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ABSTRACT 
 
 
 

AVOIDING TECHNICAL BANKRUPTCY IN SYSTEM DEVELOPMENT: A PROCESS TO 

REDUCE THE RISK OF ACCUMULATING TECHNICAL DEBT 

 
 

The decisions made early in system development can have profound impacts on later 

capabilities of the system. In iterative systems development, decisions made in each iteration 

produce impacts on every future iteration. Decisions that have benefits in the short-term may 

damage the long-term health of the system. This phenomenon is known as technical debt. If not 

carefully managed, the buildup of technical debt within a system can lead to technical bankruptcy: 

the state where the system development can no longer proceed with its lifecycle without first 

paying back some of the technical debt. Within the schedule constrained development paradigm 

of iteratively and incrementally developed systems, it is especially important to proactively 

manage technical debt and to understand the potential long-term implications of decisions made 

to achieve short-term delivery goals. 

To enable proactive management of technical debt within systems engineering, it is first 

necessary to understand the state of the art with respect to the application of technical debt methods 

and terminology within the field. While the technical debt metaphor is well-known within the 

software engineering community, it is not as well known within the systems engineering 

community. Therefore, this research first characterizes the state of technical debt research within 

systems engineering through a literature review. Next, the prevalence of the technical debt 

metaphor among practicing systems engineers is established through an empirical survey. Finally, 

a common ontology for technical debt within systems engineering is proposed to enable clear and 
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concise communication about the common problems faced in different systems engineering 

development programs. 

Using the research on technical debt in systems engineering and the ontology, this research 

develops a proactive approach to managing technical debt in iterative systems development by 

creating a decision support system called List, Evaluate, Achieve, Procure (LEAP). The LEAP 

process, when used in conjunction with release planning methods, can identify the potential for 

technical debt accumulation and eventually technical bankruptcy. The LEAP process is developed 

in two phases: a qualitative approach to provide initial assessments of the state of the system and 

a quantitative approach that models the effects of technical debt on system development schedules 

and the potential for technical bankruptcy based on release planning schedules.  

Example applications of the LEAP process are provided, consisting of the development of a 

conceptual problem and real applications of the process at the Space Development Agency. The 

LEAP process provides a novel and mathematical linkage of the temporal and functional 

dependencies of system development with the stakeholder needs, enabling proactive assessments 

of the ability of the system to satisfy those stakeholder needs. These assessments enable early 

identification of potential technical debt, reducing the risk of negative long-term impacts on the 

system health.  
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CHAPTER 1  - INTRODUCTION 
 
 
 

1.1 Motivation and Background 

This research is motivated by a broad set of ongoing and evolving changes in the field of 

systems engineering. The increased importance of software-intensive systems and rapid 

development of technological capabilities have enabled a reduction in the time to market for 

systems [1]. The ability of competitors to quickly release products has shifted the driving 

motivation of systems development from decreasing the cost of the system to increasing the speed 

with which the system is delivered [2]. The environments in which the systems are developed are 

increasing volatile, uncertain, complex, and ambiguous (VUCA) [3]. Traditional systems 

engineering methodologies, such as the Waterfall method [4], treat requirements as fixed and 

therefore the changes associated with a VUCA environment can result in increases to budget or 

schedule [5]. The combination of these factors has produced an increased emphasis on requiring 

“increasing flexibility, innovation and rapid capability development” in systems development [6]. 

However, the ability to develop a flexible system often conflicts with the ability to rapidly deploy 

the system [7].  

Flexibility can be accomplished by engineering an agile system or by using agile systems 

engineering methods. The two concepts are not the same [8]. An agile system is a system that can 

adjust to changes in its environment and intended usage [9]. While customers may desire agility 

in their system, they often do not want to pay for features that are unused in base cases [10]. 

Building an agile system may result in a more complex system with higher costs and longer 

development schedules for the first delivery [7], which conflicts with the desire to increase the 

speed of delivery. 
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In contrast, agile systems engineering seeks to add flexibility and agility to the processes used 

to develop the system [8]. Traditional sequential development models define the requirements up 

front and deliver the capability at the end. Iterative, incremental, and agile methods contain 

processes to adjust and adapt to user feedback received on repeated deliveries of incrementally 

developed capability [11]. Iterative and incremental development methods have been in use for 

many years, having been used on the X-15 hypersonic jet and NASA’s Project Mercury [12], and 

are becoming more commonplace within the system engineering community [13]. Iterative and 

incremental methods are being used to rapidly develop multiple prototypes that can receive and 

adjust to user feedback [14] instead of the traditional approach that tries to develop one perfect 

prototype [3].  

The push towards more flexible systems engineering development methods is driven, in part, 

by the desire to shorten development cycles. The desire to decrease the time to market results in 

developers seeking to deploy capabilities quickly. Developers may use approaches that require the 

least amount of work and may implement technical compromises and shortcuts for the sake of 

expediency [7]. These compromises include activities such as prioritizing functional requirements 

over non-functional requirements [15]. Especially pernicious is the fact that technical shortcuts 

may appear to be successful initially, justifying their use. However, these compromises may slow 

projects down over time [16] due to the long-term impacts of the early decisions. These impacts 

on product schedule, cost, and performance can be understood through the metaphor of technical 

debt.  

The technical debt metaphor was first introduced by Ward Cunningham in 1992 as a method to 

explain to his management the need for refactoring software. He stated that “Shipping first time 

code is like going into debt. A little debt speeds development so long as it is paid back promptly 
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with a rewrite” [17]. Technical debt can impact a program when “the debt is not repaid. Every 

minute spent on not-quite-right code counts as interest on that debt” [17]. An accumulation of 

technical debt in the system results in system developers working on fixing the debt instead of 

continuing the development of the system.  

Many authors have sought to expand and improve on the definition of technical debt within the 

realm of software engineering. However, even though the issues associated with technical debt are 

experienced by systems engineering practitioners [18], the technical debt terminology is not 

prevalent within the published systems engineering literature [19] and is not commonly used by 

systems engineering practitioners [18]. The lack of common terminology to describe similar 

problems prevents the identification and use of common solutions [20]. This dissertation adopts 

the definition of technical debt from [19]: 

“Technical debt is a metaphor reflecting technical compromises that can yield 

short-term benefit but may hurt the long-term health of a system.” 

The definition identifies the critical aspects of technical debt: technical compromises that yield 

initial benefits but cause later problems. Much like the technical debt metaphor, additional related 

terms, such as ‘technical compromise’ and ‘health of a system’, are not well defined in the 

literature [21]. Additional terms, such as ‘rework’ are used to describe similar conditions to 

technical debt. A full ontology of technical debt within systems engineering needs to be created to 

enable proper communication about the associated issues. 

This dissertation seeks to understand the impacts of technical debt on systems developed using 

incremental and iterative design methods, especially focusing on the ability to proactively identify 

potential sources of technical debt during feature development that may prohibit the ability to 
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satisfy stakeholder needs. To do so requires the ability to associate stakeholder needs with 

technology and feature development in both the temporal and functional dimensions.  

1.1.1 Iterative and Incremental Development 

Traditionally, a system lifecycle is associated closely with the development method – the set of 

processes used to manage the system development, such as Waterfall [4], Spiral [22], or adaptive 

and iterative methods. However, the selection of the development method is only one part of the 

system lifecycle. Managing a system throughout its lifecycle requires the definition of a complete 

technical strategy, consisting of the development method, the development strategy, and the 

delivery strategy [23]. The development method defines the processes, such as how change is 

handled, system decision points, and the handling of risk. The development strategy defines how 

successive versions (if any) of the system will be developed. The delivery strategy defines if the 

system will be delivered all at once or through a series of releases. Any development method can 

be used with any combination of development strategy and delivery strategy. Table 1-1 provides 

examples of several different development strategies. 

Table 1-1. Examples of strategies and development methods 

Technical Strategy Development Method 
Development 

Strategy 
Delivery Strategy 

Adaptive/Agile: flexible 

development cycles to adapt 

requirements and prioritize 

development tasks based on 

frequent stakeholder feedback 

Scrum: The requirements 

for each sprint are fixed 

and flow through design, 

implementation, and test, 

with connections between 

design and test [24].. 

Iterative: Features 

and components 

developed in one 

sprint may be refined 

in future sprints. 

Multiple: A 

functional, and 

potentially 

releasable, system is 

delivered at the end 

of each sprint 

Sequential Development: system 

development progresses through a 

defined series of phases 

Waterfall: The 

requirements are fixed at 

the beginning and tested 

at the end [4] 

All-at-once: A single 

iteration of the 

system is delivered at 

end of development 

Once: A single 

delivery at the end 

of system 

development 

Successive Deployment: 

incremental delivery of capabilities 

Spiral: Risk based system 

assessment performed 

prior to initiation of each 

increment [25] 

Incremental: Each 

spiral builds upon the 

previous spiral to 

deliver additional 

capability  

Multiple: A 

delivery is released 

at the end of each 

increment 
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Development strategies may be all-at-once, incremental, or iterative. All-at-once strategies 

deliver the entire system at one time. Incremental strategies start with a known set of high-level 

requirements, which are then assigned to stages of development (increments). Each increment 

delivers part of the overall capability [11]. An overall, connected view of the requirements is 

critical in this development strategy, as the decisions made on early increments will result in 

constraints on the capabilities delivered in future increments. For example, the Space Shuttle 

delivered its engines in an early increment. Once the thrust output of the engines and the number 

of engines was set, the maximum mass of the rest of the system was fixed and could not be 

changed, limiting the overall payload capacity of the Space Shuttle [26]. 

Iterative strategies accept that the requirements have greater volatility and are not completely 

known at the start of the system development [26]. As the development progresses, the 

requirements for future iterations are generated from sources such as user feedback, technological 

advances, and the results of previous iterations. Throughout the system development, several 

requirements which may have been unclear during the initial iterations become more defined 

through the future iterations [27]. Iterative methods are also referred to as evolutionary methods 

and Agile methodologies use iterative development strategies [11]. 

Iterative development strategies often “stress delivering the most value as early as possible and 

constantly improving it throughout the project lifecycle based on user feedback” [11]. With 

flexible processes, the system developer can react to changing user requirements and needs as the 

system development progresses. However, there will still be uncertainty about whether 

requirements will change and the impact of those changes [5]. Whether using incremental or 

iterative methods, the initial development cycles will impose constraints on future work and the 

work done in each increment or iteration “limits design options for subsequent developments” 
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[26]. There is the risk that the system, focusing on delivering value to the user, implements the 

‘easiest’ set of components, which break when future changes are required [25]. Understanding 

the risk to the system requires understanding the connections between iterations. 

Within a single iterative design cycle, the requirements for the iteration are selected based on 

the current state of the system capabilities and the priorities of the stakeholders. The requirements 

for each iteration define the iteration design. The iteration design is the implementation of the 

requirements which provides the capabilities to the user. The design may augment or constrain the 

current system capabilities depending upon the selection of requirements and the success with 

which they were implemented. Based upon the updated capabilities delivered by the implemented 

design, the requirements for the next iteration are prioritized and selected, and may include rework. 

This pattern, illustrated in Figure 1-1, repeats for each iteration.  

 

Figure 1-1. Iterative development cycle  

Each iteration delivers a subset of the system requirements. The process of establishing the 

requirements for each iteration is known as release planning. Release planning consists of 

determining which features to implement in each iteration or series of iterations, based on a 

prioritization scheme [28]. Release planning may occur once, such as in the case of incremental 

System 

Capabilities

Iteration 

Requirements

Iteration 

Design
Determine

Iterations
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development with fixed requirements, or may occur prior to each iteration. Traditional systems 

engineering methods, such as the Waterfall model [4], spend significant time on upfront release 

planning – attempting to determine a full and complete set of requirements prior to beginning 

work. Agile approaches spend less time on upfront planning and more time iterating on the system 

designs and in integration [29]. Agile approaches can focus on selecting requirements that 

maximize value delivered to the user in the shortest amount of time [30], enabling the rapid 

delivery of capability and decreasing the time to market.  

The prioritization scheme used to select the requirements for each iteration needs to balance the 

user value proposition with the limitations that may be imparted on the future development of the 

system. Many existing prioritization schemes give insufficient weight to non-functional 

requirements and to the dependencies between functional requirements and non-functional 

requirements. Similarly, the dependencies between functional requirements evolve with each 

iteration and traditional risk assessment approaches do not account for the risk associated with 

these dependencies [31]. If dependencies between functional and non-functional requirements are 

not considered during the release planning activities, then there is the chance that the value-based 

prioritization will result in a state where future iterations are impossible to complete, which will 

require the rework of already completed features or the failure of the system. Managing the 

dependencies between iterations is critical to the success of the system.  

Agile development practices, which are designed to be highly iterative and flexible, first 

appeared in software engineering. Systems engineering is closely related to software engineering 

and has a history of borrowing processes form software engineering, including development 

methods such as Waterfall [4], Spiral [22], and Agile [13]. The developers of large systems are 

moving towards more flexible techniques, including the increased use of iterative and incremental 
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methods, in efforts to increase both the speed of delivery and the utility of the developed system. 

The following sections demonstrate how specific organizations are transitioning to the use of 

incremental and iterative methods. 

1.1.1.1 United States Department of Defense 

The United States Department of Defense (DoD) is one of the largest acquirers of complex 

systems and systems of systems. These systems often require development of new capabilities, 

which result in significant uncertainties in the ability to deliver on time and on budget. The DoD 

has traditionally specified the requirements at the start of the program. Due to the contracting 

mechanisms used, changing these requirements as the system development proceeds has the 

potential for introducing large schedule and cost increases [32]. The DoD is attempting to reduce 

its cycle time, defined as the time from the start of the program until the program fields its initial 

operational capability (IOC) [33]. The DoD is continuously seeking to improve the quality of the 

systems that it produces, for example, by adopting methods that include users more frequently 

during the development process [11]. Recent DoD systems engineering guidelines emphasize the 

use of iteration throughout the system development processes [34]. Government Accountability 

Office (GAO) reports have explicitly stated that “programs can put themselves in a better position 

to succeed by implementing incremental acquisition strategies that limit the time in development” 

[35]. Examining the history of the DoD acquisition process, shown in Figure 1-2, provides an 

overview of the progression towards more iterative and incremental methods. 



 

9 

 

Figure 1-2. History of the acquisition methods in the DoD, sourced from [12] [36] [37] [38] [39] [40] 

The DoD acquisition process is controlled by two primary documents: DoD Directive (DoDD) 

5000.1 and DoD Instruction (DoDI) 5000.2. The DoD first issued DoDD 5000.1 in 1971 and DoDI 

5000.2 in 1975 as a method to control rising defense acquisition costs. The documents described 

three phases of major defense programs – initiation, full-scale development, and 

production/deployment with decision gates in between each phase. They also emphasized early 

test and evaluation, using existing commercial hardware, and making tradeoffs between cost, 

schedule, and performance where practical. The initial revisions focused on structuring the 

acquisition process and reducing the cycle time, including the introduction of evolutionary 

acquisition strategies in 1982 and emphasizing non-traditional and innovative methods, including 

evolutionary and incremental acquisition, in 1996. However, these processes met with limited 

success [36].  

In 1998, the average DoD cycle time had increased approximately 25% relative to 1969. By 

contrast, the automobile industry had reduced cycle time by an average of 50-75% during the same 

time period. The long cycle times resulted in the DoD fielding of out-of-date components and 

systems that no longer met the end user needs [41]. 
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In part to address the problem of extended cycle times, the DoD released an updated version of 

DoDI 5000.2 in 2000, titled the “Operation of the Defense Acquisition System” [12]. This version 

replaced previous versions and also replaced MIL-STD-498, issued in 1994, which had introduced 

changes to the approved software development process to improve “compatibility with incremental 

and evolutionary development models” [42]. The 2000 version of DoDI 5000.2 stated an explicit 

preference for the evolutionary approach over waterfall methods. Spiral development is also 

explicitly called out as the preferred method for software development [12]. 

In 2002, the DoD released DoD 5000.2-R “Mandatory Procedures for Major Defense 

Acquisition Programs (MDAPS) and Major Automated Information System (MAIS) Acquisition 

Programs” [43]. This regulation allowed the program manager to choose between a single step 

approach and an evolutionary approach to program acquisition. However, for the software portions 

of the system, the regulations required the program manager to plan a spiral development process 

for both evolutionary and single step acquisition strategies. The 2003 release [37], now termed 

DoDI 5000.02, stated a preference for evolutionary acquisition to deliver capabilities in 

increments. The program manager (PM) could choose between spiral development and 

incremental development, although the instruction highlighted the reduction in risk and decrease 

in cycle time that can accompany incremental development. Other substantial changes included a 

change in focus from requirements-based processes to capabilities-based processes and an 

increased focus on achieving interoperability between the military services through more 

structured systems architectures [44]. The 2008 version [38] removed spiral development as an 

explicit option in the evolutionary acquisition approach.  

In 2013, the references to the evolutionary approach were removed and a generic process was 

defined for different types of acquisitions, to include hardware-dominant, software-dominant, and 
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hybrid systems [39]. The generic approach follows a linear, non-iterative development process. 

The hardware-dominant program follows a traditional waterfall process. The software-dominant 

program either modifies the traditional waterfall program by releasing several builds or uses an 

incrementally fielded process, where a separate request for proposal (RFP) is released for each 

increment and the increments overlap. The hybrid model mixes the two based on whether or not 

hardware or software is dominant. In the hardware dominant program, the multiple software builds 

are combined with the hardware waterfall cycle. In the software dominant program, the hardware 

components are integrated into the software increments. In 2020, the DoD released a new version 

of Instruction 5000.02, which established the Adaptive Acquisition Framework (AAF) [45]. The 

AAF reinforces the desire for PMs to tailor their acquisition methods to the capability and need 

for which they are acquiring the system, giving additional freedom to the PM for rapidly fielded 

capabilities. This version of the instruction integrates agile development processes for software 

acquisitions, but does not mandate incremental, evolutionary, or spiral development processes for 

other acquisition types. The AAF allows PMs to use the best approaches to meet their needs, 

instead of requiring specific approaches for all systems. 

The continual and ongoing revision of the DoDI 5000.02 guidelines illustrates that the DoD has 

not solved the problem of delivering systems on-time and on-budget that meet the user’s needs. 

The use of spiral development on programs has been both successful, such as with the Predator 

Unmanned Aerial Vehicle Program (UAV), and unsuccessful, such as in the case of the Navy’s 

Littoral Combat Ship (LCS) [41]. However, the changes in the directives and instructions show a 

clear path of moving towards incremental and iterative methods with the goals of reducing cost 

and time to market and delivering products that are of greater utility to the end user. 
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1.1.1.2 Space Development Agency 

The 2020 version of DoDD 5000.01 states that Defense Acquisition Systems must be 

responsive such that they can be “deployed to the operational community as soon as possible” and 

that “approved, time-phased capability needs, matched with available technology and resources, 

will enable incremental acquisition strategies and continuous capability improvement” [40].  

The Space Development Agency (SDA) was created in 2019 to “accelerate the development 

and fielding of new military space capabilities” [46]. To do so, SDA is creating the Proliferated 

Warfighter Space Architecture (PWSA), which is a proliferated low Earth orbit (pLEO) 

constellation of satellites to provide data transport and missile tracking capabilities. SDA is 

incrementally delivering capabilities within two-year tranches, where a tranche is one iteration of 

the PWSA. SDA adopted this development strategy to deliver ‘good enough’ capabilities to the 

end user sooner as opposed to delivering the ‘perfect’ capability too late [47]. 

SDA epitomizes the instructions within the 2020 version of the DoDD 5000.01, developing 

incremental capabilities that will be deployed operationally as soon as possible. The SDA 

development process leverages existing commercial capabilities and the rapid timeline ensures 

alignment with end user needs. Each delivered tranche will improve upon the previous set of 

tranches and will include updated technology, reducing the impacts of stale technology on end 

user capabilities [46]. 

1.1.2 Technical Debt in Iterative and Incremental Development 

In iterative and incremental development, the decisions made in early iterations can become 

constraints on the future design [48]. Managing technical debt requires making decisions that trade 

immediate value against long term cost. Focusing on value, such as in agile approaches, will lead 

to choices that accumulate technical debt. Focusing on cost, such as in traditional phased 
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approaches, will take longer to realize value. Technical debt management requires balancing these 

factors throughout the release planning cycle [16]. Paying off accrued technical debt requires time 

and cost that could have been spent on adding new features to the system, and therefore represents 

an opportunity cost to the system developer [49]. Therefore, opportunities for paying down 

technical debt within a release need to be prioritized along with the development of new features, 

in context of the total cost and benefit to the system. 

The timeline of technical debt [50] within a system is shown in Figure 1-3. Initially, technical 

debt can be beneficial to the system, as taking on the debt can enable progress towards meeting 

system milestones. The developer may be unaware of the debt after it occurs (T1), the state of 

“blissful ignorance.” Once the technical debt is discovered (T2) it may still be an asset to the 

system. However, at some point, the technical debt reaches the “tipping point” (T3), where it 

becomes a liability to the system, causing more harm than good. The tipping point occurs when 

the work involving the technical debt item becomes more difficult to perform or the fees reach an 

intolerable level. After this point, the system developer can choose the path forward (T4), indicated 

by the dashed lines in Figure 1-3. The developer can choose to repay the debt and enter 

remediation, removing the liability. If left unmanaged, the system is defaulting (shown as dashed 

orange lines) - technical debt continues to accumulate, eventually resulting in technical bankruptcy 

(T5).  
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Figure 1-3. Technical debt timeline, adapted from [50]. Dashed lines show potential paths. 

To include technical debt as a factor in release planning requires understanding the current state 

of technical debt within the system, the cost of paying off the debt now, and the probable impact 

of that technical debt in the future [51]. However, researchers and practitioners have found it 

challenging to identify and communicate the technical debt within the system [52] and also to 

estimate the cost and impact of the technical debt [53]. Furthermore, successful release planning 

also requires the ability to proactively identify technical compromises that may result in the 

introduction of technical debt. Identification of technical debt’s introduction at the time of the 

compromise enables a complete assessment of the long-term costs of the short-term decision. 

These long-term costs need to be associated with the satisfaction of stakeholder needs to determine 

if the system will be successful. 

An overall process for managing technical debt within software has been characterized as not 

well defined [54]. The sparsity of research on technical debt within systems engineering [19] 

implies that such a process is not well defined for systems engineering either. The basic steps to 

managing technical debt would include identification, measurement, prioritization, repayment, and 
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monitoring of the technical debt [55]. This technical debt management process is shown in Figure 

1-4.  

 

Figure 1-4. Technical debt management cycle  

The technical debt management process is presented here as a continuous activity. When an 

instance of technical debt is identified, the potential impact is measured and the technical debt item 

is prioritized against the other technical debt items and the features to be implemented. During a 

release planning event, the technical debt item may be selected for repayment at which point the 

work is completed. Whether or not the debt is repaid, the technical debt item is still monitored for 

any changes. The system is continuously monitored for new instances of technical debt, both 

looking for new instances in the system and assessing the potential impacts of design decisions.  

1.1.2.1 Identifying Technical Debt 

Technical debt management starts with identifying the current debt within the system by 

making a list of the technical debt items (TD Item). A TD Item is “One atomic element of technical 

debt connecting: (1) a set of development artifacts, with (2) consequences on quality, value and 

cost of the system and triggered by (3) some causes related to process, management, context, or 

business goals” [56]. 
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Technical debt can be inserted into a system either intentionally or unintentionally and in either 

a prudent or reckless manner, as Fowler [57] identified with his technical debt quadrant. Tom, 

Aurum, and Vidgen [52] identified different groups of technical debt based on McConnell’s [58] 

classification. These two viewpoints are combined in Figure 1-5. Negligent technical debt is an 

example of deliberate and reckless technical debt. It is incurred when a developer knowingly 

inserts technical debt into the system without any plans to repay the debt. For example, a developer 

may intentionally skip test cases to save schedule without any plans to run the tests at another time. 

Strategic technical debt is also deliberate, but is inserted into the system with a plan to pay it down 

(a prudent decision) [52]. The previous example can be turned from negligent to strategic (or 

reckless to prudent) by included a reduced version of the test in a future test, thereby ensuring that 

the functionality is tested and still saving the initial schedule.  

 

Figure 1-5. Technical debt quadrant, adapted from [57] and [52] 

Inadvertent debt is debt which the developer does not know that they are incurring. 

Unintentional debt is unknown to the developer at the time that it is incurred and can only be 

discovered later. Therefore, unintentional technical debt cannot be prudent – there is no plan in 

place to account for repaying the debt. Tactical technical debt lies in the prudent/inadvertent 
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quadrant of Figure 1-5. This type of debt is described by Fowler as “Now we know how we should 

have done it” [57] and Tom et al. define tactical technical debt as short-term technical debt that is 

taken on to meet a milestone [52]. Here, tactical technical debt is defined as that which involves a 

prudent response (a plan to repay the debt) due to unplanned conditions. Whereas strategic debt 

has long-term consequences in response to known decisions, tactical debt is short-term in nature 

and due to issues, such as late discovery of an issue that implements a work-around to make the 

release. 

Figure 1-5 also identifies that the occurrence of the different groups of technical debt can be 

based on the developer’s preparation and on programmatic decisions. Technical debt can move 

from inadvertent to deliberate based on the developer’s preparation. Inadvertent debt is often due 

to an underprepared developer – they do not know that what they are doing will cause problems. 

A prepared developer understands the results of their actions and therefore could plan accordingly. 

Reckless and prudent debt are due to programmatic decisions – how the debt is planned (or not 

planned) to be handled within the system development cycle. 

1.1.2.2 Measuring Technical Debt 

In keeping with the financial debt metaphor, TD Items are often assigned values of principal 

and interest. The concept of technical debt principal has attracted various definitions, including the 

cost or effort to fix the TD Item [59] [60] [61], the effort to rework the artifacts such that they have 

their optimal implementation [62], and the savings that the original shortcut provided [56]. 

Generally, principal relates to the cost to implement the ‘proper’ solution instead of the shortcut 

that resulted in technical debt.  

Interest on technical debt relates to additional work or cost that the system incurs due to the 

presence of technical debt [54]. This additional effort can be due to lower maintainability [63] [60] 
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[62] and the increased level of effort required to restore the system back to its debt-free state [61]. 

Interest compares the level of effort over time to the level of effort that would have been required 

had a different decision been made initially [64]. 

Technical interest is a probabilistic concept composed of both the interest amount and the 

interest probability. The interest amount is the estimate of the amount of extra work that will be 

needed due to the presence of the TD Item [51]. The interest probability is the likelihood that the 

technical debt will cause additional work and may be time-dependent [51] [60]. 

The measurement of technical debt has proven to be a difficult problem. Measuring technical 

debt requires the ability to estimate the principal, interest amount, and interest probability [65]. 

The computed value of the technical debt must then be converted to terms that can be easily 

understood in the course of the system development. Nord et al. [16] calculate the cost of a release 

as summation of the cost of new features (the implementation cost) and the cost of rework, where 

the rework cost is a function of the interdependencies within the system and the change 

propagation throughout the release. Abad and Ruhe [66] use real options analysis to determine the 

net present value of requirements decisions. Ampatzoglou et al. [62] identify the use of other 

techniques, such as portfolio management, value-based approaches, and non-financial 

implementations. Seaman and Guo [67] assign values of high, medium, and low to the principal, 

interest, probability, and interest amount for each TD Item when it is created with more detailed 

estimates performed only when needed. Curtis et al. [49] estimate technical debt principal in the 

system as a function of the number of problems that must be corrected and the time and cost to 

correct each one. Ampatzoglou et al. [68] developed a quantitative model relating the size of the 

interest and the principal for a given TD Item. These various methods show that a consensus 
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method for measuring technical debt has not been reached and that it remains an open research 

question. 

1.1.2.3 Prioritization, Repayment, and Monitoring of Technical Debt 

Once each TD Item has been measured and both its principal and interest determined as 

functions of time, then the TD Item can be prioritized. Removing TD Items will often compete 

with the ability to add new features and to correct defects in the system, however, there is not a 

consensus approach on how to prioritize TD Items [69]. Considerations during prioritization 

include the cost to repay a TD Item, the impact of the TD Item if it is not repaid, and the timeliness 

with which the TD Item needs to be repaid prior to the impact being realized. Repayment involves 

performing the work to correct the TD Item and monitoring is the process by which TD Items are 

tracked, such as through a technical debt manifest [70], by tracking changes in principal and 

interest, and through cost-benefit analysis of repaying each TD Item [71]. 

1.2 Reflections on Technical Debt in Systems Engineering 

Technical debt, while originating in the field of software engineering, also impacts the field of 

systems engineering. The United States Government Accountability Office (GAO) “provides 

Congress, the heads of executive agencies, and the public with timely, fact-based, non-partisan 

information that can be used to improve government and save taxpayers billions of dollars.” [72] 

As such, the GAO provides reports on the state of development of several complicated systems 

and systems of systems procured for the United States Government. Table 1-2 shows several 

systems assessed by the GAO with issues that can be associated with technical debt, even though 

the term technical debt is not explicitly used in all the reports. 
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Table 1-2. Examples of technical debt within United States Government systems, as assessed by the author 

ID System Org Technical Compromise Long-term Impact on System Health 

1 James Webb Space 

Telescope (JWST) 

[73] 

NASA Reduction of ability to work on 

other NASA projects to free up 

funds for JWST 

Extra funding sources required for 

other NASA projects that faced risk of 

cancellation 

2 Multiple [73] NASA Contractors authorized to work 

before final contract agreement 

and requirements definition 

reached 

Poorly defined requirements, creating 

requirements debt that increases the 

risk to program cost and schedule 

3 Artemis [73] NASA Failure to document decision-

making tools  

Inability to track mission success 

4 Mobile User 

Objective System 

(MUOS) [74] 

DoD Development and deployment 

of compatible user terminals not 

prioritized 

Advanced capabilities of satellite 

system are unused and satellite lifetime 

considerations require the purchase of 

additional satellites 

5 MUOS [11] DoD Failure to modernize ground 

system software  

Obsolescence of 72 percent of the 

software in 2014, failure of operational 

test and evaluation in 2015 due, in part, 

to cybersecurity concerns in the ground 

system 

6 GPS Modernization 

[74] 

DoD Required use of the more secure 

military (M-code) GPS signal 

prior to availability of the M-

code cards 

Use of M-code requires upgrades to 

systems that receive a GPS signal. 

Delays in the production of the M-code 

cards resulted in the extension of 

modernization efforts across the DoD, 

affecting the schedules of multiple 

systems 

7 F-35 [75] DoD F-35 aircraft purchased prior to 

certification 

Simulator delays resulted in the 

postponement of operational testing 

and the start of full rate production. F-

35 aircraft continue to be purchased, 

however, increasing the risk of higher 

retrofit costs if there are issues.  

8 Joint Space 

Operations Center 

(JSpOC) Mission 

System (JMS) [11] 

DoD Incomplete software 

requirements and lack of 

opportunities for user feedback 

JMS was found not operationally 

effective during its operational test and 

was cancelled in 2019. [76] 

 

Table 1-2 shows a wide range of long-term impacts from short-term decisions. Some of these 

decisions were intentionally made to improve technical performance (the transition to the M-code 

GPS signal), save cost (F-35 simulator transition), and save schedule (authorization of contractors 

to start work prior to reaching a final contractual agreement). Other issues were likely the result of 

the accumulation of unintentional decisions, such as failing to adequately document the decision-

making processes on Artemis and not prioritizing the user terminals on MUOS. In the case of JMS, 
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the build-up of technical debt was so severe that it resulted in technical bankruptcy and program 

cancellation.  

The programs cited in Table 1-2 can be placed within the technical debt quad chart as shown in 

Figure 1-6. Program 1, the JWST, is an example of deliberate and prudent debt. The decision to 

sustain the telescope was made intentionally, with a plan to take funding from other programs and 

to gather extra funding from congress. Likewise, the GPS upgrade, program 6, is an example of 

prudent debt – there was a known impact on the systems to upgrade to the new M-code system. 

However, the debt was inadvertent, due to the delays from unforeseen supply chain issues. 

Program 3, the failure of the Artemis program, is an example of inadvertent reckless debt. The 

program failed to document their processes, but this was not an example of a deliberate decision. 

Rather, this is an example of a mistake. The other programs, are all examples of reckless, deliberate 

technical debt – making decisions that affect the long-term health of the system without a plan to 

pay down the debt in place. Program 7, the F-35 simulator, falls into this category due to the 

decisions to purchase aircraft prior to certification, which increases the risk of the need to retrofit 

the aircraft. Program 5, the MUOS failure to modernize the ground system was a result of 

intentionally sticking with the requirements and obsolete software, instead of updating the 

requirements, with no plan for modernization.  
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Figure 1-6. U.S. Government program technical debt categorized notionally and with the judgement of the author 

These programs demonstrate that decision making around, and management of, technical debt 

is clearly an issue within the scope of systems development and is not contained solely to the realm 

of software development. As systems engineering moves to more agile and rapid processes, 

technical debt will become a larger issue. Although the term technical debt is used within the 

context of systems engineering [77] [78] [34], there is not a common ontology that can be used to 

discuss the problem [79]. There is also a lack of empirical evidence documenting the occurrence 

of technical debt within the systems engineering lifecycle and the traditional lifecycle models do 

not provide adequate tools for managing technical debt [19]. 

1.2.1 Technical Bankruptcy in Systems Engineering 

Left unattended, technical debt can grow within a system, eventually forcing the system into a 

state of technical bankruptcy. In this state, the system can no longer proceed with its lifecycle 

without first repaying some or all of the technical debt [21]. Technical bankruptcy can occur when 

the project budget or schedule is exceeded [63] or when the technical debt has reached a point 

where the system can no longer support future development [60]. Technical debt that accumulates 

within the system can delay updates and new versions of the system, resulting in unfilled feature 
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requests [80]. If a technically bankrupt project does not pay down its technical debt, then the 

project risks cancellation [62].  

Within the US DoD, programs that experience significant cost and/or schedule overruns 

experience a Nunn-McCurdy breach. In 2009, Congress passed legislation requiring that programs 

that experience Nunn-McCurdy breaches be terminated unless the Secretary of Defense provides 

written certification of the program to Congress. Causes for Nunn-McCurdy breaches include 

overly optimistic assumptions, misunderstanding of requirements, and changes to requirements 

[35]. A Nunn-McCurdy breach is a realization of technical bankruptcy. 

The Joint Space Operations Center (JSpOC) Mission System (JMS) is an example of a system 

where technical bankruptcy led to system cancellation. JMS was designed to provide space 

command and control and situational awareness capability for the Air Force. JMS planned to use 

an incremental delivery method with three increments. Increment 1 planned to provide the basic 

structure for the program. Increment 2 planned to add capabilities to the user such that JMS could 

replace the legacy system. Increment 3 planned to augment the Increment 2 capabilities with data 

from highly classified programs. The program was started in 2009 and Increment 2 was scheduled 

to deliver by the end of fiscal year 2014 [81]. The Air Force Operational Test and Evaluation 

Center (AFOTEC) tested JMS in 2016 [82], 2017 [83], and 2018 [84] and found the following 

results: 

• The risk of interoperability with other systems, specifically the Space Fence, was increased 

due to the late delivery of JMS Increment 2 and the level of interoperability testing was 

insufficient (2016 and 2017) 

• Service Pack (SP) 7 was not operationally tested because it would not be used for mission 

critical functions (2016) 
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• The SP9 developmental test campaign found numerous critical deficiencies, reducing the 

scope of the operational delivery. The resulting delivery was “not operationally effective 

or suitable for its Space Situational Awareness (SSA) mission” [84] (2018) 

• Many problems could have been prevented with better organization and communication 

between the program office and the development team throughout the entire system 

lifecycle (2018) 

• The SP11 schedule did not provide time to fix the issues with SP9, address lessons learned 

from SP9 testing, or account for constraints due to SP9 and SP11 concurrent development. 

These issues caused AFOTEC to determine that the SP11 schedule was not executable [84] 

(2018) 

At the time it was cancelled, JMS was 42% over budget and three years behind schedule [81]. 

The cancellation of JMS can be viewed as a result of poor performing program. However, when 

viewed from the technical debt perspective, there are clear indications that the technical debt in 

the system built up until the system became technically bankrupt. The author’s assessment of the 

technical debt associated with the JMS system is shown in Figure 1-7, with green indicating the 

technical debt principal, orange indicating the technical debt interest, and the blue line indicating 

the technical bankruptcy threshold – the state at which project replanning to address the technical 

debt is required. 
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Figure 1-7. Author’s assessed growth of technical debt principal (green) and interest (orange) within the JMS 

program, based on GAO reports [11] [82] [83] [84] [85] 

JMS was initially planned as a single acquisition that would be delivered through five releases 

over a five-year period, from 2011 to 2016. The GAO assessed that while the capability would be 

delivered over five releases, it was not applying best practices for incremental development. 

Specifically, the JMS system “plans to proceed without knowledge of all critical technologies and 

deferral of other planning activities” [85]. While using an incremental delivery method, the JMS 

developers were not adequately looking ahead to identify critical technologies and capabilities that 

would support future releases. Therefore, the design had the risk of being dependent upon 

capability that would not exist [85]. This situation is an instance of architectural technical debt 

which is due to architectural decisions that produce insufficient quality in the system [54]. The 

JMS developers chose not to fully develop the system architecture, specifically the dependencies 

between components and the capabilities required of each of those components. In 2011, JMS took 

the GAO recommendation and restructured to release in multiple increments, repaying some of 

the architectural technical debt [11]. 
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JMS planned to use only existing software, both commercially available and government-

provided [11]. However, the lack of a fully defined architecture resulted in a failure to identify the 

insufficiencies of the existing software to meet all needs of the system. The use of the existing 

software incurred additional technical debt due to the limitations on the ability of the system to 

evolve [86]. The delays in interoperability testing with Space Fence resulted in integration 

technical debt – an increased effort required to connect systems and components together [79]. 

These sources of technical debt accumulated in the system, resulting in additional development 

and accompanying schedule delays [11]. If the JMS program office had performed an initial, 

detailed trace of the critical capabilities, they would have seen that the available software tools 

would need to be modified and could have appropriately included those modifications in both the 

schedule and the budget. 

In 2015, the GAO assessed the JMS schedule and identified several deficiencies, including 

artificial start dates and illogical connections. JMS did not follow the GAO’s best practices for 

maintaining schedules and the GAO found that the resulting schedule was insufficient to determine 

the ability of JMS to meet its schedule milestones [87]. The poor schedule practices are an example 

of reckless and deliberate technical debt: JMS made a deliberate choice not to follow the best 

practices (a reckless decision). Following schedule best practices may have resulted in early 

identification of risks to delivery. Instead, the delivery of the system was substantially delayed, 

resulting in a schedule breach in 2015 [11]. This schedule breach is an instance of technical 

bankruptcy and resulted in a realignment and rescoping of JMS.  

JMS failed its operational test in 2018, being declared neither effective nor suitable for its 

mission [84]. Within the DoD, operational tests evaluate the system under real-world conditions 

as used by operational users to determine factors such as effectiveness, reliability, maintainability, 
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and usability [88]. Developing a system that will pass operational test requires the inputs of the 

operational users to ensure that their needs are being met. JMS planned to involve users early in 

the development process and to keep them continually engaged. However, it failed to do so in 

practice, which is another example of reckless and deliberate technical debt. JMS also did not 

provide users the opportunity to provide feedback on working software components during 

development [11]. The decision not to include users in the development process accrued domain 

debt – the misalignment between the application and the domain in which it will be used. Domain 

debt interest is paid “in terms of user satisfaction and usability” [89] and a significant amount of 

domain debt will result in a system that is not usable. The domain debt and other technical debt 

increased to the level that the JMS project was cancelled in 2019. 

1.2.2 State of Technical Debt Research in Systems Engineering 

Given the importance of the systems described above and the ubiquity of technical debt as a 

metaphor in software engineering (a closely aligned field), it would be reasonable to assume that 

technical debt is a well-researched topic within the field of systems engineering. However, a 

systematic literature review [19] shows that there is little published research that uses the 

terminology of technical debt in conjunction with systems engineering. The concepts of technical 

debt are identified, but there is not a clear and well understood definition [79] or associated 

ontology. A consistent ontology enables clear communication and discussion of common problems 

and solutions. Agreement upon a common ontology will lead to the establishment of common 

metrics to measure technical debt. Once technical debt can be measured, then control systems can 

be put in place to manage and handle technical debt as it grows beyond tolerable thresholds. 

Control systems aid communication with the stakeholders about the status of the system and can 

give indications that the system is approaching technical bankruptcy. However, effective controls 
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need to be based on a clear understanding of the parameters that are measured [90]. A concise and 

clear definition of technical debt, its sources, and associated terminology needs to be developed 

within systems engineering.  

Similar to the lack of definition of technical debt, there is not a concise process for identifying 

technical debt within a system. Sangwan et al. identify the need to determine the dependencies of 

architectural elements within a system [91], however they do not provide detailed information on 

the process by which these dependencies are identified. Simply citing a dependency is not 

sufficient – there needs to be a deeper understanding of how the components of systems are 

interconnected and how the technical debt may propagate through the system. Technical debt can 

be contagious: the technical debt and its impact can spread throughout the system, including hidden 

effects [92]. The technical debt introduced in one part of the system can impact other parts of the 

system and can accumulate through the reuse of components [80]. The resulting impacts may not 

be known to the system developers. For example, if the power system of an electric car is changed 

to use cheaper batteries with a faster delivery cycle, how does that impact the total range of the car 

and on-board fast charging hardware? Can the debt incurred in that decision be made up in a future 

development iteration, such as by redesigning the aerodynamic profile to increase range? Is it 

worth making that change? Understanding the impact of a change to the system requires fully 

understanding the interdependencies of the system components and the ability to complete a 

component based on the state of completion of its dependent components.  

1.2.2.1 Accounting for Technical Debt in Release Planning Methods  

The iterations within iterative development are planned through the release planning process, 

where the ‘best’ set of features are chosen to implement within each iteration [93]. Each iteration 

is referred to as a release, as it represents capability that could be released to the end user. Release 
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planning methods and optimization strategies exist to help the system developer decide when to 

implement features and requirements within iterative and incremental development [28]. In these 

development paradigms, there is often a conflict between early value creation and the minimization 

of later rework [91]. Several recent works provide methods for optimizing development paths to 

maximize value or to minimize rework. 

Nord et al. [16] utilized design structure matrices (DSMs) to highlight the architectural 

dependencies of features and to model the cost of rework due to technical debt in release planning. 

Sangwan et al. [91] extended this work and developed a method using mixed-integer linear 

programming models to minimize total cost, maximize early value, and to find an optimal 

combination of features. Their model is based on the initial creation of a dependency matrix 

between the architectural elements and customer requirements and includes time-based discounts 

for value and estimates of rework costs. The model uses simplified cash flow to determine the 

rework effort and does not include significant uncertainty modeling. 

Oni and Letier [28] created a model to analyze uncertainty for fixed-date release cycles. They 

utilized Bayesian probability to model the uncertainty of both the value of a particular feature and 

the effort required to complete it. The uncertainty is derived from expert opinion and is not 

mathematically modeled. The model reflects the uncertainty that a feature will be completed within 

the release to which it was assigned, giving the model a time-based dimension. The model assumes 

that work items are independent and does not account for technical debt. Schmid [94] provides a 

method for determining the release where a technical debt item should be repaid, based upon a 

probabilistic estimate of the occurrence of the TD Item and the impact of the TD Item. 

In incremental and iterative methods, technical debt has the tendency to increase as schedule 

pressure mounts, especially towards the end of a fixed-time release cycle. The fixed-time release 
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cycles are often controlled by external factors, such as a company’s marketing team promising a 

delivery date or a satellite launch vehicle’s schedule. Therefore, the dates often cannot be 

compromised. Planning for these releases requires a careful assessment of what can and cannot be 

accomplished within the set timeframe and makes them more likely to accumulate technical debt 

in the rush to deliver. Planning the release, therefore, should account for the possibilities of 

technical debt building up in the system and also should include the capacity to pay down the 

technical debt in later releases. While several authors have created optimized release planning 

methods to account for the tradeoff between value and cost [94] [91] [28], none of them have fully 

integrated technical debt within their models. These models fail to account for the impact of 

technical debt and interest on a feature’s development cost and value. The models also do not 

provide a way to proactively identify technical debt when a technical compromise is made. Finally, 

the models do not associate the ability to deliver capabilities with the satisfaction of stakeholder 

needs – it is assumed that if value is delivered then the stakeholders will be satisfied, but this does 

not account for the temporal component of the value delivery. 

Therefore, release planning models that include technical debt must have the following 

capabilities: 

• A thorough understanding of the type of architectural dependencies between components; 

• The ability to proactively assess the probability of creating technical debt in future releases; 

• The ability to estimate the probabilistic technical debt impact within a release as a function 

of time; and, 

• The ability to estimate the capability of the project to repay technical debt as a probabilistic 

function of time. 
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These models need to capture the state of these characteristics of the system at each release 

planning event or each stage in the development process to account for changing external 

conditions.  

1.3 Research Agenda 

On the basis of the above reflections on the state of the field, we can understand that there is a 

need to manage technical debt throughout the system development lifecycle. Left unchecked, 

technical debt can accumulate within a system and drive the system to technical bankruptcy. The 

first step in managing technical debt within a systems lifecycle is to understand the current state 

of research into technical debt within systems engineering. There is little published work on 

technical debt specific to the field of systems engineering and the research that does exist does not 

provide significant empirical evidence to understand the role that technical debt plays within a 

system lifecycle [19]. Furthermore, there is no clear ontology for technical debt within systems 

engineering, evidenced by the lack of a common definition of technical debt [79]. A clear 

understanding of terminology is required to enable precise discussions about the impacts of 

technical debt on the system lifecycle. 

Systems and projects must be able to identify the features and requirements which have 

significant dependencies later in the release cycle in order to understand the impact that changes 

to these components will have on the future state of the system. The features must be directly 

associated with the satisfaction of stakeholder needs in both the temporal and functional 

dimensions. However, a sufficient model tying this information together does not exist today. A 

sufficient model requires two separate parts: a description of the system, including the component-

level dependencies among components that may incur technical debt, and a planning model that 
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takes into account the probabilistic occurrence of technical debt and its impact on the ability to 

deliver a system that satisfies the stakeholders in both the temporal and functional dimensions.  

The first part of the model requires a description of a system focusing on the component-level 

dependencies. One way to describe the system is through the use of the Systems Modeling 

Language (SysML). This language produces a standard set of diagrams. The diagrams can be used 

to lay out the system, identifying connections, interfaces, and data flows [95]. While these 

diagrams are useful for identifying the structure of the system, they do not identify the 

development-level dependencies between the components, especially when one factors in the 

temporal development order. When considering the impact of technical debt, the temporal 

development order becomes critical. In a schedule-constrained release cycle, if one component 

does not finish on time or does not meet its performance requirements, it will impact the ability to 

complete subsequent components and still stay on schedule. In iterative development, each 

iteration can only build on what was completed in the previous iteration. The chronological order 

of development becomes critical to understanding the impact of technical debt. 

Project schedules will give the chronological order of system development but they are not 

sufficient by themselves to identify occurrences of technical debt. Design structure matrices list 

the functional dependencies of components and can be ordered to show temporal dependences 

[96]. However, they do not account for partial completion and cascading impacts. A mathematical 

relationship needs to be established between the level of completeness of one component and the 

probability of completing future components. Establishing these relationships will identify the 

ability of one component development plan to recover from incomplete prior components. For 

example, consider the case where a car is being manufactured. Each part of the car is manufactured 

independently, but the assembly of the car itself cannot complete until all parts are delivered. If 
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the timeframe for the assembly of the car is padded with margin, then it may be able to handle late 

delivery of a part or two with little impact. If there was no margin on the assembly of the car, then 

a late part delivery would cause the assembly of the car to finish late. The magnitude of the impact 

depends on the component that was late. If the battery is delivered late, there may not be a large 

impact since it is easily installed at the end of the build. However, if the engine is late then its 

impact may be larger due to its integral role and the significant dependencies that other steps have 

on the assembled engine. Similar examples can be created to consider cost and performance 

implications. These dependencies become more important as you consider evolving a system 

through iterative build and release strategies.  

Once the component-by-component dependencies are identified, then the development of the 

system can be planned, using release planning methods. These methods need to account for the 

potential occurrence of technical debt, and its subsequent impact on the ability to complete a 

release and future releases. Sangwan et al. [91] utilize design structure matrices to identify the 

dependencies and map the impact of change, however, they assume that all dependencies are equal. 

Schmid [94] provides a method to estimate the cost of a technical debt item, based on the 

probability of it impacting future releases. The total cost across all releases can be compared to the 

initial cost to fix the TD Item (the principal) to determine if the TD Item should be repaid in the 

current release. This method relies on the validity of the probability estimates and does not account 

for the interdependencies of the components. Oni and Letier [28] optimize a release plan based on 

the net present value of the release and include uncertainty conditions. Their method accounts for 

fixed-time releases. However, it does not include the impacts of technical debt, and how the failure 

to include or complete one component in a release may impact the rest of the release cycles. These 
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models need to be evolved to account for the interdependencies of the components and the impacts 

of technical debt. 

This research proposes to identify the current state of understanding of technical debt within 

systems engineering based on both a literature review and a survey of systems engineering 

practitioners. Upon completion of this research, the results will be used to create a common 

ontology for technical debt within systems engineering to enable clear and precise 

communications. After establishing the baseline ontology, a process will be created to proactively 

identify potential technical debt within iterative and incremental systems development. This 

process will help to manage and predict technical debt within systems engineering and therefore 

will reduce the risk of technical bankruptcy. This work will be performed through investigation of 

the following research questions.  

1.3.1 Research Questions 

1.3.1.1 RQ1: How prevalent is the technical debt metaphor within systems engineering? 

This question drives at the current state of knowledge of technical debt in the field of systems 

engineering. Answering this question will form a baseline level of knowledge and will inform the 

work going forward. RQ1 is addressed through the following subordinate research questions. 

RQ1.1: What is the current state of research on technical debt within systems engineering? 

This question seeks to understand the state of published research using the technical debt 

metaphor in systems engineering fields.  

Task 1.1.1: Perform a literature review of technical debt within systems engineering to answer 

the following research questions derived from RQ1.1: 
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RQ1.1.1: What is the prevalence of the technical debt metaphor within systems engineering 

research? 

RQ1.1.2: How is technical debt defined for systems engineering? 

RQ1.1.2.1: What types of technical debt are associated with systems engineering? 

RQ1.1.2.2: What are the sources of technical debt in systems engineering? 

RQ1.1.3: Where in the systems engineering lifecycle does technical debt occur? 

RQ1.2: How prevalent is the concept of technical debt and the use of the metaphor among 

systems engineering practitioners? 

This question seeks to understand the use of the technical debt concept and metaphor by systems 

engineering practitioners. The use of terms and concepts among practitioners and academia are 

not always the same. 

Task 1.2.1: Conduct a survey of systems engineers to gather empirical evidence 

Task 1.2.2: Process the survey results to identify key sources and types of technical debt within 

systems engineering lifecycles and also the stages of the lifecycle which are most susceptible to 

technical debt 

RQ1.3: What common ontology should be used to describe technical debt within the field of 

systems engineering? 

Upon completion of the research associated with RQ1.1 and RQ1.2, develop an ontology to 

define technical debt and describe its likely sources within the systems engineering field. This 

ontology can then be used within the rest of this work to establish a baseline for communication. 
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The ontology of technical debt from software engineering will be modified based upon the results 

of RQ1.1. and RQ1.2. 

Task 1.3.1: Create a definition of technical debt, principal, interest, and other terms as necessary 

that is tailored to the field of systems engineering. Existing definitions may be used if they are 

deemed appropriate to the field. 

Task 1.3.2: Identify types of technical debt applicable to systems engineering. Based on the 

results of the survey, clearly identify the key types of technical debt, including their projected 

impacts. 

1.3.1.2 RQ2: How can potential sources of technical debt be identified during the system 

lifecycle? 

This question seeks to understand how to identify technical debt during system development. 

For technical debt to be a useful tool to guide system development, it must be able to be identified. 

While the identification of the exact sources of technical debt will vary from project to project, the 

establishment of a repeatable process will aid systems developers. RQ2 is addressed through the 

following subordinate research questions. 

RQ2.1: How is technical debt identified within software engineering? 

Task 2.1.1: Perform research to understand how technical debt is identified within the field of 

software engineering. This research includes identifying the types and sources of technical debt as 

well as processes and procedures for identifying technical debt currently in use. 

RQ2.2: What process can be used to identify potential technical debt sources within systems 

engineering? 
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Task 2.2.1: Create a process to identify the dependencies between components, specifically 

focusing on the impact of the chronological development process on the ability to complete 

components and to deliver required capabilities. This process will identify qualitative methods for 

describing the relationship between components and will provide examples to aid the process. This 

work will be done in conjunction with the Space Development Agency, whose rapid, incremental 

development cycle will serve as a testbed for the process development. 

1.3.1.3 RQ3: How can technical debt be used as a guide in release planning? 

This question seeks to understand how to include technical debt within the context of release 

planning for iterative and incremental development cycles. Inclusion of technical debt 

considerations as a decision support system for release planning models should limit the risk of 

technical bankruptcy. 

Task 3.1: Establish a quantitative model that is a companion to the qualitative process 

established in Task 2.2.1. This model will create the probabilistic relationship between 

components. 

Task 3.2: Relate the quantitative model to the release planning process and demonstrate how it 

can be used as a decision support system for release planning.  

1.3.1.4 RQ4: How can the process and model be used to avoid technical bankruptcy?  

This question seeks to understand how to use the created models and processes as tools to avoid 

technical bankruptcy. Therefore, technical bankruptcy must be defined in the context of the model. 

Using this definition, the model and processes can be validated through real-world applications. 

Finally, since a model and a process are only useful if they can be communicated and used by 

others, a simplified version of the model needs to be created to enable conceptual discussions. 
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Task 4.1: Create a definition of technical bankruptcy within the context of the process and 

model outputs. This task will enable the users of the model to identify areas of concern when 

performing their release planning, such that they can get ahead of the problems before they occur.  

Task 4.2: Utilize the developed process and model at the Space Development Agency and report 

on the results. The work at SDA will serve as a test ground for the process and model, enabling 

validation of the work. 

Task 4.3: Create a simplified way of presenting and communicating the process and model. 

Systems models that are simple tend to be the most useful by the community. The Vee-model is 

easy to visualize and understand, increasing its utility. This task seeks to identify a simple way to 

communicate the key concepts behind the process and model to increase its general utility. 

1.4 Structure of this Dissertation 

The rest of this dissertation is structured as follows. Chapter 2 discusses RQ1, providing insight 

into the prevalence of technical debt within systems engineering and proposing a technical debt 

ontology for systems engineering. Chapter 3 answers RQ2, introducing the List, Evaluate, 

Achieve, Procure (LEAP) process as a method to proactively identify potential sources of technical 

debt within system development. Chapter 4 addresses RQ3, enhancing the LEAP process to 

include probabilistic models and demonstrating how this version can be used as a decision support 

system for release planning. Chapter 5 discusses RQ4, providing examples of using the LEAP 

process to proactively identify potential technical debt sources in real-world scenarios. Finally, 

Chapter 6 concludes the dissertation and provides recommendations for continued work. 

This dissertation contains several works that have previously been published in journals or 

presented at conferences. In these cases, the works are reproduced in whole within this dissertation 
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and have been reformatted to meet the dissertation style guidelines; however, the content has not 

been altered. 
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CHAPTER 2  – TECHNICAL DEBT IN SYSTEMS ENGINEERING 
 
 
 

2.1 Introduction 

The previous chapter introduced the concept of technical debt and provided examples of its 

occurrence within large scale systems engineering projects. However, the reports on these project 

outcomes do not explicitly call out technical debt as a driving factor in project delays or failures. 

Instead, various project-unique causes are cited which required project-unique solutions. If, 

however, a common lexicon existed for technical debt, then relationships between these projects 

may be found and common solutions identified. The apparent lack of a common ontology for 

similar problems prevents the sharing of management and mitigation strategies [20]. Such an 

ontology is only enabled if there is abundant research on technical debt within systems engineering 

and if practitioners use technical debt terminology.  

To assess these concerns, this chapter addresses Research Question (RQ) 1: How prevalent is 

the technical debt metaphor within systems engineering? RQ1 is decomposed into three 

subordinate research questions, which are individually addressed in the following sections: 

• RQ1.1: What is the current state of research on technical debt within systems engineering? 

• RQ1.2: How prevalent is the concept of technical debt and the use of the metaphor among 

systems engineering practitioners? 

• RQ1.3: What common ontology should be used to describe technical debt within the field 

of systems engineering? 

Addressing RQ1.1 will provide insight into the current state of technical debt research within 

systems engineering. This assessment of current research is foundational to the creation of an 

ontology by providing terms and definitions used with the academic community. Addressing 
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RQ1.2 will provide empirical evidence regarding the use of the technical debt metaphor. If it is 

commonly used amongst systems engineering practitioners, then there should already be a lexicon 

that can be leveraged to create a common ontology. These two research questions will establish 

the prevalence of the technical debt metaphor. 

Assessing the prevalence of the metaphor is not enough to enable the sharing of technical debt 

mitigation and management strategies. Instead, a common ontology needs to be provided such that 

practitioners can clearly communicate ideas and problems. Addressing RQ1.3 will develop a 

proposed ontology, leveraging the results of the previous two research questions. The development 

of a technical debt ontology will foster greater communication by standardizing terminology and 

preventing the development of multiple descriptions for similar problems. If this ontology can be 

adopted by the larger community, it will become easier to collaborate on solutions to common 

problems.  

2.2 RQ1.1: What is the Current State of Research on Technical Debt within Systems 

Engineering? 

Assessing the current state of research into technical debt within systems engineering is a 

critical step to understanding the prevalence of the metaphor within the field. If the metaphor is 

commonly used and understood then the logical conclusion is that it should appear throughout the 

published body of knowledge. Therefore, a systematic literature review was conducted in early 

2022, in accordance with Task 1.1.1: Perform a literature review of technical debt within systems 

engineering. The literature review was designed to determine an assessment of the prevalence of 

the technical debt metaphor based on the number of articles explicitly referencing both technical 

debt and systems engineering. Further analysis included assessing the definition of technical debt 

in systems engineering, the types and sources of technical debt in systems engineering, and the 
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occurrence of technical debt within the systems engineering lifecycle. This review identifies the 

current state of research in the field and provides a baseline for the rest of this dissertation. The 

literature review was published in Systems Engineering in 2023 [19] and is reprinted here. 

2.2.1 Technical Debt in Systems Engineering – A Systematic Literature Review [19] 

2.2.1.1 Abstract 

The metaphor of “technical debt” is used in software engineering to describe technical solutions 

that may be pragmatic in the near-term but may have a negative long-term impact. Similar 

decisions and similar dynamics are present in the field of systems engineering. This work 

investigates the current body of knowledge to identify if, and how, the technical debt metaphor is 

used within the systems engineering field and which systems engineering lifecycle stages are most 

susceptible to technical debt. A systematic literature review was conducted on 354 papers in 

February, 2022, of which 18 were deemed relevant for inclusion in the study. The results of the 

systematic literature review show that the technical debt metaphor is not prevalent within systems 

engineering research and that existing research is limited to specific fields and theoretical 

discussions. This paper concludes with recommendations for future work to establish a research 

agenda on the identification and management of technical debt within systems engineering. 

2.2.1.2 Introduction 

Cunningham introduced the technical debt metaphor to explain the need for refactoring 

software to his management. He stated, “shipping first time code is like going into debt. A little 

debt speeds development so long as it is paid back promptly with a rewrite” [17]. Taking on 

technical debt can benefit a project, as long as the debt is not allowed to grow. Much like traditional 

(financial) debt can be a source of risk when it is not repaid, technical debt can be a source of risk 

“when the debt is not repaid. Every minute spent on not-quite-right code counts as interest on that 
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debt” [17]. With this statement, Cunningham defined the concept of technical debt interest – the 

additional time required when working with code that was “not-quite-right.”  

Multiple secondary studies have researched the history of academic research into technical debt 

(TD), its types, and its causes in the field of software engineering. Li et al. [60] performed a 

systematic mapping study in 2015, finding a total of 94 studies on technical debt, with a total of 

four studies published prior to 2008 and at least 15 studies published per year since 2010. 

Verdecchia et al. [97] found 47 primary studies related specifically to architectural technical debt 

from 2009 to 2017, with the number increasing in the later years. Lenarduzzi et al. [69] found 44 

studies published between 2010 and 2020 that apply to technical debt prioritization. Melo et al. 

[53] analyzed 61 primary studies published between 2010 and 2020 related to the use of technical 

debt requirements in software engineering, with 71% of those studies published after 2015. These 

secondary studies show that interest in technical debt in the software domain is increasing and 

specializing. 

Software engineering has traditionally served as a reservoir of analogous processes and tools 

for systems engineering. Several systems engineering lifecycle models, including the Waterfall 

model [4] and the Spiral model [22], started as software development lifecycle models. Agile 

methods are becoming more prevalent in systems engineering as well [13]. These lifecycle models 

migrate from software development to systems engineering due to the similarities between the two 

disciplines: both involve the design and development of complex systems with multiple interfaces 

and components that must be managed.  

Leveraging analogous tools and processes from software engineering into systems engineering 

also interjects some of the same problems. Decisions made in the course of system development 

to satisfy near-term objectives may not be optimal for the long-term health of the system, adding 
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technical debt to the system. Given the similarity between the fields, we might expect that systems 

engineering would see similar types and sources of technical debt as software engineering.  

Published systems engineering research discusses similar concepts to technical debt, although 

it is not always explicitly defined as technical debt. Bahill developed a process to identify 

unintended consequences on other systems due to the decisions made during the development of 

a particular system [98]. De Lessio et al. created a process to “identify the main uncertainty drivers 

potentially affecting the future lifecycle performance of their systems” [99]. Etemadi and Kamp 

identify that decisions made during early strategy phases of a project can have impacts on schedule 

and schedule growth [32]. Bowlds et al. show that poor documentation leads to increased 

maintenance costs and effort in software and hardware systems and component obsolescence is a 

concern in both fields [100]. Boehm and Behnamghader discuss how inadequate systems 

engineering resources can lead to “exponentially-large amounts of TD due to poorly-defined 

interfaces, unaddressed rainy-day use cases and risks, and premature commitments to hopefully-

compatible but actually-incompatible COTS products, cloud services, open-source capabilities, 

and hopefully-reusable components” [101]. Sharon et al. correlate systems engineering 

management and project management and identify that “careful management of the relationships 

between the product and the project is crucial to the successes of a project that aims to deliver a 

defined product” [102]. These sources all discuss critical elements of technical debt – unintended 

consequences, the impact of early decisions on long-term health of the system, and the need for 

adequate resourcing and careful decision making. However, only Boehm and Behnamghader 

explicitly use technical debt in their descriptions.  

The lack of a common taxonomy within these sources motivated this work. While numerous 

secondary studies of technical debt exist within the field of software engineering, the authors are 
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unaware of any such systematic studies within the field of systems engineering. The goal of this 

paper is to determine the current state of research on technical debt within systems engineering 

through a systematic literature review. 

This goal led to the definition of the following research questions (RQs): 

• RQ1: What is the prevalence of the technical debt metaphor within systems engineering 

research? 

• RQ2: How is technical debt defined for systems engineering? 

• RQ2.1: What types of technical debt are associated with systems engineering? 

• RQ2.2: What are the causes of technical debt in systems engineering? 

• RQ3: Where in the systems engineering lifecycle does technical debt occur? 

This paper is structured as follows: Section 2.2.1.3  presents the search methodology; Section 

2.2.1.4  provides the results of the search; Section 2.2.1.6  presents a discussion of the results; and 

Section 2.2.1.6.4  presents the conclusions and opportunities for future work. 

2.2.1.3 Methodology 

This section defines the methodology used to conduct a systematic literature review of systems 

engineering technical debt, including the search strategy. The systematic literature review was 

conducted based on the guidelines in Kitchenham [103]. The results of the search are discussed in 

the following sections. 

2.2.1.3.1 Search Strategy 

The search string used to conduct the literature review included the technical debt phrase and 

any extension of the word system, as follows: 

(“tech* debt” AND “system*”) 
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For systems that did not allow the use of wildcards, the search string was set to: 

 (“technical debt” AND “system”) 

Searches were limited to the title and the abstract. The wild card character (*) was used to 

account for different derivations of technical debt and system (i.e., systems) in the results. The 

search was applied to the following online databases: IEEE eXplore, Science Direct, Wiley Online 

Library, and Springer Link. Due to the limitations of the Springer Link online search tool, the 

search on that site was limited to the title only. 

