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ABSTRACT
LAYERED BEAM VIBRATIONS INCLUDING SLIP

This study presents a theory for vibrations of layered
beams with the effects of interlayer slip included. The
theory is developed using Bernoulli-Euler assumptions with
additional developments to account for the interlayer move-
ment. The development is general, in the small deflection
sense, for beams with mechanical connections.

The development leads to governing equations for beams
having both dusl and single axes of symmetry and an arbi-
trary number of layers. Solutions to the governing equa-
tions are presented in closed form for various sets of
boundary conditions. These solutions show the effect of
interlayer connection on the natural frequency, and it is
shown that the solutions reduce to well known values for the
extremes of interlayer connection,

The effect of damping on the solutions is presented,
and the equations for the damped system are solved for small
damping.

The results of some simple tests which were performed
are presented, and these results are shown to agree favor-
ably with the proposed theory.

William Murray Henghold
Civil Engineering Department
Colorado State University

Fort Collins, Colorado 80521
June, 1972
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CHAPTER 1
INTRODUCTION AND LITERATURE REVIEW
1.1 Introduection

The use of layered systems for construction has become
increasingly prevalent in modern structural engineering.
Perhaps the best known examples of this are the serospace
industries' "sandwich" structures which combine high-strength
facings with a light weight core. In civil engineering
structures, the practice of building beams by nailing, bolt-
ing or giuing layers of wood together is used extensively.

The analysis of layered structures is nearly always
based upon the assumption that perfect continuity exists at
the interfaces of the connecting layers. If the layers are
fastened together with strong adhesives, the rigid inter-
connection assumption is reasonable. This fact is borne out
by such diverse works as Calcote (5),%* Abel (7), Hoff and
Mautner (15), Ross, Unger and Kerwin (16), and Raville, Ueng
and Lei (17). For some widely used systems such as nailed
wood construction, the assumption is subject to grave doubt.
The interlayer movement has been shown to have a significant

effect on the overall structural behavior (1, 2).

*Numbers in parentheses correspond to references listed.



The objective of this study is to develop a general
theory for the analysis of the vibrations of layered beams,
including the effect of interlayer slip. The governing
equations are developed and solved for various cases of
interest. A numerical technique is presented to give approx-
imate answers which include the effect of variation of beam
properties along the beam length.

No extensive experimental work was attempted, rather a
few simple experiments were conducted. These tests showed
agreement with the proposed theory. The theory is general
in the small deflection sense and is applicable to any

layered beam with mechanical connections.
1.2 Literature Review

In this section a review will be made of major devel-
opments related to this study. Additional comments concern-
ing some of these works will be made in s later section.

The statics of layered beam systems have been treated
by several authors., These works were developed separately
but have been shown to have striking similarities.

Granholm (22) developed a theory for layered systems
including the effect of interlayer slip. His development
was based upon the assumptions of doubly symmetric cross
sections, a linear relationship between the force on a con-
nector and its deformation, constant connector spacing and

continuous shear connection between layers. The latter



assumption implies a smoothing out of the discrete connec-

tion effects. These assumptions lead to the following

governing equations for a system consisting of two equal

layers:
d%p _ 2bk
dxz EA
d%Y _ EAr do _ _
dx< 2EI
where

¢ = relative longitudinal displacement between the

layers

b = the width of each layer (in),

k = displacement modulus (1b/in%), related to ¢
by the relation =

v = shear flow between the layers (1lb/in),

r = distance between the centroids of the two
layers (in),

E = the modulus of elasticity of the material of
the layers (1b/in?),

I. = moment of inertia of an equivalent solid
section (ink),

A = cross section area of each layer (in

and

M = external moment at the section (in-1b).

1.1

Equations 1.1 and 1.2 can be solved simultaneously for the

System deflection.



Pleshkov (23) also developed a theory for layered beams
with interlayer slip. Again the assumptions of continuocus
shear connection, constant connector spacing and a linear
connector force versus connector displacement relationship
were assumed. The solution was generalized to include
systems with only a vertical axis of symmetry. Generaliza-
tion was also made to a system of n layers. Pleshkov's
development led to the following governing equation:

d*Y - 4G (EIg d2Y + M) = - 42M 1.3

E
E EQ dx2 dxz

I|M'.:l

where
E = the modulus of elasticity of the material
(1b/in?),
i, = the moment of inertia of the kth layer about

its own neutral axis (in%),

I5 = the moment of inertia of the solid section
(in*),
M = the external moment (lb-in),
G = average connector modulus = G3 + G5 + ... Gy .
n

Gk = connector modulus for the joint between the
kth and k + 1lst layers (lb/inz},

T = connector shear flow (lb/in),

5 = connector displacement (in),

Q=4 07 + A3Zy + 8375 4 ...+ M2 + ... Man
n rm I‘2 rn




number of joints in the system (equal number

=
|

of layers - 1),
Ak = area of the kth element (in2),

= the distance from centroid of the kth layer

1
=
|

to that of the (k + 1)st layer

and
the distance from the centroid of the kth element

B
=
i

to the centroid of the entire section.

Newmark, Seiss and Viest (20, 21) have studied the
problem of incomplete interaction between the steel girder
and concrete slab of a composite T-beam. This problem is
equivalent to a beam with interlayer slip in that the incom-
plete interaction between girder and slab is essentially the
same @s slip between beam layers. The authors verified
their results with numerous small scale tests. Here again
the assumptions of continuous shear connection and linear
connector load versus connector deflection were assumed.

The most general treatment of the interlayer slip
problem was made by J. R, Goodman (1, 2). For the case of
systems of three equal layers he developed a comprehensive
theory for beam, plate and shell systems. Experimental
verification for wooden beam and plate systems was attempted
with excellent results. He was able to treat non-linearities
in the connector force versus connector deflection relation-
ship by using a step wise linear numerical procedure. As an
additional part of his study, he was able to show that the

theories of Granholm (22), Pleshkov (23) and Newmark, Seiss



and Viest (20) 211 provided the identical governing equation
for a system of two equal layers. Again, this work used the
continuous shear connection assumption. The close agreement
retween the author's theory and experiments showed that
frictional effects were negligible for static bending.

For the case of a beam of three equal layers the follow-

ing governing equation was developed:

3ET d%y . kn (BI, a2y + M) = -g? 1.4
dxk SEA ° E;% EE%

where
E = the modulous of elasticity (1b/in<),
I = the moment of inertia of an individual layer

about its own neutral axis (inh),

k = the connector modulous (1b/in),
n = the number of connectors per row,
S = the spacing between connector rows (in),
A = the area of an individual layer (in?),
Ig = the moment of inertia of an equivalent solid
beam (in%)
and
M = the external moment at the section (in-1b).

Clark (18) has approached the interlayer slip problem
from a different point of view. In his work, he assumed
that slip took place between connectors but that the connec-
tors themselves were perfectly rigid. This permitted the

tonnectors to be considered discretely as opposed to using



a continuous shear connection assumption. J . R. Goodman
(1) showed, however, that the connector deformation was an
important part of the slip problem for some systems and that
Clark's work actually provided an upper bound for beam
deflections.

Rassam (24) studied the problem of layered columns with
interlayer slip. His study included columns with cross-
sections having both single and double symmetry and allowed
for variation in column properties along its length. Experi-
mental verification of the developed theory was attempted and
in general showed good agreement between experiment and
theory. The study was limited to pinned-pinned columns but
is applicable to any layered system. His development of the
theory led to the following governing equation:

d% 4+ ap d®% - B d% - cPY = 0O 3
dxz* dx?2 E‘E? ’

where

= the column deflection (in),
= the column load (1b),

= a constant (1/in?-1b),

~ a constant (1/in®)
and

o I e i Al

= a constant (1/1b-in%).
The constants A, B and C depend upon the connection and
Properties of the layers and in general can become quite

involved,



Another study, while not directly applicable to this
effort, which is of general interest to those concerned
with interlayer slip is the work of R. E. Goodman, Taylor
and Brekke (25). This work is concerned with the develop-
ment ot a finite element model for Jjointed rock. The model
allows for sliding joints and is concerned with finding
failure conditions.

For the past twenty years or so extensive research
effort has been expended to try to understand the mechanisms
of damping in structural systems and to develop techniques
to increase this dissipation of energy. The field of liter-
ature generated during these efforts is extremely large and
diverse. Henderson (26) reports on the development of
technigues in the areas of material damping, joint damping
and the use of dissipative layers., He stresses that optimi-
zation of damping necessitates its inclusion in the earliest
of design stages.

Material damping is more fully covered by Wood and lLee
(13) and Lazan (3). Lazan hypothesizes that material damping
is stress sensitive and may take the form

D = JoB 1.6
where

D = the specific damping ratio,

J the damping constant,

o = the stress level
and

=]
I

the damping exponent.



It is noted that when n = 2 and D is not frequency dependent,
equation 1.6 describes linear viscous damping.

The use of damping tapes and dissipative cores in sand-
wich structures is well reported as in the works of Plunkett
(9) and Ross, Ungar and Kerwin (16). DiTaranto and
Blasingame (6) report that the damping of laminated beams is
essentially independent of boundary conditions.

The specific area of damping most relevant to this work
is that dealing with joint or slip damping. Even so, these
efforts tend to be highly specialized. L. E. Goodman (4)
reviews various works in the area of slip damping. He
points out that the energy loss is essentially due to Coulomb
friction. This has the desirable effect of limiting vibra-
tion amplitude, coupled with the undesirable effects of
fretting and corrosion of the structural members. Mentel
(8) goes so far as to discard the technique of slip damping
because of the supposed fretting problem.

Piann and Hallowell (29, 30) have investigated struc-
tural damping in simple built-up beams. The beam used was a
cantilever with thin reinforcing spar caps. A heavy weight
was attached to the end of the beam such that it could be
treated as a single degree of freedom system. In the former
paper it was assumed that sufficient clearance existed
between the screws holding the beam together and their holes
S0 as not to interfere with slip, while in the latter slip

was hindered by the close fit of the screws. It was found
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that the damping was approximately proportional to the third
power of the stress amplitude and inversely proportional to
screw tightness at small amplitudes. At larger amplitudes
the energy loss became proportional to the stress amplitude
and the effect of screw tightness was effectively lost. It
should be emphasized that the amplitudes in question were
guite small such that slip was measured microscopically.

L. E, Goodman and Klumpp (27, 28) have studied slip
damping as related to turbine blade vibration. The system
used was a bileaf cantilever, clamped together with a number
of clamps. This effectively simulated the turbine blade
root and hub joint. Various clamping pressures were used.

It was assumed that limiting shear stress and associated

slip occurred only for a sufficiently large load. The

amount of damping was found to depend on the normal pressure
for any given load. At low pressures little damping was
realized due to the small frictional force while at high
pressure damping was diminished due to small slip. The
increase in damping was significant in comparison to material
damping and the results of this effort were helpful in reduc-
ing turbine blade failures by indicating the presence of an
optimum pressure. The vibrational amplitudes here were again
quite small with tip deflections on the order of .08 inches
while slip was measured with a micrometer microscope.

Yen, Hartz and Brown (1l4) have studied the damping of

wood T-beams. Again, interest is centered in very small but



1l

discernible amplitudes and "Goodman-Klumpp" type slip is
assumed. The investigation includes such effects as nail
spacing and nail bearing. The authors realized that the
damping mechanism of their study was different from a linear
viscous model but due to the range of damping ratios encoun-
tered and practicality of problem solution, they assumed an
equivalent viscous model. They found that the bi-linear
hysterisis loop reached an essentially reproducible state
after a few cycles and that an elliptical representation of
this loop was reasonable, The authors found that the damp-
ing ratios obtained were between .005 and .05 with the exact
value being a function of nail bearing, nail spacing and
amplitude.

Although the damping studies previously mentioned have
each added to the understanding of damping in structures,
this understanding is much more qualitative than quantita-
tive. The predictability of damping from scale testing is
still an elusive goal in many respects. This is especially
true of more complex structures as seen from the fact that
the Saturn V Apollo vehicle was dynamically tested in full
scale (36).



CHAPTER 2

PRELIMINARIES AND THE SPECIAL CASE OF
THREE EQUAL LAYERS

2.1 Introduction

In this chapter various assumptions and simplifications
are introduced and discussed. Terms and concepts that form
the basis of this study are defined and explained. The
special case of & beam consisting of three equal layers is
covered in detail, This detail is warranted by the fact
that this system is easy to visualize, but at the same time
it provides practically all the concepts necessary for a
more general treatment. It is shown that the three equal
layer system may be solved in closed form and solutions for
four different sets of boundary conditions are presented.
Finally, the boundary conditions are stated in an alternate

form and the equivalence of results is shown.

2.2 Assumptions

In order to keep the problem within reasonable bounds,
certain simplifying assumptions are made. These assumptions
limit the analysis to a first order approximation. For the

Case of three equal layers the assumptions are:

12
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10.
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The materials are linearly elastic and stresses
remain within the elastic range.

The deflections are small.

The effects of shear deformation and rotary inertia
are neglected.

The strain distribution through the depth of each
layer is linear.

No separation between the layers is allowed.

The slip permitted by a connector is directly
proportional to the load transmitted by the
connector.

The connectors are equally spaced and of equal
strength along the beam length.

A continuocus, equivalent shear connection between
the lavers is assumed to replace the discrete
connectors.

Friction effects are neglected.

The material and area properties are the same for

each layer and are constant along the beam length.

Certain of the assumptions made deserve amplification

so that the exact limitations of the proposed theory will

be clear.

Neglecting the rotary inertia and transverse shear

implies standard Bernoulli-Euler theory. This in turn

implies that the beams in gquestion are long in proportion to

their depths. Timoshenko (10) found that the error in
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neglecting the rotary inertia and shear terms is on the
order of 2% at the lower frequencies of vibration.

The assumption that no separation between the layers is
allowed implies that each layer deflects the same amount.
Additionally, when coupled with the small deflection limi-
tation, it implies that each layer has the same curvature.
The mechanical connectors between the layers generally pre-
vent separation due to their resistance to withdrawal.

The assumption of a continuous shear connection means
that the discrete deformable connections are replaced with
a continuous shear connection. This is done for mathematical
convenience. However, previous work, as explained in the
literature review, has shown that this assumption is justi-
fied.

The neglecting of frictional effects definitely limits
the class of problems to which the proposed theory is
applicable. Systems involving high contact pressures or
highly bi-linear hysterisis loops are not within the scope
of this theory. However, a large class of problems still
remain., J, R. Goodman's (1, 2) efforts with nailed wood
structures indicate that the effect of friction between the
layers is small. Additionally, bi-linear hysterisis loops
may sometimes be replaced by elliptical ones and quite good
results are still obtained.

The reguirements of constant connector and beam proper-

ties along the length of the beam allow for a solution of
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the problem in closed form: The removal of these require-
ments necessitates a numerical solution to the problem. In
sz later section (3.5) the variation of the geometric and

physical properties along the beam is considered.
2.3 Solid Beam

Perhaps the easiest way to see the concepts involved in
the interlayer slip problem is to develop the governing
equation for the free vibrations of a solid beam in a
different manner than is normally encountered. Figure 2.1
shows a solid beam of a width b and a height 2h. A plane
is inserted as shown such that the beam is divided into two
equal beams of width b and height h.

In Figure 2.1 some notation is introduced for the first
time. This notation involves dependent variables sub-
scripted with ,x. This subscripting indicates partial dif-
ferentiation with respect to the indicated independent
variable, The order of the differentiation is indicated by
the number which preceeds the independent variable.

From horizontal equilibrium and the fact that the beam
is solid, such that to first order the curvature of the

upper and lower halves are the same, it is evident that

and
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1 - - - - X
7
' (z) Beam with sign convention
I
Moy A T g
(1)
M2 - - - - M2+M2 !xdx
F -
2 l F‘2+l"2 ,xdx
V+V dx
dx a

(b) Beam element

2n| 4444 ot 1

(¢) Cross-section

FIGURE 2.1 SOLID BEAM
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Newton's second law is now applied as follows

where

displacement of centroid of solid beam

<
i

and

m = mass per unit length of solid beam.

Now neglecting rotary inertia and shear deformation and

summing moments gives
ZM(l) =0
Vdx - 2M’xdx - hF’xdx-= 0

V = ZM + hP‘,x. 2.2

'x

It is now necessary to remove the dependent variable F
from the problem. This is done by examining the strain at
point 1 in figure 2.1 (b). Taking tension as positive, the
Strain is evaluated using the top and bottom halves of the

beam as

61 = 2.3

%] [

=)=
e

i
]

2.4

m
H
|
513
(STl=3
=
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where

1 = the moment of inertia of the half beam about

its own centroid

- AR®

—

12

and

the half area

x>
1l

= bhl

Since the beam is solid, the strains expressed by

equations 2.3 and 2.4 must be the same, This implies

F = Ah M. 205
2T

Equation 2.5 is now substituted into ecuation 2.2 to give

V= (24 A0% )y 2.6
27 :

Now for small deflections and the sign convention specified,

the relationship
M ~_—-EIY,2'_x

is valid. Substitution of the above relationship into

eguation 2,6 and this in turn into equation 2.1 gives

2
Ah
(2+§'i" ) EIY )x + m¥ 5, = O. 2.7
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Tt is noted that

(2 + Ah? ) o 81
21

where

15 = the moment of inertia of the solid beam about
its centroid.

