
DISSERTATION

AVOIDING TECHNICAL BANKRUPTCY IN SYSTEM DEVELOPMENT: A PROCESS TO

REDUCE THE RISK OF ACCUMULATING TECHNICAL DEBT

Submitted by

Howard Kleinwaks

Department of Systems Engineering

In partial fulfillment of the requirements

For the Degree of Doctor of Engineering

Colorado State University

Fort Collins, Colorado

Fall 2023

Doctoral Committee:

Advisor: Thomas Bradley
Co-Advisor: Ann Batchelor

Gregory Marzolf
Daniel Wise
John F. Turner

Copyright by Howard Kleinwaks 2023

All Rights Reserved

ii

ABSTRACT

AVOIDING TECHNICAL BANKRUPTCY IN SYSTEM DEVELOPMENT: A PROCESS TO

REDUCE THE RISK OF ACCUMULATING TECHNICAL DEBT

The decisions made early in system development can have profound impacts on later

capabilities of the system. In iterative systems development, decisions made in each iteration

produce impacts on every future iteration. Decisions that have benefits in the short-term may

damage the long-term health of the system. This phenomenon is known as technical debt. If not

carefully managed, the buildup of technical debt within a system can lead to technical bankruptcy:

the state where the system development can no longer proceed with its lifecycle without first

paying back some of the technical debt. Within the schedule constrained development paradigm

of iteratively and incrementally developed systems, it is especially important to proactively

manage technical debt and to understand the potential long-term implications of decisions made

to achieve short-term delivery goals.

To enable proactive management of technical debt within systems engineering, it is first

necessary to understand the state of the art with respect to the application of technical debt methods

and terminology within the field. While the technical debt metaphor is well-known within the

software engineering community, it is not as well known within the systems engineering

community. Therefore, this research first characterizes the state of technical debt research within

systems engineering through a literature review. Next, the prevalence of the technical debt

metaphor among practicing systems engineers is established through an empirical survey. Finally,

a common ontology for technical debt within systems engineering is proposed to enable clear and

iii

concise communication about the common problems faced in different systems engineering

development programs.

Using the research on technical debt in systems engineering and the ontology, this research

develops a proactive approach to managing technical debt in iterative systems development by

creating a decision support system called List, Evaluate, Achieve, Procure (LEAP). The LEAP

process, when used in conjunction with release planning methods, can identify the potential for

technical debt accumulation and eventually technical bankruptcy. The LEAP process is developed

in two phases: a qualitative approach to provide initial assessments of the state of the system and

a quantitative approach that models the effects of technical debt on system development schedules

and the potential for technical bankruptcy based on release planning schedules.

Example applications of the LEAP process are provided, consisting of the development of a

conceptual problem and real applications of the process at the Space Development Agency. The

LEAP process provides a novel and mathematical linkage of the temporal and functional

dependencies of system development with the stakeholder needs, enabling proactive assessments

of the ability of the system to satisfy those stakeholder needs. These assessments enable early

identification of potential technical debt, reducing the risk of negative long-term impacts on the

system health.

iv

ACKNOWLEDGEMENTS

Although it is my name on the authorship line of this dissertation, I could not have accomplished

this work completely on my own. There are many who contributed ideas, thoughts, and critical

comments without which this work not have been able to be completed.

First, I would like to thank my advisors, Professor Ann Batchelor and Dr. Thomas Bradley.

Without their help and patience through weekly meetings, this dissertation would not have come

to fruition. Their guidance the critical components of the process provided clarity and definition

that, at times, was very much needed. I also want to thank the other members of my committee for

their time and valuable insights and recommendations throughout the entirety of this effort.

Thank you to my colleagues at the Space Development Agency, specifically Frank Turner, Matt

Rich, and Mike Butterfield, who not only listened to me talk about the need for a process like

LEAP but who also helped me to develop the critical concepts. Thank you to Modern Technology

Solutions, Inc. for enabling me to participate in the program while working full time.