Table 2-1 presents the inclusion and exclusion criteria that were applied as part of the search. 

Articles had to meet both inclusion criteria to be considered for the literature review. 

Table 2-1. Literature review inclusion and exclusion criteria 

Type Criteria Field(s) 

Inclusion Article discusses technical debt in context outside of software 

engineering 

Title, Abstract, Full Text 

Inclusion Article identifies causes or types of technical debt in the context of an 

engineering system or identifies the appearance or impact of technical 

debt within a system life cycle 

Title, Abstract, Full Text 

Exclusion Article is not available in English Title, Abstract 

Exclusion Article refers to financial debt Title, Abstract 

Exclusion Article is not peer reviewed (blogs, tutorials, speeches are excluded) Title, Abstract 

Exclusion Article discusses technical debt solely in the context of software 

engineering 

Title, Abstract, Full Text 

Exclusion Article describes a specific product for use in detecting or managing 

technical debt 

Title, Abstract, Full Text 

Exclusion Duplicate articles Title 

Exclusion Technical debt in systems engineering is not the primary focus of the 

article 

Title, Abstract, Full Text 

 

The search was conducted in February, 2022, included all articles available up to that time and 

resulted in the identification of 354 articles. The inclusion and exclusion criteria were first applied 

to the titles and abstracts and then the full text of the remaining articles was assessed. Application 

of the criteria to the full text resulted in the identification of 18 papers to be included in the 
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assessment, as shown in Table 2-2. The preponderance of excluded papers referenced technical 

debt in the context of software engineering. 

Table 2-2. Search results at each stage of evaluation 

Evaluation Stage # of Articles Found Articles Excluded by Criteria 

Online database search 354 Not available in English: 3 

Refers to financial debt: 47 

Solely in context of software engineering: 202 

Describes a specific product: 15 

Duplicate article: 4 

Technical debt in systems engineering is not the 

primary focus: 41 

Title and abstract 

criteria 

39 Solely in context of software engineering: 15 

Duplicate article: 2 

Technical debt in systems engineering is not the 

primary focus: 4 

Full reading 18  

Quality assessment 18  

 

Following the full text reading, a quality assessment was performed on each paper. The quality 

assessment criteria presented in Lenarduzzi et al. [69] were used to assess the received papers, 

which the exception of quality assessment criteria 1: “Is the paper based on research (or is it merely 

a ‘lessons learned’ report based on expert opinion)?”. Since the goal of this study is to examine 

the prevalence of the technical debt metaphor in systems engineering, “expert opinion” articles 

have value in this context. The remaining criteria include assessments of the clarity of goals, the 

collection of data, and the value of the study. 

All 18 articles that passed the full text reading assessment also passed the quality assessment. 

2.2.1.3.2 Data Extraction 

Table 2-3 illustrates the mapping between the research questions and the data that was 

extractable from the final set of 18 articles on systems engineering technical debt. To answer RQ1, 

data on the field of study, the type of study conducted, and whether the study applies a new usage 

of technical debt metaphor were extracted. These data inform our understanding of the prevalence 
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of the technical debt metaphor within systems engineering. The information identifies not only the 

areas of active research but also the extent to which new methodologies for dealing with technical 

debt are studied. 

Table 2-3. Research questions and associated data extracted from the qualifying articles 

Research Question Data Type Description 

RQ1 Field of study The field within which the research was conducted 

RQ1 Type of study Is the research based on survey data, case studies, or author 

experience? 

RQ1 Usage of 

technical debt 

Is the research reporting on existing usage of the technical debt 

metaphor or proposing a new use? 

RQ2 Technical debt 

language 

Is the research adapting software engineering terminology to 

systems engineering or using systems engineering terminology? 

RQ2.1 Technical debt 

types 

Types of technical debt applied to systems engineering identified in 

the research 

RQ2.2 Technical debt 

causes 

Causes of technical debt applied to systems engineering identified 

in the research 

RQ3 Life cycle 

models 

Identified systems engineering life cycle models where technical 

debt occurs 

RQ3 Life cycle 

stages 

Stages of the life cycle models where technical debt is instantiated, 

where interested occurs, and when it is (or is not) paid back 

 

Data supporting RQ2 include the prevalence in the paper of unique systems engineering 

terminology and the inclusion of new types (RQ2.1) and causes (RQ2.2) of technical debt. These 

data assist in identifying differences in technical debt occurrences between systems engineering 

and software engineering. The data extracted from the articles to answer RQ2.1 are compared to 

the set of software technical debt types from Li et al. [60]. The causes of technical debt retrieved 

in support of RQ2.2 are mapped to the types of technical debt. 

Studies that identified the occurrence of technical debt within the systems engineering life cycle 

models provide data to answer RQ3. Data extracted from each article include the type of lifecycle 

model and the stages within the lifecycle model where the technical debt initially occurs, where 

its impact is felt, and where it must be paid back. 
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2.2.1.3.3 Threats to Validity 

The findings of a literature review may be affected by numerous factors. Although large digital 

databases were used for the search for articles for this study, it is possible that relevant articles 

were not included in the search. The word “system” was required to be in the title or abstract, this 

restriction may have eliminated studies in closely related fields that do not emphasize the term 

(such as aerospace engineering). The researcher may have a bias on the study selection and the 

data extraction. The potential bias on study selection was mitigated by using a clear set of selection 

criteria, as outlined in Section 2.2.1.3.1. Potential bias at the data extraction stage was mitigated 

by pre-identifying the data types to be extracted. The descriptions of each data type, shown in 

Table 2-3, were used to guide the extraction of data. For example, the type of study was classified 

as either empirical survey data, case study data, or author experience. These descriptions provide 

the guidelines for coding the data from each article. 

2.2.1.4 Results and Discussion 

This section presents the results of the literature review in response to the research questions. 

The initial search returned 354 articles, of which only 18 passed the criteria for inclusion in the 

literature review. The publication dates of the search results spanned 2009-2022. The IEEE 

eXplore database returned 172 results, which was the most of any of the databases searched. By 

contrast, a similar search for (“requirement” AND “system”) in the document title in the IEEE 

eXplore database returned 1,898 results for the same timeframe. A similar search on “systems 

engineering” in the document title returned 3,401 results. The limited number of search results 

related to technical debt indicates that technical debt is not a well-studied concept within systems 

engineering. 
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Figure 2-1 shows the breakdown of the passing articles by topic of study in relation to the 

research questions. All articles applied to RQ1 and some articles addressed multiple research 

questions. 

 

Figure 2-1. Topics of study in selected articles applied to research questions 

2.2.1.4.1 RQ1: Prevalence of Technical Debt in Systems Engineering 

Figure 2-2 provides an overview of the articles that passed the criteria for inclusion in the 

literature review, broken down by field of study and data source.  

 

Figure 2-2. Overview of selected articles by field of study (left) and data source (right) 

Of the eighteen sources that are applicable to this study, nine focus on the application of 

technical debt in the development of automated production systems [104] [105] [106] [107] [108] 

[109] [110] [111] [112]. These studies build upon each other and seek to identify the causes and 

types of technical debt across the electronic, mechanical, and software components of automated 
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production systems. For example, Vogel-Heuser and Bi [113] expand their research from the realm 

of automated production systems to mechatronic systems in general and gather empirical data on 

the occurrence of technical debt within the mechatronic system life cycle, the types of technical 

debt that are present, and the causes of the technical debt.  

Five of the 18 papers focused on technical debt in traditional systems engineering. Rosser and 

Norton [79] and Rosser and Ouzzif [70] provide a systems engineering view of technical debt. In 

both papers, the researchers map technical debt types from the software engineering field to the 

systems engineering field and identify new types of system-engineering-centric technical debt, 

such as depreciation debt. Fairley and Willshire [114] identify high level applications of technical 

debt to different systems engineering life cycle models and provide some methods for assessing 

the accrual of technical debt during the development cycle. Fairley [64] identifies how technical 

debt accrues due to rework in iterative and incremental system lifecycles. Storrle and Ciolkowski 

[89] argue that technical debt needs to be considered at the domain-level and define domain debt 

as “the mis-representation of the application domain by an actual system.” They argue that domain 

debt, which applies at the system level, needs to be considered alongside other technical debt types, 

and provide a case study example of sources and effects of domain debt.  

The selected articles used a combination of case studies and surveys as empirical data sources. 

Slightly more than half the articles were primarily derived from author experience, which includes 

theoretical data, and the rest gathered empirical data from case studies and surveys. Figure 2-3 

shows the breakdown of the articles by the field of study and associated data source. 
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Figure 2-3. Data source by field of study 

From these results and in reference to research question 1, we can conclude that the technical 

debt metaphor is not broadly utilized within published works on systems engineering. Of the 

thousands of systems engineering papers published during the study period, only 18 were 

identified as pertaining to technical debt in systems engineering. The majority of the 18 articles 

focus on technical debt in specific systems and not on the application of technical debt to the 

broader concept of systems engineering. The most extensive set of articles focus on the domain of 

automated production systems. These systems provide a reasonable basis for extension to the 

general systems engineering field due to the interdependencies of multiple engineering disciplines. 

The literature on technical debt in automated production systems is primarily based on a 

foundational set of case studies and industrial surveys, which provide an applied and empirical 

underpinning to the research to date.  

The few articles that focus on the broader scope of systems engineering do not provide 

significant empirical evidence for their conclusions. The lack of empirical data supporting the 

analysis of technical debt within systems engineering highlights the need for research into this 

emerging field, including the generation of such data. 
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2.2.1.4.2 RQ2: Definition of Technical Debt in Systems Engineering 

The definition of technical debt has evolved since Cunningham first coined the metaphor. 

McConnell defined technical debt as “the obligation that a software organization incurs when it 

chooses a design or construction approach that’s expedient in the short term but that increases 

complexity and is more costly in the long term” [58]. Review of the selected articles revealed that 

the majority use a modified version of the definition of technical debt from Li et al. [60]. Li defines 

that “Technical debt is a metaphor reflecting technical compromises that can yield short-term 

benefit but may hurt the long-term health of a software system” [60]. The use of the term “long-

term health” instead of costs expands McConnell’s definition to include non-cost impacts on the 

system. Fairley and Willshire [114] define technical debt as the “difference between planned or 

reported product delivery and actual delivery.” Biffl et al. [112] define technical debt as “violations 

in the engineering data model or engineering data instances compared to an intended data model 

architecture for data integration in systems engineering.” Rosser and Norton [79] do not explicitly 

define technical debt, but state that “a consensus-based definition for system technical debt has not 

yet emerged.” They instead identify multiple classes and types of technical debt for consideration 

in systems engineering.  

The selected studies show that technical debt is an evolving concept and its application to 

systems engineering is expanding. 17% of the studies included a new or heavily modified 

definition of technical debt. Of the five articles that focused on general systems engineering, two 

(40%) provided a new definition of technical debt. These results reinforce that convergence on the 

definition and scope of technical debt has not yet emerged.  

Given these results, we conclude that the software-based definition of technical debt provided 

by Li et al. is a valid starting point for a systems engineering-centric definition of technical debt. 
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To make the definition applicable for systems engineering, we suggest removing the software 

focus of the definition, replacing it with a systems focus as follows: “Technical debt is a metaphor 

reflecting technical compromises that can yield short-term benefit but may hurt the long-term 

health of a system.”  

These findings illustrate that there is a lack of a consensus definition for system technical debt, 

and more broadly a lack of a common ontology for discussing technical debt within systems 

engineering. 

2.2.1.4.2.1 RQ2.1: Types of Technical Debt in Systems Engineering 

The technical debt landscape consists of issues related to software evolvability and 

maintainability [115]. These issues may be internal to the system and invisible to the user, such as 

architectural issues, or they may be issues directly visible to the user such as poor usability. 

Kruchten et al. [116] define a set of concepts to assist in identifying what issues should and should 

not be considered technical debt: 

• Technical debt does not consist only of bad quality 

• New usages of a system can create technical debt 

• Defects are not necessarily technical debt 

• Unfinished or postponed work is not technical debt 

• Work to be done in the future is not technical debt 

These concepts informed the review of technical debt types in the selected articles. 

Li et al. [60] identify ten types of technical debt prevalent in software engineering. This 

typology served as the baseline point for comparison in the review of the selected articles. While 

some articles identified different types of technical debt, many of those can be mapped into the 
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baseline set. For example, we assert that all types of technical debt associated with flaws in 

software designs, whether they are in a database or source code, can be allocated to the code debt 

type. Technical debt due to hardware assembly and software build processes were grouped 

together into the “build debt” type and renamed to “build/assembly debt”. Within a systems 

engineering framework, these types of debt are similar since they both are centered on the steps to 

integrate and create the system. Table 2-4 presents the summary of that process of mapping the 

literature to an expanded typology of technical debts.  

Table 2-4. Types of technical debt identified in selected articles 

Technical Debt Type Definition Source(s) 

Architectural “Caused by architecture decisions that make compromises 

in some internal quality aspects, such as maintainability” 

[60] 

[108] [111] [113] [79] 

[70] [117] 

Automation Technical debt associated with the automated machinery 

used in hardware systems [70] 

[70] 

Build/Assembly “Flaws in a software system, in its build system, or in its 

build process that make the build overly complex and 

difficult” [60] 

[113] [79]  

Code “Poorly written code that violates best coding practices or 

coding rules” [60] 

[108] [111] [112] [79] 

Commissioning Related to the commissioning and start-up of automated 

production systems [113] 

[113] 

Configuration Hardware configuration and testing can be affected by 

availability of the systems [70] 

[79] [70] 

Defect “Defects, bugs, or failures found in software systems” [60] [79] [70] 

Depreciation Effect of aging system, outdated components, and the need 

to replace/update them [70] 

[79] [70] [86] 

Design “Technical shortcuts that are taken in detailed design” [60] [111] [113] [117] 

Documentation “Insufficient, incomplete, or outdated documentation in 

any aspect of software development.” [60] 

[108] [111] [113] [79] 

[70] [86] 

Domain “The misrepresentation of the application domain by an 

actual system” [89] 

[89] 

Implementation Errors in hardware implementation resulting from poor 

instructions [70] 

[113] [70] 

Infrastructure “Sub-optimal configuration of development-related 

processes, technologies, supporting tools, etc.” [60] 

[111] [113] 

Integration Use of "non-standard connections, outdated or proprietary 

interfaces, and infrequently used standards.” [27]  

[79] [70] [86] 

Modeling and 

Simulation 

Technical debt associated with the models and simulations 

used to support a system [70] 

[79] [70] 

Operations / 

Maintenance 

“Any kind of handicap with adverse effects on the product 

or system maintenance” [111] 

[113] 
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Technical Debt Type Definition Source(s) 

Organic “Refers to any combination and degree of technological, 

systemic, project, and program decisions, behaviors, and 

practices made by the workforce, management and/or 

senior/executive leadership of the organization responsible 

for introductions of new technologies and systems and/or 

the sustainment of existing systems” [86] 

[86] 

Requirements “Distance between the optimal solution to a requirements 

problem and the actual solution, with respect to some 

decision space” [118] 

[113] [79] [70] [86] 

Start-up “Refers to shortcuts taken in the startup process of the 

product or system.” May be specific to the field of 

automated production systems [113] 

[111] 

Test “Shortcuts taken in testing” [60] [111] [113] [79] [70] 

Versioning “Problems in source code versioning” [60] [113] [86] 

 

In summary, the selected articles identified a total of 21 types of technical debt, many of which 

are new types of technical debt compared to the baseline list. Figure 2-4 shows the occurrence of 

each identified type of technical debt in the selected articles. The most commonly referenced types 

are “architectural technical debt” and “documentation technical debt”. The largest occurring types 

of technical debt map to the types identified by Li et al., as shown in Table 2-4.  

 

Figure 2-4. Occurrence of technical debt types in selected articles 

Six of the eleven new types of technical debt are defined within only one source, and twelve of 

the total types of debt are defined within two or fewer sources. These findings show that there 
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exists a lack of a consensus categorizations for technical debt within systems engineering. Several 

of the identified types of technical debt, such as commissioning debt, are unique to a specific field. 

The lack of empirical data throughout many of the articles prevents an independent evaluation of 

the rationale for each type of technical debt. Additional data would be required to verify and assert 

a comprehensive list of the types of technical debt. 

2.2.1.4.2.2 RQ3: Causes of Technical Debt in Systems Engineering 

Ten of the articles identified causes of technical debt. Table 2-5 aggregates the identified 

sources into major categories and maps those categories to the different types of technical debt 

identified in Table 2-4. 

Table 2-5. Technical debt causes in selected articles 

Technical 

Debt Cause 
Description Technical Debt Type(s) Source(s) 

External 

factors 

Factors external to the system, such as cost and 

schedule limitations and external priorities that 

result in the pressure to take short-cuts in any stage 

of the system lifecycle 

Domain, Architectural, 

Implementation, Build, 

Code, Modeling and 

Simulation, Requirements, 

Test, Organic 

[111] 

[113] 

[70] 

[114] 

[89] [64] 

Short cut 

modifications 

Poorly documented modifications, such as those 

made in the field and not recorded and correction 

of hardware deficiencies through software, that 

lead to multiple versions of the system 

Implementation, 

Configuration, Infrastructure 

[113] 

[70] 

Poor 

requirements 

Poorly specified requirements and poor initial 

assumptions about the system may lead to rework 

due to incorrect implementation 

Requirements, Domain [114] 

[64] 

Inadequate 

resources 

Inadequate resources and lack of proper budgets 

may result in work arounds that accumulate debt  

Organic [111] 

[114] 

[64] 

Multiple 

disciplines 

and parallel 

development 

Multiple disciplines require synchronized 

planning. Lack of synchronization or knowledge of 

the state of the other disciplines can cause 

divergent designs and result in rework. Different 

performance indicators and misaligned timelines 

can contribute to divergent requirements and 

designs. 

Design, Architectural, 

Organic 

[111] 

[112] 

[113] 
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Technical 

Debt Cause 
Description Technical Debt Type(s) Source(s) 

Deviations 

from 

standards and 

poor or 

incomplete 

work 

Failure to implement to a standard, either external 

or internal, and developing poor (i.e., bad 

architecture or containing multiple defects) or 

incomplete work (i.e., incomplete refactoring) 

leads to technical debt. Performing simplified 

analyses when more detailed analyses are required 

can result in an insufficient design. 

Design, Code, Architectural, 

Requirements, Build, Defect 

[108] 

[111] 

[70] [64] 

[117] 

[119] 

Environmental 

changes 

Changes to the system’s environment due to 

regulatory or standards changes or evolution of the 

domain result in shortfalls in the current system 

that need to be remedied. Similarly, decay of the 

system’s design and evolution of technology 

beyond the system’s capabilities result in 

performance shortfalls. 

Domain, Depreciation [70] [89] 

Third-party 

products 

Third-party or commercial products may not 

completely satisfy the system requirements. 

Design, Architectural, 

Domain, Requirements 

[111] 

[89] 

Human factors Personnel may have a lack of knowledge or skill 

that contribute to the need for rework. Lack of 

communication between personnel can also 

contribute to rework. 

Organic [111] 

[113] 

Proposal 

effects 

Solutions generated in a time and cost constrained 

manner, such as for a proposal, can take shortcuts 

in detailed analysis and cost-savings measures that 

result in the need for rework later. 

Architectural, Design  [117] 

 

Synthesizing the selected articles provides a substantial listing of causes of technical debt. 

External factors, deviations from standards, and poor work are the most common causes of 

technical debt (mentioned by six different articles). However, all articles lack empirical data 

linking the causes to the types of technical debt or, more importantly, to the impact on the system 

lifecycle.  

2.2.1.5 RQ3: Technical Debt in the Systems Engineering Lifecycle 

As shown in Figure 2-1, five of the studies addressed the role of technical debt in the systems 

engineering lifecycle, and can therefore be referenced in answering RQ3. Fairley and Willshire 

[114] discuss the management of technical debt in the linear-predictive (Waterfall), incremental-

predictive (incremental), and iterative-adaptive (agile) systems lifecycles. In linear-predictive 

lifecycles, they propose to identify and review the technical debt at review gates at the end of each 
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stage. Similarly, they propose to review technical debt at the end of each increment in an 

incremental-predictive lifecycle and suggest merging technical debt burndown into the future 

increments of an iterative-adaptive lifecycle. Dong et al. [107] describe how technical debt created 

in one discipline affects the others throughout the life cycle of automated production systems, but 

they do not apply technical debt concepts directly to the stages of the life cycle. Vogel-Heuser and 

Bi [113] show how technical debt is most prevalent early in the lifecycle of mechatronic systems 

and how different types of technical debt emerge throughout the lifecycle of these systems. 

Requirements, architecture, design, variants, and version technical debt occur within the 

specification and design stages, code and test technical debt occur during the development stage, 

and defect, start-up, and maintenance technical debt occur during the startup and operations stages. 

They also note that infrastructure and documentation technical debt, which are two of their more 

prevalent types of debt, can occur in any stage of the lifecycle. Callister and Andersson [117] 

describe the occurrence of technical debt in multiple stages of subsea system development using a 

Collapsed Vee lifecycle model. They provide a case study of two projects, showing technical debt 

occurrences in the tender (proposal) phase, the system definition phase, and the detailed design 

phase. Fairley [64] assesses technical debt in the context of an iterative and incremental lifecycle. 

He identifies that in a well-managed project, technical debt accrued in one increment should be 

paid back in the next increment. They assert that there may be the need to devote an entire 

increment to paying back technical debt.  

Although the mechanisms by which technical debt appears in the systems engineering lifecycle 

were not addressed in a large number of the articles, those that did address it showed that technical 

debt can occur in many stages of the systems engineering lifecycle. Vogel-Heuser and Bi [113] 

provide a complete description of technical debt occurrence throughout the lifecycle of a 
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mechatronic system. There is an opportunity in the field to map technical debt within the most 

common systems engineering lifecycles, based on empirical data, to identify the stages that are 

most susceptible to technical debt accumulation. The effect of early-stage technical debt on end 

stage capabilities could be quantified in key systems engineering applications such as aerospace 

and energy systems. For example, Schutz [120] argues that there is insufficient research on 

technical debt in the domain of smart grids. 

2.2.1.6 Discussion 

2.2.1.6.1 Implications of the Sparsity of the Technical Debt Metaphor within Systems Engineering 

Although technical debt is illustrated here to be not well-researched in the context of systems 

engineering, its existence is known and it is identified as a problem. Technical debt as it affects 

systems engineering projects is an open area of research to which future work can contribute, 

especially with empirical data gathering. 

The results of RQ1 show that the technical debt metaphor is not prevalent within systems 

engineering research. The limited usage of the metaphor does not imply that technical debt does 

not occur within systems engineering. Rather, the limited usage of the metaphor implies that 

systems engineering lacks a common ontology to discuss the types of problems that result from 

technical debt. The lack of commonality can be seen in the different applications and definitions 

of technical debt. 

The implication of the confusion in definitions can be seen by examining two products from 

the International Council on Systems Engineering (INCOSE): Project Manager’s Guide to 

Systems Engineering Measurement for Project Success [78] and Needs, Requirements, 

Verification, Validation Lifecycle Manual [77]. Each of these publications provide a different 

definition of technical debt: 
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• “The promise to complete a technical shortcoming in the future while declaring it complete 

today.” [78] 

• “What occurs when a project team uses a quick short-term solution that will require 

additional development work later to meet the needs of stakeholders.” [77] 

The first definition does not include the concept of technical debt interest – that there will be 

additional work required due to the technical shortcoming. The accumulation of technical debt 

interest is what makes technical debt dangerous to systems development. In contrast to the second 

definition, the first definition does not allow the system developer to properly understand the 

potential impacts of their decisions on the ability to complete the system in the future.  

Common ontologies produce commonly understood definitions of terms and enable 

communication of ideas. Establishing such an ontology for technical debt in terms of systems 

engineering will lead to increased communication about and identification of technical debt within 

the systems development process. Once technical debt is identified then it can be measured, and 

perhaps controlled. The sparsity and inconsistency of the technical debt metaphor in systems 

engineering may weaken communication and collaborative control of technical debt in systems 

development.  

2.2.1.6.2 Research Agenda for a Systems Engineering-Centric View of Technical Debt 

To use the technical debt metaphor as a tool for managing systems engineering projects requires 

additional research to fully understand the implications of technical debt within systems 

engineering. We propose the following research agenda for a systems engineering-centric view of 

technical debt: 

• Baseline the knowledge of both the concept behind technical debt and the use of the 

metaphor within systems engineering by gathering empirical data in key systems 
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engineering applications. Such data could be gathered through a survey of industry and 

academia and would be used to understand the current state of technical debt within 

systems engineering. 

• Develop a systems engineering-centric ontology of technical debt to provide clear 

communication of the concepts, causes, and interrelationships among technical debts. The 

types and causes of technical debt identified in this literature review and through the 

gathering of additional empirical data can be mapped to standard systems engineering 

processes and lifecycles to develop a comprehensive set. 

• Develop techniques to identify causes of technical debt within the systems engineering 

lifecycle. These techniques can be used to find technical debt before it accrues to the point 

of affecting the system. 

• Determine a method to quantify the future impact of technical debt. Technical debt must 

be measurable for it to be controlled. Existing tools and techniques for technical debt 

management need to be examined and, if necessary, expanded upon such that they can be 

applied to systems engineering. 

• Test and validate the methods to identify and measure technical debt through application 

to systems engineering projects and programs.  

2.2.1.6.3 Implications for the Management of Technical Debt in Systems Engineering Processes 

Despite the relative obscurity of technical debt in the systems engineering literature, it’s 

presence can dominate the performance of systems engineering projects. Left unchecked, it will 

lead to technical bankruptcy – the state where the project can no longer proceed on time and budget 

without first paying down the debt. Technical bankruptcy can result in significant schedule delays, 

cost increases, or reductions in performance. In 2019, the United States Government 
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Accountability Office (GAO) issued a report on four systems that suffered from technical debt and 

experienced technical bankruptcy (even though the terms “technical debt” did not appear in this 

report). Impacts of the increase in technical debt included schedule breaches, failures in 

developmental test, failures in operational test, obsolete software, inadequate cybersecurity, 

incomplete systems engineering, and significant software rework [11]. Each of these issues 

resulted in cost growth or schedule delays and some of the systems experienced failures of 

development or operational testing. 

The GAO report recommended focusing on including users early in the development process. 

Doing so is a form of “Requirements Technical Debt” management. Users are better positioned to 

give feedback on the long-term usability impacts of decisions that are made early, and as such, can 

identify causes of technical debt as they occur. Early identification is a key technique for managing 

any potential problem sources, including technical debt. 

Many of the studies reviewed here focus on identification of technical debt, fewer focus on the 

systems engineering processes, tools, and techniques that can be used to manage technical debt 

within systems engineering processes, especially as systems engineering processes move to 

become more agile [13]. With agility comes change and with change comes the potential for 

technical debt. Without express management, technical debt build up will lead to technical 

bankruptcy. 

2.2.1.6.4 Conclusions and Future Work  

In this systematic literature review, we searched for published articles that described the effect 

of technical debt in systems engineering. Eighteen articles were retrieved and analyzed to help 

answer research questions on the prevalence and definition of technical debt within the systems 

engineering field and its impact on the systems engineering lifecycles. 
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The results of the review show that technical debt is not a well-studied concept within systems 

engineering. We have developed a more comprehensive set of the types and sources of technical 

debt, and have derived a set of critical elements for managing technical debt within systems 

engineering: a common ontology, empirical data, and management tools and processes. These 

findings illustrate that by enrichening the metaphor of technical debt for systems engineering, we 

can enable the consideration of technical debt as a part of system development. Management of 

the creation and impact of technical debt during system design development is a critical aspect of 

minimizing the risk of technical bankruptcy.  

This research will continue through the implementation of the proposed research agenda. An 

empirical survey of practicing systems engineers will provide evidence for the prevalence of 

technical debt within systems engineering. The results of this survey can be used to understand the 

phases within the systems engineering lifecycle where technical debt is created and observed. This 

data can then be used to develop effective technical debt management and mitigation tools for use 

in systems engineering. 

2.2.1.7 Appendix A: Selected Articles 

The articles that passed the literature review process are listed in Table 2-6. Full bibliographical 

information for each article is available in the references section. 

Table 2-6. Selected articles 

Author(s) Article Name Reference 

Biffl, Ekaputra, Luder et al. Technical Debt Analysis in Parallel Multi-Disciplinary Systems 

Engineering 

[112] 

Brenner, Weippi, and 

Ekelhart 

 

Security Related Technical Debt in the Cyber-Physical Production 

Systems Engineering Process 

[119] 

Callister and Andersson Evaluation of System Integration and Qualification Strategies using 

the Technical Debt metaphor; a case study in Subsea System 

Development 

[117] 
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Author(s) Article Name Reference 

Cha, Dong, and Vogel-

Heuser 

Preventing Technical Debt for Automated Production System 

Maintenance Using Systematic Change Effort Estimation with 

Considering Contingent Cost 

[104] 

Dong, Ocker, and Vogel-

Heuser 

Technical Debt as indicator for weaknesses in engineering of 

automated production systems 

[107] 

Dong and Vogel-Heuser Modelling Industrial Technical Compromises in Production Systems 

with Causal Loop Diagrams 

[106] 

Dong and Vogel-Heuser Cross-disciplinary and cross-life-cycle-phase Technical Debt in 

automated Production Systems: two industrial case studies and a 

survey 

[105] 

Fairley Assessing, Analyzing, and Controlling Technical Work [64] 

Fairley and Willshire Better Now Than Later: Managing Technical Debt in Systems 

Development 

[114] 

Ocker, Seitz, Oligschlager, 
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2.2.2 Addressing RQ1.1 

This literature review addresses RQ1.1. The review identified that technical debt is a well-

researched field within software engineering but is not a well-researched field within systems 

engineering. The research that does exist is largely applied to specific types of systems and a 

wholistic view of technical debt impact across the field of systems engineering is not presented in 

the published body of knowledge. There is a lack of common definitions and terminology for 

technical debt within systems engineering, exacerbated by the fact that there is not a consensus 

definition of the base technical debt term [79]. The definition of types and sources of technical 
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debt is not consistent across the published research, with unique types identified based on the type 

of system assessed. This overspecification of types can lead to confusion and prevent the use of 

common management methods. Technical debt is identified as occurring throughout the systems 

lifecycle, but is not mapped to a specific lifecycle or stages. Such a mapping could increase the 

understanding of the impacts of technical debt in the system lifecycle. 

2.3 RQ1.2: How Prevalent is the Concept of Technical Debt and the use of the Metaphor Among 

Systems Engineering Practitioners? 

Full understanding of the prevalence of the technical debt concept and metaphor requires more 

than just a literature review. If the concept is well-researched but is not well-used in practice, then 

it cannot be considered prevalent. Alternatively, the concept of technical debt may be well-used 

but not well researched. The components of technical debt may be known to practicing systems 

engineers but they may not use the same terminology. To assess the knowledge and usage of the 

technical debt concepts and terminology, a survey of practicing systems engineers was conducted 

during the summer of 2022. The literature review identified that published systems engineering 

research did not adequately address technical debt. The survey was designed to identify if technical 

debt is a concern for systems engineers in accordance with Task 1.2.1 and Task 1.2.2: conducting 

the survey and processing the results to identify causes of technical debt and the occurrence within 

the system lifecycle. The survey results were presented at the 2023 INCOSE International 

Symposium and published in the conference proceedings [18]. The paper from the conference is 

reprinted here. 
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2.3.1 An Empirical Survey on the Prevalence of Technical Debt in Systems Engineering [18] 

2.3.1.1 Abstract 

The technical debt metaphor is used within software engineering to describe technical 

concessions that produce a short-term benefit but result in long-term consequences. Systems 

engineering is subject to these concessions, yet there is a limited amount of research associating 

technical debt with systems engineering. This paper provides the results of an empirical survey 

investigating the prevalence of technical debt in systems engineering, including the occurrence of 

technical debt, the use of the metaphor, and the distribution of technical debt within the systems 

engineering lifecycle. The results of the survey show that while technical debt is common in 

systems engineering and occurs throughout the lifecycle, the metaphor and terminology of 

technical debt is not consistently applied. These results emphasize the need to enrich the usage of 

the technical debt metaphor within systems engineering to enable the management of technical 

debt and to reduce the risk of technical bankruptcy.  

2.3.1.2 Introduction and Background 

Modern technology and the digital engineering transformation are increasing the emphasis on 

delivering flexible systems more rapidly [6]. Agile systems engineering methods [13] and iterative 

and incremental development strategies [23] are used to increase flexibility and to limit the cost 

and schedule increases traditionally associated with requirements changes [3]. While Agile 

processes can be mapped to the system development lifecycle [1], the increased emphasis on 

shorter times to market can result in “system sponsors and stakeholders… encourag[ing] 

developers to take shortcuts early in the development process in order to get system capabilities 

deployed quickly” [7].  
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If not carefully managed, the decisions made during the planning and execution of iterations 

can have far reaching consequences on the future state of the system. The work in each iteration 

places design constraints on future iterations [26] which can result in more expensive changes later 

in the development cycle [121] or the failure to meet performance objectives. Projects may start 

work prior to fully understanding the problem in order to deliver a working system faster and then 

rely on user feedback to improve the system to better meet the users’ needs. However, the initial 

decisions made to produce early value may result in severe inefficiencies in the implemented 

system, such as lower usability and increased rework later in the development schedule [63]. This 

phenomenon is known as technical debt.  

The technical debt metaphor was introduced as a method to communicate the need to refactor 

software code to remove short-cuts that were put in place to meet a goal, such as a scheduled 

release, before those short-cuts could add up to larger problems within the system [17]. Much like 

financial debt, technical debt accrues interest, which manifests as increased development 

timelines, increased project cost, and/or rework later in the development cycle. Unmanaged 

technical debt may lead to technical bankruptcy – the state where system development cannot 

continue without first repaying back the technical debt [60]. 

Since 2008, published research on technical debt in the field of software engineering has 

steadily increased [54]. Technical debt has been classified into multiple types [69] [70], different 

causes have been identified [122] [58], and multiple measurement techniques have been suggested 

[65] [16] [67] [66]. This research, however, has been primarily constrained to the field of software 

engineering [19]. Despite the fact that systems engineering has borrowed many concepts from 

software engineering, including lifecycle models and development approaches [1], there is not a 

substantial amount of published research on technical debt with systems engineering [19]. 
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The concepts behind technical debt are not new to systems engineering. Terminology such as 

‘rework’ has been used to define similar problems. Guenov and Barker [123] applied axiomatic 

design theory and design structure matrices to identify design conflicts that result in delays due to 

unplanning iterations and rework. Boehm, Valerdi, and Honour [124] discuss the reduction in 

rework that can be achieved by applying systems engineering to software-intensive systems. 

Broniatowski and Moses [125] define a “rework potential” to measure the rework associated with 

design choices. Raman and D’Souza [126] developed a decision learning framework that, in part, 

addresses the uncertainty of architectural design decisions, including those that may lead to more 

effort than an optimal solution. Shallcross et al. [127] discuss the use of set based design to limit 

premature design decisions which may result in expensive rework. Siyam, Wynn, and Clarkson 

[128] identify a need to evaluate how changes in processes affect the value of a system later in the 

lifecycle. Bahill [98] developed a process to deal with unintended consequences. These research 

papers all define similar problems to technical debt - minimizing the amount of effort required to 

correct a technical issue through early detection and mitigation. However, none of the cited works 

include the term “technical debt.” Instead, each paper uses their own terminology to describe the 

problem.  

Recognizing that the lack of a common ontology prevents a common understanding of the 

problem [129], Kleinwaks, Batchelor & Bradley [19] conducted a systematic literature review to 

determine the prevalence of the technical debt metaphor within published systems engineering 

research. They concluded that the technical debt metaphor is not prevalent in published papers on 

systems engineering, that there is not a consensus definition for technical debt within systems 

engineering, that there is little empirical evidence on the impact of technical debt within systems 
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engineering, and that a common ontology for technical debt in systems engineering has not been 

established. 

Kleinwaks, Batchelor, and Bradley [19] recommend gathering empirical data to understand the 

use of the technical debt metaphor by practicing systems engineers to supplement the research in 

the literature review. This paper provides the results of an empirical survey following this 

recommendation. The survey was constructed to answer the following research questions: 

• RQ1: Does technical debt occur within systems engineering, and if so, what is its impact? 

• RQ2: What are the causes of technical debt within systems engineering? 

• RQ3: How prevalent is the use of the technical debt metaphor among systems engineering 

practitioners?  

• RQ4: Where does technical debt occur within the systems engineering lifecycle? 

The rest of this paper is structured in four sections. First, the research methodology is presented. 

Next, the primary findings of the survey are presented. Then, the findings are discussed in the 

context of the research questions. Finally, the paper is concluded and concepts for future work are 

presented. 

2.3.1.3 Research Methodology 

2.3.1.3.1 Study Method 

This research was conducted using an online survey tool to collect responses to a series of 

questions designed to assess the respondents’ familiarity with situations that can be classified as 

technical debt, their familiarity with the metaphor of technical debt, and the stages in the systems 

engineering lifecycle where technical debt occurs. 
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Participants in the study were recruited through email solicitations and social media postings 

sent to specific groups of systems engineers, including a corporate systems engineering community 

of practice, a graduate university systems engineering department, the local INCOSE chapter, and 

the authors’ LinkedIn networks. These participant groups were selected based on experience with 

systems engineering as well as the ability of the authors to contact the group members. 

The survey was conducted anonymously, however, some basic demographic questions, such as 

current position and years of experience, were asked in order to inform the data analysis process. 

The survey was first released on July 14, 2022 and was closed on August 31, 2022. 50 respondents 

replied to at least one question in the survey. 

2.3.1.3.2 Data Analysis 

The collected data reports were generated with an anonymous respondent identifier that was 

matched to the responses for each question. Respondents were not required to answer every 

question and therefore percentages are reported based on the number of respondents who answered 

the question and not on the total number of participants in the survey. Several questions allowed 

the respondent to select multiple responses; in these cases, the percentages are reported as the 

number of respondents who selected that answer and therefore the percentages may add up to be 

greater than 100%. 

2.3.1.3.3 Threats to Validity 

The internal validity of a study is the measure of how well the collected data corresponds to the 

research questions [130]. The internal validity is assessed by examining the potential biases that 

may arise within the study formulation, including the development of the research questions and 

the survey questions. To limit biases in the development of the research questions, gaps in the 

current state of academic research on technical debt in systems engineering [19] formed the basis 
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of the research questions. Multiple researchers reviewed and developed the survey questions to 

confirm that they mapped to the research questions. Upon completion, a professional systems 

engineer evaluated the survey questions and the authors refined the questions based upon the 

engineer’s feedback. Terminology was carefully selected in Question Group 2 to avoid the use of 

the term “technical debt” in the questions to minimize previous familiarity (or lack thereof) with 

the term from biasing the answers prior to the introduction of the technical debt metaphor within 

the survey. The data was collected using an online survey tool that allowed for anonymous 

responses to prevent biases in reviewing and analyzing the data. 

The external validity of the study is the measure of how well the research findings can be 

extended from the sample group to the general population of interest [130]. In this study, the 

sample group was recruited through email and social media postings. The general population of 

interest is the set of professional systems engineers, across all disciplines. The majority of 

respondents indicated background in similar industries, especially the defense industry. This factor 

has the potential to bias the results towards the defense industry, and therefore the results of the 

survey may be more generalizable to that subset of professional systems engineers. Another 

concern prior to the execution of the survey was that a potential bias may arise if software 

engineers responded to the survey, due to the familiarity of the technical debt metaphor within 

systems engineering. This concern is addressed in later in this paper. 

Given the lack of published research on, and common definitions of, technical debt within 

systems engineering, it is possible that the respondents do not represent a valid source of 

knowledge for providing responses regarding the occurrence of technical debt within the systems 

engineering lifecycle. This threat to the study validity is mitigated by providing the survey 
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participants with a common definition of technical debt prior to asking questions in Question 

Group 3 and Question Group 4.  

2.3.1.3.4 Survey Questions 

Table 2-7 lists the questions included in the survey, along with a mapping to the research 

questions. The starred question numbers indicate questions that allowed multiple answers. 

Table 2-7. Survey questions 

# Question RQ 

1.1 What is your current position? N/A 

1.2 How many years of professional experience do you have? N/A 

1.3 How many years of experience do you have as a systems engineer? N/A 

1.4 What industry do you currently work in? N/A 

2.1 Have you ever worked on a system where a less than ideal short-term solution to a problem 

created negative long-term impacts on the system? Negative impacts may include issues such as 

difficulty meeting requirements, decreased ease of use, and increased system maintenance. 

RQ1 

2.2* What negative long-term impacts have you experienced from less-than-ideal short-term 

solutions? Select all that apply. 

RQ1 

2.3 Do negative long-term impacts arise primarily from decisions to implement less than ideal 

short-term solutions (e.g., as way to reach a project completion milestone) or from the 

accumulation of unintentional decisions (e.g., as the by-product of poor requirements)? 

RQ2 

2.4 When making the decision to implement the less-than-ideal short-term solution, were there any 

considerations of the potential for negative long-term impacts? 

RQ2 

2.5* Which reasons explain why a systems engineer would implement a less than ideal solution that 

has benefits in the short-term but negative long-term impacts? Select all that apply. 

RQ2 

2.6 Have you ever had to correct system issues that were due to less-than-ideal short-term solutions 

that had negative long-term impacts? 

RQ1 

2.7 If you have had to correct negative long-term impacts of a decision, how did the effort to 

correct the negative long-term impacts compare to the effort that would have been required to 

implement the ideal original solution? 

RQ1 

3.1 Prior to this survey, how familiar were you with the term technical debt? RQ3 

3.2 How frequently do you use the term technical debt in your daily work? RQ3 

3.3 How familiar are your co-workers with the term technical debt? RQ3 

3.4* In what engineering contexts have you used or heard the term technical debt? Select all that 

apply. 

RQ3 

4.1* In which stage(s) of the systems engineering lifecycle is technical debt most likely to be created 

(the decision is made to implement then less than ideal solution)? Select all that apply. 

RQ4 

4.2* In which stage(s) of the systems engineering lifecycle is the impact of the technical debt 

(additional work due to the less-than-ideal solution) most likely to be observed? Select all that 

apply. 

RQ4 

4.3* In what stages of the lifecycle is creating technical debt (deciding to implement the less-than-

ideal solution) acceptable? Select all that apply. 

RQ4 

4.4* In what stages of the lifecycle is creating technical debt (deciding to implement the less-than-

ideal solution) unacceptable? Select all that apply. 

RQ4 
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Question Group 1 (QG1) included basic demographic questions to identify the professional 

background and experience of the participants. Question Group 2 (QG2) contained questions that 

were designed to identify if survey participants had experience with technical debt without using 

the term “technical debt.” Instead, these questions used the terms “less than ideal short-term 

solution” and “negative long-term impacts.” This terminology was specifically chosen to convey 

the concepts behind the technical debt metaphor, without relying on the metaphor to convey the 

meaning. In this way, it is possible to assess the participants experience with the conditions that 

give rise to technical debt without biasing the answers towards familiarity with the metaphor.  

After completing QG2, the respondents were provided with the following definition of technical 

debt: “Technical debt is a metaphor reflecting technical compromises that can yield short-term 

benefits but may hurt the long-term health of a system” (Kleinwaks, Batchelor & Bradley 2023). 

If a respondent indicated that they were not familiar with technical debt, they were provided a 

short example. 

Question Group 3 (QG3) assessed the respondents’ familiarity with the technical debt 

metaphor, introducing the terminology into the questions. These questions were designed to assess 

the frequency with which the terminology is used in professional situations. Question Group 4 

(QG4) assessed the respondents’ view of the impact of technical debt in the following phases of 

the systems engineering lifecycle: needs analysis, requirements definition, preliminary design, 

critical design, integration, verification and validation, and operations. These phases were chosen 

since they occur in all system development, regardless of the development method used. Agile and 

iterative development cycles include the same phases; however, the phases are repeated more 

frequently. The questions in QG4 asked respondents to consider the lifecycle phases where 

technical debt is likely to be created and observed, and in which lifecycle phases it is acceptable 
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and unacceptable to create technical debt. These questions were designed to identify the lifecycle 

stages where technical debt identification and management is the most important in preventing 

technical bankruptcy. 

2.3.1.4 Research Findings  

This section presents the main findings of the survey.  

2.3.1.4.1 Participant Demographics  

QG1 asked the respondents to provide information about themselves and their background as 

systems engineers. The results are shown in Figure 2-5. The left chart shows the breakdown of the 

participants by their current position. The middle chart shows the breakdown of the participants 

by their current industry. The right chart shows the participants’ total professional experience 

(Total) and their experience as a systems engineer (SE). The chart is colored based on the 

participant’s current position. For example, the chart shows that 10% of the participants classified 

themselves as management with 5-10 years of experience as a systems engineer.  

 

Figure 2-5. Demographics of survey respondents 

The majority (52%) of the survey respondents listed systems engineer as their current position 

(shown in blue in Figure 2-5). 84% of the respondents reported more than 5 years of experience 

as a systems engineer, indicating that the respondents have substantial backgrounds in the field, 
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even if they are not currently serving as a systems engineer. These results show that the survey 

reached the targeted audience of experienced and professional systems engineers. Of note is that 

only 2% of the respondents listed themselves as a software engineer. One potential concern with 

the survey was familiarity with the technical debt term due to experience with software 

engineering. While later results will show that there is likely carryover of terminology from the 

software engineering field, the limited number of participants who identified as software engineers 

reduces the concern that the results are biased based on a large number of responses from software 

engineers. 

The majority of respondents (68%) work in the Aerospace and Defense industries. The large 

section of respondents with similar backgrounds has the potential to bias the results towards those 

industries. 

2.3.1.4.2 Technical debt is common in systems engineering 

Question 2.1 asked if the respondents experienced the conditions that are defined as technical 

debt, without using the metaphor. 100% of participants responded that they had worked on such 

as system. Question 2.6 asked if participants had to correct issues associated with technical debt. 

86% percent of the respondents stated that they have had to correct issues caused by less-than-

ideal short-term solution.  

The answers to question 2.1 and 2.6 clearly indicate that technical debt is a common occurrence 

within systems engineering. Every respondent experienced negative long-term effects due to short-

term decisions, and the large majority of the respondents have corrected issues associated with 

these decisions. In other words, the respondents have repaid technical debt.  
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2.3.1.4.3 Technical debt accrues interest 

Technical debt is typically measured in terms of principal and interest. The principal represents 

the amount of effort that would have been required to implement the ideal solution [62] and the 

interest refers to additional effort to implement that same solution at a later time, due to the 

presence of the less-than-ideal solution [68]. Question 2.7 addressed the presence of technical debt 

interest in systems engineering. If it is more difficult to correct the problems with a less-than-ideal 

solution than it would have been to initially implement the ideal solution, then it can be inferred 

that the technical debt has accrued interest. 79% of the respondents to question 2.7 stated that it 

was either more effort (36%) or significantly more effort (43%) to correct the issues after the less-

than-ideal solution was implemented, as shown in Figure 2-6. These data indicate that technical 

debt accrues interest within systems engineering.  

 

Figure 2-6. Additional effort required to correct technical debt compared to the effort to implement the ideal 

solution originally 

Six survey respondents answered “no” to question 2.6, indicating that they never had to correct 

issues associated with technical debt. Of those six respondents, three answered that question 2.7 

was not applicable to them (N/A in Figure 2-6), two did not answer question 2.7, and one 

respondent answered that correcting the issue required less effort. These answers are deemed to 

have no impact on the overall conclusions from this question, namely that technical debt does 

accrue interest.  
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2.3.1.4.4 Technical debt has multiple long-term impacts 

Question 2.2 asked the participants to specify what negative long term impacts they had 

observed from implementing less than ideal short-term solutions. Participants were able to select 

more than one answer and the results are shown in Figure 2-7. “Failure to meet performance 

objectives” and “Substantial rework of an earlier part of the system” were the most common 

responses. Only 4% of the participants selected “Other”, indicating that the answer choices well 

covered the negative impacts due to technical debt. 

 

Figure 2-7. Negative long-term impacts of technical debt  

These data indicate that there is not a single impact of technical debt on a system but rather that 

the impact is felt in multiple areas. The answer choices cover two areas: those that occur during 

system development, shown in blue in Figure 2-7, and those that occur after the system is deployed, 

shown in orange in Figure 2-7. Over 50% of respondents indicated that negative long-term impacts 

occur in both of these areas. From these data, it can be concluded that technical debt is something 

that will need to be managed throughout the system lifecycle. 
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2.3.1.4.5 Technical debt is driven by schedule and cost pressures and both intentional and 

unintentional decisions 

Questions 2.3, 2.4, and 2.5 addressed the reasons why a project would take on technical debt. 

79% of the respondents indicated that potential long-term consequences were considered when 

making short-term decisions. These long-term consequences were determined to arise from both 

intentional and unintentional decisions, as shown in the left side of Figure 2-8. The right side of 

Figure 2-8 shows the reasons for accruing technical debt. Over 80% of the respondents stated that 

schedule pressure contributes to the decisions to introduce technical debt into the system. Over 

60% of the respondents stated that cost pressure contributes to the introduction of technical debt. 

Technical compromise was selected by 36% of the respondents. These results indicate that cost 

and schedule are the primary factors that drive a system to make technical compromises and 

therefore incur technical debt. 

 

Figure 2-8. Rationale for accruing technical debt 

Participants were allowed to select multiple answers for question 2.5, including identifying 

other reasons for taking on technical debt. Other responses included acceptance of a prototype, 

political pressure from management and other external sources, the lack of consideration of long-

term goals and impacts in the daily decisions, and the inability to react to previous instances of 
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technical debt. Failure to react to previous instances of technical debt is an indicator that a system 

may be on a path to technical bankruptcy. 

2.3.1.4.6 The technical debt metaphor is not common terminology in systems engineering 

QG3 assessed the participants’ familiarity with and usage of the technical debt metaphor after 

providing all participants with a common definition of technical debt. The left side of Figure 2-9 

shows the self-assessed familiarity with the metaphor, broken out by the participant’s years of 

experience as a systems engineer. 47% of respondents stated that they were very or extremely 

familiar with the metaphor and 30% of respondents stated that were either slightly familiar or not 

at all familiar with the metaphor.  

 

Figure 2-9. Participant familiarity with the technical debt metaphor  

When examined through the lens of years of experience as a systems engineer, some interesting 

trends appear. The right side of Figure 2-9 shows the percentage of respondents who are either 

moderately familiar, very familiar, or extremely familiar with technical debt based on the 

respondents’ years of experience as a systems engineer. The percentages are based on the total 

number of respondents with the stated years of experience. For example, seven respondents had 

less than five years of experience as a systems engineer. Of those respondents, six stated that they 

were at least moderately familiar with technical debt, resulting in a value of 86%.  
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While there is not enough data to make conclusive arguments, it can be seen that the less 

experienced (< 20 years of experience) systems engineers tend to be more familiar with technical 

debt than the very experienced systems engineers (> 20 years of experience). This could be a result 

of the small sample size (only eight respondents had > 20 years of experience); however, it could 

also indicate that the technical debt terminology is better known to less experienced systems 

engineers due to the relative newness of the terminology. Technical debt research in software 

engineering accelerated around 2008 [60]. Systems have become more software intensive [131] 

and familiarity with software engineering is now part of recommended systems engineering 

graduate school curriculum [132]. It is possible that these trends contribute to a greater familiarity 

with the metaphor among less experienced systems engineers. 

Figure 2-9 shows that overall, there is familiarity with the technical debt metaphor among 

systems engineers. However, familiarity with a term is not enough to establish that the term is a 

common part of the lexicon. Therefore, participants were asked to identify how frequently they 

use the technical debt metaphor and in which technical contexts it is used. These results are shown 

in Figure 2-10. The left side of Figure 2-10 shows the usage of the technical debt metaphor. Only 

26% of the participants reported using the technical debt metaphor frequently (gray) or very 

frequently (yellow), and 56% of the participants reported not frequently using the metaphor (blue). 

These results indicate that the metaphor, while it may be familiar to systems engineers, is not 

commonly used. 
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Figure 2-10. Usage of and familiarity with the technical debt metaphor in various contexts 

The right side of Figure 2-10 shows the answers to question 3.4, which assessed the contexts in 

which participants have used or heard the technical debt metaphor. 35% of the respondents 

reported that they have used or heard technical debt in both systems engineering (SE) and software 

engineering (SW) context. Only 23% of the respondents said they have only used or heard the term 

in just the SE context and 12% of the respondents stated that they have used or heard the term in 

just the SW context. A likely interpretation is that the familiarity with the technical debt metaphor 

from software engineering produces carryover usage in the field of systems engineering. Of note 

is that the respondents who indicated usage in both the SE and SW context also indicated higher 

levels of familiarity with the technical debt metaphor. From these results, it can be concluded that 

the technical debt metaphor is present in the systems engineering lexicon, however, it is not a 

frequently used component of that lexicon. 

2.3.1.4.7 Technical debt occurs throughout the system lifecycle 

QG4 focused on technical debt in the system lifecycle. The participants’ responses, shown in 

Figure 2-11, demonstrate that technical debt occurs throughout the system lifecycle, both in terms 

of its creation and its impact. The left chart in Figure 2-11 shows the design phases where technical 

debt is most likely to be created and most likely to be observed, according survey responses. These 
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data show that technical debt is more likely to be created during the design phases of the system 

and that the impact is more likely to be observed during the integration, verification and validation, 

and operations phases. These results show why technical debt is dangerous to a program – it is 

created based on decisions made in early phases, but the impacts are not felt until later phases, 

when it is more difficult to correct the issues.  

 

Figure 2-11. Technical debt in the system lifecycle 

Questions 4.3 and 4.4 asked if there are specific phases within the system engineering lifecycle 

where it is more or less acceptable to create technical debt. The right side of Figure 2-11 shows 

the responses to these questions. The results show that participants generally viewed technical debt 

created in the early phases of the program to be more acceptable, with technical debt created during 

critical design to be the most unacceptable. However, the critical design phase is the phase that 

was indicated as the most likely place for technical debt to be created. These data support the 

premise that unmanaged technical debt is dangerous to a system. Technical debt is created where 

it is deemed unacceptable to do so, since creation in those phases is likely to drive to poor outcomes 

for the system. Therefore, it is critical to manage the creation of technical debt to prevent later 

impacts. 
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2.3.1.4.8 Technical debt can be beneficial 

The phrasing of the technical debt metaphor implies that the consequences of technical debt are 

always negative. If true, then it would be expected that the survey respondents would never have 

indicated that creating technical debt was acceptable. However, as shown in the right side of Figure 

2-11, over 30% of respondents identified that technical debt is acceptable to create in the early 

stages of the system lifecycle. Why would technical debt creation be acceptable? 

While the survey did not ask this question, a reasonable answer is that technical debt creation 

is acceptable if it provides a benefit to the development of as system. The initial technical debt 

metaphor highlighted this aspect of technical debt stating “A little debt speeds development so 

long as it is paid back promptly with a rewrite” [17]. Taking on technical debt can enable a system 

to achieve critical results, such as delivering on schedule, even if compromises are made in the 

design. However, without a plan to repay the debt, it may spiral out of control and result in 

technical bankruptcy.  

2.3.1.5 Discussion 

This survey provides an empirical basis for understanding the prevalence of the technical debt 

metaphor in the field of systems engineering. The results can be used to draw several conclusions 

based on the research questions. 

2.3.1.5.1 RQ1: Impact and occurrence of technical debt in systems engineering 

The survey results clearly indicate that technical debt commonly occurs within systems 

engineering. The impacts of technical debt, such as increased effort and increased rework, were 

clearly identified by survey participants. Participants identified factors that can lead to technical 

bankruptcy, such as failure to meet cost and schedule, as impacts of technical debt. Participants 
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identified that technical debt creation during early system development phases can be acceptable, 

indicating that there can be benefits to taking on technical debt. 

The confirmation of technical debt as a contributor to project success and failure means that it 

needs to be managed within the systems lifecycle. Tools need to be created to identify, manage, 

and monitor technical debt to minimize its impact. If a system developer waits until the impact of 

technical debt is seen in the system, it may be too late or too expensive to correct the issues. The 

survey results show that technical debt is more likely to be observed later in the system lifecycle, 

when it is more expensive to correct problems [121]. Therefore, technical debt needs to be 

monitored from the start of the system and should be repaid soon as possible. 

2.3.1.5.2 RQ2: Causes of technical debt within systems engineering  

Multiple factors contribute to technical debt; however, schedule pressure was cited as the top 

cause by the survey respondents. Schedule pressure is a significant concern in iterative 

development programs. As systems embrace Agile development strategies, they are often faced 

with fixed-duration development periods (sprints). Each sprint is intended to deliver a potentially 

releasable product [24]. This combination naturally exerts pressure on the developer to release a 

working system and can result in the developer taking shortcuts, intentionally or unintentionally, 

in order to make the delivery timeline. Proper planning involves sequencing tasks based on both 

the functional value delivered to stakeholders and on the temporal value delivered to the system. 

Understanding both the functional and temporal dependencies in the system development is critical 

for avoiding the need to incur technical debt. Supporting requirements, such as quality 

requirements (maintainability, reliability, etc.), must be given proper weight such that future 

iterations can begin with all the required infrastructure in place, even if they are not perceived as 



 

86 

high-value to the stakeholder. Otherwise, the future iterations are likely to need to take shortcuts, 

and thereby take on technical debt, to account for the missing components. 

Another major driver of technical debt is cost pressure. The system may reach budget limits 

that require compromise in one area or another. For example, insufficient funding for testing may 

result in insufficient tests being performed on the system. The lack of testing may then result in an 

underperforming system. Budget allocations must be sufficient to enable proper system 

development, or else the system risks accruing technical debt. 

While technical compromise was not cited by as many respondents as cost and schedule 

pressure, it was still cited as a cause of technical debt by over 30% of the respondents. Technical 

compromise means that the system developer makes technical concessions in one area to enable 

satisfaction of technical goals in another area, such as reducing the size of a satellite antenna to 

satisfy the mass constraints. If the full impacts are not assessed, the technical concessions can 

result in a system that cannot meet its overall performance goals. 

2.3.1.5.3 RQ3: Use of the technical debt metaphor among systems engineering practitioners 

The respondents to the survey stated that they had a broad range of familiarity with the metaphor 

of technical debt and that they were more familiar with it than their coworkers. However, they also 

responded that they do not frequently use the metaphor. These results indicate that the metaphor 

is not prevalent among systems engineering practitioners. Yet, the responses to QG2 indicate that 

the impacts of technical debt were observed by all survey respondents. This apparent disconnect 

highlights that the impacts associated with technical debt are real, but that it is not part of the 

lexicon of systems engineering. Instead, systems engineers use terms such as rework [125] and 

unintended consequences [98], however a detailed examination of the terminology in current use 

was outside the scope of this survey. 
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The survey results show that systems engineers understand some aspects of technical debt, such 

as the implications of short-term decisions on the long-term health of the system. However, the 

lack of general usage of the metaphor implies that the full richness of the technical debt metaphor 

is not used or understood. Simply delaying work does not result in technical debt and identifying 

the potential for rework does not quantify the impact on the future state of the system. 

The use of inconsistent vocabulary creates barriers to effective communications even amongst 

practitioners in the same field [129]. The technical debt metaphor, through its use of concept such 

as principal, interest amount, and interest probability, can create a consistent vocabulary to allow 

systems engineers to quantify the impact of decisions. The quantified impact can then be used to 

support the decision-making processes during system development. Technical debt ontologies 

have been proposed within software engineering [133]; however, even the definition of technical 

debt is not agreed upon within systems engineering [79]. The results of this survey indicate that 

the technical debt terminology is not widespread within the systems engineering field, and this 

may be due, in part, to the lack of a consistent ontology. Development of such an ontology, specific 

to systems engineering applications, will aid in furthering the understanding of the impacts of 

technical debt and developing strategies for managing technical debt when it occurs. 

2.3.1.5.4 RQ4: Occurrence of technical debt within the systems engineering lifecycle 

The survey results show that technical debt is more likely to be created early in the systems 

engineering lifecycle and also more likely to be observed late in the systems engineering lifecycle. 

This combination results in an accumulation of interest on the technical debt and is what makes 

technical debt expensive to the systems developer.  

Of particular interest is the combination of the most respondents stating that technical debt is 

likely created during critical design and the most respondents stating that it was unacceptable to 
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create technical debt during critical design. These data indicate that systems engineers may “know 

what they are doing is wrong” during the critical design phase, and yet they do it anyway – 

intentionally creating technical debt to get the design completed. If there is no plan to manage and 

pay back this technical debt, then it can be harmful to the system. This technical debt will then 

likely appear in the integration and/or operations phases. These results also indicate how technical 

debt can arise – schedule pressures and other outside influences can force the system developer to 

take those short cuts to complete the design by a set time. These data reinforce the need to manage 

and monitor technical debt. It is when the most critical elements of the development occur that 

taking on technical debt is most likely, and also the most unacceptable. 

2.3.1.6 Conclusion and Future Work 

Kleinwaks, Batchelor, and Bradley [19] proposed a research agenda to develop a systems 

engineering-centric view of technical debt. This agenda includes:  

• Gathering empirical data to baseline the usage of the technical debt metaphor and the 

impacts of technical debt within systems engineering applications;  

• Developing an ontology of technical debt for the field of systems engineering, developing 

methods and techniques to identify causes and occurrences of technical debt within systems 

development, developing processes and methods to measure technical debt; and, 

• Verifying and validating the processes developed through application to systems 

engineering problems. 

This survey represents the first step in the above research agenda and its results form the basis 

from which the above research agenda can be continued. The survey provides an empirical basis 

for the usage of technical debt within the systems engineering field and future work will continue 

to develop this usage. The survey results will guide the development of the ontology of technical 
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debt by providing area of emphasis where common language is required. For example, the 

prevalence of the impact of technical debt is clear from the survey results, but respondents do not 

use the same terminology. Additional surveys can be conducted to determine the terminology that 

is used in practice, which will further inform the development of the ontology.  

This survey has provided a substantial amount of empirical evidence leading to the following 

key conclusions: 

• Technical debt is common in systems engineering applications, but the associated 

terminology is not frequently used.  

• Technical debt results in problems with system performance, cost, and schedule and bears 

interest – it requires more effort to correct the problem then it would have taken to do it 

correctly in the first place 

• Cost and schedule pressure are the primary drivers of technical debt 

• Technical debt is created early in the system lifecycle and observed late in the system 

lifecycle 

The impacts of technical debt on a system are real and substantial. By enriching the usage of 

the technical debt metaphor within systems engineering, a common language can be used to 

manage and reduce those impacts. This research will continue to fulfill the above research agenda 

to provide a mechanism for managing technical debt to reduce the risk of technical bankruptcy. 

2.3.2 Addressing RQ1.2 

A summary of the results of the survey, originally presented at the 2023 INCOSE International 

Symposium [134], is shown in Figure 2-12. The major conclusions from the survey are: 

• Technical debt is common in systems engineering, but not commonly discussed 
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• Schedule pressure is the leading cause of technical debt 

• Technical debt results in rework and performance issues 

• Technical debt is generated early in the systems lifecycle but not observed until late in the 

system lifecycle 

 

Figure 2-12. Summary of results from the survey on the prevalence of technical debt from [134] 

The top graphic in Figure 2-12 illustrates the conclusion that technical debt is common in 

systems engineering but not commonly discussed. Every survey participant experienced technical 

debt, but less than half were familiar with the metaphor and only 26% of the participants frequently 

use the metaphor. The lack of common usage of the terminology prevents sharing of methods to 

mitigate and manage technical debt. As shown in the bar chart in Figure 2-12, the survey identified 

that the primary cause of technical debt is schedule pressure – system developers are pressured to 

make technical compromises to release the system on time. Cost pressure, which requires technical 

compromises to save budget, is also a significant contributor to technical debt. The word cloud on 
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the bottom left of Figure 2-12 highlights the long-term impacts of technical debt, with more 

popular responses written in larger font. The survey identifies that rework and performance issues 

are the two most common impacts of technical debt, followed closely by usage difficulty. The 

graphic on the bottom right of Figure 2-12 shows where technical debt is likely to be created (left 

side, blue) and observed (right side, green) throughout the system lifecycle. The numbers indicate 

the percentage of survey respondents who stated that technical debt was likely to be created or 

observed in the identified lifecycle stage. The most common stages for technical debt to be created 

were requirements definition, design, and integration, which constitute the early stages of the 

system lifecycle. The most common stages for technical debt observation were verification and 

validation and operations, which are the later stages of the system lifecycle. This result indicates 

why technical debt can be dangerous to a system – it is often not found until the later lifecycle 

stages where it is more expensive to correct [135]. Therefore, proactive techniques for identifying 

and managing technical debt are required to minimize its impact. 