Thus equation 2.7 becomes

EISY,A.X + mY,zt = Oa 208

Bquation 2.8 represents the pgoverning ecuation for the
transverse vibrations of a solid beam with constant material
and geometric properties along its length.

The equations for layered systems with interlayer slip
will be derived in a similar manner with one outstanding
exception, For a system with slip it is not possible to say
that the strain st the joint between two layers is the same
whether approached from the top or the bottom. A new

relationship must be found.
2.4 The Three Equal Layer System

The governing equations will now be developed for the
layered beam system consisting of three equal layers using
the assumptions innumerated in Section 2.2. Figure 2.2

depicts the layered system and the associated beam forces
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interlayer connections

B T

L

i

Y
(a) Beam with sign convention

(b) Cross-section (¢) Strain distribution

FIGURE 2.2 THREE EQUAL LAYER SYSTEM
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and strazin distribution., It is noted that no axial force
exists st the centroid of the second layer. That this is
indeed the case can be seen using the symmetry of the pro-
blem. Hotation about the z axis indicates that F, must be
Zero.

Consider first the free body diagram of a beam element

as shown in Figure 2.2 (d). Newton's second law is now

applied.
SRy = 0
gives
Fl + Fl’xd'x + FB + FB'xdx - Fl - F3 =0
or
Fl’x = - FB’xc 2.9
EF} = may
gives
3
V + V’xdx -V = f (pyA4dx) Yi,zn
or
3
where
p; = mass per unit volume of the ith layer (slugs/in’)
and
A: = area of the ith layer (inz).

For the case where rotary inertia and shear deformation

effects are neglected (assumption 3)
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ZM(]_) =0
implies
3
Vdx + %hrFl,xdx + % F3,xdx - %Mi,xdx = 0, 2.11

Substitution of equation 2.9 into equation 2.11 gives

3
V= ZhFB,x + %Mi,x 2.12

where

h = layer height (in).

Each layer has the same properties and is assumed to
deflect the same amount (assumption 5). The position of the
centroid of any layer will differ by a constant from that of
the system centroid at any time t and position x. Addition-
ally, the deflections are small (assumption 2). The

following relationships then hold:
3
Yi,2t. 3 Y,zt
My = -EIY,zx

where
Y = the position of the system centroid (in),
I = the moment of inertia of an individual layer

about its own centroid (ink)
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and
i = modulus of elasticity (1b/in?).

With these relationships and the fact that the layer proper-
ties remain constant along the beam's length, equation 2.12

may be rewritten as
V = Zh?j’x - BEIY,Bx’
Finally, substitution into equation 2.10 gives
3EIY,4x - 2hF’2x + BpAY’.zt =0 2.13

where F3 has been denoted simply as F.

Equation 2.13 contains two dependent variables, Y and
F. A relationship between these variables is needed. This
relationship may be obtained from an investigation of the
effect of the non-rigidity of the connectors which allows
slip between the layers.

The connectors are assumed to have equal moduli and be
equally spaced along the length of the beam (assumption 7).
Then

k = constant

k = the connector modulus (1b/in)

S = the connector spacing (in).
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Tt is assumed that the slip permitted by a connector is

directly proportional to the connector load (assumption 6).

Then
= Q/k 2.14

where

Ag = the interlayer slip (in)

and

Q = the connector load (1lb).

If it is now assumed that a continuous shear connection
exists between two adjacent layers (assumption 8), the

following relationship may be written

9345 = Qn 2,15
where
95 = the force transmitted between the ith and jth
layers of the beam per unit length of the
beam (1lb/in) and is comparable to shear flow
and
n = the number of connectors per row.

Equations 2.14 and 2.15 are now combined to give
- (E_] 2.16

Equation 2.16 is general and allows for variation of S, k or

n between layers.
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Now consideration of the horizontal equilibrium of the

laver elements shown in Figure 2.2 (e) gives

=q35dx - F3 4 Fy + F3,xdx =0

or
q32 = FB_,J[' 2.17
Similarly

Substitution of these relationships into equation 2.16 and
noting that the connector properties do not change on a per

layer basis yields

AS = -9
21 B 13
and
AS F 2,19

= S -
327 & 3.x

An additional relationship expressing the interlayer
slip may be found by investigating the strains at the inter-
face of two layers. The strains denoted in Figure 2.2 (c¢)

may be written, for tension taken as positive, as

€L=M1..f.1.+§]; ]
1 ET 2 EA
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i-B
and
where
ei = the strain at the lower edge of the ith layer
and

e? = the strain at the upper edge of the ith layer.

An alternate definition for relative slip between two layers

may be stated as

e % oL
AS. = € dx L e dx L] 2.20
1J Of i Of j

For the case where i = 3 and j = 2, equations 2.19 and 2.20
are equated to give

X X
S Fa .=/ €¥x - [ eldx . 2.21
km ¥ o 3 o 2

Instead of using equation 2.21 in integro-differential
form, the derivative of both sides will be taken. Perform-

ing this operation and making the proper substitutions

yvields
S_Fy o=~ _h_ (My+ M)+ 53 . 2.22
kn - 2E1 EA

Similarly
“8 Fyap == _h_(My+ M) -F1 2.2
kn 102X 6T © L Ek ;
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1t is noted that
Mi = = EIY,zx
and from equation 2.9
Fl=*F3

If these substitutions are made into equation 2.22 or 2.23,
both equations reduce to the same form. That is
= hY,zx + %I 2.24
where the subscript has been dropped from F as unnecessary.
The fact that equations 2.22 and 2.23 reduced to the
same equation is worthy of note. This indicates that the
relative slip between the first and second layers is the
same as that between the second and third. This is as it
should be due to the symmetry of the system.
Equations 2.13 and 2.24 represent two equations in two
unknowns Y and F and are the governing equations for the free

vibrations of a three equal layer beam with interlayer slip.

2.5 Boundary Conditions

To obtain a complete solution to the equations devel-
oped, boundary conditions are needed. The boundary condi-
tions for the system of three equal layers will of necessity

be different from those of a simple Euler beam. This fact



29

can readily be seen from an inspection of equations 2.13 and
2.2L. To obtain a solution to these equations, a total of
six boundary conditions are needed where only four are
required for an Euler beam problem.

Congider first the conditons associated with a simply
supported end. It is natural that the deflection and total
moment on the end section are zero. From Figure 2.2(d) and

horizontal equilibrium
MT=3M+ 2hF
= 2hF - 3EIY’2x.
The conditions at the end are then

Y=0
and

3 EIY py - 2hF = O,

One more condition is needed. This condition can be
found by noting that at a simply supported end, there is
nothing to give rise to or to support any axial force.
Therefore, the axial forces must go to zero at the end. For

F equal to zero the boundary conditions can then be written

as
Y=0,
Y,2x =0

and
F=20, ey
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The conditions at a free end are investigated next.
Again, there can be no axial force at the end and the vanish-
ing of total moment and total shearing force is reasonable

from experience with Euler type problems. For
Vp = 2hF,x - BEIY,Bx
the conditions then become

T 2x=0

[

BEIY'Bx - 2hF,x = 0

and
FEO- 2-26

It is noted that the second of the above conditions is mixed
in the sense that both dependent variables appear at the
same time.

Next, consider a fixed end. Following the above reason-
ing it is easily seen that the displacement and slope of the
end should be zero. Here, however, the axial force cannot
be zero. The end of the beam is fixed against slip dis-
Placement. From equation 2.16 this condition on slip dis-

placement indicates that

qij‘—_Oa

Horizontal equilibrium and equation set 2.19 in turn imply

F’x=00
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The boundary conditions may now be summarized as

Y=0,
Y’Jic =0
and
F’x =0 . 2.27

From equations 2.25 through 2.27 it is evident that for
any set of consistent conditions a set of six boundary con-
ditions are available as required.

As a check on the boundary conditions, the equations of
motion for the three equal layer system were derived using
the extended Hamilton principle. This method has the advan-
tage of providing the natural boundary conditions needed to
supplement the geometric boundary conditions as well as the
differential equations of motion. This development can be
found in Appendix II. The results obtained are in complete

agreement with the results of this section.

2,6 General Solution for the Three Equal Layer System

The governing equations for the free vibrations of the
three equal layer system were developed in Section 2.4 and

are repeated here for easy reference,

hY'zx - SH F’zx + = O .

F
EX
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It will prove convenient to work in terms of beams of

length unity. To this end a change of variable is made such

that
B
where
L = the length of the beam
and

1 = the normalized length of the beam.

Under this change of variable

dz = dx ,
=
Y,x = % Y’z
and
1
Y’rm-—‘r) Y’nz-
The governing equations may then be written as
EI Y - =
and
h Y = S Fo,+1 F=0, 2.28
2 e T

For the case where the beam and connector properties do
not change along the length of the beam, the above equations
form a set of linear, constant coefficient, partial differ-

éntial equations. For this type of equation the time
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dependency is separable or, more to the point, simple

harmonic motion may be assumed such that without loss of

generality

Y = Y(z) cos(wt + ¢)

and
F = F(z) cos(wt + ¢) 2.29
where
w = the natural frequency (rad./sec.)
and

some phase angle which will depend upon the

8
i

initial conditions of the problem (rad.).

Substitution of equation set 2.29 into the governing equa-
tions 2.28 after collecting terms yields
(3EI YV - BPAmzY - 2h F")coslwt + 9) = 0
L 1?7
and

(h Y = 8 F" 4+ 1 F) cos(wt + ¢) =0 2.30
L2 knL?

where a superscript roman numeral or prime on one of the
dependent variables indicates ordinary differentiation with
respect to the normalized space variable z.

Since the term cos (wt + 9) cannot be zero for all
time t, the terms in parentheses must be zero. This leads
to a pair of ordinary differential equations which may be

written in matrix operator form as



(351 DY - 3pAw? -2h D?
e ; &2 ¥ 0
2 2
h D - S D + 1
12 knL2 RE | \F 04 2.3
where
pt = g°
dz?

The matrix equation 2.31 may now be solved for the
characteristic equation for Y or F by expanding the deter-
minant of the operator matrix. After some algebraic manip-

ulation this yields

[06 - knL? (1 + 2Ah°) D* - pal* w?D? + knL? pal* w®] Y = O.
S ST e e .
2 32

It is noted that

A% = 12 1
and

28h° = 8 .

31
Let

knL? = K
and

pal* _ y,

fome

Equation 2.32 may now be written as



35

[0 - 9KD* - NwfD? 4+ KNa®] Y =0 . 2.33

Equation 2.33 may now be solved in the standard form

by assuming a solution of the form

6 d.z
Y=Ea.ei
ll
where
Ei = a constant
and

di = the root of a polynomial.

Once a solution of the form assumed is substituted into
equation 2.33 and the indicated differentiations are carried

out, a sixth order polynomial in d is obtained such that

d® - okd¥ - Nw2d? + KNw? = 0. 2.34

It is noted that only 2n powers of d exist in equation 2.34.
The order of the equation may then be reduced by making the

substitution
p= a2 .
Equation 2,34 then becomes
p? - 9Kp® - NoPp + KNw? = O . 2.35

which is a cubie¢ which may be solved with relative ease.
In solving a cubic, one quantity of interest is the dis-

Criminant., If the sign of the discriminant can be determined,
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the general nature of the roots can then be stated. Let

equation 2,35 be written in standard cubic form as

p3 + alp2 + asp + ag = 0
where
a; = - 9K,
8, = = Neo
and
8y = KNo®

The discriminant is defined as

Dis = (q7)2 + (r*)% . 2.36
where
q" = 3a; - ai = - (ﬁ&i'* 9K?)
: 3
9
and
3 :
r* = 93182 = 2783 - 281 = KMZ + 27K3.

54

Upon carrying out the operations indicated by equation 2.36
and after some algebraic manipulations, the following

relationship is obtained.
. ) 2,2
Dis = - B8= (Mo® + 27k%)% . 2.37

Now w, K and N are real numbers and N is greater than zero.
Thus, an inspection of equation 2.37 reveals that the dis-

criminant for the cubic equation 2.35 is always less than
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zero which implies that the roots to equation 2.35 are all

real and distinct. Denote these roots as

P1=72 ’

pzhaz
and

93=BZ .

By a simple matter of expansion, it is easily shown that

the following relationships between the roots hold.
Py P, * py =K
PP, + PP, + P P, = - Ku?
172 273 =2

- =

The roots Pi have been shown to be real and distinct. Addi-

tionally, from their definitions K, N and w?

must be greater
than zero. For these conditions, it is obvious from the
first of equation set 2.38 that at least one root must be
greater than zero., The last of the equations of set 2.38
requires either one root less than zero or all roots less
than zero. The two conditions together can be satisfied only

for one root less than zerc and two roots greater than zero.

Let these roots be

yi< o,
at> 0
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and

5< s DL,

Since P is equal to d2, the roots to the sixth order poly-

nomial given by equation 2.34 are

I+

iy ,

(¢

ik

and

i+
™

and the solution for Y is then

——p j_-yz e ..,iyz - az - -2 —_ BZ
as + +
X aje aqe 4 a3e + ahe ase

+ ‘3_63..8 a .

By a simple redesignation of the constants Ei’ the solution

for Y may be rewritten as

Y = g

lsin(yz) + azcos(yz) + ajsinh(azJ B ahcosh(az)

+ asinh(pz) + agcosh(pz). 2.39

It is evident that the characteristic equation for F is
the same as that for Y. Proceeding as before the functional

form of F may be found as
F'= bysin(yz) + bycoslyz) + bysinh(az) + b, coshlaz)

+ bysinh(pgz) + bécosh(ﬁz). 2.40
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Equations 2.39 and 2.40 contain a total of twelve
arbitrary constants. From an inspection of matrix equation
2.31, it is clear that there are in general only six arbi=-
trary constants in the solution of the three equal layer
system. Therefore, some relationship must exist between the
ay's and the bj's. This relationship may be found by sub-
stitution of equations 2.39 and 2.40 into one of the two
equations indicated by 2.30., Substitution in the second
equation yields

EE (-yzalsin(yz) - yzazcos(yz) + azaBSinh(azJ + azabcosh(az)

2

2 : 2 - D 2
+ B aﬁsinh(ﬁz) + B“agcosh(pz)) ) (=y“b,sinlyz)

= y2b2005(72) + azbasinh(az) + a?b, cosh(az)

L
+ szssinh(ﬁz) + szécosh(az)) + %E (blsin(yz)
+ bycos(yz) + bysinh(az) + b, cosh(az) + bs(sinh(pz)

: bécosh(Bz)) = 0,

Now collecting like terms gives

« b o2 + S 2+l =
72 0y (k_'ZL Y ig) by =0
or
by = AEhy 2 -
2 1
Y+ 1
K
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gimilarly
bz = cla2 >
b3 = C283 ¥
bh’ = Czau F)
bg = C385
and
where
2
a? -1
K
and
2
iy =S . 2443

In summary, the solution to the governing equations for

the free vibrations of the three equal layer system is
Y = Y(z)cos(wt + ¢)

F(z)coslot + 9)

e
Il

where

<
i

alsin(yz) < a2c03(yz) + aBSinh(uz) + ahcosh(uz)

assinh(ﬁz) + aécosh(ﬂz]

and

F = cl(alsin(yz) + azcos(yz))+-cz(aBSinh(az)

ahcosh(az))+ c3(assinh(sz)+aécoshlﬂz)) 2.44
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with y, o and B, the roots to the sixth order polynomial

2,34 and c; as defined by equations 2.41 through 2.43.

The natural frequencies and associated modes of vibra-
tion are clearly dependent upon the boundary conditions of
the problem. In Section 2.5 it was shown that the six
boundary conditions necessary for a complete solution are
available. Various sets of boundary conditions can now be
investigated.

Consider first a simply supported beam. For & beam
simply supported at both ends, the boundary conditions which

must be met are given by 2.35 as

Y=0,
™ =0
and
F=0
at z =0 and z = 1.

