desires

Design

Physical
Prototyping

Figure 5 - Exploration Based Design

26

2.2.4 Behavior Based Design

The behavior based design abstraction [11,12] seeks to define a parallel set of

behaviors (i.e., tightly coupled reactions to environmental stimuli) that together result

in emergent behavior that will lead to task accomplishment (an example from Brooks'

seminal paper on the subject is shown in Figure 6.) Brooks, [1,7] the most visible

practitioner of behavior based design, tends to advocate that the best way to

accomplish this is through bottom up physical prototyping of successive layers of

behavior. Indeed, in many cases, the concept of behavior based design is mentally

linked directly to the concept of extensive physical prototyping and unpredictable

emergent behaviors. This is undesirable due to the inherent cost in time, materials,

and testing that is associated with design based purely on physical prototyping,

particularly when used not for debugging, but for exploration, as is the case when

emergent behavior is sought. This issue is discussed in further detail later in this

chapter.

27

n

s
E
N

o
R
S

/Treason About Behavior^
\ of Objects J

>

Plan Changes to the
World

4 Identify Objects V

4 Monitor Changes }-

4 Build Maps j -

C Explore 1-

4 Wander t-

4 Avoid Objects V

• H

A
C
T
U
A
T
O
R
S

KJ

Figure 6 - Vertical Robot Decomposition [1|

Many implementations of behavior based design exist including subsumption

[1], schema [13,14], and a host of others. In general each of these is useful in certain

cases. It is left to the broader engineering community and the individual designer to

make use of these as appropriate. In general, a design methodology should seek to

allow use of as many of the tools that have been developed as possible.

28

2.2.5 Generalized Design Methodologies

Many generalized design methodologies exist. It is beyond the scope of this

dissertation to provide a comprehensive description or explanation of these. Several

comprehensive references are available in most technical libraries. Any of these

generalized philosophies can be useful and relevant to robot design; however, in the

parlance of exploration based design, most of these are predicated on very detailed

and specific domain knowledge and extensive design knowledge within a narrow

field. Given the present absence of this knowledge in many fields with potential

robot application, these generalized methodologies are often insufficient for speedy

and successful robot development.

2.3 Robotic Design Abstractions

Design abstractions in general, and robotic design abstractions in particular,

can be classified according to both level of abstraction and the degree to which they

are applied top down or bottom up. Design abstractions applied at a high level of

abstraction are generally used for conceptual design and initial design definition

while lower levels of abstractions become more applicable as the design process

progresses. This is not a hard and fast line, but rather represents a progression.

Many robotic design abstractions have been proposed, many framed as

architectures, and others specifically as design abstractions. A representative set of

design abstractions is shown in Figure 7 and discussed below.

29

/ \ Level of
n. r Abstraction

Afford ances

Typical Progression of a
Design

Subs
umpt
ion

Conceptual Design and
Initial Definition

« • • • • • » mmta^mk
Detailed Design and

Implementation

task,
Environment,

and Agent

Sense
Plan
Act

Schema

xn:

Bottom Up

Figure 7 - Level of Abstraction and Type of-Design Process for Various Robot Abstractions

Within the exploration based design model, design abstractions are typically a

way of capturing domain knowledge about the system. To the extent that these

abstractions have a formalized manner in which they are typically applied during

design (for example, subsumption is typically applied in a particular bottom up

fashion described by Brooks) they may also represent design knowledge.

For the purposes of the remainder of this dissertation, a robot will be

considered any designed system that reacts to its environment and which seeks to

accomplish a task.

30

2.3.1 Task, Environment, and Agent

In the Task, Environment, and Agent (TEA) abstraction (Figure 8), robotic

systems are comprised of three parts: an agent (robot), an environment in which it is

to operate, and a task or tasks that it is designed to achieve. Early robotic projects

dealt predominantly with agent design using contrived tasks and contrived

environments. Later work [15] views task, environment, and agent on equal terms,

whereby each part of the system must be based in the real world (e.g., not contrived).

Moreover each of the three elements must interact with the other two. The TEA

abstraction explicitly points out the equal, if not greater, importance of the

interactions between system elements as compared to descriptions of the elements

themselves. As shown in Figure 7, the TEA model is generally a high level

abstraction, most useful in the early stages of design. The TEA model is relatively

neutral with respect to top down or bottom up design.

Unlike most of the other abstractions discussed in this chapter, the TEA

abstraction does not lend itself to implementation and hence is not as clear cut a case

of domain knowledge about how a system works or is constructed, nor does it provide

any knowledge of how to design a system and cannot be considered design

knowledge. However, the TEA abstraction is in fact a limited form of domain

knowledge.

31

Environment

Figure 8 - Task Environment and Agent Abstraction with Interaction Spaces

2=3oLl - TEA Definitions

• Task: A measurable outcome of the interaction between agent and

environment. A task must be "useful" in that it must contribute to an agent's

purpose.

• Interaction: A cause and effect exchange between an agent and an

environment

• Agent: An independent device, consisting of one or more subsystems, that is

designed to complete specified tasks

32

• Multi-agent system: A system consisting of more than one agent that is

designed to carry out additional purposeful task(s) beyond the sum of the

capabilities of the constituent agents.

• Environment: The entire "relevant" world, excluding the agent itself, but

including other agents in a multi-agent system

2.3.2 Affordances

The theory of affordances was applied to robotics by Ford [16]. The theory of

affordances postulates that an agent is able to achieve a task because certain

invariants in the environment "afford" the robot the opportunity to accomplish that

task. For example, a chair has invariants in that it is at approximately knee height, is

able to support weight, and has a flat surface, thereby affording a person the ability to

interact with the chair by sitting on it.

The theory of affordances is a step in the right direction, but has two notable

limitations with respect to understanding the interaction of task, environment and

agent within robot design. The first is the qualification problem [17]. The second

related problem is that there is no quantification associated with this theory making it

difficult to use for prediction of real system behavior. As shown in Figure 7,

affordances are a very high level of abstraction and are typically used very early in

the design process. Moreover, since there is no formal structured method to apply

affordances, this abstraction is principally a way of capturing domain knowledge

rather than design knowledge.

33

2.3.3 Petri Nets

Petri nets, first developed by Carl Petri [18] are one form of abstraction used

to model mobile robot design. Within a Petri net, many states are defined, each of

which may be either active or inactive. For each state a set of transitions is defined

through which the state may either become active or inactive. An active state

contains a token that must be passed to another state in order to activate that state. In

some implementations, multiple tokens may be propagated from a single active state.

Current work on Petri net models of robots focus primarily on resource

allocation (i.e., memory, sensors, etc.) [19], Limited work has been undertaken on

creating automated software generation systems based on Petri net models [20-22],

but only within significantly limited boundaries. To date the author is unaware of any

work on physical robot design using Petri nets. Petri nets are limited (with respect to

some types of robot modeling and design) primarily by the fact that they are limited

to finite state systems. As depicted in Figure 7, Petri nets are implemented at a high

degree of abstraction but are relatively neutral to top down or bottom up design. Petri

nets are inherently only a method of capturing domain knowledge, but several of the

examples referred to above have some degree of design process inherent in the

implementation, and to this extend Petri nets have been used to capture design

knowledge as well.

2.3.4 Geometric Representations

Geometric representations are those most commonly thought of in mobile

robot design [23,24]. These representations are generally applied as simulations in

which the agent and environment are explicitly modeled in a great deal of detail and

34

interactions are modeled only at the physics level if at all. Often the focus is on

making the environment generate appropriate sensor data [25]. This form of

representation works well for some things, but is generally too cumbersome for

exploration based design processes except perhaps very late in the iterative process.

As shown in Figure 7, geometric abstractions are typically applied at a very

low level of abstraction. Geometric models are almost always applied in a top down

fashion as it is necessary have a reasonably complete representation of a system

before useful predictions can be made from a geometric model. Geometric models do

not in and of themselves capture any design knowledge, but rather are only a way of

recording domain knowledge at a relatively low level of abstraction.

2.3.5 Sense-Plan-Act

The sense-plan-act process, shown in Figure 9, is one of the earliest

abstractions for dealing with robotics and dates back at least to the days of STRIPS

[26]. In general this abstraction can be described as the robot using its sensors to

gather data about the environment, subsequently developing a plan that it is believed

will result in the goal state, and then acting to a state closer to that of the goal state.

This process is then repeated indefinitely until the goal state is achieved. Since the

environment is dynamic, this plan must be regenerated either fully or in part during

every implementation of this cycle. Given the complexity of the world and the rapid

changes that are possible in most environments, computational complexity becomes a

major issue in this paradigm, particularly within the real time limitation that robots

necessarily operate under and the limitations of mobile computing that can be placed

35

on a robot. These planning systems are typically based on a geometric abstraction

though others are possible.

Sense Plan

J K.

Act

J K.

Figure 9 - Sense, Plan, Act Abstraction

Alternatively, a perceive stage is often added as shown in Figure 10. This

cycle works the same way as the one above, with the exception that prior to planning,

the agent attempts to classify the state of the environment around it. This is often

used to select alternate planning systems in an attempt to reduce the complexity of

any single planning system.

Figyre 10 - Sense, Perceive, Plan, Act Abstraction

By its nature the sense, plan, act cycle is typically a top down design

abstraction as most planning systems require significant detail to achieve a basic

functionality. For this same reason, this abstraction is typically implemented at a low

level of abstraction. Sense-Plan-Act falls firmly into the domain knowledge realm as

it is both an abstraction and an implementation.

36

2.3.6 Schema

In a general sense the schema architecture is a functional mapping from

environmental inputs to actuator outputs. Originally proposed by Ronald Arkin

[13,14], there are a number of additional works that expand on this architecture. As

with many of the abstractions presented here, this is a useful tool in implementing

certain aspects of robot control, but does not inherently provide any systematic

methodology for developing requirements or understanding the actions that will lead

to task accomplishment. As with most of the combination

implementation/abstractions, one is limited to a single technique for all problems.

Schema is one of the architectures that also serves as a design abstraction. As

shown in Figure 7, the schema abstraction is generally a very applied abstraction and

is generally applied as both a design abstraction and an implementation. The schema

abstraction was originally presented as a bottom up architecture, but has generally

been applied as both bottom up and top down. As with other

implementation/abstractions, the schema abstraction represents primarily domain

knowledge.

2.4 Design Tools

As opposed to qualitative models, design tools are generally used to provide

quantitative predictions concerning the behavior of a system. Many design tools exist

in other engineering domains from the general (e.g., structural or thermal finite

element analysis) to the very specific (e.g., bridge design software or auto routing

systems for PCB layout).

37

Design tools typically capture some degree of design knowledge and often

automate some or all of the process of applying this knowledge. For example, a solid

modeling finite element analysis package can capture and display domain knowledge

regarding geometry, forces, stresses, deflections, and other such factors. In addition,

many of the more sophisticated packages are also capable of formal optimization of

geometry based on constraints or other such automated design processes. For the

purposes of this dissertation, a design tool will be considered any application of a

model that yields useful quantitative domain predictions regardless of the degree to

which this process is automated.

2.4.1 Geometric Simulations

The majority of robotic design tools are geometric simulation engines. These

range from proprietary simulations developed for research purposes to commercial

products such as Robot Studio [27]. The sophistication and complexity of these

models ranges from relatively simple to highly complex dynamics engines similar to

those used in video games [28]

While geometric simulation certainly has a role to play in well-defined

situations or in determining the physical ability of a particular system to accomplish a

specified task, geometric simulation requires substantial understanding of the task and

environment, and significant definition of the agent. As such it is poorly suited for

use early in the design process when significant design freedom still exists. Moreover,

the process of geometric simulation either requires a previously developed dynamics

and physics engine, with attendant assumptions that are not apparent to the designer,

38

or a significant investment of time to develop these features for the particular

application at hand.

39

Chapter 3 - Adding Structure to interaction Spaces

Within the exploration based design process, abstractions and more

specifically models are often useful as a part of the exploration process. To fully

explore a design space, it is necessary to have a formal means of capturing thoughts

assumptions (i.e., domain knowledge) about the system under consideration. This

chapter will introduce the concept of interaction spaces and discuss how this

interaction fits into the task, environment, and agent model as well as the exploration

based design methodology. A number of tools and notational devices will be

introduced to help the reader follow proceeding chapters. Interaction space models

and modeling will not be introduced until Chapter 4.

3.1 Interaction Spaces

As shown in Chapter 2, a traditional view of the task, environment, and agent

abstraction has each of the three corners of the triangle on equal footing. The

interaction space abstraction tends to view the agent and environment in continuous

interaction. The set of all of these interactions is the "interaction space." If these

interactions are the "proper" interactions, the task will be accomplished. This is

shown in Figure 11.

Within the interaction space abstraction, the goal of a designer is to create an

agent that will interact with the environment in such a way as to accomplish the

task(s) at hand. A key element of carrying this out involves correctly understanding

the interactions between the agent and environment.

40

Environment

<

Interaction Space

)

Agent

Figure 11- Task, Environment, and Agent Abstraction with Interaction Spaces

41

Interaction spaces and interaction space modeling were originally introduced

in previous work of the author. Additional information on interaction spaces is

available in [2,3]- As implemented previously, interaction spaces as an abstraction

have been limited by a lack of formal structure. Relatively few suggestions were

made for developing system models for either the agent or the environment, and only

a small and far from spanning set of standardized blocks were available. Because of

these limitations, similar to many of the other abstractions discussed, there was no

design methodology to assist the designer in developing his or her thoughts; the

emphasis was on clever modeling. As a consequence, early interaction space models

took several dozens of iterations and a significant amount of time to develop even a

simple model with limited complexity.

42

Typical Progression of a
Design

Subs
umpt
ion

Conceptual Design and
initial Deffinition

Detailed Design and
Implementation

A Level of
n r Abstraction

Afford ances

ttom Up Top Do\

Figure 12 - Level of Abstraction and Top Down vs. Bottom Up Characteristics of the Interaction

Space Abstraction Relative to Other Robot Design Abstractions

As shown in Figure 12, the interaction space abstraction can be implemented

at widely varying levels of abstraction. The interaction space abstraction is intended

primarily for use in the early stages of design and is not necessarily well suited to

final detailed design. The interaction space abstraction is intended to help enable top

down design although the models are built in a bottom up fashion.

Although interaction space models can be created in an ad-hoc fashion [2] to

capture domain knowledge only, this dissertation will introduce interaction spaces in

a different manner that incorporates significant design knowledge into the abstraction

43

by providing a clear process and methodology to develop models and thus explore the

design space. It should be noted that this limited addition of design knowledge, while

helpful to the designer, does not remove the responsibility for substantial design

knowledge on the part of the designer.

While interaction space modeling does not make the designer any more

intelligent or any more knowledgeable, it does provide a means of creative

exploration of the design space. By forcing explicit examination of the interactions, it

also forces the designer to think about different ways that the agent can interact with

the environment.

3.2 Reactive Agent/ Reactive Environment

The interaction space abstraction defines the agent and environment to be

equally influential in the design of a mobile robot. Interactions are explicitly shown

both from the environment to the agent and from the agent to the environment. The

quadrant abstraction shown in Figure 13 is an abstraction that can be used with the

concept of interaction spaces to make this paradigm more explicit. Separating the

state from the reaction for both the agent and the environment will become useful

later in creating a systematic modeling methodology.

44

Environment
State

Environment
Reaction

Aqent
Reaction

Agent State

V.
Figure 13 - Quadrant abstraction of Interaction Spaces

Starting in the upper left quadrant, the environment state stores information

about the environment and, in cases where the state of the environment will change

due to anything other than actions of the agent, determines what changes are needed.

This could, for example, include the beginning of a wall or presence of a randomly

distributed object within the environment. Action is considered a state in the same

sense that position, velocity, and acceleration can all be considered states.

Moving to the right across the quadrant abstraction, the agent reaction is the

response of the agent to the state of the environment. This includes the entire process

from sensing to selecting a behavior via whatever control architecture the designer

has selected. As indicated in Figure 13, the agent may also react to the agent state in

the quadrant below, but only under certain circumstances that will be discussed in the

next two sections.

45

Similar to the environment state, the agent state stores information about the

agent and manages changes to the agent state based on agent reactions or stochastic

elements.

The environment reaction box manages changes to the environment state as a

result of agent actions. Two types of signals can be sent into the environment

reaction section. The first is actual actions from the robot that are used to affect the

environment state directly. The second are agent "perceptions", such as whether or

not the agent believes a victim to be present. The second type is used primarily to

record task accomplishment when developing predictive models and really represents

the passing of information from the agent to a user (who is, from the point of view of

the agent, a part of the environment.) This will be discussed in more detail in the

chapter on predictive modeling.

3.3 Defining and Using interactions and Cycies

The first step in creating an interaction space model is to define basic cycles

within the quadrant abstraction described above. As shown in Figure 14, there are

46

three basic ways in which cycles exist within the quadrant abstraction.

r

f i
u

Environment
State

1 C
1 ~
Environment

Reaction

Agent
Reaction

J !

Agent State U
Figure 14 - Interaction Space Cycles

The most common cycle is that where information proceeds clockwise around

the quadrant abstraction. In general, this represents actual interaction between the

agent and the environment, and between the environment and the agent. The cycles

are most easily constructed by identifying a particular task that the agent must

complete. In most cases, this means that a specific environmental state must be

achieved. Cycles are most easily constructed in the opposite direction of

implementation. Starting in the bottom left quadrant at environmental reaction, one

works counterclockwise to determine what agent state (usually actions) must be

present to evoke this reaction; continuing counterclockwise, one determines what

behavior or reaction of the agent would trigger this state, which then defines what

47

information the agent must "perceive" from the environment state, which must then

in turn be updated to reflect the environment reaction.

Individual cycles should be as simple as possible at the early stages of

developing a model. It is not uncommon to see only four functional blocks

representing a cycle early in the process. As more cycles are added, more interaction

will be required between cycles and it will be desirable to represent earlier cycles at a

lesser level of abstraction, requiring that additional functional blocks, typically of

more complex data types, be added.

The other two types of cycles shown in Figure 14 represent internal reactions

within the agent or environment. For example, if power and consequently operation

time of an agent is to be modeled, then the remaining power is a property that should

be recorded in the agent state quadrant. There is not an interaction with the

environment per se that causes the agent to cease to function, but rather the reactions

to environmental stimuli are directly affected by the fact that the agent no longer has

sufficient power. Similar situations exist in environmental modeling.

3.4 Multi-Agent Systems

The quadrant framework described above can also be applied to multi-agent

systems as shown in Figure 15. In this case, the agent state for one agent acts as a

part of the environment for other agents who can then react to it. Similarly, to each of

the other agents, the first agent represents a part of the environment to which they can

react. Thus cycles can be defined both between agents and between the rest of the

environment and each agent.

48

Environment

Environment
Reaction

Agent
Reaction

r*

Agent State

Figure 15 - Multi-Agent Quadrant abstraction

In practice, it usually makes sense to make modular subsystems out of the

agent. In this case, there are defined inputs from the environment state and defined

outputs to the environment reaction. In many cases, it is also useful to combine

portions of the environment into modular blocks. In general, those blocks that are

global in scope (i.e., have the same value with respect to all agents) should be left

independent, while those blocks that are local in scope (i.e., that are different with

respect to each agent) can usually be modularized. Specific examples of this are

given in Chapter 4 in the Multi-Agent Foraging Model.

49

3.5 Understanding the Role of Information and Data Types

Implicit in the cycles of Figure 14 is the transfer of some type of information

both in the real world and in the abstract world. Within the context of this

dissertation, abstracted information will be represented in one of three ways. In the

same way that units play a vital role in the correct interpretation of engineering

calculations, data type management is critical to correct interaction space modeling

and in fact provides a qualitative measurement of the fidelity and level of abstraction

of the model. Once a cycle has been defined using information, it is essential to

decide how that information will be represented. Inputs and outputs that are

connected must operate on the same data type and format. In particular, for outputs

from the state blocks, the degree to which the information is represented realistically

largely defines the level of abstraction of the model.

While essentially any data type is feasible within interaction space modeling,

the three discussed below are sufficient to create both descriptive and predictive

models and are recommended as a starting point.

3.5.1 Binary Data

As the name implies, the binary data type corresponds to either one or zero.

This can also be thought of as true or false, on or off, or any other two-state decision.

Binary data types are the simplest to use and allow the tools of digital logic to be used.

Binary data types should be used whenever possible.

50

3.5.2 Discrete Data

This choice is really an extension of the binary data type. This data type

allows any of a finite number of states to be expressed. In implementation this is

often a positive integer to distinguish between states. This data type is identical to the

Unsigned INT data type in many programming languages. An example of this is the

USAR model representing no movement, a small movement, or a large movement.

Typically this data type would not be exchanged between the agent and the

environment, but rather within the agent or the environment,

3.5.3 Continuous Data

Of the three discussed here, continuous data bears the most relation to the real

world. This data type represents any analog quantity. In practice, this data type is

most commonly implemented as a double precision float for predictive modeling.

3a6 Basic Functional Block

The cycles described in Figure 14 are actually modeled within the abstract

space using functional blocks. Each functional block represents a stage in either

generating or describing the state and reaction of both the agent and the environment.

At present, there are six main types of functional blocks, which are described below.

In addition, there are several other types of functional blocks that are used for the

stochastic elements of the model. Throughout the remainder of this dissertation, each

functional block is represented by the symbol shown in Figure 16. More information

about inputs, outputs, control of the block, and implementation are provided later in

this dissertation.

51

B a
>AJX1
> AJK2 Stockjout >
> AJH3
> AJK4
> Aix5
> AJX6 Flow_out >
> Aix7
u a

Framewoik

Figure 16 - Basic Functional Block

The basic functional block is used for representing both state and reaction as

described above in the quadrant abstraction. Within each of these two categories,

each of the data types is also represented with a particular name and implementation

of the basic functional block. This yields a total of six types of basic functional

blocks, which are described below.

3.6.1 State Blocks

There are three basic state blocks, which correspond to the three basic data

types discussed in above. In general, a state is modeled by first defining features,

then defining attributes of those features, and finally assigning properties to the

attributes. However, as will be discussed in Chapter Four, this may not always be the

most judicious arrangement of these blocks, particularly early in the modeling process.

3.6.1.1- Features

Here features are defined to be objects or portions of objects that are present

in the environment. The feature aspect is defined to be only the presence or absence

of the object; all details of the feature are defined through other types of elements.

52

3.6.1.2 - Attributes

An attribute is a specific aspect of a feature that gives more detail. For

example, if a wall is present, an attribute of the wall may be color. However, an

attribute has a finite number of states, thus "blue" would be an attribute but 780.5nm

would be a property as discussed below. Attribute blocks can be implemented as

stand-alone when the corresponding feature is always present and need not be

modeled explicitly.

3.6.1.3 - Properties

A property is a measurable quantity associated with a feature or attribute. The

quantity is always continuous (or continuous within the bounds of the numerical

precision of the computational tool used) and should really be thought of as an analog

signal. In this way, a property is intended to represent the real world with the highest

degree of fidelity of the state blocks represented here. Similar to an attribute, a

property may exist as a stand-alone entity when the associated features and attributes

are known to be constant.

3.6.2 Reaction Blocks

Similar to state blocks, there are three basic reaction blocks. Once again these

correspond to the basic data types discussed above. In general, most reaction models

will move from signals to information to behaviors. However, as will be discussed

below, there are times, particularly early in the modeling process, when other

arrangements might be desirable.

53

3.6.2.1 - Signals

Signals are the reaction-side equivalent of properties. The signals are what is

taken directly from the state. As such, the signal block can really be thought of as a

sensor block; however, it is possible to have a signal block in the absence of what is

traditionally thought of as a sensor (i.e., in a mechanical orientation feature of an

injection molded part). This is particularly true for modeling environmental reactions

where there will rarely be an explicit concept of "sensor" as it is traditionally

understood in the field of robotics.

3.6.2.2 — Information

An information block is intended to produce a processed finite state

representation of the agent or environment's "perception" of state. This need not be

"perceived" in the classical artificial intelligence sense, but rather represents a choice

from among a finite number of options; for example, whether a particular water

molecule will go left or right at a Y-junction in a pipe.

3.6.2.3 - Behaviors

Behaviors are either explicitly active or inactive (i.e., they have a binary data

type) and are used to "decide" upon specific actions either by the agent or the

environment. Examples could include an environmental reaction when a victim is

found or an agent's reaction when it believes that a victim is present. These blocks

are predicated on the use of a behavior based or hybrid robot control architecture.

Implementation of other control architectures may preclude the use of behavior

blocks in the agent reaction.

54

3.S.3 System Dynamic Implementation

Regardless of specific type, the basic functional block represents a single

stock and an associated flow. The flow has explicit feedback from the stock, which

among other functions, is frequently used to reset the stock to zero (see below).

Unlike some system dynamic implementations, this flow may be positive or negative.

This could be more explicitly represented as two flows (one incoming, one outgoing);

however, this is functionally simpler and mathematically equivalent.

Stock

Flow

Figure 17 - System Dynamic Implementation of a Bask Functional Block

Functionally, the "Auxl" through "Aux7" inputs (shown in Figure 16) feed

into the flow, and are used during each time step in calculating the flow. The

"Stock_Out" function provides the value of the stock at each time step, and the

"Flow_Out" provides the value of the flow at each time step. Typically only the

"StockOut" output is used (particularly within the modeling framework), but the

"Flow_Out" can be useful in cases where one flow is directly dependent on another.

Additional information on the implementation of the functional block is available in

Appendix A.2 Simulink Basic Functional Block Implementation.

55

3.6.4 ControlHng Functional Blocks

Functional blocks are controlled via both an initial value and quasi-continuous

control of the flow. Many strategies can be devised for control of the flow. In

general, a rule-based approach has been used with significant success for modeling

the situations encountered so far. As will be discussed later, when used for predictive

purposes, as discussed in Chapter 5, the value of the flow is determined by an m-file

allowing for the use of a wide variety of techniques, and implementation of most

control architectures.

In general, a functional block will be used in one of two ways, either

instantaneously or continuously. In an instantaneous block, the value of the flow is

always set to a new desired value minus the current value of the stock as shown in

Equation 1. In a continuous block, the previous value of the stock is retained and is

only modified by the appropriate flow value.

CURRENT VALUE = CALCULATED VALUE - PREVIOUS VALUE

Equation 1

3.7 Stochastic Blocks

In addition to the six variants of the basic functional block, several other types

of blocks are useful in adding uncertainty and variation into models. Both uniform

and discrete random number generators are discussed below as well as a random

decision-making block. In addition, various types of noise blocks are discussed.

These blocks are essentially functions that would be included within a flow in a

traditional system dynamic implementation. For the purposes of interaction space

56

modeling, the function is made explicit to help in understanding, but these blocks are

fed into the inputs of the basic agent block described above such that they still control

the rate of the flow.

3.7.1 Random Number Generator Blocks

The uniform random number generator block is a relatively straightforward

random number generator that returns a random real number between two specified

values. These blocks can be widely used, including in the generation of noise as

described below or as a way to generate continuous portions of the agent or

environment state. The representation shown in Figure 18 will be used throughout

the remainder of this dissertation to depict this type of block. Details of the

implementation of this block are given in Appendix A 3 - Simulink Uniform Random

Number Generator Implementation

RN
100 >

Uniform Random Number

Figure 18 - Uniform Random Number Block

The discrete uniform random number block returns an integer between zero

and the number of states. This block is used predominantly in discrete state models to

generate attributes for the environment or the agent. The representation shown in

Figure 19 will be used to depict this type of block in the remainder of this dissertation.