The survey provides results to address RQ1.2 and concludes that even though the concept of 

technical debt is familiar to systems engineering practitioners they do not regularly use the 

technical debt metaphor. These results indicate that the lack of a common lexicon may be 

preventing the communication of mitigation and management strategies. 

2.4 RQ1.3 What Common Ontology Should be used to Describe Technical Debt Within the Field 

of Systems Engineering? 

The literature review and the survey make clear two results: 

1. Technical debt within systems engineering is not well researched and technical debt 

terminology is not commonly used 

2. Technical debt is a problem within systems engineering 
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The facts that technical debt within systems engineering is not well researched and that the 

terminology is not commonly used could lead one to believe that technical debt is not a problem 

within systems engineering. However, the survey results state otherwise – 100% of the respondents 

have experienced technical debt. Therefore, it can be concluded that the problems associated with 

technical debt, such as the long-term impacts of short-term decisions, are researched, but not under 

the same terminology. A quick literature review finds work on rework [112] [136] and unintended 

consequences [98] that are similar to the concepts associated with technical debt. However, the 

definitions of these terms are not agreed upon, with eight different definitions of rework found in 

[136]. 

Therefore, enabling a discussion about technical debt within systems engineering first requires 

the development of a lexicon that can be shared amongst practitioners. Many authors have 

proposed definitions of specific components of technical debt within systems engineering [92] 

[137] [138], however these are mostly geared towards creating taxonomies to classify technical 

debt types or components. Although there is greater agreement among terms within software 

engineering, there is not a general ontology that can be applied to systems engineering [21]. An 

ontology is a set of definitions while a taxonomy is a system for classification [129]. An ontology 

provides a common lexicon for practitioners to use to discuss similar problems and solutions. A 

taxonomy can then evolve from the ontology. For example, a taxonomy of technical debt types 

within systems engineering can evolve from a systems engineering technical debt ontology. 

This section addresses this problem and answers RQ1.3 by creating an ontology for technical 

debt in systems engineering. In accordance with Task 1.3.1, the ontology provides a definition of 

technical debt, principal, interest, and other key terms specific to systems engineering. This 

ontology of technical debt for systems engineering was created and published in the IEEE Open 
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Journal of Systems Engineering in September, 2023 [21]. This ontology is based on the published 

research in systems engineering and software engineering and informed by the results of the 

literature review and survey conducted as part of this dissertation. The ontology paper is reprinted 

here. 

 

2.4.1 An Ontology for Technical Debt in Systems Engineering [21] 

2.4.1.1 Abstract  

The technical debt metaphor is used to describe the long-term consequences of engineering 

decisions made to achieve a short-term benefit. The metaphor originated in the field of software 

engineering and has begun to migrate to other fields, including systems engineering. The usage of 

the metaphor, its associated terminology, and basic definitions vary both within the software field 

and within the greater engineering community. The lack of consistent definitions inhibits the 

ability of system developers to understand and control technical debt within their system 

developments. This paper presents an ontology for technical debt, focusing on the field of systems 

engineering. By providing a set of concise and consolidated definitions, this ontology enables 

precise discussion of technical debt and associated techniques for mitigating its impact within 

systems engineering. 

2.4.1.2 Introduction 

Technical debt (TD), originally defined within the context of software engineering [17], is 

becoming a standard part of the technical lexicon, used by system engineers [77], program 

managers [139], and corporate executives [140]. But what exactly is technical debt? It has been 

variously defined as the long-term impact of compromises made for short-term benefit [60], the 

difference between the planned system capabilities and the actual system capabilities [114], a 

promise to complete work in the future [78], the acceptance of a short-term solution that will create 
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additional work in the long-term [77], and all the “technical work that has to be completed in the 

future” [140]. Further complicating the problem is the use of different terms, such as rework [125] 

and unintended consequences [98], to define similar problems. Even these terms do not have 

consistent definitions, as up to eight different definitions of rework have been found within the 

same paper [136]. These conflicting sources make it clear that a common definition of TD does 

not exist, neither in the broader research community nor specifically within the field of systems 

engineering [79]. 

The definitions of the components of TD also vary from author to author. Tom et al. [52] 

mapped the components of TD to the associated forms of TD, showing that multiple components 

can be classified into more than one form of debt. Li et al. [60] define the “cause” of TD as “the 

reason for the existence of technical debt”, which corresponds to the “precedent” defined by Tom 

et al. [52]. Rios et al. [137] use the term “consequence” to identify the impacts of TD on the system 

while Tom et al. discuss the impacts in terms of the “attributes of technical debt.” Alves et al. [133] 

define an ontology of TD types, but do not provide details on terminology beyond those types.  

To address the terminology differences, several authors have developed taxonomies of TD. A 

taxonomy provides methods to classify items while an ontology provides definitions of those items 

[129]. Taxonomies are necessary to enable the classification of different TD types, however, an 

accepted ontology is required to provide the basis for those taxonomies. Yang, Verma, and Anton 

[141] recently defined a taxonomy focused on the incorporation of custom off the shelf (COTS) 

products into complex systems. They expand Kruchten’s TD landscape [115] to include an 

additional ‘Accountability’ access and define several factors leading to different types of TD. Tom 

et al. [52] also define a taxonomy of TD, including methods for classifying the TD based on 

precedents, outcomes, and attributes. They define several attributes of TD, such as technical 
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bankruptcy, but do not provide a full ontology and their definitions do not necessarily extend 

beyond the field of software engineering. Alves et al. extended their earlier work to provide a 

taxonomy of TD types [142]. Several other authors have proposed taxonomies related to TD [137], 

[138], [92], but the taxonomies focus on classifying TD and do not provide consistent definitions 

that can be uses across industries [20].  

Furthering the problem, TD is not well researched within systems engineering literature [19]. 

The authors have provided empirical evidence that TD does occur within systems engineering, 

even if the terminology is not widely used [18]. This survey identified that technical debt is more 

likely to be created early in the system lifecycle and its impacts are more likely to be observed 

later in the system lifecycle. The lack of a common ontology for common systems engineering 

problems prevents the systematic identification of similar research and therefore the sharing of 

tools and techniques to manage TD and to mitigate its impact throughout the system lifecycle [20]. 

With TD occupying significant portions of corporate technology portfolios [140], the management 

of TD is increasing in importance and value. Within specific systems engineering contexts, the 

problem of TD is increasing with the push to release products on shorter timelines [2] and an 

increased emphasis on prioritizing value delivery over non-functional requirements [15]. These 

pressures can result in developers taking shortcuts [7] and systems that break more easily when 

changes are required and which are more difficult to maintain, both of which are symptoms of 

unpaid TD [25].  

Based on this examination of the state of the art in the field, it is clear that there is a need for a 

common ontology for TD. While multiple taxonomies exist, the authors are unaware of a 

comprehensive ontology of TD, particularly when considered in the field of systems engineering. 

Establishing a common language for TD is a key step to enable cooperation between the business 
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and technology sectors of a company [143] and to enable communication between practitioners 

throughout the field. This paper develops such an ontology for the field of systems engineering, 

which will enable a consistent discussion about TD and its management within systems 

engineering [129]. Standardization of terminology and definitions will lead to knowledge sharing 

and the development of measurement and management techniques.  

Communication between practitioners is especially important as systems become increasingly 

complex and combined into systems of systems. In these cases, TD can be incurred in one system 

and then compound throughout the systems of systems. With increased complexity, identifying 

the source of the problem so that it can be remedied can become difficult and expensive, especially 

since the source of the TD may be far removed from its impacts. These factors are exacerbated 

within systems engineering, compared to software engineering, due to the increased interactions 

with external influences that may be outside the control of the system developer. Therefore, an 

ontology that provides a common basis for discussions across the entire system context is critical 

to managing systematic risks. 

The rest of this paper is structured as follows. Section 2.4.1.3 presents the proposed ontology 

for TD for systems engineering. Section 2.4.1.4 discusses the use of the ontology and Section 

2.4.1.5 concludes the paper and presents concepts for future work. 

2.4.1.3 Technical Debt Ontology for Systems Engineering 

2.4.1.3.1 Technical Debt Concept Map 

The development of an ontology for TD starts with a conceptual understanding of technical 

debt. The following example, originally provided in a survey on the prevalence of TD within 

systems engineering [18], demonstrates how TD can impact the development of a system. 
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“Sydney is a test engineer tasked with writing test procedures to ensure that 

each part being manufactured is of sufficient quality. Sydney has substantial 

experience working with the parts and the test equipment. Sydney writes test 

procedures that outline the steps to execute the tests such that executing the tests 

should take one hour on each part. Following these procedures, Sydney can 

verify the quality of each part in one hour. Months later, Sydney is promoted 

and Jody is given the responsibility of testing the quality of the parts. Jody is 

new to the company and to the specific product line. Jody follows Sydney’s test 

procedures, but Jody takes two hours to test each part, instead of one, reducing 

the overall throughput of the test team. Why?  

The test procedures were written at a level relevant for Sydney's use and not for 

someone with less experience on the product line. Doing so saved Sydney time, 

but also increased the amount of time that someone unfamiliar with the testing 

would need to test each part, which introduced technical debt into the system. 

While Sydney saved time in creating the procedures, the system took on debt in 

the form of a less than ideal set of test procedures. The debt impacts the system 

when it takes Jody longer to test each part and slows down the process. In this 

case, paying back the debt requires rewriting the test procedures such that they 

are at a sufficient level for any engineer, regardless of experience, to be able to 

use efficiently. The system suffered from delays due to the increased time to 

evaluate each part and also from the time to rewrite the test procedures. This 

technical debt can impact the project schedule, the cost of the project, and also 

the quality of the outputs. Was this example helpful in explaining technical 

debt?” 

This example highlights the major concept of technical debt: a technical compromise made to 

achieve a short-term benefit creates additional costs in the long-term. To visually explain the 

concept of TD, Izurieta et al. [144] developed a conceptual map of TD for software engineering 

which was extended by Rios et al. [137]. The concept maps visualize the major components of TD 

and associate these components with the system and business goals. While a useful aid in 

understanding the fundamental concepts of TD, these maps contain some notable deficiencies, 

including the lack of a feedback loop between TD and the system performance.  

To address these concerns, a modified concept map of TD within the context of systems 

engineering has been developed based on a synthesis of TD components identified in the literature 

and interactions between the system and its stakeholders. This concept map is shown in Figure 

2-13. In this concept map, the business goals exert pressure on the system and its developers, who 
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are then forced to make a technical compromise. This technical compromise can yield a short-term 

benefit, which satisfies the business goals, but which may create TD.  

 

Figure 2-13. Conceptual map of technical debt for systems engineering, based on [29] and [13] 

Technical debt is composed of one or more technical debt items (TD Item), which have several 

attributes, including the affected artifact, the type of TD, the cause of the TD Item, and the long-

term consequences. The cause is associated with the short-term benefit that satisfies the business 

goals. The long-term consequence is measured in principal, interest, and fees and impacts the 

system health – the ability of the system to meet its performance objectives. These impacts on the 

system health can also impact the satisfaction of the business goals, which leads to additional 

pressure on the system or to technical bankruptcy. TD management is an activity associated with 

the control of TD items. This map shows the feedback between TD and system health as an 

indicator of system performance. 

The concept map defined in Figure 2-13 provides a starting point for the creation of a TD 

ontology by identifying the relationship between the critical components of TD. This ontology is 

designed to provide common terminology and definitions that are focused to the systems 

engineering field. It leverages terminology from the software engineering field where possible. 
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However, the ontology also redefines terms and introduces new terms as necessary to clarify the 

definitions and usages within systems engineering specific applications. 

2.4.1.3.2 Background Terminology 

This section defines the background concepts and terminology used to establish the ontology. 

2.4.1.3.2.1 System Dimensions 

The development of a system can be characterized along three major dimensions: budget, 

schedule, and performance, where performance is defined as the combination of the system scope 

(what the system does) and its quality (how well it does it). These dimensions are linked together 

through a concept similar to the “Iron Triangle” of program management [145]: stakeholders must 

conduct tradeoffs between the three dimensions. For example, the customer can define the scope 

through a requirements specification and can define a delivery timeline. The system developer 

then determines the cost of the project that provides the developer with a sufficient value. The 

value is not necessarily a profit-driven parameter; a project may have other value to a system 

developer, such as development of new technology. Alternatively, if the stakeholder asks for a 

product within a specified budget and on a specified schedule, then the scope of the deliverable 

may need to change. In this case, the stakeholder must conduct a tradeoff between the achievable 

scope and available budget and schedule.  

The triangle concept can be represented visually, as shown in Figure 2-14, where the vertices 

are performance (P), profitability ($), and speed to market (T). The area of the triangle represents 

the value of the system. As the values of the dimensions change, the vertices will move, altering 

the system value. The farther the vertices are from the center of the triangle, the larger the area of 

the triangle and therefore the larger the value provided by the system: faster time to market, higher 

profitability, and better performance all deliver higher value. Increased costs cause the profitability 
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vertex to move left, which lowers the area of the triangle and decreases the overall value. Similarly, 

realized cost savings increase the profitability, moving the vertex to the right and increasing the 

overall value. 

 

Figure 2-14. Interconnected system dimensions showing an estimation of system value 

2.4.1.3.2.2 Phases 

System lifecycles flow through characteristic stages, regardless of the development strategy 

that is employed [146]. Different strategies result in different frequency and numbers of iterations 

through the system lifecycle. Broadly speaking, the systems lifecycle can be divided into two 

phases: system development and system deployment. The development phase might consist of the 

following stages, adapted from [146]: 

• Needs Analysis: definition of system capabilities to satisfy stakeholder needs 

• Requirements Definition: decomposition of stakeholder requirements into system 

requirements 

• Preliminary Design: development of design specifications to prove the ability of the system 

to meet requirements 

• Critical Design: detailed design of the system 

• Integration: implementation and integration of the components of the system 
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• Verification: verification that the components and the integrated system meet the 

requirements 

The deployment phase might consist of the following stages: 

• Validation: validation that the integrated system meets the stakeholders needs 

• Operations: post-development phases of the system, consisting of production, use, 

maintenance, and retirement of the system  

Within this ontology, the development phase will be used to refer to the activities leading up to 

system validation and the deployment phase will be used to refer to activities that occur during 

and after system validation, including production, operations, maintenance, and retirement. 

2.4.1.3.3 Technical Debt Definition 

Cunningham introduced the concept of TD stating: 

“Although immature code may work fine and be completely acceptable to the customer, 

excess quantities will make a program unmasterable, leading to extreme specialization of 

programmers and finally an inflexible product. Shipping first time code is like going into debt. 

A little debt speeds development so long as it is paid back promptly with a rewrite. Objects make 

the cost of this transaction tolerable. The danger occurs when the debt is not repaid. Every 

minute spent on not-quite-right code counts as interest on that debt. Entire engineering 

organizations can be brought to a stand-still under the debt load of an unconsolidated 

implementation, object- oriented or otherwise.” [17]  

He used the term as a metaphor and not a definition. Since its introduction the metaphor has 

proven useful in explaining the impact of technical decisions in terminology familiar to personnel 

who are not involved in the system development. 

With its increased use, there is a need to provide a consensus definition of the TD metaphor. 

Many authors have provided definitions of TD, especially within the realm of software 

engineering. These definitions have subtle differences and nuances; however, the following 

components are common across the definitions: 
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• TD occurs due to decisions made for short-term benefit that have long-term negative 

consequences [54] [147] [148] [110] [149] [65]. 

• Taking on TD involves making a compromise in one area to achieve a benefit in another 

area (e.g., reducing the quality of testing to save schedule) [110] [66] [51] [62] [58] [89] 

• The effect of taking on TD is an increased amount of work in the future [66] [150] [49]. 

Some authors propose alternate definitions of TD, including presenting it as a gap between the 

actual and should-be state of a system [114], [52], [120], the existence of incomplete or immature 

components [78], [67], or work not yet done [77]. We assert that these definitions do not reflect 

the central tenant of the Cunningham’s initial concept – that the decisions made today may result 

in increasing consequences tomorrow.  

Rosser and Ouzzif provide a systems engineering based definition: “Expedient engineering 

decisions in requirements, architecture, design, documentation, integration and test are made to 

gain short term advantage, with similar negative effects on productivity and quality as have been 

shown in software” [70]. This definition is cumbersome and does not detail the negative effects, 

instead relying on a foreknowledge of the application of TD within software engineering.  

Jones et al. define TD as consisting of “design or implementation constructs that are expedient 

in the short term, but that set up a technical context that can make a future change more costly or 

impossible” [151] This definition does not define what an “expedient construct” is and whether it 

is due to poor design or intentional choices. Additionally, this definition states that TD only 

impacts the system when future changes are required. However, as will be discussed later, there is 

a component of TD associated with the use of a system. 
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To enable clear communication, a concise and easily understood definition of TD is preferred. 

Therefore, the definition of TD for systems engineering proposed by Kleinwaks, Batchelor, and 

Bradley [19] is adopted here: 

Definition 1: Technical debt is a metaphor reflecting technical compromises that can yield 

short-term benefit but may hurt the long-term health of a system. 

Definition 1 identifies the TD metaphor – the application of the concept of TD to describe 

potential problems within a system. The metaphor is used to talk about the abstract concept without 

necessarily relating it to concrete numbers and measurements. However, the term “technical debt” 

is also commonly used to refer to “the complete set of TD items” [56] within the system and as a 

value representing something the system “owes”. When used in this context, the term technical 

debt takes on a different meaning, as listed in Definition 2. To limit the confusion, the term “TD 

metaphor” is used in the conceptual context and the term “technical debt” or “TD” is used in the 

quantitative context. 

Definition 2: Technical debt is the quantitative impact on the long-term health of the system 

accrued as the result of a technical compromise made to achieve a short-term benefit. 

These definitions of TD consist of four main components: technical compromises, short-term 

benefits, and the potential for negative impacts, and the long-term health of the system. The 

following sections explain these components in more detail. 

2.4.1.3.3.1 Technical Compromises  

Referencing Figure 2-14, compromises can be made that affect one or more of the system 

dimensions. For example, the stakeholder can compromise on budget by adding funding or 
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compromise on schedule by delaying delivery until the system reaches the specified level of 

quality. Technical compromises are defined in Definition 3.  

Definition 3: A technical compromise is a concession made in the performance dimension, 

either in scope or quality.  

Only decisions that require concessions in the performance dimension are included in this 

definition. Decisions such as increasing the development timeline to enable the full realization of 

the system design (concession on schedule, benefit on performance) do not constitute TD. 

2.4.1.3.3.2 Short-term Benefit 

A system-level benefit is an increase in system capability in one of the three dimensions. A 

benefit in schedule would be the reduction in the time required to release a product. A benefit in 

performance would be the increase of capability in one area of the system. A short-term benefit is 

one that quickly realizes the benefit for the stakeholders and the system developers. For example, 

releasing a product two days earlier is a short-term benefit. A long-term benefit would be one that 

is not manifested until later in the system lifecycle. For example, an increase in system 

documentation may produce a benefit by reducing the complexity of system level maintenance 

and a corresponding increase in the performance dimension. Generating the documentation during 

the system design phase results in a long-term realization of the benefit. The actual calendar times 

associated with short-term and long-term are subjective and dependent upon the system being 

developed. 

Decisions that do not yield short-term benefits do not constitute TD. For example, the decision 

to invest in the development of a new factory instead of running additional shifts at the current 

factory provides a long-term benefit instead of a short-term benefit, and therefore does not 

constitute TD. 
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2.4.1.3.3.3 Potential for Negative Impacts  

Unlike financial debt, TD has intrinsic uncertainty about when it will need to be repaid and 

exactly how large the cost will be to repay the debt. Cunningham captured this concept when he 

said “The danger occurs when the debt is not repaid. Every minute spent on not-quite-right code 

counts as interest on that debt” [17]. If system developers have to interact with the portion of the 

system that has TD, then they will have to expend additional effort to develop that portion of the 

system. However, if developers never interact with that component, then the technical compromise 

will not impact the system development. Definition 1 captures the probabilistic nature of TD – 

there is a chance that the debt will need to be repaid and also a chance that the debt may not 

negatively impact the system. The probabilistic nature of TD must be considered when making the 

initial technical compromise. 

2.4.1.3.3.4 Long-term Health of the System 

The result of the technical compromise is often a long-term impact on the system health, if the 

technical concessions are not restored. Cunningham recognized this fact when he stated “Entire 

engineering organizations can be brought to a stand-still under the debt load of an unconsolidated 

implementation, object- oriented or otherwise” [17]. If the technical concessions that are made are 

left uncorrected, then the system health may become compromised over time. Kothamasu et al. 

define the health of a deployed system as the ability of the system to stay in an operable condition 

[152], characterized by margins in design specifications, lack of observable damage to the system, 

system reliability and performance parameters that are within the required bounds, and lack of any 

issues that would compromise the integrity of the system [153]. However, technical compromises 

affect both the development and operational phases of the system lifecycle [18] and therefore an 

updated system health definition covering both phases is required. 
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Definition 4: The system health is the ability of the system to meet its objectives in the 

performance dimension without changes to the budget or schedule dimensions. 

During system development, objectives in the performance dimension include designing and 

implementing the system in line with the scope and quality requirements. After the system is 

deployed, these objectives include meeting the quality requirements, such as usability and 

maintainability. A system that fails to meet either set of objectives within its planned schedule and 

budget is unhealthy. In development, an unhealthy system requires additional funds and/or 

schedule to deliver the required performance. After deployment, an unhealthy system 

underperforms its requirements, especially in areas of maintenance and usability.  

To be considered TD, the impacts on the system health must be long-term. The use of the long-

term qualifier implies that the impacts will be remain in the system unless they are corrected. A 

short-term impact of a decision is resolvable and, if resolved, may have no significant impact on 

future changes. As such, this type of decision is an alternative design choice and does not incur 

TD [66]. For example, a test is specified to be conducted with a flight model of a satellite 

component. However, the component is delayed, and in order to keep the test schedule an 

engineering model of the satellite component is used instead. This decision represents a technical 

compromise – the exact flight unit is not tested. However, if the engineering model is of sufficient 

quality, the test results will be valid and not require retesting and there is no long-term impact.  

2.4.1.3.3.5 Impact of Technical Debt on the System Dimensions 

Figure 2-15 shows the progressive impact of TD on the overall value of the system. Section 1 

of the diagram shows the baseline system, with target performance (P), profitability ($), and speed 

to market (T) objectives resulting in a defined system value. TD affects the long-term health of the 

system through a concession made in the performance dimension. The system may still meet the 
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overall scope requirements, but the concessions may make additional changes more complicated. 

This system state is represented in section 2 of the diagram. Here, a small amount of TD has been 

introduced into the system (the arrow labelled TD) which does not have a significant impact on 

the overall value of the system. Section 2 represents system states such as taking on prudent, 

deliberate debt, which is debt incurred with a known repayment plan, to meet a specified release 

date, where the reduction in performance is acceptable. In fact, not all TD taken on during the 

course of system development is detrimental, as debt incurred intentionally to meet a deadline may 

benefit the system [116]. Prudent TD can be recovered in future releases. 

 

Figure 2-15. Impact of TD on project schedule, performance, and cost during project execution. Restoring system 

performance requires reducing the time to market or the profitability of the project. 

In section 3 of Figure 2-15, the TD has grown significantly, indicated by the larger arrow, 

drastically reducing both the system performance and the overall system value. The performance 

can no longer be recovered without adjustments to the other vertices. This state arises from the 

accumulation of TD, either through reckless and inadvertent means, where technical debt is 
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incurred without a defined repayment plan [57], or through the failure to follow the TD repayment 

plan. Section 4 of Figure 2-15 shows how the system performance can be recovered, by paying 

down the TD. The schedule and profitability vertices have both been moved inwards to prop up 

the performance vertex, representing an increase in time to market (schedule delays) and a lower 

profitability (increasing cost). While the performance has been restored, the overall value of the 

system (the area of the triangle) is reduced. 

This analysis shows how TD, which is incurred in the performance dimension, can have impacts 

on the other system dimensions. The system dimensions are interconnected and therefore require 

a system-level view of TD in order to mitigate the impact of the debt. This ontology provides the 

communication framework necessary to support the system-level view. 

2.4.1.3.4 System Technical Debt 

“System technical debt” refers to the set of TD items present in the system. It is used to address 

the accumulation of TD from multiple sources within a system and separates the definition of the 

total TD (system TD) from the TD associated with each TD item (technical debt). The system TD 

provides a method to quantitatively understand the accumulation of TD within the system.  

Definition 5: System technical debt is the concrete set of TD items present in the system. 

2.4.1.3.5 Technical Debt Measurement Units 

Addressing TD quantitatively requires that TD be measured in a consistent unit across all 

occurrences. A consistent measurement enables comparison of the impact of multiple TD items. 

TD has been measured as the financial cost [65], the amount of time required to do the work [68], 

and the work required to be performed [67]. Each of these terms have varying degrees of usability 

in systems engineering, and roughly align to the three system dimensions of budget (financial 

cost), schedule (time required), and performance (work required). Definitions 1 and 3 state that 
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TD starts with a technical compromise in the performance dimension of the system that results in 

impacts on the long-term health of the system. Definition 4 states the health of the system is the 

ability to meet requirements in the performance dimension. The health of the system can be 

measured in the performance dimension by assessing the change in performance required to 

achieve the objectives. Since both the technical compromise and the long-term health can be 

measured in the performance dimension, TD should also be measured in the performance 

dimension. 

The units used to measure the performance dimension will be different across different systems. 

For example, some systems may choose to measure the performance dimension based on the 

number of labor hours required to complete the work. Other systems may measure the performance 

dimension in terms of the lines of code that need to be written and other systems may use the 

number of verified requirements. Still other systems may convert the performance dimension into 

strict financial terms. With respect to TD, the specific unit does not matter, so long as each TD 

item is represented in the same unit for comparison and the unit used is understood to the system 

development team. Given the freedom of a system to report instances of TD in their own units, the 

term UNIT will be used within this ontology as the measurement of the TD.  

Definition 6: The UNIT of technical debt is a quantified measurement of a change in the 

performance dimension of the system. 

2.4.1.3.6 Technical Bankruptcy 

Technical concessions may increase the cost to develop new features and the costs to maintain 

the system [63]. The project development schedule may be exceeded due to the impact of the 

technical concessions. The impacts in the performance dimension may be so severe that the system 

development cannot continue or that the maintainability and reliability of the deployed system is 
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insufficient [62]. Reaching any of these conditions puts the system into a state of technical 

bankruptcy, defined as follows: 

Definition 7: Technical bankruptcy is the state where the system can no longer proceed with 

its lifecycle until some, or all, of the system technical debt is repaid 

Systems that are technically bankrupt are no longer able to support future development without 

first repaying some or all of the existing system TD [60]. This situation can occur when the effort 

required to repay system TD exceeds the capacity of the development team. The development team 

will not be able to make progress on the system, resulting in a bankrupt state. Bankrupt systems 

are no longer able to either verify or validate their requirements within the system development 

timeline and budget [63].  

A system may also reach technical bankruptcy once it is deployed due to an accumulation of 

technical fees. Technical fees, which define the increased difficulty in using the system due to the 

presence of unpaid principal, impact the quality of the delivered product. An excessive 

accumulation of fees will make the system unusable until the TD that resulted in the fees is 

corrected.  

Systems reach technical bankruptcy when the technical costs, associated with system 

development and system use exceed system benefits, such as delivering on time and budget. 

Technically bankrupt systems require an increase in the budget or schedule dimension or a 

reduction in the expectations in the performance dimension to emerge from bankruptcy. 

2.4.1.3.7 Technical Debt Item 

A technical debt item (TD Item) is a concrete instance of TD within a system that connects the 

technical concession and its consequences on system artifacts [56]. The TD item represents the 
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concession that was made as part of the technical compromise and is used to track the impacts on 

the long-term health of the system. The following sections discuss each of the TD Item attributes. 

2.4.1.3.7.1 Description 

The description provides a narrative of the technical concession and the steps required to restore 

the system in the performance dimension.  

2.4.1.3.7.2 Consequence 

The consequence of the TD item refers to the potential impacts on the long-term health of the 

system [144]. It consists of a narrative description of the impacts and the quantitative measures of 

principal, interest, and fees. 

2.4.1.3.7.3 Principal 

The existing definitions of the principal vary, but are typically centered on the effort required 

to correct the issue causing the TD [60], [68], [69], [59]. Ampatzoglou et al. define it as “the effort 

that is required to address the difference between the current and the optimal level of design-time 

quality” [62]. Izurieta et al. state that principal “refers to the cost or effort (measured monetarily 

or in time units) necessary to restore a software artifact back to health” [61]. Avgeriou et al. 

identify principal as the “cost savings gained by taking some initial approach or ‘shortcut’ in 

development (the initial principal). Or the cost it would take now to develop a different or better 

solution (the current principal)” [56].  

This quick review of the literature identifies two major methodologies for calculating the 

principal: it is either the UNIT to implement the optimal solution originally (the savings from the 

original concession), or it is the current UNIT to implement the optimal solution now. The 

principal measures the initial concession made as part of the technical compromise – it is the UNIT 

of system performance that is given up in order to achieve the desired benefit. The principal is like 
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the principal in financial debt – it does not increase with time, although payments can be made to 

reduce the principal and therefore the following definition is adopted.  

Definition 8: The principal, P, is a measurement of the concession made in the performance 

dimension to achieve a short-term benefit.  

2.4.1.3.7.4 Interest and Fees 

The long-term impact of TD on a system’s users is different than the impact on the system’s 

developers. System users may experience decreased usability, maintainability, or reliability of the 

system. These impacts are likely to occur each time the system is used and to be the same 

magnitude with each occurrence. System developers may experience the same issues, but also may 

experience increased difficulties in continuing the system development to meet performance 

requirements. The impacts seen by developers occur when the system is modified, either due to 

the natural development process or due to changes in the system requirements. These impacts tend 

to be less predictable both in occurrence and in the magnitude of the impact. Therefore, the long-

term impact of the technical concession needs to be considered from both perspectives. This 

consideration results in two separate quantities: interest and fees. 

Interest and fees can be distinguished based on how they impact the system. Interest is based 

on impacts to the development of the system – if the technical concession results in increased costs, 

schedule, or difficulty in making modifications to the system, then the system has accrued interest. 

Interest is variable – both the interest amount and the interest probability are functions of the state 

of the system. Fees are based on impacts observed during usage of the system – if the system is 

more difficult or complicated to use as a result of the technical concession, then the system has 

incurred a fee. The magnitude of the fee is constant; however, the fee must be paid by the user 

every time that the impacted artifact is used. 
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Fees are paid by the user and interest is paid by the system developer. The system developer 

must repay the principal. The repayment of the principal constitutes the correction of the original 

technical concessions and removes the technical debt. This repayment must be done by the 

developers and then the updated system is released to the users.  

2.4.1.3.7.4.1 Interest 

Interest on TD is traditionally defined as the extra effort required to modify the system due to 

the presence of deficiencies [60], [54], [149], [62], [68]. TD interest has also been defined as the 

work to correct a deficiency [61], the additional work to implement new functionality [56], and 

the additional work to maintain the system due to the presence of the deficiency [63], [154].  

TD interest results from the lower design-time quality of a component (poor documentation, 

low maintainability, etc.) that requires additional effort in subsequent development efforts. TD 

interest can be contagious [92] – each new component that interacts with a component containing 

TD may require additional effort to develop and may then carry forward that interest into its 

successor components (compounding the interest). If a sub-optimal component is included in the 

architecture instead of correcting the component (the principal), each new application that connects 

to that component would suffer from its sub-optimality [69]. The build-up of dependencies on the 

sub-optimal component results in overall sub-optimal performance and increased work to add new 

components (the interest).  

Within the systems engineering context, the TD interest refers to the long-term impacts on the 

system as encountered by the system developers. The interest will accrue in the performance 

dimension of the system and can impact both the scope and the quality of the system. The interest 

definition, therefore, is limited to the impact on the system developers. 
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Definition 9: The interest, I, is the expected value of additional UNITs incurred by the system 

developers in the performance dimension due to the presence of unpaid principal. 

Applying a direct financial analog to TD would require the definition of an “interest rate” for 

TD, which would associate the total amount to be repaid with a known growth rate of the debt. 

However, a relationship between TD principal and interest that would apply to all projects has not 

been defined. Ampatzogolou et al. suggest that such a rate cannot be defined, since the specific 

growth of TD interest depends on aspects unique to each system such as the system 

implementation, the system context, and the maintenance activities performed [68]. Due the 

complexities in calculating and predicting the effort associated with interest, Seaman et al. [51] 

divide the interest into two categories: interest amount and interest probability.  

2.4.1.3.7.4.2 Interest Amount 

The interest amount reflects the long-term change in the performance dimension that is 

traceable to the original concession (the principal) [51]. 

Definition 10: The interest amount, a, is the additional UNITs incurred by the system 

developers in the performance dimension due to the presence of unpaid principal as a function of 

the state of the system. 

The interest amount represents the impact of the principal on the future state of the system. For 

example, if the principal was incurred due to a decision to not complete documentation, then the 

interest amount would be an increase in the effort required to update that part of the system in 

future iterations. The interest amount is measured in the same UNIT as the principal. The interest 

amount is a function of the state of the system development and the development timeline. For 

example, a system may initially have few interfaces and components, and the ability to work 

around the initial concession is small. As the system grows, the number of interfaces increases and 



 

115 

the impact of the initial concession spreads to a larger number of interfaces and components. 

Therefore, the change in the performance dimension has increased due to the larger number of 

impacted components, increasing the interest amount. The interest amount may also decrease due 

to changes in the system development, such as removing an interface. 

2.4.1.3.7.4.3 Interest Probability 

Unlike financial debt, which has a known schedule of payments and interest, TD interest may 

or may not be realized. Once the technical compromise is made, the principal exists in the system. 

The technical compromise may be made in a component of the system that never has to be altered 

again, and therefore the compromise does not need to be resolved. The interest probability 

accounts for the likelihood of the interest being realized [51]. For example, a system may choose 

smaller batteries that reduce the upgradability of the system. However, if those upgrades are not 

implemented, then the interest is never realized.  

Definition 11: The interest probability, r, is the probability that the interest amount will be 

realized as a function of the state of the system. 

Like the interest amount, the interest probability is also a function of the state of the system and 

the development timeline. As the system development changes, especially in iterative design 

cycles, the probability of the interest being realized may change. For example, an incompletely 

implemented standard may initially have a low interest probability if the component that 

implements the standard is isolated. If the system design changes such that the component is no 

longer isolated, then the interest probability will increase. 
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2.4.1.3.7.4.4 Fees 

Users of a system use a released version of the system and therefore the system’s capability in 

the performance dimension is largely fixed. Design choices made in the system development may 

result in a less-than optimal experience for the user. Activities may take longer than they should 

due to underperforming hardware or due to poor user interface design. Capabilities may not be 

fully implemented and require work-arounds by the user. The system may not be easily maintained 

or may not be as reliable as it should have been. These issues all tend to occur in the quality aspect 

of the performance dimension. Unlike TD interest, these issues occur with each use of the system. 

The total impact of the issues is dependent upon the number of times that the system is used and 

is not based on the effort required to add capability to the system or to modify the system design. 

Therefore, these impacts on the health of the system are separated out from the TD interest and 

are instead termed TD fees. Fees are the recurring costs of using a system containing TD and are 

measured in UNIT every time that the system is used. Izurieta et al. [144] defined this concept as 

recurring interest. An example of a fee occurs when a poorly developed user interface results in 

several extra minutes spent inputting system parameters in a software system. Every time the user 

has to input the parameters, users will have to “pay the fee” of those extra minutes, until the 

principal on that TD Item (reworking the interface) is repaid by the developers. A fee is defined as 

follows: 

Definition 12: The fee, f, is the amount of additional UNIT incurred by the user with each use 

of the system due to the presence of technical debt. 

A system that performs poorly does not necessarily have fees. Fees must be associated with a 

technical compromise, and as such, an instance of TD. For example, a race car that is slower than 

its competitors does not necessarily have any fees associated with the use of the car – it is just not 
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as well designed as its competitors. However, a cost savings compromise made to use a metal 

frame instead of a composite frame which reduces the gas mileage would be an example of a fee 

– the user (the driver) must perform additional pit stops every time the car is raced.  

2.4.1.3.7.5 Balance 

The balance, B, is the summation of the principal and the interest and represents the total UNITs 

required to repay the TD item. The balance does not include the fees (either realized or anticipated) 

in the system, as fees are not repaid. The expected value of the balance is calculated as shown in 

Equation 2-1. The subscript, t, indicates the parameters that change with time. 

𝐵𝐵𝑡𝑡��� = 𝑃𝑃 + 𝑎𝑎𝑡𝑡 ∗ 𝑟𝑟𝑡𝑡      ( 2-1 ) 

2.4.1.3.7.6 Total Cost 

The total cost, C, in terms of UNIT, due to the TD item is inclusive of the balance and the fees. 

The total cost is a time-dependent value, as it includes the interest, which is a function of the state 

of the system, and the expected fees. Fees are fixed in magnitude, but the number of fees, n, will 

change with time. The expected value of the total cost is calculated as shown in Equation 2-2. The 

subscript, t, indicates the parameters that change with time. 

𝐶𝐶𝑡𝑡� = 𝐵𝐵𝑡𝑡 + 𝑓𝑓 ∗ 𝑛𝑛𝑡𝑡       ( 2-2 ) 

2.4.1.3.7.7 Artifact 

The artifact is the part of the system that is affected by the TD [144]. A TD item may impact 

multiple artifacts – the principal may be associated with one artifact while the interest and fees 

may be associated with a different artifact. An artifact may be a piece of documentation, a 

component of the system, a test case, or any other part of the system itself. 

Definition 13: An artifact is the part of the system affected by technical debt. 
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2.4.1.3.7.8 Cause 

The cause of a TD item defines the reasons why the technical compromise was made [144]. It 

consists of two attributes: the specific cause and the cause category. The cause provides traceability 

of the TD item to the original decision which can then be used in forensic evaluations. 

2.4.1.3.7.8.1 Specific Cause 

The specific cause of a TD item is the short-term benefit provided to the system developers, 

stakeholders, or users that is realized through a technical concession. The specific cause includes 

the rationale for why achieving the short-term benefit required a technical concession. For 

example, a technical compromise may be made such that a program increment can be released on 

time. In this example, the specific cause is the on-time release of the program increment. The 

rationale defines why a technical concession had to be made to release the increment on schedule, 

such as supply chain issues forcing a switch to a different, less reliable part.  

Definition 14: The specific cause of a technical debt item is the short-term benefit realized 

through the technical concession. 

2.4.1.3.7.8.2 Cause Category 

The cause category provides a general categorization of the cause. The cause category is defined 

as follows: 

Definition 15: A cause category is the dimension of the system development where the short-

term benefits are achieved as a result of the technical concession. 

Kleinwaks, Batchelor, and Bradley [18] conducted an empirical survey of systems engineering 

professionals. This survey included questions on reasons why a system developer may incur TD. 

Over 80% of the respondents identified schedule pressure as a reason, over 60% of the respondents 
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identified cost pressure as a reason, and over 30% of the respondents identified technical 

compromise as a reason. Kruchten et al. similarly identified schedule pressure as the primary cause 

of TD [115]. These results lead to the following cause categories: 

• Schedule: consists of pressures put on the technical solution due to the need for the system 

to meet schedule. For example, any TD incurred such that the system can meet its 

scheduled release date is caused by the schedule category. 

• Cost: consists of pressures put on the technical solution due to the need for the system to 

stay on budget. For example, technical concessions associated with the use of a cheaper 

part are associated with the cost category. 

• Performance: consists of technical concessions made in one area to achieve technical 

benefits in another area of the system. For example, a satellite system may choose to use a 

less performant antenna such that system mass requirements are met. 

These categories mirror the system dimensions defined in Section 2.4.1.3.2 . As evidenced by 

Figure 2-15, pressure on any of the dimensions may result in movement in the other dimensions. 

Figure 2-16 shows an example of this process. Stakeholders, such as management executives, may 

put pressure on the system to release earlier in order to beat a competitor to market. This pressure 

pulls the schedule vertex (T) to the left as shown in section 1 in Figure 2-16. Without other 

resources, the movement of the schedule vertex would result in a corresponding decrease in system 

performance (P), shown in section 2 of Figure 2-16. This reduction indicates that a technical 

compromise is required, which introduces TD to the system. To restore the system performance, 

the cost vertex ($) is moved left, decreasing the system profitability, shown in section 3 of Figure 

2-16. Therefore, the stakeholders would have to accept a tradeoff in the system – either a decreased 

performance and the introduction of TD or decreased profitability due to an increase in costs. Note 
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that the profitability factor here does not account for the potential future benefits of releasing the 

system earlier to market. 

 

Figure 2-16. Example of schedule pressure creating TD 

2.4.1.3.7.9 Type 

The type of a TD item provides a means to categorize the TD item. TD items with similar types 

may have similar causes or similar methods for repaying the TD. Examples of different types of 

TD can be found throughout the literature and include items such as architectural TD [97], domain 

debt [89], and requirements debt [118]. TD occurs in various stages throughout a system’s lifecycle 

and for various reasons. Classification of TD into different types assists in understanding and 

managing it, however, too many disparate types risk diluting the strength of the TD metaphor 

[115]. A definition for a TD type, such as that provided in Definition 16, can assist in restricting 

the accumulation of differing TD types.  

Definition 16: A technical debt type is a classification of technical debt based on the artifacts 

that are negatively affected by the technical concessions made to realize a short-term benefit. 

This definition restricts a TD type to be associated with specific artifacts and the technical 

concessions that are made. Domain debt, defined as the “misrepresentation of the application 

domain by an actual system” [89], is associated with the documentation of stakeholder needs and 

the system requirements. Technical concessions that result in domain debt can include limiting 
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user interactions to save development time. Defect debt, defined as any defect found within the 

system [60], would not be a type of TD according to Definition 16. Defect debt can be mapped to 

an artifact, such as the source code, but not to technical concessions. Defects are the result of poor 

work and are not inserted into the system to realize a short-term benefit. 

2.4.1.4 Discussion 

The ontology provided in this paper provides a starting point for developing a common 

framework for discussing TD within systems engineering. This commonality is critical to enable 

the sharing of methods and processes for identifying and mitigating the impacts of TD. The need 

for a common set of definitions can be seen by examining a listing of types of TD. 

Kleinwaks, Batchelor, and Bradley [19] identified the types of TD found within published 

systems engineering research. Recognizing that creating too many types of TD risks diluting the 

strength of the metaphor [115], the types of systems engineering TD were reevaluated in context 

of this TD ontology. This evaluation resulted in the consolidation of the TD types as shown in 

Figure 2-17, with the types classified as interest bearing (associated primarily with impacts during 

system development), fee bearing (associated primarily with impacts during system usage), or both 

interest and fee bearing. Several of the identified types of TD proved to be instances of other types 

of TD. For example, versioning debt is an instance of documentation debt and not a separate type 

of TD. Automation debt, build/assembly debt, depreciation debt, and infrastructure debt were 

originally listed as different types of TD [19]. These types of TD all impact the same artifacts – 

the supporting tools used to develop the system. Therefore, according to the ontology, they 

represent different facets of the same type of TD. Figure 2-17 shows the subtypes as italicized 

items under the new parent type, which is listed in bold. After application of the definition of a TD 

type, several types of TD listed in [19] were found to not be TD types: defect, operations and 
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maintenance, and organic. These items reflect causes or impacts of TD instead of types of TD. 

This short example demonstrates the utility of the ontology – it provides clear guidelines of what 

is and is not TD and can prevent over classification, which impedes communication and the 

development of effective management strategies [115]. 

 

Figure 2-17. Consolidation of TD types from [19], organized by interest and fee bearing status.  

2.4.1.5 Conclusions  

Kleinwaks, Batchelor, and Bradley [19] proposed a research agenda for understanding TD in 

the context of systems engineering. This agenda includes baselining the knowledge of TD in the 

field of systems engineering through empirical data collection, developing a systems engineering 

ontology of TD, developing techniques to identify causes of TD within systems engineering, 

developing methods to quantify and predict the impact of TD within systems development, and 

verifying and validating these methods. 

The first agenda item was addressed through a survey on the prevalence of TD in systems 

engineering [18]. The research question presented in this paper address the second agenda item – 

identifying an ontology of TD within the context of systems engineering. This research presents a 

starting point for the development of a complete ontology. It introduces and defines the key terms, 

with clear explanations. These explanations and definitions begin the creation of a common 
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lexicon and provides practitioners with the semantics necessary to create clarity in 

communications.  

The ontology presented here is not complete. Further work needs to be performed to create 

taxonomies of TD types and of specific causes of TD. Too many classes of either TD types or 

specific causes can dilute the strength of the TD metaphor [115]. Future research needs to provide 

guidance on how to classify TD such that it is precise enough to be meaningful without 

overspecification. 

The socialization of this ontology, of which this paper is the first step, will provide a starting 

point for clear and concise terminology usage within the field of systems engineering, which is a 

necessary step towards mitigation of the risks associated with technical debt and the prevention of 

technical bankruptcy. 

2.4.2 Addressing RQ1.3 

The technical debt ontology addresses RQ1.3 by providing a common ontology for technical 

debt within systems engineering. To demonstrate the utility of the ontology, the following sections 

provide example applications, including developing a consolidated set of types of technical debt 

within systems engineering, an example application of the ontology to the development of a 

notional satellite system, and a discussion on items that do not constitute technical debt based on 

the ontology. 

Application of the ontology to the list of types of technical debt found in the literature review 

addresses Task 1.3.2 by providing concise definitions of types of technical debt applicable to 

systems engineering. The survey results are used to map these types of technical debt into the 

systems engineering lifecycle to identify the artifacts and phases affected by each type. 
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2.4.2.1 Technical Debt Types in Systems Engineering 

With the ontology defined, it can be applied to multiple cases to demonstrate its utility. As an 

example, the types of technical debt in systems engineering identified in [19] can be reevaluated 

using the definitions contained in the ontology. Table 2-8 lists the types of technical debt in 

systems engineering identified in [19] after applying the ontology and associates the type with the 

affected artifact. In accordance with the definitions, Table 2-8 identifies the types of technical debt 

that are interest bearing (associated primarily with impacts during system development), fee 

bearing (associated primarily with impacts during system usage), or both interest and fee bearing. 

The following sections define these technical debt types in more detail. Several types of technical 

debt identified in [19] were found not to be technical debt after application of the ontology. Section 

2.4.2.3 discusses why these types do not constitute technical debt. 

Table 2-8. Technical debt types in systems engineering 

Technical Debt Type Artifact where Technical Concessions are Made Interest or Fee bearing 

Architecture System architecture  Interest 

Design Component specifications and detailed system 

design 

Interest and Fee 

Documentation System documentation Interest and Fee 

Domain Statement of needs, system requirements, system 

architecture, test plans 

Fee 

Implementation System components and integrated system Interest and Fee 

Infrastructure Supporting equipment for system components, the 

integrated system, and verification and validation 

tests 

Interest 

Modeling and Simulation Supporting models and digital twins Interest 

Requirements System requirements  Interest 

Test Test artifacts Interest and Fee 

 

2.4.2.1.1 Architecture Debt 

Architecture debt is incurred through technical compromises that impact the system 

architecture, such as decisions related to the structure and implementation of interfaces in the 

system [97]. Architecture debt can result in impacts on the quality attributes of the system, such 
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as maintainability and evolvability [155]. Architecture debt is present in both systems engineering 

and software engineering, and its use in systems engineering is a direct analog of its use in software 

engineering. Similar architectural decisions and processes are made in both fields. Technical 

concessions made in the system architecture result in the accrual of interest on those concessions. 

Architecture issues such as incompletely implemented standards, adoption of immature system 

components, and reliance on outdated architectures make developing and improving the system 

more complicated.  

Examples of architecture debt include [97]: 

• The Minimum Viable Product that Stuck: the focus on delivering value quickly to 

stakeholders results in the generation of a minimum viable product (MVP), which 

minimally meets the requirements. The adoption of the MVP as the baseline for the 

architecture can then result in immature system implementations that result in future 

complexities. 

• The Workaround that Stayed: Architectural workarounds are introduced in the system, 

such as creating temporary interfaces between components. Over time, these workarounds 

become critical features of the system, even though the workaround may not have been 

implemented to the required standards. 

• Re-inventing the Wheel: Components are developed when existing components with 

similar functions are available. This type of architectural debt is the result of build versus 

buy decisions and can cause future impacts due to the additional work associated with 

testing a new developmental item. 
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• Architectural Lock-in: Architectural components become deeply embedded in the system 

design, making them costly or impossible to replace. The use of these components can 

incur performance costs in the future if they cannot be upgraded. 

• New Context, Old Architecture: The context in which a system is deployed may change. 

The failure to keep the system architecture updated with changes in the context can result 

in new fees being applied to the system every time it is used. 

Architecture debt is interest bearing. It reduces the future evolvability and development of the 

system and the architecture becomes more difficult to change as system development progresses. 

2.4.2.1.2 Design Debt 

Design debt is incurred through technical compromises that impact the design of the system 

[110]. Design debt can be incurred during preliminary design or detailed design and can result 

from “an under-focus on qualities such as maintainability and adaptability, or subsequent 

piecemeal design with an absence of refactoring” [52]. Design debt can occur in hardware and 

software designs. Parts of code debt as identified in software engineering apply to design debt, 

such as violations of good object-oriented design [133].  

Design debt is interest bearing and fee bearing. Concessions made during design will have 

impacts on the ability to make future modifications to the system. The design choices may also 

result in fees where design compromises result in a system that is more difficult to maintain or use. 

2.4.2.1.3 Documentation Debt 

Documentation debt refers to all issues pertaining to the documentation of the system, including 

poor documentation, version control, and configuration management. Versioning debt is included 

in documentation debt as version control and configuration management are related to document 

management. Documentation debt occurs due to “insufficient, incomplete, or outdated” [60] 



 

127 

documentation and applies to any of the documents used to design or maintain a system or a system 

component [70], such as user manuals, test plans, or source code comments.  

Documentation debt incurs both interest and fees. Poor documentation related to the 

development of the system, such as insufficient source code commenting, incurs interest since it 

makes the future development of the system more complicated and costly. Poor documentation 

related to the usage of the system, such as an incomplete user manual, can make user training more 

complicated, incurring a fee at each training event. 

2.4.2.1.4 Domain Debt 

Domain debt is the “misrepresentation of the application domain by an actual system” [89] and 

impacts the system itself. The impact of this type of technical debt is seen when a system fails 

validation – the developers built a system that does not meet the needs of the end users. Domain 

debt can be caused by poor requirements and poor stakeholder involvement during development 

or by changes in the system context and use cases after development [63].  

Domain debt results in fees – the user experiences low usability on a product that may not meet 

their needs. Domain debt may not impact the development of the system, however, decisions made 

during development can incur domain debt if they drive the system to a solution that is not 

representative of its intended use and operational domain [89]. 

2.4.2.1.5 Implementation Debt 

Implementation debt occurs while the system is being built - after the design is completed and 

prior to the release of the system. During the implementation and integration phases, the system 

developer is often faced with decisions about how to implement the system. These choices do not 

change the system design or architecture. For example, a software system may choose an 

inefficient algorithm or produce code without following proper coding practices [60], resulting in 
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larger rework times the next time the software is used. In a hardware system, the use of a 

customized part and proprietary interfaces can make future updates more complicated [70].  

Implementation debt is interest and fee bearing. The concessions made during system 

implementation and integration may make future system development more challenging, as in the 

case of an incomplete implementation of a standard. These concessions may make using the system 

more difficult, as in an under-implemented interface between two components. The latter case may 

result in unreliable or low-rate data flow across the interfaces, thereby increasing the time it takes 

to transmit data from a remote system. 

2.4.2.1.6 Infrastructure Debt 

Systems are not developed in a vacuum, instead they rely on infrastructure and supporting 

processes. Infrastructure includes the development tools used by the system developer, the 

supporting systems at the deployment location, and third-party components used by the developer 

within their system. Infrastructure debt includes technical concessions made in the configuration 

of the tools that are used to support the development and deployment of the system [60]. These 

concessions can be made in areas involving the depreciation of parts and components and the 

automation of machinery [70]. In software systems, concessions made with the automated build 

pipelines, such as the failure to include adequate cybersecurity scanning tools to save cost, 

constitute infrastructure debt. Technical compromises made to enable the use of commercial off-

the-shelf (COTS) products, such as accepting lower system performance or more complicated 

integration, also constitute infrastructure debt [86]. 

Infrastructure debt is interest-bearing. Concessions made in the infrastructure related to the 

development of the system will incur interest when the development is more complicated, such as 

the need to modify a COTS product to meet the system requirements. Poor infrastructure in a 
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deployed system is a result of design decision and is perhaps more properly characterized as design 

debt. 

2.4.2.1.7 Modeling and Simulation Debt 

Digital engineering relies on a substantial increase in the use of modeling and simulation tools 

to verify system-level performance through analysis. Digital tools are used to verify requirements, 

assess system performance, and predict system behavior. If these models and simulations are 

performed to improper fidelity levels, are not maintained in parallel with the system under 

development, or are poorly documented, then the model’s predictions will differ from the system 

reality. In these cases, the technical concessions made in the model development will impact the 

health of the system, as the system may need to be redesigned to meet the required performance 

parameters. Modeling and simulation debt is the result of technical concessions made in the digital 

engineering environment for a system [70].  

Modeling and simulation debt is interest-bearing. Concessions made in the modeling phase can 

make the development of the actual system more challenging and result in redesigns. For example, 

if an overly simplistic thermal model of a satellite is used, then the satellite may be designed with 

insufficient radiators. During thermal testing, the satellite would not perform as expected and 

would require a redesign. 

2.4.2.1.8 Requirements Debt 

Requirements debt has been defined as the “distance between the optimal solution to the 

requirements problem and the actual solution, with respect to some decision space” [118], issues 

with requirements formatting and content [70], and trade-offs in the requirements specification 

[66] or implementation [133]. There is disagreement in the published literature about whether or 
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not requirements debt is a type of technical debt [149]. In systems engineering, requirements debt 

should be considered as a type of technical debt. 

Requirements debt occurs when concessions are made during the formulation of the system 

requirements. Requirements debt can have large impacts on various aspects of the system, such as 

the design, implementation, and operations and maintenance, and could be seen as an analog of 

domain debt. However, domain debt occurs when the system developer does not implement the 

requirements in accordance with the stakeholder’s expectations and requirements debt occurs 

during the formulation of the requirements themselves. Requirements debt results from 

compromises made when creating the system requirements and not from poorly formatted 

requirements. However, it can occur when a poorly formatted requirement results in an inaccurate 

understanding of the requirement. The lack of clear requirements can result in a system that 

requires redesign, additional acceptance testing, or multiple rounds of validation. Missing 

requirements can result in the need to add unbudgeted work to the system to complete it to 

specifications.  

Requirements debt is interest bearing. Technical concessions made during requirements 

development, such as the failure to include all relevant stakeholders during elicitation and the 

failure to verify the requirements to confirm that they are complete and conflict-free, can have 

large impacts later in the system development process. 

2.4.2.1.9 Test Debt 

Test debt is incurred due to technical concessions made in the development of test artifacts and 

in conducting testing activities [133]. Test debt can occur due to shortcuts taken when executing 

the tests [60] or due to insufficient coverage of the system functions and behaviors in the set of 

test cases [70]. Specific instances of test debt include commissioning and start-up debt (shortcuts 
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in commissioning and startup process of automated systems [113]) and configuration debt (issues 

with the hardware configuration and availability for testing [70]). 

Test debt is interest bearing as tests are part of the development process of the system. Test debt 

can lead to test failures which will lead to additional development work to correct the system. Test 

debt is also fee bearing. If the system is not fully tested, then inadequate performance may not be 

discovered during the operational phase, resulting in increased difficulty when the system is used. 

2.4.2.2 Example usage of the Ontology 

The use of the technical debt ontology for systems engineering is best understood through an 

example. This example considers the development of a notional communications satellite with a 

primary radio-frequency (RF) antenna for communications with users on the ground. The satellite 

is launching as part of a rideshare and therefore has a strict mass limit and a strict schedule. The 

satellite must be ready in twelve months or else it will miss the launch, and will have to sacrifice 

the budget allocated to the launch. If the satellite is over mass or fails the specified environmental 

testing, then it will not be allowed to connect to the launch vehicle. The RF antenna needs to 

connect to an existing set of ground terminals and ground antennas (more than one combination), 

without modifying those systems. Therefore, there are minimum performance requirements on the 

antenna. Further complicating the development of this system is the fact that a satellite cannot be 

serviced once it is launched, with the exception of software updates. This example examines the 

impacts of technical debt on the development path of the satellite. For this example, technical debt 

principal, interest, and fees will be measured in UNITs of time. Table 2-9 contains the details of 

the technical debt items created and observed throughout this example, identified by the step 

number associated with each paragraph. The column C/O indicates if technical debt is created (C) 
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or observed (O) and the column CC indicates the cause category for that technical debt item, with 

S used to indicate schedule, C used to indicate cost, and P used to indicate performance. 

1. The first step in the system development process is identifying the stakeholder needs. The 

stakeholders identify an exemplar terminal and antenna to which the satellite needs to 

connect. The stakeholders do not identify any other constraints and, to enable the quick 

start of the system development on a tight timeline, the system developer does not pursue 

any further information. Domain debt is created. 

2. Following the identification of the stakeholder needs, the satellite requirements and system 

architecture are defined. The requirements for the satellite include the overall mass limit. 

The architecture requires the development of a new antenna for the satellite; however, an 

existing radio can be used. The new antenna is an evolution from an existing antenna and 

the mass and power of the existing antenna are used in the initially proposed design. The 

exemplar terminal specifications that were provided represent a worst-case scenario for the 

antenna performance. No size requirements are flowed down to the antenna manufacturer 

as the previous design was small enough to fit within the launch vehicle restrictions. 

Requirements and modeling and simulation debt are created. 

3. During the preliminary design of the system, the initial antenna models are revisited. It is 

determined that the antenna does not produce enough gain to close the link with the 

exemplar terminal. The design has to be reworked, resulting in an increase in size and mass 

of the antenna. Modeling and simulation debt is observed and design debt is created. 

4. The critical design of the system takes longer than expected due to the larger mass of the 

antenna, which produced a need to rework the guidance systems. The mass increase also 

resulted in the need to increase the size of the satellite reaction wheels, which further 
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increased the mass of the system. To counteract the increase in mass, a battery is removed 

from the system, which decreases the duty cycle of the antenna. Design debt is observed 

and domain debt is created. 

5. In the integration phase, the command-and-control software for the satellite and its payload 

are implemented from the design. Due to the short timelines, best practices for the 

development of the software are not followed and the documentation produced for the 

software is minimized. Implementation and documentation debt are created. 

6. Following integration, the satellite is verified and validated, including the execution of the 

tests required by the launch vehicle provider prior to allowing the satellite to be integrated 

on the launch vehicle. To save time, radiation testing is not performed. Instead, the 

requirements are verified by analysis. Test debt is created. 

7. Eventually, the satellite is qualified for launch and is placed into orbit by the launch vehicle. 

As the satellite enters operations, it becomes apparent that it does not meet the needs of the 

users. It is limited in duty cycle and experiences a limited ability to close the link with a 

majority of the terminals that it was supposed to support. Radiation events occur semi-

frequently, causing the satellite to go out of service due to the need to reset the system. The 

software is complicated to update and patch, resulting in longer outages whenever an error 

occurs. Domain, test, and documentation debt are observed. 

This example shows how technical debt can build up within a system through decisions made 

to achieve short-term benefits. As a result, the system was more expensive to develop and is less 

usable by its end-users, which could result in a monetary failure of the system. 



 

134 

Table 2-9. Example creation and observation of technical debt 

Step TD Type C/O Compromise CC 
Potential 

Consequence 
Principal Interest/Fee 

1 Domain C Failure to identify 

all operational 

needs and 

constraints 

S System may not work 

for all user terminals, 

in all weather 

conditions, or at all 

ranges 

Seven work days saved 

by not completing 

needs analysis 

Fee: inability to transfer all data in one 

pass causes user to wait for a second orbit 

to complete transfers; due to orbital 

geometry delay can be 90 minutes to 12 

hours  

2 

Requirements C Failure to 

consider all 

sources of 

requirements in 

development of 

subsystem 

requirements 

S Rework of design if 

launch vehicle 

constraints are not met 

Two weeks earlier start 

on design 

Interest Amount: four weeks of redesign 

if constraints are not met 

Interest Probability: 50% 

Mod/Sim C Simplified models 

used to assess 

system design 

S, C Rework of the design 

if simplified models 

are incorrect 

Two months earlier 

start on design 

Interest Amount: One month of redesign 

effort 

Interest Probability: 30%  

3 

Mod/Sim O N/A N/A N/A N/A Interest Paid: time spent to rework 

design, which reduces schedule margin 

and increases cost 

Design C Acceptance of 

larger antenna 

mass 

P Larger mass makes 

attitude control, launch 

deployment, and 

power management 

more complicated 

Three weeks saved on 

antenna design 

optimization 

Interest Amount: Two weeks of effort to 

redesign the reaction wheels and attitude 

control software 

Interest Probability: 90% 

4 

Design O N/A N/A N/A N/A Interest Paid: time spent to rework 

design, increasing cost and reducing 

schedule margin 

Domain C Lowering of 

battery capacity 

P Lower duty cycles 

reduce the usability of 

the system for the end 

user 

Six weeks of effort to 

optimize other areas of 

the satellite to meet new 

power requirements 

Fee: lower duty cycle results in ability to 

only service one user per orbit, creating 

operational delays from 90 minutes to 12 

hours based on orbital geometry 

5 

Implementation C Not following 

software best 

practices for peer 

review 

S Increased risk of 

software errors and 

increased difficulty in 

updating software 

Four weeks of 

development time saved 

Interest Amount: Two days of additional 

work for each update 

Interest Probability: 75% 
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Step TD Type C/O Compromise CC 
Potential 

Consequence 
Principal Interest/Fee 

Documentation C Reduction in 

software 

documentation 

S Increased risk of 

software errors and 

increased difficulty in 

updating the software 

Four weeks of 

development time saved 

Interest Amount: Four days of additional 

work for each update 

Interest Probability: 60% 

6 

Test C Radiation tests not 

performed 

S Susceptibility of 

system to single event 

upsets may decrease 

the usability of the 

system resulting in 

technical fees 

Two weeks of test time Fee: Single event upsets cause a reset of 

the satellite every day, which may result 

in missed connection opportunities or 

data loss, creating operational delays 

from 90 minutes to 12 hours based on 

orbital geometry 

7 

Domain O N/A N/A N/A N/A Fee Paid: Links to most terminals only 

close at high elevation angles, reducing 

effective communication times and 

increasing the time for a customer to 

receive service 

Test O N/A N/A N/A N/A Fee Paid: Single event updates cause 

frequent system resets and outages, 

increasing the wait time for customer to 

receive service 

Domain O N/A N/A N/A N/A Interest Paid: Increased timeline for 

patching and updating the satellite 

software due to poor documentation  

 



 

136 

2.4.2.3 Is It Technical Debt?  

When evaluating potential technical debt within a system, it is simple to describe every problem 

as a type of technical debt. After all, most problems encountered in a system development will 

eventually cause issues. However, this generalization of problems can lead to two undesirable 

conclusions [115]: 

1. Fine-grained distinctions between different types of technical debt prevent the 

development of efficient tools to manage technical debt; and, 

2. Over-generalization prevents the application of the right tools, such as risk and schedule 

management techniques, to the right problem. 

If every technical problem is not technical debt, then there needs to be a methodology for 

determining what is and what is not technical debt. The definition of technical debt from [21] will 

be used to address several situations that should not be considered technical debt. For an issue with 

the system to be considered technical debt it needs to meet the following criteria: 

• A technical concession was made (trading schedule for budget does not constitute a 

technical concession); 

• There was a short-term benefit received as a result of the concession; 

• There is the potential for damage to the long-term health of the system; and, 

• The technical concession can be associated with a system artifact. 