Substitution of equation set 2.44 into these six conditions

and writing the results in matrix form yields

[BC] {a} = 0 2.45
where
r
a = al
85
< P
%
-
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In order that equation 2.45 have a non-trivial solution,

the determinant of BC must be zero, i.e.
| BC 1 =0 . 2,46

The solution of equation 2.46 yields, after some algebraic

simplifications
@ 4 1) ($3-1) - o1y (2210
[3-2. Cl ;2, —

sin(y )sinh(a)sinh(g) = 0 . 2.47

The first term in equation 2.47 will be zero, only for
the case when az is equal to 52. Since a® and 32 are

distinct, the bracketed term is not zero. This leaves
sin(y )sinh(a)sinh(g) = 0 . 2.48

The term sinh(a) will be zero only for the case when
@ = 0, An investigation of equation 2.34 shows that a zero
root will be obtained only for w? equal to zero since K and
N are not zero. The solution for w? = 0 is of trivial
importance for the case of a simply supported beam. There-

fore
sinh(a) # 0 .

Similarly
sinh(g) # 0 .
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This then leaves

Equation 2.49 has an infinite number of solutions.

These solutions are

where

n=1,2,3 ... 2.50

It is now a simple matter to back substitute into equation
2.45 to determine the mode shapes. Carrying out this opera-

tion yields

It

T alsin(nnz)

|
|

= clalsin(nan a 2.51

Of prime interest to the problem are those values of
w? (the eigenvalues) which provide solutions to the problem.
Solution of equation 2.35 for ©? yields
2 p -
w? = P7 | 9KJ
N p-K
Now the root of interest is given by equation 2.50. Since p
is equal to dz, the substitution -(mr)? is mede for p. This

gives

2 o (rr ) ((nn)z + 9K

N ek 5

w
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Equation 2.52 provides the eigenvalues associated with
+he simply supported end conditions. It is of interest to
investigate some limiting cases of this equation. Suppose
that the value of K gets extremely small. This corresponds
to the interlayer connection approaching zero. Equation

2,52 then becomes

Substitution for N and solving for w gives

@ = (am)? [EI
pAL% 2.53

Equation 2.53 represents the natural frequency of
vibration for a simply supported beam of width b and height
h. This verifies that the solution limits properly at the
lower limit of no connection between the layers.

Suppose instead that K grows very large representing
the case of completely rigid interlayer connection. Equation
2.52 can then be approximated as

N

Substitution for N and solution for w yields
= (mr)? [9EI |
p.ﬁll'.-}'F
(rr)® _[27B1
3pALh

E
|

I
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or
@ = (nn)21f'EIs
pALY 2.54
where
I, = the moment of inertia of a beam of width b and
height 3h
Ag = the area of a2 beam of width b and height 3h.

Equation 2.54 shows that the solution limits properly to the
value of the natural frequency for a solid beam for the case
of very rigid connection.

Given the constants which make up N and K, it is possi-
ble to calculate all the eigenvalues from equation 2.52.

For convenience in plotting, the dimensionless factor ¥ will

be defined as

2+85
where
wy = the natural frequency of a solid beam equivalent
to one of the individual layers of the system.
With the aid of the definition given by equation 2.55,

Substitution into equation 2.52 gives

g = (om)? + 9K 58
(nm)? + K x
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A plot of ¥ versus K is shown in Figure 2.3 for the
first two modes of the pinned-pinned beam. In general, the
connectors become less effective at higher modes.

The eigenvalues and eigenvectors for alternate sets of
boundary conditions are found in exactly the same manner as
for the simply supported case. In each case the boundary

condition equations are written in the form

[BC] {a} = {o} X

The eigenvalues are then found by equating the determinant
of the B, C, matrix to zero.

The boundary condition at a free end which involves
both Y and F requires some algebraic juggling. By denoting

I as bh3 , this condition may be written as
12

m _ ng_pr = 0. s D7

Now using the values given by equation set 2.44, carrying
out the indicated differentiation and substituting in egua-

tion 2.57 yields after some manipulation
el(ualcos(yz) + aysin(yz)) + e2(33003h(az) + aasinh(az))
+ eBIaﬁcosh(Bz) + agsinh(pz)) = 0

where

2
L T 73 (L2_+ 91{) ’

y< +y
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3 @2~ 9K
e, = a (m)
and "
= g3 - K
23 B (hJ .

The B. C. matrices for a fixed-free, fixed-fixed and
free-free beam are shown in Figure 2.4. When the determinant
of these matrices is equated to zero, a rather large and
complicated transcendental equation results in each case.
This type of equation requires numerical solution.

A computer program was written to solve for the eigen-
values. In this program, for K and N given, a value of w was
assumed. The values of a, B and y were then calculated and
the determinant of the specific B. C. matrix found. Output
of the value of the determinant versus w showed where the
value changed sign and thus the eigenvalue was determined.

Once an eigenvalue for a particular set of boundary con-
ditions is known, its associated mode shape or eigenvector
can be determined. This is done by simply removing one of
the equations from the set generated in forming the B. C.
matrix. This leaves five equations in six unknowns which may
be solved by assuming the value of one of the ai's. The set
of simultaneous equations which generate the mode shape of
interest was solved using another computer program.

Plots of ¥ (as defined by equation 2.55) versus K were
generated for fixed-free, fixed-fixed, and free-free end

conditions from computer results. In each case, the value
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of ¥ had limits of 1 and 9. These have been shown previously

to be the proper limiting values for no connection and rigid

connection respectively. The plots had essentially the same

form as shown in Figure 2.3. Typical results are shown in

Figure 2.5 for a fixed-fixed beam. Typical mode shapes

generated from computer results are shown in Figure 2.6.
Copies of the computer programs used are shown in

Appendix III,
2.7 Solution for Boundary Conditions in Alternate Form

It will prove advantageous in a later section to use the
boundary conditions in a form other than those shown in
equations 2.25 through 2.27. To this end the boundary con-
ditions will be stated as functions of Y only, and the
equivalence of these conditions will be shown by the fact
that the solutions remain the same as those generated in the
previous section.

If the governing equations are written in the form
given by equation set 2.30 and F is solved for, the result-
ing equation is

F=3EL (yIV _ gky" - Nw?Y) 2.58
2hKL<

where K and N are as previously defined

For a pinned end the boundary conditions are given by

equation 2.25 as
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Y=0,

" =0
and

F=0.

Now since the equation for F is applicable throughout the
domain of interest including the boundary, substitution of

these conditions into equation 2,58 yields

Y=0,
" =0
and
yIV _ o 2.59

for the equivalent conditions at a pinned end in terms of
Y only.

In a completely similar manner, the conditions for a
fixed end and a free end may be found using equation 2.58,
and equation sets 2.26 and 2.27 respectively. If the indi-

cated operations are carried out, the resulting conditions

are
Y=0,
Yt =0

and
vV _ gkym = 0 2.60

at a fixed end and
Y= 0 -,
IV - Ne?y = 0
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and
YV - oKY™ - Ne2Y' = 0 2.61

at a free end.

The equivalence of these conditions is most easily seen
by investigating a pinned-pinned beam. If the boundary con-

ditions given by equation set 2.60 are used, the resulting

)

equations are

[BC] {a}

where now

[BC] =
0 1 0 1 0 TP
0 2 0 a? 0 B2
0 y 0 ak 0 BJ‘“

sin(y) cos(y) sinh(a) cosh(a) sinh(p) cosh(g)

~y“sin(y) -y<cos(y) a®sinh(a) a2cosh(a) stinh(B]'Bzcosh(B)

_y“sin(y) y4cos(y) a¥sinh(a) a*cosh(a) p¥sinh(p) B“cosh(al
When the determinant of BC is now equated to zero the result-
ing equation is

[(a? + y2) (g% - y¥) = (8% + y2) (o™ = y¥)]

sin(y )sinh(a)sinh(g) = ©
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which may be reduced to

2

(g~ = a®) sin(y )sinh(g)sinh(a) = O. 2.62

Since a and B are distinct, equation 2.62 reduces to
sin(y )sinh(a)sinh(p) = 0. 2.63

It is noted that equation 2.63 is the same as equation 2.48.
Following the same procedure as in Section 2.6, the result-

ing eigenvalues and eigenvectors are

y = n
where

noe=1,2.,3 s4s
and

In a similar manner the other conditions were used in
the computer programs and the results obtained will be the

same as those of section 2.6.



CHAPTER 3
GENERALIZATION OF THE THEORY

3.1 Introduction

In this chapter the results of Chapter 2 are general-
ized to systems consisting of an arbitrary number of layers
with a single plane of symmetry. The asymmetry can be con-
sidered to come from variation of the physical properties
from layer to layer, or from variation of the connector
modulus between joints. It can also arise naturally as with
the asymmetry associated with T-beams. It is assumed that
the plane of symmetry coincides with the plane of vibration.
This assumption avoids the complications associated with a
coupling of torsional effects with lateral effects.

Numerous examples are worked for the various types of
systems covered. Additionally, it is shown that the equa-
tions developed have solutions which limit properly to
expected results for a very high connector modulus.

Some discussion is devoted to the operator obtained for
a general system because it differs substantially from what
would be expected from a review of the work of Pleshkov (23)

and Rassam (24).
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A numerical procedure is presented to allow for the
jnclusion of the effects of variation along the length of
the beam of both the layer and connector properties.

Finally, the inclusion of damping in the solution is
considered and the limitations of the damped solution are

discussed.
3.2 Two layer System

The development for a two layer system is directly
applicable to a T-beam. Additionally, it is applicable for
the case where the two layers have different moduli of
elasticity. This case is handled by using the transformed
cross-section where a single modulus of elasticity is used
with transformed widths.

Figure 3.1 shows a T-beam with a8 transformed cross-
section which is representative of a general two layer

system. In this figure the following nomenclature is used:

h = the distance from the top of beam to the centroid
of the transformed cross-section (in.).
r; = the distance from the system centroid to the

centroid of the ith layer.

Now as with the three equal layer case, Newton's second
law is applied to the beam element shown in Figure 3.1 (¢).

The resulting equations are

Fl,x+F =0 ' 3'1
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4 (a) Beam with sign convention

(b) Cross-section

vV

i T ML% ‘ Myt xdx

1] F | AN
B p Y g +—- 1+F1,xdx
o} BT Mo+M, L dx

- Wy _)_.F +F,, _dx
%hz 2 T 2.%

.

.+
L_ dx 1 vV V’xdx

(c) Beam element

FIGURE 3.1 TWO LAYER SYSTEM
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2
Vise =\ 2445y oy 5 3.2
where
Ai = untransformed area,
and
2
vV = i(mi'x + riFi,xJ ' 3.3

where rotary inertia has been neglected. If it is now
assumed that each layer deflects the same amount such that

to first order each layer has the same curvature, then

and

Yy 26 =¥ 3¢ +

With these substitutions equations 3.2 and 3.3 are combined

to yield, for properties constant along the beam length,

2 e 2

It is now necessary to relate the Fi's to Y. Now pro-
ceeding as with the three equal layer case, the displacement

difference between the first and second layer is

F 3.5

ASp; = 2%

S_
kn
and

S Telax - felax 3.6
A = Je ax = J¢ .
21 o 2 PN
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where for tension taken as positive,

¢2 = the strain at the upper surface of the second

2
layer,
0%
and
ei = the strain at the lower surface of the first
layer,
= EE_ - El ¥ 2x »
F)
2
EAl
with
%
Al = the transformed area of the ith layer.

Equations 3.5 and 3.6 are now combined and differentiated

once to give

_F h, + h. _
sran,zx -g-* - Fl + (—l_a) Y’zx . 307
EA EA# 2
2 1

Equations 3.1, 3.4, and 3.7 represent a system of three
equations in three unknowns and are the governing equations
for the general two layer system. The set of equations is
reduced to two by using horizontal equilibrium (equation

3.1). By first noting from the definition of the centroid

- N * h,

2

Tn = T

2 1 L
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and eliminating Fs, then

2 2
ZELY e * (T =TTy gy F 30gMyY o = O 23
and
= 1 % X = s
kn B Al 52

As with the three equal layer case, there are six
boundary conditions necessary for the complete solution to
equations 3.8 and 3.9. From an inspection of Figure 3.1 (c)

it is seen that the end moment may be written as

h
= <« (h 1 h
MT ]‘-‘l.l-l-P"I2 (h2+2_)1;-1_221"2
which may be simplified to
_ 2
MT = *%EIY’zx - (1‘2 - rl)Fl . 3.10

similarly

Vg = ~SEIY 35 - (ry - rl)Fl,x . 3.11

Now following the reasoning used for the case of three equal

layers, the boundary conditions may be written as

=0

?

Y
Y,2x=0 ¢

Fi =0, 3.12

at a simply supported end,
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Y x=0,

Flx=0, 3.13

at a fixed end and
Y,Zx =0,

F, =0,

VT=0 ’ 3.14

at a free end.

Equations 3.8 and 3.9 are linear partial differential
equations with constant coefficients and the time dependency

may be separated out by assuming
Y(x,t) = ¥Y(x) cos(wt + ¢)
Fy(x,t) = F;(x) cos(wt + ¢) .

If the above substitutions are made and the necessary
manipulations are performed such that all beams are of
length unity, the governing equations given by 3.8 and 3.9

may be placed in matrix operator form as

SEI p* - Tphw? (f2 -~ 1) p? /¢
L& 1.2 0
A
0
- 2 2
(ry = 1) g kiL De - %JK%&.+ E%_) Py
Lz 1 AL
315
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where

The characteristic equation for Y or Fi may now be found
by setting the determinant of the operator matrix equal to

zero. This yields for Y after some algebraic manipulations

2
AR ST T LR L e L
EI(%‘F"’ ) 3.16
1 2
where
7 | 1
K = knL™ ( W )
4 r iz
and
2 .p.k B
N=7% (pi i
1 ET

Consider now a solid beam like that shown in Figure 3.1

(b). The moment of inertia about the centroidal axis may be
written as
2

= * 2 *
Is = %Ii -+ Alrl -+ Azr

= ZIi(ToC- )
where the transfer constant T.C. is defined as
A#rz 5 A*rz

T-Ca = 1 + l l 2 2 L) 3117

ZIi




67

The bracketed coefficient of vV ip equation 3.16 may be

expanded as

o4 g

1+ 1 [ri - 2r1r2 + rg) (_%_3__3) ;
=14 Ay + 4

It is noted from the definition of the centroid, with the

sign convention chosen, that

The coefficient may then be written as

2, % % L % 2, (a¥ L g%
A¥(AT + A (AT +
g (rl l( 1 2) £ 2( 1 Az))
21y AF ¢
L 2

or

2, % 23k
T.C. =1+ 1 (r A + r“A")
EIi 11 2 2

Equation 3.16 then becomes

VI

Y - (TlCo}KYIv

- Mo Y" + KNe = O . 3.18

The similarity between equation 3.18 and equation 2.33
for the three equal layer case is evident. The solution to
equation 3.18 follows the solution method shown in Chapter 2.

For convenience it is desired to write the solution to
equation 3.18 in the same functional form as that of the
three equal layer system. To do this, it is necessary to
show that the discriminant of the third degree polynomial

which results from the assumed solution is less than zero.
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Following the procedure shown in Section 2.5, the discrimi-

nant for the two layer case is found to be
’ 2 rul b 22 2k P » 2
pis = =Nw“ [N%%™* + Nw“K“(T.C.)* (& ET%-E—T ETT-g_Tz)
27 Z} - - L] 8l

£ KMTLC)R (2 o)l 3.19

From an inspection of equation 3.17 it is seen that T.C. is
always greater than one. Suppose T.C. is chosen as 1.05.

Then equation 3.19 can then be written as

Dis = -N2 [ (No® - .97k2)% + .3Nwk?)

27

which will always be less than zero for w real and K and
N> 0. It is clear that for all T.C. greater than 1,05 the
discriminant as indicated by equation 3.19 is less than zero.

The choice of T.C. equal to 1.05 represents no limita-
tion on the problem because it is indicative of a beam with
one area at least 60 times the other. This type of beam is
of no practical significance. Thus the solution to equation

3.18 can be written as
Y = a;sin(yz) + a,cos(yz) + agsinh(az) + a, coshlaz)
+ assinhlﬂz)+ agcosh(pz) 3.20
where 72, az, and 32 are the roots to the equation

p3 =(T.C.)Kp? - Nup + KNw® = O . 3,21
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The eigenvalues and eigenvectors can now be found for

the set of boundary conditions of interest exactly as shown
in Chapter 2. If, for example, the simply supported
boundary conditions are chosen and the procedure is followed,

the values of w? are given by

2
(o)< + (T.C.)K) . 3,38

2 kL
o? =t (i

If K is very large as when the layers are rigidly connected,

equation 3.22 then reduces to

w? = (T.C.) (nm)* .
N

Now solving for w by noting that

Epih:-= (pA)

and
(2I4)(T.C.) = I
gives
W = (nﬂ)z EIg - 3.23
(pA) L4

Equation 3.23 represents the solution for the natural
frequency of a solid beam with simply supported boundary
conditions and shows that the solution limits properly for
rigid connection,

For negligible K the limiting solution is

@ = (nm)? ZEI;

zpiAfLE

L 3-214'
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The physical achievement of this lower limit is open to

question. This is because for no interlayer connection,

each layer will tend to vibrate at its own natural frequency.