Details of the implementation of this block are given in Appendix A.5 - Discrete

Random Number Generation Block.

57

DRN
1 •

Discrete Uniform 'Random

Figure 19 - Discrete Uniform Random Number Block

3.7.2 Random Decision Maker Block

The random decision maker block (shown in Figure 20) generates a " 1 " at

approximately the percentage of time steps specified. For the remainder of the time

steps this block generates a zero. This block is used primarily for stochastically

determining features for the environment and agent states. The details of the

implementation of this block are given in Appendix A.4 - Random Decision Making

Block Implementation.

Random
Decision

75 ;•

Random Decision Maker

Figure 20 - Random Decision Making Block

3.7.3 Noise Blocks

Noise or uncertainty can be added to a model in many locations and is

represented by many types of functions. Noise can be used to represent various types

of error and uncertainty, from the uncertainty associated with a gear train, to the

uncertainty associated with a sensor, an A/D converter, or other electronic device. In

addition to uncertainty, noise blocks can also be used to represent outright errors. For

58

example, when modeling communication between two agents, a noise function could

be derived to represent communication errors, perhaps due to another transmission on

the same frequency, solar radiation, or some other source.

A number of noise functions are built into Simulink. In general, these have

proven sufficient for most models; however, the possibilities are nearly limitless in

designing noise functions to match the real world as closely as possible. There are

several useful books on this topic for sensors [29], electrical and mechanical systems

[30], and numerous others.

3.8 Tasks

Tasks can be broken into two categories: perceptive tasks and physical tasks.

Perceptive tasks are those where the agent is asked to make a judgment about the

environment, while a physical task is one where the agent is asked to manipulate the

environment or its relationship to the environment in some way. Often

accomplishment of one task is dependent on a number of others, which may or may

not be of the same type. Under these circumstances it is generally sufficient to the

evaluation of the final system to measure only the final task in the appropriate

manner; however, in creating a useful design model, one should carefully observe and

measure accomplishment of individual sub-tasks.

3.8.1 Task Accomplishment for Perceptive Tasks

Perceptive task accomplishment is measured by comparing the agent state (i.e.,

what the agent "believes" to be true about the world) to the environment state (i.e.,

what is actually true within the abstract world). In descriptive models, task

59

accomplishment is difficult to measure, but the conditions of accomplishment should

be clearly stated. In this case, the quantities that should match between the agent

state and the environment state should be defined and the degree to which they should

be similar should be explicitly recorded as part of the requirements Rn. Additional

information on quantitative measurement of tasks is given in Chapter 5.

3.8.2 Measuring Task Accomplishment in Physical Tasks

Physical task accomplishment is modeled and/or measured by comparing the

environment state to some desired state. This ranges from simple to complex (for

example, when it is difficult to define the desired physical state within a finite number

of variables or when domain knowledge is insufficient to fully define the desired state

of the environment). As with perceptive tasks, the quantities that must match and the

degree to which they must match should be defined in the descriptive model and

recorded as part of the requirements of the system.

60

Chapter 4 - Descriptive Models

This chapter takes the nomenclature and concepts of Chapter Three as well as

the concept of exploration based design to develop a design methodology and

modeling process that incorporates more design knowledge and narrows the field of

options that must be considered in creating a model without such guidance.

Examples of robot models are given as illustration of the process.

4.1 Modeling Elements

As was touched on in Chapter three, there are two main elements in

representing an interaction space model: the blocks (with associated connections) and

the functionality or definition of the blocks. Each of these is described below.

4 J J Combining Functional Blocks

The cycle shown in Figure 21 is a template abstraction by which all

interaction space cycles can be represented. These standard cycles are combined and

elaborated as described below to create interaction space models. Combination and

elaboration of this basic cycle are demonstrated by example in the muramador robot

models.

61

(

Environment
State

Agent
Reaction

• \

(Feature)-*-(Attribute)—^(Property) *•(Signal } -*- (Info)-*-([Behavior)

! •

i
(Behavior)*-(Into)•*-(Signal)•*-

L_
Environment

Reaction

i i >
t—(Property >»-(Attri bute)•*-(Featu re)

Agent State
J

Figure 21 - Standard Cycle Abstraction

4.1.2 Developing Pseud© Code and Meanings

In addition to the blocks of an interaction space model, it is also necessary to

define meaning for the blocks. In the descriptive modeling phase, this is done

through the use of pseudo code and a basic explanation of the meaning of the block.

As discussed in the previous chapter, each block has inputs and an output. The inputs

affect the flow in the system dynamics sense while the output is the value of the

stock. However, for simplicity the standard convention for a descriptive model shall

be to write the pseudo code as if the inputs directly affected the stocks. Each block at

every stage of the modeling process should have a pseudo code segment that defines

the output as a function of the input(s). The specific coding necessary for predictive

modeling will be discussed in Chapter 5.

62

In addition to the explicit pseudo code it is generally helpful to have a plain

language description of the intended meaning of the block. Throughout the

Muramador model below each stage of the modeling process will have a table with

each block listed as well as the pseudo code and a physical interpretation. These

aspects are just as important as the blocks themselves in developing a descriptive

mode. For the sake of brevity these tables are not given for the other models, but

executable code for each of the blocks can be found in the appendices.

4.2 Steps in the Modeling Process

In applying interaction space modeling to exploration based design, one first

needs to create an initial model. There are seven processes that are generally used to

create the initial interaction space model. In general they form a progression as

shown in Figure 22. While the progression shown represents one methodology to

creating interaction space models, others are possible. It is left to the individual

designer to make a determination as to the optimal order if different from below.

63

Define the
Problem

Create Initial
Cycles

Add Additional
Interactions

Add Discrete
Signals

Add Analog
Signals Add Uncertainty

Add Measurement
of Task

Accomplishment

Figure 22 - Creating an Initial Interaction Space Model

4.2.1 Defining the Problem

As with any design process or any design exploration process, the first and

one of the most critical steps is to begin to define the problem. For the purposes of

interaction space modeling this should begin with a statement describing in plan

words what the system is intended to do.

The second and more critical part of defining the problem is to create a

bulleted list of tasks that it is desirable for the agent to achieve. These bullets should

be specific, should be as simple as possible, and if at all possible should be phrased in

a way that lends itself to asking a yes or no question about task accomplishment. It is

not necessary, or at this stage desirable, to discuss the conditions necessary within the

agent, environment, or both to bring about this task. Significant care should be taken

64

in defining this bulleted list, as it will be the basis for several subsequent steps of the

modeling process and in particular for measurement of task accomplishment.

4.2.2 Creating initial Cycles

After the initial problem definition, the first step in creating an interaction

space model is to create initial cycles of the type shown in Figure 14. In general this

initial cycle should be composed entirely of blocks of the binary type. To start

creating initial cycles it is recommended that the designer start with a binary block to

answer the yes or no question for one of the bullets developed as part of the problem

statement. It is then recommended that the designer work counterclockwise around

the quadrant abstraction by assessing the conditions in the 1st quadrant

counterclockwise that will have an effect on the answer to the yes or no question.

These factors should also be posed as yes or no questions and the process can be

repeated around the model

4.2.3 Adding Additional Interactions

The purpose of this step is to successively add additional cycles for each of

the primary bullets from the problem statement. This should be carried out

essentially in the same fashion as the previous section with the exception that there

may begin to be relationships that are defined between the cycles. All of the blocks

should generally still be of the binary type.

It is critical that the designer not attempt to capture all of the subtleties of the

system at this point but rather only look at the most significant one or two factors.

65

The goal of this step is to create a VERY highly abstracted model of the system.

Ideally there should be no more than four times the number of blocks in the model at

this stage as the number of bullets in the problem definition, although in practice this

ratio is almost never maintained. Additional detail and additional factors will be

added as needed in the next and subsequent steps. A general rule of thumb is to

identity all important interactions that are at least one order away from the task

statements from the problem definition step.

4.2.4 Adding Discrete Signals

Once a cycle has been defined for each of the bullets developed in the

problem definition phase, it will often be the case that two or more yes or no

questions will represent multiple discrete states for one variable. In this case, these

should be condensed into a discrete block and discrete values assigned to each case.

Additionally there may be cases where only a single yes or no state represents a

phenomenon but there are actually more cases that are relevant; for example, on an

oven thermostat one could ask if the temperature was right or not. In this step it

would probably make sense to expand this to have the options of way too hot, slightly

too hot, correct, slightly too cool, and way too cool. Each of these states can be

represented by one variable. Depending on the designer's preferences for system

modeling it may be desirable to retain the binary blocks to control behaviors or in

some cases it may make sense to eliminate these. Examples of each will be given

below in the Muramador model.

The addition of discrete blocks serves three basic purposes. The first Is to

reduce the complication of the model to make it easier to understand and follow. The

66

second is to allow for more options in modeling the system in order to better

represent the system. The third and less obvious purpose is to pave the way for the

addition of analog blocks in the next step. In general it is helpful to create a discrete

block for a variable before plugging in an analog block. This process will be

discussed in the next step.

4.2.5 Adding Analog Signals

The addition of analog signals removes the model from the domain of finite

state models with the limitations thereof and moves the model into the realm of

continuous models. Ideally the boundary between the agent and the environment in

both directions should generally cross with an analog signal as the real world is

analog. This may not be the most efficacious modeling method in all cases and it is

left to the designer to undertake a cross of the boundary with other than an analog

signal. The inherent risk is missing the details of how information is transferred from

agent to environment or environment to agent but it can be useful early in the process.

It is left to the discretion of the designer whether to retain the discrete and

binary blocks or to use purely analog blocks in some cycles. As with retaining the

binary blocks when adding discrete blocks, the advantage is greater representation of

the real world in the model, but this occurs at the expense of a more complex and

difficult to follow model.

4.2.6 Adding Uncertainty

This step is where, for the first time, the model begins to become a useful

representation of the real world. Stochastic blocks are added to the model to

67

represent uncertainty and variation in the real world. In general random decision

blocks will be added to features and behaviors, discrete random number blocks to

information and attribute blocks, and other types of random noise to signal and

property blocks. It is beyond the scope of this dissertation to provide specific

guidelines for adding uncertainty but several examples are given in the models

presented below.

4.2.7 Measuring Task Accomplishment

Task accomplishment is measured against the original bullets from the

problem definition. It is not always necessary to explicitly represent task

accomplishment within the model while building a descriptive model but it is

important to keep task accomplishment in mind. It can also be useful to write out a

statement of task accomplishment for each bullet of the problem definition from time

to time in the modeling process. This Is demonstrated below.

When creating a predictive model, it is necessary to explicitly represent task

accomplishment within the model. In some cases this can be done through existing

elements and In others it may be necessary to add elements to make this measurement.

This is discussed in more detail In Chapter 5.

4.3 Refining the Model

Once the initial model has been created, additional steps (shown in Figure 23)

are used to create a more sophisticated model. In general this more sophisticated

model allows the designer to better understand the interactions and thus to create a

new iteration of Dn. Models are built in a bottom up fashion, often with many cycles

68

of refinement and iterations of Dn In other words, a very simple model is first

constructed and then is improved until the desired level of representation is achieved.

To better explain this process a model of a wall following robot has been

incrementally developed. This has the advantage of being sufficiently simple that the

process can be clearly demonstrated, but yet complicated enough that several

conditions must be simultaneously met for successful task accomplishment.

Add Discrete
Signals

Original Interaction Space
Model

Add Analog
Signals "^

Add Uncertainty

Add Additional
Interactions

Add Measurement
of Task

Accomplishment

Figure 23 - Options to Refine the Initial model

The steps shown in Figure 23 represent additional complexity and

sophistication that can be added to the model. As was discussed above, in the initial

model it is generally only desirable to be one step removed from the bulleted tasks

69

statements from the problem definition phase. Once the initial model is created, it is

often necessary to add additional detail. In any complex system it is likely that all

relevant system elements will not be defined within one step of the primary tasks.

4.4 Mummador Model

The Muramador [16] is a simple wall-following robot. The Muramador uses a

single distance sensor and a set point value to remain at a set distance from the wall.

As long as the Muramador is able to move along the wall, the system will continue

the wall-following behavior. When the end of a wall is reached, the Muramador will

randomly turn in a new direction and proceed either until another wall is reached, or a

time threshold is exceeded. If the time threshold is exceeded, the Muramador will

once again change direction to a random new heading.

4.4.1 Defining the Problem

As discussed above, a problem statement should consist of a plain language

description and of one or more bullets that define the task in ways that are observable

and can be rephrased as yes or no questions. A general problem statement for the

Muramador can be summarized as follows:

DESIGN A SYSTEM THAT WILL SEEK WALLS. UPON FINDING A WALL,
THE DEVICE SHOULD PROCEED ALONG THE WALL AS CLOSELY AS
POSSIBLE AT A SETPOINT DISTANCE UNTIL THE END OF THE WALL.

This statement can then be reduced to two discrete tasks:

• FIND WALLS TO FOLLOW.
• FOLLOW THE WALL WHILE REMAINING AT THE SET POINT DISTANCE

FROM THE WALL

70

4.4.2 Creating Initial Cycles

As mentioned above, the first step in creating initial cycles is to find blocks

that provide answers to the yes or no questions. In the basic model of the Muramador

shown in Figure 24, the block near wall answers the bulleted question: is the agent

following walls (or at least in the vicinity, true following will be added later), while

the block find wall indicates that the agent has found a new wall to follow, or in this

case more specifically that the environment has reacted to the agent looking for a new

wall by having a new wall come into proximity with the agent.

71

A J X I
AJX2 Stock out

>JAJX3
A J X 4

>|AJX5
> AJX6 Flow out j>
> AJX?

Wall

AJX1
Stock outAix2

AJX3
A J X 4
AJX§

<J Fiowjiut AJX6
A J X ?

Find Wal

AJX1
Stock outAjx2 k

AJX3 <
A J X 4 } <
AJX5

Flow out AJX6 K
AJX?

Wall Followed

* AJX1
> A J X 2 Stock out
> AJX3
> A H 4
> AJXS
> AJX6 Flow out
> AJX7

Near Wal

> A J X I
) AJX2 Stock out
> AJX3
> A J X 4
) AJX5
> AJX6 Flow_out \>
MAJX?

Not Near Wal

AJX1 M
Stock_outAjx2 k

A jxSk
A J X 4 K
AJX5 k

4 Flow_out AJX6 K
AJX? k

Searching for Wal

AJX1
Stock_outAjx2

AJX3 (<
A J X 4
A J X 5 I <

Flow_out AJX6 <
AJX? <

Following Wal

Figure 24 - Basic Cycle for the Muramador Model

Once the initial two binary blocks are added, the designer works

counterclockwise to add other blocks that describe the most important conditions that

affect the first two blocks. In this case, the environment state is defined by the

72

presence or absence of a wall. This in turn drives the agent into one of two reactions,

either the agent is within sensor range of a wall, or it is not. Based on this reaction,

the agent will assume one of two states, either that of following a wall, or that of

looking for a wall. This in turn drives the environment to react to the Muramador's

attempt to follow the wall or find a wall. Finally, the environment's reaction to the

agent will drive the environment state, i.e., the presence of the wall. Additional

details including pseudo code and descriptions of each block are given in Table 1.

Block

Wall

Near Wall

Not Near Wall

Find Wall

Searching for Wall

Wall Followed

Following Wall

Pseudo Code

IF WALL == 1 THEN WALL
PRESENT
IF WALL == 0 THEN NO
WALL PRESENT
IF NEAR WALL == 1 THEN
AGENT NEAR WALL
IF NEAR WALL == 0 THEN
AGENT NOT NEAR WALL
IF NOT NEAR WALL == 1
THEN NO WALL PRESENT
IF NOT NEAR WALL == 0
THEN AGENT NEAR WALL
IF NEW WALL APPEARS THEN
FIND WALL = 1
IF NO CHANCE IN WALL
STATUS OR WALL
DISAPPEARS THEN FIND
WALL = 0
IF ROBOT IS SEARCHING
FOR WALL THEN SEARCHING
FOR WALL = 1
IF ROBOT IS FOLLOWING A
WALL THEN SEARCHING FOR
WALL = 0
IF WALL HAS BEEN
FOLLOWED THEN WALL
FOLLOWED = 1
IF AGENT HAS NOT
FOLLOWED A WALL THEN
WALL FOLLOWED = 0
IF ROBOT IS SEARCHING
FOR WALL THEN FOLLOWING
WALL = 0

Meaning/Comments

BINARY INDICATION
OF THE PRESENCE OF
A WALL IN THE
ENVIRONMENT
ROBOT'S REACTION IF
THERE IS A WALL
NEARBY IN THE
ENVIRONMENT
ROBOT'S REACTION IF
THERE IS NOT A WALL
NEARBY IN THE
ENVIRONMENT
ENVIRONMENT
REACTION TO THE
ROBOT LOOKING FOR A
WALL

ROBOT STATE TO LOOK
FOR A WALL CAUSED
BY THE ROBOT
REACTION OF NOT
NEAR WALL

ENVIRONMENT
REACTION TO THE
ROBOT FOLLOWING THE
WALL

BINARY AGENT STATE
OF FOLLOWING A WALL

73

IF ROBOT IS FOLLOWING A
WALL THEN FOLLOWING WALL
= 1

Table 1 - Mtaraimadloir Basic Cycle

4.4.3 Adding Additional Interactions to the Basic Model

Once a basic model exists, additional elements should be added to more

adequately represent the interactions between the agent and the environment. The

goal at this point is not to more accurately represent the interactions added in the

previous step, but rather to add additional interactions that are important to the

functionality of the agent but were not essential to produce a minimal model. In

particular by the end of this stage every bullet from the original problem definition

should be represented. As was mentioned above, the goal here is not to have a

complete model but rather to make sure that the basic interactions that are directly

relevant to task accomplishment are at least on the model in a highly abstracted and

binary state.

Only minimal additional interactions are needed to create a basic binary

model of the Muramador; namely, it is necessary to add additional behaviors for

being too far or too close to the wall. This in turn will drive two behaviors: moving

closer to the wall, and moving farther away from the wall. These changes are shown

in Figure 25. Pseudo code and block descriptions are given in Table 2.

74

AJX1
AJX2 Stock out
AJX3
A J X 4
AIH5
Puxft Flow_out
AJX7

Feature Wal l

A j x l
A « 2 Stock out
AJX3
A J X 4
AIX5
AixS Flow out

yA ix?

>

AJX1
>| Aix2 Stock_out

AJX3
>] A I X 4

AJH3
AJX6 Flow_out ^
AJX?

Feature Too Far Behavior Too Far

AJX1
AJX2 Stock_out
Aix3

>JAJX4
>|AJX5

AJX6 Flow out \>
>|AJX7

AJX1
AJX2 Stock_out
AJX3
A J X 4
AJX5
AJX6 Ffow_out |>
AJX7

Feature Too Close Behavior Too Close

Aix1
Stock outAix2

AJX3
A I X 4
AraSk

Flow out AJH8 C
A I H 7 <

n
Behavior Wal l Follow

A J X I
Stock _outAjx2

Aix3
A J X 4
A J X 5

4 Flow out Aix6
Am7

f l

behavior Find Wall

Figure 25 - Muramador Model with Additional Interactions

Aix1
>)Ajx2Stock_out

AJX3
A J X 4

> |A IX5
Ajx6 Floui_out |>
Aix7

Behavior No Wal l

AJX1
Stock_outAjx2

AJX3
A J X 4
AJX5

Flow_out AJX8 [<
Aix7

<
<
<

Feature Follow Wal l

A w l
Stock outAjx2

AJX3
A J X 4
AJX5

Flow out AJX6
AJX7

Feature Find Wall

Block

Feature Wall

Feature Too Far

Behavior Too Far

Pseiido Code

IF WALL IS PRESENT
THEN FEATURE WALL = 1
IF WALL IS ABSENT
THEN FEATURE WALL = 0
IF ROBOT IS TOO CLOSE
THEN FEATURE TOO FAR
= 0
IF ROBOT IS TOO FAR
THEN FEATURE TOO FAR
= 1
IF FEATURE WALL == 0
THEN FEATURE TOO FAR
= 0
IF FEATURE TOO FAR ==
1 THEN BEHAVIOR TOO

Meaning/Comments

RECORDS THE
PRESENSE OF A
WALL IN THE
ENVIRONMENT
BINARY
ENVIRONMENT
PROPERTY ACTIVE
IF THE ROBOT IS
TOO FAR FROM THE
WALL

ROBOT REACTION TO
BEING TOO FAR

75

Feature Too Close

Behavior Too Close

Behavior No Wall

Behavior Wall Follow

Behavior Find Wall

Feature Follow Wall

Feature Find Wall

Table 2 - Muramador 1st Set

FAR = 1
IF FEATURE TOO FAR ==
0 THEN BEHAVIOR TOO
FAR = 0
IF ROBOT IS TOO CLOSE
THEN FEATURE TOO FAR
= 1
IF ROBOT IS TOO FAR
THEN FEATURE TOO FAR
= 0
IF FEATURE WALL == 0
THEN FEATURE TOO
CLOSE = 0
IF. FEATURE TOO CLOSE
== 1 THEN BEHAVIOR
TOO CLOSE = 1
IF FEATURE TOO CLOSE
== 0 THEN BEHAVIOR
TOO CLOSE = 0
IF FEATURE WALL == 1
THEN BEHAVIOR NO WALL
= 0
IF FEATURE WALL == 0
THEN BEHAVIOR NO WALL
= 1
BEHAVIOR WALL FOLLOW
= FEATURE FOLLOW WALL

BEHAVIOR FIND WALL =
FEATURE FIND WALL

IF BEHAVIOR TOO CLOSE
== 1 | BEHAVIOR TOO
FAR == 1 THEN FEATURE
FOLLOW WALL = 1
IF BEHAVIOR TOO CLOSE
== 0 && BEHAVIOR TOO
FAR == 0 THEN FEATURE
FOLLOW WALL == 0
IF BEHAVIRO NO WALL
== 0 THEN FEATURE
FIND WALL = 0
IF BEHAVIOR NO WALL
== 1 && A NEW WALL IS
FOUND THEN FEATURE
FIND WALL = 1

Additional Interactions

76

FROM THE WALL

BINARY
ENVIRONMENT
PROPERTY ACTIVE
IF THE ROBOT IS
TOO CLOSE TO THE
WALL

ROBOT REACTI-ON TO
BEING TOO CLOSE
TO THE WALL

ROBOT REACTION TO
NO WALL

ENVIRONMENTAL
REACTION TO THE
ROBOT FOLLOWING
THE WALL
ENVIRONMENTAL
REACTION TO THE
ROBOT FINDING A
NEW WALL TO
FOLLOW
ROBOT STATE OF
FOLLOWING THE
WALL

ROBOT STATE OF
SEARCHING FOR A
WALL

Although the model shown in Figure 25 has additional interactions over the

initial model it does not yet contain all of the key elements. The model below shown

in Figure 26 includes options for the agent to move towards or away from the wall.

The details of this model are shown in Table 3.

Aix1
AJX2 Stock out
AJX3

> J A J X 4
> AJX5
>|AJX6 Flow out |>

Aix7

Feature Wall

n

AJX1
Stock_outAjx2|<

AJX3
AJX4
AJX5[<

Flow out Aw6
AJX?

<#-

AJXI
Aix2 Stock out
AJX3
AJX4

>|AJX5
> AJX6 F!ow_out b

Aix l
AJX2 Stock out
AJX3

>)Aix4
>|AJXS

AJX6 Flow out t>
>|Aix7

Feature Too Far

AJX1
AJX2 Stock out
Am3

>1AJX4
> AJX5
>|Aix8 Flow out ^

Aix7

Behavior_Too_Far

AJXI
>{AJX2 Stock out
> AJX3
> AJX4
> AJXS
> AJX6 Flora out fs-
> AJX7

Feature Too Close Behavior Too Close

Behavior Wall Farther

AJH1
Stock outAix2

AJX3}<
Aix4
AJX5

Flow_out AJH6
AJH7

Behavior Wall Closer

AJXI
Stock outAtx2

AJX3
AJX4
AJXS

Flow_out AJX6
AJX7

<

<

> AJXI
> AJX2 Stock_out
> AIX3
> AJX4
> AJX5
> AJX6 Flow out fi
> AJX7

Behavior No Wall

I
AJX1

Stock outAtx2 \c.
Aix3
AJX4
AJXS

•s|Flow_out AJX6
AJX7

J
Feature Move Farther

AJX1
Stock out AJX2 |<

AJX3
AJX4
AJX6

Flow out AJX6
AJX7

Feature Move Closer

L

AJX1
Stock outAjx2

AJX3
A J X 4 J <
AJXS C

Flow out AJX6 <
Aix7 C

Behavior Find Wall Feature_Find Wali

Figure 26 - Muramador Model with Additional Interactions

Block

Feature Wall

Pseud© Code

IF WALL IS PRESENT
THEN FEATURE WALL = 1
IF WALL IS ABSENT
THEN FEATURE WALL = 0

Meaning/Comment

RECORDS THE
PRESENSE OF A
WALL IN THE
ENVIRONMENT

77

Feature Too Far

Feature Too Close

Behavior Too Far

Behavior Too Close

Behavior No Wall

Feature Move Farther

Feature Move Closer

Feature Find Wall

Behavior Wall Closer

Behavior Wall Farther

IF ROBOT IS TOO CLOSE
THEN FEATURE TOO FAR
= 0
IF ROBOT IS TOO FAR
THEN FEATURE TOO FAR
== 1
IF FEATURE WALL == 0
THEN FEATURE TOO FAR
= 0
IF ROBOT IS TOO CLOSE
THEN FEATURE TOO FAR
= 1
IF ROBOT IS TOO FAR
THEN FEATURE TOO FAR
= 0
IF FEATURE WALL == 0
THEN FEATURE TOO
CLOSE = 0
IF FEATURE TOO FAR ==
1 THEN BEHAVIOR TOO
FAR = 1
IF FEATURE TOO FAR ==
0 THEN BEHAVIOR TOO
FAR = 0
IF FEATURE TOO CLOSE
== 1 THEN BEHAVIOR
TOO CLOSE = 1
IF FEATURE TOO CLOSE
== 0 THEN BEHAVIOR
TOO CLOSE = 0
IF FEATURE WALL == 1
THEN BEHAVIOR NO WALL
= 0
IF FEATURE WALL == 0
THEN BEHAVIOR NO WALL
= 1
FEATURE MOVE FURTHER
= BEHAVIOR TOO CLOSE

FEATURE MOVE CLOSER =
BEHAVIOR TOO FAR

FEATURE FIND WALL =
BEHAVIOR NO WALL

BEHAVIOR WALL CLOSER
= FEATURE MOVE CLOSER

BEHAVIOR WALL FURTHER
FEATURE MOVE

BINARY
ENVIRONMENT
PROPERTY ACTIVE
IF THE ROBOT IS
TOO FAR FROM THE
WALL

BINARY
ENVIRONMENT
PROPERTY ACTIVE
IF THE ROBOT IS
TOO CLOSE TO THE
WALL

ROBOT REACTION TO
BEING TOO FAR
FROM THE WALL

ROBOT REACTION TO
BEING TOO CLOSE
TO THE WALL

ROBOT REACTION TO
NO WALL

ROBOT STATE OF
MOVING AWAY FROM
THE WALL
ROBOT STATE OF
MOVING TOWARDS
THE WALL
ROBOT STATE OF
SEARCHING FOR A
NEW WALL
ENVIRONMENT
REACTION TO THE
ROBOT MOVING
CLOSER
ENVIRONMENT
REACTION TO THE

78

Behavior Find Wall
FURTHER
BEHAVIOR FIND WALL =
FEATURE FIND WALL

ROBOT MOVING AWAY
ENVIRONMENT
REACTION TO THE
ROBOT SEARCHING
FOR A WALL

Table 3 - Muramador 2nd Set of Additional Interactions

The model above contains the key elements for both of the bullets identified

in the problem definition phase. Specifically there are elements identified that can

change the answer to the yes or no question posed by the problem definition bullets

and these elements are formed into logically consistent cycles. It is not necessary at

this point to worry about second order effects such as what causes a wall to start or

what causes a wall to end. It is sufficient for the moment that it is identified that

these are important interactions in the system. The next step is to add discrete signals

to the model in order to improve the fidelity of the model.