Table 2-10 provides example categories of items that are often confused with technical debt but 

fail to correspond to the definitions provided in the ontology. 
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Table 2-10. Examples of items that are not technical debt 

Category Definition Why it is Not Technical Debt Could be Technical Debt If 

Incomplete 

work 

Unfinished work that is on 

schedule [58], new 

features, or additional 

functionality [115] 

Not the result of a technical 

compromise 

 

Work is left undone to meet a 

release, thereby representing 

a technical compromise  

Defects and 

failures 

Software bugs, poor work, 

errors in the system [49] 

Not inserted into a system to 

achieve a benefit; tend to have 

an immediate impact on the 

system instead of a long-term 

impact [116] 

Defects arise due to 

misinterpretation of the 

requirements; the defects are 

then a symptom of 

requirements debt 

Technical 

compromise 

with no long-

term impacts 

Reducing the performance 

of the system through a 

technical compromise that 

still enables the system to 

meet its objectives 

No long-term impacts since the 

system still meets all the 

objectives 

Unexpected long-term 

impacts arise from the 

concessions 

Poorly 

designed or 

implemented 

systems 

Systems that are properly 

built to their requirements, 

but the design is poor 

No technical compromises are 

made in the development of the 

system 

Misunderstanding of the 

customer needs led to the 

initial requirements, resulting 

in domain debt 

 

Using the definitions in the ontology, several types of technical debt identified in [19] no longer 

fit the requirements to be considered technical debt. These types include defect debt, operations 

and maintenance debt, and organic debt. Defect debt is defined as any defect found within the 

system [60]. However, as identified in Table 2-10, defects themselves are not technical debt, and 

therefore defect debt is not a type of technical debt. Instead, defects should be viewed as symptoms 

of other types of technical debt [49]. Operations and maintenance debt is defined as “any kind of 

handicap with adverse effects on the product or system maintenance” [112]. This definition is 

overly broad and the adverse effects on maintenance, which are technical fees, could arise from 

any of the other types of technical debt. Therefore, operations and maintenance debt should not be 

a separate category to avoid overspecification. Organic technical debt refers to the impact of 

external factors, such as decisions by management, on the system [86]. This definition implies that 

these external factors force the system developers to make technical concessions due to driving 
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concerns, such as limited budgets and speed to market. Per the ontology, these external factors are 

causes of technical debt and not a specific type of technical debt themselves. 

2.5 Technical Debt in the Systems Engineering Lifecycle 

Section 2.4.2.1 states that the types of technical debt are defined based upon the artifacts that 

they impact. By evaluating the stages in the system lifecycle based on where the affected artifacts 

are created and used, it is possible to map the types of technical debt to the system lifecycle. Figure 

2-18 shows a mapping of the system lifecycle stages used in the survey by Kleinwaks, Batchelor, 

and Bradley [18] to the types of technical debt identified above. In the figure, each stage outputs 

an artifact, which then may be used as an input to another stage. For example, the statement of 

needs is used as an input to the requirements definition stage, the verification and validation stage, 

and the operations stage. These input/output relationships are shown via the blue arrows. The 

technical debt type that may be created in the development of each artifact is shown in red italicized 

text to the left of the artifact. The types of technical debt that impact the development or the usage 

of the artifact are shown in bold purple text to the right of the artifact. For example, the preliminary 

design stage produces the component specifications. During the development of these 

specifications, technical compromises may occur that result in design debt – the design of the 

specification is non-optimal. Therefore, design debt is shown in red italics to the left of the 

component specification icon in Figure 2-18. The process of developing the component 

specification itself may be more complicated due to the presence of requirements, architecture, or 

modeling and simulation technical debt. These types of technical debt are shown in bold purple 

text to the right of the specification icon in Figure 2-18. If technical compromises existed in the 

development of the requirements, such as not validating the requirements for consistency in order 

to meet schedule, then it may be impossible to develop proper component specifications. The 
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system developer would have to go back to the stakeholders to renegotiate the inconsistent 

requirements, which increases the execution time. 

 

Figure 2-18. Technical debt type creation and observation based on impacted artifacts throughout the system 

lifecycle 

Of note in Figure 2-18 is that modeling and simulation debt (Mod & Sim) is created during the 

development of a digital twin. The term digital twin here is used to refer to any models or 

simulations used during the development of the system. The digital twin provides inputs to and 

receives outputs from the needs analysis, requirements definition, preliminary design, and critical 

design stages. The system documentation is both generated and used throughout the system 

lifecycle. Therefore, documentation debt may be created or observed at any point in the lifecycle. 

The documentation artifact is not shown connected to the stages for clarity in the diagram. Table 

2-11 defines the rationale for the depictions shown in Figure 2-18. 
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Table 2-11. Creation and impact of technical debt types 

Technical Debt Type Creation Impact Artifact(s) 

Architecture The system architecture is created at the end of the 

requirements analysis, which occurs during the 

requirements definition stage [146].  

Compromises in the system architecture such as 

incompletely implemented standards can make 

system design more complicated. Similarly, these 

incomplete interface implementations can impact 

the ability to verify and validate the system. 

System architecture  

Design The design consists of the component specifications 

and the detailed design, which are created during the 

preliminary and critical design stages [146].  

The design directly impacts the system 

implementation and the creation of the system 

components and the integrated system. 

Compromises in the design may make the system 

harder to implement, require redesign late in the 

process, or make the system more difficult to use. 

Component 

specifications and 

detailed system design 

Documentation Documentation occurs throughout the system 

development. Compromises in any source of 

documentation can create technical debt, such as 

poor user manuals, failure to capture requirements 

rationale, and poor source code commenting. 

Documentation is used throughout the system 

lifecycle and any concessions made in the 

documentation may impact the ability to design, 

develop, and utilize the system. 

System documentation 

Domain Domain debt occurs due to a misunderstanding of 

the stakeholder needs and operating environment. 

Domain debt is created throughout the system 

lifecycle system any time a technical compromise is 

made that results in a system that does not properly 

meet the stakeholder needs. 

Domain debt is not observed until late in the 

system development cycle, when the system is 

validated by the stakeholders. Concessions made 

early, such as forgoing user input to meet 

schedule, show up late in a system that fails 

validation or does not operate as expected. 

Statement of needs, 

system requirements, 

system architecture, test 

plans 

Implementation Implementation debt occurs due to technical 

concessions made while implementing the detailed 

design. These concessions can be intentional or 

unintentional.  

Implementation debt impacts the system itself 

and begins to be observed in the integration stage 

as one part of the implementation can affect 

others. Concessions made in the implementation 

of the system can impact the verification and 

validation of the system and the operations. 

System components and 

integrated system 

Infrastructure Infrastructure debt broadly captures the impacts on 

the elements in the system context, beyond the 

system itself, that are required to support the 

development of the system. It is created in the 

requirements phase when the infrastructure 

requirements are specified.  

The impact of infrastructure debt is felt in the 

integration and verification and validation stages. 

If concessions are made with respect to the tools 

used to build or test the system, then the 

processes may not be as efficient or may require 

a redesign of the system to fit the available tools. 

Supporting equipment 

for system components, 

the integrated system, 

and verification and 

validation tests 
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Technical Debt Type Creation Impact Artifact(s) 

Modeling and 

Simulation 

Modeling and simulation debt is created during the 

process of defining models, simulations, and digital 

twins that support the design of the system. An 

example of a concession made in the modeling and 

simulation process is using low fidelity models to 

decrease model run time.  

Digital twins are used to support the development 

of the system needs, requirements, architecture, 

and designs. Therefore, any concessions made in 

the digital twins will impact these processes. 

Supporting models and 

digital twins 

Requirements The requirements are created during the 

requirements definition stage [146]. Requirements 

debt occurs if the system does not properly validate 

the requirements to ensure that they are conflict free, 

understood, and support the stakeholder needs. 

Requirements debt impacts the design of the 

system and the verification and validation of the 

system. Concessions made in the requirements 

can result in a system design that is inaccurate, 

which can then result in the failure of verification 

testing. 

System requirements  

Test Test debt is associated with the test plans and 

processes used to test the system. It is created during 

the development of the test plans as part of the 

requirements definition and again during the 

verification and validation stage, where the detailed 

test plans and procedures are run. 

Test debt impacts the verification and validation 

stage. During this stage the system is tested to 

ensure that it meets the requirements and 

concessions made during the test development 

may result in additional tests if the test results are 

inadequate. 

Test artifacts 



  

142 

Figure 2-19 relates the types of technical debt to the systems engineering Vee. Dark green areas 

of the Vee indicate areas where that type of technical debt is likely to be created (the left side of 

Figure 2-19) or observed (the right side of Figure 2-19). Technical debt is more likely to be created 

on the left side of the Vee and observed on the right side of the Vee, in accordance with the results 

presented in [18]. 

 

Figure 2-19. Technical debt creation (left) and observation (right) by type in the systems engineering lifecycle 

While the general trend shown in Figure 2-19 matches that in [18], one key difference is the 

number of types of technical debt observed in the Operations stage. According to [18], over 70% 

of the survey respondents stated that technical debt is likely to be observed in the Operations stage. 

Figure 2-19 shows only four types of technical debt (design, documentation, domain, and 

implementation) being observed in the Operations stage. There are two reasons for this difference. 

First, the definitions provided in the technical debt ontology make a clear difference between those 

types of technical debt that affect the development stage (those that cause interest) and the 

deployment stage (those that cause fees). These concepts were not provided to the survey 

participants. Second, the survey participants were not provided with the detailed breakdown of 
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types of technical debt. Any technical compromise in the system can result in difficulties in 

operations, including under-performance and more complicated maintenance. However, the 

definition of domain debt, the failure of the system to meet the user’s needs, covers most of these 

circumstances. Domain debt can be created at multiple steps throughout the systems engineering 

lifecycle leading to the observation of the technical debt in the Operations stage. Domain debt 

combined with design and implementation debt, which cover concessions made during the design 

and build of the system, produces the majority occurrences of technical debt in the operations 

phase. 

2.6 Conclusion 

This chapter addresses RQ1: How prevalent is the technical debt metaphor within systems 

engineering? Through the literature review and empirical survey, it was determined that the 

metaphor of technical debt is not widely used either in published research or in practice. However, 

the impacts of technical debt on a system development are commonly observed in the field of 

systems engineering. Therefore, there is a need to establish a common lexicon to enable 

discussions about technical debt, its impact, and its management. The ontology for technical debt 

[21] created as part of this dissertation provides the first known comprehensive lexicon for 

technical debt within systems engineering. 

Application of the ontology allows types of technical debt to be defined while minimizing the 

risk of overspecification. By associated a type of technical debt with the affected artifact, similar 

management and mitigation techniques can be developed. Finally, the likelihood of creating and 

observing technical debt throughout the system lifecycle is defined, both in terms of empirical data 

from survey participants and through analysis of the presented types of technical debt. This data 
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supports the conclusion from the survey that technical debt is likely to be created early in the 

system lifecycle and observed late, but that it can occur anywhere.  

This chapter provided an overview of the current state of technical debt research within systems 

engineering. The provided ontology, tailored specifically to systems engineering, serves as a 

starting point for practitioners to develop a shared language that can be used to determine methods 

and processes to mitigate and manage technical debt throughout the system lifecycle. The next 

chapters of this dissertation provide a process by which technical debt can be proactively assessed 

and then mitigated within the context of system development. 
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CHAPTER 3  – IDENTIFICATION OF TECHNICAL DEBT IN THE SYSTEM LIFECYCLE 
 
 
 

3.1 Introduction 

The system lifecycle defines how a system progresses from its initial conception through design 

and development and into operations, sustainment, and disposal. Each system ends up following a 

unique lifecycle, however, the lifecycle stages and process are defined by the technical strategy 

used to execute the lifecycle. The technical strategy consists of the development method, 

development strategy, and delivery strategy used to complete the system [23]. Iterative delivery 

strategies execute similar lifecycle stages repeatedly, increasing the overall value delivery of the 

system with each iteration. In these delivery strategies, technical debt can be a major contributor 

to delays, as the concessions made in early iterations may significantly impact the ability to 

complete work in later iterations [25]. Therefore, identifying technical debt within the system 

lifecycle is a critical capability that will enable improved satisfaction of stakeholder needs.  

This chapter addresses Research Question 2: How can potential sources of technical debt be 

identified during the system lifecycle? As discussed in Chapter 2, technical debt occurs throughout 

the system lifecycle, often created in the early stages of the lifecycle and identified late in the 

lifecycle. This dichotomy is what makes technical debt a threat to the success of system 

development. Late detection of technical debt during system development increases the expected 

value of the technical debt interest and therefore the overall cost (in technical debt UNIT) required 

to repay the debt.  

The late detection of technical debt can be mitigated by developing proactive mechanisms to 

identify potential sources of technical debt early in the system lifecycle and through detected 
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management of technical debt once it is discovered. This chapter focuses on the identification of 

technical debt in the lifecycle through two subordinate research questions: 

• RQ2.1: How is technical debt identified within software engineering? 

• RQ2.2: What process can be used to identify potential technical debt sources within 

systems engineering? 

Addressing RQ2.1 provides insight into the tools currently used within the software engineering 

field to identify technical debt. The majority of technical debt research occurs within software 

engineering [19], and therefore understanding the methods used in that field may provide insights 

into appropriate methods for systems engineering. Addressing RQ2.2 will identify an existing 

process that can be used to identify technical debt within systems engineering, if possible. If such 

a process does not exist, then one will be created to enable proactive identification of potential 

technical debt in systems engineering. 

3.2 RQ2.1: How is technical debt identified within software engineering? 

This section provides a review of existing methods of technical debt identification within the 

published literature. There is limited research on technical debt within systems engineering [19]. 

Associated issues, such as rework, see limited published research on mitigation techniques within 

program development and specific to systems engineering [136]. Therefore, in accordance with 

Task 2.1.1, technical debt identification methods within software engineering are surveyed and the 

identified methods are assessed for their applicability to systems engineering. 

3.2.1 Existing Methods of Technical Debt Identification in Software Engineering 

It has already been established that the current state of technical debt research is primarily 

focused on the field of software engineering [19]. This section performs a review of technical debt 
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identification methods within software engineering from which knowledge may be derived for 

adaptation and application to the field of systems engineering. 

Technical debt in software can be identified through automated approaches or through manual 

approaches. Automated approaches use tools to analyze artifacts to find indicators of potential 

technical debt, primarily focusing on source code analysis [156]. Manual approaches ask the 

system developers and stakeholders to identify instances of technical debt. While more time 

consuming, manual approaches can find sources of technical debt outside of the source code and 

provide additional context for each instance of technical debt [156]. Either automated or manual 

approaches can be used with different technical debt identification methods. Table 3-1 summarizes 

the methods for identifying technical debt in software engineering found within the literature. 

Table 3-1. Methods for identifying technical debt within software engineering 

Method Description 

Code Analysis Using automated tools to identify existing problems in source code [157] 

Self-admitted 

Technical Debt 

Identification of problems in source code based upon the comments submitted by the 

system developers [158] 

Requirements 

Validation 

Ensuring that each requirement conforms to the organization’s guidelines. Requirements 

validation confirms that the requirements are written clearly and unambiguously in the 

documentation style required by the project rules and that the interpretation will meet the 

stakeholders’ needs [159] 

Architectural 

Analysis 

Evaluation of the system architecture to assess interconnectedness and potential 

disconnects among the components through modularity and dependency analyses [97] 

 

3.2.2 Applicability of Software Engineering Methods to Systems Engineering 

Systems engineering shares a lot of characteristics with software engineering, and therefore it 

a reasonable assumption that the methods for identifying technical debt within software 

engineering could be applied to systems engineering. Although the methods identified in Table 

3-1 are not directly analogous to systems engineering, components of each method can be applied. 

Code analysis investigates software for the following problems [157]: 
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• Code smells: software implementations that do not follow good object-oriented design 

practices; 

• Modularity violations: software modules that are supposed to be independent develop co-

dependencies; 

• Design patterns and grime buildup: identification of software classes that fail to follow 

established design patterns and accumulate grime (code not related to the design pattern) 

and rot (breakage of the integrity of the design pattern); and, 

• Automatic static analysis issues: tools automatically review source code for violations of 

best practices that may lead to future issues in software quality. 

These techniques could be migrated to systems engineering with minor modifications, although 

their automatic implementation may be more complicated. For example, modularity violations can 

occur between hardware components in addition to software components. Hardware designs can 

accumulate grime and rot when the components fail to follow the established design patterns and 

interfaces. Smells can occur if system components do not follow good design practices, such as 

not including proper mass growth allowances on a satellite system build. These techniques may 

become more relevant with the rise of digital engineering and model-based systems engineering, 

where structured designs are more amenable to automatic scanning tools. 

Self-admitted technical debt analysis is a process by which system developers admit that they 

have contributed technical debt to the system, through comments such as “FIX ME” or “TO DO” 

in the source code [158]. Within systems engineering, self-admitted technical debt is the equivalent 

to self-identification of shortcuts taken in a design process, such as redlines in a test procedure or 

the results of engineering review boards where a technical compromise is accepted and logged into 

the system.  
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Requirements validation is currently a part of systems engineering best practices [159]. If 

applied prior to the baselining of requirements, then the process can help identify and prevent 

technical debt from arising – the validation will clarify ambiguous requirements statements or 

intents and can therefore prevent domain debt. If the requirements validation is not performed until 

after the requirements have been baselined, then the validation process can reveal requirements 

debt and domain debt that is already in the system. 

Architectural analysis methods include [97]: 

• Modularity analysis: an assessment of the independence of the system functionalities; 

• Dependency analysis: an assessment of the dependencies between components, with an 

emphasis on identifying ‘irregularities’ such as circular dependencies, typically conducted 

through the use of design structure matrices (DSM); 

• Human analysis: identification by the system developers; 

• Compliance checking: analysis of the difference between the designed and the 

implemented architecture; and, 

• Change impact analysis: analysis of alternatives designs with the goal of limiting the 

development of technical debt. 

These techniques can also be adapted for use within systems engineering. System components 

are often modular and have dependencies upon each other. Identifying these dependencies and 

their potential impacts in the future is a critical part of technical debt assessments. 

3.2.3 Addressing RQ2.1 

Research Question 2.1 sought to understand how technical debt is identified within software 

engineering. It was anticipated that a technique, or techniques, from software engineering could 
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be extended to systems engineering to easily create a method for the proactive identification of 

technical debt. However, the evaluation of the current technical debt identification and 

management methods within software engineering did not reveal a proactive method that could be 

extended to systems engineering. Certain aspects of these methods, such as the modularity and 

dependency analyses of architectural analyses, can be migrated to systems engineering, but a 

usable end-to-end process was not identified. 

Therefore, to reduce the risks of technical bankruptcy associated with technical debt, a proactive 

process needs to be established that can convert negligent debt into strategic debt. A rapid, easy-

to-use, proactive process for identifying technical debt could enable more widespread use, 

promoting the assessment of technical debt when decisions are made. Such assessments turn 

negligent debt into strategic debt and reduce the risk of reaching technical bankruptcy. This process 

has the following objectives: 

1. Identification of the system features that support the realization of the stakeholder needs; 

2. Identification of the dependencies between the features and needs and between features 

and features, in the temporal and functional dimensions; 

3. Assessment of the potential impact of a technical concession on the satisfaction of the 

stakeholder needs; and, 

4. Easy to use, update, and understand by both system developers and stakeholders.  

Such a process can be used throughout the lifecycle of the system, including in the design and 

implementation stages. Iterative use of the process identifies the appropriate needs and features at 

each level of development and supports decision making in the performance, cost, and schedule 

dimensions.  
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3.3 RQ2.2: What process can be used to identify potential technical debt sources within systems 

engineering? 

The previous section reviewed the technical debt identification methods used within software 

engineering and concluded that a new systems engineering-centric process is required for technical 

debt identification within systems engineering. The creation of this process starts with developing 

an understanding of the technical debt identification timeline. 

3.3.1 Technical Debt Identification Timeline 

The technical debt context map in Figure 2-13 identifies a pathway by which technical debt 

occurs within a system. Figure 3-1 shows how this pathway is realized within a system 

development and associates the expected repayment cost with each step in the pathway. The 

stakeholder demands a short-term benefit from the system developers. The developers evaluate 

alternate solutions to provide this benefit, which may require technical concessions. The 

developers then select a solution and implement it, delivering the short-term benefit to the 

stakeholder and possibly introducing technical debt into the system. If not managed, then at some 

point in the future, the long-term consequences of those technical concessions are observed in the 

system, by both the developers and the stakeholders. 
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Figure 3-1. Technical debt identification method application in the occurrence of technical debt. Repayment cost 

based on [135] 

The sequence shown in Figure 3-1 indicates three timeframes where technical debt can be 

identified. During the evaluation of alternative solutions and the identification of technical 

concessions, the potential consequences of the concessions can be identified. Techniques and 

methods such as requirements validation are used during this phase. Finding the technical debt at 

this phase of the implementation is proactive – it identifies the potential technical debt prior to a 

decision to make a technical concession. Identifying technical debt at this phase enables the 

ramifications of the concessions to be considered as part of the selection process. 

The second timeframe where technical debt can be identified is during the selection and 

implementation of the solution. Identification of technical debt at this timeframe is active – the 

technical debt is identified as it is put into the system. For example, the developers may note the 

impacts of the concessions during implementation, such as identifying that a standard is 

incompletely implemented. Methods such as tracking self-admitted technical debt can be applied 

in this stage, if the developers track the concessions that they make. Active technical debt 
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identification, if properly managed, enables the technical debt item to be tracked as soon as it is 

created and therefore enables mitigation of its long-term consequences. 

The third timeframe for technical debt identification occurs once the long-term consequences 

of the technical concession are observed within the system. This type of technical debt 

identification is reactive – it finds technical debt that is already within the system. Code analysis 

techniques are used in this stage to identify existing technical debt. Reactive identification of 

technical debt can assist in explaining system-level behavior but results in more expensive 

repayment of the debt. 

Architectural analysis techniques can be applied across all stages identified above and provide 

methods to assess the interdependencies of the system. By applying these techniques early in the 

system lifecycle, the developer can prevent locking in architectural decisions that will require 

significant effort to correct in later stages. 

3.3.2 The Need for Proactive Technical Debt Identification 

As shown by the cost graph at the bottom of Figure 3-1, the cost of repaying technical debt 

increases the later in the system development cycle that it is identified [135]. Therefore, there is a 

need to enable early and proactive identification of technical debt to limit its impact on the system 

development, across all three system dimensions: cost, schedule, and performance.  

Mapping the groups of technical debt identified in Section 1.1.2.1 onto the technical debt 

timeline yields Figure 3-2. Figure 3-2 shows a notional alignment of the groups of technical debt 

on the timeline and Table 3-2 provides a definition of each of the stages and entry gates identified 

in the figure. Prudent technical debt, both strategic and tactical, skips the blissful ignorance phase, 

since the intentional decision to take on the technical debt implies that the technical debt is 

identified when it enters the system. Negligent technical debt, while a deliberate decision, does not 
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include a repayment plan, and therefore the technical debt may be forgotten about or may not be 

shared with other system developers, resulting in a period of time where the debt is hidden and the 

system is ignorant of its presence. Prudent technical debt is less likely to induce technical 

bankruptcy, due to established repayment plans. Therefore, transition point T5 (Potential for 

Technical bankruptcy) is removed from the strategic and tactical timelines. 

 

Figure 3-2. Notional timeline of technical debt occurrence by group 

Table 3-2. Stages and gates of the technical debt timeline 

Stage Definition Entry Gate 

Blissful Ignorance The developer is unaware of the technical 

debt in the system 

T1 - Occurrence: the entry of technical 

debt into the system 

Getting value out of 

debt 

The developer is aware of the technical debt, 

but the technical compromise is still yielding 

a short-term benefit and the long-term 

impacts on the system health have not 

manifested 

T2 - Awareness: the technical debt has 

been identified 

Suffering from debt The long-term impacts on system health 

outweigh the short-term benefits 

T3 - Tipping Point: the technical debt 

has begun to cause issues in the system 

development lifecycle 

Recovery from debt The technical debt is paid back and the long-

term impacts are mitigated 

T4 - Remediation Start: the technical 

debt is managed and on a known 

repayment plan 

Defaulting on debt The technical debt is not sufficiently paid 

back, and the system enters technical 

bankruptcy 

T5 - Potential for Technical Bankruptcy: 

the technical debt impacts have 

increased to the point where the system 

cannot continue with its lifecycle until 

the debt is repaid or reduced 
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The timing of the transition points (labelled with “T”) in Figure 3-2 provide insight into the 

notional phased benefits of each of the technical debt groups. Negligent technical debt has a shorter 

period of value return, a longer period of suffering from the technical debt, and a quicker potential 

for technical bankruptcy compared to strategic technical debt. The timeframes for tactical technical 

debt, both in terms of getting value and suffering from the debt are shorter than those of strategic 

technical debt. 

To limit the impact of technical debt, the durations of the blissful ignorance, suffering, and 

recovering phases need to be minimized. The blissful ignorance phase allows for unknown and 

unmanaged accumulation of technical debt interest, thereby increasing the potential future cost of 

repayment. The suffering phase is when the system is impacted by the technical debt and the 

performance is decreased. Reducing recovery timelines enables a quicker return to delivering 

value. Therefore, the earlier that technical debt is identified within a system, the less harmful it is 

likely to be. Proactive technical debt identification allows for identification of technical debt prior 

to its introduction into the system. These methods can move technical debt from negligent and 

unintentional to strategic – early identification enables plans to be put into place to mitigate the 

impact of technical debt. 

Proactive methods are necessary due to the volatile, uncertain, complex, and ambiguous 

(VUCA) environment into which most systems are deployed [3]. Environmental changes can force 

the system to be used in unintended ways or to react to unintended inputs. Careful design is 

required to implement, operate, maintain, and monitor systems in these environments [150]. 

Decisions that are made regarding the system design and architecture incur cost and accrue debt 

since they lock in a system configuration and need to be actively managed [65]. However, these 

decisions are often made in short-time frames without consideration of the future consequences. 
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The later that technical debt associated with these decisions is discovered, the more expensive it 

is likely to be to correct, as the cost to implement a change becomes significantly more costly with 

each program phase [135]. During systems development, technical debt is likely created during 

the critical design phase where it is also unacceptable to create the technical debt [18]. This 

seeming paradox is an indicator of the creation of negligent technical debt – system developers 

create technical debt to complete the design even though they know that it is not the best solution.  

Technical debt can also be “contagious” within a system. As the system grows, technical debt 

can spread, “infecting” other parts of the system [92]. For example, an electrical system can be 

designed to connect components in series or in parallel to achieve a required reliability of 0.95. 

For a system where a “short cut” decision is made to connect an uncertain number of components 

in series, the interest on this technical debt item (the decision to implement in series instead of in 

parallel) grows with every new component added. Each new component connected in series is 

affected by an electrical failure in any of the connected components, reducing the reliability of the 

system, as shown in Figure 3-3. In this example, each component has an individual reliability of 

0.99. When connected in series, the reliability of component F is reduced to 0.94, due to the 

dependencies on the previous components. When connected in parallel, the reliability of 

component F stays at 0.99. With the series connection, a redesign would need to occur to meet the 

requirement, either by improving the reliability of several components in the chain or by 

redesigning the entire system. The cost of this redesign goes up with the number of components 

connected. 
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Figure 3-3. Series and parallel implementation of components showing the change in reliability of each component 

Based on this analysis of the state of the art of technical debt identification methods, it is clear 

that the majority of the methods used within software engineering are reactive identification 

methods. Most of these approaches “focus on defect detection and avoidance, rather than a 

strategic management of key infrastructure decisions, especially in the context of architecture” 

[16]. Techniques such as source code analysis can only be applied to detect technical debt that is 

already within the system and these techniques do not inform the decision paths as the system is 

developed, potentially resulting in large accumulations of technical debt that are expensive to 

correct [16]. 

Proactive methods of technical debt identification, where potential technical debt is identified 

during the analysis of design choices and ahead of design implementation, are necessary to 

minimize the impact of technical debt within the system. Active methods detect technical debt 

when it occurs and make it easier to manage, but the debt has already found its way into the system. 

Reactive methods find existing technical debt. Only proactive methods can prevent the 

introduction of technical debt within the system. 
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3.3.3 The LEAP Process 

A proactive process for technical debt identification within systems engineering could not be 

found within the published research. Section 3.2.3 established criteria for a proactive technical 

debt identification process. Techniques found within software engineering are mostly reactive and 

do not meet these criteria. Therefore, the List, Evaluation, Achieve, and Procure (LEAP) process 

was developed, in accordance with Task 2.2.1. This process provides mathematical methods to 

associate stakeholder needs with technology development timelines. By directly associating the 

need dates and the development timelines, the process clearly indicates which technologies affect 

the ability to deliver capabilities needed by the stakeholder on schedule. This association enables 

the identification of technologies that are likely to produce technical debt by determining the 

dependencies of each capability on the technology. The technologies with more capability 

dependencies are likelier to be larger sources of technical debt if compromises are made in their 

development. The LEAP process was defined in a paper presented at the 2023 INCOSE 

International Symposium [160] and is reprinted here. 

3.3.3.1 LEAP – A Process for Identifying Potential Technical Debt in Iterative System 

Development [160] 

3.3.3.1.1 Abstract 

Systems engineering has seen a rise in the use of iterative methods to design and develop both 

hardware and software systems which allow for system refinement to be responsive to user needs. 

However, focusing on items with high value to the user can result in technical debt, where technical 

compromises made for short-term gain impact the long-term health of the system. Current methods 

for identifying technical debt focus on finding existing technical debt items within a system and 

not on proactive identification of technical debt during the iterative system planning process. This 
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paper presents a novel technique to identify technologies that impact the ability of the system to 

satisfy the needs of its stakeholders. The method is used to evaluate different choices of 

technological implementations in both the temporal and the functional dimensions to reduce the 

risk of incurring technical debt which prevents the successful delivery of the system. 

3.3.3.1.2 Introduction 

System development and operating environments have become increasingly volatile, uncertain, 

complex, and ambiguous (VUCA) [3]. VUCA environments require both the development of agile 

systems and the use of agile systems engineering methods. Iterative development methods, which 

include agile systems engineering methods, add flexibility and agility to the system development 

processes [8]. Although not novel techniques, iterative development methods enable the system 

developer to respond to the VUCA environment by releasing new iterations of the system [11]. 

The use of iterative development methods is driven, in part, by the desire to shorten 

development cycles. This desire can result in stakeholders “encourag[ing] developers to take 

shortcuts early in the development process in order to get system capabilities deployed quickly” 

[7]. This pressure can result in a system developer making technical compromises to meet schedule 

[2] and prioritizing perceived high-value functional requirements over quality requirements [15]. 

These compromises, while appearing to be successful early, may slow the system development 

down over time, as their impacts need to be overcome [16]. This phenomenon is known as 

technical debt. 

Technical debt is a metaphor that identifies how technical compromises made for short-term 

benefit can have long-term impacts on the health of the system [19]. Systems that are iteratively 

developed are at additional risk of technical debt, since decisions made early in the development 

cycle impose additional constraints on the later iterations [26]. There is a risk that the system 



  

160 

developers will select the “easiest” set of components to deliver value to the stakeholder, resulting 

in a system that breaks when changes are required in the future [25]. 

Existing methods for managing technical debt focus on the identification of technical debt 

within the system and the repayment of that debt in future iterations. While important to 

maintaining a healthy system, these methods do not provide techniques that enable the 

stakeholders and system developers to assess the impact of their decisions on the ability of the 

system to deliver the required capabilities on the required timelines. Therefore, this paper 

introduces a new process called LEAP – List, Evaluate, Achieve, and Procure. The LEAP process 

provides a structured method to identify critical technologies that enable the stakeholders’ desired 

capabilities. The identification of the technologies is followed by a mathematical analysis to 

determine the impact of incomplete or late technology development on the ability to deliver the 

capabilities on time. The analysis can be used to examine different development paradigms, 

identifying choices that may cause long-term impacts through a delay in the development of a key 

technology. The LEAP process proactively identifies sources of technical debt prior to incurring 

the debt. 

The rest of this paper is structured in three sections. First, an overview of related work on 

technical debt management and prediction is presented. Next, the LEAP process is described in 

detail. Finally, the process is discussed and the paper is concluded with a presentation of 

recommendations for future work. 

3.3.3.1.3 Related Work 

Iterative system development consists of either fixed-scope or fixed-time iterations. Fixed-

scope iterations deliver a known scope in each iteration but the time it takes to deliver that scope 

may vary. Fixed-time iterations deliver a variable scope in each iteration as the work is constrained 
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by the length of the iteration [28]. Pressures associated with releasing the iteration on time make 

fixed-time iterations especially susceptible to technical debt.  

Agile methodologies, such as Scrum, use fixed-time iterations known as sprints to plan and 

execute the work of developing the system. Agile frameworks, such as the Scaled Agile 

Framework (SAFe), add program increments to the sprints and plan the high-level features 

delivered in the next set of sprints [161]. Program increments are an example of release planning, 

a steady cadence of planning for successive releases. Release planning methodologies often stress 

the need to deliver value to the stakeholders as early as possible. SAFe uses a methodology called 

‘weighted shortest job first’, where tasks are selected based on the ratio of delivered value to the 

time to complete the task [30]. These prioritization methods produce an increased stress on 

delivering short-term benefit at the risk of damaging the long-term health of the system. 

Release planning models and methods exist to try to optimize the features that are included in 

each release [28]. In iterative development, there is often a tradeoff between early value creation 

and future rework [162], requiring the use of optimization methods to determine the best course of 

action. Nord et al. [16] modeled the interdependencies of architectural features to estimate the 

rework costs. Sangwan et al. [91] extended this work to optimize release plans by minimizing total 

cost, by maximizing early value, or by finding an optimal combination of the features. This model 

does not estimate the uncertainty associated with the development of each feature or any technical 

debt incurred during feature development. It does provide a method to assess cost and value trade-

offs, but does not track these trade-offs against the temporal need dates of the stakeholders. Oni 

and Letier [28] created a model that examines uncertainty associated with fixed-time release 

cycles. They use expert opinion to determine the uncertainty associated with completing a feature 

in a specific release cycle and then probabilistically estimate the ability to complete the release as 
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planned. However, they do not model the propagation of delays of each feature on the delivery of 

future releases. Schmid [94] provides an analytical method to determine the optimal release to 

repay a technical debt item, based on the interest amount and interest probability of the item. 

However, this method does not assist in identifying the technical debt items.  

Based on this examination of the state of the field, it is clear that a technique is required to 

enable proactive identification of technical debt sources. Early identification of potential technical 

debt allows a system developer to take measures to address the source of technical debt prior to it 

impacting the health of the system. Proactive management of potential technical debt sources 

reduces the risk of incurring technical debt through incomplete technology development. 

3.3.3.1.4 The LEAP Process 

Rapid and successful iterative development requires the inclusion of mature technologies in 

each iteration [162]. Identifying mature technologies requires understanding the functional and 

temporal dependencies of capabilities on those technologies. This process, known as List, 

Evaluate, Achieve, and Procure (LEAP), allows the identification of technology areas that require 

investment to ensure that they will be available for use on the desired timeline. 

The LEAP process consists of four major steps: 

1. List: list the strategic and tactical capabilities and technologies required to achieve the 

system objectives, based on the stakeholders’ functional and temporal requirements 

2. Evaluate: evaluate the ability of the state of the art to meet both the functional and temporal 

stakeholder requirements 

3. Achieve: identify the gaps between the current development timelines and the capability 

need dates and provide or leverage resources to close those gaps, on both tactical (short-

term) and strategic (long-term) timelines 
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4. Procure: produce a solicitation to acquire a system to provide capabilities, ideally limiting 

the amount of non-recurring engineering (NRE) included within the system development 

Figure 3-4 provides an overview of the LEAP process. In the figure, solid lines indicate forward 

progress and dashed lines indicate feedback paths. The following sections discuss the details of 

each step.  

 
Figure 3-4. The LEAP process 

Table 3-3 provides the ontology of terms used in the LEAP process and defines the symbology 

used throughout the rest of this paper. 

Table 3-3. Definition of LEAP terms and symbols 

Term Definition 

Strategic  

Capability 

Derived from the end users, strategic capabilities identify the intended behavior of a system in 

its operational environment. Strategic capabilities identify the full desired capability and the 

minimum viable product. 

Tactical  

Capability 

Tactical capabilities represent the ability of a system to provide part of a strategic capability 

that delivers value to the end user. A tactical capability is required at a specific time. 

Technology Methods and devices resulting from the practical application of knowledge. A technology is a 

tangible product (hardware or software) that is delivered at a specific time. 
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Term Definition 

System A set of hardware, software, and/or physical and logical interfaces developed based on 

technologies with the intent of delivering capabilities.  

Symbols T Technology Matrix I Investment Matrix 

N Need Matrix J Hadamard identity matrix 

F Functional Matrix t Number of technologies considered 

s Summation vector c Number of tactical capabilities considered 

S Summation Matrix p Number of time periods considered 

V Development Matrix ∘ Hadamard product operator 

A Availability Matrix H Heaviside function 

D Delivery Matrix ⨂ Outer product operator 

 

3.3.3.1.4.1 LEAP Phase 1: List 

The List phase decomposes the stakeholder needs into the strategic and tactical capabilities and 

identifies the technologies required to support these capabilities. The stakeholder needs are first 

broken down into strategic capabilities, which define the long-term objectives and the end 

capabilities provided to the user. However, developing only to the long-term strategic capabilities 

could result in delays of system development. Therefore, the strategic capabilities are broken down 

further into tactical capabilities, in a process similar to the Agile software development process of 

breaking down an epic into features. Tactical capabilities are designed to be achievable within a 

single procurement. The tactical capabilities serve as the primary point of analysis for the rest of 

the LEAP process. 

With the tactical capabilities defined, the technologies required to support these capabilities are 

identified. Each tactical capability is supported by one or more enabling technologies. 

Technologies can vary in scope, but are generally broken down to the level of items that can be 

separately developed. Each technology may support the development of one or more tactical 

capabilities.  

The Functional Matrix captures the dependencies of the tactical capability on the enabling 

technologies, an example of which is shown in Figure 3-5. The Functional Matrix is a (c x t) matrix, 
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with the tactical capabilities listed in the rows and the technologies listed in the columns. If the 

tactical capability depends on the technology, then a one (1) is entered in the cell. For example, in 

the Functional Matrix shown on the left side of Figure 3-5, tactical capabilities C1 and C3 both 

depend on technology T1. The Functional Matrix is the connecting fabric between the technologies 

and the capabilities and will be used as a baseline in the following analysis. 

 

Figure 3-5. Input matrices of the list phase of the LEAP process  

The critical technologies identified in the Functional Matrix may be dependent upon other 

technologies. Identifying these dependencies, including their required order of development, is 

necessary to properly estimate the timelines on which technologies will be available. Therefore, a 

design structure matrix (DSM) is created for the technologies. The DSM is a square matrix, where 

the technologies are listed in both the rows and the columns. If information flows from the item in 

column j to the item in row i, then a one (1) is placed in cell (i, j). Therefore, any entries in the 

DSM with a one (1) indicate a dependency of the row on the column. If the rows are arranged in 

chronological order of development, then the dependencies located below the diagonal indicate 

the forward flow of information (from column to row), and the dependencies above the diagonal 

indicate feedback mechanisms [163].  

In the LEAP process, the DSM is referred to as the Technology Matrix, which is a (t x t) matrix. 

In the Technology Matrix, the technologies are listed in both the rows and the columns. An 
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example of the Technology Matrix is shown on the right side of Figure 3-5. The one (1) in the first 

column of the second row indicates that information flows from T1 to T2. Therefore, T2 depends 

on T1. Additionally, technology T4 depends on T2 and T3. T3 and T1 have no dependencies. In 

this example, the matrix only contains entries below the diagonal, indicating that there are no 

feedback dependencies. 

After creation, the Technology Matrix is partitioned to reduce the dependencies and set the 

order of technology development. Partitioning attempts to reduce the matrix to a lower triangular 

matrix to remove any of the feedback dependencies. This effort results in a reordering of the matrix 

and a possible adjustment to development order [164]. After partitioning, the order of the matrix 

represents the notional chronological development order. If the partitioning does not result in a 

fully lower triangular matrix, then there are cyclic dependencies between technologies. The 

Technology Matrix serves as a guideline for creating the Development Matrix, which is described 

in the following section. 

3.3.3.1.4.2 LEAP Phase 2: Evaluate 

The Evaluate phase uses the output from the List phase and determines if the tactical capabilities 

can be satisfied based on the current state of technology development. The first step is to establish 

the Need Matrix, which defines the required delivery timelines for each tactical capability to meet 

the needs of the end user. The Need Matrix (N) is a (p x c) matrix and is shown on the left side of 

Figure 3-6. The time periods in which needs or development occur are labelled as P1, P2, P3, and 

P4. A one (1) is entered in any cell where the capability is required in the time period and a zero 

(0) is entered in a cell where the capability is not required in the time period. Capabilities may not 

be needed in every time period and may also no longer be needed after a specific time. In the Need 
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Matrix in Figure 3-6, capability C1 is first needed in P2 and is required through P4, capability C2 

is not needed until P4, and capability C4 is only needed in P2 and P3. 

 
Figure 3-6. Input matrices of evaluate phase of the LEAP process 

The partitioned Technology Matrix, T, is used as an input to the Development Matrix (V), 

which establishes the timelines for technology development. The Development Matrix, shown on 

the right side of Figure 3-6, is a (t x p) matrix. A one (1) is entered in any cell where the technology 

is expected to have a technology readiness level (TRL) of at least six (6), in accordance with the 

best practices for rapid development identified by Tate [162]. In Figure 3-6, technology T1 reaches 

TRL 6 in P2. Therefore, it will be available in P2, P3, and P4. Technology T4 is not expected to 

reach TRL 6 until P4.  

The completion of the Development Matrix represents the end of the set of inputs that must be 

provided by subject matter experts. The Evaluation phase takes these inputs and computes the next 

set of matrices to identify expected delivery dates of the tactical capabilities. These dates are used 

to identify the technologies that may impact the on-time delivery of tactical capabilities. 

The first computation is the Availability Matrix (A), which is a (p x c) matrix. This matrix 

combines the Development and Functional Matrices together to determine when each tactical 

capability will be available. The Functional Matrix (c x t) uses the technologies as the columns 

and the Development Matrix (t x p) uses the technologies as the rows. The dot product of a row of 

the Functional Matrix and a column of the Development Matrix results in the count of the number 
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of technologies that support the capability (a one (1) in the Functional Matrix) and are available in 

a time period (a one (1) in the Development Matrix). If the technology either does not support the 

capability or is not available in the time period, then it will not contribute to the dot product. For 

example, to determine how many technologies that support capability C3 in P1, the dot product is 

taken between the third row of the Functional Matrix (shown in Figure 3-5) and the first column 

of the Development Matrix (shown in Figure 3-6). As shown in Equation 3-1, the result is 1, 

indicating that one technology that supports the capability is ready in P1. 

𝐹𝐹[2, : ] ⋅ 𝑉𝑉[: ,0] = [1 0 1 0] ⋅ �00
1

0

� = 1     ( 3-1 ) 

Multiplying the Functional and Development Matrices together produces a (c x p) matrix. This 

matrix is transposed to produce a (p x c) matrix, where each cell represents the number of 

developed technologies that support each capability (columns) in the time period (rows). However, 

this product is insufficient to determine if the capability will be available, as it does not indicate 

how many technologies are required to support the capability. This number is found by summing 

the values in each row in the Functional Matrix to produce the Summation vector s, as shown in 

Equation 3-2. The Summation vector is length c. 

𝑠𝑠 = �∑ 𝐹𝐹[0, i]𝑡𝑡𝑖𝑖=0 ⋮∑ 𝐹𝐹[c, i]𝑡𝑡𝑖𝑖=0 �      ( 3-2 ) 

The Summation vector is turned into a matrix of the same dimensions as the transpose product 

of the Functional and Development matrices (p x c) by taking the outer product of the Summation 

vector and a row vector of all ones with length p, indicated by 1𝑝𝑝 in Equation 3-3. The outer 

product produces the Summation Matrix (S). 
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 𝑆𝑆 = 1𝑝𝑝⨂𝑠𝑠      ( 3-3 )  

An example of the Summation Matrix is shown on the left side of Figure 3-7. The Summation 

Matrix is a (p x c) matrix, with the number of technologies required to support each capability 

listed in the cells. In this example, capability C1 requires two technologies, while capability C2 

only requires one technology. 

 

Figure 3-7. Calculated matrices of the evaluate phase of the LEAP process  

The Summation Matrix provides the number of required technologies, and the product of the 

Functional and Development matrices provides the number of available technologies. Subtracting 

the two matrices determines if enough technologies are available to fully support the capability. 

Equation 3-4 defines the function to compute the temporary availability matrix (a), a (p x c) matrix.  

𝑎𝑎 = (𝐹𝐹𝑉𝑉)𝑇𝑇 − 𝑆𝑆     ( 3-4 ) 

In the temporary availability matrix, a zero (0) indicates that the capability is available in the 

time period and a negative number indicates that it is not available. The use of negative numbers 

and zeros is confusing and can produce undesired mathematical results later in the process. Instead, 

it is desirable to have the Availability Matrix contain a one (1) when the capability is available and 

a zero (0) when it is not. Therefore, the temporary availability matrix is modified by using the 

Heaviside function [165], which converts the input values as shown in Equation 3-5.  
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𝐻𝐻(𝑥𝑥) = � 0, 𝑥𝑥 < 0

0.5, 𝑥𝑥 = 0

1, 𝑥𝑥 > 0
      ( 3-5 ) 

Prior to the application of the Heaviside function, 0.5 is added to each value in the temporary 

availability matrix. This addition serves to ensure that values of zero (0) will become one (1). In 

matrix notation, 0.5 is multiplied times a (p x c) Hadamard identity matrix, J, which consists of a 

one (1) in every entry in the matrix [166]. The resulting matrix is added to the temporary 

availability matrix such that negative values in a will remain negative and zero (0) values in a 

become positive. Applying the Heaviside function to each cell in the resulting matrix produces the 

Availability Matrix (A), which will have values of either zero (0) or one (1). Equation 3-6 shows 

the final equation for calculating the Availability Matrix. 

𝐴𝐴 = 𝐻𝐻((𝐹𝐹𝑉𝑉)𝑇𝑇 − 𝑆𝑆 + 0.5𝐽𝐽)    ( 3-6 ) 

An example of the Availability Matrix is shown in the center of Figure 3-7. A value of one (1) 

indicates that the capability is available in the time period, while a value of zero (0) indicates that 

the capability is not available. In this figure, it can be seen that capabilities C1 and C2 are not 

available until P4. Both capabilities depend on technology T4, which, according to the 

Development Matrix in Figure 3-6, is not available until P4. Capability C3, on the other hand, 

depends on technologies T1 and T3 which are both available by P2, and therefore, C3 is available 

in P2. 

The final step in the Evaluation phase is to calculate the Delivery Matrix, which is a (p x c) 

matrix. The Delivery Matrix, shown on the right side of Figure 3-7, indicates if the capability will 

be available on the timelines identified in the Need Matrix without any intervention. The Delivery 

Matrix has the same dimensions as the Availability Matrix and is calculated by subtracting the 

Availability Matrix from the Need Matrix, as shown in Equation 3-7.  
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𝐷𝐷 = 𝑁𝑁 − 𝐴𝐴      ( 3-7 ) 

This subtraction results in the following possible values in each cell in the Delivery Matrix: 

• 1: indicates that the capability is late to need - it is not available in the time period and it 

was needed in time period 

• 0: indicates that the capability is available when needed or the capability is not available 

and was not needed  

• -1: indicates that the capability is available and is not needed, either because the capability 

is available early or is available but no longer required 

The Delivery Matrix shown in Figure 3-7 shows that capability C1 is not available when needed 

in P2 or P3, but is available in P4, at which point there is still a need for the capability. Capability 

C2 is delivered on time. Capability C4 is not ready when needed in P2 and is still available in P4, 

even though it is no longer needed. 

3.3.3.1.4.3 LEAP Phase 3: Achieve 

The Delivery Matrix provides a traceable indication of the ability of the developer to deliver 

capabilities on the required timelines. This evaluation is made based on the timelines established 

in the Development Matrix. However, an organization has the ability to influence the timelines of 

key technologies by funding research, partnering with other organizations, and encouraging 

development by industry. The Achieve phase of LEAP focuses on identifying the key areas for 

investment by any of the means specified above. The first step in the Achieve phase is to identify 

the capabilities that will be late to need by finding the negative values in the Delivery Matrix. 

These values can be traced through the Functional Matrix to identify the technologies that support 
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the capability. The technologies can be traced through the Development Matrix to identify which 

specific technologies will be late to need.  

This traceability is mathematically performed by calculating the Investment Matrix. The 

Investment Matrix determines which technologies are delivered late to need, and how many 

capabilities those technologies are impacting in each time period. The Investment Matrix is a (t x 

p) matrix and is initially calculated as shown in Equation 3-8: 

𝑖𝑖 = (𝐷𝐷𝐹𝐹)𝑇𝑇      ( 3-8 ) 

The Investment Matrix multiplies the rows of the Delivery Matrix, which contain the time 

period where each capability is available, by the columns of the Functional Matrix, which contain 

the technologies supporting each capability. This multiplication results in the identification of the 

technology available within a time period in support of the capabilities. However, without further 

adjustment, the produced term does not properly account for whether or not the technology is 

planned to be ready for that time period.  

Accounting for the planned development of the technology requires an element-wise 

multiplication by the Development Matrix, known as the Hadamard product [166]. First, the 

Development Matrix is subtracted from a (t x p) Hadamard identity matrix (J), which only retains 

cells where the technology is not planned to be developed. The Hadamard product of this matrix 

and the matrix i calculated in Equation 3-8 removes any technology identifications where the 

technology is planned to be developed from the Investment Matrix. The final Investment Matrix 

equation is shown in Equation 3-9.  

𝐼𝐼 = (𝐷𝐷𝐹𝐹)𝑇𝑇 ∘ (𝐽𝐽 − 𝑉𝑉)     ( 3-9 ) 
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An example of the Investment Matrix is shown in the lower right of Figure 3-8. A non-zero cell 

in the Investment Matrix indicates the number of capabilities that the technology impacts by not 

being developed in the time period. For example, in Figure 3-8, technology T4 will not complete 

development until P4 and therefore impacts one capability in P2 and two capabilities in P3. A 

negative number in the Investment Matrix indicates that the technology contributes to early 

delivery of capabilities, and therefore could be delayed with minimal impact to meeting 

stakeholder needs. 

 

Figure 3-8. Investment Matrix, calculated in the achieve phase of the LEAP process 

Once the technologies that are late to need are identified, the organization evaluates which type 

of investment is appropriate to accelerate the development. Achievement is considered in both 

tactical (short-term) and strategic (long-term) viewpoints. The Delivery Matrix identifies which 

capabilities will fall short, whether they will fall short in the next time period, or in a time period 

farther in the future. The Investment Matrix indicates how critical each technology is to meeting 

the overall needs and requirements of the organization in both the short and the long-term. This 

viewpoint leads to the early identification of key technologies required for the support of future 

iterations.  

3.3.3.1.4.4 LEAP Phase 4: Procure 

The final phase in LEAP is the Procure phase. In the Procure phase, the organization selects 

which capabilities, and therefore the associated technologies, to include in the next iteration of 
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system development. A reduction in the complexity of the system requires minimizing NRE 

occurring within the iteration. The first three steps of the LEAP process, when performed 

iteratively, identify the tactical and strategic investments that the organization can use to develop 

these technologies in response to the stakeholder needs. In a perfect world, all technologies would 

be available on schedule and no NRE would need to occur within a release. However, NRE often 

does need to occur within a given release development. Therefore, the technologies need to be 

carefully chosen to minimize risk. 

The Procure phase includes an assessment of the current state of available technology against 

the stakeholder needs, starting with the Delivery Matrix. From there, the organization selects 

which capabilities need to be included in the release in association with the stakeholders. Other 

considerations, such as system constraints, are included to ensure that an achievable system is 

designed and deployed within the required schedule. During this iterative process, the risk 

associated with delaying technology development is considered. The final product is a set of 

system requirements for the next iteration of system development.  

3.3.3.1.4.5 Iterations within the LEAP process 

The LEAP process is an inherently iterative process. The Procure phase is when the 

organization commits to developing a system and locking in the associated schedule, cost, and 

capabilities. Therefore, it is necessary to iterate within the List, Evaluate, and Achieve phases 

repeatedly prior to entering the Procure phase. Figure 3-4 shows the feedback paths as dotted lines.  

The iterative process begins after the determination of the Delivery Matrix in the Evaluate 

phase. The Delivery Matrix indicates which components will currently be late to need. 

Stakeholders review this information to reconsider and to alter the specified need dates as 

necessary in the Need Matrix. Additional iterations occur after the completion of the Achieve 
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phase. The Achieve phase accelerates technology development, which can adjust the Development 

Matrix. The results of the Achieve phase are returned to the stakeholders, who may adjust their 

needs and the associated capability requirements.  

Finally, the Procure phase feeds back into the List phase, as each procurement results in a 

selection of implemented and developed capabilities. These capabilities will impact the priorities 

and needs for the next iteration. 

3.3.3.1.4.6 Assessing the Potential for Technical Debt with LEAP 

Technical debt within iterative releases can appear in two ways: a release may not deliver all of 

its intended capabilities or technology may not be ready in time for use in a release. Managing this 

technical debt requires identification of all of the capabilities and technologies needed in the 

current release and in future releases. The dependencies between these capabilities must be 

identified in both the temporal and the functional dimensions. 

The LEAP process provides a clear indication of technical debt potential, primarily through the 

Investment Matrix. This matrix shows the impact of the late delivery of a technology on future 

capabilities. Larger numbers in the Investment Matrix indicate the technologies that are likelier 

sources of technical debt in the system, especially when they occur in later time periods. The 

Achieve phase attempts to reduce the accumulation of technical debt by investing in specific 

technology development. 

The LEAP process can also be used to assist in assessing changes made during the course of 

system development. Particularly in a cost and schedule constrained environment hard trades must 

be made on system performance. These trades may occur during the design of the procurement or 

during program execution. Sometimes these trades may require the acceptance of lesser 

performance while other times they require selecting one technology over another. The impact of 
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these trades can be evaluated by modifying the Development Matrix and then seeing the changes 

propagate into the Delivery and Investment Matrices, paying particular attention to later time 

periods. These matrices can identify the long-term impacts of short-term decisions and therefore 

proactively identify potential sources of technical debt. 

For example, consider a delay to the development of technology T1 in the matrices shown in 

Figure 3-6 that pushes its development time period from P2 to P3. The Technology Matrix shows 

that technology T2 is dependent upon technology T1, and therefore the delay in T1 delays the 

development of T2 by one time period. This delay cascades into the delivery of capabilities. Figure 

3-9 shows the changes to the development timeline and the associated impacts, highlighting the 

changes in the gray squares. Clearly, the delay in the development of technology T1 impacted the 

delivery capabilities C3 and C4. The delay in C4 is not due directly to the delay of T1. Instead, it 

is the associated delay of T2 that causes C4 to slip, thus revealing a source of technical debt that 

otherwise may been missed. 

 

Figure 3-9. Impact of delay in Technology T1 development time on delivered capabilities 
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3.3.3.1.5 Discussion 

The LEAP process is a newly developed process. Kleinwaks et al. [167] provide an example of 

its use to determine the right mix of research and development investments within the Space 

Development Agency (SDA). The LEAP process is iteratively applied in conjunction with large 

contract procurements and smaller research investments to develop and field technologies on two-

year timelines. They conclude that the LEAP process enabled identification of technologies in 

need of investment in order to meet stakeholder need dates. In response, SDA made several 

research investments designed to accelerate technology development. The new development 

timelines were inserted into the LEAP process and the Delivery and Investment Matrices updated. 

Examination of the updated Delivery Matrix shows that satisfaction of stakeholder needs will 

occur sooner, but that further acceleration of technology development is still required. The 

Investment Matrix reveals the critical technologies that require additional investment and the 

impact they have on overall satisfaction of stakeholder needs in the required timelines. By using 

LEAP in an iterative process, SDA is able to carefully choose the requirements for its next iteration 

of satellites, which are developed on short, two-year cycles. These procurements necessitate steps 

to minimize schedule risk, including the use of mature technologies whenever possible [162]. 

LEAP identifies those technologies that require significant development ahead of their inclusion 

in a system procurement. If there is flexibility in the requirements selected for each iteration, then 

the technology can be developed outside of the main system iteration and therefore the risk to the 

iteration is reduced. 

Although the LEAP process is newly developed, it builds off of agile and iterative development 

processes. Traditional agile and iterative development processes do not intrinsically consider 

technical debt and do not directly link the development of each technology with the ability to 
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satisfy the stakeholders’ needs in both the functional and temporal dimensions. In Agile 

development, the iterations are often fixed in time, but they allow the value delivered in each 

iteration to change, limiting the ability to properly forecast the time at which a set of requirements 

will be satisfied. The selected features are often based on delivering the most immediate value to 

the stakeholder which can produce systems that are complicated and more expensive to change in 

later increments. Spiral development focuses on incrementally adding capability and using 

evidence-based risk assessments to continue development. However, the method does not provide 

processes to identify the long-term impacts of technology development timelines, instead relying 

on expert assessments [25]. The LEAP process augments these development methods by providing 

a proactive and objective method to assess the timeframe of stakeholder need satisfaction based 

on the maturity of supporting technologies.  

However, the LEAP process itself is also under continuous refinement. The process deals in 

“absolutes” – technologies and capabilities are assumed to be fully developed in a specific time 

period. In reality, there are variances in schedules, cost, and performance that need to be accounted 

for when planning out the development cycles. The LEAP process relies on the ability to perform 

a full functional breakdown of the stakeholder needs into the supporting technologies. In practice, 

it can be challenging to determine the proper level of detail in each category to enable conclusive 

analysis of the outcomes. Future development and additional use cases will aid in clarifying the 

proper dividing lines between capabilities and technologies.  

3.3.3.1.6 Conclusions and Future Work 

The LEAP process, as presented in this paper, provides a novel approach to identifying the 

future impact of technology development on system capability. By identifying both the functional 

and temporal needs of the stakeholders and the developmental timelines of critical technologies, 



  

179 

the LEAP process deterministically assesses which technologies require investments to enable the 

on-time delivery of the needed capabilities. This assessment enables the reduction of technical 

debt input into the system by clearly identifying the impacts of technology completion and 

investment decisions. The user of the LEAP process can identify which technologies have the most 

impact on the ability to implement capabilities in future iterations of their system and therefore 

realistically assess multiple possible investment pathways for overall value and contribution to 

program success. Early identification of these technologies can reduce the risk of future rework 

and therefore prevent increases in development costs [121]. 

The ability to understand the impact of investments in critical technologies on the delivery of 

system capabilities has far-reaching implications for multiple users. Those users interested in the 

long-term development of a system can use the LEAP process to understand how to phase their 

investments over time and where they need to encourage the participation of other organizations 

to spur technology development. Users with shorter-term horizons can apply the same process to 

guide decisions to minimize the impact on the future system. The LEAP process can be used to 

determine corporate investments that are likely to pay the largest dividends and can also be used 

to assess the required technology developments that will prevent the system from entering 

technical bankruptcy. 

The LEAP process as presented is undergoing continuous improvement. Topics for additional 

development of the process include the following: 

• Adding a prioritization matrix to enable ranking of capabilities in each time period. The 

effect of this additional multiplication would be to change the values in the Investment 

Matrix to give insight into how valuable the late capabilities are to the stakeholders. While 

providing valuable insight, prioritization also has the potential to skew the results to a 
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preferred solution based on the input values. The impact of prioritization on the outputs of 

the process needs to be investigated in further detail.  

• Adding probabilistic dependencies to the calculations to indicate the probability of 

delivering a capability on time. This methodology would allow for estimates of delivery 

based on probabilistic analysis instead of the binary condition presented in this paper. The 

probabilistic analysis facilitates the development of optimal development timelines and 

strategies for iterative releases through Monte Carlo simulations. 

• Directly linking the Technology Matrix to the Development Matrix. This capability would 

enable the Development Matrix to be generated automatically from a sequenced 

Technology Matrix resulting in additional capability for automation and optimization. 

• Continued verification and validation of the LEAP process. The LEAP process is newly 

developed and therefore there is not a significant amount of usage data on its successes and 

failures. Kleinwaks et al. [167] provide an example use of the LEAP process at the Space 

Development Agency. However, additional verification and validation of the process and 

its conclusions is required, in additional real-world scenarios. The authors plan to continue 

examining the use of LEAP in multiple case-studies and industries. 

3.3.4 Addressing RQ2.2 

The LEAP process identified in [160] provides a qualitative mechanism to identify potential 

technical debt sources within system development, addressing RQ2.2. By using the process, 

stakeholders can assess the impacts of decisions related to the timelines of technology development 

on the ability to deliver capabilities. With a detailed functional breakdown, critical technologies 

can be identified, even if those technologies do not provide high value to the user. Then, when 

schedule pressures or cost pressures increase, the impact of a compromise on a specific technology 
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can be assessed within the iterative system lifecycle. Technologies with large impacts are more 

likely to introduce technical debt into the system if compromises are made in their development. 

The process as defined in [160] satisfies the objectives identified in the Section 3.2.3 for 

consideration as a proactive process for identifying technical debt as shown in Table 3-4. 

Table 3-4. LEAP satisfaction of proactive process for technical debt identification 

 Objective LEAP Capability 

1 Identification of the system features that 

support the realization of the stakeholder 

needs 

The Functional Matrix maps the stakeholder needs to the 

system features 

2 Identification of the dependencies 

between the features and needs and 

between features and features, in the 

temporal and functional dimensions  

The Technology Matrix maps the dependencies between 

features and the Functional Matrix maps the functional 

dependencies between needs and features. The Need Matrix 

shows the temporal dimension of the needs and the 

Development Matrix shows the temporal dimension of the 

features.  

3 Assessment of the potential impact of a 

technical concession on the satisfaction of 

the stakeholder needs 

 

The Delivery Matrix shows how the ability to temporally 

satisfy a stakeholder need changes with the delivery timeline 

of a technology (temporal dimension), which may change as 

a result of a technical concession (functional dimension). 

The Investment Matrix shows the impact level of a specific 

technology. 

4 Easy to use, update, and understand by 

both system developers and stakeholders 

The LEAP process can be implemented in a spreadsheet or 

simple software script and produces simple values of 

“delivered or not”. Appendix A contains a sample Python 

implementation of the LEAP process. 

 

Based on this assessment, the LEAP process meets the requirements to be a proactive process 

for identifying technical debt. However, as defined in [160], it is a qualitative process and its use 

as a decision support system for release planning is limited. The next chapter focuses on updating 

this process to be probabilistic, accounting for technical debt within the technology development 

timelines, and integrating the process into release planning, both within an iterative system 

development and also within a single iteration. 
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3.4 Conclusion 

This chapter addresses RQ2: How can potential sources of technical debt be identified during 

the system lifecycle? Unfortunately, the tools enabled within software engineering to identify 

technical debt are not directly applicable to systems engineering and are primarily reactive tools. 

Therefore, their application identifies technical debt after it has been inserted into the system. To 

minimize the impact of technical debt, proactive methods need to be implemented such that 

mitigation plans can be put in place immediately, moving the technical debt from negligent to 

strategic. 

The LEAP process is proposed as a proactive method of identifying potential sources of 

technical debt. It enables the system developer to assess the impact of a delay in technology 

development on the ability to meet the temporal and functional requirements of the system 

stakeholders. By identifying which technologies drive delays in the delivery of capability to 

stakeholders, the process can proactively identify potential technical debt sources. If a 

technology’s development path does not support the stakeholder delivery dates, it will be identified 

through this process. By altering the values in the LEAP Development Matrix, the system 

developer can assess how different investments affect the ability to deliver capability, highlighting 

situations where delivery of high value items at the expense of infrastructure can end up delaying 

the satisfaction of the stakeholder needs. This process highlights where investments should be 

made to achieve on time delivery, but does not directly model the impact of technical debt created 

by one technology on its successors.  

The next chapter updates the LEAP process to address these considerations by quantitatively 

modeling the impact of technical debt and including probabilistic values in the LEAP matrices. 
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These updates enable the LEAP process to be used to assess the likelihood of satisfying the 

stakeholder needs in the presence of technical debt.  
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CHAPTER 4  – USING TECHNICAL DEBT AS A GUIDE IN RELEASE PLANNING 
 
 
 

4.1 Introduction 

Iterative system development methods are often used when the requirements for the system are 

uncertain or when the environment is complex and changing [28]. By releasing a system in 

multiple iterations, the requirements can be adjusted as system context and environment evolve. 

Planning these iterations is the domain of release planning: the act of selecting which features of 

the system to include in each release to maximize value to stakeholders while accounting for 

constraints and dependencies [93]. While release planning is frequently used in conjunction with 

Agile software development strategies, systems are also iteratively and incrementally developed. 