Since these {requencies are different, the assumption that

the layers always remain in contact will be violated.
Equations 3.22 and 3.23 may be used to obtain a useful

set of curves. First the following definition is made

2
E=u 3.25
— .
Ws
where
wg = the natural frequency of a solid beam of the same

cross~-section as the two layer system.

Substitution now yields

2
K
i o 3.26

Figure 3.2 shows a plot of & versus K for various values
of T.C., for the first mode. As an example of the use of
these curves, consider a T-beam made of two wood 2 x 4

sections, The following properties are assumed:

E, = E, = 10° 1b/in.? k = 3x10% 1b/in/connector.
b, = hy = 1.5 in. n=1.0

p = h.5x10'4-slugs/in.3 s = 3 in.
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From these data the constants of the problem are calculated

a8s
T.C. = 3.68,
K = 4.93
and
N = 2.5 x 1074,

Now interpolating from Figure 3.2, £ is found to be .525.

The natural frequency is then computed as
w =\fg_w3 :
= n? (g)(:.c.) ’
= 13.9 hertz,

as compared with 10 and 19.2 hertz at the lower and upper

limits respectively.
3.3 Three Layer System

The development of the equations for a general three
layer system directly parallels that of the two layer system.
Figure 3.3 shows a typical three layer system. Again, trans-
formed widths are used to compensate for modulous of elasti-
city differences. Referring to the beam element, Newton's
second law is applied such that the following three equations

are obtained:

i:Fi,x =0, 3.27
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- - > - —
]
y
(a) Beam with sign convention
i = —
h Ty

’. (b) Cross-section with l
one axis of symmetry (¢) Dual symmetric

cross-section

FIGURE 3.3 THREE LAYER SYSTEM
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MMy dx
F1+Fl xdx
’

M2+M2,xdx
F2+F2 xdx

:

M, +M., _dx

dx

373,x
F3+F3’xdx

V4V ydx

(d) Beam element

-

/

_'m
‘_q32dx

(e) Layer elements

MMy L dx
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Vl"‘vl xdx
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Tyt 3,

FIGURE 3.3-~-Continued
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V - Zp-A.Y 2t 3028

and

F 3.29

and

My =-ELY 5 -
With these substitutions, equations 3.28 and 3.29 may now be
combined to give

: 2 ip ST 0 0

s R T & G L 333

The Fi's are now related to Y through the slip equa-

tions. Since the slip permitted by a connector is propor-
tional to the connector force, the displacement differences

may be written as

3
8321 = (k@)o19
and

S
&532 = (E{) 32q32

These relationships may be rewritten using horizontal equili-
brium of the layer elements as shown in Figure 3.3 (e).

This gives

g .
8851 = -7 F1,x



76

and

S

The displacement differences may also be written in integral
form as

x
feudx fe%dx

AS
21 "

AS Teldx }Ld 3.32
L

Proceeding as with the two layer case, with tension again

taken as positive, equation sets 3.31 and 3.32 are combined

to yield
S_ F F h. +h
(kn,lgFl_,Zx 2* = ok (L 5 Z’Y,zx 3.33
EAz Eal
and
(knJF3 e _2$ Efx v (_ZLE__EJ Y ox 3.3
B, 1

Equations 3.27, 3.30, 3.33, and 3.34 form a set of four
equations in four unknowns and are the governing equations of
the general three layer system. The set may be reduced to
three equations in three unknowns by using equation 3.27 to
eliminate one of the Fy's. If F3 is eliminated the governing

equations may be written as
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3 2 3
PELY 4y * %(rB - Ty )Py o+ ZpAY 5 =0,

1

S_ F F By * Byee.
(kn]lel,zx =<l + B ¥ (——5——”,2;: =0

EA EA5

1
and

S F S_ 1 1
(kn)32F1,2x = ==+ Gkal3Fs ox = (¥ * 2a7F2

EAq 2 3

h, + h
2 b ]

The boundary conditions for the three layer problem are
now found in the same manner as with the two layer problem.
A total of eight boundary conditions are now necessary.

From Figure 3.3 (d), the end moment is written as

3 h h. h
MT":lml"(h3+h2+2-]—'-)Fl-(h3+§-a)F2*§2F3o

Which may be rewritten as

3 h h, h h
3 2
My, =_§EIiY, s (E_.+ h, + zl)F1 ” (E_.+ El)F2 -

Similarly

h h h, h
—_ - 3 - -2 -
Vg = =3EL;Y 5, - (24 n, + 2IFy - (G2 + JF,

Now following the previous reasoning, the boundary condi-

tions may be written as
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X =0 ,

Y,Zx =0,

Fl =O ’

g =0, 3.36
at a pinned end,

Y =0,

Y,x =0,

Fl,x= 0 3

Fz’x=0 ’ 3.37

at a fixed end and

Y o0 =0,

F, =0,

F, =0,

Vp =0, 3.38

at a free end.

The solution technique for the three layer system is
essentially the same as that for the systems encountered
previously. The main difference is only one of added alge-
braic detail. Once again simple harmonic motion may be
assumed. The governing equations can be written in linear
operator form. From the definition of the centroid, it is
noted that

~hy+b, 4 hy ¥ by
2 2

I.'B-I"l
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and

— h§ + h

Equation set 3.35 can now be written for beams of arbitrary

length as
Y 0
[2] 4rb =40
Fz_ 0
where
(L] =
g 2
SEI,D” - Zphw (Cy, + Cog
L&
2 2
2 2
with
_ h. + h.
Cij i ;
2%
3
G = ——
1] (knL )iJ
and
Ti =

o 8
EAT
I

G32U

=T, -T

The linear operator which provides the characteristic equa-

tion for Y or F is now found by taking
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L ’ = 0.

This operation yields after some algebraic manipula-

tions
2 L 2 z,_
Cqis L C
(ZEIG,, 0 )Ds_ {(G Ty [1* 12 32
21G35 : ]+GT[1+ ]
i 3 TR T, SEI = T53ET

EI 6 :
2 L
2 2
+ { (2pAw®) (G3,Ty + (Gyy + Gg,)T, + GlszJ} D -{(Epkmz)

(117, + 7,0, + T3Tl)} , 3.39

or

T<T., + T.T. + T.T 02T, + (Cyn + Cnq)?T. + C24T
+ { 172 * 225 Vet 4 Siply 12 = “g3¢ 4s ™ SRty
G21C832 G,y 322__

| 24

SEI G103, GB2 TEL
T1To + ToTq + T,T 2r 4
G21C;5, SEI
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The linear operator given by 3.40 will provide an eighth
order equation in Y or F where as before only a sixth order
equation was provided. The higher order is due to the fact
that there are now two F's involved in the equations where
only one was involved in the previous cases. The order of
the operator should reduce to six for the special cases of
three equal layers, a dual symmetric system, and a system
where one interlayer connection gets very large.

The first case to be considered will be that of a system
of three equal layers. For this case

Gij =

Ti =

G

T

C..=210
iy 12’

T

A

Ii = 3
Ai = 3
and
e
ﬁi = A ,

The operator given by 3.40 then reduces to

8 2 T2 2
D” - T J2[1+ h +2}DE’+ {3() 1 + 2h B T ad) A
{ h* 4 g v g - p D

G 3EIT EI
+ { I pAw?LA } p? -{3(%)2 phw?LE } 3.41
- EL EI

Noting that

hz = L
3EIT
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and letting

T = kal® = K

G SER
and

N = pAL¥
gives

p8 - 12kp® + (27K? - Mw?)D* + LKNGZD? - 3KNe? .
The above operator may be factored into the form
(D% - 3K)(D® - 9kD* - Nw?D? + KNw?) . 3.42

The first part of 3.42 will provide solutions independent of

w, of the form
Y = a sinh(J/3K z) + b cosh(y/3K z) .

Solutions of this form can satisfy the various boundary
conditions only for

a=b=0.
Then for a nontrivial solution, 3.42 reduces to

D8 - 9KD* - Nw?D? + KNw? . 3.43
The operator given by 3.43 when applied to Y gives

v

VI _ookyt - NeRY" + KNe?Y = O . I
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Equation 3.44 is equivalent to equation 2.33 developed
previously. This indicates that the general three layer
operator limits properly for the special case of three equal
layers.

Now consider a dual symmetric system such as an I-beam.
This system should also have a sixth order equation since a
symmetry argument can be used to show that F, is zero. For

the dual symmetric system

Gij=G’
A1=A3=A,
T1 = T3 = T

2 2 r?

Making the above substitutions into 3.40 and factoring

yields
2T, + T) 2
[D* - (____3G 1008 - L1 + 2ok
- spAL*? 2 | 7 spArhw?; 3.45
SEI G =EI

The first term of 3.45 will provide solutions of the form

Y=a sinh(\/2T2+T z) + b cosh(\/2T2+T z) ,
G G

which again will satisfy the boundary conditions only for

a=">b=10 ,
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Thus for non-trivial solutions the linear operator is

reduced to sixth order. The reduced operator, operating on

Y, vields the following equation

VI _ (T 2r? \ IV _ SpAL%  2yy
Y (G)[l t &)Y - S @
+ (E’.})(EEQLL’ W)Y = 0 . 3.46
IEI

The moment of inertia of a solid beam with a dual
symmetric cross-section as shown in Figure 3.3 (c) may be

written as

= 1 -
or since
2 w12 - 2
and
then
I_ = =I(T.C.) = SI(1 + 2Ar%)

pAl

where T.C. is a transfer constant.

If it is notéd that

2 2
2r° 9 4 2Ar
trmEr ittt ST

then equation 3.46 may be written as

YT L or.eu )kt - NwdYT 4+ KNeRY = 0 3,47
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where
K = knL®
SEA
and
N = spAL¥
SEI

The solution to equation 3.47 will follow exactly the
procedure outlined in Section 3.2. Following the reasoning
of that section, it is immediately evident that the solution
to 3.47 will reduce that of a solid Euler beam as K gets
very large.

The case of letting one interlayer connection approach
infinity will now be considered. This is equivalent to a
two layer system and the characteristic equation should be
sixth order. Suppose that klz approaches infinity. Then

G,1 approaches zero and the operator given by 3.39 reduces to

CyoL

6
- {4 (GasT[1 + + G,,T,) SEI | D +{( EI)(TyTo + T4T
{ <=2 leEI] <R L, } %4_ R

2 2 2
+ T3Ty) + CppTy + (Cyp + Cp3)~ Ty + 023T1}1f*1-{(2pkm2)

3.48

The operator given by 3.48 is indeed sixth order, but is

algebraically complicated. To avoid too much algebraic
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detail, consider the case when the layers started as equal

lavers. Then 3.48 may be written as

EIG T[2+ ]136 + ( EIT2 + 6h%T)Dk

+ 6GTpAwD® - 9T%pAw? . 3.49

If the operator is now applied to Y and the definitions of

T and G are used and noting that

h2 =4 ,
3EIT

then the resulting equation is

i 22knL2 yIV _ %ETZ* w2y + kan %T_mzx =0. 3.50

Now consider a two layer system with equal bases but
with

For a two layer system with these areas, the problem con-
stants may be calculated. These were given in Section 3.2

as

(F+ %) = zzkan ,

9EL

;:lx
S

=
0

F=

LV ]
mr
H
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and
r.c. =1+ (200(° + am? -3,

9 An®
12

Now substitution into the general governing equation for a

two layer system yields

T _ gknr? Y1V b o2yn 4 knL ALY %Y = 0 . 3,51
%SEE EET“ 25EA

The equivalence of equations 3.50 and 3.51 shows that
the three layer system properly reduces to a two layer system
as one connector modulus gets very large.

The solution to the general three layer problem
parallels the previous solution procedures except for detail.
If the operator given by 3.40 is applied to Y, the resulting

equation is

Yyl _ conlYVI + (con2 - NwzlYIv + (con3) (Nw?)Y"
- (conh)(ﬁuz)Y _ 3.52
where
2 4 2 Lh (G ,
o C1pL T __2__ 3y * G55
conl = *1[1 + + (1 + ] + T, )
il v - TySEL 2 Gp005,
L
. ) ) R S (0 S ) L
con2 = 12 2°3 ang, i )
G21G32 Fa1%32%H
(2.7, + (Coy + Co)?T. + C2T.)
CypTy + (Cyp # Cpal T, + CpaTy 1
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T (G5 #+ /G T
con3 = Gl + : 21 32) T, + 3,
21 G21642 G32
ol e Tsz + T2T3 + TBTl
and
N = szLLP
ZEI

Now proceeding as before, the solution is assumed in the
form

1% 3.53

This solution when applied to equation 3.52 yields an eighth

order polynomial equation in d which is written as

d® - (con1)a® + (con? = K2)a* + (condNu®)a® = (cont)iNe®)
-0. 3.54

It is noted that only 2n powers of d exist in equation 3.54.
Thus, the polynomial may be reduced by making the substitu-
tion

p=d4d" .
The resulting polynomial is
p¥ - (conl)p3 + (con2 - N'mz)p2 + [conB)(Nwz)p

- (conk)(Nw®) =0 . 3,55
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The solution for a particular set of boundary condi-
tions may now be found by using the methods shown previously.
Using the solution form of equation 3.53, a boundary condi=-
tion matrix is formed. A value of w is then assumed and the
roots are computed using equation 3.55. The determinant of
the boundary condition matrix is then computed. The zero's
of a plot of the value of the determinant versus w provide
the eigenvalues of the problem.

The easiest eigenvalues to compute are those for a
simply supported beam. From an inspection of equation 3.55,
it is seen that regardless of whether con2 is greater than
nnz or not, there are three sign changes in the polynomial
equation. This indicates that three of the roots to the
equation have positive real parts. Since all the constants
are real, the roots must be real or occur in conjugate pairs.
Since only one root has a negative real part it must then be

real, Denoting this root as yz, it is easily shown that the

solution for a simply supported beam is

Y = Asin(yz) 3.56
where
2 2
y© = =(nm)
with
n = 1,2,3 .o
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with this information and equation 3.55, the values of wz

which are of interest may be computed. Solving for w2 yields

(nn)# + conl(nr)? + con2)

2 b
Wi iﬂ%l_ ((nn)4 + con3(m)? + conk 3.97

As a check on the validity of the above solution, con-
sider the case when both connector moduli get very large.

For this case, equation 3.57 reduces to

2 L
w* = (mr) con2 3.58
- conk

where
2 _ 2 2
con2 = 1 + 012T3 " (812 i 023} Tz * 623T1 " 3.59
conl BL (T-T, # T T, + Tals)
i e s 1)

Now it is noted that

T, = 1,
7 vy
r -1
12 = —352—41 '

and

_ rq = ©
Gyt bpy = ‘2‘52'1

Substitution of the above relationships into equation 3.59

and simplifying yields



91

- 2 2 2 2
sggi =1 + ((r2-2r2rl+r1)(A1A2)+(r3-2r3rl+rl)(A3A1)

2 2 -1
#(rg-2ryr +r2) (A4,)) ((Z1)(Ap+A+hs)) ™ 3.60

From tne definition of the centroid it is noted that

rlﬁl + rzﬁz + r3A3 =0 . 3.61

If equation 3.61 is squared and the cross product terms are

solved for, the resulting equation is

- 2 N A 4
2r2r1A2Al + 2r3r2A3A2 + 2r1r3A1A3 = -rlﬁl-rzﬁz-erB : 3.62

Substitution of equation 3.62 into equation 3.60 yields after

some manipulation
con2 = 1 + Alri + Azrg + Ajrg .
conl sI

Equation 3.58 then becomes

4 2 2 2
w2 = (m)YE(ST + Agr] + Aprs + Agrl) 3.63
SpAL&

For a solid beam such as that shown in Figure 3.3 (b),

it is evident that

phs = Zph
and

_ 2 2 2
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Equation 3.63 then becomes

: L
2 _ (nr)*EI ) 3.60
PASLL

w

Equation 3.6L represents the eigenvalue equation for a
solid Euler beam with simple supports and indicates that the
solution will limit properly for very stiff connectors.

The solution for any given problem is simply a matter
of calculating the problem constants and then using equation
3.57 for simply supported beams or forming a boundary con-
dition matrix for alternate end conditions.

As a particular example, equation 3.57 was used to show

2 for a system of three equal

the variation in the value of w
layers but with different interlayer connection properties.