Finally, and most importantly, thank you to my family: my wife Sue and my children Ellie and

Jake. Thank you for understanding when I needed to spend time writing and working on my school

work instead of doing other activities and for giving me the time to complete this degree. Your

support has made this possible, and I love you and I can’t thank you all enough.

v

TABLE OF CONTENTS

ABSTRACT .. ii
ACKNOWLEDGEMENTS ... iv

LIST OF TABLES .. vii
LIST OF FIGURES ... viii
Chapter 1 - Introduction .. 1

1.1 Motivation and Background ... 1

1.1.1 Iterative and Incremental Development ... 4

1.1.2 Technical Debt in Iterative and Incremental Development ... 12

1.2 Reflections on Technical Debt in Systems Engineering ... 19

1.2.1 Technical Bankruptcy in Systems Engineering ... 22

1.2.2 State of Technical Debt Research in Systems Engineering ... 27

1.3 Research Agenda .. 31

1.3.1 Research Questions .. 34

1.4 Structure of this Dissertation .. 38

Chapter 2 – Technical Debt in Systems Engineering ... 40

2.1 Introduction ... 40

2.2 RQ1.1: What is the Current State of Research on Technical Debt within Systems
Engineering? ... 41

2.2.1 Technical Debt in Systems Engineering – A Systematic Literature Review [19] 42

2.2.2 Addressing RQ1.1 .. 65

2.3 RQ1.2: How Prevalent is the Concept of Technical Debt and the use of the Metaphor Among
Systems Engineering Practitioners? .. 66

2.3.1 An Empirical Survey on the Prevalence of Technical Debt in Systems Engineering [18]
... 67

2.3.2 Addressing RQ1.2 .. 89

2.4 RQ1.3 What Common Ontology Should be used to Describe Technical Debt Within the
Field of Systems Engineering? ... 91

2.4.1 An Ontology for Technical Debt in Systems Engineering [21] 93

2.4.2 Addressing RQ1.3 .. 123

2.5 Technical Debt in the Systems Engineering Lifecycle ... 138

2.6 Conclusion .. 143

Chapter 3 – Identification of Technical Debt in the System Lifecycle 145

3.1 Introduction ... 145

3.2 RQ2.1: How is technical debt identified within software engineering? 146

3.2.1 Existing Methods of Technical Debt Identification in Software Engineering 146

3.2.2 Applicability of Software Engineering Methods to Systems Engineering 147

3.2.3 Addressing RQ2.1 .. 149

3.3 RQ2.2: What process can be used to identify potential technical debt sources within systems
engineering? .. 151

3.3.1 Technical Debt Identification Timeline ... 151

3.3.2 The Need for Proactive Technical Debt Identification .. 153

3.3.3 The LEAP Process ... 158

vi

3.3.4 Addressing RQ2.2 .. 180

3.4 Conclusion .. 182

Chapter 4 – Using Technical Debt as a Guide In Release Planning ... 184

4.1 Introduction ... 184

4.2 Quantitative LEAP Process .. 185

4.2.1 Including Technical Debt in Project Schedule Analysis .. 186

4.2.2 Quantification of the LEAP process .. 223

4.2.3 Summary of LEAP Quantitative Updates .. 243

4.3 Including Proactive Technical Debt Assessments in Release Planning 244

4.3.1 LEAP as a Decision Support System for Release Planning 244

4.4 Conclusion .. 260

Chapter 5 – Avoiding Technical Bankruptcy ... 262

5.1 Introduction ... 262

5.2 Technical Bankruptcy in the Context of the LEAP Process ... 262

5.2.1 Quantifying Technical Debt in the LEAP Process .. 263

5.2.2 Assessing Technical Bankruptcy with the LEAP Process ... 267

5.3 Using LEAP to Avoid Technical Bankruptcy .. 270

5.3.1 Example Applications .. 275

5.4 Presentation of the Process in simplified terms .. 305

5.5 Conclusion .. 309

Chapter 6 – Conclusions and Future Work ... 311

6.1 Research Contributions ... 311

6.2 Future Work .. 314

6.3 Conclusion .. 315

References ... 317

Appendix A: Example Python Code for LEAP Implementation .. 330

A.1 Probability Distribution Classes .. 330

A.2 Implementation of the LEAP Process .. 338

A.3 Example Application from Section 4.3.1.1 .. 350

vii

LIST OF TABLES

Table 1-1. Examples of strategies and development methods .. 4

Table 1-2. Examples of technical debt within United States Government systems, as assessed by
the author .. 20

Table 2-1. Literature review inclusion and exclusion criteria .. 46

Table 2-2. Search results at each stage of evaluation ... 47

Table 2-3. Research questions and associated data extracted from the qualifying articles 48

Table 2-4. Types of technical debt identified in selected articles ... 55

Table 2-5. Technical debt causes in selected articles ... 57

Table 2-6. Selected articles ... 64

Table 2-7. Survey questions .. 73

Table 2-8. Technical debt types in systems engineering .. 124

Table 2-9. Example creation and observation of technical debt ... 134

Table 2-10. Examples of items that are not technical debt ... 137

Table 2-11. Creation and impact of technical debt types.. 140

Table 3-1. Methods for identifying technical debt within software engineering 147