Release planning in systems engineering is not a direct analog to release planning in software 

engineering as the constraints associated with hardware development add complexity to the 

increments and iterations [13]. This added complexity increases the need for proactive 

identification of technical debt within systems engineering release planning.  

There are many different methods for release planning, each of which tries to produce the “best” 

combination of features for each release. The definition of “best” varies based on the method, 

criteria, and viewpoints of the stakeholders. The available set of software release planning models 

are not thoroughly validated through practice, and have difficulties with less than certain 

requirements or when stakeholders are not available to provide context [168]. These methods are 

also limited in their application of uncertainty [28], especially with regards to the impact of 

technical debt. Technical debt introduces uncertainty into the system due to the nature of the 

technical debt interest – it is uncertain whether or not the interest will be realized and how large 

the impact will be. Release planning methods involving technical debt often focus on paying back 
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the technical debt as part of the release [94]. However, the impact of technical debt on the ability 

to complete future features, such as the increased level of effort required to implement a feature 

that is subject to significant technical debt, needs to be included in the release plan. Including these 

impacts enables accurate representations of the ability to complete the feature list within a given 

release. Proactive identification of potential technical debt sources should change the priority of 

feature implementation within a release planning cycle to limit the future impact. The earlier that 

a potential issue is addressed, the less costly it will be to correct that issue [135].  

Based on this background, there is a need to account for technical debt within release planning 

methods, especially within systems engineering contexts. However, as Chapter 2 identified, 

technical debt is not a well-researched phenomenon within systems engineering and the author 

was unable to locate any iterative development methods within systems engineering or software 

engineering that proactively account for technical debt. The LEAP process, introduced in Chapter 

3, provides a capability to proactively identify potential technical debt sources. Therefore, 

integration of the LEAP process into release planning will account for technical debt. This chapter 

provides this integration to address RQ3: How can technical debt be used as a guide in release 

planning?  

This research question is addressed through the accomplishment of two tasks. Task 3.1 

establishes a quantitative version of the LEAP process to create a probabilistic analysis model. 

Task 3.2 demonstrates how the quantitative LEAP process can be used as a decision support system 

for release planning.  

4.2 Quantitative LEAP Process 

The qualitative LEAP process, presented in Chapter 3, provides a starting point for enabling 

the assessment of technical debt within release planning. It provides a mechanism to identify the 
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schedule impact of technical compromises on the satisfaction of stakeholder needs. However, to 

be used as a resource for release planning, the LEAP process needs to be updated to add two key 

elements: 

• Quantitative assessment of the impact of technical debt on the duration of a task and its 

successor tasks; and, 

• Probabilistic determination of the temporal satisfaction of stakeholder needs. 

The quantitative assessment of technical debt impact is required to enable tradeoffs between 

different release plans. A system developer can model the technical debt introduced into the system 

against the temporal ability to complete a task, thereby determining not only a preferred 

development order of features but also determining the impact of injecting or reducing technical 

debt within the system. Section 4.2.1 discusses the modeling of technical debt within a Monte 

Carlo schedule analysis process. 

The Monte Carlo schedule analysis will generate probabilities for the development timelines of 

technologies, accounting for their interdependencies and technical debt. These probabilities can 

then be included in the LEAP process model. However, the basic matrix operations used in the 

qualitative LEAP process are insufficient to deal with the probabilistic representation and therefore 

the equations used to generate the outputs of the LEAP process need to be modified. Section 4.2.2 

discusses the modifications to the LEAP process to enable probabilistic analysis. 

4.2.1 Including Technical Debt in Project Schedule Analysis 

Technical debt is introduced into a system as a result of a technical compromise that has long-

term impacts [21]. The long-term nature of the impacts is what make technical debt so pernicious. 

It is not the task where the compromise is made that will require increased effort. Rather, any of 

the successor tasks, including those several steps removed from the initial technical debt 
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introduction, could be impacted by the technical compromise. Traditional schedule analysis 

techniques account for task relationships and variations on task durations, but tend to assume that 

each task is completed perfectly. Successor tasks are assumed to have the same duration and level 

of effort regardless of any technical debt introduced by predecessor tasks. However, the presence 

of technical debt can cause increased effort to complete a task and this impact on successor tasks 

is not included in traditional schedule analysis techniques. Therefore, a new method for schedule 

analysis in the presence of technical debt was created and the following paper was submitted to 

IEEE Access in July, 2023 [169]. This paper applies notional technical debt considerations to an 

aircraft development project to demonstrate how technical debt can be included in schedule 

analysis. 

4.2.1.1 Predicting the Dynamics of Earned Value Creation in the Presence of Technical Debt 

[169] 

4.2.1.1.1 Abstract 

Technical debt, the long-term impact of decisions made to achieve a short-term benefit, has a 

unique impact on a project schedule. Technical debt does not impact the ability to complete the 

task on which it is incurred but rather impacts successor tasks causing unplanned schedule delays 

or budget increases. The impact of technical debt is uncertain and therefore must be modeled 

probabilistically. When unaccounted for and unmanaged, technical debt can build up in the project 

with increasing impact, eventually forcing forward progress to stop while the technical debt is 

remedied. Traditional project scheduling methods allow for uncertain task durations but do not 

provide explicit means of modeling the impacts of technical debt. Instead, they assume that each 

task is unaffected by the completion status of its predecessors and its duration is only dependent 

upon the initial estimates. This research addresses this gap by providing a novel model of the 
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impact of technical debt on the project schedule through estimating the dynamics of value creation 

in the presence of technical debt. Equations are developed for estimating the probabilistic impacts 

of technical debt on the generation of earned value. These equations are then inverted and used to 

calculate task duration in the presence of technical debt and included in a Monte Carlo analysis. 

Comparisons are made to an existing Monte Carlo schedule analysis and technical debt impacts 

are explored. 

4.2.1.1.2 Introduction 

Project managers traditionally handle uncertainty by including cost and schedule margin in their 

project plans [170]. These margins can be used to mitigate the impact of rework and technical debt 

within a project. Love defines rework as the “unnecessary effort of re-doing a process or activity 

that was incorrectly implemented the first time” [171]. Kleinwaks, Batchelor, & Bradley define 

technical debt as “a metaphor reflecting technical compromises that can yield short-term benefit 

but may hurt the long-term health of a system” [19]. Within the context of a project, technical debt 

occurs when decisions made in the completion of one task negatively impact the ability to complete 

successor tasks on time and on budget. The impact of technical debt is not certain: the compromises 

made on one task may or may not impact a successor task [51] and the compromises may 

proliferate throughout the system and cause significant issues [92]. Within this article, technical 

debt is distinguished from rework by asserting that rework is the result of the poor execution of 

defined processes and methods and technical debt is the result of shortcuts taken in the 

requirements development, design, and/or implementation in order to achieve a short-term benefit. 

Rework requires the repeated execution of existing process and unplanned iterations of existing 

tasks. Technical debt does not typically require the redoing of a specific task but instead technical 

debt makes completing successor tasks more complicated, costly, or time-consuming. If technical 
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debt is not accounted for in project scheduling, then successor task duration may increase 

unexpectedly, resulting in late completion of tasks compared to stakeholder expectations. 

However, traditional schedule analysis techniques do not model changes in successor task 

durations based on the fidelity of predecessor task completions. This article provides a novel 

mechanism to address this gap and enable more realistic schedule assessments.  

Properly assessing project schedules requires the ability to proactively predict risks associated 

with both technical debt and rework [172]. Monte Carlo simulation is often used to assign 

probabilistic durations to tasks, assuming that the task will be completed within the bounds of the 

assigned distribution. However, these simulations can overlook the costs associated with changes 

to the schedule [170] as a result of technical debt or rework [173]. Several authors have 

investigated the use of design structure matrices (DSM) to predict the impact of design iterations 

on project schedule [174] [175] [176] [177]. These techniques can be used to assess the probability 

of rework occurring within a project and the extensions to schedule that occur. However, they do 

not model the potential for technical debt. Ma et al. [174] extend DSMs to include a probability of 

rework and its impact on future tasks in the context of design iterations. However, in many 

projects, iterations are not planned – the successor tasks must be extended or changed to address 

the shortcomings of the predecessor tasks. Furthermore, while modeling rework can account for 

project extensions, it is not the same as modeling technical debt. Rework results in repeated 

execution of the same tasks. Technical debt may result in longer durations of successor tasks and 

the potential need for unplanned effort to remove the debt from the system. 

Maheswari and Varghese [177] provide a method to use DSMs to determine a project schedule 

accounting for overlapping tasks. By assessing the necessary condition of task overlap in a project, 

they demonstrate that tasks do not always abide by strict finish-to-start schedule relationships. 
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However, their work assumes a fixed value of the overlap time and does not provide a mechanism 

to calculate when a task reaches that level of completion. Additionally, they assume that the work 

completes perfectly until the overlap time is reached without considering technical debt’s task to 

task dependencies. 

From this review, it is clear that additional techniques to handle the presence of technical debt 

within a project schedule are required. Failure to model technical debt can result in overly 

optimistic schedule estimates due to the failure to account for the cascading impact of technical 

debt interest. The technical debt incurred on one task can compound, impacting multiple successor 

tasks, resulting in significant delays and cost increases to the project.  

In this article, we extend existing project schedule analysis methods to include technical debt 

analysis. The impact of technical debt incurred on one task on successor tasks is modeled through 

earned value computations. The earned value equations are inverted to estimate the duration of 

successor tasks subject to technical debt from their predecessors. With these equations, the impact 

of technical debt is then included in a Monte Carlo schedule analysis and the results compared to 

a traditional Monte Carlo schedule analysis. Various impacts of technical debt are explored by 

altering the parameters in the analysis. This article answers the following research question: 

How can technical debt be accounted for within project scheduling activities? 

By answering this research question, this article presents a mathematical model that can be used 

by project managers and schedulers in Monte Carlo schedule analysis techniques. This model uses 

the technical debt formulation to compute increased duration of successor tasks, thereby providing 

a more realistic schedule analysis. 
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The rest of this article is structured as follows: first, overview of related work is provided. Next, 

the method used to account for technical debt within a schedule is described and is followed by an 

example application of the method within Monte Carlo schedule analysis. Finally, the results are 

discussed and opportunities for future work are presented. 

4.2.1.1.3 Related Work 

Earned value management expresses the project progress in terms of value created, where value 

is expressed in monetary terms. The creation of value is then used to predict both the project cost 

at completion and the schedule at completion through linear extrapolation of the current state 

[178]. While EVM is traditionally effective in cost management, its schedule management 

component is usually considered insufficient, especially since the schedule is expressed in cost 

parameters [179]. These weaknesses led to the development of earned schedule (ES) techniques 

[180]. ES techniques have been shown to be more accurate in predicting the schedule at completion 

[181] and can be more easily understood, as they measure the earned schedule in units of time (and 

not cost). Both EVM and ES use the same planned value and earned value curves, which take the 

form of an ‘S-curve’, shown in Figure 4-1. The planned value is based on the baselined project 

development plan, while the earned value is based on measured project progress. EVM techniques 

measure the difference between the two curves in the vertical direction while ES techniques 

measure the difference between the two curves in the horizontal direction. 
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Figure 4-1. Planned and earned value 'S-curves' 

Warburton [182] formulated (4-1) to (4-4) to represent planned value (PV) and earned value 

(EV) curves. Lowercase letters represent the instantaneous value and capital letters represent the 

cumulative value. Note that (4-4) in [182] contains an error where the negative sign on the first 

exponential was excluded. That error has been corrected in (4) in this article. The variables used 

in these equations are defined in Table 4-1. 

𝑝𝑝𝑝𝑝(𝑡𝑡) =
𝑁𝑁𝑡𝑡𝑇𝑇2 𝑒𝑒−𝑡𝑡22𝑇𝑇2        (4-1) 

𝑃𝑃𝑉𝑉(𝑡𝑡) = ∫ 𝑝𝑝𝑝𝑝(𝑠𝑠)𝑑𝑑𝑠𝑠 =
𝑡𝑡𝑜𝑜 𝑁𝑁 �1 − 𝑒𝑒−𝑡𝑡22𝑇𝑇2�     (4-2) 

𝑒𝑒𝑝𝑝(𝑡𝑡) = � (1− 𝑟𝑟)𝑝𝑝𝑝𝑝(𝑡𝑡),  𝑡𝑡 ≤  𝜏𝜏    

(1− 𝑟𝑟)𝑝𝑝𝑝𝑝(𝑡𝑡) + 𝑟𝑟 ∗ 𝑝𝑝𝑝𝑝(𝑡𝑡 − 𝜏𝜏),  𝑡𝑡 >  𝜏𝜏 

𝑒𝑒𝑝𝑝(𝑡𝑡) = � (1− 𝑟𝑟)
𝑁𝑁𝑡𝑡𝑇𝑇2 𝑒𝑒−𝑡𝑡22𝑇𝑇2 ,  𝑡𝑡 ≤  𝜏𝜏    

(1− 𝑟𝑟)
𝑁𝑁𝑡𝑡𝑇𝑇2 𝑒𝑒−𝑡𝑡22𝑇𝑇2 + 𝑟𝑟 𝑁𝑁𝑡𝑡𝑇𝑇2 𝑒𝑒−(𝑡𝑡−𝜏𝜏)22𝑇𝑇2 ,  𝑡𝑡 >  𝜏𝜏   (4-3) 

𝐸𝐸𝑉𝑉(𝑡𝑡) = ⎩⎪⎨
⎪⎧ 𝐸𝐸𝑉𝑉1(𝑡𝑡) = � 𝑒𝑒𝑝𝑝(𝑠𝑠)𝑑𝑑𝑠𝑠,  𝑡𝑡 ≤ 𝜏𝜏𝑡𝑡

0    

𝐸𝐸𝑉𝑉2(𝑡𝑡) = 𝐸𝐸𝑉𝑉1(𝜏𝜏) + � 𝑒𝑒𝑝𝑝(𝑠𝑠)𝑑𝑑𝑠𝑠𝑡𝑡
𝜏𝜏 , 𝑡𝑡 > 𝜏𝜏 
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𝐸𝐸𝑉𝑉(𝑡𝑡) = � (1− 𝑟𝑟)𝑁𝑁 �1− 𝑒𝑒−𝑡𝑡22𝑇𝑇2� , 𝑡𝑡 ≤ 𝜏𝜏   𝑁𝑁 − 𝑁𝑁(1 − 𝑟𝑟)𝑒𝑒−𝑡𝑡22𝑇𝑇2 − 𝑟𝑟𝑁𝑁𝑒𝑒−(𝑡𝑡−𝜏𝜏)22𝑇𝑇2 , 𝑡𝑡 > 𝜏𝜏   (4-4) 

Table 4-1. Variables used in earned value equations 

Symbol Definition 

N The number of tasks occurring in the project 

T The time at which the maximum value of the instantaneous planned value curve occurs 

t The independent time variable 

r Percentage of activities that require extra work 𝜏𝜏 Delay introduced into the project due to extra work 

 

Equation 1 defines the instantaneous planned value function. This equation models a project 

where the planned value achieved at each point in time, for example, work accomplished each day, 

initially increases until time T, which is the time at which the maximum instantaneous planned 

value is reached. After this point, the contributions to planned value in each time period steadily 

decrease. The cumulative planned value is calculated using (2). This equation, the integral of (1), 

produces the traditional S-curve, as shown in Figure 1. Equation 3 calculates the instantaneous 

earned value by assuming that a fraction of the tasks, r, are late by a time τ, thereby delaying the 

accumulation of value. Equation 4 computes the cumulative earned value as the integral of the 

instantaneous earned value [182]. 

This related research forms the basis of the process for accounting for technical debt in the 

schedule analysis. Building off of the equations for earned value, the time at which a task reaches 

the necessary conditions for the successor task to start can be established. The r and 𝜏𝜏 parameters 

allow for the modeling of delays introduced into a task from its predecessor tasks, a key component 

of technical debt. Attaching these equations to a Monte Carlo analysis allows for the modeling of 

the probabilistic aspects of technical debt interest.  
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4.2.1.1.4 Accounting for Technical Debt in Schedule Analysis 

Accounting for technical debt in schedule analysis starts with understanding how to measure 

task completion. Technical debt occurs when technical compromises are made in the execution of 

a task in order to achieve a short-term benefit [19]. The technical compromises may impact the 

scope of the task, resulting in reduced performance relative to its objectives, or in the quality of 

the task, resulting in lower maintainability, upgradability, sustainability, and other -ilities. These 

compromises may then impact the ability to complete future tasks on time, on budget, or to their 

performance specifications [18]. For example, technical debt is incurred when the documentation 

associated with a system component is reduced (technical compromise) to release on time (short-

term benefit). The lack of documentation may make integration and testing of the component more 

time consuming and more costly (long-term impact). Kleinwaks, Batchelor, and Bradley 

conducted a survey on the presence of technical debt within systems engineering, concluding that, 

although the terminology of technical debt is not well used within systems engineering, the impacts 

of technical debt are substantial [18]. 

The size of the impact of technical debt, referred to as the interest amount within software 

engineering [51], is uncertain and dependent upon both the technical compromise and the 

interconnectedness of the task within the system context. The occurrence of the interest, defined 

as the interest probability [51], is uncertain – if no changes need to be made to the component 

carrying the technical debt, then no interest needs to be paid. Technical debt may remain hidden 

in a system and linger for extended periods of time, compounding the interest amount and resulting 

in more complicated, or even impossible, design changes. 
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4.2.1.1.4.1 Utility as Value 

When modeling project value for schedule analysis, the use of a monetary metric as the project 

value can confuse value and utility. While project duration ultimately relates to project cost, the 

ability of one task to begin work is not related to how much profit that predecessor task generates. 

Therefore, this article assumes that a value function can be formulated in terms other than financial 

terms [183]. Specifically, this article models value as the utility of a task to its successor tasks, 

where utility is measured as the completion percentage of the predecessor task. A successor task 

may be able to begin work when a predecessor task is not complete (has a utility of less than one 

(1)), an implementation of the start-start relationship [178] of traditional project scheduling 

techniques. The value function is modeled as an S-curve, a relationship that has been shown to 

hold for task duration as well as cost [179] and which enables the time at which the task reaches a 

specified utility (value) to be found. Therefore, the start time of the successor tasks can be 

determined, leading to the calculation of the overall project duration. 

4.2.1.1.4.2 Modeling Earned Value from Multiple Predecessors 

Modeling technical debt impact requires the ability to determine both the interest amount and 

the interest probability and to account for their impacts on the value creation of a specific task. 

Since the interest could come from any of the predecessor tasks, it is necessary to determine the 

contributions to the value of a task that is derived from each of its predecessors. Adopting an S-

curve formulation of the value function, modifications to Warburton’s equations can be made to 

calculate the earned value contributions from each predecessor task in turn. As written, 

Warburton’s equations assume that the earned value is contributed evenly from multiple 

predecessor tasks. The N parameter is used to represent the number of predecessor tasks, which 

changes the magnitude of the overall planned and earned value, but only in aggregation. Each 
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predecessor task contributes the same portion of the value. This model is appropriate for planned 

value, which assumes perfect schedules. However, earned value, which attempts to model the 

actual value creation schedule, must account for the individual impacts of predecessor tasks on the 

earned value of the successor task. Equations 4-5 and 4-6 show the updated equations for earned 

value accounting for the impacts of the predecessors. N becomes a scaling variable applied evenly 

to all the predecessor tasks. 

𝑒𝑒𝑝𝑝(𝑡𝑡) = ∑ � (1− 𝑟𝑟𝑖𝑖)𝛼𝛼𝑖𝑖𝑝𝑝𝑝𝑝𝑖𝑖(𝑡𝑡),  𝑡𝑡 ≤  𝜏𝜏𝑖𝑖     
(1− 𝑟𝑟𝑖𝑖)𝛼𝛼𝑖𝑖𝑝𝑝𝑝𝑝𝑖𝑖(𝑡𝑡) + 𝑟𝑟𝑖𝑖𝛼𝛼𝑖𝑖𝑝𝑝𝑝𝑝𝑖𝑖(𝑡𝑡 − 𝜏𝜏𝑖𝑖),  𝑡𝑡 >  𝜏𝜏𝑖𝑖𝑛𝑛𝑖𝑖=0     

𝑒𝑒𝑝𝑝(𝑡𝑡) = ∑ � (1− 𝑟𝑟𝑖𝑖) 𝛼𝛼𝑖𝑖𝑁𝑁𝑡𝑡𝑇𝑇2 𝑒𝑒−𝑡𝑡22𝑇𝑇2 ,  𝑡𝑡 ≤  𝜏𝜏𝑖𝑖    
(1− 𝑟𝑟𝑖𝑖) 𝛼𝛼𝑖𝑖𝑁𝑁𝑡𝑡𝑇𝑇2 𝑒𝑒−𝑡𝑡22𝑇𝑇2 + 𝑟𝑟𝑖𝑖 𝛼𝛼𝑖𝑖𝑁𝑁𝑡𝑡𝑇𝑇2 𝑒𝑒−(𝑡𝑡−𝜏𝜏𝑖𝑖)22𝑇𝑇2 ,  𝑡𝑡 >  𝜏𝜏𝑖𝑖𝑛𝑛𝑖𝑖=0    (4-5) 

 𝐸𝐸𝑉𝑉(𝑡𝑡) = ∑ � 𝐸𝐸𝑉𝑉1𝑖𝑖(𝑡𝑡) = ∫ 𝑒𝑒𝑝𝑝𝑖𝑖(𝑠𝑠)𝑑𝑑𝑠𝑠,  𝑡𝑡 ≤ 𝜏𝜏𝑖𝑖𝑡𝑡0    𝐸𝐸𝑉𝑉2𝑖𝑖(𝑡𝑡) = 𝐸𝐸𝑉𝑉1𝑖𝑖(𝜏𝜏) + ∫ 𝑒𝑒𝑝𝑝𝑖𝑖(𝑠𝑠)𝑑𝑑𝑠𝑠𝑡𝑡𝜏𝜏𝑖𝑖 , 𝑡𝑡 > 𝜏𝜏𝑖𝑖𝑛𝑛𝑖𝑖=0     

𝐸𝐸𝑉𝑉(𝑡𝑡) = ∑ ⎩⎨
⎧ (1− 𝑟𝑟𝑖𝑖)𝛼𝛼𝑖𝑖𝑁𝑁 �1 − 𝑒𝑒−𝑡𝑡22𝑇𝑇2� ,  𝑡𝑡 ≤ 𝜏𝜏𝑖𝑖     
𝛼𝛼𝑖𝑖𝑁𝑁 − 𝛼𝛼𝑖𝑖𝑁𝑁(1− 𝑟𝑟𝑖𝑖)𝑒𝑒−𝑡𝑡22𝑇𝑇2 − 𝑟𝑟𝑖𝑖𝛼𝛼𝑖𝑖𝑁𝑁𝑒𝑒−�𝑡𝑡−𝜏𝜏𝑖𝑖�22𝑇𝑇2 , 𝑡𝑡 > 𝜏𝜏𝑖𝑖𝑛𝑛𝑖𝑖=0   (4-6) 

In (4-5) and (4-6), it is assumed that each predecessor task independently impacts a portion of 

the successor’s task earned value. This portion is controlled by the 𝛼𝛼 variable, which is the 

percentage of the successor task’s earned value that is impacted by predecessor task i. The 𝛼𝛼 

variables are constrained to add up to one, as shown in (4-7). ∑ 𝛼𝛼𝑖𝑖𝑛𝑛𝑖𝑖=0 = 1      (4-7)  

𝛼𝛼0 is the percentage of the successor task’s earned value that is not impacted by any predecessor 

and can be calculated using (4-8). 
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𝛼𝛼0 = 1 − ∑ 𝛼𝛼𝑖𝑖𝑛𝑛𝑖𝑖=1      (4-8)  

Figure 4-2 depicts the contribution of multiple predecessors to the earned value of a successor 

task. In Case 1, each predecessor contributes equally to the earned value of Task D. In Case 2, the 

individual contributions are not equal, resulting in different values of 𝛼𝛼. Changing the values of r 

and 𝜏𝜏 for each predecessor task will change the overall earned value based on the values of 𝛼𝛼, 

which is discussed in the next section. 

 

Figure 4-2. Multiple predecessor contribution to earned value 

4.2.1.1.4.3 Technical Debt and Earned Value 

Warburton’s equations can be used to model the impacts of technical debt interest on the system 

by redefining the variables r and 𝜏𝜏. Warburton defines r as the percentage of activities that require 

rework. Within the multiple predecessor and technical debt context, r is redefined as the percentage 

of the predecessor task’s impact on the successor task that is subject to a delay. This relationship 

is shown in Figure 4-3. In this figure, 𝛼𝛼𝐴𝐴 = 0.25: task A impacts 25% of the earned value of task 

D. 𝑟𝑟𝐴𝐴 = 0.25 and therefore 25% of task A’s impact on task D is subject to technical debt interest 

from task A. Combined, 6.25% of task D is subject to delays due to technical debt interest from 

task A. 
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Figure 4-3. Definition of r parameter in the context of multiple predecessors and technical debt 

The definition of 𝜏𝜏 is unchanged from Warburton – it is a measure of the delay introduced to 

the system due to technical debt interest. It measures how much longer a task takes to complete 

based on the technical debt introduced by a predecessor task. The impact of changing r and 𝜏𝜏 is 

shown in Figure 4-4. Increasing r shifts the earned value curve to the right along the time axis but 

does not significantly change the slope – it changes the time at which the value is accumulated but 

not the rate. Changing 𝜏𝜏 changes the slope of the earned value curve thereby affecting the rate of 

value accumulation along with the time at which the value is earned.  
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Figure 4-4. Effect of changing r and 𝝉𝝉 on earned value 

In terms of technical debt, r and 𝜏𝜏, when combined, represent the interest amount. The interest 

probability can be modeled through the specification of probability distributions for r and 𝜏𝜏 and 

the use of Monte Carlo analysis. The impact of r and 𝜏𝜏 and the relationship to technical debt is best 

understood through an example.  

Williams [173] defines a schedule for the development of a test aircraft, including the expected 

duration for each of the tasks. This schedule will be used throughout the rest of this article as an 

example project. Williams provides a relevant example to technical debt through the discussion of 

the third management action in his aircraft example: if avionics production is delayed, then a 

temporary avionics kit may be installed in production aircraft. The technical compromise is to use 

a non-fully functional avionics kit to achieve the short-term benefit of meeting the task schedule. 

The long-term impact is the lack of fully functional aircraft and the potential for rework to retrofit 
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the avionics kit. In Williams’ example, 28% of the aircraft had the temporary kit installed, so r = 

0.28. Williams does not provide the timeline to produce additional kits, but it is fair to estimate 

that it would be the same as the avionics production task and range between 12-18 months. 

Therefore, 𝜏𝜏 could be estimated through a distribution that produces values in the range of 12-18 

months. r and 𝜏𝜏 would then be applied to the earned value equation for the aircraft assembly along 

with an estimate of the alpha value – the portion of the aircraft assembly affected by the avionics. 

4.2.1.1.4.4 Compounding Technical Debt Interest 

One of the most pernicious qualities of technical debt is that the interest compounds. Technical 

debt may impact multiple successor tasks, may not appear until several successor tasks have 

completed, and it may grow in impact as it affects more tasks [92]. To model the compounding of 

technical debt interest, it is necessary to consider all the predecessor tasks as having some 

contribution to the earned value of the successor task. If direct predecessor tasks are the only ones 

considered, then there is a chance that the technical debt contribution is underestimated. For 

example, consider the development of a software interface with three tasks: development of the 

interface control document (ICD), writing the software code, and integrating the software 

interface. An ICD may contain documentation debt [60], which includes the under specification 

of the interfaces. The software developer can take the ICD and perfectly implement it as written, 

and may not be aware that the interfaces were underspecified. It is not until the next task, the 

integration of the interface, that the technical debt in the ICD will appear, even though the ICD is 

not a direct predecessor of the integration task. 

To model the compounding of technical debt interest, it is necessary to specify the 𝛼𝛼, r, and 𝜏𝜏 

values for each possible predecessor for every task. Figure 4-5 shows an example of how to specify 

the values using two design structure matrices (DSM), based on the aircraft project provided in 
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Williams [173]. The dependency matrix, on the left of Figure 4-5, indicates the direct predecessor 

(value of 1) and indirect predecessor relationships (value of 2). The alpha matrix, on the right side 

of Figure 4-5, indicates the value of alpha for the relationships. These matrices are read like other 

DSMs, where a value in a cell indicates that the column contributes to the row. The dependencies 

of task 5, interim avionics, are found by reading down the column. This task has one immediate 

successor (task 7, assemble d/b aircraft) and several secondary successors. The value of alpha for 

the immediate successor is 0.1. To maintain the constraint identified in (4-7), the summation of 

the values in the rows of the alpha matrix must equal one (1). Similar DSMs could be created for 

r and 𝜏𝜏. 

 

Figure 4-5. Specification of compounding technical debt 

From these matrices, it becomes clear which tasks may have larger impacts throughout the 

system. For example, summing the columns in the 𝛼𝛼 matrix will provide a total of the impact 

percentage of a specific task. Larger values will have higher potential for compounding technical 

debt interest. 
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4.2.1.1.4.5 Calculating the Time at Which Earned Value is Reached 

Equation 4-6 models the earned value, in the presence of technical debt and multiple 

predecessors, as a function of time. Therefore, if this equation could be solved for t, then the time 

at which a specified earned value is reached could be analytically determined. However, this 

equation is a transcendental equation and is not analytically solvable, especially in the presence of 

an unknown number of predecessor tasks. Numerical techniques could be used; however, they do 

not lend themselves to easy application.  

Examining the shape of the S-curve reveals that there are four distinct sections [184]: 

• Stage 1: value accumulation starts out slowly, usually as the project is ramping up 

• Stage 2: value accumulates rapidly as more resources are put into the project and work is 

delivered 

• Stage 3: value accumulation slows down as the bulk of the work is completed and 

resource loading starts to reduce 

• Stage 4: additional value accumulation is minimal as tasks are finalized and the project is 

concluded 

These stages are shown in Figure 4-6. 

 

Figure 4-6. Stages of earned value S-curve 
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Between each of these stages, the concavity of the S-curve changes direction. A piece-wise 

linear function can be used to approximate the curve, with a separate line for each of the four 

sections [184]. Determining this piecewise function requires identifying the transition points 

between the changes in concavity. 

The changes in concavity of the function are found by taking the derivatives of the function and 

setting those derivatives to zero. The derivatives of the earned value function are not directly 

solvable, due to the presence of multiple exponentials and the unknown number of predecessor 

tasks. However, the planned value function only contains a single exponential and does not depend 

on the number of predecessor tasks and therefore the transition points on the planned value curve 

can be found. Figure 4-7 plots the cumulative planned value (PV), instantaneous planned value 

(pv), and the derivative of the instantaneous planned value (
𝑑𝑑𝑝𝑝𝑑𝑑𝑡𝑡). The solid black lines represent the 

transition points on the PV curve. The three transition points, G1, G2, and G3, can be found by 

applying successive derivatives of the pv curve. 

 

Figure 4-7. Concavity changes indicating transition points between growth stages in planned value 

The first transition point to be found is G2 – the transition from stage 2 to stage 3 [185]. As seen 

in Figure 4-7, this transition point occurs where the concavity of pv changes. Candidates for 
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changes in concavity are found by finding the roots of the second derivative of a function. Equation 

4-9 shows the second derivative of the pv function. Therefore, G2 is found by solving (4-9) for t, 

which is shown in (4-10)1. Only the positive roots are considered in this analysis. 

𝑑𝑑2𝑝𝑝𝑝𝑝(𝑡𝑡)𝑑𝑑𝑡𝑡2 =
𝑁𝑁𝑇𝑇6 𝑡𝑡𝑒𝑒−𝑡𝑡22𝑇𝑇2(𝑡𝑡2 − 3𝑇𝑇2)     (4-9)  

𝐺𝐺2 = ±√3𝑇𝑇      (4-10)  

Transition points G1 and G3 occur when the concavity of 
𝑑𝑑𝑝𝑝𝑑𝑑𝑡𝑡  changes, as shown in Figure 4-7. 

Therefore, the second derivative of 
𝑑𝑑𝑝𝑝𝑑𝑑𝑡𝑡 , which is the third derivative of pv, needs to be found and 

solved. Equation 4-11 shows the third derivative of pv, and solution is shown in (4-12). Again, 

only the positive roots are used in this analysis. 

𝑑𝑑3𝑝𝑝𝑝𝑝(𝑡𝑡)𝑑𝑑𝑡𝑡3 =
𝑁𝑁𝑇𝑇8 𝑒𝑒−𝑡𝑡22𝑇𝑇2(𝑡𝑡4 − 6𝑡𝑡2𝑇𝑇2 + 3𝑇𝑇4)     (4-11)  

𝐺𝐺1 = ±�−�√6− 3�𝑇𝑇2,𝐺𝐺3 = ±��√6�𝑇𝑇2 + 3𝑇𝑇2    (4-12)  

 

With the transition points known, the piecewise linear equation for the planned value (LPV) can 

be found, as shown in (4-13).  

𝑚𝑚1 =
𝑃𝑃𝑉𝑉(𝐺𝐺1)𝐺𝐺1  

𝑚𝑚2 =
𝑃𝑃𝑉𝑉(𝐺𝐺2)− 𝑃𝑃𝑉𝑉(𝐺𝐺1)𝐺𝐺2 − 𝐺𝐺1  

 

1 Derivatives and solutions were checked using the Online Equation Solver from Wolfram Alpha, available at 

https://www.wolframalpha.com/calculators/equation-solver-calculator/. 
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𝑚𝑚3 =
𝑃𝑃𝑉𝑉(𝐺𝐺3)− 𝑃𝑃𝑉𝑉(𝐺𝐺2)𝐺𝐺3 − 𝐺𝐺2  

𝑚𝑚4 =
1 − 𝑃𝑃𝑉𝑉(𝐺𝐺3)

1 − 𝐺𝐺3  

𝐿𝐿𝑃𝑃𝑉𝑉(𝑡𝑡) = � 𝑚𝑚1∗𝑡𝑡, 𝑡𝑡≤𝐺𝐺1𝑚𝑚2∗(𝑡𝑡−𝐺𝐺1)+𝑃𝑃𝑃𝑃(𝐺𝐺1), 𝐺𝐺1<𝑡𝑡≤𝐺𝐺2𝑚𝑚3∗(𝑡𝑡−𝐺𝐺2)+𝑃𝑃𝑃𝑃(𝐺𝐺2),  𝐺𝐺2<𝑡𝑡≤𝐺𝐺3𝑚𝑚4∗(𝑡𝑡−𝐺𝐺3)+𝑃𝑃𝑃𝑃(𝐺𝐺3), 𝐺𝐺3<𝑡𝑡≤1     (4-13)  

Equation 4-13 can be easily solved for t to determine the time at which a specific planned value 

occurs. Following the same process to linearize the earned value equations results in unsolvable 

derivative equations due to the combination of multiple exponentials and the unknown number of 

predecessor tasks. A possible solution is to use the transition points found in the planned value 

curve as the transition points of the earned value curve. The reuse of these points will induce error 

in the time dimension of the linearization, which needs to be characterized. The resulting 

linearization of planned value and earned value is shown in Figure 4-8. In this case, the linearized 

earned value plot underestimates the earned value in the stage 4 and overestimates the earned value 

in stage 1. 

 

Figure 4-8. Linearized planned and earned value curves using the same transition points 

With the transition points set, the linearized earned value equations can be determined and then 

solved for t, as shown in (4-14) and (4-15), where V is the desired earned value. The impact of 
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multiple predecessors is included in the linearization by using the complete earned value (EV) 

equation (4-6) at each of the transition points. 

𝑚𝑚1 =
𝐸𝐸𝑉𝑉(𝐺𝐺1)𝐺𝐺1  

𝑚𝑚2 =
𝐸𝐸𝑉𝑉(𝐺𝐺2)− 𝐸𝐸𝑉𝑉(𝐺𝐺1)𝐺𝐺2 − 𝐺𝐺1  

𝑚𝑚3 =
𝐸𝐸𝑉𝑉(𝐺𝐺3)− 𝐸𝐸𝑉𝑉(𝐺𝐺2)𝐺𝐺3 − 𝐺𝐺2  

𝑚𝑚4 =
𝐸𝐸𝑉𝑉(1)− 𝐸𝐸𝑉𝑉(𝐺𝐺3)

1− 𝐺𝐺3  

𝐿𝐿𝐸𝐸𝑉𝑉(𝑡𝑡) = � 𝑚𝑚1∗𝑡𝑡, 𝑡𝑡≤𝐺𝐺1𝑚𝑚2∗(𝑡𝑡−𝐺𝐺1)+𝐸𝐸𝑃𝑃(𝐺𝐺1), 𝐺𝐺1<𝑡𝑡≤𝐺𝐺2𝑚𝑚3∗(𝑡𝑡−𝐺𝐺2)+𝐸𝐸𝑃𝑃(𝐺𝐺2),  𝐺𝐺2<𝑡𝑡≤𝐺𝐺3𝑚𝑚4∗(𝑡𝑡−𝐺𝐺3)+𝐸𝐸𝑃𝑃(𝐺𝐺3), 𝐺𝐺3<𝑡𝑡≤1     (4-14)  

𝑡𝑡 = ⎩⎪⎨
⎪⎧ 𝑉𝑉𝑚𝑚1, 𝑃𝑃≤𝐸𝐸𝑃𝑃(𝐺𝐺1)�𝑉𝑉−𝐸𝐸𝑉𝑉(𝐺𝐺1)�𝑚𝑚2 +𝐺𝐺1,𝐸𝐸𝑃𝑃(𝐺𝐺1)<𝑃𝑃≤𝐸𝐸𝑃𝑃(𝐺𝐺2)�𝑉𝑉−𝐸𝐸𝑉𝑉(𝐺𝐺2)�𝑚𝑚3 +𝐺𝐺2,𝐸𝐸𝑃𝑃(𝐺𝐺2)<𝑃𝑃≤𝐸𝐸𝑃𝑃(𝐺𝐺3)�𝑉𝑉−𝐸𝐸𝑉𝑉(𝐺𝐺3)�𝑚𝑚4 +𝐺𝐺3,𝐸𝐸𝑃𝑃(𝐺𝐺3)<𝑃𝑃≤1

    (4-15) 

t represents the time at which the task reaches a particular earned value. Successor tasks may 

be able to start at t, however, the task is not necessarily complete at this point in time. The time of 

task completion is found by calculating when the earned value equals the total planned value for 

the task. The total planned value is input into (4-15) as V and then the task completion time is 

found. The difference between the task completion time and the original planned duration is the 

penalty on the task due to technical debt. 
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With (4-15), it is now possible to determine the time at which a task earns a particular value 

and the time at which it will finish in the presence of technical debt from multiple predecessors. 

The algorithm is as follows: 

1. Set the values of 𝛼𝛼, r, and 𝜏𝜏 for each predecessor task 

2. Based on the value of T for the task, determine the transition points G1, G2, and G3 using 

equations 

3. Calculated the earned value at each transition point for each predecessor task using (6) 

4. Given the desired earned value V, calculate t from (4-15) 

An accuracy assessment of this method is provided in the appendix. 

4.2.1.1.5 Application to Monte Carlo Schedule Analysis 

The prior analysis shows how to calculate the time at which a task reaches a desired earned 

value in the presence of technical debt. A Monte Carlo analysis can be used to determine the most 

likely duration of the entire project, accounting for technical debt along the way. Table 4-2 shows 

the parameters used in the analysis and recommended random and static variables. The random 

variables are assigned probability distributions, such as normal or triangular distributions and the 

accompanying distribution parameters are set as static variables. Static variables are held constant 

through each trial of the Monte Carlo analysis while random variables are resampled and changed 

with each Monte Carlo trial. Variables either apply to a singular task, such as the independent 

duration, or to a pair of tasks, such as r and U. 

Table 4-2. Recommended random and static variables for Monte Carlo analysis 

Random Variables Static Variables 

D – independent duration for each task 𝛼𝛼 – % of successor impacted by predecessor. Applies 

to task pairs 𝛼𝛼0 - % of successor that is not impacted by 

predecessors. Applies to each task 
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Random Variables Static Variables 

r - % of 𝛼𝛼 that is impacted by technical debt interest. 

Applies to task pairs. 𝑟𝑟0 - % of 𝛼𝛼0 that is impacted by self-inflicted technical 

debt interest. Applies to each task 

U – earned value when successor task can start/finish 

(based on relationship). Applies to task pairs 

𝜏𝜏 - delay introduced into the successor task due to the 

technical debt interest on the predecessor task. Applies 

to task pairs. 𝜏𝜏0 - self-inflicted delay on a task. Applies to each task 

T – the time of peak planned value. Applies to each 

task 

Earliest start time – defines the earliest that a particular 

task can start development 

Distribution parameters for r, D, 𝜏𝜏 will be static (e.g., 

mean and standard deviation for normal distributions) 

 

With the task duration, D, expressed as a random variable, it becomes simpler to express the 

time parameters (T, t, and 𝜏𝜏) as percentages of the task duration, forcing them to have values 

between zero (0) and one (1). Setting the value of N to one (1) treats each task as a single activity. 

Then, the calculated earned value is the percentage of the planned value and the utility U is 

expressed as a percentage of planned value. This convention allows all the parameters in the Monte 

Carlo analysis, with the exception of the task duration to be on the same scale, from 0 to 1. It also 

enables automatic adjustments of the technical debt delay based on the duration of the task. 𝜏𝜏 is 

expressed as the percentage of the successor task duration and therefore adjusts with the random 

selection of the task duration in the Monte Carlo analysis. The actual task duration is found by 

multiplying the time at which the utility threshold is reached by the duration. This method is shown 

in the following example.  

Williams [173] performed a Monte Carlo analysis for a new airplane development project, 

including modeling management actions. The tasks, their sequence, and the parameters for the 

distributions of the task durations are shown in Figure 4-9. This analysis will serve as a test case 

for the method presented in this article, including updating the analysis to account for technical 

debt.  
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Figure 4-9. Project tasks, durations, and sequence, adapted from [178] 

Williams assessed the project duration, found by determining the completion time of the ‘Ready 

to assemble’ task, in two cases: the baseline case which only uses the distribution of the durations 

and a case that represents the application of management actions that cause impacts to subsequent 

tasks such as “downstream quality issues” [173]. These impacts can be interpreted as technical 

debt.  

Table 4-3 compares the mean duration of the project and the 90% point (the time at which 90% 

of the Monte Carlo trials show completion of the project) provided by Williams with those 

calculated using the method presented in this article. The parameters used in this method are also 

provided for each case. Since planned value curves for each task were not provided by Williams, 

the value of T used for all tasks was iteratively determined by running the algorithm with different 

values until results comparable to Williams was achieved. In cases where the planned value curves 

of each task are known, T would be determined as the point of maximum instantaneous planned 
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value as defined by Warburton [182]. The high value of 𝜏𝜏 is used to force t to be less than 𝜏𝜏 in 

cases where technical debt is not applied. 

Table 4-3. Comparison of results with [173] 

Case Values from [173] Calculated Values Parameters Used 

Baseline 

analysis 

Mean Duration: 90.5 

90% Value Duration: 

103 

Mean Duration: 90.5 

90% Value Duration: 

100.5 

 

 

 

 

 

𝑇𝑇 = 0.395 (all tasks) 𝑈𝑈 = 1 (all tasks) 𝑟𝑟, 𝑟𝑟0 = 0 (constant value, all tasks) 𝜏𝜏, 𝜏𝜏0 = 0 (constant value, all tasks) 𝛼𝛼0 = 1 (all tasks) 𝛼𝛼 = 0 (all tasks) 

Expediting 

engine design 

Not provided Mean Duration: 88.1 

90% Value Duration: 

95.7 

Same as previous case except: 

Engine Design 

Duration: custom triangular distribution where 

the value is reduced by 1/3 if it exceeds 34, per 

[173] 

d/b Engine Manufacture 

for the dependency on engine design: 𝜏𝜏: Uniform Distribution between [0, 0.2] 𝑟𝑟: Normal Distribution with 𝜇𝜇 = 1,𝜎𝜎 = 0 𝛼𝛼: 0.5 𝛼𝛼0 = 0.5 

Engine Development 

for the dependency on engine design: 𝜏𝜏: Uniform Distribution between [0, 0.05] 𝑟𝑟: Normal Distribution with 𝜇𝜇 = 1,𝜎𝜎 = 0 𝛼𝛼: 0.5 𝛼𝛼0 = 0.5 
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Case Values from [173] Calculated Values Parameters Used 

Increased 

parallelism 

Mean Duration: 87.2 

90% Value Duration: 

95  

Mean Duration: 88.2 

90% Value Duration: 

95.6 

Same as previous case except: 

Engine Production 

Add a dependency on engine flight trials with 

the following parameters: 𝑇𝑇 = 0.395 𝑈𝑈 = 0.2 𝑟𝑟 = 0  𝜏𝜏 = 0 𝛼𝛼 = 1/3 

For the dependency on engine development 

set: 𝜏𝜏: Uniform Distribution between [0, 0.1] 𝑟𝑟: Normal Distribution with 𝜇𝜇 = 1,𝜎𝜎 = 0 𝛼𝛼: 1/3 𝛼𝛼0 = 1/3 

 

As can be seen in Table 4-3, the new method provides answers that are similar to those provided 

by Williams. Of note is that a custom distribution for duration had to be applied to account for the 

management actions associated with expediting the engine development to better map to the 

method used by Williams. The closeness of the results lends confidence to the baseline algorithms 

presented in this article. 

4.2.1.1.5.1 Implementation 

The equations described in the previous sections can be implemented as part of a Monte Carlo 

schedule analysis. The algorithm requries the user to specify the task duration and technical debt 

parameters. Static variables, as defined in Table 4-2, have their specific values defined. Random 

variables, as defined in Table 4-2, have the parameters of their associated probability distributions 

set. For this algorithm, it is assumed that the sequence of tasks is known. The algorithm is defined 

as follows: 

1. Define the sequence of tasks and establish the predecessor-successor relationships 

2. Define the parameters 𝛼𝛼, T, and U 

3. Define the distribution parameters for D, r, and 𝜏𝜏  
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4. For each trial in the Monte Carlo analysis: 

a. Randomly set all values of D, r, and 𝜏𝜏 using the suppplied distribtuions 

b. For each task; 

i. Determine the earned value at the transition points using (4-6) 

ii. For all predecessors: 

1. Calculate tu, the time at which the earned value threshold, U, is 

reached using (4-15). This value will be between zero and one 

2. Calculate the actual task duration, td, by multiplying tu times D 

3. Calculate the predecessor end time as predecessor start time plus 

tu 

4. Set the task start time to the maximum predecessor end time 

c. Determine the completion time as the end time of the last task 

5. Average the results of the Monte Carlo analysis to produce the results 

4.2.1.1.6 Discussion 

Using the same example project provided in [173], the impact of technical debt and increased 

parallelism on the project schedule can be assessed by rerunning the Monte Carlo analysis for 

conditions assessing both technical debt and increased parallelism. Starting with the baseline 

analysis case, two different technical debt conditions were run: low technical debt and high 

technical debt. In the high technical debt case, the technical debt is assumed to affect a higher 

portion of the successor task and with a larger impact – both r and 𝜏𝜏 are higher. The distributions 

used are listed in Table 4-4. The values for alpha were set using the values shown in Figure 4-5. 

The increased parallelism case sets the values for U to 0.9 for all task dependencies, indicating that 

a task can start once all of its predecessors have reached at least 90% of their earned value. Figure 
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4-10 shows the cumulative distribution function for each of the cases. Note that it is possible to 

calculate durations that are of extreme length due to the probabilistic analysis. Outliers were 

defined as total project durations above 200 months and these outliers were removed from the 

results.  

Table 4-4. Technical debt and increased parallelism impact on the airplane project 

Technical Debt Condition Case 

 No Parallelism (U = 1) Increased Parallelism  

(U = 0.9) 

No Technical Debt: 

r: Normal Distribution with 𝜇𝜇 = 0,𝜎𝜎 = 0 𝜏𝜏: Normal Distribution with 𝜇𝜇 = 0,𝜎𝜎 = 0 

Mean duration 

90.5 

90% duration 

101.0 

Mean duration 

65.2 

90% duration 

72.1 

Low Technical Debt: 

r: Normal Distribution with 𝜇𝜇 = 0.2,𝜎𝜎 = 0.05 𝜏𝜏: Normal Distribution with 𝜇𝜇 = 0.2,𝜎𝜎 = 0.05 

Mean duration 

92.0 

90% duration 

102.0 

Mean duration 

68.9 

90% duration 

76.9 

High Technical Debt: 

r: Normal Distribution with 𝜇𝜇 = 0.5,𝜎𝜎 = 0.2 𝜏𝜏: Normal Distribution with 𝜇𝜇 = 0.5,𝜎𝜎 = 0.2 

Mean duration 

108.2 

90% duration 

123.5 

Mean duration  

100.7 

90% duration  

114.5 

 No compounding interest Compounding interest 

Low Technical Debt, Compounding 

Interest: 

U = 1 for all task 

R and 𝜏𝜏: same as the low technical debt 

case except for engine design task. All 

dependencies on engine design have the 

following distributions 

r: Normal Distribution with 𝜇𝜇 = 0.5,𝜎𝜎 = 0.2 𝜏𝜏: Normal Distribution with 𝜇𝜇 = 0.8,𝜎𝜎 = 0.1 

Mean duration 

104.4 

90% duration  

123.2 

Mean duration 

108.0 

90% duration  

128.4 
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Figure 4-10. Cumulative probabilities of completing the aircraft project under various technical debt and 

parallelism assumptions 

4.2.1.1.6.1 Impact of Increased Parallelism on Project Schedule 

The third column and the second through fourth rows in Table 4-4 show the impact of assuming 

that tasks can start when their predecessors reach at least 90% of their value. Evaluating the start 

time of successor tasks based on the accumulation of value can significantly decrease the 

subsequent start time of each task and therefore decrease the overall project duration. 

Conceptually, this conclusion follows from the evaluation of an earned value curve, such as shown 

in Figure 4-1, where accumulating the last 10% of the project value can take over 20% of the time. 

This last 10% of value often does not add value to the successor tasks, and therefore, by starting 

earlier, the entire project can be accelerated. For example, a software interface between two 

separate components is typically defined by an interface control document (ICD). To start 

developing the software interface, it is necessary to have the majority of the ICD complete, but the 

final version, which may include non-technical aspects such as formatting and obtaining 

signatures, is not required.  
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4.2.1.1.6.2 Impact of Technical Debt on Project Schedule 

The third and fourth rows in Table 4-4 show the impact of technical debt on the project. In both 

cases, the mean duration of the project increased when technical debt is assumed to occur on each 

task. In the ‘high technical debt’ case increasing the parallelization is not sufficient to bring the 

schedule back to the original baseline. These results model the impact that technical debt can have 

on a schedule and highlight one of the deficiencies of traditional Monte Carlo schedule analysis. 

Every task carries some risk of creating technical debt for its successor tasks, either through design 

or implementation deficiencies or through a change in the context of the system. Traditional 

methods add margin for the duration of impacted tasks without actually assessing the downstream 

impacts. The method presented in this article allows for the project manager to assess both 

increases in task duration and different levels of impact through setting the distribution and 

technical debt parameters. By varying these assumptions on individual tasks, the project manager 

can determine which tasks carry the largest risk associated with technical debt. Evaluating these 

risks allows a project manager to determine the likelihood that a task moves onto the critical path 

due to technical debt. 

4.2.1.1.6.3 Impact of Compounding Technical Debt Interest 

The last row of Table 4-4 shows the impact of compounding technical debt interest. In this 

scenario, the tasks all demonstrate low technical debt, except for the engine design task. The engine 

design task is modeled as completing with exceptionally high technical debt, resulting in high 

values of r and 𝜏𝜏. In the second column of Table 4-4, it is assumed that the technical debt interest 

does not compound, and that the technical debt accrued in the engine design task only affects its 

direct successor. In the third column of Table 4-4 the technical debt from the engine design task 

affects all of the possible successors. The results show that compounding the technical debt interest 
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causes increased delays to the project: a 3.5% increase in mean project duration and a 4.2% 

increase in the 90% point.  

Figure 4-11 shows the average duration and completion time for each task in the low technical 

debt case with no parallelism, the low technical debt case with a high technical debt engine design 

and no compounding interest, and the compounding interest case. The task with high technical 

debt, engine design, does not suffer from significant delays. The technical debt of the engine design 

impacts the d/b engine manufacture task and the engine development task directly. In the 

compounding case, additional delays are seen in the engine production, assemble d/b aircraft, and 

engine/frame trials since the additional dependencies on the technical debt from the engine design 

are modeled.  

 

Figure 4-11. Effect of compounding interest on task duration and end time 

4.2.1.1.6.4 Quantifying Technical Debt Interest  

As defined in (4-6), this method allows for the quantification of technical debt interest. The 

technical debt interest amount is represented by r and 𝜏𝜏 and the interest probability is represented 

through the distribution parameters selected for the Monte Carlo analysis. For each task, the 

interest amount can be evaluated by assessing the delay in task completion due to the technical 
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debt of the task predecessors. Using the normalized parameter representation, the task is complete 

when the earned value reaches a value of one (1). This time, 𝑡𝑡𝑐𝑐, can be found by calculating t using 

(4-15), with 𝑉𝑉 = 1. The interest amount, 𝑖𝑖𝐴𝐴, is expressed as a percentage of the task duration and 

is calculated using (4-16): 

𝑖𝑖𝐴𝐴 = 𝑡𝑡𝑐𝑐 − 1      (4-16) 

𝑖𝑖𝐴𝐴 can be multiplied by the task value to convert it to the value units. If this value is also tracked 

through the Monte Carlo analysis, then the results of the analysis can be used to predict the 

expected value of the technical debt interest. Figure 4-12 shows the cumulative probability of the 

interest amount for the ‘engine/frame flight trials’ task for the low technical debt with no 

parallelism, the high technical debt with no parallelism, and the compounding interest cases found 

in Table 4-4. This task depends on several other tasks with both primary and secondary 

dependencies, as seen in Figure 4-9.  

 

Figure 4-12. Interest amount for ‘engine/frame flight trials’ 

The low technical debt case has a small standard deviation and does not compound the interest; 

therefore, the predicted interest amount is relatively static. The compounding interest case, which 

propagates the effects of a single task with large technical debt, incurs close to the same level of 

interest as the high technical debt case, where all tasks carry technical debt. This result highlights 
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how technical debt can permeate through the system – a single task can cause cascading delays 

throughout the rest of the project. 

4.2.1.1.6.5 Comparison to Existing Methods  

Using the equations and processes defined in this article, it is possible to model increases to the 

durations of successor tasks based on technical debt introduced in predecessor tasks. This 

technique is important to schedule analysis as it highlights which tasks need more effective process 

control methods to prevent the entire project from being delayed. 

Compared to existing methods of Monte Carlo schedule analysis, the method presented in this 

article adds additional capability to evaluate technical debt and its impacts. This method leverages 

the existing approaches and adjust the duration calculation for each task based on the technical 

debt parameters. While requiring a larger upfront investment of effort to determine the parameters, 

the method adds minimal runtime to the analysis, yet produces leading indicators for the project 

manager. 

4.2.1.1.7 Limitations and Future Work 

While providing a novel approach to including technical debt contributions in a Monte Carlo 

schedule analysis, this work is not without its limitations, which can be explored through future 

efforts. This work assumes that the technical debt parameters remain constant between predecessor 

and successor task pairs. However, it is likely that the potential impact of technical debt could 

change based on the state of the predecessor task. This dynamic model could be implemented in 

future versions of the algorithm. The linearization of the earned value equations introduce error 

into the analysis, as shown in Appendix A. These equations can be refined and better solutions 

found to reduce the error. Finally, the major limitation in the work is reliability of the input 

parameters and estimates. In any schedule analysis, the output is only as good as the original 
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estimates. The same principle holds with this approach – the overall fidelity of the assessment is 

based on the accuracy of the input task durations and technical debt parameters. Future work can 

explore relationships between different task types to established guidelines for the parameters to 

be used. Additional future work includes verification and validation of the method through 

application to real project development. These applications will reveal the success of the method 

in predicting technical debt impacts and the cost-benefit tradeoff of early introduction of technical 

debt reduction efforts. 

4.2.1.1.8 Conclusion 

Monte Carlo schedule analysis provides a probabilistic estimate of the duration for completing 

a project. However, traditional techniques do not consider the impact of the quality of each task 

on the ability to complete the successor task on schedule. They also tend to assume finish-to-start 

relationships, which do not accurately represent task sequencing, especially in high level 

schedules. This article provides a novel method to assess the technical debt of each task and its 

impact on successors by modeling technical debt contributions and impacts on successor tasks. It 

also allows for the modeling of relationships where a task starts once its predecessor reaches a 

specified percentage of its final value. This combination allows for more accurate schedule 

modeling early in projects based on real world conditions and for the inclusion of technical debt 

effects. By estimating technical debt impacts on successor tasks, the project manager has the ability 

to evaluate leading indicators of future delays. Leading indicators provide project managers with 

time to implement corrective actions, such as increased quality control, while the cost to do so is 

low. Regularly updating the schedule analysis based on the evaluated technical debt of tasks in 

progress can identify the risk of delays to future tasks, and therefore the entire project. 
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Identification of these risks enable project managers to introduce proper mitigation strategies 

before the risks become issues 

4.2.1.1.9 Appendix A: Accuracy Assessment 

Given the piecewise nature of the linearization function, it is beneficial to look at the accuracy 

in each of the four sections. An exhaustive analysis was done examining the linearized earned 

value functions for values of T, r, and 𝜏𝜏 for the single predecessor case. All three parameters were 

varied from 0.1 to 0.9 in steps of 0.1. For all cases, N = 1 to enable consistent scaling. The 

maximum absolute error and the maximum percent error were calculated for each of the four 

linearization stages for each combination of input parameters. The maximum and average values 

found are shown in Table 4-5, showing that while the percent errors are large in some cases, the 

absolute errors are of similar magnitudes for each case. Therefore, the linearization can be 

considered a valid approximation to the true function. 

Table 4-5. Accuracy assessment of earned value linearization 

Output Parameter 
Input 

Condition 
Stage 1 Stage 2 Stage 3 Stage 4 

Maximum absolute error All 0.057 0.079 0.034 0.579 

Maximum percent error All 318% 141% 33% 554% 

Average absolute error All 0.032 0.022 0.011 0.095 

Average percent error All 107% 11% 3% 25% 

Maximum absolute error 𝑡𝑡 ≤ 𝜏𝜏 0.052 0.025 0.016 0.042 

Maximum percent error 𝑡𝑡 ≤ 𝜏𝜏 187% 5% 2% 5% 

Average absolute error 𝑡𝑡 ≤ 𝜏𝜏 0.028 0.014 0.009 0.021 

Average percent error 𝑡𝑡 ≤ 𝜏𝜏 98% 4% 2% 2% 

Maximum absolute error 𝑡𝑡 > 𝜏𝜏 0.057 0.079 0.034 0.579 

Maximum percent error 𝑡𝑡 > 𝜏𝜏 318% 141% 33% 554% 

Average absolute error 𝑡𝑡 > 𝜏𝜏 0.049 0.026 0.013 0.098 

Average percent error 𝑡𝑡 > 𝜏𝜏 148% 15% 3% 26% 

 

The earned value function itself is piecewise, changing equations when 𝑡𝑡 = 𝜏𝜏. Therefore, rows 

have been added to Table 4-5 showing the results for the cases where 𝑡𝑡 ≤ 𝜏𝜏 and where 𝑡𝑡 > 𝜏𝜏. The 

largest percent error values are for stage 1. This section of the linearization curve applies when the 
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calculated earned values are small which can lead to large discrepancies in percent error. The 

magnitude of the absolute error, while higher that the other sections, is still in the same general 

range.  

Figure 4-13 plots the maximum and average percent errors for each analyzed value of T, r, and 𝜏𝜏. From these plots, it can be clearly seen that large values of r (center plots) consistently lead to 

higher error values, while the largest values of the other parameters do not exhibit consistent 

behavior. Therefore, it can be inferred that the r parameter drives the errors when it gets large. The 

impact of r is to shift the earned value plot to the right. Large values decrease the similarity that 

was assumed when reusing the inflection points from the planned value curve. Figure 4-13 shows 

that the linearization accuracy is within 10% on average for the final three linearization stages 

when T, r, and 𝜏𝜏 are all less than or equal to 0.5. Note that values of zero in the plot indicate cases 

that were not realized. For example, high values of T did not enter the limited growth phase in the 

cases tested. 

 

Figure 4-13. Maximum and average percent error of linearization of earned value sliced by T, r, and 𝜏𝜏 
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Although the linearization produces some areas of large percent error, these errors are low in 

absolute magnitude. Additionally, these errors are likely to be smaller than any errors introduced 

through the initial estimation of the task duration. Therefore, it can be concluded that the 

linearization does not cause a significant impact on the overall accuracy of the schedule 

assessment.  

The transition points in the linearization are controlled by the value of T. T changes as the shape 

of the planned value curve changes and therefore the transition points will change. As seen in the 

first column of Figure 13, the percent error in the analysis is relatively constant across different 

values of T, expect for the first and last stage. Therefore, values of T that produce longer first or 

last stages would produce additional errors. 

4.2.1.1.10 Appendix B: Computation Environment 

The Monte Carlo analysis in this article was conducted using Python 3.9.7 scripts executed 

within the Spyder integrated development environment (version 5.1.5). The software was executed 

on a Dell Vostro 15 7510 computer running 64-bit Windows 11 Pro with a dual 2.30 GHz 11th 

Gen Intel® Core ™ i7-11800H processor and 16.0 GB of RAM. All cases in this article were 

executed for 1000 trials and the execution time was between 2.3 and 2.6 seconds 

4.2.1.2 Summary of Technical Debt Inclusion in Project Schedule Analysis 

The above paper shows how technical debt could be included in a schedule analysis and 

combined with Monte Carlo methods to generate probabilistic delivery timelines for tasks. In view 

of the LEAP process, this method provides a mathematical way to develop a probabilistic 

Development Matrix from the Technology Matrix. The next section defines how the probabilistic 

Development Matrix is incorporated into the LEAP process. 
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4.2.2 Quantification of the LEAP process 

The mathematics behind the LEAP process [160] relies on the ability to associate the Functional 

and the Development Matrices through matrix multiplication. When the inputs to the matrices are 

binary (one (1) or zero (0)), the multiplication of the Functional and Development Matrices 

provides the number of technologies developed in a time period that support a capability. However, 

as soon as probabilities are introduced into the Development Matrix, the assumptions underpinning 

the process break down. The matrix multiplication will sum the probabilities of delivering each 

technology, which can erroneously produce probabilities of delivering the capabilities of greater 

than one (1). Therefore, the mathematical process underpinning the LEAP process need to be 

updated. The following paper, submitted to IEEE Access in September, 2023 [186], provides this 

mathematical update.  

4.2.2.1 Probabilistic Enhancement to the Leap Process for Identifying Technical Debt in 

Iterative System Development [186] 

4.2.2.1.1 Abstract 

The List, Evaluate, Achieve, Procure (LEAP) process defines a methodology for 

mathematically associating the delivery of system capabilities with the temporal satisfaction of 

stakeholder needs while identifying technologies at high risk of imparting technical debt into the 

system. The original process is qualitative, relying on binary definitions of timelines for 

technology development – the technology either is or is not developed in a specific time period. 

The binary definitions allow for rapid high-level assessments of the potential for technical debt. 

However, they fail to capture more realistic scenarios of uncertain technology development 

timelines. This paper resolves these issues by introducing probability into LEAP process. This 
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paper also provides examples of using the probability in the LEAP process and compares the 

probabilistic (quantitative) and binary (qualitative) models. 

4.2.2.1.2 Introduction 

Kleinwaks et al. [160] developed the List, Evaluate, Achieve, Procure (LEAP) process to 

provide a structured approach to identifying technologies that are critical to meeting the 

stakeholders’ needs. This process uses matrix operations to mathematically combine a system 

functional breakdown with stakeholder needs to identify capabilities that will be delivered late to 

need and the technologies that drive the delivery timelines. The LEAP process is designed for use 

within increasingly volatile, uncertain, complex, and ambiguous (VUCA) system development and 

operating environments [3]. By applying LEAP in an iterative manner, the system developer can 

identify investments that reduce level of non-recurring engineering (NRE) in system development 

to enable rapid and successful iterative development cycles [162]. The LEAP process can also be 

used as a decision support system to assess the long-term impacts of decisions made to achieve a 

short-term benefit, known as technical debt [19]. Examples of technical debt include minimizing 

documentation or system modeling and analysis to ensure an on-time release, which can result in 

increased effort to change the system in the future.  