4.4.4 Adding Discrete Signals

Once the first order interactions relative to the initial problem definition are

included in the model as described above, it is generally time to begin to add non-

binary elements. The first step in this process is to add discrete elements. Within the

Muramador model shown in Figure 27, the attribute distance and the info distance

blocks have been added. As mentioned previously, the boundary between agent and

environment or environment and agent should always be crossed with the same data

type on each side of the boundary. The distance blocks added below now have three

specific states: too close, too far, and no wall. For modeling purposes these three

states are assigned a number arbitrarily which then represents that state within the

model. The pseudo code and descriptions for these blocks are given in Table 4.

79

Although the same physical system can be represented by N binary blocks

where N is the number of states, the discrete block cleans up the model and makes it

more manageable. In addition the discrete blocks are usually the first step on the way

to adding continuous blocks as will be discussed in the next section.

A J X 1

Aix2 Stock_out
A J X 3
AJX4
A J X S
AJX6 Flow_out [>
A J X 7

J ^-fr. AJXI

Feature Wal l

A ix1
Stock outAjx2

A J X 3
A J X 4
AJXS

<^PIOW_QU!: A J X 6
A J X ?

A J X 2 Stock out
A J X 3
A J X 4

>|A]x5

ft

Aix7
) AJX6 Flow_out h- > Aix6 Flowjjut

A J X 1
AJX2 Stock out
A J X 3
A i x 4

>|AJX5

AJX?

Attr ibute Distance Info Distance

Behavior W a l l Farther

A J X I
Stock outAjx2

A J X 3
A J X 4
AJXS

Flow_out A J X 8
A J X 7

Behavior Wa l ! Closer

A i x l
Stock outAjx2

A J X 3
A J X 4
AJXS

^ Flow_out A J X 5 k
A J X 7 <

A i x l
>|Ajx2Stock_out
>|AJX3

A J X 4 >
>|AixS ^ - 3

A J X 6 Flow out > i 7?*i
> A J X 7

A J X I
>|Ajx2Stock_out

> A J X 4
> A « 5

Behavior_Too_Far 3 j g «°u._out fc,

A j x I
>{Ajx2St0Ck_put
> Aix3
;JAJX4

AJXS
A J X 6 Flow out i>
A J X 7

Behavior No Wa l l

Behavior Too Close

A K I I
Stock OUIAJX2 <

Flow out

AJX3 <
AJX4 C
AJXS <
AJX6 <
A«7 <

Feature Move Farther

A J X 1
Stock_outAix2

AJX3

A J X S
Flow_out AJX©

A J X 7

Feature Move Closer

A J X I
Stock_outAjx2

A J X 3
A J X 4
A J X 5

Flow out A J X 6
A J X 7

Behavior Find Wal l Feature Find Wal l

Figure 27 - Muramador Mode! with Discrete Signals

Block

Feature Wall

Pseudo Code

I F WALL I S PRESENT
THEN FEATURE WALL =
1
I F WALL I S ABSENT
THEN FEATURE WALL =
0

Meaning/Comment

RECORDS THE
PRESENSE OF A WALL
IN THE ENVIRONMENT

80

Attribute Distance

Info Distance

Behavior Too Far

Behavior Too Close

Behavior No Wall

Feature Move Further

Feature Move Closer

Feature Find Wall

Behavior Wall Closer

Behavior Wall Further

IF ROBOT IS TOO
CLOSE THEN
ATTRIBUTE DISTANCE
= 1
IF ROBOT IS TOO FAR
THEN ATTRIBUTE
DISTANCE = 2
IF NO WALL IS
PRESENT THEN
ATTRIBUTE DISTANCE
= 0
INFO DISTANCE
ATTRIBUTE DISTANCE

IF INFO DISTANCE ==
2 THEN BEHAVIOR TOO
FAR = 1
IF INFO DISTANCE ==
1 | OR INFO
DISTANCE == 0 THEN
BEHAVIOR TOO FAR =
_0
IF INFO DISTANCE ==
1 THEN BEHAVIOR TOO
CLOSE = 1
IF INFO DISTANCE ==
2 | OR INFO
DISTANCE == 0 THEN
BEHAVIOR TOO CLOSE
= 0
IF FEATURE WALL ==
1 THEN BEHAVIOR NO
WALL = 0
IF FEATURE WALL ==
0 THEN BEHAVIOR NO
WALL = 1
FEATURE MOVE
FURTHER = BEHAVIOR
TOO CLOSE
FEATURE MOVE CLOSER
= BEHAVIOR TOO FAR

FEATURE FIND WALL =
BEHAVIOR NO WALL

BEHAVIOR WALL
CLOSER = FEATURE
MOVE CLOSER
BEHAVIOR WALL
FURTHER = FEATURE
MOVE FURTHER

FINITE STATE
DESCRIPTION OF THE
DISTANCE OF THE
ROBOT FROM THE WALL

ROBOT REACTION TO
THE DISTANCE FROM
THE WALL
ROBOT REACTION TO
BEING TOO FAR FROM
THE WALL

ROBOT REACTION TO
BEING TOO CLOSE TO
THE WALL

ROBOT REACTION TO
NO WALL

ROBOT STATE OF
MOVING AWAY FROM
THE WALL
ROBOT STATE OF
MOVING TOWARDS THE
WALL
ROBOT STATE OF
SEARCHING FOR A NEW
WALL
ENVIRONMENT
REACTION TO THE
ROBOT MOVING CLOSER
ENVIRONMENT
REACTION TO THE
ROBOT MOVING AWAY

81

Behavior Find Wall BEHAVIOR FIND WALL
= FEATURE FIND WALL

ENVIRONMENT
REACTION TO THE
ROBOT SEARCHING FOR
A WALL

Table 4 - Muramador 1st Discrete Model

In addition to the discrete blocks shown in Figure 27, it also makes sense and

simplifies the model to create discrete blocks for the direction of the Muramador and

also for the change in the direction of the Muramador within the environment. These

changes are shown in Figure 28 with the corresponding pseudo code and block

descriptions in Table 5.

82

>

>
>
>
a
>

Aix1
AJX2 Stock out
AJX3
A J X 4
AJKS
AJX6 Flow out
AJX7

Feature Wal l

A J X I
Aux2 Stock out
AJX3

>jABt4
> AixS
>)AJX6

A I X 7

J*5

Flow out

A J X 1
A I X 2 Stock out

>|Aix3
Atx4
A K 5
A I X 6 Flow out
AJX7

Attribute Distance Info Distance

A J X I
Stock outAJx2

AJX3
A J X 4
AJX5

^Flow out Aix6
Aix?k

Behavior Wall Closer

AJX1
Stock_outAix2

Aix3
A j x 4 k
A J X S K

Flow_out Aix6
Aw7k

B e h avi o r_Wa I l_F a rth e r

Ami k
Stock_outAix2

AJX3
A J X 4
A K 5

<̂ Fiow out Auxo"
Aix7

Aix1
Stock outAjx2

Aix3
Aux4k
Aix5

<jFlow_out AixS
A I X 7

Info Direction

A J X I
AJX2 Stock_out

>JAJX3
>(AJX4

Aux5
>JAJX6 Flow out
yAjx7

Behavior_Too_Far >

A J X I
>jAix2Stock_out
>|AJX3

A J X 4
>|AJX5
> |A IX6 Flow out

Aix7

A J X I
AIH2 Stock out

> AJX3
> A J X 4
>|AJX5

A I X 6 Flow_out |>
>|AJX7

Behavior No Wal l

Behavior Too Close

A J X I
Stock outAjx2

A J X 3 K
AJX4
AixSk

Flow out AJX6
AJX7

Attribute Direction

A J X I
Stock outAjx2

AJX3
A J X 4
AJX5

Flow out AJX©
A J H 7

<
<
<
<
<
<

Behavior Find Wall Feature Find Wal l

Figure 28 - Muramador Model Additional Discrete Elements

Block

Feature Wall

Attribute Distance

Pseudo Code

I F WALL I S PRESENT
THEN FEATURE WALL =
1
I F WALL I S ABSENT
THEN FEATURE WALL =
0
I F ROBOT I S TOO
CLOSE THEN
ATTRIBUTE DISTANCE
= 1
I F ROBOT I S TOO FAR
THEN ATTRIBUTE
DISTANCE = 2

Meaaing/Comment

RECORDS THE
PRESENSE OF A WALL
IN THE ENVIRONMENT

FINITE STATE
DESCRIPTION OF THE
DISTANCE OF THE
ROBOT FROM THE WALL

83

Info Distance

Behavior Too Far

Behavior Too Close

Behavior N o Wall

Attribute Direction

Feature Find Wall

Info Direction

Behavior Find Wall

IF NO WALL IS
PRESENT THEN
ATTRIBUTE DISTANCE
= 0
INFO DISTANCE
ATTRIBUTE DISTANCE

IF INFO DISTANCE ==
2 THEN BEHAVIOR TOO
FAR = 1
IF INFO DISTANCE ==
1 | OR INFO
DISTANCE == 0 THEN
BEHAVIOR TOO FAR =
0
IF INFO DISTANCE ==
1 THEN BEHAVIOR TOO
CLOSE = 1
IF INFO DISTANCE ==
2 | OR INFO
DISTANCE == 0 THEN
BEHAVIOR TOO CLOSE
= 0
IF FEATURE WALL ==
1 THEN BEHAVIOR NO
WALL = 0
IF FEATURE WALL ==
0 THEN BEHAVIOR NO
WALL = 1
IF BEHAVIOR TOO FAR
== 1 THEN ATTRIBUTE
DIRECTION = 1
IF BEHAVIOR TOO
CLOSE == 1 THEN
ATTRIBUTE DIRECTION
= 2
FEATURE FIND WALL =
BEHAVIOR NO WALL

INFO DIRECTION
ATTRIBUTE DIRECTION

IF FEATURE FIND
WALL == 1 && A NEW
WALL APPEARS THEN
BEHAVIOR FIND WALL
= 1 ELSE BEHAVIOR
FIND WALL = 0

ROBOT REACTION TO
THE DISTANCE FROM
THE WALL
ROBOT REACTION TO
BEING TOO FAR FROM
THE WALL

ROBOT REACTION TO
BEING TOO CLOSE TO
THE WALL

ROBOT REACTION TO
NO WALL

AGENT STATE
REFLECTING WHETHER
THE AGENT IS MOVING
TOWARDS OR AWAY
FROM THE WALL

ROBOT STATE OF
SEARCHING FOR A NEW
WALL
REPRESENTS THE
ENVIRONMENT
REACTION TO THE
ROBOT MOVING
TOWARDS OR AWAY
FROM THE WALL
ENVIRONMENT
REACTION TO THE
ROBOT SEARCHING FOR
A WALL

84

Behavior Wall Further

Behavior Wall Closer

IF INFO DIRECTION
== 1 THEN BEHAVIOR
WALL FURTHER = 1
IF INFO DIRECTION
== 2 THEN BEHAVIOR
WALL FURTHER = 0
IF INFO DIRECTION
== 1 THEN BEHAVIOR
WALL CLOSER = 0
IF INFO DIRECTION
== 2 THEN BEHAVIOR
WALL CLOSER = 1

ENVIRONMENT
REACTION TO THE
ROBOT MOVING AWAY

ENVIRONMENT
REACTION TO THE
ROBOT MOVING CLOSER

Table 5 - Muramador Model Additional Discrete Elements

4.4.5 Adding Analog Signals

The addition of analog elements to the model, shown in Figure 29, represents

the transition to a quantitative model. This model now has the first order interactions

necessary for the two task bullets from the problem definition phase. As can be seen

below the discrete blocks in the environment model as well as the attribute direction

block have been directly replaced with continuous elements representing the distance

from the agent to the wall and the change in distance that the agent seeks to carry out

respectively. The agent reaction has added the signal distance block, but for

illustrative purposes the info distance and relevant behaviors for moving closer or

farther from the wall have been retained. It is left to the discretion of the designer

when it is appropriate to keep this detail and when it should be bypassed. In case of

doubt it is recommended that the additional detail be kept. The relevant pseudo code

and descriptions for this model are defined in Table 6.

85

> Aix1
|-8»> A I X 2 Stock out

> A>x3
> Aix4
) A>x5
) Aix6 Flora out
> Ai!t7

Feature_Wall

Aix1
Stock outAix2

AixS
A I X 4
A I X 5

*jFlow_out A K 6
AIX7

Behavior Find Wall

And
Aix2 Stock out

>|Aix3
Aix4
AixS

> Are6 Flou) out
> Aix7

Aix1
A « 2 Stock outM

>|Aix3
> A I X 4
> AixS
> Aia6 Floui_out
> Arx?

P.openy.Distancd s i g n a | _ D i s (a n o e

Max R a n g e

Aix1
Stock outAix2

Aix3
Aix4
AixS

Flow_out AixS
A I X ?

Signal_Lateral_rVlove

Aix!
AJX2 Stock_oi*H >

>|Aix3
> Aix4
>JAix5

Am6 Flora out
Aix7

Info Distance

AJX1
A I X 2 Stock out
Aix3

J jA«4
> A I K 5

AIXS Flora out
> Aix?

» , ! , , „ ! . , T „ . r . } Aix6 Flora out
Benavior_Too_Far ; ^ . ^ ~

» Aix1
> Aix2 Stock out
) Aix3
> Aix4
> Aix5
> Aix6 Flora out ^
) Aix7

Aix I
A « 2 Stock out

> Aix3
>|Aix4

A I X S

Behavior No Wall

Behavior Too Close

Aix1
Stock_outAix2

Aix3
Aix4
AixS

^ Flora out Aix6
Aix7

*bj

Aixl
Stock_outAix2

A « 3
Aix4
AixS

<j Flora out Aix6"
Aix?

Property_Course

15

S P

.01

Feature Find Wall

Figure 29 - Muramador Model with Analog Signals

Block

Feature Wall

Property Distance

Signal Distance

Max Range

Pseudo Code

IF WALL IS PRESENT
THEN FEATURE WALL =
1
IF WALL IS ABSENT
THEN FEATURE WALL =
0
IF FEATUE WALL = 1
THEN PROPERTY
DISTANCE (N)
PROPERTY DISTANCE
(N-l) + SIGNAL
LATERAL MOVE (N)
ELSE PROPERTY
DISTANCE = 0
IF PROPERTY
DISTANCE == 0 THEN
SIGNAL DISTANCE
MAX RANGE ELSE
SIGNAL DISTANCE
PROPERTY DISTANCE
CONSTANT = 2 5

Meaning/Comment

RECORDS THE
PRESENSE OF A WALL
IN THE ENVIRONMENT

RECORDS THE
DISTANCE BETWEEN
THE AGENT AND THE
WALL

ESSENTIALLY THE
DISTANCE SENSOR
OUTPUT FROM THE
AGENT

DESCRIBES THE
MAXIMUM RANGE OF
THE SENSOR

86

Info Distance

Behavior Too Far

Behavior Too Close

Behavior N o Wall

Property Course

SP

KP

Feature Find Wall

Signal Lateral Move

IF SGINAL DISTANCE
0 THEN INFO

DISTANCE = 0
IF SIGNAL DISTANCE
>= SP THEN INFO
DISTANCE = 1
IF SIGNAL DISTANCE
< SP THEN INFO
DISTANCE = 2
IF SIGNAL DISTANCE
== 1 THEN BEHAVIOR
TOO FAR = 1 ELSE
BEHAVIOR TOO FAR =
0
IF SIGNAL DISTANCE
== 2 THEN BEHAVIOR
TOO FAR = 1 ELSE
BEHAVIOR TOO FAR =
0
IF SIGNAL DISTANCE
== 0 THEN BEHAVIOR
TOO FAR = 1 ELSE
BEHAVIOR TOO FAR =
0
IF BEHAVIOR TOO FAR
== 1 THEN PROPERTY
COURSE = (SP-SIGNAL
DISTANCE)*KP
ELSEIF BEHAVIOR TOO
CLOSE == 1 THEN
PROPERTY COURSE
(SP-SIGNAL
DISTANCE)*KP
ELSE PROPERTY
COURSE = 0
CONSTANT = 1 5

CONSTANT = 0.01

FEATURE FIND WALL =
BEHAVIOR NO WALL

SIGNAL LATERAL MOVE
= PROPERTY COURSE

REPRESENTS THE
AGENT'S DECISION OF
WHICH DIRECTION TO
MOVE

ROBOT REACTION TO
BEING TOO FAR FROM
THE WALL

ROBOT REACTION TO
BEING TOO CLOSE TO
THE WALL

ROBOT REACTION TO
NO WALL

DETERMINES THE
AMOUNT THAT THE
AGENT WILL MOVE
TOWARDS OR AWAY
FROM THE WALL

DEFINES THE DESIRED
DISTANCE OF THE
AGENT FROM THE WALL
PROPORTIIONALITY
CONSTANT FOR THE
PROPORTIONAL
CONTROL SYSTEM
ROBOT STATE OF
SEARCHING FOR A NEW
WALL
ENVIRONMENT
REACTION TO THE
ROBOT MOVING
LATERALLY AFFECTS
THE DISTANCE TO THE
WALL

87

Behavior Find Wall IF FEATURE FIND
WALL == 1 && A NEW
WALL APPEARS THEN
BEHAVIOR FIND WALL
= 1 ELSE BEHAVIOR
FIND WALL = 0

ENVIRONMENT
REACTION TO THE
ROBOT SEARCHING FOR
A WALL

Table 6 - Muramador Model with Analog Blocks

4.4.6 Adding Uncertainty to the Model

This step adds the features that control the beginning and end of walls. The

end of a wall is modeled as a part of the environment state and is based on a standard

random decision block as described in Chapter 3. The beginning of a wall is modeled

as an environmental reaction to the agent state behavior of looking for a wall. This is

also modeled as a standard random decision block, but is only activated if the agent is

looking for a wall. This is shown in Figure 30, which represents the full Muramador

model as implemented for this dissertation. The relevant pseudo code and block

descriptions are given in Table 7.

88

Random
Decision

»• Aix1
fr Aral Stock out

>Alx3
> Aix4
> AJXS
J Aix8 Flow out ̂
) Ai»7

Feature Wail

AIX2 Stock_out
5 A K 3
> A K 4

A«5
> A0&6 Flooj_out
> Ant7

Property_Distanc<

A i i t
r > AJX2 Stock_out

Pux3
Ajx4

> AaS
Ais6 FlowjHJt
AJH7

Alxl
Stock outAjx2

A « 3 k
Aix4(<
AJX5

d" Ftoui_out AJX6 k
A«7 (

Behavior Find Wall

Signal .Distance

Max Range

Ajxt
Stock outAjx2

A « 3 k
AJX4|<
AIXS

Floui out AJX6 k
Ajx7 <

Signai_Laterai_Move

Random
Decision

t» Aix1
»• Ajx2 Stock oi»f
> Aix3
> AJX4
> Aix5
5 Aix6 Flow_out (s
>/!ux7

Info Distance

Ajxl
> AJX2 Stock_out
> Ajx3

AIX4
> Al»5
>Ain6 Flow out

Ai)t7

Behavior_Too_Far > * $ Fto»_oulf>

». Ajxt
) Alx2Stool<_out
> Al*3
>A»4
> A I X 5
> A M 6 Floui_out
> Aix?

Aixt
Aix2 Stock out

A K 4
> AJXS

Behavior No Wall

Behavior Too Close

Ajxt
Stock_outAix2

AJX3
A»4
*ux5

<) Flow_out Aix6 k
Aix7

Feature_Find _Wall

Aixt
Stock outAix2

Aix3
AJX4
Ai*5

Flow out AJX6
A K 7

Ms
Pioperty_Couise

jure $w - f ui

Block

Feature Wall

Property Distance

Signal Distance

Max Range

Pseudo Code

IF BEHAVIOR FIND
WALL == 1 THEN
FEATURE WALL = 1
ELSEIF WALL END ==
1 THEN FEATURE WALL
= 0
ELSE FEATURE WALL
(N) = FEATURE WALL
(N-l)
IF FEATUE WALL = 1
THEN PROPERTY
DISTANCE (N)
PROPERTY DISTANCE
(N-l) + SIGNAL
LATERAL MOVE (N)
ELSE PROPERTY
DISTANCE = 0
IF PROPERTY
DISTANCE == 0 THEN
SIGNAL DISTANCE
MAX RANGE ELSE
SIGNAL DISTANCE
PROPERTY DISTANCE
CONSTANT = 2 5

Meaning/Comment

RECORDS THE
PRESENSE OF A WALL
IN THE ENVIRONMENT

RECORDS THE
DISTANCE BETWEEN
THE AGENT AND THE
WALL

ESSENTIALLY THE
DISTANCE SENSOR
OUTPUT FROM THE
AGENT

DESCRIBES THE
MAXIMUM RANGE OF

89

Info Distance

Behavior Too Far

Behavior Too Close

Behavior No Wall

Property Course

SP

KP

Feature Find Wall

Signal Lateral Move

IF SGINAL DISTANCE
0 THEN INFO

DISTANCE = 0
IF SIGNAL DISTANCE
>= SP THEN INFO
DISTANCE = 1
IF SIGNAL DISTANCE
< SP THEN INFO
DISTANCE = 2

IF SIGNAL DISTANCE
== 1 THEN BEHAVIOR
TOO FAR = 1 ELSE
BEHAVIOR TOO FAR =
0
IF SIGNAL DISTANCE
== 2 THEN BEHAVIOR
TOO FAR = 1 ELSE
BEHAVIOR TOO FAR =
0
IF SIGNAL DISTANCE
== 0 THEN BEHAVIOR
TOO FAR = 1 ELSE
BEHAVIOR TOO FAR =
0
IF BEHAVIOR TOO FAR
== 1 THEN PROPERTY
COURSE = (SP-SIGNAL
DISTANCE)*KP
ELSEIF BEHAVIOR TOO
CLOSE == 1 THEN
PROPERTY COURSE
(SP-SIGNAL
DISTANCE)*KP
ELSE PROPERTY
COURSE = 0
CONSTANT = 1 5

CONSTANT = 0.01

FEATURE FIND WALL =
BEHAVIOR NO WALL

SIGNAL LATERAL MOVE
= PROPERTY COURSE

THE SENSOR
REPRESENTS THE
AGENT'S DECISION OF
WHICH DIRECTION TO
MOVE

ROBOT REACTION TO
BEING TOO FAR FROM
THE WALL

ROBOT REACTION TO
BEING TOO CLOSE TO
THE WALL

ROBOT REACTION TO
NO WALL

DETERMINES THE
AMOUNT THAT THE
AGENT WILL MOVE
TOWARDS OR AWAY
FROM THE WALL

DEFINES THE DESIRED
DISTANCE OF THE
AGENT FROM THE WALL
PROPORTIIONALITY
CONSTANT FOR THE
PROPORTIONAL
CONTROL SYSTEM
ROBOT STATE OF
SEARCHING FOR A NEW
WALL
ENVIRONMENT
REACTION TO THE
ROBOT MOVING
LATERALLY AFFECTS
THE DISTANCE TO THE

90

Behavior Find Wall

Wall End

New Wall

IF FEATURE FIND
WALL = = 1 && NEW
WALL == 1 THEN
BEHAVIOR FIND WALL
= 1 ELSE BEHAVIOR
FIND WALL = 0
WALL END = 1 2% OF
TIME STEPS AT
RANDOM
ELSE WALL END = 0

WALL END = 1 1% OF
TIME STEPS AT
RANDOM
ELSE WALL END = 0

WALL
ENVIRONMENT
REACTION TO THE
ROBOT SEARCHING FOR
A WALL

ENVIRONMENT END OF
A WALL AS A RESULT
OF THE AGENT
FOLLOWING IT TO THE
END
ENVIRONMENT
BEGINNING OF A WALL
IN RESPONSE TO
AGENT LOOKING FOR A
WALL

Table 7 - Muramador Model with Uncertainty

4A7 Determining Task Accomplishment

As discussed above, the two tasks identified for the Muramador are:

• FIND WALLS TO FOLLOW
• FOLLOW THE WALL WHILE REMAINING AT THE SET POINT DISTANCE

FROM THE WALL

Both of these are physical tasks. The first task can be assessed by observing

the "feature wall block". In this particular model, the process of finding walls is

relatively unaddressed, and this is reflected in the assessment of the accomplishment

of that task. The second task is more carefully modeled, and hence assessment of

task accomplishment is correspondingly easier. In this case, the value of the block

"property distance" can be compared to the desired set point.

4.4.8 Suggested Additions for the Muramador Mode!

The Muramador model above represents the most important interactions and

only those interactions that are within one step of the bulleted task accomplishment

91

statements from the problem definition phase. There are a significant number of

additions that could be made. For example, the model currently deals with only

straight lines. The incorporation of internal and external corners into the model will

bring it into much better alignment with typical manmade environments. Another

example is the addition of provisions for hitting a wall. Currently the model is

limited to situations where this does not occur.

These limitations are not inherently flaws in the model, but rather represent

differing levels of abstraction. These features, along with others that are desired, can

be added as additional cycles in the exploration based design process if they are

needed. This process is discussed in section 4.3 Refining the Model.

As additional elements are defined, the fidelity of the model increases and the

level of abstraction decreases; that is, the model incorporates more and more of the

complexity of how the designer sees the real world. Note that the complexity added

to the model only represents how the designer sees the world and not the actual state

of the world. This is true of all design processes and is the reason that no modeling

method or design process can eliminate the need for real world testing.

As with any other modeling or design process, a critical aspect of the use of

the process is determining when it is good enough. Although it would be nice to have

a hard and fast rule, as with any other process the engineer must ultimately exercise

judgment by considering the ramifications of failure, the tradeoff between modeling

and testing, and the available resources for completion of the project.

92

4.5 Multi-Agent Foraging Model

Understanding self-organization among multi-entity and multi-agent systems

is a significant field of study within biological and robotic systems. An example of

this involves understanding how insect colonies such as ants and bees are able to

organize insects of the worker castes apparently without centralized control, and

presumably without a cognitive understanding on the part of each individual insect of

the dynamics of properly running a nest or allocation of tasks amongst the insects. A

popular emerging theory among a variety of insects involves variable thresholds [31].