2 _
Figure 3.4 shows a plot of @E versus KZE for various values
W

12
of Ky5. It is noted that 2
wz = the first mode eigenvalue for the system
and
m§ = the first mode eigenvalue for a system with

equal interlayer connection properties of

K =Kqyz-
From this figure it is seen that for high and low values of
K15, a factor of two, difference between the interlayer pro-
perties is of little consequence. For intermediate values

the error can be approximately 16%.
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3.4 N Layer System

The theory is here generalized to allow for a system of
n layers with one axis of symmetry. As before, layers with
differont material properties may be treated by using the
transformed cross-section. Figure 3.5 depicts a five
layered system which serves as an aid in generalizing to n

layers. From this figure the following nomenclature is

noted :
h = the distance from the top of the beam to the
centroid of the transformed cross-section (in.).
ry = the distance from the centroid of the transformed

cross-section to the centroid of the ith layer.

Applying Newton's second law to the free body diagram
in Figure 3.5 (c¢) yields

n
{Fi,x =0 3.65
n
n n
V == %Mi,x + %ripi,x 3.67

As before all layers are assumed to deflect the same amount

and have the same curvature, therefore

Yi20 = ¥ ¢
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(a) Beam with sign convention

=1

(b) Cross-section

(c) Beam element

L e
My Vet MM
Fi%1 H_ Fy+F; L dx
—r + 1
qi+l,idx Vy Vl’xdx

(d) 1P layer element

FIGURE 3.5 N LAYER SYSTEM
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and
Equations 3.66 and 3.67 may now be combined to yield
n_ n n
%hIiY,hx - %riFi,zx + %piAiY,2t =0 . 3.69

For an n layer system there are n + 1 unknowns (nF's
and Y), and n + 1 equations are needed. Equations 3.65 and
3.69 provide two of these equations. The additional n - 1
equations must come from slip relationships. For systems
consisting of two or three layers these relationships can be
obtained without recourse to the movements of the inner
layers as has been done in previous sections. For four or
more layers, however, this is not the case.

The term of interest is the relative slip displacement
between ad jacent layers. It is assumed that each layer
slips as a block. As before, the slip permitted by a con-
nector is directly proportional to the load transmitted by
the connector. In a completely analogous manner the slip of
a layer is directly proportional to the load transmitted to
the layer. From Figure 3.5 (d), the force transmitted to
the ith layer in some dx length is Fi,xdx' For continuous

shear connection

_ F

S, = 3.9
* (Keq)i

3.70
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where
S5 = slip of the 3th layer in inches
and
(Keq); = equivalent stiffness per unit length in
1b/in/in.
Similarly
Si+1 = "1 ox
(Keq) 41

The relative slip is then

ASi41,1 = Si41 - 5y
-Fin1x - TF_iJ.J)r_ ; 3.71
Kealyyy roi

The displacement difference between the i + 1 and i layers

may also be found by integrating the strains as

xu oL
ASi41 i =ofei+ldx -ofeidx 3.72
where
EE+1 = the strain in the i + 1 layer evaluated at its
upper boundary
and
L

the strain in the i layer evaluated at its

m
]

lower boundary.
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From an inspection of Figure 3.5 (d) for tension taken as

positive, equation 3.72 may be written as

X F. i h. F M
ASie1 4= J {( i L Suly ol _-1_221)} ax .
| EAY,, Eljy gAY EI,
Equations 3.71 and 3.73 are now combined and the substitution

indicated by equation 3.68 is made to give

F 2 EF F
i+1l,x Fy e = f{ i+l + i(n + h. )Y dx
s - LeX — ‘lE =\ y] X ‘
(Keali+1 (Keq)i © LEAjy; EA] 2 3.7

Finally, equation 3.74 is differentiated to change the form
to a differential equation. This yields

Fitr,ox . F1 Py Py 4o
TReqly,; (Keal;  EA],; EAF

where
P | .
Cip1,i = 5 (hyyq + By) .
Equation 3.75 provides the needed n - 1 slip relationships
since in an n layered system there are n - 1 sets of adjacent
layers.
Equations 3.65, 3.69, and 3.75 provide a system of

n + 1 equations in n + 1 unknowns and represent the governing

set of equations for an n layered system. The horizontal



99

equilibrium equation may be used immediately to eliminate

one of the F;'s, say Fn. This gives

n n-1
ELT e e, ~Ta 0Py oy * EPAY 2 e 3.76
and
F F
Fooox _  1,2x = o R SR
y
n-1 n-1
- X F -2 F F
1 52 _Talax _T ) foTndl g ¥, . 3.7
: ¥
(Keq),  (Kea) ,  Ea® EAj,

Equations 3.76 and 3.77 provide a system of n equations
in n unknowns. From an inspection of these equations it is
seen that a total of 2(n + 1) boundary conditions are neces-
sary for their solution. These boundary conditions may be
found in a manner similar to that shown for the three layer
problem. From an inspection of Figure 3.5 (c¢), the end

moment may be written as

n n
=zrd-z(zh+_JF-
A TN S=141

Which may be rewritten as

n n-1 h n-1 h
Mp =-2BLY . = T (B+ = h,+ i)F; . 3.78
1 ’ i=1 2= =i+l 2

Similarly
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n n-l(h n-1 h ) _
Ve = ZELY - T (at+t T h: + 1P . 3.79
T 148 47 i 4070 X

Now following the reasoning used in Chapter 2, the boundary

condif lons may be written as

Y =0,

Y,Zx =0 ,

Fl =0,

- .80

Fn—l =0, 3
at g pinned end,

Y =0 ,

Y’x m_ .

Fl,x =0

Fn-l’x " 0 A 3.81
at a fixed end and

Y@Zx- =0,

Fl =0,

Fh—l =0 ,

Vo =0, 3,82

L at a free end.
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Equations 3.80 through 3.82 indicate that at any end there
are n + 1 boundary conditions. Thus, the necessary total of
2 (n + 1) boundary conditions are available.

The solution now proceeds as in previous sections.
Equations 3.76 and 3.77 form a set of n, coupled, linear
partial differential equations with constant coefficients.

Hence, simple harmonic motion may be assumed such that

Y = Y(x)cos(wt + ¢)
and

F; = Fi(x)cos(mt +9) .

If the above assumptions are made the equations may be

expressed in linear operator form as

-

C Y
Y 67
[L] " 5
Aok e JOK
I;n-l 0 3.83
- < &

where [L] is as shown in Figure 3.6 for

n 4"

D —
dx™

As before, the linear operator which provides the character-
istic equation for Y or Fi may be found by setting the deter-

minant of the operator matrix equal to zero.
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In general this operator will be of the form

p2(n+l) , ap?® 4 bDZ(n-lJ .

s T+ 1 3'85
where

n = the number of layers.

It is readily seen that once the equations are in the
form given by equation 3.83, the problem can be solved in a
manner similar to that of a two layer system. The algebraic
complexity will, however, increase greatly.

Some discussion on the order of the operator as given
by 3.85 is necessary. From 3.85 it is seen that in general
the order of the operator depends upon the number of layers
in the system. This contradicts the results of Pleshkov (23)
and Rassam (24). Although their work concerned static bend-
ing and column buckling respectively, their results shown in
Chapter 1 indicate that the operator should be independent
of the number of layers in the system. In arriving at their
results, both authors have used geometric constraints to
eliminate some of the unknowns in a given problem. For the
general case these constraints may be written in the nomen-

clature of this work as

ASyg,x _ 61y
'&SRL,X Cx1,

. 3.86

The use of the above constraints allows for n - 1 of

the Fi's to be solved in terms of the remaining F;. This
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leaves only two dependent variables and following the pro-
cedure given for a two layer analysis, the operator reduces
to the same order for all systems.

The constraints given by equation 3.86 are not true in
general, They represent an approximation used for the sake
of expediency, and their use can be shown to lead to erro~
neous results for certain cases. To see this a four layer
system as shown in Figure 3.7 (a) is analyzed.

Consider first the results obtained by Pleshkov. His

equation for static bending was given in Chapter 1 as

. L 2 2,
Exi, d7Y - LG(EI. 4°Y + M) = - @M
k —jr %— s 2
dx Q dxz' dx

From statics for a beam under a distributed load it is noted

that

Iﬂ-
.o
=
f

i
e

With the above substitution, differentiation twice yields

6 4 2 -
Ezi, d°Y - 4LG(EI_ d¥Y - q) - d°g =10 . 3.87
ki B ® g 2

It is now assumed that the beam is not statically loaded but

is rather undergoing simple harmonic motion such that

q = Tphe?Y .



(a) General four layer cross-section

(b) Actual reduced cross-section for
G1 very large

77

%

(c) Reduced cross-section for Gy very
large using Pleshkov assumption

FIGURE 3.7 FOUR LAYER CROSS SECTIONS
WITH REDUCTION
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Equation 3.87 may then be rewritten as

o (48 Is sphw? 42y , (4G Zphw? . _
I Eik) 2‘3 = (—_%ﬁ;) g;_g_Jf (B Z}h}{)z =0. 3.88

(=" s
% P
vl

Equation 3.88 has the same functional form as a two layer
system with the only difference being in the form of the
constants. From Chapter 1 it is noted that for a four layer
system
- Gl + G2 + G.3
3

3.89

Suppose that Gl gets very large. The problem should reduce
to a three laver system as shown in Figure 3.7 (b). However,
from an inspection of equation 3.89 it is seen that as Gy
gets very large, G also gets very large, and as a result,

equation 3.88 reduces to

a*Y - sphw® ¥ =0 . 3.90
ax¥  BIg

Equation 3.90 is the governing equation for the free vibra-
tions of a solid beam as shown in Figure 3.7 (c).

The fact that use of equation 3.86 leads to incorrect
results for certain limiting cases shows that it provides at
best an averaging process of the connector properties
through the depth of the beam. This indicates that the
geometric constraints are not valid if there are large dif-

ferences in connector properties between layers.
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Now consider the case where the interlayer connections
are all the same. Equations 3.7l and 3.72 provide two
expressions for relative slip. Using these expressions and
the constraints provided by equation 3.86, the following

relationships may be written after some manipulation

(Fa,2x = F1,2¢)%32 = (F3 2x = Fp 2,)Cx 3.91
and
F Fq - 7 F
( 2,2X . ___1;23()032 = i;{zx - i;zx)ﬂzl . 3.92
A2 Ag 3 2

The two relationships given by equations 3.91 and 3.92
should be the same. Note that if-Af is changed such that
021 remains the same (i.e., an increase or decrease in its
base), then equation 3.92 will change while 3.91 will not.
This indicates that the geometric constraints given by
equation 3.86 are approximate even for the case of equal
connector properties. If, however, a further restriction is
placed on the problem such that the areas are equal, then
equations 3.91 and 3.92 are equivalent. For this special
case, equation 3.86 is exact and always valid.

Consider the case of four equal layers. TUsing the con-
straints given by equation 3.86, the following relationships

may be written:

By = Ey i .. 3.93
F3 - F2.
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gy =~ F

2 1 =1 . 309‘&
Fh - F3

Now using equations 3.93 and 3.94 coupled with horizontal
equilivrium, F,, F3’ end F; may be solved in terms of Fq.

Carrying out the indicated steps yields

and

F =-F .
1

4

If these values are substituted into equations 3.69 and 3.75,

the resulting relationships are

LETYY + 10 h FY - LphoY = 3.95
3
and
F
hY" - 2 SFr -2 "1 =0, 3,96
Tknl 3 ER

Now proceeding ss with the two layer case, the equation in Y

can be obtained as

VI v - |
Y'" - 16 kn ¥ E Zyn 4 kn Aw 3.97
SER EET“

It is seen that for very large k, equation 3.97 reduces to

Ty
Y - pAg w?Y =0, 3.98
EI_.

S
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Which is the governing equation for the free vibrations of a
solid beam of height 4h.

For very small k, the equation for non-triviasl Y is

y IV _ Eﬂwzf S0 3.99

EI
Which is the equation for the free vibrations of a solid
beam of height h.

The use of the constraints have thus reduced the com-
plexity of the problem for the equal layer case. The con-
straints are not necessary, however. The general formula-
tion given by equations 3.83 and 3.84 should give the same

results. For the case of four equal layers

C'i‘l'l,i = h ;

(KB_Q)i - g_g = al.. :

1 =k =T
EA* EE
i
and
(:-4 - r_i) = (4 - 1)h

Now using equation 3.8,
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where

[z ]

=

LETD®-LphAu® 3hD? 2hD? hD?
D2 GD2-T -GD24T 0
hDe 0 GD2-T -ap%T1 |
hD? GD2-1 GD2-T 26D%-2T

After some algebraic manipulation, the resulting equation

for Y is found as

2 AR 6 /2 L
D = PECD™ = T = Pl h® )D
(07 - Pom - 07 - 20 o

2.2 2
- pAw D + T pAw®)Y = 0 . 3.100
EIL G "EI

It is noted that the general operator is tenth order. The
operator equations of the form
2
(D = T)Y =0
G
have solutions of the form

Y = asinh(/T x) + beosh(/T x) .
: /&

These solutions can satisfy the boundary conditions

only for a = b = 0. By noting that

= kn

T
G SEX
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and

1 + 5k = 16
T

the final equation for Y may be written as

Y 16 kn T -

2+ 2 :
Aw=Y" + kn Aw“Y = 0 . 3,101
SEA FI

SER

The equivalence of equations 3.97 and 3.101 indicates
that the more general formulation of the problem gives the
same results as the case when the approximation used by

Pleshkov and Rassam is valid.
3.5 A Numerical Approximation

The closed form solutions obtained in previous sections
depend in s large part on the assumption that the section
properties and both connector modulus and spacing remain
constant along the length of the beam. Once these restric-
tions are lifted, the resulting equations are best solved
numerically,

Approximation techniques abound in the literature and
are quite varied. Each has its strong and weak points, and
no method provides a panacea (see for example ref. 33). It
is the purpose of this section to provide an example of a
numerical method which shows that the equations developed
in previous sections are amenable to numerical solution.

To this end the method presented will be chosen from the

standpoint of simplicity and ease of understanding, rather
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than such use criteria as computational speed and accuracy.

0f the many methods available, perhaps the most straightfor-
ward is the finite difference technique. It is this method

that will be developed here as an example.

When approaching the problem by the finite difference
method, it must first be decided whether to use the equations
in their coupled or uncoupled form. The coupled equations
have the advantages of using lower order approximations for
derivatives, and uncomplicated boundary conditions. They
have the disadvantage of requiring much higher order matrices
for the same number of mesh points, as when the equations are
reduced to a single uncoupled equation (38). From the stand-
point of simplicity it is best to use the uncoupled equation
even though the higher order derivatives limit accuracy.

The method developed will be applicable to simply sup-

ported beams whose general equation is of the form

YT o oavTV _ B2y 4 oy =0 . 3.102

This limitation means that the beam must consist of two
layers, three layers with dual symmetry or n equal layers.
Additionally the fact that w? appears in equation 3.102
indicates that the changes in properties are not of such a
drastic nature that the simple harmonic motion assumption is
violated. This eliminates working in Xx,t space and its

associated solution stability problems.
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It is assumed that the systems of the form given by
equation 3.102 have been nondimensionalized with respect to

length such that they may be written in the form

% _ a12ahy - prhw24?y + e18u2Y = 0 . 3,103
dz dzh dz.z
Now taking
; 1
h = 7

where n is the number of equal sections into which the beam

is divided, and multiplying equation 3.102 by 16 gives

Y =0 . 3.104

h0aby - a12 % atv - prdw? 1° @%Y + o1
4z  n? gk b dz?  mb

Making the substitution

and writing equation 3.104 for the 1th beam element gives

6 |
677y - ayL%My, - byIhe2r, + o182y, = 0 . 3.105
n® nk nb

The following central difference operators may be
obtained from a Taylor's expansion about the point Y(z¢nh):

(see for example reference 32).

2. |
§7Yy = Yy4q - 205 + Y44y
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§7Y; = Vypp = by + 6T, = &Y, o 4T, .
6y _ _ _
& Yi Yi+3 - 6Yi+2 + 15Yi+1 - ZGYi + 15Yi—1 -'6Yi-2 + Yi-B

Substitution of the central difference operators into equa-

tion 3.105 and collecting like terms yields

i i p i 1 2%
Y3 = By o + (By - RIWONY, | = (R, - Rw™)Y,
i i =
4 (R2 e Raw 4 R1Y1+2 i+3 0 3.106
where
2
Ri aiL + 6
';2*
2
L
G N
2 n2
L
L
3 nk ’
6a-L2
RS = i  + 20
b nz
and L
B n.i nz

Equation 3.106 provides the recursive formula for use
in writing the finite difference equations. Prior to this,

the boundary conditions must be imposed. This implies that

.
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the values of all Yi outside the beam length must be speci-
fied in terms of Y, inside the length. To this end, the
boundary conditions must be specified in terms Y only. The

conditions at a pinned end are

Y =0,

y" =0
and

F=0.

to
Y =0,
Y.rr = 0
and
AT, 3,107

Suppose the beam in question has been divided into n
segments and numbered from YO to Yn. From the first of

conditions 3.107 it is seen that
Y =Y =0. 3.108

Since Y, and Yn are known, it is only necessary to write
equations for Yy through Y, ;. Thus, from equation 3.106,
it is seen that values of Y 5, ¥ 4, Y 44, and Yn+2 are
needed. Using the difference operator for the second deri-

vative, the condition
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¥"(o) = 0

implies

Y -2 +Y =0

and from equation 3.108

Y5 = ”Yl . 3.109
The condition

YIv(o} =0
implies

Yo=Y g +6Y =LY, +Y,=0
and from equations 3.108 and 3.109

Y_z = -Yz . 3.110
In a2 similar manner it is found that

o1 = Ypaa
and

Using these boundary conditions, the recursive formula
may now be used to write a system of n - 1 simultaneous

linear homogeneous algebraic equations of the form

[R] {?} = 0 3.112
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The terms of interest in the set of equations 3.112 are
the values of w?. To solve for these values it is necessary
to change the form of the equations. Equation set 3.112 may

be written as
[G] Y + w_z[H]{Y} = 0 3.113

where

[G] + w’[H] = [R] .