The LEAP process consists of four major steps [160]: 

1. List: establish the system definition by decomposing the stakeholder needs into capabilities 

and perform a functional breakdown of the capabilities into enabling technologies 

2. Evaluate: assess the capabilities and technologies to determine the need dates and expected 

development timelines and compute the ability of the system to meet the needs 
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3. Achieve: identify the technologies that have the largest contribution to late need 

satisfaction, either in the current time period or in the future. The system developer can 

invest in these technologies to reduce the development timeline 

4. Procure: include mature technologies within a larger-scale development cycle to develop 

the system that meets the stakeholders’ needs 

The ability of the system to meet the temporal needs of the stakeholders is computed using 

matrix operations. Kleinwaks et al. define the process in detail, including the explanation of the 

supporting mathematics [160]. The baseline process, referred to in this paper as the qualitative 

LEAP process, is shown in Figure 4-14.  

 

Figure 4-14. The qualitative LEAP process as defined in [160] 

The qualitative LEAP process relies on three primary inputs: the Functional Matrix (F), the 

Development Matrix (V), and the Need Matrix (N). These inputs are uniquely defined for each 

system of interest, based on an analysis of the stakeholder needs and system requirements. The 

Functional Matrix defines the functional breakdown of capabilities into supporting technologies. 

The Development Matrix defines the development timelines for each of the technologies. The 
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Need Matrix defines the times at which the stakeholders require each capability. In the qualitative 

LEAP process, the values in each of these matrices are binary: either zero (0) or one (1). In these 

matrices, one (1) indicates that the rows and columns are connected – the technology supports the 

capability, the technology will be developed in the time period, or the capability is needed by the 

stakeholders in the time period. 

The binary inputs enable rapid instantiation of the process and support standard matrix 

multiplication methods. However, the use of binary inputs provides a qualitative assessment of 

absolute technology development timelines: technologies will or will not be developed in a given 

time period. Unfortunately, technology development rarely follows well defined timelines. Several 

methods exist to estimate the duration of a technology development program, such as the critical 

path method and the program evaluation and review technique (PERT) [187]. Schedule risk 

analysis combines these methods with Monte Carlo analysis to produce the probability of a 

technology being developed in a specific time period [188]. To increase the usability of the LEAP 

process, it needs to be able to input these probabilities into the Development Matrix and to 

propagate the probabilities through the rest of the analysis. This paper defines updates to the LEAP 

process and equations to account for probability and to produce the likelihood of delivering 

capabilities on time to the stakeholders. The updated process is referred to as the quantitative LEAP 

process. 

The rest of this paper is structured in three sections. First, an overview of related work is 

presented. Next, the quantitative LEAP model is described in detail and an example of its usage 

and comparison to the qualitative model is provided. Finally, the paper is concluded and 

recommendations for future work are presented. 
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4.2.2.1.3 Related Work 

Satisfying stakeholder needs is critical to the success of a project. Unfortunately, satisfying 

these needs often produces schedule and cost pressure on a system developer, resulting in the 

introduction of technical debt into the system [18]. Increasing the awareness of technical debt upon 

its introduction to the system is can improve overall project performance [189]. de Almeida et al. 

connect technical debt prioritization with business processes, and show accounting for business 

processes affects how technical debt is prioritized [190]. However, they do not provide a 

generalizable and mathematical approach to link the stakeholder needs and the system 

development to assist in the prioritization of development. 

The LEAP process provides a novel approach for linking the delivery timeline of system 

capabilities to the times when the stakeholder needs the capability [160]. It can be used in iterative 

development scenarios or in project planning. An example of its usage for identifying 

technological investments is provided in [167]. The primary objective of the process is to identify 

technologies that may exacerbate system development schedules, resulting in the failure to meet 

stakeholder needs on time. The LEAP process allows technologies that contribute to the late 

delivery of multiple capabilities to be identified early. Therefore, the LEAP process can provide 

leading indicators of technical debt and the impact of technical compromises involving these 

technologies can be assessed. However, the LEAP process in [160] only deals in absolute delivery 

timelines and needs to be augmented with probabilistic delivery estimates. 

Similar work has been performed by other authors investigating the impacts of rework on 

project schedules. Rework is associated with the repetition of tasks which were not performed to 

the required quality levels of the project [171] while technical debt is associated with the increased 

effort required to complete successor tasks [19]. Research on rework includes the connection 
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between project iterations [176] [191], causes of rework [171] [170], and task and project durations 

[175] [192]. These overlapping conditions are critical to project success, since a successful project 

requires acceptable performance in addition to on-time and on-budget delivery [192].  

Kim incorporates rework probabilities into a linear programming solution to determine the cost 

of crashing schedule and the impact on total project duration [192]. Smith and Eppinger identify 

methods to determine which tasks are contributing the most work in iterative design [191], using 

off-diagonal rework probabilities [176]. While these methods allow for the successive build-up of 

downstream impacts, they do not account for increases to a successor task’s duration based on the 

technical compromises made during the execution of the predecessor tasks.  

Krishnan, Eppinger, and Whitney analyze the duration of successor tasks based on the overlap 

with predecessor tasks [175]. They assess that starting a successor task too early may increase the 

effort and duration of the successor task and may also result in a quality loss of the predecessor 

activity due to a loss of flexibility in the predecessor task. Their model attempts to determine how 

many iterations to perform with overlapping tasks. However, in many situations, iterations are not 

included in a project plan and the model does not provide methods to address the impact on the 

successor tasks of quality loss in a predecessor task. Maheswari and Varghese [177] address task 

overlaps but do not quantify the rework duration, identifying the assessment of this duration as a 

critical area for future work. 

Ma et al. recognize that current schedule analysis tools offer only passive management 

capabilities for rework and that leading indicators of rework potential are required [174]. They 

identify rework probability, the chance of rework occurring, and rework impact, the impact of each 

activity, and then apply a learning curve to each iteration to measure its impact. This work is 

similar in concept to the LEAP method in that it attempts to predict the future impact of rework 
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on project schedule. However, it focuses on calculating the iterations required within a project and 

not on the association between delivery timelines and the satisfaction of stakeholder needs.  

The methods and techniques identified in this review focus on the technology delivery aspects 

of a project – estimating when the project will be complete. While they provide quantitative 

estimates, they do not directly connect the technology delivery timelines to the need dates of the 

project stakeholders. The original LEAP process performs this association, but is restricted to 

qualitative estimates. Therefore, enhancing the LEAP process by adding probabilistic methods will 

provide a quantitative method to mathematically associate the likelihood of capability delivery 

with the temporal satisfaction of stakeholder needs. 

4.2.2.1.4 Including Probabilities in the LEAP Model 

The updates to the LEAP model presented in this section focus on including probabilities in the 

Development Matrix. The Development Matrix defines the timelines on which the individual 

technologies are developed [160]. Switching the representation of this matrix from binary values 

(one (1) and zero (0)) to probabilities enables a more realistic modeling of technology 

development. 

4.2.2.1.4.1 Matrix Multiplication with Probabilities 

The original LEAP model [160] uses matrix operations to identify relationships and to compute 

the availability of capabilities. The Availability Matrix (A), which defines whether or not a 

capability will be available in a specified time period, is computed by first multiplying the 

Functional Matrix (F) and Development Matrix (V), which gives a matrix containing the number 

of developed technologies that support each capability in each time period. The total number of 

technologies that support the capability (S) is subtracted from the product to determine if the 

capability is complete. Finally, the Heaviside function (H) is used to restrict the output values to 
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be between zero (0) and one (1). The Availability Matrix calculation is shown in (4-17) and a 

complete explanation of the supporting mathematics can be found in [160]. 

𝐴𝐴 = 𝐻𝐻((𝐹𝐹𝑉𝑉)𝑇𝑇 − 𝑆𝑆 + 0.5𝐽𝐽)    ( 4-17 ) 

The critical concept in the Availability Matrix calculation is the combination of the Functional 

and Development Matrices through matrix multiplication. The dot product of the row of one matrix 

and the column of the other is used to determine the count of technologies that are developed 

(column of the Development Matrix) that support the capability (row of the Functional Matrix). 

The dot product adds the products of each of the corresponding elements of the row and column 

vectors.  

If the Development Matrix includes probabilities instead of binary values, then (4-17) is no 

longer valid. Assuming that the development of each technology is independent, then the 

probability of developing a capability c in a specific time period p is the product of the probabilities 

of developing each supporting technology t in that same time period p, as depicted in (4-18). 

𝑃𝑃�𝐶𝐶𝑝𝑝� =  ∏ 𝑃𝑃(𝑡𝑡𝑖𝑖,𝑝𝑝:𝑡𝑡𝑖𝑖 𝑠𝑠𝑠𝑠𝑝𝑝𝑝𝑝𝑜𝑜𝑠𝑠𝑡𝑡𝑠𝑠 𝑐𝑐)𝑖𝑖     ( 4-18 ) 

The matrix multiplication 𝐹𝐹𝑉𝑉 produces a summation of independent probabilities and not the 

product, as shown in (4-19). Additionally, (4-19) includes all the cells of each row of the 

Functional Matrix in the computation. This inclusion creates a problem when 𝐹𝐹[𝑖𝑖, 𝑗𝑗] = 0. When 

adding the products of each cell, a zero (0) value in F simply eliminates the corresponding value 

of V from the sum. However, when multiplying the products of corresponding cells by applying 

(4-18), a zero (0) value in F results in a zero (0) product. In the definition of the Functional Matrix, 

a zero (0) equates to a technology that does not support the capability, and therefore the V value 

should be eliminated from the product instead of the reducing the product to zero. 
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𝐹𝐹𝑉𝑉 = �∑ 𝐹𝐹[0, 𝑖𝑖] ∗ 𝑉𝑉[𝑖𝑖, 0]𝑛𝑛𝑖𝑖 ⋯ ∑ 𝐹𝐹[0, 𝑖𝑖] ∗ 𝑉𝑉[𝑖𝑖, 𝑝𝑝]𝑛𝑛𝑖𝑖⋮ ⋱ ⋮∑ 𝐹𝐹[𝑚𝑚, 𝑖𝑖] ∗ 𝑉𝑉[𝑖𝑖, 0]𝑛𝑛𝑖𝑖 ⋯ ∑ 𝐹𝐹[𝑚𝑚, 𝑖𝑖] ∗ 𝑉𝑉[𝑖𝑖, 𝑝𝑝]𝑛𝑛𝑖𝑖 �  ( 4-19 ) 

Based on these observations, standard matrix operations do not meet the requirements for 

updating the LEAP process to include probabilities in the Development Matrix. The required 

function must input two vectors of the same size and compute the product of the products of 

corresponding elements, if, and only if, the element of one vector is non-zero.  

Two separate functions are required: one that selects the elements of a vector and one that 

produces the multiplication of the elements in the matrix. These functions are defined in the 

following sections. 

4.2.2.1.4.1.1 Selecting Elements of a Vector: the k Function 

A new function, called the k function, is defined in (4-20) to select and replace non-zero input 

values. It inputs three values x, y, and z. If x is not zero (0), then the k function outputs y. If x is 

zero (0), then the k function outputs z. The function provides a simple method to select a value 

based on another input. Equation 4-21 extends the k function to apply to vectors and (4-22) extends 

it to matrices. A capital K is used to denote the matrix version of the equation. Note that in (4-21) 

vectors 𝑢𝑢�⃗  and �⃗�𝑝 must be the same length and in (4-22) matrices U and V must have the same 

dimensions. 

𝑘𝑘(𝑥𝑥,𝑦𝑦, 𝑧𝑧) = �𝑦𝑦, 𝑥𝑥 ≠ 0𝑧𝑧, 𝑥𝑥 = 0
     ( 4-20 ) 

𝑘𝑘�⃗ (𝑢𝑢�⃗ , �⃗�𝑝, 𝑧𝑧) = [𝑘𝑘(𝑢𝑢�⃗ [0], �⃗�𝑝[0], 𝑧𝑧) … 𝑘𝑘(𝑢𝑢�⃗ [𝑛𝑛], �⃗�𝑝[𝑛𝑛], 𝑧𝑧)]   ( 4-21 ) 

𝐾𝐾(𝑈𝑈,𝑉𝑉, 𝑧𝑧) = � 𝑘𝑘(𝑈𝑈[0,0],𝑉𝑉[0,0], 𝑧𝑧) ⋯ 𝑘𝑘(𝑈𝑈[0,𝑛𝑛],𝑉𝑉[0, 𝑛𝑛], 𝑧𝑧)⋮ ⋱ ⋮𝑘𝑘(𝑈𝑈[𝑚𝑚, 0],𝑉𝑉[𝑚𝑚, 0], 𝑧𝑧) ⋯ 𝑘𝑘(𝑈𝑈[𝑚𝑚,𝑛𝑛],𝑉𝑉[𝑚𝑚,𝑛𝑛], 𝑧𝑧)
�  ( 4-22 ) 
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4.2.2.1.4.1.2 Multiplying Matrices: the k* Function  

The k function provides the first step of the required multiplication process – the elimination of 

the zero (0) terms from one of the vectors. A second function is required to address the 

multiplication of the elements in two matrices instead of the summation. The k* function is defined 

in (4-23). For two vectors, it computes the product of the application of the k function to the 

corresponding elements of the vectors. Equation 4-24 shows the matrix version of the k* function, 

denoted with a capital K. 

𝑘𝑘∗(𝑢𝑢�⃗ , �⃗�𝑝, 𝑧𝑧) = ∏ 𝑘𝑘(𝑢𝑢�⃗ [𝑖𝑖], �⃗�𝑝[𝑖𝑖], 𝑧𝑧)𝑛𝑛𝑖𝑖     ( 4-23 ) 

𝐾𝐾∗(𝑈𝑈,𝑉𝑉, 𝑧𝑧) = � 𝑘𝑘∗(𝐹𝐹[0, : ],𝑉𝑉[: ,0], 𝑧𝑧) ⋯ 𝑘𝑘∗(𝐹𝐹[0, : ],𝑉𝑉[: ,𝑝𝑝], 𝑧𝑧)⋮ ⋱ ⋮𝑘𝑘∗(𝐹𝐹[𝑚𝑚, : ],𝑉𝑉[: ,0], 𝑧𝑧) ⋯ 𝑘𝑘∗(𝐹𝐹[𝑚𝑚, : ],𝑉𝑉[: ,𝑝𝑝], 𝑧𝑧)
�   ( 4-24 ) 

The K* function has the requirements necessary to combine the Functional and Development 

matrices when the Development Matrix contains probabilities: it eliminates zero values in the 

Functional Matrix from the product and also multiplies the elements of the matrices instead of 

adding them. 

4.2.2.1.4.1.3 Application of the K* function 

The application of the K* function is shown in Figure 4-15. In the figure, the Development 

Matrix contains the probabilities of completing each technology in each time period. If this matrix 

is multiplied by the Functional Matrix F using standard matrix multiplication, the result is the third 

matrix, FV, located in the lower left of the figure. The red cells indicate results where the 

probability of delivering the capability in a time period are greater than one. The application of the 

K* function results in the matrix on the lower right of Figure 4-15. The same cells are highlighted 
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in red, however, they now have the actual probability values for delivering the capability in the 

specified time periods.  

 

Figure 4-15. Application of the K* function and comparison with matrix multiplication 

The first row of the final matrix is unchanged between the standard matrix multiplication and 

the K*. This row represents the availability of capability C1, which, as seen in the Functional 

Matrix, only depends on one technology (T1). Therefore, the matrix multiplication and the 

application of the K* function produce the same results. The yellow cells in the final matrix 

changed their values to zero (0). This result is due to the multiplication of probabilities instead of 

the summation of probabilities. Both capability C2 and capability C3 depend on technology T2. 

Technology T2 has a zero probability of being developed in time period P1. Therefore, when the 

probabilities are multiplied, there is a zero probability of completing C2 and C3 in time period P1. 

The traditional matrix math summed the probabilities of the supporting technologies, thereby 

producing incorrect results. 

4.2.2.1.4.2 Including Probabilities in the LEAP Process 

Having demonstrated the usage of the K* function to combine probabilities in matrix 

multiplication, the LEAP equations presented in [160] can be updated to account for the 
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probabilistic Development Matrix. As a result of these updates the Availability and Delivery 

Matrices, which are the outputs of the Evaluation phase of the LEAP process, will both produce 

probabilistic values for capability availability and delivery. The probabilistic Delivery Matrix 

defines the likelihood of meeting the stakeholders’ needs on time and therefore becomes a decision 

aid for the system developer. 

4.2.2.1.4.2.1 Availability Matrix 

The Availability Matrix determines if a capability will be available in a specific time period 

[160]. The K* function computes this probability when applied to the Functional and Development 

Matrices. Therefore, calculating the probabilistic Availability Matrix requires using the K* 

function as shown in (4-25). 

𝐴𝐴 = (𝐾𝐾∗(𝐹𝐹,𝑉𝑉, 1))𝑇𝑇     ( 4-25 ) 

Within the K* function, z is set to one (1) such that a zero (0) value in the Functional Matrix 

translates to one (1) in the multiplication instead of the value in the Development Matrix. This 

choice effectively eliminates the zero entry in the Functional Matrix from the probability 

computation. This behavior is desired since that capability is not dependent on the technology. The 

transpose of the K* function is taken to produce an Availability Matrix with the same dimensions 

as the Need Matrix in [160]. 

4.2.2.1.4.2.2 Delivery Matrix 

While the Availability Matrix specifies when capabilities are available, the Delivery Matrix (D) 

defines whether or not the capabilities are delivered in time to meet the stakeholders’ needs. In the 

qualitative LEAP process, the Delivery Matrix is calculated by subtracting the Availability Matrix 

from the Need Matrix [160]. Applying the same calculation here would result in the Delivery 
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Matrix specifying the probability of not delivering the capability on time. Logically, it makes more 

sense to have the Delivery Matrix indicate the probability of delivering on time instead. Since the 

Availability Matrix contains probability values, it is necessary to distinguish between capabilities 

that have zero probability of being delivered on time and those that are not needed in a time period. 

Therefore, the Delivery Matrix is calculated using the K function on the Need and Availability 

Matrices as shown in (4-26). The z value in the K function is set to negative one (-1) to identify 

the time periods where a capability is not needed. 

𝐷𝐷 = 𝐾𝐾(𝑁𝑁,  𝐴𝐴,−1)     ( 4-26 ) 

The values in the Delivery Matrix take on different meaning than those in the qualitative LEAP 

process. A value that is greater than or equal to zero (0) indicates the probability of delivering a 

capability in the time period. A negative value indicates that the capability is not needed in that 

time period. 

4.2.2.1.4.2.3 Investment Matrix 

The final matrix produced by the LEAP process is the Investment Matrix (I). The Investment 

Matrix identifies those technologies that have the greatest contributions to the late satisfaction of 

stakeholder needs. In the qualitative LEAP formulation, the values in the Investment Matrix 

represent the number of late capabilities contributed to by each technology [160]. Using the 

probabilistic formulation of the Development Matrix, the values in the Investment Matrix become 

a score – the higher the value, the larger the impact of the technology. The updated Investment 

Matrix equation is shown in (4-27). 

𝐼𝐼 = (𝑁𝑁𝐹𝐹)𝑇𝑇 ∘ (𝐽𝐽 − 𝑉𝑉)     ( 4-27 ) 
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The Need and the Functional Matrices both contain binary values, so standard matrix 

multiplication is used. This product gives the number of needed capabilities affected by a specific 

technology. J is the Hadamard identity matrix, which is a matrix of all ones (1) [166]. Subtracting 

the Development Matrix, V, from J, produces a matrix of probabilities of not delivering 

technologies. The two resulting matrices are then combined element-wise using the Hadamard 

product (∘) [166], producing an Investment Matrix where each value is the number of affected 

capabilities times the probability of late delivery.  

Larger scores in the Investment Matrix represent a greater contribution of that technology to 

the late delivery of the system in the specified time period. The score is the number of affected late 

capabilities times the probability of late delivery of the technology. Table 4-6 shows examples of 

Investment Matrix scores including the number of impacted capabilities and the probability of late 

delivery.  

Table 4-6. Examples of investment matrix scores 

 
Number of Late Capabilities 

Impacted 

Probability of Late 

Delivery 
Score 

Formula (𝑁𝑁𝐹𝐹)𝑇𝑇 (𝐽𝐽 − 𝑉𝑉) (𝑁𝑁𝐹𝐹)𝑇𝑇 ∘ (𝐽𝐽 − 𝑉𝑉) 

Technology 1 1 0.1 0.1 

Technology 2 4 0.1 0.4 

Technology 3 1 0.7 0.7 

Technology 4 4 0.7 2.8 

 

From these examples, it can be clearly seen that the score provides additional insight into the 

importance of a technology. Larger scores indicate a larger potential return-on-investment (ROI) 

if the likelihood of delivering the technology on time can be increased. Consider a situation where 

a choice is made to invest in either Technology 2 or Technology 3. The qualitative LEAP model 

would imply that Technology 2 provides the bigger ROI as it impacts more capabilities than 

Technology 3. The quantitative LEAP process, on the other hand, indicates that Technology 3 
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provides the bigger ROI. Although it only affects one capability, it has a much higher likelihood 

of delivering late and therefore a correspondingly larger score.  

4.2.2.1.4.2.4 Adjustments for Dependent Technologies 

The above process relies on an assumption of independence between the technologies. In 

situations where technologies depend upon each other, the model defined above will incorrectly 

calculate the probabilities. This restriction is remedied by redefining the Functional Matrix. The 

Functional Matrix maps the capabilities to the supporting technologies. When the technologies are 

independent, then all technologies should be included in each row of the Functional Matrix. 

However, if technologies are dependent upon each other, then only the latest technology should 

be included in the row in the Functional Matrix. For example, consider the Functional Matrix in 

Figure 4-15. If Technology 2 is dependent upon Technology 1, then the Functional Matrix would 

be rewritten as shown in Figure 4-16, with Capability 2 only showing Technology 2 as a supporting 

technology. The highlighted cell indicates the change in the matrix. With this redefinition of the 

Functional Matrix, the capabilities are still composed of independent technologies and the rest of 

the analysis process is valid. 

 

Figure 4-16. Functional Matrix accounting for technology dependencies 

4.2.2.1.4.3 Example Application of the Quantitative LEAP Process 

The updates to the LEAP process are best understood through an example application. 

Kleinwaks et al. [167] applied the qualitative LEAP process to the development of optical 

terminals at the Space Development Agency. As an example of the quantitative LEAP process, 
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this work is modified to use notional probabilistic values in the Development Matrix. The left side 

of Figure 4-17 shows the initial qualitative Development Matrix from [167] after notional 

investments were made to increase the likelihood of meeting the stakeholder capabilities. To 

estimate the probabilities, a normal distribution was applied to each technology, with a mean set 

to the first time period identified in [167] minus two years and the standard deviation set to two 

years. This distribution was chosen to give an 84% probability of delivering at the times identified 

in the qualitative analysis, which is based on the expert opinions used to establish the delivery 

timelines in [167]. The probability of delivering each technology in each time period is computed 

from the distribution. The resulting probabilistic Development Matrix is shown on the right side 

of Figure 4-17, where the colors go from red (low probability of delivering) to green (high 

probability of delivering). 

 

Figure 4-17. Qualitative (left) and quantitative (right) Development Matrices, based on [167] 

The probabilistic Development Matrix is used in the quantitative LEAP process to determine 

the likelihood of delivering the capabilities in each time period. Figure 4-18 shows the Delivery 

2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032

T1 1 1 1 1 1 1 1 1 1 T1 0.31 0.50 0.69 0.84 0.93 0.98 0.99 1.00 1.00 1.00 1.00 1.00

T15 1 1 1 1 1 1 1 1 1 1 1 1 T15 0.84 0.93 0.98 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

T2 1 1 1 1 1 1 1 1 1 1 1 T2 0.69 0.84 0.93 0.98 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00

T4 1 1 1 1 1 1 1 1 1 1 T4 0.50 0.69 0.84 0.93 0.98 0.99 1.00 1.00 1.00 1.00 1.00 1.00

T6 1 1 1 1 1 1 1 1 1 T6 0.31 0.50 0.69 0.84 0.93 0.98 0.99 1.00 1.00 1.00 1.00 1.00

T3 1 1 1 1 1 1 1 1 1 T3 0.31 0.50 0.69 0.84 0.93 0.98 0.99 1.00 1.00 1.00 1.00 1.00

T8 1 1 1 T8 0.00 0.00 0.01 0.02 0.07 0.16 0.31 0.50 0.69 0.84 0.93 0.98

T10 1 1 1 1 1 1 1 1 T10 0.16 0.31 0.50 0.69 0.84 0.93 0.98 0.99 1.00 1.00 1.00 1.00

T11 1 1 1 1 1 1 1 1 1 1 1 T11 0.69 0.84 0.93 0.98 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00

T12 1 1 1 1 1 1 1 1 1 1 1 T12 0.69 0.84 0.93 0.98 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00

T7 1 T7 0.00 0.00 0.00 0.00 0.01 0.02 0.07 0.16 0.31 0.50 0.69 0.84

T13 1 1 1 1 1 1 1 1 1 1 1 1 T13 0.84 0.93 0.98 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

T5 1 1 1 1 1 1 1 1 1 1 1 T5 0.69 0.84 0.93 0.98 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00

T9 1 1 1 1 1 1 1 1 1 1 T9 0.50 0.69 0.84 0.93 0.98 0.99 1.00 1.00 1.00 1.00 1.00 1.00

T14 1 1 1 1 1 1 1 T14 0.07 0.16 0.31 0.50 0.69 0.84 0.93 0.98 0.99 1.00 1.00 1.00

T22 1 1 1 1 1 1 1 1 1 1 1 T22 0.69 0.84 0.93 0.98 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00

T21 1 1 1 1 1 1 1 1 1 1 1 T21 0.69 0.84 0.93 0.98 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00

T16 1 1 1 1 1 1 1 1 1 1 1 T16 0.69 0.84 0.93 0.98 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00

T17 1 1 1 1 1 1 1 1 1 1 T17 0.50 0.69 0.84 0.93 0.98 0.99 1.00 1.00 1.00 1.00 1.00 1.00

T18 1 1 1 1 1 1 1 1 1 1 1 T18 0.69 0.84 0.93 0.98 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00

T19 1 1 1 1 1 1 1 1 1 1 T19 0.50 0.69 0.84 0.93 0.98 0.99 1.00 1.00 1.00 1.00 1.00 1.00

T20 1 1 1 1 1 1 1 1 T20 0.16 0.31 0.50 0.69 0.84 0.93 0.98 0.99 1.00 1.00 1.00 1.00

T23 1 1 1 1 1 1 1 1 1 1 1 T23 0.69 0.84 0.93 0.98 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00

T24 1 1 1 1 1 1 1 1 1 T24 0.31 0.50 0.69 0.84 0.93 0.98 0.99 1.00 1.00 1.00 1.00 1.00

T25 1 1 1 1 1 1 1 1 1 1 1 T25 0.69 0.84 0.93 0.98 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00

T26 1 1 1 1 1 1 1 T26 0.07 0.16 0.31 0.50 0.69 0.84 0.93 0.98 0.99 1.00 1.00 1.00
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Matrix from [167] on the left and the probabilistic Delivery Matrix on the right. The qualitative 

LEAP Delivery Matrix uses zero (0) to indicate that the capability is either on time or not needed 

in a specific time period and one (1) to indicate that the capability is late. In Figure 4-18, late 

capabilities are highlighted in red in the qualitative Delivery Matrix. The quantitative LEAP 

Delivery Matrix gives the probability of the capability being ready in a time period it is needed, or 

a negative one (-1) if the capability is not needed. In the quantitative Delivery Matrix in Figure 

4-18, the color scale goes from low likelihood of delivering a needed capability (red) to a high 

likelihood of delivering the needed capability (green). White cells indicate when the capability is 

not needed. 

 

Figure 4-18. Qualitative (left) and quantitative (right) Delivery Matrices, based on [167] 

In the qualitative Delivery Matrix, capability C7 is late marked as late to need in 2028 (a red 

1). However, in the quantitative matrix, the probability of delivering C7 in 2028 is 0.153. While 

this probability is small, there is still a chance of delivering the capability on time. There is a 

greater than 50% chance that C7 is delivered in 2031, while the qualitative matrix says that it still 

will not be ready. Other capabilities, such as C5, may be late (a 50% chance of delivering in 2022) 

at their first needed time period, a factor which is missed in the qualitative LEAP matrix. The 

C1 C2 C3 C4 C5 C6 C7 C1 C2 C3 C4 C5 C6 C7

2021 0 0 0 0 0 0 0 2021 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000

2022 -1 0 0 0 0 0 0 2022 -1.000 -1.000 -1.000 -1.000 0.501 -1.000 -1.000

2023 0 0 0 0 0 0 0 2023 0.724 0.417 -1.000 -1.000 0.758 -1.000 -1.000

2024 0 0 0 0 0 0 0 2024 0.901 0.732 -1.000 -1.000 0.912 0.507 -1.000

2025 0 0 0 0 -1 0 0 2025 0.973 0.912 0.790 -1.000 -1.000 0.775 -1.000

2026 0 0 0 -1 -1 0 0 2026 0.994 0.978 0.919 -1.000 -1.000 0.922 -1.000

2027 0 0 0 -1 -1 0 0 2027 0.999 0.996 0.975 -1.000 -1.000 0.979 -1.000

2028 0 0 0 0 -1 0 1 2028 1.000 0.999 0.993 0.976 -1.000 0.996 0.153

2029 0 0 0 0 -1 0 1 2029 1.000 1.000 0.999 0.994 -1.000 0.999 0.306

2030 0 0 0 0 -1 0 1 2030 1.000 1.000 1.000 0.999 -1.000 1.000 0.499

2031 0 0 0 0 -1 0 1 2031 1.000 1.000 1.000 1.000 -1.000 1.000 0.691

2032 0 0 0 0 -1 0 0 2032 1.000 1.000 1.000 1.000 -1.000 1.000 0.841
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movement away from the binary nature of the qualitative LEAP model increases the fidelity and 

the realism of the Delivery Matrix. The quantitative model clearly distinguishes between time 

periods where the capability is delivered on time and when it is not required. For example, the 

quantitative model identifies that capability C1 is required in 2023 and that there is a 72% 

probability of it being delivered on time. The qualitative model shows a zero (0) in the entry for 

C1 in 2023, which is interpreted as either delivering on time or not being needed. The increased 

fidelity of the model makes the quantitative LEAP model more effective in predicting outcomes 

for the stakeholders. 

The final calculation in the LEAP model is to determine the Investment Matrix, which 

highlights which technologies are contributing to the late delivery of capabilities in each time 

period. In the qualitative model, shown on the left of Figure 4-19, technologies T8 and T7 are 

identified as each contributing to a late capability starting in 2028 (shown as red boxes). The 

quantitative model, shown on the right side of Figure 4-19, shows the investment ‘score’ for each 

of the technologies in each time period with low values in green and high values in red. 
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Figure 4-19. Qualitative (left) and quantitative (right) Investment Matrices, based on [167] 

The values in the quantitative Investment Matrix take on a slightly different meaning from those 

in the qualitative model. In the qualitative model, the Investment Matrix values indicate the count 

of the late capabilities that depend on the technology [160]. In the quantitative model, the value is 

a score that represents how important the technology is in driving late capability deliveries in the 

time period. For example, consider technologies T8 and T7 in 2028. In the qualitative model, they 

both have the same value (1) in the Investment Matrix since they each contribute to the late 

delivery of a single capability. In the quantitative model, the value for T8 is 0.5 and the value for 

T7 is 0.841 in 2028. The higher score for T7 indicates a higher potential ROI if the probability of 

delivering the technology on time could be increased. The cost to increase the delivery probability 

would need to be accounted for in any ROI calculation, but that is out of the scope of this paper. 

4.2.2.1.4.4 Accounting for Technical Debt in the Quantitative LEAP Process 

Including probabilities in the LEAP process enhances its ability to identify the technologies that 

can be potential sources of technical debt within a system development. Kleinwaks, Batchelor, and 

2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032

T1 0 0 0 0 0 0 0 0 0 0 0 0 T1 0.000 0.000 0.000 0.159 0.067 0.023 0.006 0.003 0.000 0.000 0.000 0.000

T15 0 0 0 0 0 0 0 0 0 0 0 0 T15 0.000 0.000 0.317 0.134 0.068 0.019 0.004 0.001 0.000 0.000 0.000 0.000

T2 0 0 0 0 0 0 0 0 0 0 0 0 T2 0.000 0.309 0.159 0.134 0.023 0.006 0.001 0.000 0.000 0.000 0.000 0.000

T4 0 0 0 0 0 0 0 0 0 0 0 0 T4 0.000 0.000 0.000 0.067 0.023 0.006 0.001 0.000 0.000 0.000 0.000 0.000

T6 0 0 0 0 0 0 0 0 0 0 0 0 T6 0.000 0.000 0.000 0.159 0.067 0.023 0.006 0.003 0.000 0.000 0.000 0.000

T3 0 0 0 0 0 0 0 0 0 0 0 0 T3 0.000 0.000 0.000 0.159 0.067 0.023 0.006 0.003 0.000 0.000 0.000 0.000

T8 0 0 0 0 0 0 0 1 1 0 0 0 T8 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.500 0.309 0.159 0.067 0.023

T10 0 0 0 0 0 0 0 0 0 0 0 0 T10 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.006 0.001 0.000 0.000 0.000

T11 0 0 0 0 0 0 0 0 0 0 0 0 T11 0.000 0.000 0.317 0.134 0.068 0.019 0.004 0.001 0.000 0.000 0.000 0.000

T12 0 0 0 0 0 0 0 0 0 0 0 0 T12 0.000 0.309 0.476 0.267 0.091 0.025 0.005 0.001 0.000 0.000 0.000 0.000

T7 0 0 0 0 0 0 0 1 1 1 1 0 T7 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.841 0.691 0.500 0.309 0.159

T13 0 0 0 0 0 0 0 0 0 0 0 0 T13 0.000 0.000 0.317 0.134 0.068 0.019 0.004 0.001 0.000 0.000 0.000 0.000

T5 0 0 0 0 0 0 0 0 0 0 0 0 T5 0.000 0.309 0.317 0.200 0.068 0.019 0.004 0.001 0.000 0.000 0.000 0.000

T9 0 0 0 0 0 0 0 0 0 0 0 0 T9 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

T14 0 0 0 0 0 0 0 0 0 0 0 0 T14 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.023 0.006 0.001 0.000 0.000

T22 0 0 0 0 0 0 0 0 0 0 0 0 T22 0.000 0.000 0.317 0.134 0.068 0.019 0.004 0.001 0.000 0.000 0.000 0.000

T21 0 0 0 0 0 0 0 0 0 0 0 0 T21 0.000 0.000 0.317 0.134 0.068 0.019 0.004 0.001 0.000 0.000 0.000 0.000

T16 0 0 0 0 0 0 0 0 0 0 0 0 T16 0.000 0.000 0.159 0.067 0.046 0.012 0.003 0.000 0.000 0.000 0.000 0.000

T17 0 0 0 0 0 0 0 0 0 0 0 0 T17 0.000 0.000 0.159 0.067 0.046 0.012 0.003 0.000 0.000 0.000 0.000 0.000

T18 0 0 0 0 0 0 0 0 0 0 0 0 T18 0.000 0.000 0.159 0.067 0.023 0.006 0.001 0.000 0.000 0.000 0.000 0.000

T19 0 0 0 0 0 0 0 0 0 0 0 0 T19 0.000 0.000 0.159 0.067 0.023 0.006 0.001 0.000 0.000 0.000 0.000 0.000

T20 0 0 0 0 0 0 0 0 0 0 0 0 T20 0.000 0.000 0.000 0.000 0.159 0.067 0.023 0.006 0.001 0.000 0.000 0.000

T23 0 0 0 0 0 0 0 0 0 0 0 0 T23 0.000 0.309 0.159 0.134 0.023 0.006 0.001 0.000 0.000 0.000 0.000 0.000

T24 0 0 0 0 0 0 0 0 0 0 0 0 T24 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.000 0.000 0.000 0.000

T25 0 0 0 0 0 0 0 0 0 0 0 0 T25 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

T26 0 0 0 0 0 0 0 0 0 0 0 0 T26 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.023 0.006 0.001 0.000 0.000
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Bradley [19] use the technical debt metaphor to reflect the long-term system impacts of short-term 

decisions. The LEAP framework enables a system developer to rapidly assess the potential for 

long-term impacts of short-term decisions that impact the development of critical technologies and 

capabilities. For example, system developers are often faced with choices on the sequencing of 

technology development due to cost, schedule, and performance limitations. Often, a particular 

technology is delayed because it is viewed as less valuable, even though it may be necessary for 

later development tasks.  

In the LEAP model, technologies with the high potential for technical debt manifest themselves 

in the Investment Matrix. Higher scores in the Investment Matrix indicate increased dependencies 

on on-time delivery and therefore the potential for impacts due to the presence of technical debt. 

With the probabilistic nature of the quantitative LEAP model, these relationships become clearer 

as the potential late delivery of a technology can be assessed, including its cascading impacts on 

the delivery of capabilities.  

4.2.2.1.5 Conclusions and Future Work 

Including probabilities within the LEAP framework enables a more realistic assessment of the 

ability of the system to deliver in time to meet the stakeholders’ needs. This research updates the 

LEAP process defined in [160] to account for a probabilistic Development Matrix and to propagate 

those probabilities through the system. This update is critical to better align the LEAP process to 

real-world systems. Real systems do not guarantee system delivery in a specific time period and 

the ability to estimate the likelihood of delivery allows for higher fidelity modeling. 

The user of the quantitative LEAP process can more accurately assess the potential for 

achieving technology development by determining the increase in the likelihood of delivering a 

capability. An achievement initiative may speed up technology development, but does not 
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guarantee that the technology will be achieved in a specific time frame. The quantitative LEAP 

process enables the modeling of this change in probability, instead of an assumption of complete 

success. This change in probability can also be mapped more directly to an implementation cost, 

enabling a calculation of the ROI for these decisions. The score in the Investment Matrix provides 

a more refined estimate of the impact of a technology’s late delivery, highlighting the potential for 

higher ROI. 

These updates to the process represent the second step in defining a full process for accounting 

for technical debt within system development planning, as defined in [160]. Similar to the 

qualitative model, the quantitative LEAP framework highlights technologies with the potential for 

introducing technical debt into the system. Combining the quantitative LEAP framework with a 

scheduling model that accounts for technical debt will highlight the downstream impacts of the 

technical debt on the delivery of system capabilities. By modeling the impact of the technical debt 

of one technology on its successor technologies in the development cycle, the probabilities of 

delivering each technology in a defined time period can be estimated. These estimates, when 

included in the quantitative LEAP process, will provide insight to system stakeholders to enable 

proper investment decisions to limit the risk of late deliveries. Further verification and validation 

of the process includes implementing the quantitative LEAP process on additional real-world 

systems to identify insights provided by the process to assist users in delivering capabilities on 

time.  

4.2.3 Summary of LEAP Quantitative Updates 

With the updates to the mathematical processes defined in this section and the ability to 

determine a probabilistic development matrix discussed earlier, the LEAP process is ready to use 

within a release planning context, as described in the following section. 
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4.3 Including Proactive Technical Debt Assessments in Release Planning 

Several authors [28] [91] [94] have discussed the inclusion of technical debt in release planning. 

However, the focus of most of their work has been on deciding when to repay the technical debt 

and when to let the technical debt remain in the system. For example, Schmid [94] provides a 

quantitative assessment of the value of repaying technical debt compared to the risk of leaving it 

in the system. This assessment can be used to assist in deciding when to repay technical debt by 

performing a value trade. While accounting for technical debt repayment is required to maintain a 

healthy system, it is a reactive mechanism for dealing with technical debt.  

A proactive mechanism for considering technical debt in release planning would identify the 

potential long-term impacts due to the inclusion or exclusion of features in each release of the 

system. Running these tools in conjunction with a traditional release planning algorithm would 

enable the incorporation of technical debt forecasts and risk assessments into the planning cycle.  

In release planning activities, the features are selected and prioritized based on their value, 

either to the stakeholders, the developers, or a combination of both [93]. Traditional release 

planning methods do not have a method for assessing the potential technical debt introduced into 

the system due to the selected order of feature development. Taking the selected development 

order and running it through the LEAP process provides an assessment of the potential for 

technical debt. The following section describes how to use the LEAP process as a decision support 

system for release planning. 

4.3.1 LEAP as a Decision Support System for Release Planning  

The complete LEAP process involves accounting for technical debt to create probabilistic 

technology development timelines and then using those probabilities to assess the ability to deliver 

capabilities that meet the stakeholders’ temporal needs. The process identifies sources of outside 
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investments to achieve earlier technology development. The final LEAP phase, the Procure phase, 

involves the execution of a system iteration or release to develop and deliver a set of capability. 

The accomplishments of that delivery are then fed back into the need and capability decomposition 

in an iterative manner to inform future releases. 

The LEAP process is a decision support system that can be used to support release planning 

while accounting for technical debt. The technology development timelines created in the Evaluate 

phase represent the release plan – the order in which technologies and features will be developed. 

The process then evaluates this plan to determine if capabilities are delivered on time to the 

stakeholders. The Investment Matrix indicates which technologies are likely to produce the largest 

return on investment if their development timelines are changed. 

By explicitly and mathematically tying the development of technologies to the temporal 

satisfaction of stakeholder needs, the LEAP process becomes a tool for evaluating release plans 

and project schedules. It enables an assessment of the specified release plan and its projection into 

the future. The LEAP process accounts for technical debt by identifying the impacts of technical 

concessions based on the temporal ability to satisfy stakeholder needs.  

4.3.1.1 Example of LEAP as a Decision Support System in Incremental Development 

While the LEAP process was originally designed for use within iterative system development, 

it can also be used within a single iteration to identify critical technologies and the impacts of 

technical debt. Williams [173] presents a schedule for the development of an aircraft which was 

used as the baseline for the evaluation of technical debt impacts using Monte Carlo schedule 

analysis techniques [169]. The next sections demonstrate how the LEAP process can be used with 

this example project.  
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In the LEAP process, the first step is the List step, which identifies the stakeholder needs and 

decomposes them into tactical capabilities and their component technologies. To demonstrate the 

use of the quantitative LEAP mode, the aircraft development project is assumed to be an 

incremental development project with the following increments: 

1. Design completion; 

2. Manufacturing of d/b (development batch, or test) components; 

3. Assembly of d/b aircraft; 

4. Flight trials; and, 

5. Production of components leading to the ready to assemble state. 

Therefore, the overall stakeholder need – the assembly of the aircraft, can be decomposed into 

a capability representing each increment in the above list. These capabilities are further 

decomposed into the technologies identified as the tasks in the schedule in [173]. The 

interdependencies of the technologies are identified through the schedule as well. Figure 4-20 

shows the relationship between the tasks, color coded by increments. The numbers represent the 

identifier for each of the tasks. 
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Figure 4-20. Aircraft example task relationships to increments 

The resulting Technology Matrix is shown in Figure 4-21 and the resulting Functional Matrix 

is shown in Figure 4-22, which completes the List phase of the LEAP process. Note that the project 

represented in this analysis consists of dependent technologies, and therefore the mapping of 

capability to technology only includes the last technologies in the dependency tree, as identified 

in the Technology Matrix. This restriction is required to enable proper calculation of probabilities 

[186]. For the technical debt analysis, the T, 𝛼𝛼, r, 𝜏𝜏, and U parameters must also be set during this 

phase. 𝛼𝛼, T, and U are set corresponding to the compounding interest case in [169]. r and 𝜏𝜏 will be 

varied to demonstrate the impacts of technical debt on the ability to deliver the system on time. 
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Figure 4-21. Technology Matrix for aircraft example. Based on [173] 

 

Figure 4-22. Functional Matrix for aircraft example 

The next phase in the LEAP process is the Evaluate phase, where the timelines required for 

capability delivery and the development timelines of the technologies are calculated and then 

combined into the Delivery Matrix [160]. For this analysis, it is assumed that the stakeholders were 

presented with the “no technical debt” schedule from [169], where the mean duration is 90.5 

months and the 90% point (the time at which there is a 90% probability that the system will be 

complete) is 101 months. It is further assumed that the stakeholders have agreed to adjust their 

need dates to accept delivery no later than 101 months after project start. Therefore, the need date 

for capability 4, having the aircraft ready to assemble, is set to 102 months after project start, 
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allowing for delivery throughout the 101st month. Using the maximum durations for predecessor 

tasks from [173], the need dates for the other capabilities can be set as shown at the top of Figure 

4-23. These dates result in the Need Matrix shown in Figure 4-23, where the time periods are listed 

as months after program start.  

 

Figure 4-23. Need Matrix for aircraft example. 

Using the schedule analysis techniques defined in [169], a Monte Carlo analysis was run to 

produce the estimated development timelines for each technology. Figure 4-24 shows the 

Development Matrix created as a result of the schedule analysis. 
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Figure 4-24. Development Matrix for aircraft example 

This probabilistic matrix is used as the input to the quantitative LEAP process defined in [186] 

to produce the Delivery Matrix shown in Figure 4-25. If need satisfaction is assessed as the 

probability of completing capability 4 when needed, then there is 91% chance of delivering the 

system on time at month 102 without the presence of technical debt. This result is shown 

highlighted in the red box in Figure 4-25. While the overall project has a relatively high probability 

of delivering on time, several of the increments, represented by the capabilities, are likely to be 

late to need. Capability 0, the component design, only has a 57% change of completing by the 
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stated need date and capability 1, the manufacturing of the test articles, only has a 51% chance of 

being complete. However, these delays are compensated for by the overall schedule margin. 

 

Figure 4-25. Delivery Matrix for aircraft example 

The Investment Matrix shows the technologies that have direct impact on the late delivery of 

capabilities [160]. The calculated Investment Matrix for the aircraft example is shown in Figure 

4-26. The larger values in the Investment Matrix indicate which technologies would most benefit 

from investments to increase the speed of delivery. In this instance, technologies 1, 4, and 7 have 

the largest values in the Investment Matrix, indicating that they have the largest overall impact. 

These technologies drive the development of their respective capabilities, which can be determined 

by examining the Functional Matrix. In this case, however, there is not likely a large return on 
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investment available by investing in these technologies, as the overall project has a 91% chance of 

delivering on time.  

 

Figure 4-26. Investment Matrix for aircraft example 

In this analysis, the component designs, represented as Capability 0, are only 57% likely to be 

delivered at the need date specified by the stakeholders (month 43). The Investment matrix shows 

that it is primarily Technology 1, the engine design, that is driving this late delivery. During project 

execution, stakeholders may push for an earlier release of the engine design with the perception 

that the entire aircraft project will be late. Since schedule pressure is a primary cause of technical 

debt [18], it is reasonable to assume that this pressure could create technical debt in the engine 
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design, which could then percolate through the system. Technical debt could easily be added to 

other technologies within the system in similar manners. 

To isolate the impacts of technical debt on a particular technology, variations in r and 𝜏𝜏 were 

input for each technology. Using the above example, and analysis was performed iterating through 

values of r and 𝜏𝜏 from 0.1 to 1 in steps of 0.1 for each technology while leaving the other tasks 

unchanged. The technical debt was assumed to compound with time and r and 𝜏𝜏 were assumed to 

have the same value for each successor technology. For example, if Technology 1 creates the 

technical debt, r and 𝜏𝜏 for Technology 1 are left unchanged, but r and 𝜏𝜏 for its successor tasks 

(Technologies 4, 7-9, and 12-15) are all set to the same values, which are varied through the 

analysis. After setting the parameters for each run, the Development Matrix is created through a 

Monte Carlo analysis. The Development Matrix is then input to the quantitative LEAP process to 

determine the probability of satisfying the stakeholder needs. Figure 4-27 summarizes this process. 

 

Figure 4-27. Technical debt analysis process for individual tasks with the LEAP process 

Figure 4-28 shows the results of the analysis. In this figure, the probability of overall 

satisfaction, defined as delivering Capability 4 on time, is plotted against the id number of each 

case, where each case represents a different combination of r and 𝜏𝜏 values. The color coding 

indicates which technology was modeled as having technical debt in each case. Lower values on 

the y-axis indicate combinations of r and 𝜏𝜏 values for a particular technology that create a reduced 
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likelihood of delivering the entire project on time, represented as P(satisfaction). In the figure, it 

can be seen that Technologies 0 (blue circles), 1 (navy squares), 2 (orange exes), 3 (purple 

triangles), and 8 (green exes) have multiple combinations of r and 𝜏𝜏 values which produce 

substantially lower probabilities of delivering the system on time. Therefore, technical debt 

incurred on these technologies have a greater chance of longer-term impacts on the system 

development. 

 

Figure 4-28. Overall probability of meeting stakeholders’ needs for the aircraft example 

Figure 4-29 shows the probability of delivering the remaining four capabilities by their stated 

need dates for each case that was run. It can be seen that Technology 0, the general design, has a 

large potential impact on the ability to satisfy each capability if it incurs technical debt. Technical 

debt on Technologies 1, 2, and 3 also has substantial impacts on the delivery of Capabilities 1, 2, 

and 3. These tasks are the initial design tasks, and therefore their outsized impact on the delivery 

of system capabilities is not unexpected. However, the impact of Technology 0 was not highlighted 

in the initial Investment Matrix as a potential source of late delivery. It is only when technical debt 

is assessed that the impacts of the general design are revealed. Therefore, it can be concluded that 
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it is critical to minimize the technical debt incurred by the general design phase, which occurs 

early in the lifecycle.  

 

Figure 4-29. Satisfaction of each capability in the aircraft example 

The initial Investment Matrix (Figure 4-26) highlighted that Technology 1 had a large impact 

on the late delivery of Capability 0. However, this is due to the duration estimates of Technology 

1 and not to its technical debt. The technical debt incurred on Technology 1 does not delay 

Capability 0, but it will impact the delivery timelines of the completed aircraft. The reason for this 

impact can be explored in more detail. Figure 4-30 shows the average percent increase in task 

duration due to technical debt on specified predecessor tasks. The top plot shows the increase due 

to technical debt created by task 1 and the bottom plot shows technical debt created by task 11, 

which is independent from task 1 and occurs in a later increment. Technical debt from task 1 

increases the duration of subsequent tasks by up to 14%. Even tasks that are several steps away, 

such as task 12, experience duration increases of over 6%. Task 11, on the other hand, does not 

have a significant impact on future tasks, increasing durations by less than 2%, which is within the 



  

256 

error bounds of the Monte Carlo analysis. Note that the decrease in task 10 duration is also less 

than 2% and therefore within the same error bounds of the Monte Carlo analysis. 

 

Figure 4-30. Average percent increase in task duration due to technical debt on tasks 1 and 11 

Figure 4-31 examines the direct impact on development timelines of the technologies and 

delivery timelines of the capabilities due to the creation of technical debt by Technology 1. The 

top plot shows the average change in the development probability (the value in the Development 

Matrix) for each of the successors of Technology 1 across all the technical debt cases examined. 

The dashed line represents the overall probability of delivering the project on time. The technical 

debt from Technology 1 significantly decreases the probability of developing Technology 9 

(engine production) on time. In these cases, the probability of delivering the entire project doesn’t 
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reach the 90% threshold until month 114, twelve months later than the baseline case without 

technical debt.  

 

Figure 4-31. Impact of technical debt from task 1 on technology development and capability delivery 

The bottom plot of Figure 4-31 shows the average change in the delivery probability for the 

capabilities based on the technical debt induced by Technology 1. The sharp changes in the plot 

show the change at the specified need date for each of the capabilities, where probabilities 

significantly reduce for all capabilities except Capability 0. Capability 0 depends directly on 

Technology 1 but on none of its successors, and therefore the changes are due to the expected 

variations within the Monte Carlo analysis process. 
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Figure 4-31 averages the impacts of technical debt induced by Technology 1 across all the 

different variations of r and 𝜏𝜏 used in the analysis. However, understanding the separate 

contributions of r and 𝜏𝜏 can yield insight into how the technical debt impacts can be minimized: is 

it more important to limit the proportion of the successor task subject to the technical debt (lower 

values of r) or to minimize the delays associated with the technical debt (lower values of 𝜏𝜏)? 

Figure 4-32 shows the overall probability of meeting the stakeholder needs (completing the 

project on time) as a function of the changing values of r and 𝜏𝜏 for Technology 1. In this figure, it 

is clearly seen that 𝜏𝜏 has a greater individual impact than r. If 𝜏𝜏 is kept at or below 0.5, then the 

probability of meeting the need stays above 80%, regardless of the value of r. These results show 

that it is more important to limit the amount of delay caused by the technical debt compared to 

how much of the successor task is affected by the technical debt – in this example, small amounts 

of technical debt in more places cause smaller impacts than large amounts of technical debt in one 

place.  
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Figure 4-32. Probability of meeting stakeholders' needs based on r and 𝜏𝜏 for technology 1 

This analysis shows the ability of the LEAP process to identify the technologies that can cause 

program delays based on their technical debt parameters. Using the Investment Matrix, the key 

late technologies are identified, which can then be traced through the Technology Matrix to 

identify responsible predecessors. The analysis shows that the downstream impacts of technical 

debt, modeled as increased durations for successor tasks, can be responsible for delays in the 

delivery of capabilities. For example, technical debt associated with Technology 1 is more likely 

to prevent the on-time delivery than technical debt associated with Technology 9, the last task in 

the engine development sequence. This conclusion reinforces the understanding that early errors 

have a greater change to propagate through the system. Additional cases could be run combining 

technical debt parameters for each task to evaluate additional scenarios.  
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4.4 Conclusion 

This chapter addresses RQ3: How can technical debt be used as a guide in release planning? 

In the release planning process, it is critical to select features that not only deliver value to the 

stakeholders but that also do not incur significant technical debt. Within fixed-time iterations, it is 

easy for system developers and stakeholders to focus on the delivery of value to the detriment of 

the future health of the system. Proactive technical debt assessment can guide release planning by 

identifying the features within the system that are most likely to cause future problems if not 

addressed early. Within the release planning cycle, these features must be prioritized and also 

additional resources must be allocated to support additional evaluation and control of the 

development of these features. The occurrence of technical debt on a task does not necessarily 

impact that specific task’s development timelines, but could impact the overall ability to deliver 

the system on time. Therefore, proactive identification of tasks with large impacts on the rest of 

the system enables their development to be prioritized and the controls to be put in place to limit 

the potential for technical debt. For example, if a release is behind schedule due to two tasks, the 

system developer can assess which task has a higher potential downstream impact and divert the 

resources to ensure that task completes successfully. The developer can also assess and prioritize 

the repayment of technical debt in the next release given that they are aware that it has been 

introduced into the system. 

The quantitative LEAP process presented in this chapter can be used as a probabilistic decision 

support system to investigate the impacts of design choices on the ability to deliver in accordance 

with the stakeholder needs. By modeling technical debt through earned value analysis, the 

technical debt impacts associated with each potential decision can be quantified. Using these 

development timelines within the LEAP process enables a system developer to identify which 
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stakeholder needs and system capabilities are likely to be affected based on the decisions made 

during release planning. The system developer can identify which technologies need to have 

improved process controls to limit the impact of incurred technical debt. These capabilities enable 

the system developer to minimize the risks associated with technical debt, including technical 

bankruptcy. The next chapter defines technical bankruptcy in the context of the LEAP process and 

provides example usages of the LEAP process in industry.  
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CHAPTER 5  – AVOIDING TECHNICAL BANKRUPTCY 
 
 
 

5.1 Introduction 

The previous chapters introduced the concept of technical debt and the LEAP process, which 

is a proactive method to identify potential technical debt in system development. This chapter takes 

the process one step further by answering RQ4: How can the process and model be used to avoid 

technical bankruptcy? This research question is broken into three tasks, each of which are 

addressed in this chapter: 

• Task 4.1: Create a definition of technical bankruptcy within the context of the process and 

model outputs; 

• Task 4.2: Utilize the developed process and model at the Space Development Agency and 

report on the results; and; 

• Task 4.3: Create a simplified way of presenting and communicating the process and model. 

First, Task 4.1 is addressed by defining technical bankruptcy in the context of the LEAP process 

and demonstrating how the process can be used to proactively identify systems that are at risk of 

technical bankruptcy. Next, Task 4.2 is addressed through an example use of the LEAP process, 

demonstrating how the process has been used in real-world situations to identify potential sources 

of technical bankruptcy. Finally, a simplified presentation of the LEAP process is provided to 

address Task 4.3. 

5.2 Technical Bankruptcy in the Context of the LEAP Process 

The technical debt ontology introduced in Chapter 2 defines technical bankruptcy as “the state 

where the system can no longer proceed with its lifecycle until some, or all, of the system technical 
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debt is repaid” [21]. A system may not be able to proceed with its lifecycle due to considerations 

in any of the three system dimensions: budget, schedule, or performance. The term “technical 

bankruptcy” does not imply that a system is only limited in the performance dimension. Rather, it 

means that the buildup of technical debt has reached the point where the compromises made in the 

performance dimension can no longer be covered by margins held in the other dimensions. 

To determine the utility of the LEAP process to prevent technical bankruptcy, it is first 

necessary to define technical bankruptcy within the context of LEAP. The LEAP process utilizes 

technology and capability delivery timelines to indicate the health of the system. A healthy system 

has a sufficient probability of delivering capabilities on time to satisfy the stakeholders. Therefore, 

an unhealthy system is one which has an insufficient probability of delivering at least one 

capability on time, resulting in unsatisfied stakeholders. Definition 2 of the technical debt ontology 

states “Technical debt is the quantitative impact on the long-term health of the system accrued as 

the result of a technical compromise made to achieve a short-term benefit” [21]. Therefore, an 

unhealthy system can result from the accrual of technical debt. Within the LEAP process, the 

quantitative impact, and therefore the technical debt, can be measured as the difference in the 

delivery probability of capabilities as a result of a technical compromise.  

5.2.1 Quantifying Technical Debt in the LEAP Process 

Within the LEAP process, the quantitative impact of technical debt appears as changes in the 

probability of delivering a system that meets the stakeholder needs. The Delivery Matrix can be 

calculated prior to the implementation of a technical compromise. Then, the technical debt 

associated with that compromise can be estimated and a new Delivery Matrix calculated. The 

change in the delivery probabilities of each capability represent the quantitative impact of technical 

debt. Figure 4-31 shows this measurement by plotting the change in capability delivery 
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probabilities due to technical debt from a single task. In this figure, the technical debt is modeled 

as a random variable and its impacts are averaged. However, the same calculation could easily be 

applied to a single case.  

Using the same aircraft scenario used in Chapter 4, an example scenario can be developed and 

examined. Assume that due to the anticipated late delivery of the engine design task, which is 

delaying the entire design increment, stakeholders pressure the development team to release the 

design sooner. The system developers determine that there are two ways that they can speed up 

the design release within the allocated budget. They can either reduce the amount of performance 

modeling of the engine design, incurring modeling and simulation debt, or they can reduce the 

design documentation, incurring documentation debt. If the performance modeling of the engine 

is reduced, then the maximum duration of the engine design task is reduced from 55 months to 45 

months and the most likely duration is reduced from 32 to 27 months. If the documentation 

associated with the engine design is reduced, then the maximum duration of the engine design task 

is reduced from 55 months to 50 months and the most likely duration is reduced from 32 to 30 

months. Figure 5-1 shows the resulting availability of the design capability, as calculated by the 

LEAP process. For this scenario, reducing the performance modeling, and thereby incurring 

modeling and simulation debt, increases the likelihood of delivering the design at the need date of 

month 43 by approximately 0.13, while reducing the documentation increases the delivery 

probability by approximately 0.09. Therefore, reducing the performance modeling appears to 

provide the highest probability of accelerating the release. 
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Figure 5-1. Design capability availability 

To understand the technical debt impacts, the technical debt parameters (r and 𝜏𝜏) are 

enumerated for each case as shown in Table 5-1. The modeling and simulation debt has the 

potential to significantly impact the engine and frame flight trials, since incomplete modeling may 

misrepresent the capabilities of the design. Modeling and simulation debt may also impact engine 

development, as the actual engine test cases may fail due to improper modeling assumptions. The 

modeling and simulation debt will have limited impact on the production of the engine and 

integration of the aircraft. This impact is captured through larger values of 𝜏𝜏 when r is specified. 

The documentation debt affects a larger number of successor tasks due to incomplete 

documentation. However, for most tasks, the individual impacts are smaller since it is expected 

that personnel will be available to provide information in support of later tasks, even if that 

information is not written down. The documentation debt impacts are assumed to be larger on the 

immediate successor tasks, engine development and d/b engine manufacture. These impacts are 

captured by larger values of r with smaller values of 𝜏𝜏. In all cases, r and 𝜏𝜏 are modeled as normally 

distributed variables. Table 5-1 defines the mean (𝜇𝜇) and standard deviation (𝜎𝜎) used for each 

parameter in each analysis case. 
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Table 5-1. Technical debt parameters for engine design choice 

Successor Task Modeling and Simulation Debt Documentation Debt 

Engine Development 𝑟𝑟: 𝜇𝜇 = 0.5,𝜎𝜎 = 0.2 𝜏𝜏: 𝜇𝜇 = 0.5,𝜎𝜎 = 0.3 

𝑟𝑟: 𝜇𝜇 = 0.5,𝜎𝜎 = 0.2 𝜏𝜏: 𝜇𝜇 = 0.5,𝜎𝜎 = 0.2 

Engine Production 𝑟𝑟: 𝜇𝜇 = 0,𝜎𝜎 = 0 𝜏𝜏: 𝜇𝜇 = 0,𝜎𝜎 = 0 

𝑟𝑟: 𝜇𝜇 = 0.2,𝜎𝜎 = 0.1 𝜏𝜏: 𝜇𝜇 = 0.2,𝜎𝜎 = 0.05 

D/b Engine Manufacture 𝑟𝑟: 𝜇𝜇 = 0,𝜎𝜎 = 0 𝜏𝜏: 𝜇𝜇 = 0,𝜎𝜎 = 0 

𝑟𝑟: 𝜇𝜇 = 0.5,𝜎𝜎 = 0.2 𝜏𝜏: 𝜇𝜇 = 0.5,𝜎𝜎 = 0.2 

Assemble d/b Aircraft 𝑟𝑟: 𝜇𝜇 = 0,𝜎𝜎 = 0 𝜏𝜏: 𝜇𝜇 = 0,𝜎𝜎 = 0 

𝑟𝑟: 𝜇𝜇 = 0.2,𝜎𝜎 = 0.1 𝜏𝜏: 𝜇𝜇 = 0.2,𝜎𝜎 = 0.05 

Engine/frame Flight Trials 𝑟𝑟: 𝜇𝜇 = 0.9,𝜎𝜎 = 0.2 𝜏𝜏: 𝜇𝜇 = 0.8,𝜎𝜎 = 0.2 

𝑟𝑟: 𝜇𝜇 = 0.2,𝜎𝜎 = 0.1 𝜏𝜏: 𝜇𝜇 = 0.2,𝜎𝜎 = 0.05 

Avionics Production 𝑟𝑟: 𝜇𝜇 = 0,𝜎𝜎 = 0 𝜏𝜏: 𝜇𝜇 = 0,𝜎𝜎 = 0 

𝑟𝑟: 𝜇𝜇 = 0.2,𝜎𝜎 = 0.1 𝜏𝜏: 𝜇𝜇 = 0.2,𝜎𝜎 = 0.05 

Airframe Production 𝑟𝑟: 𝜇𝜇 = 0,𝜎𝜎 = 0 𝜏𝜏: 𝜇𝜇 = 0,𝜎𝜎 = 0 

𝑟𝑟: 𝜇𝜇 = 0.2,𝜎𝜎 = 0.1 𝜏𝜏: 𝜇𝜇 = 0.2,𝜎𝜎 = 0.05 

Ready to Assemble 𝑟𝑟: 𝜇𝜇 = 0,𝜎𝜎 = 0 𝜏𝜏: 𝜇𝜇 = 0,𝜎𝜎 = 0 

𝑟𝑟: 𝜇𝜇 = 0.2,𝜎𝜎 = 0.1 𝜏𝜏: 𝜇𝜇 = 0.2,𝜎𝜎 = 0.05 

 

The values in Table 5-1 were input into the LEAP process, starting with the generation of a new 

Monte Carlo schedule analysis. Figure 5-2 shows the outcome of the process, with the availability 

timelines of the ready to assemble task on the left and the delivery timelines of the same task on 

the right. These figures clearly show that the modeling and simulation debt has a larger impact on 

the ability to deliver the entire system, reducing the probability of delivery to 0.81 at the specified 

need date of 102 months. If the design capability was accelerated by reducing the documentation 

instead, then the probability of delivering the final system at month 102 would be 0.87, which is 

closer to the baseline value of 0.91. This analysis provides a quantitative measurement of the 

technical debt impact by measuring the likelihood of capability delivery. In this case, the analysis 

demonstrated that a choice that may appear more advantageous initially introduces additional 

technical debt into the system, resulting in a greater long-term impact. This result highlights the 

need to model technical debt throughout all phases of the system to ensure that technical 

concessions, if required, are chosen such that the lowest risk is imparted to the system 

development.  
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Figure 5-2. Comparison of technical debt impact on ‘ready to assemble task’ completion probability 

5.2.2 Assessing Technical Bankruptcy with the LEAP Process 

Having demonstrated the ability to assess technical debt within the LEAP process, it is 

necessary to determine when the system can no longer proceed with its lifecycle. A system which 

is proceeding with its lifecycle is continuing its development according to plan; there are no 

increases to schedule or cost outside of previously allocated system margins and the performance 

is within the required bounds. Therefore, if a system cannot proceed with its lifecycle, then it must 

acquire extra funds, increase its development timeline, or alter requirements to accept reduced 

performance. 