In such a system, each individual worker is aware of certain tangible and observable

properties of the collective, for example stored food or refuse within the nest or hive.

Each individual within the colony will have a slightly different threshold for action to

correct each particular property. For example, if stored food levels drop slightly,

those individuals with a high sensitivity to lack of food will immediately begin to

look for food. As stored food levels continue to drop, more and more individuals will

become involved in the task of searching for food as each individual's threshold is

progressively exceeded. In this way, a negative feedback loop is effectively formed

that attempts to keep the food level of the colony as close as possible to a set point

determined by the collective thresholds of the individuals that make up the colony.

Roboticists have become interested in this system both in an attempt to

understand nature and as a possible solution technique for control of complex multi-

agent systems. One such project [32] has successfully used a variable threshold

technique to get a group of robots to self-organize to sustain a collective energy

supply by searching for energy modules within the environment. This experiment is

93

sufficiently complex and well defined to serve as a good model to test a multi-agent

system interaction space model. Figure 31 shows Krieger and Billeter's

implementation of the multi-agent foraging system.

Figure 31 - Foraging Robots as Implemented by Krieger and Billeter {32]

4.5=1 Defining the Problem

A problem statement for the multi-agent foraging model can be summarized

as follows:

KEEP SUFFICIENT ENERGY IN THE NEST BY COLLECTING AND RETURNING
ENERGY MODULES FROM THE SURROUNDING ENVIRONMENT

This problem statement can in turn be broken down into a series of tasks:

SENSE THE NEST ENERGY LEVEL AND FORAGE WHEN NEEDED
FORAGE FOR AND LOCATE ENERGY MODULES
RETURN THE ENERGY MODULES TO THE NEST
MAINTAIN THE ENERGY LEVEL OF INDIVIDUAL AGENTS

94

MAINTAIN THE ENERGY LEVEL OF THE NEST

4.5.2 Addressing the Multi-Agent issue

As discussed in Chapter 3, in a multi-agent system, there is a single

representation of the environment and its reactions, while each agent has its

properties and reactions represented separately from other agents. This has both the

advantage and the disadvantage that the information exchanged between the

environment and the agent must be standardized. This is a disadvantage in that it

limits the freedom to design custom agents, but is an advantage in the sense that the

designer must carefully consider and formalize this interface, which should aid both

in system understanding and in eventual agent construction.

In the event that the agents are similar or identical, it makes sense to

modularize portions of the subsystem. Modularization of the agent is a natural

extension of the multi-agent modeling concept shown in Figure 15. Beyond the

modularization of the agent, it also is helpful to modularize those portions of the

environment that must interact separately with each agent. The specific

implementation of the modularization for the foraging model is discussed and shown

in the next section.

4.5.3 Foraging Model

As mentioned in the previous section, much of the multi-agent foraging model

is modularized. Figure 32 shows the block that is used for each agent, while Figure

33 shows the internal structure of the agent block. This block accounts for both the

agent reactions (which have inputs from the environment properties on the left side of

95

the block) and the agent properties (which have outputs to the environment reactions

on the right side of the block). Code for this model is given in Appendix B.2 - Multi-

Agent Foraging Model. The specific development steps of this model do not

substantially add to the understanding of the modeling process and hence are not

included. For a detailed walk through of the functionality of a similar model, please

see [2]

> S igna 1 Nest Energy

> Info Energy Found

> Signal Nest Distance

Feature :ln Nest; >

Feature Returning >

•Feature Foraging >

Feature Energy On Board, >

Property Agent Energy >

Foraging_Agent

Figure 32 - Foragiag Agent Block

96

.CQ-
Signal Nest Energy

Info Energy Found

LL
Signa I Nast Distance

turelnNes Feature In Nsst

Feature Returning

C±>-
Feaaira Enengry On Board

cz>-
Property Agsnt Energy

Enorgy_Thr8slioW

J
-$» Auxl

> Aux2 -Stock-out
J Aux3
I Au«4
> AuxS
? Aux6 Flow_ait£
> Aux7

Aux*1
Aux2 Stock_out

AUK4
AuxS
AUKS Flow.
Aux7

U

SignaLNesLEnergy lnfo_Suffictent.Ensrgy

AUX1
Aux2 -Stod^out

JJAuxS
; Aux4
; AuxS
; Aux6 Flow_cut̂
; Aux7

fr Auxl
> Aux2 Stock_ait
) AUK3
>Auwi
>Aux5
? AuaS Fk5r*_cut
>Au*7

B9havi9_Stay_lrL.Nesi

Attf*Hite_Er>ergy

Auxl
>| Aux2 5tccfc_out
j|Aux3

Aux4
AuxS
Aux6 Floacmt.
Aux7

Aunt
Aux2 Sttck_cut

;}Aux3
Atntl
Aux5
Aux£ Fky*L.aut •
AUH.7

Stgnat NssL Distance lnfo_ALNesi

• Auxl
> Aux2 Stock_out
J Aux3
; Auxd
) Atw5
J AuxS Flow_C4it^
; Aux7

_r
30

Energy.iVini

SigraLAgentEnergy

AjLKt
SfeKfe_out Aus2

AuxS
Aux4
AuxS

<}Fto*^cut AuxS
Aux7k

£

HAw1
Aux2 StocfeLcut

>|Aux3
> AUJ4
> ALKS
? AuxS Ftew.cu!
? AtK?

m Auxl
Aux2 Stock_out
Aux3
Axixi
AuxS
Aux8 How_out]»
Aux7

»

B©have_Leav9_Nest Bahav^Foraging B9have_Fcund

Auxl
Aux2 StcdcjaA
AuxS
Aux4

>Aux5
AuxS Ftowjatt;
Aux7

Bshave_AjTW8_Neet

- # • Au*1
rw Aux2 Stod^cut
J >Aux3

> A I K 4
>AuxS
>Aux8 Ficw_cut;
> Aux?

lnyLSufficierrt.Agerit.BW rgy

FeatureJriNasft

Auxl
Stoi&_out Aux2

Aux3
Aux4
AusSf;

FfmsL-CUt AinsS
Aux7

Auxl
Stock_out Au*2

Au*3
Auxd
AuxS

Ftewt-out AuxS
Aux7t

Auxl
Aux2 SEOQK_OUE{^

iAuxS
; Aux4
) AuxS
J AuxS Ftow_outt
) Aux7

n

Auxl
Stod^out Aux2

Aux3
Ausd
AuxS

<jFtcw_Qut AuxS
Aux?

Feature. Returning

Featu re_Energy_On_Board

Auxl
Aux2 Sloct.out
Aux3
Aux4

J AUKS
) AuxS Flcwccut; •
? At«7

Behave_ Returning

1

Prop9rty_Ag0nLEnergy Snsrgy Use Rate

Auxl
Stook_oui Aux2

Au*3
Aux4|C
AuxS

Fto#_out AuxSfe
Aux7

Feature. Foraging

Figure 33 - Foraging Agent Block Interraal Structure

Similar to the agent block above9 the environment reaction block has been

modularized and is shown in Figure 34 while the internal structure of this block is

shown in Figure 35. The left hand side of this block provides the inputs from the

agent properties, while the right hand side provides outputs to the environment

properties.

97

http://lnyLSufficierrt.Agerit.BW

> Feature In Nest
> Feature Returning
> Feature Foraging
> Props rty Agent Energy
} Feature Energy on Boand

Signal Use Nest Energy. •
Signal Agent Energy; •

Behave Foraging. *
Behave Returning >

Behave Energy on Board f

Environment Reaction

Figure 34 - Environmental Reaction Block

CD*-
Signal Use Nest Energy

Aux1
Stock_out Aux2

Aux3
AuxA
AuxS

Flewjaut AuxS :
Aux7

* = ;

Signal_Use_Nesi_Energy

Aix1
Stoefc_o<it Atx2

Aix3
AIV.4
Aix5*

Flow_.ou: ALXS f
Aix7

Info In Nest

CEX
Signal Agent Energy

Stoek_out A«2 fc
Aix3k
Aix4 k
ALXSR
Ais6c
Aix7«

Flow ou

Si gnal_E iw_ Ag en:_E ns rgy

—CD
Feature In Nest.

Property Agent Energy

Seheve Foraging

AIX1
Stoek_ont Aix2 :

Aix3 :
Aix4 :
AixS C
Aw6 C
A«7 •:

Flow_ou;

Beha ve_ Env_Fe ragi ig

Feature FDragng

Behove
4 T«-

ming

ALX1 #
Stoek_out ALX2 :

Atx3 :
Atx4 :
ALXS :
Aix8 I
Ai*7 :

4 Flow ou

Beha ve_E nv_Rsturnine

-(X)
Feature Returring

(T>
Behave Energy on Bosrd

Au*1
stock out Au»2 k

Au*3K
Am4 k
A I » 5 K

3nw out Aiisfi k
Au»7k

Beha ve_En v_E neg ry_on_3oa irf

-CD Feature Erergj- on Board

Figure 35 - Environmental Reaction Block Internal Structure

98

In addition to the agent and the environment reactions that should usually be

modularized for a multi-agent model, it will often be helpful to modularize certain

aspects of the environment properties. This is generally used when the environment

properties section is being used to model a relationship between an individual agent

and the environment, such as the presence of an energy module at the location of a

particular agent or the distance of a particular agent from the nest. While these values

are conveniently modeled as a part of the environment properties, they are clearly

different for each agent.

The block for that portion of the environment properties that has been

modularized is shown in Figure 36, while the internal structure of that block is shown

in Figure 37, The left hand side of this block accepts inputs from the environment

reaction blocks as described above, while the right hand side feeds the input section

(i.e., the agent reactions section) of the agent block as described above.

> Info foraging Attribute Energy Module : >

> Info Returning Property Nest Distance; >

Environment State

Figure 36 - Environmental Properties Block

99

CD-
Info Foraging

CD—
Info Returning

r£ Aux1
Aux2 Stock_out
Aux3

>j Aux4
> Aux5
> Aux6 Flow_out !•
> Aux7

MovementRand Property_Nest_Distance

Random
Decision

0.001

> Aux1
> Aux2 Stock_oui
} Aux3
> AJUX4
>.Aux5
) AuxS n<w_0Ut$»
> Aux7

Energy_Present Feature_Energy_Modute

>CD
Attribute Energy Module

-KD
Property Nest Distance

Figure 37 - Environmental Properties Internal Structure

The complete Multi-Agent Foraging model is shown below in Figure 38. The

Mux and Demux blocks are used to reduce the number of traces that must be routed.

Functionally Simulink uses a Mux block to convert a set of individual numbers into a

vector or numbers of the same type with the order determined by the order of the

graphical connection. The Demux block is the reverse. Note that despite the

modularization, the basic cycle requirements of the framework are still preserved.

For simplicity this model uses only three agents, although the results shown in

the next chapter on predictive modeling are obtained using a five-agent model that is

implemented in a different tool. Code for the model shown above can be found in

Appendix B.2 - Multi-Agent Foraging Model.

Modularization is usually best accomplished by creating a model of the

desired complexity with only a single agent of any particular type, then replicating

that agent an appropriate number of times. Any additional interactions between the

various agents can then be added.

100

Recharge_Scalar

k3t_
t

fl
Auc2 Stoc<_ojt
Am3
ALK4
Auc5
ALKO Flaw_ojt ^
Aw7

Prcperty^Nse^Ensrgy

trVo Per aging Attribute Cn&rgy Module

Irro Heturmng property Nest Distance

Environment State 1

Irro Waging Attnxite bnergy Module

Info Petumi ng Property N est Distance

Environment State 2

In'u Fuayiiig AUiijute Ermtgy Module

Irr'o Returning Property Nest Distance

Environment State 3

Sgrasl test Ensrjy

Irfo Enemy Found

Sgnd Neat Cistence

Feeture in NSS:

Featuis Rsiumlng

Feature Forajinc

Teaturs Cnargy On Doarc

Prcper.y Ajsni Energy

Fo-agiigL Agent_ 1

Sigral Nest Energy

Info Energy Found

Sipral Nft&t fiisianra

Fcsturo In Nost

l-eawre Ketuming

-eaursForagirg

Foshjre =rto-^ On Boaid

Piupei ty Agenl Eneiuy

Fonauing Aaenl 2

c

GgnelNest Energy

Irfo Energy Found

Feature In lies:

featura Rstuming

Feature Forajine.

Feature Energy On Boarc

Sgnsf Nest Cistence P r c p o l . y A g o n l E n 0 I W

signal use Nest bnergy
^Signal Aaont Fiarr,y

Behave Foraging
Behave Return rig
ftetngvc Fnaffiy nn Rnarri

Mature m Nest
FoatirflRAtirninn
Faeture Foraging

Froperry Agent Energy
Pag$i ire Fnamv nn BnarH

Fb-aghg_Agent_3

K-

Envi-onment Reaction 1

Slcnal Use Nest Energy
^ Signal Agent Energy

Btsdavs Fuugittg
Behave Re-urn no
Behave Energy on Board

Feature In Nest
Featira Ret jming
Fefciuie Fut£ji»y

Property Agent Energy
Feature Energy on Board

Envi'onment_Reaction 2

Signal Use Nest Energy
^ Signal Agont Enorgy

Behawe Foraging
Behave Reiurn ng
Behave Enorgy on Bosrd

Feature In Nest
FoatirQ RoUming
Feature Foraging

Fropaty Agent Energy
Fcx^uro Energy on Bogid

Envi'nnmfint Reaction 3

Figure 38 - Multi-Agent Foraging Model

4.5.4 Measuring Task Accomplishment

While defining the problem a list of five discrete tasks was developed:

1. SENSE THE NEST ENERGY LEVEL AND FORAGE WHEN NEEDED
2. FORAGE FOR AND LOCATE ENERGY MODULES
3. RETURN THE ENERGY MODULES TO THE NEST
4. MAINTAIN THE ENERGY LEVEL OF INDIVIDUAL AGENTS
5. MAINTAIN THE ENERGY LEVEL OF THE NEST

In measuring task accomplishment, one must now examine the model and find

places to answer the questions above. Question 1 can be answered by looking at the

101

behave forage block of each agent as a function of the property nest energy block.

Question 2 can be answered by observing the behave energy found block for each

agent. Question 3 can be answered by looking for positive edges on the property nest

energy block. Question 4, can be measured by observing the property agent energy

block for each agent. Question 5 can be answered by monitoring the property nest

energy block. In most cases, there are a number of other ways to accomplish the same

result. It is left to the designer's discretion to select adequate monitoring methods

given the relative importance of constraints and features.

4.5.5 Improvements and Additions

There are many opportunities for improvement and more detailed modeling in

this system. In particular, the search and detection modality for the agents is not well

modeled,

4M Urban Search and Rescue Victim Detection Model

The RoboCup Urban Search and Rescue (USAR) competition is an event

within the intemationai Robocup competition [33]. This competition and the

numerous subcompetitions within it are intended to advance the state of robotics in a

number of different fields to near human abilities by 2050. Specifically the RoboCup

USAR competition has the stated aim:

"When disaster happens, minimize risk to search and rescue personnel, while
increasing victim survival rates, by fielding teams of collaborative robots which can:

• A utonomously negotiate compromised and collapsed structures
• Find victims and ascertain their conditions
• Produce practical maps of their locations
• Deliver sustenance and communications

102

• Identify hazards
• Emplacesensors (acoustic, thermal, hazmat, seismic, etc,.-.)

• Provide structural shoring

...allowing human rescuers to quickly locate and extract victims." [33]

Within the competition, victims are simulated using five life signs: form, heat,

movement, sound, and carbon dioxide emissions. Within the rules [34] of the

competition, three life signs are defined as constituting a victim. Additionally, a

determination of the state of the victim (fully conscious, semi-conscious, or

unconscious) may be made based on the magnitude of the life sign. For example, a

large movement such as an arm motion is to be categorized as a fully conscious

victim, while smaller movements such as a twitching finger or a gently moving head

should be interpreted as semi-conscious. A simulated victim with no movement at all,

but that still satisfies the criteria of three life signs is assumed to be unconscious.

The arena of the competition varies significantly from smooth, relatively

featureless terrain, to significantly obstacled and unstable terrain. Typical examples

of terrain and simulated victims can be seen in Figure 39 and Figure 40. In addition,

various false life signs are placed within the arena either through intention or

circumstance. For example, these competitions are public, and often well attended

events (see Figure 41). It is unavoidable that human life signs can be picked up from

outside the arena. In addition, simulated items representing confounded

environmental features such as a mostly-smothered fire are placed in the arena to

generate heat signatures or other types of false life signs.

103

Figure 39 - Typical RoboCup Terrain and a Typical Victim with the Good Samaritan in front <

k

Figure 40 - Additional Typical RoboCup Terrain with the Good Samaritan

104

Figure 41 - Crowd at the RoboCup Competition in 2006

The Good Samaritan [35] pictured in Figure 39 and Figure 40 was a Colorado

State University robot designed to compete in the RoboCup Rescue competition. The

following models are highly abstracted models of this design problem and focus on

the victim detection and classification aspects of this system. This model is used

principally to demonstrate perceptive task modeling.

4.6.1 Defining the Problem

In this case, the problem has previously been well defined as described by the

competition organizers. However, it is still up to the designer to break this problem

statement into more specific tasks. The list below is incomplete and is focused

predominantly on the victim detection aspect of the problem, as is the model itself.

Indentation denotes a child relationship to the parent task.

MOVE ABOUT THE ENVIRONMENT AND SEARCH FOR VICTIMS
DETECT VICTIM LIFE SIGNS

DETECT HEAT
DETECT MOVEMENT
DETECT SOUND
DETECT CARBON DIOXIDE
DETECT FORM

105

DETERMINE VICTIM STATE
DISTINGUISH BETWEEN LARGE AND SMALL MOVEMENTS
DISTINGUISH BETWEEN LOUD AND QUIET NOISES

4.6.2 GSVD Model

The model for the Good Samaritan victim detectionis shown below in Figure

42. The significant difference between this model and the models presented

previously is the presence of perceptual tasks. This is discussed further in the section

on measuring task accomplishment. Beyond the illustration of a perceptual task, this

model is intended principally to illustrate that it is possible to model significantly

complex tasks with relatively simple models. Full development of this model is not

shown, but additional details are available in Appendix B.3 - GSVD Model.

Despite the relative complexity of the problem and the simplicity of the model,

this model still provides both qualitative and quantitative insight that is useful to a

designer. Qualitatively, the interactions that lead to task accomplishment are made

explicit, and further exploration based design cycles can result in a more sophisticated

model that is more accurate. Quantitatively, predictive modeling can yield additional

insight. Please see Chapter 5 for more information.

106

s

rtSra_swSss

*
s

5

*3t

fea3

fe«S

5a^rej^_Raao%^'foTrfn

Figure 42 - GSVD Framework Model with Basic Element

4.6.3 Measuring Task Accomplishment

As always, to assess task accomplishment, one should return to the problem

statement and the original list of tasks:

MOVE ABOUT THE ENVIRONMENT AND SEARCH FOR VICTIMS
DETECT VICTIM LIFE SIGNS

DETECT HEAT

107

DETECT MOVEMENT
DETECT SOUND
DETECT CARBON DIOXIDE
DETECT FORM

DETERMINE VICTIM STATE
DISTINGUISH BETWEEN LARGE AND SMALL MOVEMENTS
DISTINGUISH BETWEEN LOUD AND QUIET NOISES

This problem as stated contains the physical task of moving about the

environment plus a number of perceptual tasks. The physical task is relatively poorly

modeled as it appears here, and as such determination of task accomplishment is

limited to recording the value of the "property searched terrain" block.

Perceptual task accomplishment is relatively explicitly modeled in the manner

described in Chapter Three by comparing the agent state (i.e., what the agent believes

about the world) with the environment state (i.e., reality within the abstracted world).

For each of the life signs, as well as the magnitude of the life signs, there is a portion

of the agent state that defines what the agent believes to be true about the

environment. This can be directly compared with the respective blocks in the

environment state to measure the accuracy of the perception of the agent.

For the higher level perceptual tasks of determining the presence of a victim

and determining the state of the victim, the process is exactly the same, and once

again explicit blocks exist for both the agent's belief of the state of the environment

and the actual state of the environment.

As with the other models, the conditions necessary for task accomplishment

are made explicit within the descriptive model, but can only be measured within the

predictive model. Measurements of task accomplishment will be discussed in

additional detail in Chapter Five.

108

4.6.4 Additions and Improvements

It is recognized that this model represents a very simplified abstraction of the

actual RoboCup USAR competition, let alone an actual USAR situation. In addition,

the movement inherent in the model is not particularly representative of the Good

Samaritan itself However, this model can still be used to understand the

subproblems and, as will be shown in Chapter Five, even draw some quantitative

conclusions.

Many improvements to the model can be added as additional exploration

based design iterations. As mentioned, the current representation of the terrain is

very limited. Other significant areas for improvement include better representation

and quantification of life signs, and explicit representation and modeling of the search

process (to allow for accidental and intentional repeated search and the possibility of

getting lost or disoriented as frequently happens even with human operators let alone

under autonomous control [36].

4.7 Prototyping

The exploration based design process makes explicit the need for prototyping.

Interaction space modeling can and eventually should incorporate prototyping. As

models become more sophisticated, the possibility of a mistake in the model or an

incorrect assumption on the part of the modeler becomes more probable. Creating

and building prototypes at appropriate points during the design/modeling process is

important in creating a correct model. As with any prototyping process, it is possible

to prototype the entire system, or one or more subsystems. Prototypes should be only

as complex as necessary to validate the portion of the model in question. Eventually

109

the system as a whole will have to be prototyped as it will be necessary to check the

entire model

110

Chapter 5 - Predictive Modeling

Modeling efforts up to this point in this dissertation have been focused on

descriptive modeling (i.e., capturing the domain knowledge that the designer

possesses and applying the design knowledge inherent in the modeling process). In

descriptive modeling the primary task is to help the designer understand the

qualitative interactions that govern system response. Even where continuous or more

complex data types are employed, the purpose is predominantly to allow the designer

to explicitly represent the data that will later be available rather than to explicitly

represent any quantitative aspect of the system. By contrast, predictive modeling is

intended to provide quantitative insight into the system behavior. This requires that

the decode portion of the Rosen model be applied. If used successfully, predictive

modeling will allow the designer to explore the real world design space within the

abstract world and qualitatively refine R„.

Predictive modeling is accomplished using the same models previously

developed during the descriptive modeling phase by implementing these models in a

numerical computing language (e.g., Simulink) and iteratively simulating. Over a

large number of iterations, the ability of the system to accomplish specific tasks can

be correlated to system variables such as sensor accuracy, environmental parameters,

physical characteristics of the agent, different control strategies, or other aspects of

the model that can be changed. It is important to note that because much of a typical

model, particularly the environment, relies heavily on stochastic elements, that single

simulations have no meaning; trends must be looked at over a statistically significant

111

number of trials. A collection of ideas for rigorous implementation of this concept

can be found in [37]

5.1 Developing Predictive Models

Predictive models are generally developed in the same fashion as descriptive

models. The first step in developing a predictive model is the development of a good

descriptive model. The major difference is in the rigor of the governing equations

that must be developed. While descriptive models are best implemented with pseudo

code or even verbal descriptions, predictive models require the generation of formal

code to control the flows within the basic functional blocks (details on this code can

be found in Appendix A - Implementation and Code for the Simulink Modeling

Tools). It is important when writing this code to follow good debugging and

incremental development practices. In general the predictive model should start with

a basic functional model that should be adapted to predictive modeling and

incrementally improved from there. An attempt to jump from a sophisticated

descriptive model to a sophisticated predictive model is generally difficult.

5.2 implementing a Simulation

As was mentioned in Chapter Two, the original predictive interaction space

simulations were implemented in a system dynamics programming environment

called PowerSim. Due to the limitations of this language new models have been

developed in Simulink. This chapter relies interchangeably on simulation results

from both new models and old models, but ties the measurement of task

accomplishment explicitly to the new framework and to the design methodology

112

developed in Chapter Three arid Chapter Four. Code and implementation of alternate

models is given in Appendix C - PowerSim Code and B.l - Muramador Model.

Moving forward, it is expected that it will be advantageous to implement ail

simulations in Simulink; however some current limitations will have to be overcome.

These are discussed below in the section on the limitations of the current Simulink

implementation.

5.2.1 Simuiink Implementation of Basic Functional Block

A Simulink Mock has been created for the basic functional block. This block,

shown in Figure 43, contains seven inputs labeled "Auxl" through "Aux7" which are

used to bring data into the block. Other blocks whose states need to be known are

connected to these inputs in a standard data flow fashion.

)JAJK1
}4AIX2 Stock out 1>
)|AJK3
)|jftUM4
JIAJJCS
MAJK8
ifiuxf

Flouijout p

gg— al

Framewoik

Figure 43 - Simuiink Implementation of a Basic Functional Block

Figure 44 shows the internal implementation of the basic functional block in

Simulink. Here the seven inputs as well as a feedback from the current value of the

stock are combined into a single data stream. This data stream is sent into an m-file

block which functions as a flow. Double clicking on the m-file block brings up a

dialog box as shown in Figure 45 that allows the user to enter the file name. This file

113

written by the designer takes the inputs and reduces them to a singe output value that

represents the flow into or out of the stock.

MAT LAB
Function

mfile

Stock

Stock

-KID
Stock out

-KJD
Flow out

Figure 44 - Simulink Implementation of a Basic Functional Block

f§ '• •>. M1M

0 iE?

diReady

%- • s j N o r m a l j j

uoo%

•MATLAB Fen ; : — i
, i

< Pass the input values to a MATLAB function for evaluation. The function !
I must return a single value having the dimensions specified by 'Output \
\ dimensions' and 'Collapse 2-D results to 1 -D'. j
! Examples: sin, sin(u), foo(u(1}, uf2)) I

Parameters
MATLAB function:

»ji j*pij <Sn!~hi»om:

Output signal type: j auto

I J7 Cctepwi-D results to 1-0

OK Cancel Help

Figure 45 - Dialog Box to Set the M-file

114

The stock, which stores the value of the functional block and represents the

actual state or reaction, is implemented as a custom S function [38]. The code for the

S-function can be found in A.l - Simulink Implementation of a Stock. The initial

value of the stock must be set for each basic functional block. Double clicking on a

stock will open a dialog box, shown in Figure 47, where the initial value can be set.

Stock

Stock

Figure 46 - Simulink Stock

•lain

Die? 1 I to SI j £ * Zi j & K.

»c
Bftucfe (PapaaijgfttM^ S6®g

j - Stock (mask) (link)—

This block functions as a standard system dynamic stock. Multiple
j independent quantities can be tracked using vector inputs and vector
1 outputs. The initial values must be specified as a vector in the block
! interface window. The number of states tracked is dependent on the
j length of the initial value vector.

• Parameters——-

Initial Value Vector

Stock

Stock

-Ready 100%

I Normal 33

Stockout

-KZ)
Flow out

jode45

Figure 47 - Dialog Box to Input the Initial Value of the Stock

115

5.2.2 Simultnk Implementation of Other Blocks

There are a number of additional blocks that are used for simulation of

uncertainty and stochastic properties of the environment or agent. These are

discussed generally in Chapter Four. The most common auxiliary block is the

random decision maker shown in Figure 48. This block uses a random number

generator in comparison to a threshold value entered by the user as shown in Figure

49, The output will be true (equal to one) at the specified percentage of time steps.