For the finite difference equations in the form given
by equation 3.113, there are a number of techniques for
solving for the eigenvalues. These techniques generally
involve some rootfinder. For a non-singular G matrix, equa-
tion 3,113 may now be placed in standard form for performing

a sweep iteration procedure as follows:
[G] {Y} - -wz[i-l]_{Y} )
(617 'tea {1} = wfre~rmfy} .

},2 [U]{Y} = ['D]{Y} 3.114



118

where

[o]

-1
[G] [G] = a unitary matrix
and

re1 brHy .

(D]

Now using equation 3.114, the n - 1 eigenvalues and eigen-
vectors may be swept out from highest to lowest. The first
eigenvalues are numerically more accurate than the last.
Since they are found in decreasing numerical order, the
first value found using 3.1l4 corresponds to the highest
value of iﬁ , or the lowest value of we,

A computer program was written to solve the finite dif-
ference equations. This program uses a standard matrix
package available in most computer libraries. Illustrations
of the G and H matrices for n equal to seven are shown in
Figure 3.8 and a copy of the computer program is shown in
Appendix III.

As a check on the method, the special case of three

equal layers was run. For n equal to sixteen, the following

results were obtained:

First mode K =1 ¥ =1.74 By = 1.736
First mode K = 1000 Y = 8.86 Tc = 8.92
Second mode K = 1 ¥ =1.16 ¥.=1.20
Second mode K = 1000 ¥ = 8,47 ?c = 8.70

where

¥ s = closed form solution.
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[G] =
Fﬁi-ni R;-l -Ri 1 0 0 0
RZ-1 -Ri Rg -Ri 1 0 0
-Hi Rg -Ri RS -Ri 1 0
1 -Ri RS -RFRY &% A
0 1 R R R, RS -3
0 0 3 e B —Ri Ro-1
o 0 0 1 -’ RIa RZ-RZ
[H] =
PR% R; 0 0 0 0 0
R§ R: Rg 0 0 0 (6
0 R; Rg Rg 0 0 0
0 0 R4 ag R 0 0
0 0 0 Rg ag R2 0
0 0 0 0 Rg Rg Rg
0 0 0 0 0 Rg R

FIGURE 3.8 MATRICES FOR FINITE DIFFERENCE SOLUTION
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For first mode calculations the finite difference error
was for all practical purposes negligible. For second mode
eigenvalues, the error was on the order of four percent.
Thus, it is seen that the finite difference technique gives
reasonably good results for the simply supported case con-
sidered even though higher order derivatives were used.

The use of the uncoupled equation is not without pro-
blems, however. This can be seen by looking at the condi-
tions at a fixed end for the three equal layer case. In

Section 2.7 these conditions were found to be

and
' - gym =0 .

The third of the above conditions contains the fifth deriva-
tive as well as the third derivative. For an error of order
hz, the fifth derivative requires a seven point expansion,
where a third derivative requires only a five point expansion.
Thus, this boundary condition presents only one equation in
two boundary unknowns. A symmetric extension of the deflec-
tions with respect to the fixed end will satisfy the third

boundary condition, but in such a manner that

ym =0 .
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This extension leads to completely erronecus results. Thus,
it is seen that the higher order derivatives in the boundary
conditions provide complications. These complications can
be overcome by using combined forward, backward, and central
difference operators, or special techniques as reported by

Gary and Helgason (37).
3.6 The Case of Damping

The mathematical models developed in previous sections
do not account for the presence of damping in the systems to
which the models apply. This is somewhat paradoxical in
that the slipped system should provide inherently better
damping than the material damping of the members, yet the
mechanism which generally accounts for the largest part of
the damping (i.e., friction) has been ignored. Nevertheless,
the fact that the mathematical formulation does not expli-
citly contain damping terms does not preclude the considera-
tion of damping altogether. By making certain assumptions
and simplifications, a damped system may be investigated.
The assumptions that are made are motivated by practicality
and essentially involve the fact that the amount of damping
present, though greater than material damping, is still
small.

In Chapter 1 it was pointed out that slip damping is
governed by Coulomb friction. When the amount of damping is

small, the anelysis of equivalent viscous damping may be
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used. This method assumes that the damping is viscous, that
is, it is represented by a force proportional to the veloc-
ity, but opposite in direction. Thus, the damping is repre-
sented by a linear viscous model even though the system is
following a different physical law of damping.

Meirovitch (11), among others, points out that in
general damping produces a coupling of the normal coordinates.
However, in the case in which damping is light, it is possi-
ble to obtain an approximate solution by considering any
coupling due to damping as a secondary effect.

Using these assumptions, the equation of motion for the
i%h normal mode with no forcing function may be written in

terms of the generalized coordinates as

;ii(t) + C;lj_(t') + wizqi_(t) =0 3,118
where

1 = generalized coordinate,

C = damping constant
and

wy = the natural frequency of the ith normal mode which
is found using the results of the previous

sections.

Equation 3.115 is now solved in a standard manner by assum-

ing that

2
= l] .
1 %aje . 3.116
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Using the assumed solution in equation 3.115 yields the

values of r. as

]
_ .0 Z |
=Y L S T 3.117

A

The behavior of the damped system depends upon the
numerical value of the radical of equation 3.117. It is
standard to use as a reference quantity a value of C which
reduces the radical to zero. This value is called critical
damping and is designated C . The actual damping in the
system can be specified in terms of critical damping by using

a nondimensional ratio called the damping ratio. This is

defined as
by- 5
i cc
= 0 a
2W4

With these definitions, equation 3.117 may be written as

g = (-$tV1Z2 -1 ), . 3.118

For the cases of interest here, } is less than one. By
a simple redesignation of constants, equation 3.116 may be

rewritten as

11 = Iie;ynit sin (V1 -1 it +o.) 3.119
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where Ki and ¢; are constants and depend upon how motion is
initiated,

Equation 3.119 provides the solution for the generalized
coordinates. It provides an oscillatory motion with dimin-
ishing amplitude. The frequency of the damped oscillation

is given by
wd = W -\gzwi .

For damping ratios on the order of one tenth or less, wy is
essentially the same as Wy .

It is emphasized that the solution governed by equation
3.119 provides an approximate answer only. However, this
answer will give reasonable results even though the damping
mechanism is more complex than the simple viscous model

assumed under the conditions stated.
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CHAPTER &4
SELECTED TESTS
4.1 Introduction

To provide an examination of the validity of the pro-
posed theory, some simple tests were performed. The tests
were limited to simply supported beams consisting of three
equal layers. It was attempted to span the range of natural
frequencies by varying the connector modulus. Thus, the
connector properties were chosen without regard to struc-
tural significance.

Past experience with static bending and column buckling
indicates that a proper knowledge of connector modulus is of
prime importance in the slip system. For this reason effects
due to EI variation were kept to a minimum by constructing
the layered beams from aluminum layers.

In this chapter the test equipment and procedures used
are detailed. The results obtained during testing are pre-
sented and compared with the proposed theory. OSome discus-

sion is also devoted to the problem of damping.
4.2 Test Equipment

The beams used in the experiments were fabricated using

three layers of 6061-Té6 aluminum. Each layer had nominal

125
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dimensions of 1/4 in. x 4 in. x 72 in., and was drilled with
a 23/64 in. diameter drill at 2 in. centers both along the
beam and across the width as shown in Figure 4.1 (2). The
layers were joined together by press fitting different types
of connectors into the pre-drilled holes.

The support system consisted of two simple supports
spaced 70 in. apart, and anchored to a concrete floor by
means of heavy bolts (see Figure 4.1 (b)). From the figure
it is noted that the specimen actually rested on two points
at one end and one at the other. This was done so as to
minimize the damping associated with the support system and
torsional effects.

Vibration of the beam was sensed by a moving shadow
cast on a silicon photoelectric cell. The photoelectric
cell was mounted with a direct current light source and was
supported underneath the test specimen.

A shadow was cast on the photocell by means of a shadow
vein. The shadow vein consisted of a thin, rectangularly
shaped, piece of metal which was fastened to the test speci-
men by adhesive tape.

The voltage output of the photocell is proportional to
the area of the cell which is exposed to light. The cell
used was rectangular, and since the shadow vein cast a rec-
tangular shadow, the voltage output of the cell is a linear

function of the displacement of the test specimen.
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The voltage was fed from the cell to a two channel
Brush Mark 220 oscillograph through a balancing circuit.
Thus, the vertical vibrational displacement was converted to
time-displacement recordings on a strip chart.

Schematics and photographs of the vibrational testing

system are shown in Figures 4.2 through 4.4.

4.3 Connector Modulus

As mentioned before, an accurate determination of the
connector modulus is necessary if a reasonable prediction of
system behavior is to be made. An accepted test procedure
for connector modulus determination involves the use of a
double shear joint.

The force was applied to the joint in a gradual manner
using an Instron universal testing machine. The relative
motion of the outer members of the joint with respect to the
center member was measured using two dial guages. These
measurements were averaged and the average value taken as

the connector deformation. By taking the totsl force and

dividing by the number of connector facings, a plot of con-

nector deformation versus force per connector was made. The
slope of this plot represents the connector modulus. A
typical plot and a schematic of the test set up are shown in
Figure 4.5.

Three different types of connectors were used in making

the specimens. These were rubber, low density polyethylene,
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FIGURE 4.3 VIBRATION TEST SYSTEM

FIGURE 4.4 VIBRATION SENSING SYSTEM
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and nylon. The connectors were cut from long sections of
material. It was found that the polyethylene and nylon
specimens had variations in diameter of some 18 thousandths
of an inch. OSince the properties of polymers change drasti-
cally when cold worked (i.e., pounding into the pre-drilled
holes), it was felt that there could be considerable varia-
tion in slip properties between the test sample and the beam
itself, For this reason an additional test was made for
connector modulus.

The additional test was made on the total beam. The
beam was placed on the supports with a concentrated load at
midspan. The displacement at midspan was then measured.
Using the load and deflection, the connector modulus could
be determined with the aid of the theory developed by J. R,
Goodman (1, 2).

Goodman has shown that for a beam with three equal
layers under a concentrated load, the deflection of the beam

is given by the following coupled equations:

Y=Y.+8S 1F, . Lol
S Sknh U

= C P g < C l-U)X . 12

Fpo= - __2_-E— sinh[ﬁz(L:UJ]s:.th{—}_j_X + C_QP( T 4
s A : 1
31nh¢61L
where

Y = deflection of the beam,
Yo = deflection of the equivalent solid beam,
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FL = axial force in the left hand end of the beam,
- 9kn
1 = &8
C. = knh
2~ 38ET °
P = load,

U = point of load application measured from the left
hand end as a fraction of L

and

5
I

length of the beam.

For the case when U and x are equal to %3-equations L.l and

L .2 may be combined and written in the form

_ C,P 1 8 8
Y = 2 ] b ‘{ L
. C1 [% '/C_l v lyCy 2)][§knE] bs3
where
AY =Y - Ys 7

Equation 4.3 can be used to find the value of k by
assuming values of k and checking to see when the right hand
side is equal to the known left hand side. This method was

used for an additional determination of the connector modulus.
L., Test Procedure

In addition to the connector modulus tests previously
described, some preliminary tests were made on the individual

layers prior to construction of a test beam. These tests
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consisted of simply measuring, weighing, and vibrating the
individual layers to determine values of certain physical
parameters such as mass per unit length, moment of inertia,
and modulus of elasticity.

A vibration technique was used for the modulus of elas-

ticity measurement. For a simply supported beam vibrating

in the first mode, the natural frequency is given by

W = Tl EL
UpAL}*

Solving for E yields

ATl
g - (PAL w )2 .
(--—--I )(TTf) Lok

For all other constants known and w measured, a value of the

modulus of elasticity can be determined from equation L.L.

When a test specimen had been constructed, it was
placed on the support system with the shadow vein attached.

The electrical system was then balanced between the photocell

and brush recorder, and the beam was ready to test. The
specimen was set into vibration by depressing the center
point until the recorder pen was just off-scale, and then
quickly releasing the specimen to excite the first natural
frequency.

To test repeatability of the results, each specimen was
tested a total of six times, twice on each of the flat sides

and twice with the beam reversed on the supports.
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From each of the time-displacement graphs, data were
collected for the computations which were performed. The
data included the number of cycles in a given length of
strip-chart and the amplitude of the first and some other
cycle. These allowed for the determination of natural fre-
quency and damping ratio.

The natural frequency was determined by multiplying the
number of cycles occurring in some chart length by the speed
of the chart divided by the chart length. That is

f, = number of cycles x chart speed (mm/sec)
chart length (mm)

where

fn_= the natural frequency in hertz.

The decrease in vibration amplitude gave a measure of
the damping present. This was done by making use of a quan-
tity known as the logarithmic decrement. The logarithmic

decrement can be defined as

& =1 1n (EQJ &b
n K,
where
& = logarithmic decrement,
n = number of cycles,
Ks = initial amplitude
and

A = amplitude after n cycles.
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For the motion given by equation 3.119, it is noted that

'y
1 1n(=2) = 1 1ne™¥on"
n Al’] n

=‘Lwn'r . 4.6

where

7 = period of damped oscillation

2n0 ] b7

oqlJlrtz

I

If equations 4.5, 4.6, and 4.7 are combined for the case
when '}, is small such that its square can be neglected with

respect to one, the resulting equation is

=1 1n(2) . 4.8

Using two amplitudes taken from the decay curve and equation

4.8, the damping ratio for the system tested was determined.

k.5 Test Results

The results from the tests of the physical properties
of the layers and the connectors are shown in Tables 4.1 and
L.,2. It is noted that the length specified in Table 4.1 is
the true length of the beam whereas the length used in vibra-
tion equations is the span length (i.e., 70 in.). The modu-
lus of elasticity value specified is an average value taken

from vibration of the individual layers.
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TABLE 4.1 PHYSICAL PROPERTIES OF THE LAYERS

Layer Length Height Area Weight E
in. in. in.? Grams 1b./in.2x10"6

1 72 . 256 1.02 3282 10.5

2 72 +255 1.02 3270 10.6

3 72 .256 1.02 3280 10.5

TABLE 4.2 CONNECTOR PROPERTIES

Connector n S kL kh

i, 16 Jin. 6103 Ib.finx10
Rubber 2 2 wH25 . 700
Polyethylene 2 2 2.75 3.80
Nylon 2 4 90.0 150.

In Table 4.2 it is seen that two values of the connector
modulus appear. These are denoted as kL and kh which are low
values and high values respectively. For the rubber connec-
tors, the two values arose from the fact that the connector
modulus was nonlinear. Instead of treating the problem in a
nonlinear fashion, it was decided to take two linear values
of connector modulus from the plot of deformation versus

force applied. For the polyethylene and nylon connectors the
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connector modulus was linear. However, due to the problems
mentioned in section 4.3, two different measurements were
taken. For both polyethylene and nylon connectors the high
value of the connector modulus came from using the beam test
as given by equation 4.3 and the low value from direct mea-
surement, The spread between the high and low measurements
of connector modulus represents an uncertainty band in
determining the true value of the connector modulus.

The test results for the layered systems are presented
in Table 4.3. Using the average value of natural frequency,
the results can be compared to the theoretical results in
graphical form as shown in Figure 4.6. Typical strip-charts
are shown in Figure 4.7. The chart speed used in the tests

was 25 millimeters per second.
k.6 Discussion of Results

In general, the tests agreed quite favorably with the
proposed theory as far as the ability to predict natural
frequency is concerned. Figure 4,6 indicates that in each
case the theoretical value is contained within the uncer-
tainty span of connector modulus.