Within the LEAP process, technical bankruptcy manifests as the inability to develop 

technologies on the timelines required to satisfy the stakeholder needs. The timeline, cost, and 

performance of a system are related through the triple constraint, which defines the interconnected 

nature of project time, scope, and cost [193]. Therefore, a change in schedule can be related to a 
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change in cost or to a change in performance (or both). For example, a longer schedule may be 

required due to rework required to reach desired performance levels and an increase in funding 

may enable a shortening of that schedule. By modeling the technology development using time, 

the LEAP process enables a stakeholder to ‘buy back’ time through increasing funding or 

decreasing performance requirements. 

Hence, if the required technology development timelines cannot be adjusted within the 

available margins of funding or performance, then the system cannot proceed with its lifecycle: it 

is technically bankrupt. The severity of the bankruptcy and its mitigations will be project-

dependent and based on the prioritization and importance of the individual stakeholder needs. A 

system that is likely to be technically bankrupt can be identified from the Delivery Matrix by the 

presence of cells where the probability of capability delivery is less than a threshold value specified 

by the system stakeholders. For example, Section 4.3.1.1 defined a large number of Monte Carlo 

simulations. Figure 5-3 shows a section of the Delivery Matrix from one of these simulations. In 

this Delivery Matrix, Capability 4 is unlikely to be delivered in time period 102 (only 18% likely), 

which is the time that it is needed by the stakeholder. The stakeholder’s threshold is 90% 

probability of delivery. In this particular case, technical debt on the engine design task is driving 

the late delivery of the capability which results in the potential for technical bankruptcy.  
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Figure 5-3. Delivery Matrix showing potential technical bankruptcy 

Although the Delivery Matrix identifies the potential for technical bankruptcy, it does not 

declare a system bankrupt. This distinction is necessary because a system developer may still be 

able to take actions to adjust the values in the Delivery Matrix to increase the likelihood of meeting 

the stakeholder needs. For example, the developer could follow the Achieve phase of the LEAP 

process to develop long-lead technologies outside of system procurement. Within an iteration, the 

system developer could increase resources to decrease the development time of a specific 

technology or to decrease the likelihood of a technology introducing technical debt to the system. 

The sequence of tasks could also be rearranged to develop more impactful technologies earlier in 

the iterative development cycle, even if they provide less initial value. 

Therefore, the LEAP process does not provide an absolute determination of a technically 

bankrupt system. Instead, it provides leading indicators that a system is heading towards technical 

bankruptcy, in a timeframe where the system developer may still take steps to avoid reaching 

bankruptcy. 
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5.3 Using LEAP to Avoid Technical Bankruptcy  

The LEAP process is a proactive process, and therefore can be used to avoid technical 

bankruptcy. The LEAP Delivery Matrix identifies which capabilities are not likely to be developed 

in time to meet the stakeholders’ needs. Modelling different sequences of technology development, 

investments to achieve earlier capability development, and different procurement strategies can all 

be accounted for in the LEAP process to investigate the ability to satisfy the stakeholder needs.  

The utility of the LEAP process in assessing technical bankruptcy can be evaluated by using 

the aircraft assembly example from Chapter 4. In this example, the system design capability is 

likely to be late to need, even though the overall system delivers on time. The lateness of the first 

design tasks could induce stakeholders to push for early delivery, resulting in technical 

compromises and creating technical debt. As seen in Figure 4-28, if that technical debt is limited 

and controlled, then the system still has a high likelihood of satisfying the stakeholder needs. 

However, if the technical debt is not carefully managed, then it may drive the system to technical 

bankruptcy. 

The ability to quantify these technical debt aspects leads to an evaluation of potential technical 

bankruptcy within the LEAP process. Figure 5-4 shows the activity diagram by which the LEAP 

process is used to assess the potential for technical bankruptcy. The process starts with List phase 

of the LEAP process, shown in light blue in Figure 5-4. This phase decomposes the stakeholder 

needs into capabilities and creates the Functional Matrix. The creation of the Technology Matrix 

is updated to include the identification of technical debt parameters (r, 𝜏𝜏, and 𝛼𝛼) between 

dependent technologies. Once all the dependencies are defined, the Evaluate phase of the LEAP 

process is executed, shown in dark blue. This phase runs the schedule analysis, accounting for 

technical debt, to create the Development Matrix and evaluates the stakeholder timelines to 
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produce the Need Matrix. These matrices are combined to produce the Delivery Matrix. If the 

Delivery Matrix outcomes are acceptable, then the system moves directly to the Procure phase, 

shown in yellow. In the Procure phase, the release plan is set. With stakeholder concurrence, the 

system is procured and the next iteration of the process begins with the List phase for the next 

release. If the stakeholders do not concur with the release plan, then there is the potential for 

technical bankruptcy, highlighted in orange.  
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Figure 5-4. Activity diagram for assessing technical bankruptcy with LEAP process 
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If the Delivery Matrix is unacceptable, then the system moves into the Achieve phase, shown 

in green. Within this phase, the Investment Matrix is created enabling the identification of driving 

technologies. At this point, the system developer has several choices to adjust the delivery 

timelines. The development schedule can be adjusted to prioritize the driving technologies, 

additional resources can be applied to manage and control the potential technical debt, or 

investments can be made in independent technologies to accelerate their development. If any of 

these outcomes are possible, then the development order and dependencies will have changed and 

the process repeats, starting with the creation of the Technology Matrix. If none of the outcomes 

are possible, then the system has the potential to be technically bankrupt, highlighted as the dark 

orange activity. 

If the system reaches the potential bankruptcy state, then the system developer must work with 

the stakeholders to determine if there is flexibility in the set of stakeholder needs in any of the 

system dimensions. If there is flexibility, then the process resets back to the start of the List phase 

with a redefinition of the stakeholder needs. If there is no flexibility, then the system is technically 

bankrupt (shown in red in Figure 5-4): it cannot satisfy the stakeholder needs and therefore will 

not be able to continue with its lifecycle until some other change is executed, such as acquiring 

additional resources to adjust development timelines. 

The choices made within the Achieve phase of the process show the utility of the LEAP process 

as a decision support system. If the system developer has a choice of when to develop internal 

technologies as part of their release planning cycle, they can adjust the development sequence. By 

adjusting the development sequence and evaluating the resulting Delivery Matrix, the developer 

can identify technologies that are more likely to induce large delays in the overall system 

development. These technologies can then be prioritized in the release plans, even if they do not 
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deliver high levels of perceived value to the stakeholder. The LEAP process enables rapid 

assessment of the development order and release plans to highlight the outcomes of different 

delivery cadences to support decisions.  

Technical debt mitigation is another important step that can be applied in the achieve phase. 

Capability delivery may be delayed due to technical debt induced by one of the technologies on 

the rest of the system. By tracing the late capabilities to the driving technologies and identifying 

the predecessors of those technologies, the source of technical debt can be found within the LEAP 

process. Resources can then be applied to either mitigate the occurrence of technical debt in the 

originating technology or to mitigate the effects of the technical debt on successor tasks. By 

enabling the identification of technical debt, the LEAP process allows the system developer to put 

controls in place to mitigate the effects. 

Finally, the achieve phase also highlights the ability to invest in independent technologies, 

where an independent technology is defined as one that is developed outside the scope of the 

current system. By adding resources to the independent technologies, the development timelines 

of those technologies may be accelerated, thereby reducing risk to the system under development. 

This step is especially important for iteratively developed systems. In these systems it is critical to 

understand the reliance on outside technologies and to limit the risk on a specific procurement by 

only including mature technologies [162]. The LEAP process proactively identifies these 

technologies and therefore can provide early indications to the system stakeholders on the risk 

associated with including the technologies in a given release. 

Iterating on the LEAP process with various assumptions of resource allocation, technical debt 

controls, and development schedules enables rapid assessments of release plans and timelines. 

These assessments can quantify the risks associated with each option. Therefore, the risk of 
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technical bankruptcy can be quantified and presented to the stakeholders. The following section 

provides an example application of the LEAP process and discusses the assessment of technical 

bankruptcy within each application. 

5.3.1 Example Applications 

The LEAP process described in [160] enables a decision maker to rapidly assess the impact of 

their decisions. The achieve phase of the process allows the decision maker to investigate different 

potential investments to determine which one best increases the chances of delivering capability 

on time to the stakeholders. This section provides two example applications of the LEAP process 

at the Space Development Agency (SDA). First, an application of the qualitative LEAP process to 

a notional selection of optical communications terminal investments is presented. Second, an 

example of the application of the quantitative LEAP process to identify and prevent potential 

technical debt within the iterative ground system development is presented. 

The qualitative LEAP application at SDA was presented at the 2023 INCOSE International 

Symposium [167] and the paper is reprinted here. 

5.3.1.1 LEAPing Ahead – The Space Development Agency’s Method for Planning for the 

Future 

5.3.1.1.1 Abstract 

The Space Development Agency (SDA) is a constructive disruptor within the Department of 

Defense, tasked with rapidly acquiring and delivering space-based capabilities. SDA delivers 

dozens of satellites on two-year cycles and this pace requires defined processes to ensure that the 

technology exists to support the required capabilities. SDA has developed a process called List, 

Evaluate, Achieve, Procure (LEAP) which is used to identify technologies that require additional 

development resources to meet both current Warfighter needs and those that will occur in the 
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future. This paper provides an illustrative example of SDA applying the LEAP process to the 

development of SDA’s optical communications terminals, demonstrating how it is used to identify 

critical technologies to be supported through investment opportunities that augment the system 

acquisitions.  

5.3.1.1.2 Introduction 

The Department of Defense (DoD) develops and delivers capabilities into the hands of the 

warfighters. In recent years, the DoD has emphasized rapid acquisition timelines - less than five 

years from program approval to delivery, with less than two years for urgent needs [32]. Achieving 

these objectives requires reducing the cycle time for a system, defined as the time from program 

start until the system is declared to have initial operational capability [33]. The actual cycle times 

for Major Defense Acquisition Programs (MDAPs) from 1997 to 2015 averaged 6.9 years with a 

median time of 7.6 years, both of which are above the planned values [194]. The Space 

Development Agency (SDA) was created in 2019 as a constructive disruptor within the Office of 

the Secretary of Defense to deliver space-based capabilities within this rapid acquisition 

environment. 

SDA will “deliver a minimum viable product – on time, every two years – by employing spiral 

development methods, adding capabilities to future generations as the threat evolves” [46]. SDA 

is building the Proliferated Warfighter Space Architecture (PWSA), a proliferated low Earth orbit 

(pLEO) constellation of hundreds of satellites providing missile warning, low-latency 

communications direct to the warfighter, alternate position navigation and timing services, and in-

space computation nodes. SDA is driven by the need to provide “good-enough” capability to the 

warfighter on a regular schedule, ensuring that the capability exists in time to meet the need. The 
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SDA delivery cycle, shown in Figure 5-5, provides a new release of capability, called a Tranche, 

on a two-year cadence [46].  

 

Figure 5-5. SDA capability delivery lifecycle 

Maintaining a two-year delivery cycle for a complex system eventually consisting of hundreds 

of satellites requires extensive planning and trade-offs. In the rapid acquisition environment, the 

development timelines cannot delay delivery of capability to the field (i.e., satellites on orbit 

providing support to tactical operations). Any changes to the planned capabilities delivered by the 

system have the potential to impact the future state of the system. When making any such changes, 

SDA must be careful not to introduce too much technical debt into the system. Technical debt, the 

negative long-term impacts of short-term decisions, can accumulate such that a system can no 

longer meet its requirements without first addressing the technical debt [60]. For example, a system 

developer may forgo completing interface documentation in order to release a component on 

schedule. The lack of that documentation complicates future development involving those 

interfaces and increases the cost and schedule of capability upgrades in the long-term. SDA 

developed the List, Evaluate, Achieve, and Procure (LEAP) process [160] to identify and assess 
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the current state of technology and identify investments required to deliver the capability required 

by the warfighter on schedule. 

This paper introduces the concepts that led to the creation of the LEAP process and presents an 

example of the use of the LEAP process within SDA. First, related work in the field of rapid 

acquisition development is reviewed. Next, the LEAP process is introduced and an overview of its 

use at SDA is provided. The next section provides an example of using the LEAP process at SDA, 

specifically focusing on the technology development of the optical communications terminals. 

Finally, the paper is concluded and recommendations for future work are presented. 

5.3.1.1.3 Related Work 

Traditional DoD programs emphasize meeting performance requirements at the risk of cost 

growth and/or schedule delays. Both the DoD and the Government Accountability Office (GAO) 

have identified best practices to mitigate these negative results. The DoD recommends that systems 

achieve technical maturity prior to Milestone B [195]. Milestone B is the transition point between 

the technology maturation and risk reduction (TMRR) phase and the engineering and 

manufacturing development phase (EMD) in a traditional acquisition program. Milestone B occurs 

after the system preliminary design review (PDR) and prior to the system critical design review 

(CDR) [196]. The GAO also recommends that systems achieve technical maturity [197] by 

Milestone B. In both cases, technical maturity is defined by the technology readiness level (TRL). 

The DoD recommends that systems achieve TRL 6, where a model or prototype of the system or 

subsystem is tested in a relevant environment, while the GAO recommends that systems achieve 

TRL 7, where the system prototype is tested in its operational environment [197]. In addition, the 

GAO recommends that systems achieve design maturity, where 90 percent of the design drawings 

have been released, by CDR [195].  
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Katz et al. [195] demonstrated that the technical maturity of a system is correlated with the 

schedule change of the system – a less technically mature system is more likely to experience 

schedule slips and budget increases. Schedule slips in defense systems, especially those designed 

to counter immediate adversary threats, can significantly impact the Warfighter. In these systems, 

a partial solution delivered now is more valuable than an optimal solution delivered late to need 

[162]. Tate [162] identifies seven different types of systems that can be delivered and fielded 

quickly: 

1. Commercially purchased products: existing products that require no additional 

development 

2. Upgrades to existing systems to add existing products and systems: adding mature 

technology and components onto an already mature system, where the addition does not 

put undue stress on the host system capabilities (size, weight, power, computational load) 

3. Integrating existing systems: combing already existing mature systems to produce a new 

system 

4. New systems developed through direct collaboration with the users to identify the required 

capabilities that should be fielded: Agile methods focusing on user feedback can evolve 

requirements instead of driving towards preset objective and threshold requirements 

5. New systems with limited requirements: systems that provide one or two critical 

capabilities while other capabilities may be at or below the current level in other systems 

6. New systems developed external to the program: leveraging a system developed by an 

external agency, such as corporate internal research, and demonstrated to high TRL. The 

system must only be modified to work within the operational environment 
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7. Modular subsystems that replace legacy subsystems: requires a modular architecture with 

sufficient design margin to accommodate the new upgrades 

With the exception of items (4) and (5), each of these types of systems relies on the reuse of 

existing technology and capability. 

Knoll, Fortin, and Golkar [198] identify that complex systems often involve concurrent design 

and therefore changes in one discipline must be propagated to the other disciplines. Decisions 

made in one discipline are not isolated events; they impact every other part of the system. Issues 

such as technical debt present in one discipline or one part of a system can aggregate and grow as 

the complete system is developed [80]. In iterative development systems, Sangwan et al. [91] 

identify the need to consider dependencies for release planning, which exist between the 

requirements and features, between features and architectural elements, and between all 

architectural elements.  

These processes and techniques identify the types of systems amenable to rapid development 

and methods for considering dependencies and impacts during system development. However, 

they do not provide guidelines for how to manage the dependencies across iterations to minimize 

increases in complexity during system development. To address this gap, Kleinwaks et al. [160] 

developed a process called List, Evaluate, Achieve, Procure (LEAP). The LEAP process provides 

mathematical processes to identify which technologies drive the development of capabilities 

required by the system users in both the functional and temporal dimensions. The process consists 

of four phases:  

• List – the identification of dependencies between the required capabilities and the 

supporting technologies 
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• Evaluate – the application of temporal needs to the capabilities and the determination of 

the ability to deliver capabilities on time 

• Achieve – the identification of technologies which require investments to accelerate their 

development, and  

• Procure – the acquisition of the system that will meet the user’s needs. 

5.3.1.1.4 SDA and the LEAP Process 

The PWSA is an interconnected set of ground and space-based systems with a priority on 

delivering each Tranche on schedule. Each satellite consists of optical communications terminals, 

radio frequency (RF) communications systems, on-board battle management systems, tactical data 

links, and mission payloads. Each Tranche is scheduled for launch approximately 30 months after 

contract award. To enable this schedule, SDA has adopted several of the principles from Tate 

[162], namely: 

• Leveraging commercial products where possible to reduce non-recurring engineering 

activities 

• Integrating new Tranches into existing Tranches to augment the delivered capability and 

to add new capability 

• Frequently collaborating with the users and the warfighters to ensure that the right 

capabilities are developed 

• Encouraging and leveraging the development of critical technologies outside of the SDA 

Tranches 

In developing each Tranche, SDA identifies which technologies are mature enough to include 

in the Tranche, such that non-recurring engineering (NRE) is limited. SDA developed the LEAP 

process [160] to identify the functional and temporal dependencies between the capabilities needed 
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by the Warfighter and the technologies that support those capabilities. This process provides a 

direct linkage between technology development timelines, system iterations, and the satisfaction 

of stakeholder needs not found in other similar processes. The LEAP process also identifies 

technologies that require investment such that they can support future Tranches. The ability of the 

LEAP process to identify both the functional and temporal dependencies is critical to SDA 

maintaining its rapid development schedule. 

SDA applies the four steps of the LEAP process as follows: 

1. List: identify the strategic (long-term) and tactical (short-term) capabilities required by the 

Warfighter and identify the technologies required to achieve these capabilities 

2. Evaluate: determine the current development timelines for the technologies and evaluate 

those timelines against the Warfighter’s need dates 

3. Achieve: identify the technologies that will be late to need and the create investments to 

accelerate the development of those technologies through programs and partnerships with 

other Government agencies and industry  

4. Procure: produce a solicitation to for a Tranche to proliferate the technologies that provide 

the capabilities to the Warfighter 

Each step in the LEAP process produces matrices that map capabilities to technologies and time 

periods. By following the steps in Kleinwaks et al. [160], it is possible to mathematically identify 

the technologies that will be developed late to need and the impact of each late technology on 

SDA’s ability to meet the Warfighter’s needs. 

5.3.1.1.4.1 Iterations within the LEAP process 

Figure 5-6 shows the technical timeline targeted by SDA starting with its first application of 

LEAP during the first quarter of Government Fiscal Year 2021 and broken into the various phases 
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of LEAP. The List, Evaluate, and Achieve phases occur for each Tranche as part of the road 

mapping exercise for the Tranche. A full cycle is performed approximately 18 months prior to the 

start of the system definition for the Tranche, allowing short-term achievements to positively affect 

the technology development timelines. A short LEAP cycle begins approximately one year prior 

to the release of the acquisition documentation. In this cycle, the List and Evaluate phases lead to 

the definition of the minimum viable product (MVP) for the Tranche, which represents the planned 

acquisition for the minimum viable capability (MVC) that the system will deliver. The MVP 

definition is socialized with industry through the Request for Information (RFI) process, and any 

last changes are made prior to the technology freeze (TF). The TF marks the beginning of the 

Procurement phase. At this point, the decision is made on which capabilities will make it into the 

solicitation including which, if any, will require development during the Tranche. Finally, the 

acquisition documentation is drafted (the draft solicitation (DS)) and released (the final solicitation 

(FS)) and the contract is awarded following standard Government acquisition processes. At award, 

the selected contractors are given authority to proceed (ATP) to begin developing the system. 

Within 30 months from ATP, the system is scheduled to achieve initial launch capability (ILC) 

consisting of the launch of the first set of newly developed satellites. Subsequent launches occur 

on a one-month cadence to complete the on-orbit population of the Tranche. 
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Figure 5-6. Example SDA timeline implementing the LEAP process in iterative fashion across multiple tranches 

Critical to the process is the inclusion of strategic achievements, indicated in the royal-blue 

sections of Figure 5-6. The Delivery and the Investment Matrices created as part of the Evaluate 

and Achieve steps clearly indicate which technologies and capabilities will be late to need not only 

for the next Tranche, but also for future Tranches. Early investments in developing these long-

term technologies reduce the risk in those future Tranches. Figure 5-6 shows the application of 

these long-term technologies through Tranche 5. 
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5.3.1.1.5 Application of LEAP to SDA’s Optical Communications Terminal Development 

A key pillar of the PWSA is the development of global beyond line-of-sight (BLOS), low-

latency, high data rate communications. This section provides a notional example of using the 

LEAP process on a subset of the development of this capability. The mathematical equations used 

to perform the matrix transformations are defined in Kleinwaks et al. [160]. 

5.3.1.1.5.1 LEAP Phase 1: List 

The List phase decomposes the stakeholder need into strategic and tactical capabilities and 

identifies the technologies required to support the tactical capabilities. Table 5-2 shows the 

breakdown of the need for BLOS, low-latency, high data rate communications into strategic and 

tactical capabilities. This need decomposes into two strategic capabilities: an optical 

communications network providing communications, and optical global operations - the ability to 

connect to multiple users anywhere on the globe at any point in time. These strategic capabilities 

are decomposed into tactical capabilities and then the enabling technologies are identified. The 

technologies may support one or more capabilities. In these cases, the technologies are listed in 

one row by their identifier only. 

Table 5-2. Decomposition of stakeholder needs to strategic capabilities, tactical capabilities, and technologies 

Strategic 

Capabilities 
Tactical Capabilities Technologies 

Optical 

Communications 

Network 

C1. Space-to-ground (S2G) 

optical communications 

T15. Communications standards 

T11. Multiple vendor interoperability 

T12. Tasking and scheduling algorithms 

T13. Common network protocols and routing mechanisms 

T21. Pointing, acquisition, and tracking algorithms  

T22. Bus stability 

C2. Space-to-space (S2S) 

communications in the same 

orbital shell (same altitude 

and inclination) 

T11, T12, T13, T15, T22, T21 

T5. Space-based mesh network 

T16. Space-to-space same vendor communications 

T17. Space-to-space different vendor communications 

T18. Space-to-space in-plane communications 

T19. Space-to-space out-of-plane communications 

T5, T11, T12, T13, T15, T16, T17, T21, T22 
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Strategic 

Capabilities 
Tactical Capabilities Technologies 

C3. Space-to-space (S2S) 

communications in different 

orbital shells 

T20. Space-to-space out-of-shell communications 

C4. High data rates T24. 1 Gbps data rates 

T25. 10 Gbps data rates 

T26. 100 Gbps data rates 

Optical Global 

Operations 

C5. Regional Access (the 

ability of the constellation to 

communicate optically with 

at least one user within a 

specified region for a 

specified period of time) 

T5, T12 

T2. Small satellite compliant size, weight, and power 

(SWAP) for bus and payloads 

T23. Ranges up to 6500 km 

C6. Global Access (the 

ability of the constellation to 

communicate optically with 

at least one user anywhere on 

the globe for a specified 

period of time) 

T2, T5, T12, T23 

T1. Commoditization of satellite bus and payloads 

T3. Satellite proliferation 

T4. Manufacturing at scale 

T6. Fleet-based environmental testing 

C7. Global Operations (the 

ability of the constellation to 

communicate optically with 

multiple users anywhere on 

the globe at any time) 

T1, T2, T3, T4, T5, T6, T12, T23 

T7. Multiple terrestrial users per space-based 

communications terminal 

T8. Mobile/transportable ground terminals 

T9. Orbit-aware network routing protocols 

T10. Operation in all lighting conditions 

T14. All weather communications 

 

The data in the table is translated into the Functional Matrix, shown in Figure 5-7, where only 

the capability and technology identifiers (e.g., C1 and T1) are used. The highlighted cells indicate 

the dependencies between the capabilities and technologies. The Functional Matrix shows that the 

identified technologies support multiple capabilities. 

 

Figure 5-7. Functional Matrix  
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In addition to the dependence of capabilities on technologies, there are also interdependencies 

between the technologies themselves. These interdependencies are captured in a design structure 

matrix (DSM) called the Technology Matrix. The Technology Matrix shown in Figure 5-8 has 

undergone a preliminary partitioning to make it a lower triangular matrix, which results in 

reshuffling of the technologies compared to the order in Table 5-2. Further ordering and 

partitioning can be performed to have the rows in the matrix correspond to the expected 

development order as well. The Technology Matrix is used to inform the technology development 

sequence included in the Development Matrix, which is discussed in the next section. 

 

Figure 5-8. Technology Matrix 

5.3.1.1.5.2 LEAP Phase 2: Evaluate 

The Evaluate phase starts with the identification of the capability need dates and the expected 

development timelines for each technology. SDA delivers its capabilities in two-year cycles which 

would imply a two-year time period for the LEAP analysis. However, as shown in Figure 5-6, the 
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procurements (FS) are released in the off years from the launches (ILC). To fully establish the 

technological availability, a maximum of a one-year spacing for the time periods is required. The 

Need Matrix for the tactical capabilities associated with delivering global BLOS high data rate 

communications is shown in the upper center of Figure 5-9, with one-year time periods through 

the notional Tranche 5 timeline. A value of one (1) in the Need Matrix indicates that a capability 

is needed in a time period and a blank cell indicates that the capability is not needed in the time 

period. Note that tactical capability C5, regional access, is only needed until tactical capability C6, 

global access, is delivered. 

The next step is to evaluate the technologies to determine their development timelines. The 

development timelines indicate when a technology is expected to be ready to incorporate into a 

larger capability development. The Development Matrix, shown on the left of Figure 5-9, includes 

the expected development timelines for the SDA technologies as estimated in 2020, prior to any 

investments or procurements. In this matrix, a one (1) indicates that a technology is expected to be 

fully developed in the time period and a blank cell indicates that the technology is not expected to 

be complete in the time period. 

With the Need and Development Matrices evaluated, the Availability Matrix is computed using 

the methods from Kleinwaks et al. [160]. The Availability Matrix shows when each capability is 

expected to be available based on the technical development timelines and the functional 

dependencies. A value of one (1) indicates that the capability is expected to be available in the 

time period and a value of zero (0) indicates that the capability is not expected to be available. The 

result, shown in the lower center of Figure 5-9, shows that tactical capability C1, S2G optical 

communications, and tactical capability C5, regional access, are expected to be available in 2022. 

Tactical capability C3, S2S optical communications in the same orbital shell, is expected to be 
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available in 2023. Tactical capability C7, global operations, is not expected to be available in the 

considered time frame, based on the current development path of its supporting technologies. 

The final step in the evaluation phase is to calculate the Delivery Matrix to determine which 

capabilities, if any, will be available late to need. This Matrix is shown on the right side of Figure 

5-9, with late capabilities highlighted in red. In the Delivery Matrix, a value of one (1) indicates 

that a capability is late to need: it is needed but not available. A value of zero (0) in the Delivery 

Matrix indicates that either the capability is available and not needed or the capability is not 

available but is not needed. A value of negative one (-1) in the Delivery Matrix indicates that the 

capability is available and not needed, either due to early delivery or the removal of the need 

(Kleinwaks et al. 2023). In this example, tactical capability C4, high data rates, is late by two years. 

It is needed in 2028, but not available until 2030. Tactical capability C7, global operations, is 

needed in 2028, but is not expected to be available in the specified time frame. Tactical capability 

C5, regional access, remains available after 2025 even though it is no longer needed. 
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Figure 5-9. Matrices used in the evaluation phase of the LEAP process 

5.3.1.1.5.3 LEAP Phase 3: Achieve 

The Delivery Matrix in Figure 5-9 clearly shows tactical capabilities that will be delivered late 

to need. The Achieve phase analyzes the technologies that contribute to the late delivery to 

determine investments that could accelerate the development of those key technologies. Within 

SDA, investment strategies include investing in technology development programs, partnering 

with other U.S. Government agencies, and encouraging industry growth and investment. Parallel 

investments may be made to reduce the risk associated with a single technology development 

cycle. Using the methods in Kleinwaks et al. [160], the Investment Matrix is calculated. This 

calculation determines the technologies that drive the late arrival of capabilities. The Investment 

Matrix is shown in Figure 5-10. Technologies that contribute to the late delivery of tactical 
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capabilities are highlighted in red. The number in the matrix indicates how many late tactical 

capabilities are contributed to by the technology in that time period [160]. 

 

Figure 5-10. Investment Matrix 

The Investment Matrix clearly shows that the following technologies contribute late delivery: 

• T7. Multiple terrestrial users per space-based communications terminal 

• T8. Mobile/transportable ground terminals 

• T10. Operation in all lighting conditions  

• T14. All weather communications 

• T26: 100 Gbps data rates 

Technologies T7, T8, T10, and T14 directly impact the ability to deliver the global operations 

tactical capability. Technology T26, 100 Gbps data rates, delays the high data rate tactical 

capability by two years. Of note is that SDA’s practice of using existing technology where possible 
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to minimize NRE on contracts limits the number of non-zero entries in the Investment Matrix. 

Technology T10 is a traditional non-functional requirement, specifying that the optical 

communications terminal must minimize the impact of communications outages due to solar 

impingement on the device. These types of technologies typically are lower priority during 

development, but the Investment Matrix makes clear that developing this technology, although 

potentially not seen as adding as much value as the other technologies, impacts the satisfaction of 

the stakeholders’ needs. 

The Investment Matrix identifies technologies which can benefit from additional investments 

to shorten the development timeline. SDA invests by encouraging industry development of new 

technologies. In 2021, SDA funded efforts shown in Table 5-3. Table 5-3 also identifies which 

technology is supported by each topic and the expected change in the development timeline of that 

technology. 

Table 5-3. SDA investments mapped to the enabling technologies 

Investment Technology Addressed 
Projected Change in Development 

Timeline 

Reduction of SWAP-C per bit T2. Small satellite compliant size, 

weight, and power (SWaP) for bus 

and payloads 

None. However, smaller terminals 

with less power are still beneficial 

Design for manufacturing 

considerations to support high-

rate production  

T4. Manufacturing at scale None, but improvements to 

manufacturing processes buy down 

system risk  

Demonstration of a path to 100 

Gbps for S2S comms 

T26. 100 Gbps OCTs The investment is expected to 

accelerate the development timeline 

from 2030 to 2026 

Development of low-cost, mobile, 

or fixed optical ground terminals 

T8. Mobile/transportable ground 

terminals 

Without the investment, there was no 

known timeline for creating these 

terminals. With the investment, the 

delivery timeline is expected to be 

2030 

Demonstration of enhanced S2G 

and space-to-air (S2A) links 

T14. All weather communications Without the investment, there was no 

known timeline for this technology. 

With the investment, the technology is 

expected to be ready for all-weather 

optical communications by 2026 
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Investment Technology Addressed 
Projected Change in Development 

Timeline 

Development of compact systems 

capable of supporting coherent 

(e.g., QPSK) and non-coherent 

(e.g., OOK) links 

T13. Common network protocols 

and routing mechanisms 

T17. Space-to-space different 

vendor communications 

Developing these technologies 

enables better S2S communication 

links and a more robust mesh 

network. With the investment, the 

technology is expected to be ready for 

inclusion in a procurement by 2027 

Demonstration of one-to-many 

optical terminal links 

T7. Multiple terrestrial users per 

communications terminal 

The investment is expected to 

accelerate the development timeline 

from 2035 to 2032 

 

The benefit of the investments made by SDA is seen by updating the Development Matrix with 

the new timelines. Then, the rest of the matrices are recalculated, which produces the updated 

Delivery and Investment matrices shown in Figure 5-11 with changes highlighted in green. 

Compared to the Delivery Matrix in Figure 5-9, it is immediately apparent that capability C4, high 

data rates, is achieved ahead of the user’s needs (values of negative one (-1) in 2026 and 2027). 

Capability C7, global operations, is achieved in 2032, which is still not in time to meet the 

stakeholder’s needs. The Investment Matrix (right side of Figure 5-11) shows that technologies T8 

and T7 are the sources for the delay in capability delivery. 
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Figure 5-11. Updated Delivery and Investment Matrices based on investments 

Technology T7 is the development of multiple terrestrial users per space-based optical terminal 

and the investment accelerates the development schedule to 2032. Technology T8 is the 

development of mobile and transportable optical ground terminals. Both of these technologies 

represent novel technologies that offer significant improvements in optical communications 

between space and ground. Even with the updated development timelines, the technologies may 

not be ready in time for inclusion in a procurement in 2028. Therefore, SDA will iterate on the 

LEAP process as a way to monitor the development progress of these technologies. SDA may 

choose to commit additional investments or to utilize the investments of partners to reduce the 

development timelines of these technologies. There may be other technologies that can achieve 

the same capability, such as including additional optical communications terminals on each 

satellite, and the results of the LEAP process indicate that these technologies should also be 

explored. The iterative nature of the LEAP process allows SDA to reconsider these investments 

and others in light of the changing needs of the Warfighter. 
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Technology T10 is the ability to operate optical communications terminals in all lighting 

conditions, including when the sun is in the field of regard. SDA’s investments do not directly 

address technology T10. Instead, data collected during the execution of the SDA Tranches that 

will establish if there is truly a need for a technological improvement to the optical 

communications terminals or if there is a planning solution that can provide the required network 

connectivity while working around solar exclusion angles. Therefore, this technology is expected 

to be developed in 2025, after of SDA’s Tranche 1 enters operations. As this example shows, 

technology can be advanced through materiel solutions or through non-materiel solutions, such as 

tactics, techniques, and procedures (TTP). LEAP is designed to aid technology advancement 

through materiel solutions and to help identify where TTP development may be a more appropriate 

solution. 

5.3.1.1.5.4 LEAP Phase 4: Procure 

SDA will monitor the progress of its investments to inform the capabilities that will be included 

in its Tranche 2 procurement and other future development efforts. SDA’s goal is to utilize as 

much proven technology as possible in each Tranche. The use of proven technology reduces the 

complexity of the satellites. Satellite complexity correlates with larger costs and development 

timelines [199]; therefore, a less complex system allows faster development timelines and reduced 

risk in large program acquisitions. Multiple iterations of the LEAP process will occur prior to the 

procurement release for each SDA Tranche to ensure that technology is developed in parallel with 

Warfighter needs. The iterative nature of the SDA development cycle allows for the adjustment of 

the requirements for a specific iteration to account for cases where technologies are not delivered 

on schedule.  
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5.3.1.1.6 Conclusions and Future Work 

In a rapid development program, like that used by SDA, it is necessary to ensure that technology 

is developed on a pace commensurate with the system delivery to reduce the need for NRE efforts 

as part of the development contract. However, when the system needs to incorporate new 

capabilities, it is often difficult to understand and track where and when outside development must 

happen to enable the rapid deployment of production systems. 

The LEAP process provides a mechanism to identify the functional and temporal dependencies 

between the required capabilities of a system and the technologies that enable those capabilities. 

SDA has applied the LEAP process to identify critical technologies that require investments to 

accelerate their development schedules. By using this process, SDA is ensuring that the 

technological landscape is ready to support the Tranche procurements that delivers the capabilities 

required by the Warfighter when they need them. 

The LEAP process will continue to be refined through use at SDA as it builds out the PWSA. 

The usage of LEAP for the selection of optical investments represents the first use of the newly 

developed process. Future developments on the process itself are defined in Kleinwaks et al. [160] 

and include implementing probabilistic estimations of the values in the Development Matrix. As 

it is currently defined, the Development Matrix assumes that a technology either is or is not 

developed in a particular time period. Modeling the probability of the technology being developed 

will produce a more usable process for the stakeholders. Additional future work will include 

investigating the scalability of the LEAP process to requirement sets beyond the specific set 

defined herein. The LEAP process is designed to be scalable, relying on matrix math to enable the 

rapid processing of large numbers of tactical capabilities and supporting technologies. Application 

beyond a small subset of capability will demonstrate this scalability and potential for widespread 
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use. SDA’s rapid development schedule provides an excellent testbed for the process and will 

guide its future refinement.  

5.3.1.2 Application of Quantitative LEAP to Iterative Ground System Development 

SDA is a schedule focused organization [46], producing and launching significant numbers of 

satellites in short time frames. As stated in Section 1.1.1.2, SDA delivers two-year tranches of 

satellites on two-year cycles, using a spiral development cycle where each tranche improves upon 

the capability of the previous tranche. This development cycle enables rapid fielding of critical 

capabilities [46]. In addition to the satellites, SDA also develops the corresponding ground system 

for each tranche. The ground systems are cyber-physical systems, where there is a large software 

component and a large hardware component, both of which must be managed and delivered on 

time.  

Within Tranche 1 of the SDA system, the ground system is developed using an incremental 

development approach. The first several increments focus on capability that is delivered on the 

ground and is gated by the ground readiness review (GRR) and the first satellite launch. On-orbit 

capability is increased through three increments, called Crawl, Walk, and Run. Within each on-

orbit increment, additional capabilities are brought into the ground system and additional levels of 

interoperability are implemented in the on-orbit constellation. Although the SDA satellites are the 

primary mechanism for delivering capability to the user, the ground system is a critical enabler of 

the satellites. The ground system must be developed on similar timelines and the resulting schedule 

pressure could easily create technical debt if it is not carefully managed. Therefore, this ground 

system is a logical choice of a system that could benefit from implementation of the LEAP process. 

The SDA ground system developer implements the Scale Agile Framework (SAFe) 

methodology [200], using 3-month program increments (PI) for planning and executing 
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development cycles. As part of the SAFe methodology, each feature is reviewed at each PI 

planning event and assigned a business value. The features with the highest business value are 

selected for implementation in that PI. This method leads to a value-based development cycle, 

which is susceptible to technical debt, as discussed in Section 3.3.3.1.3. The LEAP process was 

applied in the middle of the ground system development cycle, starting at PI-3. It was first used to 

qualitatively assess the state of delivery of the system. Next, the quantitative LEAP process was 

applied to understand the driving technologies behind any late capability deliveries and the risk of 

technical bankruptcy. The results of these applications are described in the rest of this section. 

The application of the LEAP process began with the List phase and an independent assessment 

of the system needs and a decomposition into capabilities by the system stakeholders. At the time 

of evaluation, the ground system developer had decomposed their requirements into their own set 

of capabilities and features. The set of capabilities identified by the stakeholders largely aligned 

with those in use by the ground system developer after adjusting for differences in nomenclature. 

These capabilities were mapped to the technologies provided by the ground system developer. This 

mapping resulted in the creation of the Functional Matrix and the developer’s PI schedule 

produced the Development Matrix. 

Since the ground system development had already begun, the stakeholders desired to get a quick 

understanding of the potential for technical bankruptcy of the system – was it on track to deliver 

on time or was it behind? Therefore, the qualitative LEAP process was applied. The qualitative 

LEAP process can be used to provide a rapid assessment of state of system delivery and a starting 

point for investigating which technologies may be driving late capability delivery. These results 

can then be used as a starting point for explorations into why the capabilities are late. The Evaluate 

phase began with the creation of the Need Matrix using the major increments (GRR, Launch, 
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Crawl, Walk, and Run) as the time periods. The ground system developer program increments 

were mapped to these major increments by associating the end date of the PI with the need date 

for the major increment. The resulting Delivery Matrix, shown in Figure 5-12, was calculated 

through the process. In the qualitative LEAP process, a value of one (1) indicates that a capability 

is late to need. From this matrix, it appeared that very few capabilities were on track to deliver on 

time, as indicated by the red cells. 

 

Figure 5-12. Initial qualitative LEAP Delivery Matrix 

The problems identified with the system delivery by the Delivery Matrix prompted discussions 

with the ground system developer. The developer’s original plan included executing testing and 

evaluation of new software capabilities for a full year prior to declaring them complete. However, 

SDA’s expectations were that some of this testing would occur with the on-orbit assets. Therefore, 

the stakeholders expected that the technologies would be considered complete once they are 

integrated into the deployed system, and not when the testing with the on-orbit assets is completed. 

This early conversation prevented a form of domain technical debt – where miscommunications 

about the needs of the stakeholders result in an improperly implemented system. Without this 

analysis, the system would have appeared to be late, potentially driving additional pressure from 

the stakeholders. 
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With the new definitions of task completeness in place, the quantitative LEAP process was 

executed. Delivery probabilities were assigned based on the priority of the features being 

developed in each PI as shown in Table 5-4. Low priority features assigned to PIs are still planned 

to be completed by the ground system developer, but they will be out-prioritized by other work if 

required. Therefore, even low priority features have a relatively high probability of completion. If 

a feature was not planned to be worked on within a PI, then it was assigned a probability of zero.  

Table 5-4. Probabilities of completing features based on feature priority 

Priority in PI Probability of Completing within the PI 

Low 75% 

Medium 85% 

High 100% 

 

The Delivery Matrix resulting from the application of the quantitative LEAP process is shown 

in Figure 5-13. The delivery probability value is in the cell (from zero (0) to one (1)) are 

highlighted from red (lowest probability) to green (highest probability). If a capability is not 

needed by the stakeholder in a particular increment, then the cell is white and the value is negative 

one (-1). Examining this figure, it can be seen that some capabilities are now delivered on time, 

indicated by the dark green cell with a value of one (1) below a white cell in a column. This shift 

in results from the qualitative LEAP analysis is due to the recharacterization of the delivery 

definition following the initial analysis. However, even though the end state of the system is likely 

to deliver on time, several capabilities still have low probabilities of delivering by the stakeholder 

need date, indicated by red and orange cells.  
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Figure 5-13. Delivery Matrix from quantitative LEAP application 

To determine the driving technologies behind the late deliveries, the Investment Matrix shown 

in Figure 5-14 was calculated. In the Investment Matrix, higher values are less desirable – they 

indicate that the technology has a higher likelihood of causing late delivery of one or more 

capabilities in each time period. Therefore, the cells with values greater than one (1) in Figure 5-14 

are highlighted in red. The highest scoring cells in the matrix are shown in red. Clearly, 

Technologies 11 and 24 are driving factors for the late delivery of the capabilities required at GRR 

as they had the highest scores in the Investment Matrix. 

 

Figure 5-14. Investment Matrix from quantitative LEAP application 
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Using the results from the Investment Matrix, the stakeholders came into the next program 

increment planning meeting with new priorities and assessments of business value. Technology 

24 involved the creation of a user interface for external users to interact with the system. After 

discussing this specific technology with the system developer, potential requirements technical 

debt was identified – the developer’s interpretation of the requirement did not match the 

stakeholder’s interpretation of the requirement and would not have satisfied the user’s needs. This 

requirements debt was the reason for the late delivery – the system developer had not planned on 

adding features to the user interface that the stakeholder deemed critical and, from the 

stakeholder’s view, could not complete the technology, which forced the associated capabilities to 

be considered late. Therefore, an improved definition of the user interface requirements was 

created, and the appropriate scope was added to the contract, including the prioritization of the 

activities in the next program increment. While removing this potential technical debt required the 

use of additional funds, the early identification mitigated the potential long-term consequences. 

In this particular case, the misunderstanding of the stakeholder needs could be, and was, 

identified in parallel with the LEAP process. However, the LEAP process provides a structured 

approach for assessing potential technical debt within the development cycle, enabling repeated 

and objective application. Having this process ensures that all features will be considered for their 

ability to introduce technical debt into the system without relying on the intuition of a few capable 

engineers. Additionally, the LEAP process enables an estimate of the return-on-investment made 

by accelerating the development of this technology. By shifting the prioritization of Technology 

24 development to High in each time period, the change in delivery probability for each of the 

capabilities dependent upon Technology 24 can be calculated. Figure 5-15 shows the change in 

delivery probability for Capability 46 across each time period due to the changes in Technology 
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24 development timelines. In this case, the largest increase in delivery probability is seen in the 

earlier phases. Additional technologies would need to be accelerated to ensure delivery by the 

launch phase, but the investments in Technology 24 have significantly increased the likelihood of 

existing capability in this time phase. Similar values could be calculated for each affected 

capability and aggregated for the entire system. 

 

Figure 5-15. Return-on-Investment calculated with LEAP 

Technology 11, which also has a high score in the Investment Matrix, provides an example of 

where the process revealed a potential problem that was not uncovered by the system developers 

and stakeholders prior to the application of the LEAP process. Technology 11 involves functions 

that were well understood but planned for later program increments that would not likely complete 

prior to GRR. However, the stakeholders stated that these functions were necessary to support 

capabilities that they deemed required for GRR. The LEAP process identified the disconnect in 

the timelines and that Technology 11 was the driving factor. Using this information, the 

stakeholders and the system developer were able to have productive conversations about the 

capabilities that were really required at GRR. In this case, the stakeholders desired to have this 

capability at GRR, however it would not be used until after launch. Therefore, the stakeholders 
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were convinced to shift their need date to align with the developer’s schedule to avoid additional 

cost increases.  

This example shows the full path through the LEAP process as follows.  

1. The stakeholders identified their capability need dates and supporting technologies (List) 

2. The stakeholders, in collaboration with the ground system developer, evaluated the 

probability of the system, as planned, to deliver the capabilities in accordance with the 

need dates (Evaluate) 

3. The stakeholders identified which technologies needed to have need dates adjusted and 

decided on a plan (Achieve) 

4. The stakeholders adjusted their procurement requirements to minimize cost (Procure) 

Through the use of the LEAP process, the ground system developer and the stakeholders were 

able to identify disconnects in the delivery cadence and come to a mutually agreed-upon path to 

system delivery. In doing so, the risk of introducing technical debt was reduced. The change in the 

procurement strategy reduces the schedule pressure on the ground system developer to deliver 

capabilities ahead of plan and therefore the risk of taking shortcuts and introducing technical debt 

is reduced. 

Similar processes were used to discuss all of the potentially late technologies identified in the 

delivery matrix at the PI planning meeting. Having the LEAP Delivery and Investment Matrices 

available enabled more fruitful discussions between the stakeholders and ground system 

developer, and resulted in reprioritization of other key technologies in the development cycle. 
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5.3.1.3 Review of the Example Applications 

The above applications show how the LEAP process can be used to identify investments that 

are critical to meeting future capability needs. The initial Evaluation phase identified technologies 

that would be late to need. Utilizing the Achieve phase of the process, it is possible to determine 

which capabilities would benefit from investments in these technologies, following the “Driving 

Technologies Independent” pathway identified in Figure 5-4. By making investments to develop 

critical technologies, the decision maker can prevent technical debt from building up within their 

system and can therefore avoid technical bankruptcy.  

The LEAP process can also be used to evaluate the consequences of an investment decision 

between different technologies. For example, decision makers will often have to make choices in 

a budget constrained environment. Such environments prohibit the ability to invest in all 

technologies and often require compromises. By clearly associating the stakeholder needs with the 

technology development timelines, the LEAP process enables an assessment of the consequences 

of those decisions.  

Finally, the application of the LEAP process to the ground system development demonstrates 

how it can be used to proactively identify potential technical debt. By using the LEAP process to 

identify disconnects between the system developers and the stakeholders, technical debt was 

prevented from entering the system, reducing the risk of future problems within the system 

development. 

5.4 Presentation of the Process in simplified terms 

Task 4.3 is to produce a simplified way of presenting and communicating the LEAP process. 

Expressing a complicated process through simplified graphics and concepts enhances its utility as 

a communication device. The technical debt metaphor was initially created for this exact reason, 
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as Cunningham sought to find a method to communicate needs to refactor software to his 

management [17]. The LEAP process attempts to bridge the divide between the technical staff and 

management and stakeholders and therefore needs to present a simplified way of discussing the 

technical concepts contained in the process. 

The presentation of the LEAP process starts with the intentional choice of the acronym – the 

names List, Evaluate, Achieve, and Procure convey the intent of each step in easy-to-understand 

terminology. These names help to understand what the process is intended to do. The List phase 

lists out the capabilities and technologies. The Evaluate phase evaluates the current state of the 

system and the stakeholder needs. The Achieve phase accelerates development as required, and 

the Procure phase procures a new release. 

Graphically, the LEAP process has been depicted as a set of interconnected matrices, as shown 

in Figure 3-4. While this depiction helps to understand the technical details of the process, it is not 

a simple, easy-to-grasp graphical representation of the process. Figure 5-16, originally presented 

at the 2023 INCOSE International Symposium [201], shows the LEAP process as an inherently 

iterative process, but does not provide any details of the events associated with each step. 

 

Figure 5-16. Simplified LEAP process description 
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Figure 5-17 provides an alternative depiction of the process. It removes the mathematical 

formulas and the matrices from the graphics and instead shows simple information flow through 

the steps in the process. In this graphic, the steps occur from bottom to top and color coding is 

used to match the step to the graphic. First, the List step establishes the capabilities and their 

supporting technologies, creating the x-axis of the graph. Next, the Evaluate step determines the 

availability timelines for each capability, locating the orange circles on the graph. The Achieve 

step accelerates timelines for selected capabilities by investing in technology development, 

converting the orange circles into blue squares. Finally, the Procure step selects the set of 

capabilities to include in each release for a given time period, shown as the circles and squares 

included in the gray ellipse. 

 

Figure 5-17. Simplified LEAP process model 

Figure 5-17 provides a simpler conceptual version of the LEAP process, using colors and steps 

to indicate the passage of time through each step of the process. This representation conveys the 

overall goals of the process without using the matrices, which makes the rationale for the process 

easier to discuss. 
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The construction of the Delivery Matrix enables multiple viewing options to convey the 

likelihood of delivering capabilities on time to the stakeholders. Time-based graphs, such as those 

shown in Figure 5-18, can easily be created from the matrix outputs. The Delivery Matrix only 

contains positive values for when the capability is needed, and therefore the graph provides an 

instantaneous view of the initial and time-based likelihood of satisfying stakeholder needs.  

 

Figure 5-18. Plot of delivery timelines 

Similarly, the Availability Matrix can also be plotted, as shown in Figure 5-19. The Availability 

Matrix contains information on when each capability is likely to be available, independent of the 

stakeholder needs. This graph shows the likelihood of delivering each capability over time, 

regardless of when it is needed. 
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Figure 5-19. Plot of availability timelines 

These visualizations quickly show the state of stakeholder satisfaction to both technical and 

non-technical stakeholders. Simple outputs like these increase the ability of the LEAP process to 

convey critical information to stakeholders to enable investments that minimize the risk of 

technical bankruptcy. 

For the system developer, the matrix-based nature of the process enables simple 

implementation. Appendix A includes Python scripts implementing both the qualitative and 

quantitative LEAP processes. 

5.5 Conclusion 

This chapter focuses on technical bankruptcy, presenting a definition of technical bankruptcy 

in the context of the LEAP process and providing example usages of the LEAP process in real-

world scenarios. These examples identify how the LEAP process can be used to avoid technical 

bankruptcy through use of both the qualitative and quantitative versions of the process, thereby 

addressing RQ4: How can the process and model be used to avoid technical bankruptcy? Figure 

5-4 shows a process by which the potential for technical debt is identified through iterative use of 

the LEAP process during system development. Tasks which have a larger potential for inducing 
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technical debt are identified and therefore can be controlled. Tasks which are late to need are 

highlighted through the investment matrix, allowing the diversion of resources or alteration of 

release plans to prevent the occurrence of the associated technical debt. Finally, the process can be 

used to evaluate release plans and to present results to the stakeholders showing the rationale 

behind the construction of the release plans. 

The applications of the LEAP process at SDA provide real-world examples of proactive 

identification of technical debt. Advantageous technology investments were identified such that 

their development timelines could be accelerated to support larger-scale procurements. Sources of 

technical debt were identified prior to their introduction into the system, reducing the cost of 

correcting these issues in later iterations. These applications reduced the risk of accumulated 

technical debt and demonstrate the utility of the LEAP process. 
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CHAPTER 6  – CONCLUSIONS AND FUTURE WORK 
 
 
 

6.1 Research Contributions 

This dissertation contributed to the state of the art of systems engineering by developing the 

following items: 1) an understanding of the prevalence of technical debt within the field, 2) a 

recommended ontology for furthering technical debt discussions, and 3) a defined process for 

determining system dependencies that may be susceptible to technical debt in order to limit the 

potential for technical bankruptcy. 

Technical debt, while present in systems engineering [18], was found to be not-well researched 

in the field [19]. Existing research on technical debt was found to focus on specific areas of systems 

engineering, such as automated production systems [108]. This research contributed novel 

empirical data on the prevalence of systems engineering by surveying systems engineers across 

multiple disciplines [18]. Using the results from the systematic literature review and the empirical 

survey, a new ontology for discussing technical debt within the context of systems engineering 

was created [21]. Published discussions of technical debt tend to focus on creating taxonomies for 

classifying technical debt. This ontology is the first that the author is aware of to focus on 

producing concise definitions of technical debt terms with specific applications to systems 

engineering. Adoption of this ontology will enable practitioners to share methods for technical 

debt management and mitigation by using concise and unambiguous terminology. 

Managing technical debt, and avoiding technical bankruptcy is found to be a real problem in 

systems engineering. Systems fail due to the accumulation of technical debt, especially when using 

stakeholder value-driven development methodologies that force technical compromises to be made 

at the expense of preferred development schedules. Through the definition of the LEAP process, 
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this research has contributed a novel method of combining the temporal and functional 

dependencies of a system to identify the time-phased capability to satisfy stakeholder needs [160]. 

The quantitative LEAP method discussed in Chapter 4 provides a probabilistic approach, including 

a new method of estimating project schedules based on technical debt [169]. This process, when 

used within iterative development, identifies which technologies will require additional investment 

ahead of the need to incorporate those technologies into the system development. These results 

enable a system developer to minimize the non-recurring engineering on their system by scoping 

the release to include components that meet specified readiness threshold. By investing in 

technology development outside the release cycle, the system developer can ensure that the needed 

components are ready in time to include in larger system procurements. The LEAP process 

provided mathematical identification and integration of these components. 

The LEAP process is developed as a decision support system for release planning by identifying 

the probability of delivering capabilities on time, including technical debt estimates. While 

traditional schedule analysis can provide predictions of completion dates, the inclusion of technical 

debt’s impacts on successor task duration in the schedule process is a new contribution to schedule 

analysis. Additionally, traditional schedule analysis can be used to define when a system is 

complete, but does not directly associate system completion with the schedule of stakeholder 

needs. The LEAP process provides a mathematical relationship between the capability delivery 

and the stakeholder needs. This linkage enables the LEAP process to be used as a decision support 

system for iterative development – different release plans can be modeled in the LEAP process to 

determine the different outcomes which can lead to an evaluation of the return-on-investment for 

release planning decisions.  
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The LEAP process was applied at the Space Development Agency to assess potential 

investments in optical communications terminal technology and to evaluate and prioritize tasks 

within the iterative development of the ground segment for the satellite constellation. This 

translational research task was able to measure the costs and benefits of LEAP as a program of 

quantifying, managing, and planning for technology development. Both the qualitative and 

quantitative LEAP processes were applied, enabling rapid identification of technologies whose 

development required acceleration to meet the stakeholder needs. The quantitative LEAP 

application revealed instances of technical debt early in the development process, enabling the 

technical debt to be addressed before it compounded into a larger problem. These results are novel 

in that similar on-site studies of proactive technical debt identification have not been performed to 

date. The application of the LEAP process to the rapid development programs at SDA identified 

issues that could have produced undesirable outcomes. 

This research program has produced the following peer-reviewed publications: 

1. H. Kleinwaks, A. Batchelor and T. H. Bradley, "Technical Debt in Systems Engineering - 

A Systematic Literature Review," Systems Engineering, vol. 26, no. 5, pp. 675-687, 2023. 

[19] 

2. H. Kleinwaks, A. Batchelor and T. H. Bradley, "An Empirical Survey on the Prevalence 

of Technical Debt in Systems Engineering," INCOSE International Symposium, vol. 33, 

no. 1, pp. 1640-1658, 2023. [18] 

3. H. Kleinwaks, A. Batchelor, T. H. Bradley, M. Rich and J. F. Turner, "LEAP - A process 

for identifying potential technical debt in iterative system development," INCOSE 

International Symposium, vol. 33, no. 1, pp. 535-553, 2023. [160] 
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4. H. Kleinwaks, M. Rich, M. C. Butterfield and J. F. Turner, "LEAPing Ahead - The Space 

Development Agency's Method for Planning for the Future," INCOSE International 

Symposium, vol. 33, no. 1, pp. 925-942, 2023. [167] 

5. H. Kleinwaks, A. Batchelor and T. H. Bradley, "An Ontology for Technical Debt in 

Systems Engineering," IEEE Open Journal of Systems Engineering, vol. 1, pp. 111-122, 

September 2023. [21] 

At the time of submission of this dissertation, the following manuscripts have been submitted 

for publication:  

1. H. Kleinwaks, A. Batchelor and T. H. Bradley, "Predicting the Dynamics of Earned Value 

Creation in the Presence of Technical Debt," Submitted to IEEE Access, 29 July 2023. 

[169] 

2. H. Kleinwaks, A. Batchelor and T. H. Bradley, "Probabilistic Enhancement to the LEAP 

Process for Identifying Technical Debt in Iterative System Development," Submitted to 

IEEE Access, 9 Sep 2023. [186] 

6.2 Future Work 

This dissertation introduced a new technical debt ontology and defined and developed the 

LEAP process. Additional work in each of these areas can further advance the state of the art in 

the field. 

The technical debt ontology should be evaluated for its costs and benefits through practical 

applications in systems engineering domains. The ontology can be introduced to systems 

engineering practitioners and their usage of it can be evaluated. Research questions such as “Does 

the use of the technical debt ontology impact the occurrence of technical debt?” can be evaluated 
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and new technical debt identification and mitigation techniques identified as a result. Based on the 

usage of the ontology, the definitions contained within should be updated and additional 

definitions added as required. 

The LEAP process should also be further evaluated through practical applications. Empirical 

evidence of its utility can be gathered through multiple applications in various systems engineering 

contexts. Different applications of the LEAP process can be explored, such as the application to 

additional industries and fields and the utility of the LEAP process in return-on-investment studies. 

The LEAP process can be improved by adding prioritization matrices and optimizing the 

process. Prioritization matrices were explicitly excluded from this dissertation since prioritization 

has the potential to skew the results based on the supplied priority values. However, with the 

baseline process defined, the Need Matrix could be augmented by prioritization of the needs and 

any adjustments to the ensuing equations identified. The result could then be used to optimize the 

development order of technologies within the LEAP process to minimize the impact of the late 

delivery of capabilities, which would be associated with the priority of the needs. This optimization 

would convert the LEAP process from a decision support system for release planning to a release 

planning tool. 

6.3 Conclusion 

In the volatile and uncertain market, system developers often face pressure from stakeholders 

to release high-performance systems faster and cheaper. Such pressures can result in the system 

developer making technical compromises, thereby introducing technical debt into the system. If 

the technical debt remains in the system, then it can accumulate, eventually resulting in technical 

bankruptcy. To limit this risk, technical debt must be defined, predicted, and managed in both the 
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temporal and functional dimensions, and there must be the knowledge, processes, and tools to do 

so. 

This dissertation addressed this problem by first defining technical debt in the context of 

systems engineering. Common definitions and terminology enable systems engineers to leverage 

work done by other systems engineers to develop processes and techniques for identifying and 

managing technical debt. This dissertation also introduced the LEAP process as a decision support 

system for accounting for technical debt within release planning. Proactive methods that identify 

technical debt at the time that technical compromises are made are critical to avoid technical 

bankruptcy. It is by planning ahead that the impacts of decisions can be estimated and mitigated 

through the application of additional resources or through the selection of alternative choices. 

Application of the LEAP process, as seen through the examples presented in this dissertation, 

enables both a proactive assessment of the readiness of a system to begin development as well as 

an assessment of potential release plans and design choices. These assessments can be used to 

simply communicate with stakeholders on the repercussions of their decisions, identify where 

technical debt may occur, and identify when a system may be on the verge of bankruptcy. Armed 

with these data sets, system developers can work with the stakeholders to determine the right 

technical compromises to make or not to make to ensure that the system development continues 

on plan. 
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APPENDIX A: EXAMPLE PYTHON CODE FOR LEAP IMPLEMENTATION 
 
 
 

A.1 Probability Distribution Classes 

# -*- coding: utf-8 -*- 
import math 
import numpy as np 
import random 
import matplotlib.pyplot as plt 
import datetime 
from multiprocessing import Pool 
import sys 
 
class distribution(): 

 """ 
 Base class for different distribution types 
 """ 
 NORMAL_DISTRIBUTION = 0 
 TRIANGULAR_DISTRIBUTION = 1 
 GAMMA_DISTRIBUTION = 2 
 DISCRETE_DISTRIBUTION = 3 
 UNIFORM_DISTRIBUTION = 4 
 CUSTOM_DISTRIBUTION = 5 
 CONSTANT_DISTRIBUTION = 6 
  
 def __init__(self): 

  """ 
  default constructor, sets to normal distribution 
  Returns 
  ------- 

  None. 
  """ 
  self.distributionType = distribution.NORMAL_DISTRIBUTION 
   
 def getRandomVariable(self): 

  """ 
  base class function for getting a random variable from the distribution 
  Returns 
  ------- 
  int always returns 0 
  """ 
  pass 
  
 def getMean(self, n=10000): 

  """ 
  returns the mean value of the distribution 
  Parameters 

  ---------- 
  n: int 
   number of trials to run (default = 10000) 
  Returns 
  ------- 
  None. 
  """ 
  x = np.zeros(n) 
  for i in range(0, len(x)): 
   x[i] = self.getRandomVariable() 
  return np.average(x) 
   
 def decrement(self, percentage): 

  """ 
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  decrement the values in the distribution settings by the specified percentage 
  value of 0.1 means that the new value will be 90% of the original (1-0.1)*value 
  Parameters 
  ---------- 
  percentage : float 
   percent by which the value is decremented 
  Returns 
  ------- 
  None. 