In particular, this can used to represent random events in the agent or environment,

for example, the presence of a new wall in the Muramador model. Additional details

on this block can be found in Appendix B -

Random
Decision

75

Random Decifion Maker

Figure 48 - Random Decision Making Block

- Subsystem (mask) (link) _ _ _ — _ _ _ _ _ _ — _

j | Random Decision Maker. Accepts an input that is the % of time the
output will be true on average.

Random
Decision

75

Random Decision Maker

Figure 49 - Random Decision Block Dialog Box

116

The uniform random number (Figure 50) and the discrete uniform random

number (Figure 51) blocks are also used frequently in modeling uncertainty and

decisions. In particular, the discrete uniform random number generation block can be

used to make discrete decisions in the same way the random decision maker block is

used to make binary decisions. More details on these blocks can be found in A.4 -

Random Decision Making Block Implementation.

Uniform Random Number

Figure SO - Random Number Generation Block

Discrete Uniform Random

Figure 51 - Discrete Uniform Random Number Generator

A number of standard blocks for generating noise and other stochastic signals

are available within Simulink. It is beyond the scope of this dissertation to attempt a

full introduction to the capabilities of Simulink, but additional information is

available in [39].

5.3 Measuring and Interpreting Results

Assessment of task accomplishment is discussed extensively in Chapter Four;

however, as has been previously mentioned, predictive modeling and numeric

117

simulation opens the possibility of quantitative measurement of task accomplishment.

This can include either measuring the frequency of task accomplishment as defined

by some binary criteria, or measuring the quality of task accomplishment (e.g., the

average deviation of the Muramador from the set point distance).

In addition to measuring task accomplishment under a fixed set of conditions,

it is also possible to parameterize one or more of the system variables and observe the

frequency or quality of task accomplishment that results. Such parameterizations can

provide valuable insights into system requirements Rj and can subsequently lead to

refinements of the model resulting in additional iterations of the exploration based

design process and the ability to further quantitatively model task accomplishment.

5A Muramador Simulations

As presented in Chapter Four, the tasks for the Muramador are:

e FIND WALLS TO FOLLOW
© REMAIN AT THE SET POINT DISTANCE FROM THE WALL

As both of these are physical rather than perceptual tasks, task accomplishment is

measured by observation of the environment state relative to some desired state. In

Chapter Four, it was discussed that the first task can be measured by observing the

"feature wall" block in the model. Typical results from this are shown in Figure 52.

Alternatively one could measure the accumulated time that the Muramador spends

near a wall as shown in Figure 53.

118

Figure 52 - Muramador Model of the Presence of a Wall (Time Units are Arbitrary)

Figure S3 - Muramador Cumulative Wall Time (Units are Arbitrary but Consistent)

The second task, that of maintaining a particular distance from the wall, is

more accurately modeled here and hence more realistic results are available. The

distance of the robot from the set point can be measured directly, for example, as

shown in Figure 54. However, as discussed above, due to the stochastic nature of the

models and the consequent need for multiple runs and average values, this is valid as

qualitative information {i.e., the shape) only.

119

Figure 54 - Muramador Instantaneous Wall Distance (Units are Arbitrary)

In order to obtain quantitative information, multiple runs were conducted and

averaged with variation in the control constant parameter. Results from this are

shown in Figure 55, From this plot it can be seen that at very low values of the

control constant, the average deviation is nearly equal to the difference between the

set point and the maximum range of the sensor, while at very low values, the average

deviation drops to essentially zero. Although not shown on this plot, at just a slightly

higher value, the system becomes unstable and exponentially greater distances are

reached. This is consistent with standard control theory, and in fact for this relatively

simple system that could have been predicted without interaction space modeling.

However, instabilities will be revealed even in very complex systems with significant

uncertainty and randomness, albeit perhaps less clearly than shown here.

120

Average Distance From Set Point

Figure 55 - Average Distance from the Set Point

5,5 Foraging Simulations

As was discussed in Chapter 4, the tasks to be accomplished by the system

are:

1. SENSE THE NEST ENERGY LEVEL AND FORAGE WHEN NEEDED
2. FORAGE FOR AND LOCATE ENERGY MODULES
3. RETURN THE ENERGY MODULES TO THE NEST
4. MAINTAIN THE ENERGY LEVEL OF INDIVIDUAL AGENTS
5. MAINTAIN THE ENERGY LEVEL OF THE NEST

Task one can be observed by watching the behave foraging block of an individual

agent. This can be seen in Figure 56. Task two can be measured by observation of

when an agent does or does not have an object. An example of this can be seen in

Figure 57. This plot can also be used to see the accomplishment of Task three as a

121

negative edge represents dropping off an energy module. Task four is observed by

monitoring the agent energy block in the agent state. An example is shown in Figure

58. Task five is a straightforward look at the nest energy level block. An example is

given in Figure 59

Figure 56 - Agent Foraging Output (Units are Arbitrary)

1.0-t

0.81

*-» 0.6-' o

Is1 0 4-'

0.24

0.0
2,000 4,000 6,000 8,000 10,000

Time

Figure 57 - Agent Object Found Output (Units are Arbitrary)

122

Figure 58 - Individual Agent Energy Level

0=
2,000 4,000 6,000 8,000 10,000

Time

Figure 59 - Instantaneous Nest Energy Level for a Typical Power Sim Run

A more useful method of measuring task accomplishment is to repeat the

simulation a statistically valid number of times and average the results. While this

technique can predict the nest energy for a particular set of parameters, often to a

designer the variation of task accomplishment due to the variation of more than one

parameter is more interesting. This concept is illustrated in Figure 60, which

123

represents the simulation time that elapses before the nest energy drops to zero as a

function of both the energy usage of an individual agent and the value of each packet

of energy that is found and returned to the nest. Figure 61 shows the average nest

energy level as a function of the same two parameters. In both cases the trend is what

would be expected logically; however, here it is possible to quantify these

interactions.

Time to Zero Nest Energy

Figure 60 - Maximum Number of Times Steps (5000 possible) to Complete Nest Energy Loss (out

of 20 runs)

124

Agent Energy Usage Value of Energy Module

Figure 61 - Average Nest Energy as a Function of Agent Energy Usage and the Value of an

Energy Module

5.6 Victim Detection Simulations

Detailed results of the victim detection simulations are not presented here, as

little new work has been done on this topic for this dissertation. This is a result of the

simulation environment limitation discussed above. Additional information is

available in [2]. Figure 62 shows a typical example of information that can be

obtained from analysis of the simulation results for the Good Samaritan Victim

Detection Model. The results below are included as an example of a perceptual task

as discussed in Chapter 4.

125

Victims Found by Noise Level

—o—50% Sensor Effectiveness

-CJ—80% Sensor Effectiveness

90% Sensor Effectiveness

- *— 99% Sensor Effectiveness

0 200 400 600 8Q0

Noise Occurences Per Channel

Figure 62 - Average Number of Victims Found Based on Environmental Noise and Sensor

Effectiveness

5.7 Exploration Based Design with Predictive Modeling

The predictive modeling process fits into the exploration based design within

the prototyping loop (see Figure 63.) The predictive modeling as with other

simulations will reduce the prototyping needs in quantifying performance. As

discussed in the next section It is still necessary to conduct prototyping activities;

however, the emphasis can shift (at least early in the design phase) to validating

assumptions and specific portions of the model rather than validating overall system

response. This allows, in general, for smaller scale more contained experiments to be

conducted at a lower level of sophistication than a full system model. In general this

should reduce cost, cycle time or both.

126

Identified
Needs or
Desires

Realization of
Needs or
Desires

Kdm and Kdn

I
Exploration

Process
Dn

TJ
Design

Physical
Prototyping to

Confirm
Assumptions

System Level
Physical

Prototyping
Less Frequently

Figure 63 - Exploration Based Design with Predictive Modeling

127

5,8 Discussion on Predictive Modeling

Several topics related to predictive modeling bear further reflection but are not

specifically applicable to the models above. Each of these topics is discussed briefly

below and should be considered by the designer in the context of a specific model

when implementing these techniques.

5,8.1 MuSti-Variate Parameterized Simulations

In the preceding three sections, results have been presented from both single

simulations and from compiled averages of many trials. Additionally parameterized

results have been shown where either one or two key variables in the system are

presented over a plausible range of values for either one or two variables. It should

be recognized that there is no theoretical limit to the number of values that can be

parameterized, particularly with the ability to script large batches of Simulink

executions. However, practical limits can arise due to computation requirements of

an inherently combinatorial problem.

SB 2 Grounding the Simulations

The reader may or may not have noticed that all of the results above are

presented without units. The primary reason for this is that the numbers at this point

are arbitrary. While they do have relative meaning, the system model is not explicitly

grounded in well-defined units; nor have the subcomponents of the simulation been

validated by physical means. As with any model it is only valid after and to the

degree that it has been tested. Both of these topics will be discussed in the next

chapter.

128

5.8.3 Limitations of Simulink Simulation Environment

Due to limitations in the previous programming language that was used to

implement interaction space simulations, a new set of tools was developed in

Simulink for predictive interaction space models. Unfortunately, it has so far not

been possible to get Simulink to update the elements in the model in an appropriate

manner. Simulink solves the blocks based on the value of the predecessors during the

previous time step for the entire model. Thus it takes information up to N time steps

for propagate around the cycles in the model where N is the length of the longest

cycle in the model.

Since much of predictive interaction space modeling relies on the comparison

of information that has made a complete cycle to information at the starting point

(particularly when measuring task accomplishment), this creates unmanageable

models for any significantly complex system. The Muramador model is able to be

implemented in Simulink because there are not time critical comparisons within the

model, but more complex models such as the GSVD and the multi-agent foraging

model require that blocks be computed with present time step values for the

predecessors where possible. Consequently predictive models have not been fully

developed for the GSVD and the multi-agent foraging system within the new

framework.

The GSVD and multi-agent foraging systems have both been previously

implemented in another language called Powersim[39j. These models predate the

framework that has been developed in this dissertation, but are the basis from which

the framework was inductively derived. Results from simulations run on these

129

models are discussed above interchangeable with Simulink results to better illustrate

the value of predictive interaction space modeling. Complete programs for these

simulations can be found in Appendix C - PowerSim Code and a complete

description of the development of these models is available in [2]

§.8.4 Comparison to Current Methods

The primary change in the predictive modeling process from previous work is

the additional rigor of the basis descriptive model imposed by the framework and the

design methodology described in Chapter Three and Chapter Four. This rigor is

additionally useful that the formal definition of task accomplishment allows for more

focused assessment of task accomplishment.

In addition, the introduction of the new simulation environment will remove

significant limitation imposed by older systems, particularly related to multi

dimensional data and complex functions. In addition, the implementation of standard

block types, particularly for stochastic elements, provides significantly more structure

to the development of predictive models compared to previous methods.

Compared to the work presented in [2], the implementation and interpretation

of simulation results has not changed dramatically. The introduction of multi-variate

parameterizations and the explicit connection between the tasks in the problem

statement are the primary new points.

5.8.5 Computational Complexity

As implemented, the predictive models will increase in computational

complexity as a high order polynomial in N function where N is the number of

130

elements used in the model. This complexity further increases linearly with the

number of time steps, and linearly with the number of trials. Although N is relatively

small in the models shown, each basic modeling element requires a large number of

computations and consequently computation of even a two-parameter design analysis

takes significant time.

This problem can be somewhat alleviated by more efficient coding. In

particular, the use of pass-through elements adds a substantial number of

computations to any simulation. By relaxing the rules of the framework, insight is

lost in the descriptive model, but efficiency can be gained in the predictive model.

The development of a computationally simple pass-through element could alleviate

this issue.

No attempt has been made to develop efficient code, even for repetitively used

elements like stocks; however, this problem is inherent in this and most other

simulation methods. As computers have become more powerful this problem has

been somewhat alleviated and for this method, reasonable systems can be simulated

within a few hours at most with current technology.

131

Chapter 6 - Conclusions and Future Work

This chapter outlines the contributions and conclusions of this dissertation.

Future work that either must or may be carried out to develop interaction spaces and

interaction space modeling from the infant stage in which they presently exist to

proven design theories is also discussed.

6.1 Summary

The core value of this dissertation is the development of a design abstraction,

a formalism to go with it, and a design methodology (exploration based design) for

the modeling, description, and design of autonomous robots. Interaction space

modeling represents an abstraction that is capable of using most of the other design

abstractions for robotics (e.g., subsumption, voting, schema, etc.) but still provides

the designer with a framework in which to creatively explore the design space.

Additionally, the melding of the interaction space abstraction with the exploration

based design methodology provides a formalism specific to autonomous robots.

While this in no way relieves the designer of the need for creativity, solid technical

skills, and both design and domain knowledge, it does provide a framework in which

to work and decompose a problem. It also forces an explicit consideration of the

interactions that drive task accomplishment, potentially leading the designer to

solutions that were not previously considered.

Additionally, predictive modeling (i.e., simulation) has been transformed from

an ad hoc simulation to the rudiments of a design tool through the creation and

implementation of standard blocks and the development of these blocks in Simulink.

132

6.2 Conclusions

Interaction spaces as a design abstraction and interaction space modeling as a

design methodology continue to need significant development to be folly vetted for

autonomous robot design; however, when used in conjunction with other standard

engineering skills, they can provide a valuable way to gain insight into a system and

arrive at a design that accounts for a systems-level view. By taking the agent and

environment into equal consideration, and explicitly refining conditions for task

accomplishment iteratively, emphasis remains on the system design rather than on

technology or clever kludges.

Interactions space modeling has both the advantage and the limitation of

freeing the designer from focus on geometry, sensors, actuators and structures and

allowing a focus on good system level design. This allows for a creative exploration

of the design space early in the design process and can assist the designer in finding

solutions that would have been missed had the focus been on technology.

6.2.1 Interaction Spaces and Design

An interaction space as preciously introduced in [2] and further developed in

this dissertation is the set of all possible interactions between the agent and the

environment. Specific interactions lead to task accomplishment. The goal of a

designer is to create a system that causes these interactions to occur.

One way of thinking about a design process is as an exploration. All possible

solutions constitute the design space. Constraints and requirements are used

iteratively to successively narrow the design space. The exploration based design

133

process, along with the interaction space specific process described in this dissertation,

provide systematic guidance to the designer.

6.2.2 Descriptive Modeling

The nomenclature and methodology, particularly the quadrant abstraction and

the cycle abstraction, presented in this dissertation can be used to develop descriptive

models. A descriptive model captures and communicates the domain knowledge that

the designer possesses. Specifically, this information is captured in a form that makes

explicit the required interactions between the agent and the environment.

The process of developing this model also helps the designer to explore the

solution space systematically and iteratively. In particular, the process of writing and

modifying the pseudo code at each step provides a concrete means of forcing the

designer to consider all of the information that plays a role in any given reaction and

the reactions that affect any given state. Doing this via the process described in this

dissertation and returning to a "complete" model after each iteration of the

exploration based design process makes this task more approachable than a blank

page approach and restricts the designer's ability as well as unintentional propensity

to mentally hand wave over any particular aspect of the design.

In addition, the benefits internal to a single designer, descriptive interaction

space models also provide a way of communicating interactions and the abstraction of

interactions. If interactions are critical in designing robotic systems, it is necessary to

have a clear means of communicating one's understanding of these interactions.

134

6.2.3 Predictive Modeling

Predictive interaction space modeling provides a means of quantifying the

design requirements. In particular, parameterization of one or more design

parameters can be varied across a feasible range and task accomplishment can be

measured within the model. This provides a relatively rapid means of exploring the

design space compared with physical prototyping. In addition to the design

requirements, predictive modeling also changes the nature of needed prototypes early

in the design process. Specifically, prototypes early in the design process are

intended to confirm assumptions, abstractions, encoding, and decoding rather than

full system prototypes.

6.3 Future Work

Suggestions for improvement of specific models have been presented

throughout this dissertation in the same section as the model itself; however there are

several suggestions for future work that span the full scope of Interaction Space

Modeling. These include additional work with real robots, standardization and

implementation of a better simulation language and a better graphical tool for

representing descriptive models, and development of additional blocks or classes of

blocks.

6.3.1 Real Robots

While the descriptive modeling process is relatively well grounded in that it is

internally logical, the predictive modeling process needs significant additional work

to verify both the process and individual models. In the general sense of the process,

135

no predictive modeling process can be fully vetted without quantitative comparison to

real robots. While several models have been qualitatively compared to published real

world results, this comparison has been retroactive in that models were developed

that relate to existing systems. There has been no physical verification that either the

descriptive or the predictive modeling process will yield information about systems

that do not yet exist.

In addition to the general validation of the predictive modeling process, it will

always be necessary to validate any specific predictive model with real world data.

This can be done partially through validation of various blocks or subsystem models;

however, the need for prototyping, testing and appropriate refinement of the model

will always be necessary before considering a design to be finished.

6.3.2 Dealing with Units

In dealing with real robots, it will also be necessary to address the concern of

units. At present, units are largely ignored; however, a fully quantified analysis of a

system necessarily requires that units be attached to the system. It is recommended

that the units be recorded explicitly for every signal (i.e., every connection between

two blocks), but that no specific attempt be made to carry units symbolically within a

simulation language. Such units could be displayed as text above each connection.

6.3.3 Standard Simulation Language

In some manner, the limitation on simulation of perceptual tasks must be

overcome. Simulink has been a useful simulation language, as has PowerSim;

however, neither system is really compatible with the full framework described in this

136

dissertation. The primary limitation of Simulink (i.e., the induced lag in the system

that is relative to the path length) may be possible to overcome, possibly through the

creation of a discrete delay function that would use old data based on path length.

There are also a large number of computation engines built into Simulink, and it is

possible that one of these will work as is. This could make Simulink a good choice.

Powersim is very limited in its ability to compute complex functions, to use history,

to store and represent data, and to make drop-in subsystems.

In the event that Simulink is not acceptable, it may become necessary to

develop a modeling and simulation tool in a lower level language such as.C or C++.

In particular, the object-oriented nature of C++ would lend itself very well to

implementation with this framework, in that each of the 6 basic types of blocks could

be represented by a class with individual blocks representing objects.

6.3.4 Expansion of Standard Modules

Although the modules presented in this document are believed to represent a

sufficient set to model the vast majority of situations, there are likely situations where

these blocks will turn out to be insufficient. In addition, it is very likely that other

types of blocks can be found that will improve modeling efficiency or clarity. It is

likely that most such blocks would be specific to a particular domain.

137

References

1. R. Brooks, 1986: "A Robust Layered Control System for a Mobile Robot,"

IEEE Journal of Robotics and Automation, April, pp. 14 -23 .

2. C. Kaiser, Interaction Space Constructs and Modeling for Application in

Robot Design, MS Thesis, Colorado State University, May 2006.

3. C. Kaiser, M. Conboy, W. Troxell. "Interaction Spaces for Urban Search and

Rescue Robots", Proceedings of the 1st Joint Emergency Preparedness and

Response/Robotics & Remote Systems Topical-Meeting, Salt Lake City, UT,

February 1146, 2006, pgs. 252-257.

4. R. Rosen, 1991: Life Itself: A Comprehensive Inquiry Into the Nature, Origin

and Fabrication of Life, Columbia University Press, New York, New York.

5. J. Forrester, 1961: Industrial Dynamics, The M.I.T. Press Cambridge,

Massachusetts.

6. J. Sterman, 2000: Business Dynamics: Systems Thinking and Modeling for a

Complex World, McGraw-Hill Higher Education.

7. R. Brooks, 1986: "Achieving Artificial Intelligence Through Building Robots,"

M.I.T. Artificial Intelligence Laboratory, A.I. Memo 899.

8. J. H. Connell, 1990: Minimalist Mobile Robotics, Academic Press, Inc.

9. T. Smithers, W. Troxell: "Design is Intelligent Behaviour, but What's the

Formalism" Artificial Intelligence for Engineering Design, Analysis, and

Manufacturing, v. 2, i. 4 pp. 89 -98 .

138

10. T. Smithers: "Design as Exploration: Puzzle-Making and Puzzle-Solving"

Presented at AI in Design 1992, Workshop on Searhc-based and Exploration-

based models of Design, Engineering Design Research Center, CMU,

Pittsburg, June 1992.

11. V. Braitenberg, 1986: Vehicles: Experiments in Synthetic Psychology, MIT

Press, Boston, Massachusetts.

12. P. Maes, 1993: "Behavior Based Artificial Intelligence," Proceedings of the

Second Internation Conference on Simpulation of Adaptive Behacior, pp.II-

317-11-323.

13. R. Arkin, 1987: "Motor Schema Based Navigation for a Mobile Robot: An

approach to Programming by Behavior," Proceedings of the IEEE conference

on Robotics and Automation, Raliegh, North Carolina USA pp. 264 - 271.

14. R. Arkin, 1989: "Motor Schema-Based Mobile Robot Navigation,"

International Journal of Robotics Research, v.8, n. 4 pp. 92-112.

15. U. Nehmzow, 2003: "Mobile Robotics: A Practical Approach," Springer

Verlag.

16. P. Ford: Description of a Robot, Environment and Task System Using the

Theory ofAffor dances, M.S. Thesis, Colorado State University, Department of

Mechanical Engineering, February, 1996.

17. R. Brooks, 1991: "Intelligence Without Representation", Artificial

Intelligence Journal v. 47, pp 139-160. Reprinted in Cambrian Intelligence,

The MIT Press, Cambridge Massachusetts, 1999.

139

18. C. A. Petri, "Kommunikation mit Automaten," Bonn: Institude fur

Intrumentelle Mathematik 1962. English translation, "Communication with

Automata," New York, Griffiss Air Force Base. Tech Rep RADC-TR-65-377

vol. 1, suppl. 1 1966.

19. M. Caccia, et. Al, 2005: "Execution Control of Robotic Tasks: a Petri Net-

Based Approach," Control Engineering Practice, v. 13 pp. 959 - 971.

20. J. Rosell, 2004: "Assembly and Task Planning Using Petri Nets: A Survey,"

Proc. Instn Mech. Engrs V. 218 part B.

21. L. Montane, et. Al, 2000: "Using the Time Petri Net Formalism for

Specification Validation and Code Generation in Robot Control Applications,"

The InternationalJournal of Robotics Research, v. 19 n. 1 pp. 59 - 76.

22. W. Zhang, 1989: "Representation of Assembly and Automatic Robot Planning

by Petri Net," IEEE Transactions on Systems, Man, and Cybernetics v. 19 n. 2.

23. R. Brooks, "From Earwigs to Humans", Robotics and Autonomous Systems,

Vol. 20, Nos. 2-A, June 1997, pp. 291-304.

24. D. Ryan, Robotic Simulation, CRC Press, Boca Raton, Florida, USA, 1993.

25. M. Adams: Sensor Modelling, Design and Data Processing for Autonomous

Navigation, World Scientific Publishing Co. Pte. Ltd, Singapore 912805,1999.

26. R. Fikes, N, Nilsson, 1971: "STRIPS: A New Approach to the Application of

Theorem Proving to Problem Solving," Artificial Intelligence v.2 pp. 189-208.

27. ABB Robot Studio Web Page

http://www.a1bb.com/iproduct/seitp327/78fb236cae7e605dc 1256fl e002a892c.a

sgx, accessed January 23,2009.

140

http://www.a1bb.com/iproduct/seitp327/78fb236cae7e605dc

28. RoboCup Rescue Virtual Robot Competition Web Page

fato://www.robocuprescue.org/^

accessed January 23,2009.

29. M. Adams: Sensor Modelling, Design and Data Processing for Autonomous

Navigation, World Scientific Publishing Co, Pte. Ltd, Singapore 912805,1999.

30. W. J. Palm: Modeling Analysis and Control of Dynamic Systems, John Wiley

and Sons, Inc, New York, 2000.

31. E. Bonabeau, et. Ah, 1998: "Fixed Response Thresholds and the Division of

Labor in Insect Societies", Bulletin of Mathematical Biology, v.60 pp 753-807.

32. M. J. Krieger, J. B. Billeter, 2000: "The call of duty: Self-organized task

allocation in a population of up to twelve mobile robots," Robotics and

Autonomous Systems v.30 pp.65-84.

33. RoboCup Rescue Robot League Website

http://www.isd.mel.nist.gov/proiects/USAR/competitions.htm accessed

January 23,2009.

34. RoboCup Rescu Robo League Rules http://robotarenas.nist.gov/mles.htm

Accessed May 3,2009.

35. M. Conboy, C. Kaiser, W. Troxell, "A Variable Geometry Tracked Robot for

Urban Search and Rescue", Proceedings of Sharing Solutions for Hazardous

Environments, Salt Lake, UT, February 2006.

36. R. Murphy, 2004: "Human-Robot Interaction in Rescue Robotics" IEEE

Transactions on Systems, Man and Cybernetics - Part C: Applications and

Reviews, v.34, May 2004.

141

http://www.robocuprescue.org/%5e
http://www.isd.mel.nist.gov/proiects/USAR/competitions.htm
http://robotarenas.nist.gov/mles.htm

37. G. Calariore, F. Dabbene: Propabalistic and Randomized Methods for Design

Under Unvertainty, Springer-Verlag, London, 2006 .

38. "Writing S-runctions", Mathworks, inc. 1998.

39. Simulink User's Manual,

fatto://www.matfaworiaxQm/acce^

i?/aceess/helpdesk/help/toolbox/simiilinlk/ accessed May 3,2009.

40. Powersim Web Page http://www.powersim.com/ accessed February, 2006.

142

http://www.matfaworiaxQm/acce%5e
http://www.powersim.com/

Appendix A - Implementation and Code for the

Simulink Modeling Tools

This appendix contains the code necessary to replicate the Simulink blocks

used to ran simulations, Code from earlier sections is used in later sections.

A.1 - Simulink Implementation of a Stock

For thee purposes of this document, a stock is implemented by a Simulink S-

function and represented by the block shown in Figure 64. This block is built by

filling in the S-function dialog box as shown in Figure 65 and by implementing code

for "Stock.m" as shown below.

When used for predictive modeling, the initial value of the stock can be set by

the user by setting the dialog box as shown in Figure 66. This block can be used to

track multiple values at once, in which case the value of "Initial Value Vector can be

set as a vector using standard vector notation for Matlab. In this case, the input and

output will have vector values as well, with the output being the same dimension as

the input. This must also match the dimension of the initial value vector.

Stock
> >

Stock

Figure 64 - Stock

143

- S -Function — ~ — ^ ^

| User-definable block. Blocks may be written in M, C, Fortran or Ada and
i must conform to S -function standards. t,x,u and flag are automatically

passed to the S-function by Simulink. "Extra" parameters may be
I specified in the'S -function parameters' field.

r Parameters—-—

S-function name:

I Stock

S -function parameters:

XI

OK Cancel Help Apply

Figure 65 - S-Function Dialog Bos for a Stock

latoCGfc [PtFSMTOtefelffSS §6®dk

r Stock (mask)-—™———-—--—-——™„_^„^™_«„.™=^__._

I This block functions as a standard system dynamic stock. Multiple
\ independent quantities can be tracked using vector inputs and vector
I outputs. The initial values must be specified as a vector in the block
j interface window. The number of states tracked is dependent on the
i length of the initial value vector.