There are certain factors that could cause the system
to deviate from an ideal three equal layer system. It is
felt that the fact that the layers were drilled had small
effect on the assumption of constant EI along the length.
This leaves only the connector properties as a real source

of .deviation.
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TABLE 4.3 LAYERED SYSTEM TEST RESULTS

& cycﬁsec ¥ L
R1 5.35 1.22 046
R2 5.35 1.22 .050
R3 5435 1.22 .048
Rl 5,35 1,28 .0L9
RS 5.35 1.22 047
R6 5.35 1.22 049
] 5,35 1.22 .0L8
Pl a2 2.23 .079
P2 7.27 2.23 076
P3 7.27 2.23 .079
Pl 7.16 2.17 .075
P5 727 2.23 074
‘ P& T=27 2.23 .072
P 7.25 2.22 .076
’ N1 12.8 6.94 .0065
N2 12.8 6.94 .0074
N3 13.0 7.16 .0065
Ny 12.8 6.94 .0092
N5 13.0 7.16 .0092
N6 13.0 7.16 .0069
' ] 12.9 7.07 .0076
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There are two possible ways in which the connectors can
produce deviations from the ideal system. These are that
the interlayer connections differ between layers, and that
the connector modulus is not constant along the length.

The first source should have almost no effect on the
results of this test. This is because an average value was
taken during the slip test as explained in Section 4.3.
During this testing the deformation of one side was never
more than twice that of the other. This indicates that the
worst disparity between kj, and k23 would be less than a
factor of two. The natural frequency can be calculated using
the general three layer theory for k23 twice the value of
k15« It can also be calculated using the three equal layer
equations with an average value of k. When the two results
were compared, there was less than a 1% difference.

This leaves the fact that the connector modulus was not
constant along the length of the beam as a primary source of

uncertainty. The large disparity in the moduli as measured

by direct slip testing and by beam theory indicate that the
connector modulus was in fact not a constant. This is borne
out by the fact that certain connectors had to be cold
worked much more than others as described in section 4.3.

It is emphasized that it was attempted to attain a con-

stant connector modulus even though a non-constant modulus

resulted, Non-constant connector moduli are more represen-

tative of reality than constant ones. This is especially
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true of nailed wood structures. Even though it is possible
to obtain a solution for non-constant moduli by numerical
means, the éssumption of a constant modulus gives quite rea-
sonable results if one is willing to accept a range of
uncertainty in the ability to quantify the connector modulus.

The damping ratios found during testing were all less
than 10% of critical. These ratios are small, and assump-
tions made in arriving at the damped solution given by
equation 3.119 are justified. Even though the damping
mechanism is different than a linear viscous model, the
viscous, small damping solution gives an adequate represen-
tation of the vibration decay envelope for the range of
damping investigated. Thus, given a damping ratio for a
beam system, the developed solution, given by equation 3.119,
will provide a proper representation of the time-displace-
ment behavior of the system.

Even though the damping was small, there was a signifi-
cant increase in the damping associated with the slipped
system as compared to materisl damping (i.e., material damp-
ing ratio for aluminum .000003). However, the damping
ratios measured included the effects of support dissipation,
connector damping, and air damping as well as the slip
effect. If damping is to be optimized it would be necessary
to separate these effects from one another. To do this

would require extremely well-controlled tests. This is seen
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from the fact that even though it was attempted to minimize
support damping and to make each test exactly the same, the

nylon tests showed a variation in damping ratio.




CHAPTER 5
SUMMARY AND CONCLUSTONS
5.1 Summary

In this study, a theory was developed for the trans-
verse vibrations of layered beams with the effects of inter-
layer slip included. Starting with the special case of a
three equal layer system, the governing equations for beams
of increasing complexity, up to an N layer system with one
axis of symmetry, were presented. It was shown that in
general the number of simultaneous equations necessary to
describe the system behavior is dependent upon the number of
layers in the system. Upon uncoupling it was shown that an
N layer system yields a single differential equation of
order 2(N + 1), Additionally it was shown that the order of
the equation could be reduced using geometric constraints
such that a system of N equal layers will yield a sixth order
equation upon uncoupling.

The boundary conditions necessary to solve for the
natural frequencies were presented. It was shown that the
necessary number of boundary conditions such that the problem
is well posed is available. The boundary conditions were
checked by the use of the principle of minimum energy as a

means of developing the equations of motion.

145
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A solution technique was employed to solve the equa-
tions in closed form for various sets of the boundary con-
ditions. The validity of the equations was tested by
comparing their solutions at their upper and lower limits
with well known results for Euler type beams. In all cases
the limiting solutions were shown to give expected results,
for example, very stiff connectors tend to limit to the
equivalent solid beam.

Several non-dimensional graphs were generated to show
the effects of variation in the physical and geometric pro-
perties of the layers and in the connector properties on the
natural frequencies of the layered system. These graphs
allow for the prediction of the system natural frequency for
known values of certain problem constants.

The problem of damping was considered in a simplified
sense. Motivated by the practicality of obtaining a solu-
tion, it was assumed that the highly complex damping mecha-
nism associated with slip could be replaced with a linear
viscous model and that the damping was small. These simpli-
fications negated any coupling due to damping and allowed
for solution of the decay envelope in a standard manner.

In addition to testing solutions at their limits,
further verification of the theory was attempted through
experimental means. Some simple tests were performed for
the special case of a three equal layer system. The natural

frequencies predicted by the theory were compared with the
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test results. The agreement between theory and test was
generally good. The tests also showed that for the connec-
tors considered, the linear viscous damping solution gave an
adequate representation of the damped system behavior, and
that the slipped system possesses good energy dissipation

capability.
5.2 Conclusions

The theory presented in this study allows for the pre-
diction of the vibrational behavior of layered beams with
interlayer slip within the confines of the small damping
assumption. The system behavior is largely dependent upon
the strength of the interlayer connection. As the connec-
tion becomes stronger the slip effects tend to disappear and
the system approaches a solid Euler beam. Additionally it
appears feasible that where stiffness can be sacrificed,
improved damping is available by increasing slip.

Although the theory developed is directly applicable to
vibration problems, it is evident that the problems of
static bending and buckling may also be considered. The
general treatment presented here does not involve the use of
the geometric approximation employed by Pleshkov (23) and
Rassam (24). Thus, the exact nature of this approximation
can be understood and limitations as to its applicability
can be found. This appears to be an area worthy of further

consideration.
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During the course of this study, some questions arose
that should be given further effort. In general, these
questions concern the connector, As stated before, the con-
nector modulus is of prime importance in predicting system
behavior. Therefore, it is necessary to know its value as
accurately as possible, or to know within what bounds it can
be predicted., This indicates the need for experimental work
such that a rational procedure is available for predicting
the connector stiffness properties as it will occur in a
"non-laboratory" situation.

The other area in which the connector properties are
important is that of system damping. An accurate prediction
of damping or a method of construction whereby damping can
be optimized can only come about after a large experimental
effort., Although previous efforts have shown that the
hysteresis loops associated with wood systems do in fact
reach a reproducible state and lend themselves to being
replaced by their viscous equivalents, no method exists for
an gccurate prediction of what the system damping capacity
will be. That is, for a given connector system, the ability
to predict the damping ratio with any confidence in its
accuracy is doubtful. This fact is borne out by tests run
on the three layer system. The total system damping is
dependent upon the damping of the connectors themselves as
well as that due to interlayer friction. The maximum total

damping was not obtained from the system where the slip was
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maximum but rather at some lesser value of system slip.,

Thus although the frictional damping tends to decrease since
there is less slip, the total damping increases. Therefore,
although it is reasonable to state that a system with inter-

layer slip has greater energy dissipation capabilities than

does a system without slip, the quantification of the damp-

ing is not yet possible.

A study of the entire area of connector properties
should provide a ground for fruitful efforts. As the know-
ledge of this area increases, so will the ability to predict

system behavior.
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APPENDIX I

LIST OF SYMBOLS

Ay = Ares of the ith layer

AI = Transformed area of the ith layer

Ii = Amplitude of vibration for the i'" normal mode
A, = Area of a solid cross-section

a; = Constant in polynomial equation

a; = Constant in assumed solution

b; = Constant in assumed solution

[BC] = Matrix of boundary conditions

C = Damping constant

C., = Criticel damping constant

¢y = Constant relating Y and F solutions

Centroidal distance between i'th and jth layers

4}
[
L=
Il

Con = Constant in general three layer solution

p"h = Operator indicating the nt! derivative with respect

to the space variable
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(D]

Dis

1]
[C]

CH]

I
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Matrix in numerical solution

Root of polyncmial equation

Discriminant of third degree polynomial
Modulus of elasticity

Axial force in the ith layer

Natural frequency in cycles per second
Average connector modulus used by Pleshkov
Flexibility per unit length between ith and jth layers
Matrix in numerical solution

Matrix in numerical solution

Height in equal layer system

Height of the ith layer

Height from top of beam to centroid of cross-section
Moment of inertia of the ith'layer

Moment of inertia of equivalent solid beam

Imaginary quantity ()

Effective connection

Keg; = Equivalent connection for single shear test
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Connector modulus

High estimate of connector modulus
Low estimate of connector modulus
General matrix operator

Beam length

Bending moment in the ith layer
Total moment on a cross-section
Mass per unit length of beam

Ratio of mass per unit length of beam to the

summation of layer bending stiffnesses
An integer number
Point load
Root of reduced polynomial
Load transmitted by a connector
Distributed load
Constant in determining Dis
Load transmitted between the ith and jth layers

th

i recursive constant for nth beam element
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Distance from centroid of beam to centroid of

ith layer
Constant in determining Dis
Slip of jth layer
Connector spacing
Axial stiffness per unit length for the th layer
A transfer constant relating I;and the summation of I
Time
Shear force on beam element
Shear force on the ith layer element
Total shear
Space variable
ith beam normal mode
Beam deflection used by J. R. Goodman
Solid beam deflection used by J. R. Goodman
Dimensionless space variable
Root to sixth order polynomial

Root to sixth order polynomial
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y = Root to sixth order polynomial
asij = Interlayer slip between ith ang jth layers
AY = Additional deflection due to slip used by Goodman

& = Logarithmic decrement

58 = nth central difference operator
ei = S%rain in the i®h layer at the lower edge
e? = Strain in the ith layer at the upper edge
L = Damping ratio
|
1 = Generalized coordinate
A = Lagrange multiplier
; 3 = Ratio of two layer eigenvalue to solid beam
j eigenvalue
: Py = Mass per unit volume of ith layer
l o = Stress level
T = Period of damped vibration

P = Phase angle

¥ = Ratio of three layer eigenvalue to single layer

eigenvalue
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¥ . = Closed form eigenvalue ratio

E
Il

Natural frequency in radians per second

£
I

Eigenvalue




APPENDIX II
ALTERNATE EQUATION DEVELOPMENT

In this section the equations of motion for the three
equal layer beam are developed from a variational standpoint.
Detailed discussions of such terms as Lagrangian multiplier,
Hamilton's principle, etc. may be found in references 11, 12,
19, and 34.

Hamilton's principle reduces a problem in dynamics to
the investigation of a scalar integral. The condition which
renders the value of the integral stationary leads to all

the associated equations of motion. A mathematical state-

ment of this principle is

T2
§ J (T -=V)dt =0 L=,
ty

where

T

Il

kinetic energy
and

V = potential or strain energy.

I

For the case of three equal layers, the kinetic energy is

simply

L 2
Y
T(t) = 2 df 3pALSE] dx . II-2
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The strain energy will come from three sources. These
will be called bending, axial and slip which is a measure of
the energy stored in the connectors due to fact that the
layers slip relative to one another.

For bending strain energy

L3
Vb(t) = %- J/ & (moment)(curvature) dx
o 1

=1 s 3Br 2X]%ax . T3
o 8X
For axial strain energy
O
v (t) = E-of LF A%,
_1 [2f%ax . II-4
2 Q

For slip strain energy

L
v (t) = %’ J £ (force causing slip)(slip distance)
o
1 L
=5 df [q.85,, + ch323] dx .

Noting from Chapter 2 that

&Sij = q

=
3 e
.

c
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and
Qs = af
e 8x
yields
L .5 g2F
Vole) =3 T B H%x . I1-5
o}

Substitution into equation II-1 gives

t2 L 2
3pA.eY 2 3EI8°Y,2 1 F2_ g
5 t{ {of[ ) (a_t) 5 (;;2') - IE H J ]dx}dt & 5
I1-6

Y and F are related. The constraint equation relating them

was developed in Chapter 2 as

2% 2
S 8°F . F -~ hpfX=0. 11-7
kn 2 AE 8%

In a variational problem, two variables subject to a
constraint may be treated ss independent variasbles by intro-
ducing a new variable, say A, multiplied by the constraint
equation, into the function to be minimized. Thus the

minimizing expression is

L |
5 f{f[é&(%}z-ﬂcﬁgf-LFz-s_(a.}:‘.)z
£ 2 ® 2 ex E kn X
2 2
“n (B RE L F -haY)]dx}dt=o I1-8
Ko ox? " RE ax?
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or
7L Fraen als(al 22¥, (02
JL3pA ( - 3EI (8=L) . 2 F§F - 2S sFs
tq {0 ot \5t) - 3 ax axz) Eg?c' [g-x_)
2
8“F 2y
-~ -F -n%) - 36( +A_ §F
kn sx2 ~ 1® ax? ;;E AE
2
+ m 5(28E)jax Ldat =0 . i
: 6(;;2.] X } 7 9

For interchangesbility of intergration and since § and g
at

and § and 3 are commutative, then intergration by parts may
ax
be used. Thus

t
t 2 t
2 Y X 2 2
A 81 - = A ﬁI,&Y = e
t{ 3ph 22 5(at)dt 3ph 25 ol t{ 3pA 2?_, sYdt

= nga_lamt ,
ty at?

since the initial and final configurations of the system are

| prescribed (i.e. 8Y = 0 at t, and t2).

Similarly
2 2 2y Y 3 4
8°Y 6(.:_.21) = e_[—-7°_ (3 J] -8 Y 5Y] + LEY 5Y
ax%  BX 8X 8X 8X ax ax '

oF 5(F) = 8 [aF §F] - a°F &F ,
8X 8Xx ax aXx ax
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°Fy _ o F A
M(2F) = & as(e)] - &[5k 47] + ﬁkzaF

ax
and
2y 2
ka(ﬁ—id =8 hé( ) - 8%\ sy

Applying the previous results to equation II-9 and

collecting terms gives

t2 L L 27& 27& 2
-f{msm-l-hﬂ_ma v+ (5 82 _ o5 0%F
t; Lo axk ax2 g -—§J ® b ax2 gﬁ 8 X%
A+ 2F) sp + (S o °F -F ~-h 82Y) SA] dx
"I kE kn‘"‘? IE s
5 L % L
+ (3B22L - m) s(8Y) | - (3EI2 - b &) 4y |
sz 8x o ax Bx (0]
L ¥ L
25 (25 aF - 5 an ldt =0 . II-10
+ s )l 20 2l knax)aFl}dt 0

The terms evaluated between the limits o and L provide
boundary terms for the problem. The terms Y, F and N may be
varied arbitrarily and independently throughout the domain

o < x < L. Then equation IT-10 can be satisfied only if

Ly . 2

2 Y - + : a8 Y = =
3ET = h fi"? 3ph o 3 0, =11
s 8% 2p _n_+ 2F =0 II-12

- 28 2F
knmox?  f= 2z T KE AE
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and

2 2 |
S 8°F . g -~ h 8T =0, I1-13
kn ;2 AE i

From equation II-12 it is seen that
N = 2F

and the governing equations for the three equal layer

system are

L P -
3E1 27X _ 2y 2°F 4+ 3pA 2%Y = ¢ IT-14
axl' ax2 Bt2
and
2 2
g 8% ¢ . wBIag II-15
kn ax2 iE ax2 |

with boundary conditions

(3E1 22 ) s (&L T 0

3y F I
(3ET 2°5. - 2h 2%) Y = 0
' 833 3x L

and

L
- (aE - -
F& (&5) L 0 . I1-16

It is evident that the above equations and boundary

conditions are equivalent to those developed in Chapter 2.
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100

999
ic2

1013

101

15C

2CC

499

5C0

104
1€5

1CCO
LCO1
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PRCGRANM GRUNT
LOINPUT ,OUTPUT y TAPES=INPUT, TAPES&=0UTPUT)
FIND EIGFNVALUES AS PER FORM

NIMENSION TMEGASQI(30),CSTS(3),RCNTS(3),BCMATI(6,56)

1yRNEG(30) yKPOSLI30) +RPOS2130),DET{30)
READ(S,1C0OINSTEP,DELTO
FORMAT(I5,F10.5)

FEADISy102)CCNLsCNN2

FORMAT(2F20.10)

IF(EDF,5)104,103

IFLAG=C

READ(S,101)OMFGASG (1)

FORMAT(F10.5)

DO 15C [=2,NSTLP

J=1-1

AMEGASQ (I ) =CMEGASS (J)I+DELTD

CONTINUE

CSTS(1)=CON1

CSTS(2)=CON?

no 260 IT=1,NSTEP

CSTS(3)=NMFGASQIIT)

CALL CLBICICSTS,RCCTS,IFLAG)
PNEGILTI)=RCCTS(L)

RPNS1(1T)=RCOTS(2)

RPOS2(I1)=RCOTS(3)

IFIIFLAGL.GT.0) GO TO 1CCO

CALL FORM[CSTSRCCTS+BCMAT)

CALL DETERM(RCNMAT,D)

DET(II)=D

CONTINLE

WRITE(69499)CONL,CON2
FORMAT(1H142F20.5)

WRITE (69500) (DMEGASCII) ,DETIT) 4RNEG(T)RPOSI(])
LeRPOS2(T)91=1yNSTEP)

FORMAT(LIHO ySXeF 1S TsX 3R 15.535XsF15.745XsF1547,
15XsF15.7)

GO TO 999

WRITE(6,105)

FORMAT(1HO,#THATS ALL FCLKS®)

STOP

WRITE(6,1001) IFLAG,IT

FORMAT (#ERRCR EXIT--IFLAG=%[2,%][=%[?)
END
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SUBROUTINE CUBIC(CSTS,RCOTS,IFLAG)
COMPLTES ROOTS OF CuBlc
DIMENSION €CSTS{3),RCLCTS(3)
P=—G . #CSTSI(1)

Q==CSTS(2)*CSTS(?)
R=CSTSL1)*CSTSI2)%CS5T5(3)
AX=(3.%x0=-P2P) /3.