  """ 
  pass 
  
 def clone(self): 

  """ 
  return a new distribution that clones this one 
  Returns 
  ------- 
  clone of the distribution 
  """ 
  pass 
  
 def __str__(self): 

  """ 
  print out the parameters of the distribution 
  Returns 
  ------- 

  string description of distribution 
  """ 
  return str(self.distributionType) 
  
class ConstantDistribution(distribution): 

 """ 
 constant distribution: always returns the same value 
 """ 

 def __init__(self, value): 

  """ 
  Parameterized constructor 
  Parameters 
  ---------- 
  value : float 
   the value to return 
  Returns 

  ------- 
  None. 
  """ 
  self.value = value 
   
 def getRandomVariable(self): 

  """ 
  returns the constant value 
  Returns 
  ------- 
  float the random number 
  """ 
  return self.value 
  
 def decrement(self, percentage): 

  """ 
  decrement the values in the distribution settings by the specified percentage 

  value of 0.1 means that the new value will be 90% of the original (1-0.1)*value 
  Parameters 
  ---------- 
  percentage : float 
   percent by which the value is decremented 
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  Returns 
  ------- 
  None. 
  """ 
  self.value = (1-percentage)*self.value 
   
 def clone(self): 

  """ 
  return a new distribution that clones this one 

  Returns 
  ------- 
  clone of the distribution 
  """ 
  return ConstantDistribution(self.value) 
  
 def __str__(self): 

  """ 
  print out the parameters of the distribution 
  Returns 
  ------- 
  string description of distribution 
  """ 
  return "Constant Value {}".format(self.value) 
  
class CustomTriangularDistribution(distribution): 

 """ 

 custom distribution to model the distribution used in Williams: 
  triangular distribution that reduces the time by 2/3 if the value is over a specified limit 
 """ 
 def __init__(self, low, mode, high, threshold, reduction): 

  """ 
  Parameterized constructor 
  Parameters 
  ---------- 
  low : float 
   the low end of the triangular estimate 
  mode : float 
   the most likely value in the estimate 
  high : float 
   the high end of the triangular estimate 
  threshold : float 
   the value at which the reduction is applied 

  reduction : float 
   reduction to apply (from 0 to 1), multiplied by the difference in random value and threshold 
  Returns 
  ------- 
  None. 
  """ 
  self.distributionType = distribution.CUSTOM_DISTRIBUTION 
  self.low = low 
  self.mode = mode 
  self.high = high 
  self.threshold = threshold 
  self.reduction = reduction 
   
 def getRandomVariable(self): 

  """ 
  returns a random number selected from the distribution using the random.triangular function 
  and then applies the reduction based on the threshold 

  Returns 
  ------- 
  float the random number 
  """ 
  #note that input order into np random function is low, high, mode, 
  value = random.triangular(self.low, self.high, self.mode) 
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  if (value > self.threshold): 
   value = self.threshold + self.reduction*(value-self.threshold) 
  return value 
  
 def decrement(self, percentage): 

  """ 
  decrement the values in the distribution settings by the specified percentage 
  value of 0.1 means that the new value will be 90% of the original (1-0.1)*value 
  Note that decrement only applies to the triangular distribution parameters and not the threshold or 

reduction 
  Parameters 
  ---------- 
  percentage : float 
   percent by which the value is decremented 
  Returns 
  ------- 
  None. 
  """ 
  self.low = (1-percentage)*self.low 
  self.mode = (1-percentage)*self.mode 
  self.high = (1-percentage)*self.high 
   
 def clone(self): 

  """ 
  return a new distribution that clones this one 
  Returns 

  ------- 
  clone of the distribution 
  """ 
  return CustomTriangularDistribution(self.low, self.mode, self.high, self.threshold, self.reduction) 
  
 def __str__(self): 

  """ 
  print out the parameters of the distribution 
  Returns 
  ------- 
  string description of distribution 
  """ 
  return "CustomTriangular Low {} Mode {} High {} Threshold {} Reduction {}".format(self.low, 

self.mode, self.high, self.threshold, self.reduction) 
  
class NormalDistribution(distribution): 

 """ 
 Normal Distribution 
 """  
 def __init__(self, mean, standardDeviation): 

  """ 
  Parameterized constructor 
  Parameters 
  ---------- 
  mean : float 
   mean of the distribution 
  standardDeviation : float 
   standard deviation of the distribution 
  Returns 
  ------- 
  None. 
  """ 
  self.distributionType = distribution.NORMAL_DISTRIBUTION 

  self.mean = mean 
  self.standardDeviation = standardDeviation 
   
 def getRandomVariable(self): 

  """ 
  returns a random number selected from the distribution using the random.gauss function 
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  Returns 
  ------- 
  float the random number 
  """ 
  return random.gauss(self.mean, self.standardDeviation) 
  
 def decrement(self, percentage): 

  """ 
  decrement the values in the distribution settings by the specified percentage 

  value of 0.1 means that the new value will be 90% of the original (1-0.1)*value 
  Parameters 
  ---------- 
  percentage : float 
   percent by which the value is decremented 
  Returns 
  ------- 
  None. 
  """ 
  self.mean = (1-percentage)*self.mean 
  self.standardDeviation = (1-percentage)*self.standardDeviation 
   
 def clone(self): 

  """ 
  return a new distribution that clones this one 
  Returns 
  ------- 

  clone of the distribution 
  """ 
  return NormalDistribution(self.mean, self.standardDeviation) 
  
 def __str__(self): 

  """ 
  print out the parameters of the distribution 
  Returns 
  ------- 
  string description of distribution 
  """ 
  return "Normal Mean {} Std Dev {}".format(self.mean, self.standardDeviation)  
  
class TriangularDistribution(distribution): 

 """ 
 Triangular Distribution 

 """   
 def __init__(self, low, mode, high): 

  """ 
  Parameterized constructor 
  Parameters 
  ---------- 
  low : float 
   the low end of the triangular estimate 
  mode : float 
   the most likely value in the estimate 
  high : float 
   the high end of the triangular estimate 
  Returns 
  ------- 
  None. 
  """ 
  self.distributionType = distribution.TRIANGULAR_DISTRIBUTION 

  self.low = low 
  self.mode = mode 
  self.high = high 
   
 def getRandomVariable(self): 

  """ 
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  returns a random number selected from the distribution using the random.triangular function 
  Returns 
  ------- 
  float the random number 
  """ 
  #note that input order into numpy random function is low, high, mode 
  return random.triangular(self.low, self.high, self.mode) 
  
 def decrement(self, percentage): 

  """ 
  decrement the values in the distribution settings by the specified percentage 
  value of 0.1 means that the new value will be 90% of the original (1-0.1)*value 
  Parameters 
  ---------- 
  percentage : float 
   percent by which the value is decremented 
  Returns 
  ------- 
  None. 
  """ 
  self.low = (1-percentage)*self.low 
  self.mode = (1-percentage)*self.mode 
  self.high = (1-percentage)*self.high 
   
 def clone(self): 

  """ 

  return a new distribution that clones this one 
 
  Returns 
  ------- 
  clone of the distribution 
  """ 
  return TriangularDistribution(self.low, self.mode, self.high) 
   
 def __str__(self): 

  """ 
  print out the parameters of the distribution 
  Returns 
  ------- 
  string description of distribution 
  """ 
  return "Triangular Low {} Mode {} High {}".format(self.low, self.mode, self.high) 

  
class GammaDistribution(distribution): 

 def __init__(self, alpha, beta): 

  """ 
  Parameterized constructor 
  Parameters 
  ---------- 
  alpha : float 
   alpha parameter for the gamma distribution 
  beta : float 
   beta parameter for the gamma distribution 
  Returns 
  ------- 
  None. 
  """ 
  self.distributionType = distribution.GAMMA_DISTRIBUTION 
  self.alpha = alpha 

  self.beta = beta 
   
 def getRandomVariable(self): 

  """ 
  returns a random number selected from the distribution using the random.gammavariate function 
  Returns 
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  ------- 
  float the random number 
  """ 
  return random.gammavariate(self.alpha, self.beta) 
  
 def decrement(self, percentage): 

  """ 
  decrement the values in the distribution settings by the specified percentage 
  value of 0.1 means that the new value will be 90% of the original (1-0.1)*value 

  Parameters 
  ---------- 
  percentage : float 
   percent by which the value is decremented 
  Returns 
  ------- 
  None. 
  """ 
  self.alpha = (1-percentage)*self.alpha 
  self.beta = (1-percentage)*self.beta 
  
 def clone(self): 

  """ 
  return a new distribution that clones this one 
  Returns 
  ------- 
  clone of the distribution 

  """ 
  return GammaDistribution(self.alpha, self.beta) 
  
 def __str__(self): 

  """ 
  print out the parameters of the distribution 
  Returns 
  ------- 
  string description of distribution 
  """ 
  return "Gamma {} {}".format(self.alpha, self.beta) 
  
class DiscreteDistribution(distribution): 

 def __init__(self, values, probabilities): 

  """ 
  Parameterized constructor 

  Parameters 
  ---------- 
  values : array of float 
   array of possible values for the discrete distribution, must be same length as probabilities 
  probabilities : array of float 
   array of probabilities for each of the values, must be the same length as values 
  Returns 
  ------- 
  None. 
  """ 
  self.distributionType = distribution.DISCRETE_DISTRIBUTION 
  self.values = values 
  self.probabilities = probabilities 
   
 def getRandomVariable(self): 

  """ 
  returns a random number selected from the distribution using the random.choices function 

  Returns 
  ------- 
  float the random number 
  """ 
  return random.choices(self.values, self.probabilities)[0] 
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 def decrement(self, percentage): 

  """ 
  decrement the values in the distribution settings by the specified percentage 
  value of 0.1 means that the new value will be 90% of the original (1-0.1)*value 
  Note: only changes the values not the probabilities 
  Parameters 
  ---------- 
  percentage : float 
   percent by which the value is decremented 

  Returns 
  ------- 
  None. 
  """ 
  vals = [] 
  for i in range(0, len(self.values)): 
   vals.append((1-percentage)*self.values[i]) 
  self.values = vals 
   
 def clone(self): 

  """ 
  return a new distribution that clones this one 
  Returns 
  ------- 
  clone of the distribution 
  """ 
  return DiscreteDistribution(self.values, self.probabilities) 

  
 def __str__(self): 

  """ 
  print out the parameters of the distribution 
  Returns 
  ------- 
  string description of distribution 
 
  """ 
  return "Discrete Values {} Probabilities {}".format(self.values, self.probabilities) 
  
class UniformDistribution(distribution): 

 """ 
 Uniform distribution 
 """ 
 def __init__(self, low, high): 

  """ 
  Parameterized constructor 
  Parameters 
  ---------- 
  low : float 
   low end of the value range for the distribution 
  high : float 
   high end of the value range for the distribution 
  Returns 
  ------- 
  None. 
  """ 
  self.distributionType = distribution.UNIFORM_DISTRIBUTION 
  self.low = low 
  self.high = high 
   
 def getRandomVariable(self): 

  """ 
  returns a random number selected from the distribution using the random.uniform function 
  Returns 
  ------- 
  float the random number 
  """ 
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  return random.uniform(self.low, self.high) 
  
 def decrement(self, percentage): 

  """ 
  decrement the values in the distribution settings by the specified percentage 
  value of 0.1 means that the new value will be 90% of the original (1-0.1)*value 
  Parameters 
  ---------- 
  percentage : float 

   percent by which the value is decremented 
  Returns 
  ------- 
  None. 
  """ 
  self.low = (1-percentage)*self.low 
  self.high = (1-percentage)*self.high 
   
 def clone(self): 

  """ 
  return a new distribution that clones this one 
  Returns 
  ------- 
  clone of the distribution 
  """ 
  return UniformDistribution(self.low, self.high) 
  

 def __str__(self): 

  """ 
  print out the parameters of the distribution 
  Returns 
  ------- 
  string description of distribution. 
  """ 
  return "Uniform Low {} High {}".format(self.low, self.high) 

 

A.2 Implementation of the LEAP Process 

  
class leap(): 

 #Supporting functions 
 #K and K* functions 
 g1Param = -(math.sqrt(6)-3) 
 g2Param = math.sqrt(3) 
 g3Param = math.sqrt(6) 
  
 def kFunction(x,y,z): 

  """ 
  executes the k function: 
   k (x,y,z) = y, if x != 0 and z if x = 0 
  Parameters 
  ---------- 
  x : float or int 
   Value checked to see if it is 0 
  y : any type 
   Value returned if x != 0 
  z : any type 
   Value returned if x = 0 
  Returns 
  ------- 
  y or z depending on the value of x 
  """ 
  if (x == 0): 

   return z 
  else: 
   return y 
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 def KFunction(U,V,z): 

  """ 
  matrix version of the k function, returns a matrix where each cell is the result of the k function of 

the input matrices 
  Matrices U and V must be the same dimensions 
  Parameters 
  ---------- 
  U : 2d numpy array 

   first matrix 
  V : 2d numpy array 
   second matrix 
  z : float 
   value to use when U[i,j] = 0 
  Returns 
  ------- 
  matrix of k(U[i,j], V[i,j], z) 
  """ 
  K = np.zeros((U.shape[0], U.shape[1])) 
  for i in range(0, U.shape[0]): 
   for j in range(0, U.shape[1]): 
    K[i,j] = leap.kFunction(U[i,j], V[i,j], z) 
  return K 
   
 def kStarFunction(u, v, z): 

  """ 

  returns the product of the k function of each element of u and v 
  Parameters 
  ---------- 
  u : 1d numpy array 
   first array 
  v : 1d numpy array 
   second array 
  z : float 
   value to use if u[i] == 0 
  Returns 
  ------- 
  product of the k function of each element of u and v 
  """ 
  prod = 1 
  for i in range(0, len(u)): 
   prod *= leap.kFunction(u[i],v[i],z) 

  return prod  
  
 def KStarFunction(U,V,z): 

  """ 
  matrix version of the kStarFunction 
  the value in each cell of the resultant matrix is the kStarFunction of the row of U and column of V 
  traditional matrix multiplication rules about dimensions apply (# columns of U = # rows of V)                
  Parameters 
  ---------- 
  U : 2d numpy array 
   first matrix 
  V : 2d numpy array 
   second array 
  z : float 
   value to use if U[i,j] == 0 
  Returns 
  ------- 

  Matrix containing kStar results of each row/column pair 
  """ 
  K = np.zeros((U.shape[0], V.shape[1])) 
  for i in range(0, U.shape[0]): 
   for j in range(0, V.shape[1]): 
    K[i,j] = leap.kStarFunction(U[i,:], V[:,j], z) 
  return K 
 #End K and K* functions 
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 #Monte Carlo supporting functions 
 def getGrowthInflectionPoints(T): 

  """ 
  determines the roots of the second and third derivatives of the planned value curve 
  which give the inflection points 
  G1: boundary between initial slow growth and rapid growth 
  G2: boundary between rapid growth and concluding slow growth 
  G3: boundary between concluding slow growth and limited growth 

  Parameters 
  ---------- 
  T : time of peak instantaneous planned value, expressed as a percentage of duration (0 to 1) 
  Returns 
  ------- 
  tuple of (G1, G2, G3) 
  """ 
  #ensure all values are between zero and 1 
  t = np.clip(T, 0, 1) 
  t2 = t*t 
 
  g1 = np.sqrt(leap.g1Param*(t2)) 
  g2 = leap.g2Param*t 
  g3 = np.sqrt(leap.g3Param*t2+3*t2) 
  return (g1,g2,g3) 
  
 def getRandomVariables( techParameters, techTechParameters, distributionList): 

  """ 
  determine random variables based on the input parameters 
  Distributions are selected from the distribution classes 
  Currently available distributions are: 
   NORMAL_DISTRIBUTION: two parameters - mean and standard deviation 
   TRIANGULAR_DISTRIBUTION: three parameters - low, most likely, and high estimatesf 
   GAMMA_DISTRIBUTION: two parameters - alpha and beta 
   DISCRETE_DISTRIBUTION: two parameters: list of relative weights, list of values 
  Parameters 
  ---------- 
  techParameters : 2d numpy array 
   2d array where the number rows is equal to the number of technologies 
   Columns are:  
    [0] T - time of peak instantaneous planned value, expressed from 0 to 1 
    [1] earliest start time, expressed in time units 
    [2] distribution index into the the distributionList 

 
  techTechParameters : 2d numpy array 
   2d array where the number rows is equal to a maximum of the number of technologies squared (one for 

each combination) 
   Columns are:  
    [0] predecessor technology index 
    [1] successor technology index 
    [2] alpha - impact on successor, from 0 to 1 
    [3] U - utility threshold, from 0 to 1 
    [4] r distribution index into the the distributionList 
    [5] tau distribution index into the the distributionList 
     
  distributionList : array of distribution 
   array of distribution classes containing the distribution information 
  Returns 
  ------- 
  tuple of (randomDuration, randomTechTechParameters) 

  randomDuration is a 1d array of the duration for each technology 
  randomTechTechParameters is a 2d numpy array with the following columns: 
   [0] predecessor technology index 
   [1] successor technology index 
   [2] alpha - impact on successor, from 0 to 1 
   [3] U - utility threshold, from 0 to 1 
   [4] r for the predecessor-successor combination 
   [5] tau for the predecessor-successor combination 
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  """ 
 
  #start with the tech paramenters 
  randomDuration = np.zeros(len(techParameters)) 
  for i in range(0, len(techParameters)): 
   dist = distributionList[int(techParameters[i,2])] 
   randomDuration[i] = dist.getRandomVariable() 
   #randomDuration[i] = leap.randomVariable(techParameters[i,2], techParameters[i,3:]) 
   if (randomDuration[i] < 0): 

    randomDuration[i] = 0 
  #get the tech-tech parameters 
  randomTechTechParameters = np.zeros((len(techTechParameters), 6)) 
  for i in range(0, len(techTechParameters)): 
   randomTechTechParameters[i,0] = techTechParameters[i,0] 
   randomTechTechParameters[i,1] = techTechParameters[i,1] 
   randomTechTechParameters[i,2] = techTechParameters[i,2] 
   randomTechTechParameters[i,3] = techTechParameters[i,3] 
   #get the r value 
   rDist = distributionList[int(techTechParameters[i,4])] 
   randomTechTechParameters[i,4] = np.clip(rDist.getRandomVariable(), 0, 1) 
   tDist = distributionList[int(techTechParameters[i,5])] 
   randomTechTechParameters[i,5] = np.clip(tDist.getRandomVariable(),0, 1) 
  return (randomDuration, randomTechTechParameters)  
  
 def getEarnedValue(t, r, tau, alpha, T): 

  """ 

  return the cumulative earned value at time T  
  Parameters 
  ---------- 
  t : float 
   time at which cumulative earned value is calculated, from 0 to 1 
  r : float 
   portion of alpha subject to delays, from 0 to 1 
  tau : float 
   delay introduced by predecessor task, from 0 to 1 
  alpha : float 
   % of successor task impacted by predecessor task 
  T : float 
   time (from 0 to 1) of maximum instantaneous planned value 
  Returns 
  ------- 
  Cumulative Earned Value at t 

  """ 
  N = 1 #N always equals 1 in this implementation 
  if (t <= tau): 
   return (1-r)*alpha*N*(1-math.exp((-t**2)/(2*(T**2)))) 
  else: 
    return alpha*N-alpha*N*(1-r)*(math.exp((-t**2)/(2*T**2)))-r*alpha*N*math.exp(-((t-

tau)**2)/(2*(T**2))) 
   
 def getEarnedValueAtTransitionPoints(techParameters, randomTechTechParameters): 

  """ 
  return the earned value at each of the transition points for each technology 
  Parameters 
  ---------- 
  techParameters : 2d numpy array 
   2d numpy array where the number rows is equal to the number of technologies 
   Columns are:  
    [0] T - time of peak instantaneous planned value, expressed from 0 to 1 

    [1] earliest start time, expressed in time units 
    [2] distribution type (as a enumerated type from the LEAP class) for the duration 
    columns 3 and higher are the parameters used for the distribution of the duration 
  randomTechTechParameters : 2d numpy array 
   2d numpy array where the number rows is equal to a maximum of the number of technologies squared 

(one for each combination) 
   Columns are:  
    [0] predecessor technology index 
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    [1] successor technology index 
    [2] alpha - impact on successor, from 0 to 1 
    [3] U - utility threshold, from 0 to 1 
    [4] r randomly determined r value 
    [5] tau randomly determined tau value 
  Returns 
  ------- 
  2d numpy array where each row is a technology and the columns are G1, G2, G3, EV(G1), EV(G2), EV(G3), 

EV(1) for that technology 

  """ 
  res = np.zeros((len(techParameters),7)) 
  for i in range(0, len(techParameters)): 
   T = techParameters[i][0] 
   (G1, G2, G3) = leap.getGrowthInflectionPoints(T) 
   #get the predecessor indices 
   rows = randomTechTechParameters[np.where(randomTechTechParameters[:,0] == i)[0]] 
   EV1 = 0 
   EV2 = 0 
   EV3 = 0 
   EV4 = 0 
   for j in range(0, len(rows)): 
    ri = rows[j][4] 
    ai = rows[j][2] 
    taui = rows[j][5] 
    EV1 += leap.getEarnedValue(G1, ri, taui, ai, T) 
    EV2 += leap.getEarnedValue(G2, ri, taui, ai, T) 

    EV3 += leap.getEarnedValue(G3, ri, taui, ai, T) 
    EV4 += leap.getEarnedValue(1, ri, taui, ai, T) 
 
   res[i]= [G1, G2, G3, EV1, EV2, EV3, EV4] 
  return res 
  
 def getTimeFromEarnedValue(V, G1, G2, G3, EV1, EV2, EV3, EV4): 

  """ 
  return the time based on the specified earned value V 
  Uses a piece-wise linear approximation to the earned value to calculate 
  Parameters 
  ---------- 
  V : float 
   the earned value of interest 
  G1 : float 
   first inflection point - transition point between initial slow growth and rapid growth 

  G2 : float 
   second inflection point - transition point between rapid growth and concluding slow growth 
  G3 : float 
   third infleciton point - transition point between concluding slow growth and limited growth 
  EV1 : flaot 
   earned value at G1 
  EV2 : float 
   earned value at G2 
  EV3 : float 
   earned value at G3 
  EV4: float 
   earned value at 1 
  Returns 
  ------- 
  the time corresponding to the input earned value 
  """ 
  #values less than or equal to zero always returns zero 

  if (V <= 0): 
   return 0  
  if (V <= EV1): 
   return V*G1/EV1 
  elif (V <= EV2): 
   m2 = (EV2-EV1)/(G2-G1) 
   return (V-EV1)/m2+G1 
  elif (V <= EV3): 
   m3 = (EV3-EV1)/(G3-G2) 
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   return (V-EV2)/m3+G2 
  else: 
   m4 = (EV4-EV3)/(1-G3) 
   if (m4 == 0): 
    return 0 
   return (V-EV3)/m4+G3 
 #End Monte Carlo supporting functions 
  
 def getLinearizedEarnedValue(t, G1, G2, G3, EV1, EV2, EV3, EV4): 

  """ 
  return the linearized earned value for the specified time 
  Parameters 
  ---------- 
  t : float 
   the time of interest 
  G1 : float 
   first inflection point - transition point between initial slow growth and rapid growth 
  G2 : float 
   second inflection point - transition point between rapid growth and concluding slow growth 
  G3 : float 
   third infleciton point - transition point between concluding slow growth and limited growth 
  EV1 : flaot 
   earned value at G1 
  EV2 : float 
   earned value at G2 
  EV3 : float 

   earned value at G3 
  EV4: float 
   earned value at 1 
  Returns 
  ------- 
  the time corresponding to the input earned value 
  """ 
  if (t <= G1): 
   m = EV1/G1 
   return t*m 
  elif (t <= G2): 
   m = (EV2-EV1)/(G2-G1) 
   return m*(t-G1)+EV1 
  elif (t <= G3): 
   m = (EV3-EV2)/(G3-G2) 
   return m*(t-G2)+EV2 

  else: 
   m = (EV4-EV3)/(1-G3) 
   return m*(t-G3)+EV3 
  
 def runErrorAnalysis(TArray,rArray,tauArray, tStep): 

  """ 
  run an error analysis for the input combinations of T, r, and tau 
  Parameters 
  ---------- 
  TArray : list (of float) 
   values of T to consider, from 0 to 1 
  rArray : list (of float) 
   values of r to consider, from 0 to 1 
  tauArray : list (of float) 
   values of tau to consider, from 0 to 1 
  tSetp : float 
   step to use for t, will evaluate from 0 to 1 at tStep 

  Returns 
  ------- 
  array of [[T, r, tau, t1, max e1, max % e1, t2, max e2, max % e2, t3, max e3, max % e3, t4, max e4, 

max %e4]] 
  e1-4 refer to the sections of the linearized ev plot 
  e1: t <= G1 
  e2: t > G1 and <= G2 
  e3: t > G2 and <= G3 
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  e4: t > G3 and <= G4 
  """ 
  res = [] 
  for i in range(0, len(TArray)): 
   T = TArray[i] 
   #get the inflection points, these are functions of T only 
   (G1, G2, G3) = leap.getGrowthInflectionPoints(T) 
   print("G1", G1, "G2", G2, "G3", G3) 
   for j in range(0, len(rArray)): 

    r = rArray[j] 
    for k in range(0, len(tauArray)): 
     tau = tauArray[k] 
     t = tStep 
     #get the earned value at the inflection points 
     EV1 = leap.getEarnedValue(G1, r, tau, 1, T) 
     EV2 = leap.getEarnedValue(G2, r, tau, 1, T) 
     EV3 = leap.getEarnedValue(G3, r, tau, 1, T) 
     EV4 = leap.getEarnedValue(1, r, tau, 1, T) 
     maxErr = [0,0,0,0] 
     maxPercentError = [0,0,0,0] 
     maxTime = [0,0,0,0] 
      
     answer = [T,r,tau,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1] 
     while t <= 1: 
      ev = leap.getEarnedValue(t, r, tau, 1, T) #actual earned value 
      lev = leap.getLinearizedEarnedValue(t, G1, G2, G3, EV1, EV2, EV3, EV4) #linearized ev  

      err = abs(ev-lev) 
      percentErr = err/ev*100 
      if (t <= G1): 
       if (err >= maxErr[0]): 
        maxErr[0] = err 
        maxPercentError[0] = percentErr 
        maxTime[0] = t 
      elif (t <= G2): 
       if (err >= maxErr[1]): 
        maxErr[1] = err 
        maxPercentError[1] = percentErr 
        maxTime[1] = t 
      elif (t <= G3): 
       if (err >= maxErr[2]): 
        maxErr[2] = err 
        maxPercentError[2] = percentErr 

        maxTime[2] = t 
      else: 
       if (err >= maxErr[3]): 
        maxErr[3] = err 
        maxPercentError[3] = percentErr 
        maxTime[3] = t 
        
      t += tStep 
     for n in range(0, len(maxErr)): 
      answer[3+n*3] = maxTime[n] 
      answer[4+n*3] = maxErr[n] 
      answer[5+n*3] = maxPercentError[n] 
                  
     res.append(answer) 
  return res     
 #End supporting functions 
 ####################################################  

  
 def qualitativeLeap(functionalMatrix, developmentMatrix, needMatrix, debug=False): 

  """ 
  runs the qualitative leap algorithm. 
   t = number of technologies 
   c = number of capabilities 
   p = number of time periods 
  Parameters 
  ---------- 
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  functionalMatrix : c x t numpy array 
   matrix defining the mapping of capabilities to the technologies that support them.  
   Technologies are the columns (t) and the capabilities are the rows (c). 
   A one (1) is entered in cell (c, t) if the technology t supports the capability c 
  developmentMatrix : t x p numpy array 
   matrix defining the development timelines of the technology. 
   Technologies are the rows (t) and the time periods are the columns (p) 
   A one (1) is entered in cell (t, p) if the technology t will be developed in the time period p 
  needMatrix : p x c numpy array 

   matrix defining the mapping of capabilities to the time periods in which they are needed 
   time periods are the rows (p) and the capabilities are the columns (c) 
   A one (1) is entered in cell (p, c) if the capability c is needed in time period p 
  debug: boolean 
   If true, prints debug information, such as the values of the matrices 
  Returns 
  ------- 
  tuple of (numpy array, numpy array, numpy array) 
  First element of the tuple is the availability matrix, a (p x c) numpy array that defines if a 

capability c will be available in time period p 
   A one in the cell indicates that the capability will be available 
  Second element of the tuple is the delivery matrix, a (p x c) numpy array that defines if a 

capability will be delivered late 
   A one (1) in the cell indicates that the capability will be late to need 
   A zero (0) in the cell indicates that the capability either is ready when needed, or is not ready 

and not needed 
   A negative one (-1) in the cell indicates that the capability is ready ahead of need 

  Third element of the tuple is the investment matrix, a (t x p) matrix that shows how many late 
capabilities that the technology impacts in the time period 

   Positive values indicate the number of late capabilities in that time period that depend on the 
technology 

   Negative values indicate the number of early capabilities in that time period that are impacted by 
the technology 

  """ 
  #create the summation matrix 
  summationMatrix = np.zeros(needMatrix.shape) 
  for i in range(0, numCapabilities): 
   summationMatrix[:,i] = np.sum(functionalMatrix[i,:]) 
    
  #calculate the availability matrix 
  #A=H((FV)^T-S+0.5J) 
  #J = hadamard identity matrix 
  J = np.ones(needMatrix.shape) 

  #determine transpose of Functional Matrix * development matrix 
  FVT = np.transpose(np.matmul(functionalMatrix, developmentMatrix)) 
 
  #calculate the temporary availability matrix and then apply the heaviside function 
  #apply heaviside function 
  # note that the numpy implementation allows for specification of the x2 term in the heaviside 
  # function.  
  availabilityMatrix = np.heaviside(FVT-summationMatrix,1) 
   
  #calculate delivery matrix 
  #D = N-A 
  deliveryMatrix = needMatrix-availabilityMatrix 
 
  #investment matrix 
  #I = transpose(D*F).(J-V) 
  #in numpy, the multiplication operator (*) for matrices provides the hadamard product 
  #reset J to be size of the development matrix 

  J = np.ones(developmentMatrix.shape) 
  investmentMatrix = np.transpose(np.matmul(deliveryMatrix, functionalMatrix))*(J-developmentMatrix) 
 
 
  #print the results 
  if (debug): 
   #availability results 
   print("Availability Matrix\n", availabilityMatrix) 
   #determine when a capability is first available 
   availableCapabilityIndices = np.where(np.transpose(availabilityMatrix) == 1) 
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   #print out so that the output is [capability index, time period index], ordered by capability index 
   availableCapabilities = np.transpose(np.array([availableCapabilityIndices[0], 

availableCapabilityIndices[1]])) 
   print("capability availability times\n", availableCapabilities) 
  
   #delivery results 
   print("Delivery Matrix\n", deliveryMatrix) 
   #determine what capabilities are late 
   deliveryCapabilityIndices = np.where(np.transpose(deliveryMatrix) == 1) 

   #print out so that the output is [capability index, time period index], ordered by capability index 
   deliveryCapabilities = np.transpose(np.array([deliveryCapabilityIndices[0], 

deliveryCapabilityIndices[1]])) 
   print("late capability deliveries\n", deliveryCapabilities) 
  
   #investment results 
   print("Investment Matrix\n", investmentMatrix) 
   #determine which technologies need to be invested in 
   investmentIndices = np.where(investmentMatrix > 0) 
   #print out so that the output is [technology, time period, value] 
   print("investments by technology") 
   for i in range(0, len(investmentIndices[0])): 
    printString = "" 
    if (i == 0): 
     printString = "[" 
    printString += "[{} {} {}]".format(investmentIndices[0][i], investmentIndices[1][i], 

investmentMatrix[investmentIndices[0][i],investmentIndices[1][i]]) 

    if i == len(investmentIndices[0])-1: 
     printString += "]" 
    print(printString) 
  return (availabilityMatrix, deliveryMatrix, investmentMatrix) 
   
 def quantitativeLeap(functionalMatrix, developmentMatrix, needMatrix, debug = False, 

includeInvestmentMatrix = False): 

  """ 
  runs the quantitative leap algorithm. 
   t = number of technologies 
   c = number of capabilities 
   p = number of time periods 
  Parameters 
  ---------- 
  functionalMatrix : c x t numpy array 
   matrix defining the mapping of capabilities to the technologies that support them.  

   Technologies are the columns (t) and the capabilities are the rows (c). 
   A one (1) is entered in cell (c, t) if the technology t supports the capability c 
  developmentMatrix : t x p numpy array 
   matrix defining the development timelines of the technology. 
   Technologies are the rows (t) and the time periods are the columns (p) 
   Each cell contains the probability (0 to 1) that t will be developed in the time period p 
  needMatrix : p x c numpy array 
   matrix defining the mapping of capabilities to the time periods in which they are needed 
   time periods are the rows (p) and the capabilities are the columns (c) 
   A one (1) is entered in cell (p, c) if the capability c is needed in time period p 
  debug: boolean 
   If true, prints debug information, such as the values of the matrices 
  includeInvestmentMatrix: boolean 
   If true, calculates the investment matrix. If False, returns an empty array 
  Returns 
  ------- 
  tuple of (numpy array, numpy array, numpy array) 

  First element of the tuple is the availability matrix, a (p x c) numpy array that defines if a 
capability c will be available in time period p 

   The value in the cell indicates the probability that the capability will be available in the time 
period p 

  Second element of the tuple is the delivery matrix, a (p x c) numpy array that defines if a 
capability will be delivered late 

   The value in the cell indicates the probability (0 to 1) that the capbility will be available when 
it is needed 
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  Third element of the tuple is the investment matrix, a (t x p) matrix that shows how many late 
capabilities that the technology impacts in the time period 

   The value in the cell indicates the score of the technology in that time period. Higher scores 
indicate a larger impact - larger number of capabilities and/or higher probabilities 

  """ 
    
  #calculate the availability matrix 
  #A=K*(F,V,1) 
  availabilityMatrix = np.transpose(leap.KStarFunction(functionalMatrix, developmentMatrix, 1)) 

 
  #calculate delivery matrix 
  #D = K(N,A,-1) 
  deliveryMatrix = leap.KFunction(needMatrix, availabilityMatrix, -1) 
 
  #investment matrix 
  #I = transpose(D*F).(J-V) 
  #in numpy, the multiplication operator (*) for matrices provides the hadamard product 
  #reset J to be size of the development matrix 
  if (includeInvestmentMatrix): 
   J = np.ones(developmentMatrix.shape) 
   investmentMatrix = np.transpose(np.matmul(needMatrix, functionalMatrix))*(J-developmentMatrix) 
  else: 
   investmentMatrix = [] 
 
 
  #print the results 

  if (debug): 
   #availability results 
   print("Availability Matrix\n", availabilityMatrix) 
    
   #delivery results 
   print("Delivery Matrix\n", deliveryMatrix) 
    
   #investment results 
   print("Investment Matrix\n", investmentMatrix) 
    
  return (availabilityMatrix, deliveryMatrix, investmentMatrix) 
  
 def findDevelopmentProbabilitySingleTrial(predecessorKeyDictionary, schedule, techParameters, 

techTechParameters, distributionList, timePeriods,debug = False): 

  """ 
  runs a single instance of the earned value calculatiosn to find the develpoment timelines 

  Parameters 
  ---------- 
  schedule : TYPE 
   DESCRIPTION. 
  techParameters : TYPE 
   DESCRIPTION. 
  techTechParameters : TYPE 
   DESCRIPTION. 
  distributionList : TYPE 
   DESCRIPTION. 
  timePeriods : TYPE 
   DESCRIPTION. 
  plotTechs : TYPE, optional 
   DESCRIPTION. The default is []. 
  debug : TYPE, optional 
   DESCRIPTION. The default is False. 
  outputFile : TYPE, optional 

   DESCRIPTION. The default is "". 
  maxAllowableValue : TYPE, optional 
   DESCRIPTION. The default is 1e20. 
  Returns 
  ------- 
  None. 
  """ 
  startTimes = np.zeros(len(techParameters)) #start time of each technology 
  endTimes = np.zeros(len(techParameters)) #end time of each technology 
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  taskDurations = np.zeros(len(techParameters)) 
  pens = np.zeros(len(techParameters)) 
  #set up monte carlo parameters 
  (randomDuration, randomTechTechParameters) = leap.getRandomVariables(techParameters, 

techTechParameters, distributionList) 
  if (debug): 
   print("randomTechTechParameters") 
   print(randomTechTechParameters) 
   print("randomDuration", randomDuration) 

  #get the earned value at the transition points for each technology 
  ev = leap.getEarnedValueAtTransitionPoints(techParameters, randomTechTechParameters) 
  #go through the schedule and determine the start and finish date of each task 
  # step 1. get the predecessor tasks 
  for j in range(0, len(schedule)): 
   predecessorKeys = predecessorKeyDictionary[j] 
   predecessorIndices = techTechParameters[predecessorKeys] 
   # step 2. for each predecessor, find the utility time. Start time is the maximum utility time + the 

start time of the previous task 
   startTime = 0 
   earliestStartTime = techParameters[schedule[j]][1] 
   for k in range(0, len(predecessorIndices)): 
     
    kp = int(predecessorIndices[k][0]) 
    #do not adjust start time if we are looking at self-inflicted technical debt 
    if (kp != int(predecessorIndices[k][1])): 
     #find the index into the techTech array - need to have  

     p = int(techTechParameters[predecessorKeys][k][1]) 
     u = techTechParameters[predecessorKeys][k][3] 
     tu = leap.getTimeFromEarnedValue(u, ev[p][0], ev[p][1], ev[p][2], ev[p][3], ev[p][4], ev[p][5], 

ev[p][6]) 
     #multiply tu by the duration of the task and add to the start time of the prior task 
     pStart = startTimes[int(predecessorIndices[k][1])] 
     utilityTime = randomDuration[p]*tu 
     startTime = max(earliestStartTime, startTime, utilityTime+pStart) 
     if (debug): 
      print("***********") 
      print("kp", kp,"k", k, "u", u, "p", p) 
      print("schedule[j]", schedule[j]) 
      print("randomDuration", randomDuration[p]) 
      print("ev[p]", ev[p]) 
      print('tu', tu) 
      print("utilityTime", utilityTime) 

      print('pstart', pStart) 
      print('tu=1', leap.getTimeFromEarnedValue(1, ev[p][0], ev[p][1], ev[p][2], ev[p][3], ev[p][4], 

ev[p][5], ev[p][6])) 
       
   startTimes[schedule[j]] = startTime 
   #Step 3. add the duration to the start time for each technology 
   # impact of self-inflicted technical debt is in the earned value calculations for utility as seen by 

successors 
   # need to calculate the time at which the earned value = 1, this is the td penalty - this is the 

accumulated td interest 
   tdPenalty = leap.getTimeFromEarnedValue(1, ev[j][0], ev[j][1], ev[j][2], ev[j][3], ev[j][4], 

ev[j][5], ev[j][6]) 
   #tdPenalty = 1 
   endTimes[schedule[j]] = startTime + randomDuration[schedule[j]]*tdPenalty 
    
   taskDurations[schedule[j]] = randomDuration[schedule[j]]*tdPenalty 
   pens[schedule[j]] = (tdPenalty-1)  

  return (startTimes, endTimes, taskDurations, pens) 
 
 def threadedFindDevProbabilities(input_index): 

  res = leap.findDevelopmentProbabilitySingleTrial(input_index[0], input_index[1], input_index[2], 
input_index[3], input_index[4], input_index[5], False) 

   
  return res  
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 def findDevelopmentProbabilities(numTrials, schedule, techParameters, techTechParameters, 
distributionList, timePeriods, debug = False, maxAllowableValue=1e20, outputDurations = False): 

  """ 
  Determine the probability of each technology completing in each time period by doing a Monte Carlo 

analysis  
  Parameters 
  ---------- 
  numTrials : int 
   number of Monte Carlo trials to run 

  schedule : 1d numpy array 
   list of technologies, in notional schedule order. This is the order in which the durations will be 

evaluated 
    
  techParameters : 2d array 
   2d numpy array where the number rows is equal to the number of technologies 
   Columns are:  
    [0] T - time of peak instantaneous planned value, expressed from 0 to 1 
    [1] earliest start time, expressed in time units 
    [2] distribution inded for the duration 
  techTechParameters : 2d numpy array 
   2d numpy array where the number rows is equal to a maximum of the number of technologies squared 

(one for each combination) 
   Columns are:  
    [0] predecessor technology index 
    [1] successor technology index 
    [2] alpha - impact on successor, from 0 to 1 

    [3] U - utility threshold, from 0 to 1 
    [4] r distribution index 
    [5] tau distribution index 
  distributionList : array 
   array of distrbution, which are indexed by tech parameters and techtechparameters 
  timePeriods : 1d numpy array 
   array of time periods, expressed as time units from start for which the development probabilities 

will be calculated 
  debug : boolean 
   if true, prints debug information to the console 
  maxAllowableValue: float 
   any iterations that return end times for the last schedule item greater that this value will be 

ignored 
  Returns 
  ------- 
  Development matrix a (t x p) matrix where the rows represent each technology and the columns 

represent each time period. 
   The value in the cell is the probability of the technology being ready in the time period 
  """ 
  #output array stores each trial in a row and the development time for each technology in the columns 
  results = np.zeros((numTrials, len(techParameters))) 
  penalties = np.zeros((numTrials, len(techParameters))) 
  durations = np.zeros((numTrials, len(techParameters))) 
  validTrials = numTrials 
  predecessorKeyDictionary = {} 
  for i in range(0, len(schedule)): 
   predecessorKeyDictionary[i] = np.where(techTechParameters[:,0] == schedule[i])[0] 
 
  inputs = [] 
  for i in range(0, numTrials): 
   inputs.append((predecessorKeyDictionary, schedule, techParameters, techTechParameters, 

distributionList, timePeriods)) 
 

  with Pool(8) as pool: 
   count = 0 
   mapResults = pool.map(leap.threadedFindDevProbabilities, inputs) 
   for res in mapResults: 
    results[count] = res[1] 
    durations[count] = res[2] 
    penalties[count] = res[3] 
    count += 1 
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  #remove the invlaid rows 
  if (validTrials < numTrials): 
   if (debug): 
    print("removing ", numTrials-validTrials, "invalid rows") 
   results = np.delete(results,slice(validTrials,numTrials,1), 0) 
  if (debug): 
   print("results") 
   print(results) 
  # step 5. create the development matrix with the probabilities 

  devMatrix = np.zeros((len(techParameters), len(timePeriods))) 
  for i in range(0, len(devMatrix)): 
   for j in range(0, len(devMatrix[i])): 
    timePeriod = timePeriods[j] 
    #for each technology (columns of results), count the number of times that it finishes before the 

specified time period 
    #dev matrix is the cumulative probability 
    devMatrix[i,j] = len(np.where(results[:,i]<=timePeriod)[0])/numTrials 
  if (outputDurations): 
   return (devMatrix, durations) 
  else: 
   return devMatrix 

 

A.3 Example Application from Section 4.3.1.1  

 
from leap_forAppendix import leap, NormalDistribution, ConstantDistribution, TriangularDistribution, 

GammaDistribution, DiscreteDistribution, UniformDistribution, CustomTriangularDistribution 
import numpy as np 
import datetime 
from multiprocessing import set_start_method 

 
if __name__ == "__main__": 
 
 #data import from Williams, Why Monte Carlo Simulations of Project Networks can Mislead 
 #tasks 
 #ID, Name, Distribution, Triangular Parameters (Min, Most Likely, Max) 
 # 0, General Design, Triangular, 4,10,21 
 # 1, Engine Design, Triangular, 21,32,55 
 # 2, Avionics Design, Triangular, 1, 7, 19 
 # 3, D/b airframe design, Triangular, 6,15,32 
 # 4, D/b engine manufacture, Triangular, 7,9,11 
 # 5, Interim avionics, Triangular, 7,14,27 
 # 6, D/b airframe manufacture, Triangular, 8,11,17 
 # 7, Assemble d/b aircraft, Triangular, 3,5,10 
 # 8, Engine development, Triangular, 20,23,40 
 # 9, Engine production, Triangular, 12,13,14 
 # 10, Avionics Test, Gamma mean 10 mode 5 

 # 11, Avionics flight trials, discrete, relative probability 1:2;1:1 of 4,5,6,24 
 # 12, Engine/frame flight trials, discrete, relative probability of 1:2;2:1:0.5 of 5,6,7,8,13 
 # 13, Airframe production, Triangular, 12,14,18 
 # 14, Avionics Production, Triangular, 14, 16, 24 
 # 15, ready to assemble 
  
 #Duration parameters are: 
  #[0] T - time of peak instantaneous planned value, expressed from 0 to 1 
  #[1] earliest start time, expressed in time units 
  #[2] duration distribution type, as an enumerated type from the LEAP class 
  #[3] duration mean - mean duration of the technology development in time units 
  #[4] duration standard deviation - standard deviation of the time units 
   
 #times are in months 
 numTechnologies = 16 
 distributionList = [] 

 durationDistributions = [] 
 #corresponding data T = 0.395, alpha = 0, alpha0 = 1, U = 1, r = 0, tau = 0 for ALL 
 numTrials = 1000 
 T = 0.395 
 alpha = 0 
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 runComparativeAnalysis = False 
 runTDAnalysis = not runComparativeAnalysis 
 plotTechs = np.array([15]) 
 maxvalue = 200 
   
 debug = False 
 useCompound = False 
 useLowQualityEngine = False 
 techParameters = np.zeros((numTechnologies, 3)) 

  #General design 
 d0 = TriangularDistribution(4,10,21) 
 durationDistributions.append(d0) 
 techParameters[0] = [T, 0, 0] 
  #Engine design 
 d1 = TriangularDistribution(21,32,55) 
 durationDistributions.append(d1) 
 engineDesignDistributionIndex = len(durationDistributions)-1 
 techParameters[1] = [T, 0, 1] 
  #Avionics design 
 d2 = TriangularDistribution(1, 7, 19) 
 durationDistributions.append(d2) 
 techParameters[2] = [T, 0, 2 ] 
  #D/b airframe design 
 d3 = TriangularDistribution(6,15,32) 
 durationDistributions.append(d3) 
 techParameters[3] = [T, 0, 3 ] 

 #D/b engine manufacture 
 d4 = TriangularDistribution(7,9,11) 
 durationDistributions.append(d4) 
 techParameters[4] = [T, 0, 4 ]  
 #interim avionics 
 d5 = TriangularDistribution(7,14,27) 
 durationDistributions.append(d5) 
 techParameters[5] = [T, 0, 5 ]  
 #d/b airframe manufacture 
 d6 = TriangularDistribution(8,11,17) 
 durationDistributions.append(d6) 
 techParameters[6] = [T, 0, 6]  
 #assemble d/b aircraft 
 d7 = TriangularDistribution(3,5,10) 
 durationDistributions.append(d7) 
 techParameters[7] = [T, 0, 7]  

 #engine development 
 d8 = TriangularDistribution(20,23,40) 
 durationDistributions.append(d8) 
 techParameters[8] = [T, 0, 8 ]  
 #engine production 
 d9 = TriangularDistribution(12,13,14) 
 durationDistributions.append(d9) 
 techParameters[9] = [T, 0, 9 ]  
  
 #avionics test  
 gamma_alpha = 5 
 gamma_beta = 0.5 
 d10 = GammaDistribution(gamma_alpha, gamma_beta) 
 durationDistributions.append(d10) 
 techParameters[10] = [T, 0, 10] 
 #avionics flight trials 
 d11 = DiscreteDistribution([4,5,6,24],[1,2,1,1]) 

 durationDistributions.append(d11) 
 techParameters[11] = [T, 0, 11]  
 #engine/frame flight trials 
 d12 = DiscreteDistribution([5,6,7,8,13],[1,2,2,1,0.5]) 
 durationDistributions.append(d12) 
 techParameters[12] = [T, 0, 12]  
 #airframe production 
 d13 = TriangularDistribution(12, 14, 18) 
 durationDistributions.append(d13) 
 techParameters[13] = [T, 0, 13]  
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 #avionics production 
 d14 = TriangularDistribution(14,16,24) 
 durationDistributions.append(d14) 
 techParameters[14] = [T, 0, 14]  
 #ready to assemble 
 d15 = TriangularDistribution(0,0,0) 
 durationDistributions.append(d15) 
 techParameters[15] = [T, 0, 15]  
  

 for i in range(0, len(durationDistributions)): 
  distributionList.append(durationDistributions[i]) 
  
 #predecessors 
 #ID, predecessor IDs 
 # 0, N/A 
 # 1, N/A 
 # 2, 0 
 # 3, 0 
 # 4, 1 
 # 5, 2 
 # 6, 3 
 # 7, 4,5,6 
 # 8, 1 
 # 9, 8 
 # 10, 2 
 # 11, 10 

 # 12, 7 
 # 13, 12 
 # 14, 11,12 
 # 15, 9,13,14 
   
 schedule = np.array([0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15]) 
 techTechParameters = np.zeros((35, 6)) 
 #include the dependencies on other technologies 
 U = 1 
 rMean = 0 
 rSD = 0 
 tauMean=500 
 tauSD =0 
 rDist = ConstantDistribution(rMean) 
 tauDist = ConstantDistribution(tauMean) 
 distributionList.append(rDist) 

 rIndex = len(distributionList)-1 
 baseRIndex = rIndex 
 distributionList.append(tauDist) 
 tauIndex = len(distributionList)-1 
 baseTauIndex = tauIndex 
  
   
 techTechParameters = np.zeros((80, 6)) 
 #include the dependencies on other technologies 
 U = 1 
 rIndex = baseRIndex#len(distributionList)-1 
 tauIndex = baseTauIndex#len(distributionList)-1 
 rConDist = NormalDistribution(0.5,0.2) 
 tauConDist = NormalDistribution(0.8,0.1) 
 distributionList.append(rConDist) 
 rConIndex = len(distributionList)-1 
 distributionList.append(tauConDist) 

 tauConIndex = len(distributionList)-1 
 if (useCompound): 
  edsTauIndex = tauConIndex 
  edsRIndex = rConIndex 
 else: 
  edsTauIndex = tauIndex 
  edsRIndex = rIndex 
 engineTauIndex= tauIndex 
 engineRIndex = rIndex 
 if (useLowQualityEngine): 
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  engineTauIndex = tauConIndex 
  engineRIndex = rConIndex 
    
 techTechParameters[0] = [2,0,0.4,U,rIndex, tauIndex] #td in general design impact avionics design 
 techTechParameters[1] = [3,0,0.4,U,rIndex, tauIndex] #td in general design impact d/b airframe design 
 techTechParameters[2] = [4,1,0.7,U,engineRIndex, engineTauIndex] #td in engine design impact d/b 

engine manufacture 
 techTechParameters[3] = [5,0,0.1,U,rIndex, tauIndex] #td in general design impact interim avionics 
 techTechParameters[4] = [5,2,0.7,U,rIndex, tauIndex] #td in avionics design impact interim avionics 

 techTechParameters[5] = [6,0,0.1,U,rIndex, tauIndex] #td in general design impact d/b airframe 
manufacture 

 techTechParameters[6] = [6,3,0.7,U,rIndex, tauIndex]#td in d/b airframe design impact d/b airframe 
manufacture 

 techTechParameters[7] = [7,0,0.2,U,rIndex, tauIndex] #td in general design impact assemble d/b 
aircraft 

 techTechParameters[8] = [7,1,0.1,U,edsRIndex, edsTauIndex]#td in engine design impact assemble d/b 
aircraft 

 techTechParameters[9] = [7,2,0.1,U,rIndex, tauIndex]#td in avionics design impact assemble d/b 
aircraft 

 techTechParameters[10] = [7,3,0.2,U,rIndex, tauIndex]#td in d/b airframe design impact assemble d/b 
aircraft 

 techTechParameters[11] = [7,4,0.1,U,rIndex, tauIndex]#td in d/b engine manufacture impact assemble d/b 
aircraft 

 techTechParameters[12] = [7,5,0.1,U,rIndex, tauIndex]#td in interim avionics impact assemble d/b 
aircraft 

 techTechParameters[13] = [7,6,0.1,U,rIndex, tauIndex]#td in d/b airframe manufacture impact assemble 

d/b aircraft 
 techTechParameters[14] = [8,1,0.7,U,engineRIndex, engineTauIndex]#td in engine design impact engine 

development 
 techTechParameters[15] = [9,1,0.4,U,edsRIndex, edsTauIndex]#td in engine design impact engine 

production 
 techTechParameters[16] = [9,8,0.4,U,rIndex, tauIndex]#td in engine development impact engine 

production 
 techTechParameters[17] = [10,0,0,U,rIndex, tauIndex]#td in general design impact avionics test 
 techTechParameters[18] = [10,2,0.7,U,rIndex, tauIndex]#td in avionics design impact avionics test 
 techTechParameters[19] = [11,0,0,U,rIndex, tauIndex]#td in general design impact avionics flight 

trials 
 techTechParameters[20] = [11,2,0.4,U,rIndex, tauIndex]#td in avionics design impact avionics flight 

trials 
 techTechParameters[21] = [11,10,0.4,U,rIndex, tauIndex]#td in avionics test impact avionics flight 

trials 
 techTechParameters[22] = [12,0,0.2,U,rIndex, tauIndex]#td in general design impact engine flight 

trials 
 techTechParameters[23] = [12,1,0.2,U,edsRIndex, edsTauIndex]#td in engine design impact engine flight 

trials 
 techTechParameters[24] = [12,2,0,U,rIndex, tauIndex]#td in avionics design impact engine flight trials 
 techTechParameters[25] = [12,3,0.2,U,rIndex, tauIndex]#td in d/b airframe design impact engine flight 

trials 
 techTechParameters[26] = [12,4,0.1,U,rIndex, tauIndex]#td in d/b engine manufacture impact engine 

flight trials 
 techTechParameters[27] = [12,5,0,U,rIndex, tauIndex]#td in interim avionics impact engine flight 

trials 
 techTechParameters[28] = [12,6,0.1,U,rIndex, tauIndex]#td in d/b airframe manufacture impact engine 

flight trials 
 techTechParameters[29] = [12,7,0.1,U,rIndex, tauIndex]#td in assemble d/b aircraft impact engine 

flight trials 
 techTechParameters[30] = [13,0,0.2,U,rIndex, tauIndex]#td in general design impact airframe production 
 techTechParameters[31] = [13,1,0,U,edsRIndex, edsTauIndex]#td in engine design impact airframe 

production 

 techTechParameters[32] = [13,2,0,U,rIndex, tauIndex]#td in avionics design impact airframe production 
 techTechParameters[33] = [13,3,0.7,U,rIndex, tauIndex]#td in d/b airframe design impact airframe 

production 
 techTechParameters[34] = [13,4,0,U,rIndex, tauIndex]#td in d/b engine manufacture impact airframe 

production 
 techTechParameters[35] = [13,5,0,U,rIndex, tauIndex]#td in interim avionics impact airframe production 
 techTechParameters[36] = [13,6,0,U,rIndex, tauIndex]#td in d/b airframe manufacture impact airframe 

production 
 techTechParameters[37] = [13,7,0,U,rIndex, tauIndex]#td in assemble d/b aircraft impact airframe 

production 
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 techTechParameters[38] = [13,12,0,U,rIndex, tauIndex]#td in engine flight trials impact airframe 
production 

 techTechParameters[39] = [14,0,0.2,U,rIndex, tauIndex]#td in general design impact avionics production 
 techTechParameters[40] = [14,1,0,U,edsRIndex, edsTauIndex]#td in engine design impact avionics 

production 
 techTechParameters[41] = [14,2,0.7,U,rIndex, tauIndex]#td in avionics design impact avionics 

production 
 techTechParameters[42] = [14,3,0,U,rIndex, tauIndex]#td in d/b airframe design impact avionics 

production 

 techTechParameters[43] = [14,4,0,U,rIndex, tauIndex]#td in d/b engine manufacture impact avionics 
production 

 techTechParameters[44] = [14,5,0,U,rIndex, tauIndex]#td in interim avionics impact avionics production 
 techTechParameters[45] = [14,6,0,U,rIndex, tauIndex]#td in d/b airframe manufacture impact avionics 

production 
 techTechParameters[46] = [14,7,0,U,rIndex, tauIndex]#td in assemble d/b aircraft impact avionics 

production 
 techTechParameters[47] = [14,10,0,U,rIndex, tauIndex]#td in avionics test impact avionics production 
 techTechParameters[48] = [14,11,0,U,rIndex, tauIndex]#td in avionics flight trials impact avionics 

production 
 techTechParameters[49] = [14,12,0,U,rIndex, tauIndex]#td in engine flight trials impact avionics 

production 
 #impacts on ready to assemble 
 techTechParameters[50] = [15,0,0.1,1,rIndex, tauIndex] 
 techTechParameters[51] = [15,1,0.1,1,edsRIndex, edsTauIndex] 
 techTechParameters[52] = [15,2,0.1,1,rIndex, tauIndex] 
 techTechParameters[53] = [15,3,0,1,rIndex, tauIndex] 

 techTechParameters[54] = [15,4,0,1,rIndex, tauIndex] 
 techTechParameters[55] = [15,6,0,1,rIndex, tauIndex] 
 techTechParameters[56] = [15,7,0,1,rIndex, tauIndex] 
 techTechParameters[57] = [15,8,0,1,rIndex, tauIndex] 
 techTechParameters[58] = [15,9,0.1,1,rIndex, tauIndex] 
 techTechParameters[59] = [15,10,0,1,rIndex, tauIndex] 
 techTechParameters[60] = [15,11,0,1,rIndex, tauIndex] 
 techTechParameters[61] = [15,12,0,1,rIndex, tauIndex] 
 techTechParameters[62] = [15,13,0.1,1,rIndex, tauIndex] 
 techTechParameters[63] = [15,14,0.1,1,rIndex, tauIndex] 
  
 #include the self-inflicted technical debt 
 U = 1 
 #tech 0 and tech 1 always have alpha 0 = 1 since they have no dependencies 
 alpha0 = 1-np.sum(techTechParameters[np.where(techTechParameters[:,0] == 0)[0]][:,2]) 
 techTechParameters[64]= [0,0,alpha0,U,rIndex, tauIndex] 

 alpha0 = 1-np.sum(techTechParameters[np.where(techTechParameters[:,0] == 1)[0]][:,2]) 
 techTechParameters[65] = [1,1,alpha0,U,rIndex, tauIndex] 
 alpha0 = 1-np.sum(techTechParameters[np.where(techTechParameters[:,0] == 2)[0]][:,2]) 
 techTechParameters[66] = [2,2,alpha0,U,rIndex, tauIndex] 
 alpha0 = 1-np.sum(techTechParameters[np.where(techTechParameters[:,0] == 3)[0]][:,2]) 
 techTechParameters[67] = [3,3,alpha0,U,rIndex, tauIndex] 
 alpha0 = 1-np.sum(techTechParameters[np.where(techTechParameters[:,0] == 4)[0]][:,2]) 
 techTechParameters[68] = [4,4,alpha0,U,rIndex, tauIndex] 
 alpha0 = 1-np.sum(techTechParameters[np.where(techTechParameters[:,0] == 5)[0]][:,2]) 
 techTechParameters[69] = [5,5,alpha0,U,rIndex, tauIndex] 
 alpha0 = 1-np.sum(techTechParameters[np.where(techTechParameters[:,0] == 6)[0]][:,2]) 
 techTechParameters[70] = [6,6,alpha0,U,rIndex, tauIndex] 
 alpha0 = 1-np.sum(techTechParameters[np.where(techTechParameters[:,0] == 7)[0]][:,2]) 
 techTechParameters[71] = [7,7,alpha0,U,rIndex, tauIndex] 
 alpha0 = 1-np.sum(techTechParameters[np.where(techTechParameters[:,0] == 8)[0]][:,2]) 
 techTechParameters[72] = [8,8,alpha0,U,rIndex, tauIndex] 
 alpha0 = 1-np.sum(techTechParameters[np.where(techTechParameters[:,0] == 9)[0]][:,2]) 

 techTechParameters[73] = [9,9,alpha0,U,rIndex, tauIndex] 
 alpha0 = 1-np.sum(techTechParameters[np.where(techTechParameters[:,0] == 10)[0]][:,2]) 
 techTechParameters[74] = [10,10,alpha0,U,rIndex, tauIndex] 
 alpha0 = 1-np.sum(techTechParameters[np.where(techTechParameters[:,0] == 11)[0]][:,2]) 
 techTechParameters[75] = [11,11,alpha0,U,rIndex, tauIndex] 
 alpha0 = 1-np.sum(techTechParameters[np.where(techTechParameters[:,0] == 12)[0]][:,2]) 
 techTechParameters[76] = [12,12,alpha0,U,rIndex, tauIndex] 
 alpha0 = 1-np.sum(techTechParameters[np.where(techTechParameters[:,0] == 13)[0]][:,2]) 
 techTechParameters[77] = [13,13,alpha0,1,rIndex, tauIndex] 
 alpha0 = 1-np.sum(techTechParameters[np.where(techTechParameters[:,0] == 14)[0]][:,2]) 
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 techTechParameters[78] = [14,14,alpha0,1,rIndex, tauIndex] 
 alpha0 = 1-np.sum(techTechParameters[np.where(techTechParameters[:,0] == 15)[0]][:,2]) 
 techTechParameters[79] = [15,15,alpha0,1,rIndex, tauIndex]  
   
 #increments:  
  #increment 1: complete design (C0, complete by 43 months) 
  #increment 2: manufacture components (C1, complete by 54 months) 
  #increment 3: assemble d/b aircraft (C2, complete by 64 months) 
  #increment 4: flight trials (C3) complete by 77 months 

  #increment 5: final production/ready to assemble (C4): complete by 102 months 
 numCapabilities = 5 
 satisfactionIndices=[4] 
 functionalMatrix = np.zeros((numCapabilities, numTechnologies)) 
 #design completion 
 functionalMatrix[0]= [0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] 
 #manufacturing of d/b components 
 functionalMatrix[1] = [0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0] 
 #assemble d/b aircraft 
 functionalMatrix[2] = [0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0] 
 #flight trials 
 functionalMatrix[3] = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0] 
 #ready to assemble 
 functionalMatrix[4] = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1] 
 #time periods to cover the need dates of interest 
 timePeriods = np.arange(35,126,1) 
 numPeriods = len(timePeriods) 

 needMatrix = np.zeros((numPeriods, numCapabilities)) 
 satisfactionIndex = -1 
 for i in range(0, len(timePeriods)): 
  if (timePeriods[i]<43): 
   needMatrix[i] = [0,0,0,0,0] 
  elif (timePeriods[i] < 54): 
   needMatrix[i] = [1,0,0,0,0] 
  elif (timePeriods[i] < 64): 
   needMatrix[i] = [1,1,0,0,0] 
  elif (timePeriods[i] < 77): 
   needMatrix[i] = [1,1,1,0,0] 
  elif (timePeriods[i] < 102): 
   needMatrix[i] = [1,1,1,1,0] 
  else: 
   if (satisfactionIndex == -1): 
    satisfactionIndex = i 

   needMatrix[i] = [1,1,1,1,1]  
 replace = True #if true, changes the r/tau parameters to investigate the impact. if false, decrements 

the values instead 
 # run cases where we modify the different parameters 
 techTechIndicesToModify = np.arange(0, len(techParameters),1) 
 rPercentReductions = np.arange(0.1,1,0.1) 
 tauPercentReductions = np.arange(0.1,1,0.1) 
 metaNumTrials = len(techTechIndicesToModify)*(len(rPercentReductions)*len(tauPercentReductions)) 
 trials = [] 
 (baselineDevMatrix, baselineDurations) = leap.findDevelopmentProbabilities(1, schedule, 

techParameters, techTechParameters, distributionList, timePeriods, False, maxvalue, outputDurations=True) 
 (baselineAvailabilityMatrix, baselineDeliveryMatrix, baselineInvestmentMatrix) = 

leap.quantitativeLeap(functionalMatrix, baselineDevMatrix, needMatrix, debug=False, 
includeInvestmentMatrix=True) 

  #find all successor dependencies in the tech parameters list based on the indices to modify 
 for i in range(0, len(techTechIndicesToModify)): 
  techTechKeys = np.where(techTechParameters[:,1] == techTechIndicesToModify[i])[0] #index 1 is the 

predecessor    
  for j in range(0, len(rPercentReductions)): 
   for k in range(0, len(tauPercentReductions)): 
    trials.append([techTechKeys, rPercentReductions[j], tauPercentReductions[k], 

techTechIndicesToModify[i]]) 
 for i in range(0, len(trials)): 
  trial = trials[i] 
  print("trial", (i+1), "of", metaNumTrials) 
  #reset the distribution for each key in the list 
  origValueDictionary ={} 
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  for j in range(0, len(trial[0])): 
   key = trial[0][j] 
   if (techTechParameters[key][0] != techTechParameters[key][1]): 
    #ignore the self-inflicted TD 
    origValueDictionary[key] = (techTechParameters[key][4],techTechParameters[key][5]) 
    #need to clone the distribution and add it to the list and decrement the values 
    deltaR = trial[1] 
    deltaTau = trial[2] 
    newRDistribution = distributionList[int(techTechParameters[key][4])].clone() 

    newTauDistribution = distributionList[int(techTechParameters[key][5])].clone() 
    if (not replace): 
     newRDistribution.decrement(deltaR) 
     newTauDistribution.decrement(deltaTau) 
    else: 
     newRDistribution = ConstantDistribution(deltaR) 
     newTauDistribution = ConstantDistribution(deltaTau) 
     distributionList.append(newRDistribution) 
     techTechParameters[key][4] = len(distributionList)-1 
     distributionList.append(newTauDistribution) 
     techTechParameters[key][5] = len(distributionList)-1      
       
  #run the monte carlo for the new distribution list 
  durations = np.zeros((1000, len(techParameters))) 
  (devMatrix, durations) = leap.findDevelopmentProbabilities(1000, schedule, techParameters, 

techTechParameters, distributionList, timePeriods, False,maxvalue, True) 
  (availabilityMatrix, deliveryMatrix, investmentMatrix) = leap.quantitativeLeap(functionalMatrix, 

devMatrix, needMatrix, debug=False, includeInvestmentMatrix=True) 
  investmentMatrixSum += investmentMatrix 
  pMeetingNeed =1 
  for p in range(0, len(satisfactionIndices)): 
   pMeetingNeed = pMeetingNeed*deliveryMatrix[satisfactionIndex][satisfactionIndices[p]] 
   print("p Meeting need",pMeetingNeed) 
   for key in origValueDictionary: 
    techTechParameters[key][4] = origValueDictionary[key][0] 
    techTechParameters[key][5] = origValueDictionary[key][1] 
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