Parameters——-

Initial Value Vector

OK Cancel Apply

Figure 66 - Stock User Dialog Box for Setting the Initial Value

144

Figure 67 - Stock Mask Initialization

FUNCTION [SYS,XO,STR,TS] = STOCK(T,X,U,FLAG,XI)
%STOCK - A BLOCK FOR A SYSTEM DYNAMIC STOCK.
%VECTOR INPUTS ARE TREATED ELEMENTWISE AND OUTPUT
CONFIGURATION WILL MATCH INPUT CONFIGURATION
o,
"o
Q.

SWITCH FLAG,

g,Q.g.Q.Q.OO,aQ,Q.Q.Q.Q_aO.Q.OQ.
" O O O O O O O O O O ' Q ' O ' O O ' O O O ' O

% INITIALIZATION %
"5 ̂ 5 t> "o "5 "Q "5 o'6"o"6,6-6tj"o'o"o o

CASE 0 ,
[S Y S , X O , S T R , T S] = M D L I N I T I A L I Z E S I Z E S (U , X I) ;

'S'S'o'S'oo'oooo

% UPDATE %
9-9-9-5-9-9-9-S-9-9-"o t> "5 "o "o 0*0 o o o

CASE 2 ,
SYS=MDLUPDATE(T,X,U) ;

145

9-9-9-9-S-9-S-9.9-S-9-o ' o o o o o o ' o o o ' o

% OUTPUTS %
•Q'O'O'O'O'O'O'O o o"o

CASE 3 ,
SYS=MDLOUTPUTS(T,X,U)

% UNUSED FLAGS %
t> "o o "5 o o o"o o o o "o "5 "o o o

CASE { 1 , 4 , 9}
S Y S = [] ; %UNUSED FLAGS

% UNEXPECTED FLAGS %
o'o'o o o o o o'o'o o oo'o o'oo'oo o

OTHERWISE
ERROR(['UNHANDLED FLAG = ' ,NUM2STR(FLAG)]) ;

END

% END STOCK

% MDLINITIALIZESIZES
% RETURN THE S I Z E S , INITIAL CONDITIONS, AND SAMPLE TIMES FOR
THE S-FUNCTION.

FUNCTION [SYS,XO,STR,TS]=MDLINITIALIZESIZES(U,XI)

%INITIALIZATION OF S I Z E S . INPUTS, OUTPUTS, AND DISCRETE
STATES ARE SET TO THE INPUT WIDTH

LU = LENGTH(U);
LXI = LENGTH(XI);
% I F (LU > LXI)
% XI = [XI;ZEROS(LU - L X I , 1)] ;
% END

%SHOULD STILL ADD ERROR HANDLING HERE FOR CASE OF TOO LONG AN
XI
SIZES = SIMSIZES;
SIZES.NUMCONTSTATES = 0 ;
SIZES.NUMDISCSTATES = L X I ;

146

SIZES.NUMOUTPUTS = L X I ;
SIZES.NUMINPUTS = L X I ;
SIZES.DIRFEEDTHROUGH = 0 ;
S I Z E S . NUMSAMPLETIMES = 1 ; % AT LEAST ONE SAMPLE TIME I S
NEEDED

SYS = S I M S I Z E S (S I Z E S) ;

% INITIALIZE THE INITIAL CONDITIONS
o

X0 = X I ;
a
o

% STR I S ALWAYS AN EMPTY MATRIX

STR = [] ;

%
% INITIALIZE THE ARRAY OF SAMPLE TIMES
9-o

TS = [0 0] ;

% END MDLINITIALIZESIZES

% MDLDERIVATIVES
% RETURN THE DERIVATIVES FOR THE CONTINUOUS STATES,

% MDLUPDATE
% HANDLE DISCRETE STATE UPDATES, SAMPLE TIME H I T S , AND MAJOR
TIME STEP
% REQUIREMENTS.
g

FUNCTION SYS=MDLUPDATE(T,X,U)

SYS = X+U;

% END MDLUPDATE

% MDLOUTPUTS

% RETURN THE BLOCK OUTPUTS.
Q. „ , „ L

-g , „„

O

FUNCTION SYS=MDLOUTPUTS(T,X,U)

SYS = X;

% END MDLOUTPUTS

A.2 Simuiink Basic Functional Block Implementation

The basic functional block used throughout this dissertation is shown in

Figure 68.

MATLAB
Function

mfile

otOGK

Stock
Stock out

Flow out

Figure 68 - Basic Functional Block Implementation

148

A.3 SimuSink Uniform Random Number Generator

Implementation

The internal structure of the Uniform Random Number Generator is shown in

Figure 69. The Matiab function block uses the code shown below in

"uniformrandom.m". The mask initialization for this block is shown in Figure 70.

Random Number Gen

Max

Figure 69 - Uniform Random Number Generator Block Internal Structure

% UNI FORM__RANDOM. M
FUNCTION RESULT=UNIFORM_RANDOM{U)
%THIS IS BLOCK TO GENERATE A UNIFORM RANDOM NUMBER BETWEEN A
%MIN AND A MAX INPUT
%AUX1 = MIN
%AUX2 = MAX
MIN = U(l) ;
MAX = U(2) ;
RESULT = RANDOM("UNIFORM*,MIN,MAX,1,1);
%END UNIFORM RANDOM

149

Figure 7© - Uniform Random Number Generator Block Mask Initialization!

A.4 - Random Decision Making Block implementation

Figure 71 shows the internal structure of the random decision making block.

The Matlab function is implemented as shown in Figure 72. The code for the uniform

random function is given in A. 5 - Discrete Random Number Generation Block as it is

used in multiple locations. The mask for the random decision maker block is the

same as that in A3 - Simulink Uniform Random Number Generator.

150

Mm

Figure 71 - Internal Structure of a Random Decision Making Block

]®dk tPtfffinrodlMrss f ^ T I M ® IPCCOD

MATLAB Fcn= =™*=g

Pass the input values to a MATLAB function for evaluation. The function
must return a single value having the dimensions specified by 'Output \
dimensions' and 'Collapse 2-D results to 1 -D'. j
Examples: sin, sin(u], foo(u(1 L u{2j)]

Parameters ———-

MATLAB function:

|uniform_random(u)

Output dimensions:

j-n
Output signal type: fauto

W Collapse 2-D results to 1 -D

OK Cancel Help

Figure 72 - Random Decision Maker Function Dialog Box

151

E3;Kfa8fe E($jfi®(K S>^ f tM j I)p)» fe§ J t o e a c ^ a f f i d t e [

Icon Initialisation Documentation 1

Mask type:

Prompt

Prompt: j i f r u e

Variable:] percentjrue

Popup string? J

Initialization commands:

Type Variable

Control type:

Assignment:

1

JEdit

[Evaluate

;.*:!

d
d

Unmask Help Apply

Figure 73 - Random "Decision Maker Block Mask Parameter Set Up

A.5 - Discrete Random Number Generation Block

The internal structure of the discrete random number generator block is shown

in Figure 74. The matlab function block uses the code shown below for

"discrete_uniform_random.m". The mask initialization dialog is shown in Figure 75.

-C-
Num State*

n
H MATLAB

Function

Random Number Gen

Figure 74 - Discrete Uniform Random Number Generator Block Internal Structure

152

%DISCRETE_UNIFORM_RANDOM.M
FUNCTION RESULT=DISCRETE_UNIFORM_RANDOM(U)
%THIS IS BLOCK TO GENERATE A INTEGER UNIFORM RANDOM NUMBER
BETWEEN 0 AND THE
INUMBER OF STATES
IAUX1 = NUM_STATES
NUM_STATES = U(l) ;
RESULT = RANDOM('DISCRETE UNIFORM*,NUM_STATES,1,1);
%END UNIFORM RANDOM

Figure 75 - Discrete Uniform Random Block Mask Initialization

153

Appendix B - Code for Simulink Models

This appendix contains the equations and code for the framework mnodesl

from Chapter Four (or occasionally equivalent models). This code is a necessary part

of the models, but in some cases is not fully debugged due to the issues presented in

Chapter Five regarding the timing of the calculation of various blocks.

B,1 - Muramador Model

Note that the Actual Simulink Model for the Muramador that is used for simulations

in this Disseration is actually slightly different from the one shown in Figure 30 and

is shown below in Error! Reference source not found.. This model is substantially

the same as the one shown above with the exception that the basic modeling agent

had not yet been developed, but it does follow the framework.

I *
A u i l
A 1*2
AU&

jtALftl
> A u S

J A m ?
ALXO

DMCreafcnHjfej 1

HID'
Feature J V a l L A B

B a n d WaB End

De&dnaitn

A w

Atc6

AtttS
A t * *
AunT Source
Ausce

RsacSoruVv'slLSR

J Amis
>AuxK
>Aio f
" Aux8

ftopGrty_Oistsnos_A3

• 1
Procerty_DJ«tance

Aia2
Aux3

; Auffi

5 AlUff
) AtwS

-S igaa j g 3&fenc3_SS •

| Lb-JAux-
L ^ , Aux2

5ignaLCistaicaf

Ml

• Ami

• Am.3
3 A l M
3 AlOS
2 Au>8
: A J > ?

3 Alfl.8 r~*S *PI
Behsvfcr.WalLSR

Am6

Aux5
S f t l i *
i AUJCT Source
1 AuaB

iTformatbrOVatLSff

}
,&*H_]

I SirfeS

SaharforJtoWal

B*havior_ ,JoV/fiILSR

Raid am

Rand_WaB_Rnd J J J K J

Ata2
Au)6
Auxi
AtJ)C»
Attt6

xAuxT Sotnce m Raactfoh-NoWatl

I

watte* LLj
I 1 ;

.605 P :

Au*1
Aax2
Au*3 J

Auwi
AUX5

Aax6
Aux7 Source —*ei

ActioiJA'aS

h A m i

A m i

AJJS

3 ALKS tea
AQtic.-uNoWt.il

PeoolJon_NoW6lLeR .\otion_WalLSR AeBofLWcWaLSR

Figure 76 - Muramador Framework Model without Basic Modeling Agent

%MURA_ACTION_NOWALL_SR.M
FUNCTION RESULT=MURA_ACTION_NOWALL_SR(U)
%CONTROL CODE FOR THE NOWALL ACTION BLOCK
%AUX1 = ACTION NOWALL

154

http://AQtic.-uNoWt.il
file:///otion_WalLSR

% 1 = LOOKING FOR A NEW WALL
% 0 = NOT LOOKING FOR A NEW WALL
%AUX2 = BEHAVIOR_NOWALL
%AUX3 = RAND_WALL_FIND
ACTION_NOWALL = U(l);
BEHAVIOR_NOWALL = U(2);
RESULT = BEHAVIOR_NOWALL - ACTIONJSIOWALL;
%END MURA_ACTION_NOWALL_SR.M

%MURA_ACTION_WALL_SR.M
FUNCTION RESULT=MURA_ACTION_WALL_SR (U)
ICONTROL CODE FOR THE WALL ACTION BLOCK
%AUX1 = ACTION_WALL
% DISTANCE ROBOT TRIES TO MOVE
%AUX2 = BEHAVIOR_WALL
%AUX3 = WALL_SP
%AUX4 = KP
%AUX5 = SIGNAL_DISTANCE
ACTION_WALL = U(l);
BEHAVIOR_WALL = U(2);
WALL_SP = U{3);
KP = U{4);
SIGNAL_DISTANCE - U(5);
I F BEHAVIORJXTALL == 1

IF SIGNAL_DISTANCE <= WALL_SP
RESULT = (SIGNAL_DISTANCE - WALL_SP)*KP - ACTION_WALL;

ELSE
RESULT = -(SIGNAL_DISTANCE - WALL_SP)*KP

ACTION_WALL;
END

ELSE
RESULT = -ACTION_WALL;

END
%END MURA ACTION WALL SR.M

%MURA_BEHAVIOR_NOWALL_SR.M
FUNCTION RESULT=MURA_BEHAVIOR_NOWALL_SR(U)
%CONTROL CODE FOR THE NO WALL BEHAVIOR BLOCK
%AUX1 = NOWALL_BEHAVIOR
% 0 = INACTIVE
% 1 = ACTIVE
%AUX2 = INFORMATION_WALL
NOWALL_BEHAVIOR = U(l);
INFORMATION_WALL = U(2);
IF INFORMATION_WALL == 1

RESULT = 0 - NOWALL_BEHAVIOR;
ELSE

RESULT = 1 - N0WALL_BEHAVIOR;
END
%END MURA_NOWALL_BEHAVIOR_SR

%MURA BEHAVIOR WALL SR.M

155

FUNCTION RESULT=MURA_BEHAVIOR_WALL_SR(U)
%CONTROL CODE FOR THE WALL BEHAVIOR BLOCK
%AUX1 = WALL_BEHAVIOR
% 0 = INACTIVE
% 1 = ACTIVE
%AUX2 = INFORMATlON_WALL
WALL_BEHAVIOR = U(l);
INFORMATION_WALL = U(2);
RESULT = INFORMATIONJSALL - WALL_BEHAVIOR
%END MURA WALL BEHAVIOR SR

%MURA_FEATURE_WALL_AD.M
FUNCTION RESULT=MURA_FEATURE_WALL_AD(U)
%CONTROL CODE FOR THE WALL FEATURE
%AUX1 = FEATURE__WALL
% 1 = WALL
% 0 = NO WALL
%AUX2 = RAND_WALL_END
%AUX3 = REACTION_NOWALL
FEATURE_WALL = U(1);
RAND_WALL_END = U(2);
REACTION_NOWALL = U(3);
IF ((FEATURE_WALL == 1) & (RAND_WALL_END ==1))

RESULT = -1;
ELSEIF ((FEATURE_WALL == 0) & (REACTION__NOWALL == 1))

RESULT = 1;
ELSE

RESULT = 0;
END
%END MURA_FEATURE_WALL_AD

%MURA_INFORMATION_WALL_SR.M
FUNCTION RESULT=MURA_INFORMATION_WALL_SR(U)
%CONTROL CODE FOR THE WALL INFORMATION BLOCK
%AUX1 = INFORMATION__WALL
% 0 = NO WALL
% 1 = WALL
%AUX2 = SIGNAL_DISTANCE
%AUX3 = MAX_RANGE
INFORMATION_WALL = U(l);
SIGNAL_DISTANCE = U(2);
MAX_RANGE = U(3);
IF (SIGNAL_DISTANCE ~= MAX_RANGE);

RESULT = 1 - INFORMATION_WALL;
ELSE

RESULT = 0 - INFORMATION_WALL;
END
%END MURA_SIGNAL_DISTANCE_SR

%MURA_PROPERTY_DISTANCE_AD.M
FUNCTION RESULT=MURA_PROPERTY_DISTANCE_AD(U)
%CONTROL CODE FOR THE DISTANCE PROPERTY

156

%AUX1 == PROPERTY_DI STANCE
%AUX2 = FEATURE_WALL
%AUX3 = REACTION_WALL
%AUX4 = REACTION_NOWALL
PROPERTY_DISTANCE = U(l);
FEATURE_WALL = U(2) ;
R E A C T I O N J A I A L L = U (3) ;

REACTION_NOWALL = U(4);
IF REACTION_NOWALL == 1 & FEATURE_WALL ~= 0

RESULT = 24.9 - PROPERTY_DISTANCE
ELSE

IF (FEATURE_WALL == 1);
RESULT = REACTION_WALL;

ELSE
RESULT = -PROPERTY_DISTANCE

END
END
%END MURA PROPERTY DISTANCE AD

%MURA_REACTION_NOWALL_SR.M
FUNCTION RESULT=MURA_REACTION__NOWALL_SR (U)
%CONTROL CODE FOR THE NOWALL REACTION BLOCK
%AUX1 = REACTION_NOWALL
% 1 = FOUND NEW WALL
% 0 = NO NEW WALL
%AUX2 = ACTION_NOWALL
%AUX3 = RAND_WALL__FIND
REACTION_NOWALL = U(l);
ACTION_NOWALL = U(2);
RAND_WALL_FIND = U(3);
IF RAND_WALL_FIND == 1 & ACTION_NOWALL == 1

RESULT = 1 - REACTION_NOWALL;
ELSE

RESULT = -REACTION_NOWALL;
END
%END MURA REACTION NOWALL SR.M

%MURA_REACTION_WALL_SR.M
FUNCTION RESULT=MURA_REACTION_WALL_SR(U)
%CONTROL CODE FOR THE WALL REACTION BLOCK
IAUX1 = REACTION_WALL
% DISTANCE ROBOT ACTUALLY MOVES
%AUX2 = ACTION_WALL
REACTION_WALL = U(l);
ACTION_WALL = U(2);
RESULT = ACTION_WALL - REACTION_WALL;
%END MURA_REACTION_WALL_SR.M

%MURA_SIGNAL_DISTANCE_SR.M
FUNCTION RESULT=MURA_SIGNAL_DISTANCE_SR(U)
ICONTROL CODE FOR THE DISTANCE SIGNAL
%AUX1 = SIGNAL DISTANCE

157

%AUX2 = PROPERTY_DISTANCE
%AUX3 = MAX_RANGE
SIGNAL_DISTANCE = U(l);
PROPERTY_DISTANCE = U(2);
MAX_RANGE = U(3);
IF (PROPERTY_DISTANCE ~= 0);

RESULT = PROPERTY_DISTANCE - SIGNALJDISTANCE;
ELSE

RESULT = -SIGNAL_DISTANCE + MAX_RANGE;
END
%END MURA_SIGNAL_DISTANCE_SR

B.2 - Multi-Agent Foraging Model

%FORAGE_ATTRIBUTE_ENERGY.M
FUNCTION RESULT=FORAGE_ATTRIBUTE_ENERGY(U)
%AUX8 = FEEDBACK FROM STOCK
%AUX1 = ENERGY FOUND
%AUX2 = BEHAVE FORAGING
ENERGY_FOUND = U(1);
BEHAVE_FORAGING = U(2);
STOCK = U(8) ;
IF BEHAVE_FORAGING == 1

RESULT = ENERGY_FOUND - STOCK;
ELSE

RESULT = 0;
END
%END FORAGE ATTRIBUTE ENERGY

%FORAGE_BEHAVE_ARRIVE_NEST.M
FUNCTION RESULT=FORAGE_BEHAVE_ARRIVE_NEST(U)
%AUX8 = FEEDBACK FROM STOCK
%AUX1 = INFO AT NEST
%AUX2 = BEHAVE RETURNING
INFO_AT_NEST = U(l);
BEHAVE_RETURNING = U(2);
STOCK = U(8);
IF BEHAVE_RETURNING == 1 && INFO_AT_NEST == 1

RESULT = 1;
ELSE

RESUTL = -STOCK;
END
%END FORAGE BEHAVE ARRIVE NEST

% FORAGE_BEHAVE_ENV_ENERGY_ON_BOARD.M
FUNCTION RESULT=BEHAVE_ENV_ENERGY_ON_BOARD(U)
%AUX8 = FEEDBACK FROM STOCK
%AUX1 = FEATURE ENERGY ON BOARD
ENERGY_ON_BOARD = U(1);
STOCK = U(8);
RESULT = ENERGY ON BOARD - STOCK;

158

%END FORAGE_BEHAVE_ENV_ENERGY_ON_BOARD

% FORAGE_BEHAVE_ENV_FORAGING.M
FUNCTION RESULT=FORAGE_BEHAVE_ENV_FORAGING(U)
%AUX8 = FEEDBACK FROM STOCK
%AUX1 = FEATURE FORAGING
FEATURE_FORAGING = U(l);
STOCK = U(8) ;
RESULT = FEATURE_FORAGING - STOCK;
%END FORAGE__BEHAVE_ENV_FORAGING

% FORAGE_PROPERTY_NEST_ENERGY.M
FUNCTION RESULT=FORAGE_PROPERTY_NEST_ENERGY(U)
%AUX8 = FEEDBACK FROM STOCK
%AUX1 = RECHARGE SCALER
%AUX2 =' AGENT USE
%AUX3 = NATIVE USE
RECHARGE_SCALER = U(l);
AGENT_USE = U(2) ;
NATIVE_USE = U(3);
STOCK = U(8);
RESULT = FEATURE_RETURNING *- STOCK;
%END FORAGE PROPERTY NEST ENERGY

% FORAGE_BEHAVE_FORAGING.M
FUNCTION RESULT=FORAGE_BEHAVE_FORAGING(U)
%AUX8 = FEEDBACK FROM STOCK
%AUX1 = BEHAVE LEAVE NEST
%AUX2 = BEHAVE FOUND
BEHAVE_LEAVE__NEST = U(l);
BEHAVE_FOUND = U(2);
STOCK = U(8);
IF BEHAVE_LEAVE_NEST == 1

RESULT = 1;
ELSEIF BEHAVE FOUND == 1

RESULT = -1;
ELSE

RESULT = 0;
END
%END FORAGE BEHAVE FORAGING

% FORAGE_BEHAVE_FOUND.M
FUNCTION RESULT=FORAGE_BEHAVE_FOUND(U)
%AUX8 = FEEDBACK FROM STOCK
%AUX1 = BEHAVE FORAGING
%AUX2 = INFO ENERGY
BEHAVE_FORAGING = U(l);
INFO_ENERGY = U(2);
STOCK = U(8);
IF BEHAVE_FORAGING == 1 && INFO_ENERGY == 1

RESULT = 1 - STOCK;
ELSE

159

RESULT = 0 - STOCK;
END
%END FORAGE_BEHAVE_FOUND

% FORAGE_BEHAVE_LEAVE_NEST.M
FUNCTION RESULT=FORAGE_BEHAVE__LEAVE_NEST (U)
%AUX8 = FEEDBACK FROM STOCK
%AUX1 = INFO SUFFICIENT ENERGY
%AUX2 = INFO AT NEST
INFO_SUFFICIENT_ENERGY = U(l);
INFO_AT_NEST = U{2);
STOCK = U(8);
IF INFO_SUFFICIENT_ENERGY == 0 && INFO_AT_NEST == 1

RESULT = 1 - STOCK;
ELSE

RESULT = -STOCK;
END
%END FORAGE BEHAVE LEAVE NEST

% FORAGE_BEHAVE_RETURNING.M
FUNCTION RESULT=FORAGE_BEHAVE__RETURNING (U)
%AUX8 = FEEDBACK FROM STOCK
%AUX1 = BEHAVE FOUND
%AUX2 = BEHAVE ARRIVE NEST
%AUX3 = INFO SUFFICIENT ENERGY
%AUX4 = BEHAVE FORAGING
BEHAVE_FOUND = U (1) ;
BEHAVE_ARRIVE_NEST = U(2);
INFO_SUFFICIENT_ENERGY = U(3);
BEHAVE_FORAGING = U(4);
STOCK = U(8);
IF (BEHAVE_FOUND == 1 | INFO_SUFFICIENT_ENERGY == 0) && BEHAVE
FORAGING == 1

RESULT = 1;
ELSEIF BEHAVE_ARRIVE_NEST == 1

RESULT = -1;
ELSE

RESULT = 0;
END
%END FORAGE BEHAVE RETURNING

% FORAGE_BEHAVE_STAY_IN_NEST.M
FUNCTION RESULT=FORAGE_BEHAVE__STAY_IN_NEST (U)
%AUX8 = FEEDBACK FROM STOCK
%AUX1 = INFO SUFFICIENT ENERGY
INFO_SUFFICIENT_ENERGY = U(l);
STOCK = U(8);
RESULT = INFO_SUFFICIENT_ENERGY - STOCK;
%END FORAGE BEHAVE STAY IN NEST

% FORAGE_FEATURE_ENERGY_MODULE.M
FUNCTION RESULT=BEHAVE FEATURE ENERGY MODULE(U)

160

%AUX8 = FEEDBACK FROM STOCK
%AUX1 = RANDOM DECISION
RANDOM = U(l);
STOCK = U(8);
RESULT = RANDOM - STOCK;
%END FORAGE FEATURE ENERGY MODULE

% FORAGE_FEATURE_ENERGY_ON_BOARD.M
FUNCTION RESULT=FORAGE_FEATURE_ENERGY_ON_BOARD(U)
%AUX8 = FEEDBACK FROM STOCK
%AUX1 = BEHAVE FOUND
%AUX2 = BEHAVE ARRIVE NEST
BEHAVE_FOUND = U(1);
BEHAVE_ARRIVE_NEST = U(2);
STOCK = U{8);
IF BEHAVE_ARRIVE_NEST == 1,

RESULT = -STOCK;
ELSEIF BEHAVE_FOUND == 1

RESULT = 1;
ELSE

RESULT = 0;
END
%END FORAGE FEATURE ENERGY ON BOARD

% FORAGE_FEATURE_FORAGING.M
FUNCTION RESULT=FORAGE_FEATURE_FORAGING(U)
%AUX8 = FEEDBACK FROM STOCK
%AUX1 = BEHAVE FORAGING
BEHAVE_FORAGING = U(l);
STOCK = U(8);
RESULT = BEHAVE_FORAGING - STOCK;
%END FORAGE FEATURE FORAGING

%FORAGE_FEATURE_IN_NEST.M
FUNCTION RESULT=FORAGE_FEATURE_IN_NEST(U)
%AUX8 = FEEDBACK FROM STOCK
%AUX1 = FEATURE_AT_NEST
FEATURE_AT_NEST = U(1);
STOCK = U(8);
RESULT = FEATURE_AT_NEST - STOCK;
%END FORAGE_FEATURE_IN_NEST

% FORAGE_FEATURE_RETURNING.M
FUNCTION RESULT=FORAGE_FEATURE_RETURNING(U)
%AUX8 = FEEDBACK FROM STOCK
%AUX1 = BEHAVE RETURNING
BEHAVE_RETURNING = U(l);
STOCK = U(8);
RESULT = BEHAVE_RETURNING - STOCK;
%END FORAGE FEATURE RETURNING

% FORAGE__INFO_AT_NEST. M

161

FUNCTION RESULT=FQRAGE_INFO_AT_NEST(U)
%AUX8 = FEEDBACK FROM STOCK
%AUX1 = SIGNAL NEST DISTANCE
SIGNAL_NEST_DISTANCE = U(l);
STOCK = U(8);
IF SIGNAL_NEST_DISTANCE == 0

RESULT = 1 - STOCK;
ELSE

RESULT = -STOCK;
END
%END FORAGE INFO AT NEST

%FORAGE_INFO_ENERGY.M
FUNCTION RESULT=FORAGE_INFO_ENERGY(U)
%AUX8 = FEEDBACK FROM STOCK
%AUX1 = ATTRIBUTE ENERGY PRESENT
%AUX2 = BEHAVE FORAGING
ATTRIBUTE_ENERGY_PRESENT = U(l);
BEHAVE_FORAGING = U(2);
STOCK = U(8);
IF BEHAVE_FORAGING == 1

RESULT = ATTRIBUTE_ENERGY_PRESENT;
ELSE

RESUTL = 0;
END
%END FORAGE INFO ENERGY

% FORAGE_INFO_IN_NEST.M
FUNCTION RESULT=FORAGE_INFO_IN_NEST(U)
%AUX8 = FEEDBACK FROM STOCK
%AUX1 = FEATURE IN NEST
FEATURE_IN_NEST = U(l);
STOCK = U(8);
RESULT = FEATURE_IN_NEST - STOCK;
%END FORAGE INFO IN NEST