AX= (2. %P*P%P—-9 . 2P%Q+2T. ¥R ) /27,
DIS=RXERX/4G +AX¥RAXXAX/2T -
IFI(DIS)1,2.10
PHI=LACDS(=BX/2./SURT{=AX®AX®AX/2T7.))) /3.
XCOEFF=2.%SCRT{=AX/3.)
CON=C,(1T7453292519943
X1=XCCEFF*CCS(PHII-P/3.
X2=XCOEFF*CCS(PHI+120.%#CON)-P/3.
X3=XCOEFF*COS(PHI+240.%CIN)=-P/3,
TFIX1) 34445

ROOTS(1)1=X1

ROOUTSI2)=X2

ROOTS(3)=X3

GO TC 11

[FIX2)Vh9tb, 7

RCOTSIL)=X2

ROGTSLZ2)=X%1

PCOTSI13)=X3

GO TC 11

IFIX?)Bs4,9

pOOTS(1)=X%12

rOOTSL2)=X1

ROOTS(3)=X2

GO To 11

IFLAG=1

GO 1O 11

IFLAG=2

GO TC 11

TFLAG=3

GO T0 11

1FLAG=4

RETURN

FNDE
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SUBROUTINE FORMICSTS,ROCTS,RCMAT)

PaCoe MATRIX FOR FIXEN=FIXED SEAM

DIVMENSION RCOTS(3)4RCMATI6,6),CSTS(3)

SINFUN=ARSIRCOTSI(1))

GAM=SQRT(SINFUN)

ALPH=S RT(RCOTS(2))

BET=SCRTIRECTS(3))

C1=SINFUN¥CSTS(1)/(SINFUN+CSTS(1))
C2=RCOTSI2)#CSTSI1)/(RCCTSI2)=CSTSIL))
C3=RCOTSI3I)ECSTSIL)/Z(RCOTS(3)-CSTS(1))

F1=(GAMXSINFUN)#* (SINFUN#9,*CSTS(1)) /{SINFUNSCSTS(1))
E2=(ALPH*ROCTS(2) )« (RCOTS(2)=-9,*%CSTSI1))/(ROOTS(2)-CSTS(1))
E3=(RET*¥ROOTS(3)IE(RCOTS(3)=9,*CSTS(1))/(ROOTS(3)-CSTS(1))
CHALPH=.S*(FXP(ALPH) +EXP(—ALPH))

SHALPH=,. 5% [EXP(ALPH)-EXP(-ALPH))
CHBFT=.5*%(EXP{BET)+FXP (-RET))
SHRET=,5%(EXPIBET)-EXP{=BET))

BCMAT(1,1)=C, $SBCMAT(1,2)=1.
BCMAT(143)=Ce SBCMAT(1,4)=1.
RCMAT(1,45)=0. $RCMAT(1,46)=1.

ACMATIZ,1)=0GaM $BCMAT(2,2)=0,.
RCMAT(2,7)=ALPH $BCMAT(2,4)=0.
BCMAT(2,5)=RFT SBCMATI2,6)=0,
RCVMAT(3,1)=0C.
BCMATI(3,2)=SINFUN%%2
BCMAT(3,3)=0,
BCMATI 3,4 )=RCOTS(2)%%2
BCMATI(3,5)=0C.
BCMAT(3,6)=RTCOTS(3I)%%2
BCMAT(441)=SIN(GAM)
BCMAT(4,2)=COS(GAM)
BCMAT(443)=SHALPH
BCMATL4,4)=CHALPH
BCMAT{4,5)=SHRET
RCMATL4,6)=CHBET

BCMAT A, 1)=GAMXCOS(GAM)
BCMATIS,2)=—GAMESIN(GAN)
BCMAT(5,31)=ALPHZCHALPH
BCMAT(S44)=ALPHESHALPH
BCMATLY,5)=RFT®CHRET
RCMAT{546)=RETESHBET

BCMATIE, 1)=STH(GAM ) =SINFUN®%?
BCMAT(£42)=COS(GAM)ESINFUN®=D
BCMAT (65 3)=SHALPH®XROOTS(2) *%*2
BCMAT( 6434 )=CHALPH*RONTS{2)%2%2
BCMATIE&,5)=SHBET*RCUTS (3)*=22
BCMAT{6E,6)=CHBETHRLCOTS () # %2
RETURN

END
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31

32

41

™
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10
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SUBROUTINE NETERMI(RCMAT ,D)
COMPLUTES DETERMINANT
DIMENSION BCMATLE:6)3A06,6)
DO 2C0 I=1.6

NG 200 Jd=leb
AlLsJ)=BCMATIT )

n=l-

K=1

CONTINUE

KK=K+1

[S=K

I T=K

P=ABSIA(K;K})

DU 7 lzK'f)

po 2 J=K,6

IFEARSIALT yJ))-B)Y2,2,21
1S=1

IT=4

B=ABS(A(I,J))

CONTINUE

IFLIS=K)3,3,3]

PO 32 J=K;6

C=A(15,4)

AlISed)=ALK,y )

A(KyJ)==C

CONTINUE

IF(IT=K)4, 4,41

NN 42 [=K.6

C=A[1,1T)

Al IT)=A(T4K)

A{L,K)=-C

CONTINUE

D=AlKK)*D
IF{A(K,K))5,71,5
CONTINUE

DO 6 J=KK,5
A(KeJ)=A(KJ) 7A{K,K])

N &6 1=KX,6
W=A(IyK)%2A(Ked)
AlTodi=AlT,J)=W
IFIABRSIALT s J))=oC0001*ABS(H)IEL 646
All4Jd)=0.
CONTINLE
K=KK
IF(K=611,70,1
D=Alts6) %D
RETURN

END
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PROGRAM MNODES
LEINPUT,OLTPUT 4 TAPES=INPUT s TAPE6=CUTPUT)
C CETERMINES MODE SHAPE AS PER FORM
DIMENSION A(6)4BI15,6):Y(30)4D(30) XVI5)sX(5),
1C{5,6) s YN(30)
READ{S+ 1COINSTEP,DELX
LCC FORMAT(I5,Fl10.5)
KER=C
Di1)=0.
pC 10 1=2,NSTEP
J=l-1
PLI)=DLJ)+DELX
10 CONTINUE
567 READIS5,101)GAM2,ALF2,BET2
101 FORMAT{3F20.10)
IF{ECF,5)996,698
S98 READ(5,102)1C1,C2
102 FORMAT(2F10.3)
WRITE(6,2C0)C1,4C2
200 FORMAT(1HL ,* Cl=%F10.3,% C2=%F10.3)
CALL FORM(B,GAM2,ALF2,BET2,C1,C2)
CALL LINSOLVIB,C,X)
All)==1,
0 2C I=2,6
J=1-1
AlLT)=X(J)
20 CONTINUE
CALL DEFLEX{YyDsA GAN2,ALF2,BET2,NSTEP]
DO 3C I=1,NSTEP
YNLL)=Y(D)/Y(L)
30 CONTINUE
HR!TE(61201]“‘[]1[’1.&I
201 FORMAT({LIHO,®A*S ARE®6E20.5)
WRITELG64202X(DCTI) o YII) g YNLE) I=1,NSTEP)
202 FORMAT(3IE30.T)
GO TO 997
969 WRITE(£4203)
203 FORMAT(1HO.#AND SO IT 15%)
END
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SUBROUTINE FORM{B,GANM2,ALF2,BET2,C1,C2)
MODE SHAPE MATRIX FOR FREE~-FREE BEAM
DIMENSICN B15,6)

GAM=SQRT(GAM2)

ALF=SQRT(ALF2)

BET=SQRT(RET2)
CCLl=GAM2*C1/(GAMZ2+C1)
CC2=ALF2*C1/{ALF2-C1)
CC3=BET2+C1/(BET2-C1)

E1=GAMEGAM2* (GAM2+9.3C1)/(GAM2+C])
E2=ALF*ALF2*(ALF2-9.,%C1)/(ALF2-C1)
E3=BET*BET2*(BET2-9.*C1)/(BET2-C1)
SHALF=.5%(EXP(ALF)I-EXP(=ALF))
CHALF=.5%(EXP(ALF)+EXP(—~ALF))
SHBET=.5*(EXP(BET)-EXP(-BET))
CHBET=.5*(EXP(BET)+EXP(-BET))
Bll,1)=-GAM2

Blls2)=C.

Blls3)=ALF2

8‘1'4‘30.

B(1,5)=BET2

B(lyb)=Ca

BlZoll*C-

Bl2:2)=E2

BIZ.!)IC.

Bl2:4)=E3

B(2y5)=C.

Bl2,6)=-E1

Bl3,1)1=CC1

Bl3,2)=0.

B({3,3)=CC2

Bl(3,4)=0.

B(3,51=CC3

Bl3:6)=C.

Bl4,1)=-GAM2*COS(GAM)
Bl4s2)=ALF2%SHALF
Bl4&,3)=ALF2*CHALF
B{4s,4)=BET2%SHBET
Bl4,5)=BET2%CHBET
Bl4gyh)=—GAM2%*SIN(GAM)
B(Ss1)=EL*SIN(GAM)

B(5,2)=E2%CHALF

B(5,3)=E2%SHALF

B(5:4)=E3*CHBET

B(5,5)=E3*SHBET
B(5,6)=-E1*COS(GANM)

RETURN

END
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SUBROUTINE LINSCLVIB:CeX)

CONTROL FOR LSSDP

DIMENSICN BU5+46)+C{5:6) e XU5)XVI5)
EO 10 [I=1,5

DO 10 J=14+6

Clisd)=B(1,44d)

CALL LSSDOP(C:5+6:XVsKER)

IF (KER .EQ. 2) STOP

pO0 20 1=1,5
X(I) = XV(I)
RETURN

END
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SUBROUTINE LSSDPU(C NyNPM,X,KER)

SOLUTION OF LINEAR SYSTEM BY GAUSS ELIMINATICN

DIMENSICN C{NsNPM) (X(N)

EQUIVALENCE (RS)y(RATIDsV)

R = C.0

CO 111 J=14N

I= C.0

DN 110 K=1.N

V = C{J.K)
110 2 = Z + ABS(V)

IF(R.GE«Z) GO TO 111

R = 1
111 CONTINLUE

EX = (1.0E-20)*R

DO 34 L=1,N

Z = 0.0 $ KP=0

CO 12 K=L4N

AER = CIK,L) $ AER=ABS [ AER)
IF{Z.GE.AER) GO TO 12

Z = AER $ KP=K

12 CCNTINUE
IF (L.GE<KP) GO TO 20
DO 14 J = L.NPH
S = C(Lyd)
ClLyd) = ClKPsJd)
14 C(KP,J)=S
2C AER = C(L,L) $ AER=ABS (AER)
IF(AER.LE.EX) GO TO 50
IFIL.GE-N}) GO TO 40
LP1 = L+1
DO 34 K=LPl4N
AER = C{K,L) $ AER=ABS | AER)
IF(AER) 329344+32
32 RATIO=C(K,L)/C(LsL)
DO 33 J=LPLl,NPM
33 CUKJ)=CIK,J)=-RATIO*C(L,J)
34 CONTINUE
40 DO 44 [=14N
S = 0.0DO
II = NPM = |
IF(I1.GE.N) GO TQ 413
IiIPpl1 = I1 + 1
DO 42 K=1IP1,N
42 S=S+C(IT1.KIEX(K)
437 RATIO=C(II,NPM)
44 X(II)=(RATIC-S)/C(II4I1)
KER = 1
RETURN
50 KER = 2
PRINT 101
101 FORMAT(/36H MATRIX SINGULAR IN SUBROUTINE LSSDP /)
RETURN
END
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SUBROUTINE DEFLEX(Y,D,A,GANM2,ALF2,BET2,NSTEP)
GIVES SHAPE

DIMENSICN D(30),Y(30),A(6)

GAM=SQRT(GAMZ)

ALF=SQRT(ALF2)

BET=SQRT(BET2)

CO 5 I=14NSTEP

GX=GAMZD (1)

AX=ALF*0(1)

BEX=BET*0D(1)

RI=A(1)*SINIGX)+AL2)*COS(GX)
R2=SF(EXPLAX)®(A(3)+A(4) )+EXP(=AX)*(A(4)=A(3)))
R3=.S¥(EXPIBX)*[A(S)+A(6))+EXP(=-BX)*{Al6)-A(5)))
YUI)=R1+R24R3

CONTINUE

RETURN

END
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PROGRAM SIMDIF

FINITE DIFFERENCE CHECK CON SIMPLE SYSTEM
MATRIX = CDC CANNED PROGRAM
DIMENSION OF MATRICES MUST EQUAL N
DIMENSION G(25925):H(25:25)9U(25:25),0(25,425)
READ(S541)CLsC24BLySECTsN
FORMAT(4F10.5,15)

DC 5 I=14N

D0 5 J=1,uN

GlIsJ)=0.

Hil:Jd)=0.

D(IsJd)=C.

Utlsd1=0,

UlleI)=1.

CONTINUE

INVERT=10

MULT=20

I1GEN=3

SC=(BL/SECT)*%2
FOUR=SQ*%*2

SIX=SQ*FCUR
R1=9.%¥C1%5Q+6.
R2=36.*%C1*5Q+15.
R3=C2*FOUR
R4=54,.%C1%5Q0+20.
RS=2%R3+4C1*C2¥SIX

K=N-1

DC 10 I=2,K

H(I,1)==R5

J=1-1

Ju=l+1

Hi{I,J)=R2

Hi{lsJdJd)=Hl1:J)

CONTINUE

H(l,1)=-R5

HINgN)=H{1,1)
HIN,K)=H(2,1)
Hil,2)=H{2,1)

00 2C 1=4,N

Gl !, 1 )==R4

Jd=1-1

Jy=i-2

Jdd=1i-3

GllsJd)=R2

GlIyJJ)=-R1

GlLI 'JJJ'=1.

CONTINUE
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59

1CO

101

102

178

Gil,1)=R1-R4

GINgNI=G(1,1)

G(2,1)=R2~-1.

GINsK)=G(2,1)

5{3'113*R1

51312)=R2

Gl242)==R%

Gl333)=G1242)

OO 30 [=1N

DO 30 J=1,N

GlliJ}=G(Jr|’

CONTINLUE

WRITE(6,100])

WRITE(6:99)1IGHITsJd) sd=1sN)I=1,N)
WRITE(64100)
WRITE(6499)((U(Tsd)sJ=LaN)si=14N)
WRITE(&,1C0Q)
WRITE(E,99) IIHI(T ) 3J=1sN)sl=1yN)
FORMATI(TEL15.5)

CALL MATRIX(INVERTyNe¢NsO;G¢NsDET)
CALL MATRIXIMULT ¢NgNsNsGyNeHeNsDsN)
CALL MATRIX(IGENsN,Os1,DsNsUsNs0,4)
WRITE(6,100)

FORMAT(1HL)
WRITE(64101)C14C24BLLSECT
FORMAT(1HO s *C1=%F 10,3, *C2=*F10.3,#LENGTH=%F 10,3,
I1*SECTIONS=%F1C.3;///)
WRITE(64102)(0(T141),01=1,4)
FORMAT( LHOSEL15.7)

GO TO 999

END
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