%FORAGE_INFO_SUFFICIENT_AGENT_ENERGY.M
FUNCTION RESULT=INFO__SUFFICIENT_AGENT_ENERGY (U)
%AUX8 = FEEDBACK FROM STOCK
%AUX1 = SIGNAL AGENT ENERGY
%AUX2 = ENERGY MINIMUM
SIGNAL_AGENT_ENERGY = U(l);
ENERGY_MINIMUM = U(2);
STOCK = U(8);
IF SIGNAL_AGENT_ENERGY < ENERGY_MINIMUM

RESULT = 0;
ELSE

RESULT = 1 - STOCK;
END
%END FORAGE INFO SUFFICIENT AGENT ENERGY

%FORAGE_INFO_SUFFICIENT_ENERGY.M

162

FUNCTION RESULT=FORAGE_INFO_SUFFICIENT_ENERGY(U)
%AUX8 = FEEDBACK FROM STOCK
%AUX1 = SIGNAL NEST ENERGY
%AUX2 = ENERGYJTHRESHOLD
SIGNAL_NEST_ENERGY = U(l);
ENERGY_THRESHOLD = U(2);
STOCK = U(8);
IF SIGNAL_NEST_ENERGY >= ENERGY_THRESHOLD

RESULT = 1 - STOCK;
ELSE

RESULT = 0 - STOCK;
END
%END FORAGE INFO SUFFICIENT ENERGY

% FORAGE_PROPERTY_AGENT_ENERGY.M
FUNCTION RESULT=FORAGE_PROPERTY__AGENT_ENERGY (U)
%AUX8 = FEEDBACK FROM STOCK
%AUX1 = ENERGY USE RATE
%AUX2 = BEHAVE FORAGING
%AUX3 = BEHAVE RETURNING
%AUX4 = BEHAVE ARRIVE NEST
ENERGY_USE__RATE = U(l);
BEHAVE_FORAGING = U(2);
BEHAVE_RETURNING = U(3);
BEHAVE_ARRIVE_NEST = U(4);
STOCK = U(8);
IF BEHAVE_ARRIVE_NEST == 1

RETULT = 100 - STOCK;
ELSE

RESULT = (1 + BEHAVE_FORAGING + BEHAVE_RETURNING) *
ENERGY_USE__RATE
END
%END FORAGE PROPERTY AGENT ENERGY

%FORAGE_PROPERTY_NEST_DISTANCE.M
FUNCTION RESULT=BEHAVE_PROPERTY_NEST_DISTANCE(U)
%AUX8 = FEEDBACK FROM STOCK
IAUX1 = MOVEMENT RANDOMIZATION
%AUX2 = INFO FORAGING
%AUX3 = INFO RETURNING
MOVEMENT_RAND = U(l);
INFO_FORAGING = U{2);
INFO_RETURNING = U(3);
STOCK = U(8);
IF INFO_FORAGING == 1

RESULT = MOVEMENT_RAND;
ELSEIF INFO_RETURNING == 1

RESULT = - 1;
ELSE

RESULT = 0;
END
%END FORAGE PROPERTY NEST DISTANCE

163

%FORAGE_SIGNAL_AGENT_ENERGY.M
FUNCTION RESULT=FORAGE_SIGNAL_AGENT_ENERGY(U)
%AUX8 = FEEDBACK FROM STOCK
%AUX1 = PROPERTY AGENT ENERGY
PROPERTY_AGENT_ENERGY - U(l);
STOCK = U(8);
RESULT = PROPERTY_AGENT_ENERGY - STOCK;
%END FORAGE SIGNAL AGENT ENERGY

% FORAGE_SIGNAL_ENV_AGENT_ENERGY.M
FUNCTION RESULT=FORAGE_SIGNAL_ENV_AGENT_ENERGY(U)
%AUX8 = FEEDBACK FROM STOCK
%AUX1 = PROPERTY AGENT ENERGY
PROPERTY_AGENT_ENERGY = U(1);
STOCK = U(8);
RESULT = PROPERTY_AGENT_ENERGY - STOCK;
%END FORAGE_SIGNAL_ENV_AGENT_ENERGY

% FORAGE_SIGNAL_NE S T_DIS TANCE.M
FUNCTION RESULT=FORAGE_SIGNAL_NEST_DISTANCE(U)
%AUX8 = FEEDBACK FROM STOCK
%AUX1 = PROPERTY_NEST_DISTANCE
PROPERTY_NEST_DISTANCE = U(l);
STOCK = U(8);
RESULT = PROPERTY_NEST_DISTANCE - STOCK;
%END FORAGE SIGNAL NEST DISTANCE

% FORAGE_SIGNAL_NEST_ENERGY.M
FUNCTION RESULT=FORAGE_SIGNAL_NEST_ENERGY(U)
%AUX8 = FEEDBACK FROM STOCK
%AUX1 = ATTRIBUTE_STATE
PROPERTY_NEST_ENERGY= U(1);
STOCK = U(8);
RESULT = PROPERTY_NEST_ENERGY - STOCK;
%END FORAGE_SIGNAL_NEST_ENERGY

%FORAGE_SIGNAL_USE_NEST_ENERGY.M
FUNCTION RESULT=FORAGE_SIGNAL_USE_NEST_ENERGY(U)
%AUX8 = FEEDBACK FROM STOCK
%AUX1 = INFO IN NEST
%AUX2 = PROPERTY AGENT ENERGY
INFO_IN_NEST = U(l);
PROPERTY_AGENT_ENERGY = U(2);
STOCK = U{8);
IF INFO_IN_NEST == 1

RESULT = 100 - PROPERTY_AGENT_ENERGY - STOCK
ELSE

RESULT = -STOCK;
END
%END FORAGE SIGNAL USE NEST ENERGY

164

B.3-GSVD Model

%GSVD_ATTRIBUTE_MOTION„M
FUNCTION RESULT=GSVD_ATTRIBUTE_MOTlON(U)
%AUX8 = FEEDBACK FROM STOCK
%AUX1 = ATTRIBUTE_STATE
ATTRIBUTE_STATE= U(l);
STOCK = U(8);
IF ATTRIBUTE_STATE ===== 0 | ATTRIBUTE__STATE == 1

RESULT = 0 - STOCK;
ELSEIF ATTRIBUTE_STATE === 2

RESULT = 1 - STOCK;
ELSE

RESULT = 2 - STOCK;
END
%END GSVD ATTRIBUTE MOTION

%GSVD_ATTRIBUTE_SOUND.M
FUNCTION RESULT=GSVD_ATTRIBUTE_SOUND(U)
%AUX8 = FEEDBACK FROM STOCK
%AUX1 = ATTRIBUTE_STATE
ATTRIBUTE_STATE= U(l);
STOCK = U(8);
IF ATTRIBUTE_STATE ===== 0 | ATTRIBUTE_STATE ===== 1

RESULT = 0 - STOCK;
ELSEIF ATTRIBUTE_STATE == 2

RESULT == 1 - STOCK;
ELSE

RESULT = 2 - STOCK;
END
%END GSVD ATTRIBUTE SOUND

%GSVD_ATTRIBUTE_STATE.M
FUNCTION RESULT=GSVD_ATTRIBUTE_STATE(U)
%AUX8 = FEEDBACK FROM STOCK
%AUX1 = FEATURE_VICTIM
%AUX2 = RANDOM
FEATURE__VI CT IM== U (1) ;
RANDOM = U(2);
STOCK = U(8);
IF FEATURE_VICTIM ~= 0

RESULT ===== RANDOM - STOCK;
ELSE

RESULT = 0 - STOCK;
END
%END GSVD_ATTRIBUTE_STATE

%GSVD_BEHAVE_FOUND.M
FUNCTION RESULT=GSVD_BEHAVE_FOUND(U)
%AUX8 == FEEDBACK FROM STOCK
%AUX1 = INFO VICTIM

165

INFO_VICTIM = U(l);
STOCK = U(8);
RESULT = INFO_VICTIM - STOCK;
%END GSVD_BEHAVE__FOUND

%GSVD_BEHAVE_FOUND_CORRECT.M
FUNCTION RESULT=GSVD_BEHAVE_FOUND_CORRECT(U)
%AUX8 = FEEDBACK FROM STOCK
%AUX1 = INFO_FIND
%AUX2 = FEATURE_VICTIM
INFO_FIND = U(l);
FEATURE_VICTIM = U(2);
STOCK = U(8) ;
IF (INFO_FIND == 1) & (FEATURE_VICTIM == 1)

RESULT = 1 - STOCK;
ELSE

RESULT = 0 - STOCK;
END
%END GSVD BEHAVE FOUND CORRECT

%GSVD_BEHAVE_FOUND_WRONG.M
FUNCTION RESULT=GSVD_BEHAVE_FOUND_WRONG(U)
%AUX8 = FEEDBACK FROM STOCK
%AUX1 = INFO_FIND
%AUX2 = FEATURE_VICTIM
INFO_FIND = U(l);
FEATURE_VICTIM = U(2);
STOCK = U(8);
IF INFO_FIND == 1 & FEATUREJVICTIM == 0

RESULT = 1 - STOCK;
ELSE

RESULT = 0 - STOCKM
EN D
%END GSVD_BEHAVE_FOUND_WRONG

%GSVD_BEHAVE_MISSED.M
FUNCTION RESULT=GSVD_BEHAVE_MISSED(U)
%AUX8 = FEEDBACK FROM STOCK
%AUX1 = INFO_FIND
%AUX2 = FEATURE_VICTIM
INFO_FIND = U(l);
FEATURE_VICTIM = U(2);
STOCK = U(8);
IF INFO_FIND == 0 & FEATURE_VICTIM == 1

RESULT = 1 - STOCK;
ELSE

RESULT = 0 - STOCK;
END
%END GSVD BEHAVE MISSED

%GSVD_BEHAVE_RESEARCH.M
FUNCTION RESULT=GSVD BEHAVE RESEARCH(U)

166

%AUX8 = FEEDBACK FROM STOCK
%AUX1 = INFO_UNEXPLORED_TERRAIN
INFO_UNEXPLORED_TERRAIN = U(l);
STOCK = U(8);
RESULT = 1 - INFO_UNEXPLORED_TERRAIN - STOCK;
%END GSVD_BEHAVE_RESEARCH

%GSVDJBEHAVE_RESET_TERRAIN.M
FUNCTION RESULT=GSVD_BEHAVE_RESET_TERRAIN(U)
%AUX8 = FEEDBACK FROM STOCK
%AUX1 = INFO_RESET
INFO_RESET = U(l);
STOCK = U(8);
RESULT = INFOJRESET - STOCK;
%END GSVD BEHAVE RESET TERRAIN

%GSVDJ3EHAVE_SEARCH.M
FUNCTION RESULT=GSVD_BEHAVE_SEARCH(U)
%AUX8 = FEEDBACK FROM STOCK
%AUX1 = INFO_VICTIM
INFO_VICTIM = U(l) ;
STOCK = U(8) ;
RESULT = 1 - INFO__VICTIM - STOCK;
%END GSVD BEHAVE SEARCH

%GSVD_FEATURE_C02,M
FUNCTION RESULT=GSVD_FEATURE_C02(U)
%AUX8 = FEEDBACK FROM STOCK
%AUX1 = ATTRIBUTEJSTATE
ATTRIBUTE_STATE= U(l);
STOCK = U(8);
IF ATTRIBUTE_STATE ~= 0

RESULT = 1 - STOCK;
ELSE

RESULT = 0 - STOCK;
END
%END GSVD FEATURE C02

%GSVD_FEATURE_EXPLORING.M
FUNCTION RESULT=GSVD_FEATURE_EXPLORING(U)
%AUX8 = FEEDBACK FROM STOCK
%AUX1 = BEHAVE_SEARCH
BEHAVE_SEARCH = U(l);
STOCK = U(8);
RESULT = BEHAVE_SEARCH - STOCK;
%END GSVD_FEATURE__EXPLORING

%GSVD_FEATURE_FIND.M
FUNCTION RESULT=GSVD_FEATURE_FIND(U)
%AUX8 = FEEDBACK FROM STOCK
%AUX1 = BEHAVE_FOUND
BEHAVE FOUND = U(l);

167

STOCK = U(8);
RESULT = BEHAVE_FOUND - STOCK;
%END GSVD_FEATURE_FIND

%GSVD_FEATURE_FORM.M
FUNCTION RESULT=GSVD_FEATURE_FORM(U)
%AUX8 = FEEDBACK FROM STOCK
%AUX1 = ATTRIBUTE_STATE
ATTRIBUTE_STATE= U(l);
STOCK = U(8);
IF ATTRIBUTE_STATE ~= 0

RESULT = 1 - STOCK;
ELSE

RESULT = 0 - STOCK;
END
%END GSVD FEATURE FORM

%GSVD_FEATURE_HEAT.M
FUNCTION RESULT=GSVD_FEATURE_HEAT(U)
%AUX8 = FEEDBACK FROM STOCK
%AUX1 = ATTRIBUTE_STATE
ATTRIBUTE_STATE= U(l);
STOCK = U(8);
IF ATTRIBUTE_STATE ~= 0

RESULT = 1 - STOCK;
ELSE

RESULT = 0 - STOCK;
END
%END GSVD FEATURE HEAT

%GSVD_FEATURE_HEAT„M
FUNCTION RESULT=GSVD_FEATURE_HEAT(U)
%AUX8 = FEEDBACK FROM STOCK
%AUX1 = ATTRIBUTE_STATE
ATTRIBUTE_STATE= U(l);
STOCK = U(8);
IF ATTRIBUTE'STATE ~= 0

RESULT = 1 - STOCK;
ELSE

RESULT = 0 - STOCK;
END
%END GSVD FEATURE HEAT

%GSVD_FEATURE_RESEARCH.M
FUNCTION RESULT=GSVD_FEATURE_RESEARCH(U)
%AUX8 = FEEDBACK FROM STOCK
%AUX1 = BEHAVE_RESEARCH
BEHAVE_RESEARCH = U(l);
STOCK = U(8)}
RESULT = BEHAVE_RESEARCH - STOCK;
%END GSVD FEATURE RESEARCH

168

%GSVD_FEATURE_UNEXPLORED_TER.M
FUNCTION RESULT=GSVD_FEATURE_UNEXPLORED_TER(U)
%AUX8 = FEEDBACK FROM STOCK
%AUX1 = PROPERTY_UNEXPLORED_TERRAIN
UNEXPLORED_TERRAIN = U(l);
THRESHOLD = U(2);
STOCK = U(8);
IF UNEXPLOREDJTERRAIN < THRESHOLD

RESULT = 0 - STOCK;
ELSE

RESULT = 1 - STOCK;
END
%END GSVD FEATURE UNEXPLORED TER.M

%GSVD_FEATURE_UNEXPLORED_TERRAIN.M
FUNCTION RESULT=GSVD_FEATURE_UNEXPLORED_TERRAIN(U)
%AUX8 = FEEDBACK FROM STOCK
%AUX1 = PROPERTY_UNEXPLORED_TERRAIN
UNEXPLORED_TERRAIN = U(l);
THRESHOLD = U(2);
STOCK = U(8);
IF UNEXPLORED_TERRAIN < THRESHOLD

RESULT = 0 - STOCK;
ELSE

RESULT = 1 - STOCK;
END
%END GSVD_FEATURE_UNEXPLORED_TERRAIN

%MURA_SIGNAL_DISTANCE_SR.M
FUNCTION RESULT=GSVD_FEATURE_VICTIM(U)
%AUX8 = FEEDBACK FROM STOCK
%AUX1 = REMAINING VICTIM DENSITY
%AUX2 = TERRAIN EXPLORATION RATE
%AUX3 = RANDOM NUMBER GENERATOR
VICTIM_DENSITY = U(l);
EXPLORATION_RATE = U(2);
RAND = U(3);
STOCK = U(8);
IF (VICTIM_DENSITY * EXPLORATION_RATE) > RAND;

RESULT = 1 - STOCK;
ELSE

RESULT = 0 - STOCK;
END
%END GSVD SIGNAL DISTANCE SR

%GSVD_INFO_C02.M
FUNCTION RESULT=GSVD_INFO_C02(U)
%AUX8 = FEEDBACK FROM STOCK
%AUX1 = INFO_C02
INFO_C02 = U(l);
STOCK = U(8);
RESULT = INFO C02 - STOCK;

169 j

%END GSVD INFO C02

%GSVD_INFO_FIND.M
FUNCTION RESULT=GSVD_INFO_FIND(U)
%AUX8 = FEEDBACK FROM STOCK
%AUX1 = FEATURE_FIND
FEATURE_FIND = 0(1);
STOCK = 0(8) ;
RESULT = FEATURE_FIND - STOCK;
%END GSVD INFO FIND

%GSVD_INFO_FORM.M
FUNCTION RESULT=GSVD_INFO_FORM(U)
%AUX8 = FEEDBACK FROM STOCK
%AUX1 = INFO_FORM
INFO_FORM = 0(1) ;
STOCK = 0(8) ;
RESULT = INFO_FORM - STOCK;
%END GSVD INFO FORM

%GSVD_INFO_HEAT. M
FUNCTION RESULT=GSVD_INFO_HEAT(U)
%AUX8 = FEEDBACK FROM STOCK
%AUX1 = INFO_HEAT
INFO_HEAT = 0(1) ;
STOCK = 0(8);
RESOLT = INF0J3EAT - STOCK;
%END GSVD INFO HEAT

%GSVD_INFO_MOTION.M
FUNCTION RESULT=GSVD_INFO_MOTION(U)
%AUX8 = FEEDBACK FROM STOCK
%A0X1 = INFO_SO0ND
INFO_MOTION = 0(1);
STOCK = 0(8);
RESOLT = INFO_MOTION - STOCK;
%END GSVD_INFO_M0TI0N

%GSVD_INFO__RESEARCH. M
FONCTION RESOLT=GSVD_INFO_RESEARCH(0)
%A0X8 = FEEDBACK FROM STOCK
%A0X1 = FEATORE_RESEARCH
FEATORE_RESEARCH = 0(1);
STOCK = 0(8);
RESOLT = FEATORE_RESEARCH - STOCK;
%END GSVD INFO RESEARCH

%GSVD_INFO_MOTION.M
FONCTION RESULT=GSVD_INFO_SOUND(U)
%A0X8 = FEEDBACK FROM STOCK
%AUX1 = INFO_SOUND
INFO SOUND = U(l) ;

170

STOCK = U(8);
RESULT = INFO_SOUND - STOCK;
%END GSVD INFO MOTION

%MURA_SIGNAL_DISTANCE_SR.M
FUNCTION RESULT=GSVD_INFO_STATE(U)
RESULT = 0;
%END GSVD SIGNAL DISTANCE SR

%GSVD_INFO_UNEXPLORED_TERRAIN.M
FUNCTION RESULT=GSVD_INFO_UNEXPLORED_TERRAIN(U)
IAUX8 = FEEDBACK FROM STOCK
%AUX1 = SIGNAL_UNEXPLORED_TERRRAIN
SIGNALJJNEXPLORED_TERRAIN= U(1};
STOCK = U(8) ;
RESULT = SIGNAL JJNEXPLORED_TERRAIN - STOCK;
%END GSVD_INFO_UNESPLORED_TERRAIN

%GSVD_INFO_VICTIM.M
FUNCTION RESULT=GSVD_INFO_VICTIM(U)
%AUX8 = FEEDBACK FROM STOCK
%AUX1 = INFO_VICTIM
INFO_FORM = U(l);
INFO_C02 = U(2);
INFO_HEAT - U(3);
INFO_MOTION = U{4);;
INFO_SOUND = U(5) ',
STOCK ~ U(8) ;
COUNT = 0;
IF INFO_FORM == 1

COUNT = COUNT + 1;
END
IF INFO_C02 == 1

COUNT = COUNT + 1;
END
IF INFO_HEAT == 1

COUNT = COUNT + 1;
END
IF INFO_MOTION == 1 | INFO_MOTION == 2

COUNT = COUNT + 1;
END
IF INFO_SOUND == 1 | INFO_SOUND == 2

COUNT = COUNT + 1;
END
IF COUNT >= 3

RESULT = 1 - STOCK;
ELSE

RESULT = 0 - STOCK;
END
%END GSVD INFO VICTIM

%GSVD_PROPERTY_EXPLORATION_RATE.M

171

FUNCTION RESULT=GSVD_PROPERTY_EXPLORATION_RATE(U)
%AUX8 = FEEDBACK FROM STOCK
%AUX1 = SIGNAL TERRAIN DIFFICULTY
FEATURE_EXPLORING = U(l);
MAX_RATE = U (2) ;
SIGNAL_TERAIN__DIFFICULTY = U(3);
STOCK = U(8) ;
IF FEATURE_EXPLORING

RESULT = (1 - SIGNAL_TERRAIN_DIFFICULTY)*MAX_RATE - STOCK;
ELSE

RESULT = 0 - STOCK;
END
%END GSVD_PROPERTY_EXPLORATION_RATE

%GSVD_PROPERTY_REMAINING_VICTIM_DENSITY.M
FUNCTION RESULT=GSVD__PROPERTY_REMAINING_VICTIM_DENSITY (U)
%AUX8 = FEEDBACK FROM STOCK
%AUX1 = UNEXPLOREDJTERRAIN
%AUX2 = UNPASSED_VICTIMS
UNEXPLORED_TERRAIN = U(l);
UNPASSED__VICTIMS = U(2);
STOCK = U(8) ;
RESULT = UNPASSED_VICTIMS/UNEXPLOREDJTERRAIN - STOCK;
%END GSVD PROPERTY REMAINING VICTIM DENSITY

%GSVD_PROPERTY_TERRAIN_DIF.M
FUNCTION RESULT=GSVD_PROPERTY_TERRAIN_DIF(U)
%AUX8 = FEEDBACK FROM STOCK
%AUX1 = INFO_UNEXPLORED_TERRAIN
RANDOM = U(1)I
STOCK = U(8);
IF (RANDOM + STOCK) > 1

RESULT = 1 - STOCK;
ELSEIF (RANDOM + STOCK) < 0

RESULT = 0 - STOCK;
ELSE

RESULT = RANDOM;
END
%END GSVD_PROPERTY_TERRAIN_DIF.M

%GSVD_PROPERTY_TERRAIN_DIFFICULTY.M
FUNCTION RESULT=GSVD_PROPERTY_TERRAIN_DIFFICULTY(U)
%AUX8 = FEEDBACK FROM STOCK
%AUX1 = INFO_UNEXPLORED_TERRAIN
RANDOM = U(l);
STOCK = U(8);
IF (RANDOM + STOCK) > 1

RESULT = 1 - STOCK;
ELSEIF (RANDOM + STOCK) < 0

RESULT = 0 - STOCK;
ELSE

RESULT = RANDOM;

172

END
%END GSVD PROPERTY TERRAIN DIFFICULTY

%GSVD_PROPERTY_UNEXPLORED_TER.M
FUNCTION RESULT=GSVD_PROPERTY_UNEXPLORED_TER(U)
%AUX8 = FEEDBACK FROM STOCK
%AUX1 = BEHAVE_TERRAIN_RESET
%AUX2 = SIGNAL_TERRAIN_EXPLORATION
TERRAIN_RESET = U(1) ;
TERRAIN_EXPLORATION = U(2);
STOCK = U(8);
IF TERRAIN_RESET == 1

RESULT = 100 - STOCK;
ELSE

RESULT = -TERRAIN_EXPLORATION
END
%END GSVD_PROPERTY__UNEXPLORED_TER. M

%GSVD_PROPERTY_UNFOUND_VICTIMS.M
FUNCTION RESULT=GSVD_PROPERTY_UNFOUND_VICTIMS(U)
%AUX8 = FEEDBACK FROM STOCK
%AUX1 = FIND_CORRECT
FIND_CORRECT = U(1) ;
STOCK = U(8);
IF STOCK == 0

RESULT = 0;
ELSEIF FIND_CORRECT == 1

RESULT = -1;
ELSE

RESULT = 0;
END
%END GSVD_PROPERTYJJNFOUND_VICTIMS

%GSVD_PROPERTY_UNPASSED_VICTIMS»M
FUNCTION RESULT=GSVD_PROPERTY_UNPASSED_VICTIMS(U)
%AUX8 = FEEDBACK FROM STOCK
%AUX1 = RESETJTERRAIN
%AUX2 = MISSED
%AUX3 = FIND_CORRECT
%AUX4 = UNFOUND_VICTIMS
RESETJTERRAIN = U(l);
MISSED = U(2);
FIND_CORRECT = U(3);
UNFOUND_VICTIMS = U(4);
STOCK = U(8);
IF RESET_TERRAIN == 1

RESULT = UNFOUND_VICTIMS - STOCK;
ELSEIF MISSED == 1 | FIND_CORRECT == 1

RESULT = - 1;
ELSE

RESULT = 0;
END

173

%END GSV'D PROPERTY UNPASSED VICTIMS

%GSVD_PROPERTY_VICTIM_DENSITY.M
FUNCTION RESULT=GSVD_PROPERTY_VICTIM_DENSITY(U)
%AUX8 = FEEDBACK FROM STOCK
%AUX1 = UNEXPLOREDJTERRAIN
%AUX2 = UNPASSEDJVICTIMS
UNEXPLORED_TERRAIN = U(l);
UNPASSED_VICTIMS = U(2);
STOCK = U(8) ;
RESULT = UNPASSED_VICTIMS/UNEXPLORED_TERRAIN - STOCK;
%RESULT = 0;
%END GSVD PROPERTY VICTIM DENSITY

% GSVD_SIGNAL_C02.M
FUNCTION RESULT=GSVDJ3IGNAL_C02(U)
%AUX8 = FEEDBACK FROM STOCK
%AUX1 = FEATURE_C02
FEATURE_C02 = U(1) ;
STOCK = U(8);
RESULT = FEATURE_C02 - STOCK;
%END GSVD_SIGNAL__C02

%GSVD_SIGNAL_EXPLORATION_RATE.M
FUNCTION RESULT=GSVD_SIGNAL_EXPLORATION_RATE(U)
%AUX8 = FEEDBACK FROM STOCK
%AUX1 = PROPERTY_EXPLORATION_RATE
PROPERTY_EXPLORATION_RATE = U(l);
STOCK = U(8);
RESULT = PROPERTY_EXPLORATION_RATE - STOCK;
%END GSVD SIGNAL EXPLORATION RATE

%GSVD_SIGNAL_FORM.M
FUNCTION RESULT=GSVD_SIGNAL_FORM(U)
%AUX8 = FEEDBACK FROM STOCK
%AUX1 = FEATURE_FORM
FEATURE__FORM = U(l);
STOCK = U(8) ;
RESULT = FEATURE_FORM - STOCK;
%END GSVD SIGNAL FORM

%GSVD_SIGNAL_HEAT.M
FUNCTION RESULT=GSVD_SIGNAL_HEAT(U)
%AUX8 = FEEDBACK FROM STOCK
%AUX1 = FEATURE_HEAT
FEATURE_HEAT = U(1) ;
STOCK = U(8);
RESULT = FEATURE^HEAT - STOCK;
%END GSVD SIGNAL HEAT

%GSVD_SIGNAL_MOTION.M
FUNCTION RESULT=GSVD SIGNAL MOTION(U)

174

%AUX8 = FEEDBACK FROM STOCK
%AUX1 = FEATURE_MOTION
FEATURE_MOTION = 0(1);
STOCK = 0(8) ;
RESULT = FEATURE_MOTION - STOCK;
%END GSVD_SIGNAL_MOTION

%GSVD_SIGNAL_SOUND.M
FUNCTION RESULT=GSVD_SIGNAL_SOUND(U)
%AUX8 = FEEDBACK FROM STOCK
%AUX1 = FEATORE_SOOND
FEATURE_SOUND = 0(1);
STOCK = U(8);
RESULT = FEATURE_SOUND - STOCK;
%END GSVD SIGNAL SOUND

% FORAGE_SIGNAL_0 S E_NE ST_ENERGY.M
FUNCTION RESOLT=FORAGE_SIGNALJJSE_NEST_ENERGY(U)
%AUX8 = FEEDBACK FROM STOCK
%AUX1 = INFO IN NEST
%AUX2 = PROPERTY AGENT ENERGY
INFO_IN_NEST = 0(1);
PROPERTY_AGENT__ENERGY = 0(2);
STOCK = 0(8) ;
IF INFO_IN_NEST == 1

RESOLT = 100 - PROPERTY_AGENT_ENERGY - STOCK
ELSE

RESOLT = -STOCK;
END
%END FORAGE SIGNAL OSE NEST ENERGY

%GSVD_SIGNAL_TERRAIN_DIFFICOLTY,M
FUNCTION RESOLT=GSVD_SIGNAL_TERRAIN_DIFFICOLTY(0)
%A0X8 = FEEDBACK FROM STOCK
%A0X1 = SIGNAL TERRAIN DIFFICOLTY
SIGNAL_TERRAIN_DIFFICOLTY = 0(1);
STOCK = 0(8) ;
RESOLT = SIGNAL_TERRAIN_DIFFICOLTY - STOCK;
%END GSVD SIGNAL TERRAIN DIFFICOLTY

%GSVD_SIGNAL_ONEXPLORED_TERRAIN.M
FONCTION RESOLT=GSVD_SIGNAL__ONEXPLORED_TERRAIN (0)
IA0X8 = FEEDBACK FROM STOCK
%A0X1 = FEATORE_ONEXPLORED_TERRRAIN
FEATORE_ONEXPLORED_TERRAIN= 0(1) ;
STOCK = 0(8);
RESOLT = FEATORE_UNEXPLORED_TERRAIN - STOCK;
%END GSVD SIGNAL ONEXPLORED TERRAIN

175

Appendix C - PowerSirn Code

This appendix contains the original PowerSim simulations originally

developed for [2]. Some of these models were reused for some of the results in

Chapter Five, as such the code and models are presented here for completeness.

CA - Muramador Program Listing (PowerSim)

i Rand 1

RandJ \ wgiijirob
*•—:—/̂ -SZ_

Wall_Densjty

<^V

Sill Bid VWUngth

<£>
New Wall

Wall Rate

C> XT

Chang wal! time

2 . Rate 5

Wa\\ UKSncs

fWsli Distari

Censor error direction

Robot fifovement Raffia

1*

Wall Sensor

Robot_sp Wall Sensor Bror Wfes

Wall Sensor Bror

Figure 77 = PowerSim Muramador Model

176

Q Wall

«!?> +dt*WaH_Change
• WaiLDistance

E n 1 0
«#p +di«Wai_Distance_Rate

• Wall Length
Hfflo
•#£> +dt"Wafl_Rate

| 8 wall j ime

go
s#t> +dt*Rate_5

=0=0- Rate_5
= IF(Wafl = 1,1,0)

= Q * Wall_Change
= IFjWalJ = 1 AND WalLEnd = 1,-1 .IRWalt = 0 AND NewJWai! = 1,1,0))

c Q * Wail_Distance_Rate
= !F(WaH_Change=1,wall_'sensor_fnax_range-5,IF(Wall_Change=-1 ,-WaII_Dfetanee,IF<Wail=1 ,-

Robot_Movement_Rate,0))>
cQ$ WafLRate

= IFfWall = 1,1,-Wall_Length)
O New_Wall

= !F(Rand_2<Wal!_Density,1,0)
O Rand_1

= RANDOM
Q Rand_2

=3 RANDOM
O Robot_Movemert_Rate

=s IF(Wall_Sensoi<Robot_sp,-<WaiLS©nsor-RoboL:8p)',Kp>(Wall_Sensor-Robot_sp)"Kp)
(3 sensor error_direction

= RANDOM
O WalLEnd

= IF{Rand_1<Wall_Prob,1,0}
Q Wall_Sensor

ss IFfWall - 1,IF(Wal!_Distance<wa!l_sensor_max_range,IF(sensor_error_direction < ,5,Wall_Distance>.
Wall_Sens<^_£rror!Wa)l_Distance+WaII_S:einsor_EiTor),walS_,sensor_raax_rarige),vvall_sensc>r_max_range)

Q Wall_Sensor_ Error
— Wa!LSensor_Error_MaxcRANDOM

o *»
a= .02

<̂ > Robot^sp
= 10

<Q> Wall_Density
= .01

O WalLProb
= .005

Q WaB_Sensor_Emjr_Ma>c
— .5

<£> wali_sensor_max_range
= 25

177

C.2 Foraging Program Listing (PowerSim)

Figure 78 - Foraging Agent PowerSim Model

178

£>

Value of item

-*2> o
lnherent_Nest_Usag<

NestJEnergVLevel

Collectedj^iergy \ ExpendfeeLEWrgy

Recharge Scaler

Figure 79 - Foraging Ageat Efflviromnietrt PowerSim Model

tjarge

Rroeabilfc' StFind

MesiJ:nef ay/Relay

obcfopgerfiy_Usage_Rate

179

I I Foraging_1
liHfflo
*#t> +drLeave_Nest_l

•dt*Return_to_NesL1
Q Foraging_2

Iwfj 0
«#£» <ft*Return_to_Nest_2

+dt*Leave_Nest_2
| | Foraging 3

Ho
i#S> -dt*Return_to_Nest_3

-dt*Leave_Nes!_3
Q Foraging_4

HI 0
cg$ -dt*Refurn_to_Nesi_4

~dt*Leave_Nesf_4
[~] Foraging_5

egp +dt"Leave_NesL5
•dt*Return to Nest 5

• !n_nest_1
1 I w i una

IBB 1
#t> +dt*At_nest_1

-dt*Leave_Hest_1
n ln_rtest_2

f t
+dt"At_nest_2
-dt'Leave Nest 2

Q j ln_nest_3
— * j

+dt*At_nest_3
•dt*Leave_Nest_3

f~] In_nest_4

HI 1

eft> +dt"At_nest_4
-dfteave Nest 4

«£$> +dt*M_nest_5
-dt»Leave_Nest_5

| | Neet_Distanc©_1
H l O
«#i> TdrMovementjI

| | Nest_Disfance_2

«T8£ -dt*Movement_2
P I Nest_Distance_3

-dt*Movemerrf_3
Q Nest_Distance_4

IliTlO
«#t> +dt*Movem»nt„4

P I Nest_Distance_5
HMTj o
e#i> -dt*Movement 5

[2] Nest_Energy_Level
fiB 100
e#0 -dt*Expended_Energy

-drCollected^Energy
| | Object_1

WTS o
>#p +drOb|ect_Move_1

P I Objeet_2
IHfrlO
«&> +dt*ObjecLMove_2

n Object_3

f o
+dt*Object_Move_3

• Object_4
HTfO
«#$» +dt*Object_Move_4

Q Object_5

iron o
*S> +dt*Object_Move_5

j | Retuming_1
Effi 0
*#> -df At_nest_1

+dt*Refum_to_NesL1
m Rctumtng_2

IRTIO
«S> -dt*At_nesl_2

+dt*Retum_to_Nest_2
I " ! Returning_3

Iff io
*£!> -dt*At nest 3

+dt*Retum_fo_Nest_3
P Returning_4

«§f> -dt*At_nest_4
+dt4R®tum_to_N@st_4

n Returning_5

«#!> -dt*At_nest_5
+dt*Retum_to_Nest_5

[~~| Robot_Energy_Level_1
"fffl 100
E#I> -d!4Robot_Energy_Usage_1

+dt*Robot_R©charge_1
n Robot_Etrergy_Level_2

a 100
*S$> -dlaRobot_Energy_Usage_2

+dt*RobotJRecharge_2
["71 Robot_Energy_Leve!_3

S O 100
«&> -dt*RobQt_EnergyJJsage_3

+df*Robot_Recharge_3
P I Robot_Energy_Levet_4

HI too
i#f> -cft*Robot_EnergyJJsage_4

+dt*Robot_Recharge_4
j j Robof_Ertergy_LeveI_5

mm 100
<#f> +dt*Robot_Recharge_5

-dl*Robol_E»Brgy_Usi»ge_5
ffiQ^ At_nest_1

s= IF(Nest_Distance_1 = 0 AND Returnmg_1 = 1,1,0)
<=(*)*• At_neat_2

= IF(Nest_Disiance_2 = 0 AND Returning_2 = 1,1,0)
£ 0 $ At_nestj3

= IF(Nest_Distance_3 = 0 AND Retuming_3 = 1,1,0)
< 2 > At_nest_4

= IF(Nest_Distance_4 = 0 AND Returning_4 = 1,1,0)

181

<=Q* At_nest_S
ss IF(M9st_Distance_5 = 0 AND Re!uming_5 = 1,1,0)

<=Q* Collected Energy
= MIN(Erwrgy_Transfsi*Value_of_item,100- Nesi_Energy_Level)

" = 0 * Expendod_Enorgy
ss: Robot_R3charge+lnherent_Nest_Usage_Rate

e Q * Leave_N3St_1
= IF(ln_nesl_1 = 1 AND Ne5t_Energy_Relay <Nesl_Eneroy_Thns5hGlcL1,1,0)

<=0*' Leave_Nsst_2
= SF{ln_n©st_2 = 1 AND Nest_Energy_R©Iay < Nest_Eneroy_Thrssholti_2,1,Q)

e Q * Laave_Nast_3
= iFfln nest 3 = 1 AND Nest Energy Relay < Nest Energy Threshold 3.1.0)

c - 0 * Leave_Nsst_4
= IF(ln_nest_4 - 1 AND Neet_Energy_Relay *'Neet_Energy_Thraeho!d_4,1,0)

K^K- Leave_Nest_5
= IF(!n_nest_5 = 1 AND Nest_EnergyJ3e!ay < NesLEnerey_ThrashotcL5.1.0)

= 0 * ' Movement, t
ss IF(Foraging_1=1,Randomno&s_Thrc3hcld,IF(Roturning_1 = 1,MAX{-1,-Nc3t_Distance_1),0);

=Q=;- Movement_2
= IF(Foraghg_2=1,Rsnriomness_Thmshofd,IF{Rflturnino_2 = 1,MAX{-1,.Nesl_Distance_2)l0);

c Q * Movement 3
= IF(Foraging_0a1,RandQrnrw5&jThreshold,IF{Retuining_3 = 1,MAXM,-Nest_Distanoe_3),0))

=0=5- Ktovcmcnt_4
= IF(Fotaghg_4=1,Randomness_Th»eshoJd,IF(Returnirg_4 = 1,MAX(.i,-Mest_Distanee_4),0))

<30* Wiovement_5
= IF(Foreigiri9_5=1,Randoinfie5s_'n>Te5hcW,IF(Relurriing_5= 1,MAXH,-Ne5l_Di5t«nce_5),0))

e Q * Object_Move_1
= lF(Rnd_Determine_1 = 1,!,IF<At_nestJ = 1 AND ObjeclJ = 1,-1,0))

o Q * Ohjeci_Mwft_2
= IF(Fincr Determine 2= l . l . l F {A t nest 2 = 1 AND Object 2 = 1.-1.0))

' - O ^ Object_Move_3
= IF(Find_Dctorminc_3 = 1,l,IF(At_nDst_3 = 1 AMD Objcd_3 = 1,-1,0))

= Q * Object_Move_4
ss lF(Find_Determine_4 = 1 ,UF(At_nest_4 = 1 AMD ObjecL.4 = 1.-1.0))

• = 0 * Objecl_Mave_5
= iF(Find_D«tenniiie_5 = 1,l,IF(At_nest_5 = 1 AND ObiocLS = 1,-1,0))

<-Q^ Retum_to_Nest_1
= IF(Foraging_1 = 1 AND (Rnd_Dstermine_1 = 1 OR Robot_Energy_Level_1 < 50),1,0)

e Q * Return to Nest 2
~ — IF(Foraging_2 = 1 AND (Rnd_Deterrrart«_2 = 1 OR Rob0t_EnergyJ.evel_2 < 50),1,0)

= Q * Reium_to_Nee!_3
= IF(Foraging_3 = 1 AND (Rr.d_Determine_3 = 1 OR Robot_Enengy_Level_3 < 50), 1,0)

c 0 s Returo_to_Nest_4
= IF(FoRjg&!g_4 = 1 AND <Rnd_Delerrnine_4 = t OR Robol_Eriergy_LeveL4 < 50), 1,0)

= Q # Ftetum_to_Ncs_5
= IF(Foragfng_5 " 1 AND (Rnd_Dstermhe_5 - 1 OR Robot_Erisrgy_L«vet_5 < 50), 1,0)

<=0* Hobot_tn«fgy_Usage_1
= IF(Foraglng 1 = 1 OR Rgturnlng 1 = 1, Robot energy Usage Rate.O)

«=Q* Robot_Energy_Usage_2
= IF(Foraging_2 = 1 OR Roturning_2 = 1,Robot_cncrgy_Usage_Rate,0)

c Q * Robet_Energy_IJsag*_3
= IF(Foragihg_3 = 1 OR R3turning_3 = 1,Ro&ot,energy_UsageJRate,0)

==0* Ro30t_Energy_Usage_4
= IF(Foragingt_4 = 1 OR Retumsrsg_4 = 1,Robot_energy_Usage_Rate,0)

r < ^ Robct_EnergyJJsag«_5
= tF(Foraging_5 = 1 OR Rattirning_5 = 1,Rnbot_energy_Usage_Rate,0)

<=Q* Robot_Recharge_1
— IF(ln_nest_1 = 1,100-Robot_Eneigy_Levd_t,0)

= Q * Robot_Recharge_2
ss: IF(ln_nesi_2 = 1,100.Robo?_EneFgy_leveS_2,0)

182

ity_of_Find AND Fofaging_2 - 1,1,0)

ty_of_Finc! AND Foraging_3 = 1,1,0)

!y_of_Find AND Foraging,_4 = 1,1,0)

ty_oLFind AND Foragfngi_5 =1,1.0)

c Q * Robol_Recharge_3
= IF(ln_nest_3 =1,10Q-Robot_Energy_LeveL3,0)

c Q o Robot_Recharge_4
=s IF(ln_n*st_4 = 1,100-Robot_Erwgy_Level_4,0)

M04> Robot_Recharge_5
s= IF<In_nest_5 = 1,100-Robot_Energy_Level_5,0)

Q< Energy_Transffer
= IF<ObjseLMwe_1 = -1,1,0)+[F(ObjeQt_Move_2 = -1,1,0)-HF<QbjecLMove_3 = -1,1,0)+IF{Object Move_4 •

1.1,0)+IF(Object_Move_5 = -1,1,0)
(Q Find_Deiermine_1

= iF(RANDOM<Probabifity_of_Find AND ForagfngL.1 = 1,1,0)
Q Find_Determine_2

s= iF(RANDOM<Probabiiit
0 Find._Determine_3

= !F{RANDQM<Probabiiit
Q> Find_Determine_4

= IF<RANDOM<Probabl!
Q Find_Determine_5

= IF(RANDOM<Probabffi!
(Q- Ne$t_Energy_Relay

= NestJE.nergyJL.eveI
|Q Robot_Recharge

sa Recharge_Scaler*(Robot_Recharge_ 1 +Robot_Recharge_2+Robot_Recharge_3+Robo!_Recharge_4-*
Robot_R»charge_5)

0 lnherentJMestJJsage_Ra$e
= .03

<̂ > Nest_Energy_Thresho)ci_1
= 101

<£> Nest_Energy_Thresholci_2
ss 85

<Q> Nest_Energy_Threshold_3
= 70

<A Nest_EnergyJThreshold_4
=s 55

<Q> Nest_Energy_Threshold_5
= 55

<Q> Prot>ability_of_Findi
SB .0008

<Q> Randomrsess_Thresho!d
ss .33

<£> Recharge_Scaier
— ,25

0 Robot_energy_Usage_Rate
= .005

0 Va!u6_of_item
ss 2

183

http://NestJE.nergyJL.eveI

C.3 Victim Detection Program Listing (PowerSim)

ifasGiJu i^KaS1 Lffis)

iriSviCI &BQffdSlw6 L5?.^

Figure 80 - Left Side of the USAR PowerSim Model

184

SftSKW P-amto.a- rtmsdtnisi Hftiu iXl'A U L d i o i n a i \ M s d i 3 f K * B ! H

f - s fc&£»»: . ft%dssj_ IMssJLBsi

(fF.ftr.isiEae IYufe&3v

•o
RtesaiBsd f-i&i: L G ^ J ESUVMIESS*I Vwlcfe

jcltSfc iiUJsnH '

M E S ! 2 !• iisi Uojf! PfeaaLiMiMiB

t - t f e : C U B * NUKK UrJjsiBai 1 fctoteSy

-o
Ffess t - : f e : UGRI P t o s [tefifcdi2v

Figure 81 - Right Side of the USAR PowerSim Model

185

I I Correci_Staie_Estimatlons

t o
+dt*Correct_States_Rate

r*~j Exptored_Terraim

f 1
+dt*Eff9dJv_Terrain_Exploraiiora_Rafe

f~~| False_State_Estimations
filT8o~
>=g$» +dt*False_States_Rate

P I False_Victim_Detecteons
1 1 0
•#£>• +drFalse_Victim_Decttoni_Rate

[[Found_Victirns

mo
cg> +di*Victirn_Discovery_Rate

Q Mf6Seei_VJettnfis
fflfgo
=Si> +dt*Missed^Victiros_Rate

f ~ j Power
W l 100
<=§§$» -dt*Power_Consumptioni

Q Tenrain_Diffietity_Ratmg

H i
•T^ " +dt*Terrasn_Difficuiiy_Adjustment

Q Time_to_Power_Loss H o
•=g$» +df*Power_Sensor

|~1 Unex:p!ored_Terrain
HI 99
«#f> -di'!Effectiv_Ten-ain_Exploration_Rai<s

I 1 Unfound_Vicflms
B112Q
sUSfc -d!*Victim_Discovery_Rate

j [Vtctinis_iK>t_passed
IMT5 Unfound_VicJims
•=&> -di*VIctim_Pass_rate

Q Victinns_Passed

Efflo
"#£> +dt*Victim_Pasa_raie

< 2 > CorTect_States_Rate
~ IF(Arlbftrator=1 .StateJDomparffltor.Q)

^ 5 * Effectiv_Terrain_ExploratEon_Rate
= IF(Power_!eft=1JF(Reset=1,-Explored_Terrain>(Native_Movement_Rat«/Terrain_Ditficulty_Rating)},0)

e0£- False_States_Rate
= BF(State_Comparator=0i,1,0)

<zQ& False_Victim_Dect!onJRate
= False_V»ctim_Found

t Q i > Missed_Vlcti:ms_Rate
= iF(Vietim_Pwsent=1 AND VIc8m_Found = 0,1,0}

zQ& Power_Consumption
:= IF{Power<0.0)iF<Effectiv,_Terrain_E)<plora1iori_Ra'te>0,Pow«r_Consumption_Ratio*

Eflec!rv_Terrain_Exploration_Raf«+Victim_Found_Power_lJsage'"Arbiitratof,0))
" 0 * - Power_Sensor

= IF{Power>0,1,0)
^) * Teirain_DiffieiJity_ Adjustment

= IF(Terrain_Dmiou6ty_Rating<1,ABSfrerrain_AdjustmenLLevel),IF(TerraJn)_Difficulty_Rating!>50,-ABS
(Terrain_Adjusinnent_Level}>Terrain_Adjustmen4_L«v9l))

« ^ ^ Vicfim_Discovery_Rate
s= SF(PowerJeft = 1, IF(Victim_Found=1,1,0),0)

e O * Victinn_Pass_rate
=s tF(Reset-1 _.-{Vidims_Passed-Found_VictIms.),Vic!im_Preserat)

186

O Arbitrator
= IF(Power<0,0,IF((C02_Sens.or*-HeaLSensoft-Motioin_DigW2er+Reflection_Sensor+NloiS9_ Digitized

Semsor_Number Threshhold),1,0))
O 002

= JF{Vtatim_State> 0,1 ,i F<Rand_4«iFaise_C02_Probabtlity*TeiTairi_Explora«on_ Ra1e_R&lay ,1,0))
Q CQ2_Serasoir

= 8F(C02=1 AMD C02_Detection_Probability > Ran<S_9.1 ,IF<C02 = 0 AND False_C02_Deiection_Probabilty >
Ra:nd_9,1,0))

0 Fa!se_Victim_Foiund
= IF((Arbitrator=1 AND Vic8m_Preserrt=0},1,G)

Q Heat
= lF(Victirn_Sta1e>0,1,IF{Ranc!_5<Faise_Heat_ProbabilJity*TerTairi_Exptoration_Rate_Relay,1,0>)

0 Heat_SensOT
= !F(Heat=1 AND Heat Detection. Probabifity > Racid_10,1 ,!F(Heat = 0 AND False Heat_Deiectton_Probability '-

Rand_10,1,0})
0 Motion_ Digitizer

s= IF(Motion_Sensor>0,1.0)
0 Motion_Sensor

= IF{iv1ovement=1 AND Small JVtotron_Deteetion_Proi>a!bHfty > Rand_14,1 ,IB(Mov©me>mt = 2 AND
Large_Motion_Dfttection_Probability > Rand,, 14,1 jF(Fals«_Larg©Jw1otiion_Det&ctien_ProbabilJty >
Ran«J_14>2.IF{Fatse_SmaU_Motion_Detectio.n_Pn*abHity > Rand_14,1,0))))

0 Movement
— F(Victira_State=1!2,!F{Victim_S?ate=2.1JF{Vi^^

False_Large-Movemen1_ProbabiSty,2,IF(Rand_7,,!:TejTain_Explorat!on_Rate_Relay*
False_Srnafi_Movement_Probability,1,0}))))

0 Noise
== IF(Victim_Staitei=1^JF{Victim_State=2,1JF(Vict^

Fals«_Loud_NoIse_Pro!bability,2,IF{Rand_8<Terrain_Explo:ratioii_Rate_Re!ay*
False_QuielLNoise_ProbaW)tty,1,0))}})

0 Noise_Digitizer
= JF(Noise_Sensor>Qs1,0)

0 Noise_Sensor
= 5F(Noise=1 AND Quiet_Noise_Detecfion_Probab!lily > Rand_ 13.1 ,IF<Noise = 2 AND

Loud_Notse_Detection_ProbabiHty > Rand_13,1,IF(False_Loud_Noise_D8tection_Probability >
Rand_13!2,IF(Faise_Quiet_Noise_Detectioni_Probability >Rand_13,1,0))))

O Powerjeft
= IF(Power<0, 0,1)

Q Rand
= RANDOM

0 Rand_1Q
= RANDOM

Q Rand 11
as RANDOM

O Rand_13
ss RANDOM

0 Rand_14
— RANDOM

0 Rand_2
=s RANDOM(0,2)

0 Rand_4
= RANDOM

0 Rand_5
= RANDOM

0 Rand_6
= RANDOM

0 Rand_7
= RANDOM

0 Rand_8
= RANDOM

187

0 Rand_9
= RANDOM

Q> Reffection_Sensor
== !F(Reflective=1 AND Reflection_Detection_Probalbility > Rand_11,1 ,IF(Reflective = 0 AND

Fatee_Refleclion,Detection_Probabili?y > Ranid_11,1.0))
O Reflective

— lF(Victim_Sta59>OJ,IF{Rand_6^Fatee_Reflective_Probabflity*Terrain_Exptoratton_Rate_Refay,1,0))
(3 Remai.ning_Vtetim_Density

= (VicBrns_not_passed-UnfindabIe_Victiims)/{Unexpiored_Terrain-unexplorab!e_{«rrain)
O Reset

= [F((Unexplored_TeiraIn-uriexpiorabIe_terraini)<R©_searc}i_cuto{l:,1,0)
Q Stafe_Comparator

= ! F(StateJ=s«mator=Victirn_State, 1,0)
O Sta£e_Estimator

as IF<Arbiixator = 1,«F(Motion Sensor=2 OR Noise Sensor=2,i,!F(Motion Sensor=1 OR Noise Sensor = 1,2.3})
,0)

Qi Terrairt.AdjustrnentJ.evei
as RANDOM(-Terrain_Variability_Constant,Tefrain_Variabiiity_Constant)

Q) Terrain. Explorat ion_Rate_Re)ay
~ Effectiv_Terrai.n_Expioration_Rat«

Q Victim_Found
== !F((Arbitrator=1 ANDVictim_Pres.ent=1))1>0)

(2) VJctim_Present
= IF(Terrain_Exploration_Rate_Relay*ReiTiainiing_V'ictirn_Deris(ty^Rand, 1 „0)

Q Victim_State
ss iF(Victim_Present=1 ,Victirn_S1ate_Generation,0)

O Victim_State_Generattoni
=3 INT(RANDOM(1,3.9999))

0 C02_DetecJion_Probability

<Q> False_C02_Detection_Probabilty
ss ,01

<0 FaIse_C02_Probabifity

<Q> Faise_Heat_Det8Ction_Probabi lity
s= .01

«Q> Faise_Heat_Probabiiity
SB 2

<Q> False_Large_Motion_Detection_Probabiliiy
sss .01

<Q> Fa]se_Large_Mo>vement_Probability
= 2

<Q> False_Loud_Noise_Detection_Prebab.itity
= .01

<̂ > Fals&_Loud_Noise_Pirobability
= 2

0> Fa!s©jQuiet_Noise_Detectiori_Probabfflty
= .01

O False_Quietl_Moise_Probability

<£> Faise_R«flecEion_DetectioJi_Probabiiity
= .01

<̂ > Faise_R®flective_Probability

<£)> False_Small_Motion_Detection_Probabili1y
zs .01

<£> Faise_SrnalI_Movement_Probabilfty
= 2

<̂ > Hea!_Detec1ion_Probabiii!y

188

http://Terrairt.AdjustrnentJ.evei

0 Large JMolion_Detectior_Pfobability
= .9

<̂ > Loud_Noise_Delection_ProbabilFty
= .9

<̂ > Native,_Movemeni_Rate

0 Power Consumption. Ratio
— 3.

0 Quiet_Noise_Deteetion_Probability
= .9

0 Re search GuJoff
=3 2

0 Reflectson_Detectien_Probability
— .9

<̂ > Sensor_Numiber_Threshho!d
= 2

<̂ > Small_Motion_Detection_Pfobab-ility
= .9

0 TerrainJv'ariaMityjDonstant

0 unexp[orabte_terrain
= 15

0 UnfindableJ/ictlrras
= !OT{IN!T{Rand_2)M!NiT(Urifound_Victfms)},lN!T(unexp!orabteJeiTaiin);i00)

0 V"ictim_Found_PoweT_Usage

189