Table 3-2. Stages and gates of the technical debt timeline ... 154

Table 3-3. Definition of LEAP terms and symbols .. 163

Table 3-4. LEAP satisfaction of proactive process for technical debt identification 181

Table 4-1. Variables used in earned value equations .. 193

Table 4-2. Recommended random and static variables for Monte Carlo analysis 207

Table 4-3. Comparison of results with [173] .. 210

Table 4-4. Technical debt and increased parallelism impact on the airplane project 213

Table 4-5. Accuracy assessment of earned value linearization .. 220

Table 4-6. Examples of investment matrix scores .. 236

Table 5-1. Technical debt parameters for engine design choice ... 266

Table 5-2. Decomposition of stakeholder needs to strategic capabilities, tactical capabilities, and
technologies .. 285

Table 5-3. SDA investments mapped to the enabling technologies ... 292

Table 5-4. Probabilities of completing features based on feature priority 300

viii

LIST OF FIGURES

Figure 1-1. Iterative development cycle ... 6

Figure 1-2. History of the acquisition methods in the DoD, sourced from [12] [36] [37] [38] [39]
[40] .. 9

Figure 1-3. Technical debt timeline, adapted from [50]. Dashed lines show potential paths. 14

Figure 1-4. Technical debt management cycle ... 15

Figure 1-5. Technical debt quadrant, adapted from [57] and [52] .. 16

Figure 1-6. U.S. Government program technical debt categorized notionally and with the
judgement of the author .. 22

Figure 1-7. Author’s assessed growth of technical debt principal (green) and interest (orange)
within the JMS program, based on GAO reports [11] [82] [83] [84] [85] 25

Figure 2-1. Topics of study in selected articles applied to research questions 50

Figure 2-2. Overview of selected articles by field of study (left) and data source (right) 50

Figure 2-3. Data source by field of study ... 52

Figure 2-4. Occurrence of technical debt types in selected articles .. 56

Figure 2-5. Demographics of survey respondents .. 75

Figure 2-6. Additional effort required to correct technical debt compared to the effort to implement
the ideal solution originally .. 77

Figure 2-7. Negative long-term impacts of technical debt ... 78

Figure 2-8. Rationale for accruing technical debt ... 79

Figure 2-9. Participant familiarity with the technical debt metaphor ... 80

Figure 2-10. Usage of and familiarity with the technical debt metaphor in various contexts 82

Figure 2-11. Technical debt in the system lifecycle ... 83

Figure 2-12. Summary of results from the survey on the prevalence of technical debt from [134]
... 90

Figure 2-13. Conceptual map of technical debt for systems engineering, based on [29] and [13]98

Figure 2-14. Interconnected system dimensions showing an estimation of system value 100

Figure 2-15. Impact of TD on project schedule, performance, and cost during project execution.
Restoring system performance requires reducing the time to market or the profitability of the
project. .. 107

Figure 2-16. Example of schedule pressure creating TD .. 120

Figure 2-17. Consolidation of TD types from [19], organized by interest and fee bearing status.
... 122

Figure 2-18. Technical debt type creation and observation based on impacted artifacts throughout
the system lifecycle ... 139

Figure 2-19. Technical debt creation (left) and observation (right) by type in the systems
engineering lifecycle ... 142

Figure 3-1. Technical debt identification method application in the occurrence of technical debt.
Repayment cost based on [135] .. 152

Figure 3-2. Notional timeline of technical debt occurrence by group .. 154

Figure 3-3. Series and parallel implementation of components showing the change in reliability of
each component .. 157

Figure 3-4. The LEAP process.. 163

ix

Figure 3-5. Input matrices of the list phase of the LEAP process .. 165

Figure 3-6. Input matrices of evaluate phase of the LEAP process .. 167

Figure 3-7. Calculated matrices of the evaluate phase of the LEAP process 169

Figure 3-8. Investment Matrix, calculated in the achieve phase of the LEAP process 173

Figure 3-9. Impact of delay in Technology T1 development time on delivered capabilities 176

Figure 4-1. Planned and earned value 'S-curves' .. 192

Figure 4-2. Multiple predecessor contribution to earned value .. 197

Figure 4-3. Definition of r parameter in the context of multiple predecessors and technical debt
... 198

Figure 4-4. Effect of changing r and 𝝉𝝉 on earned value.. 199

Figure 4-5. Specification of compounding technical debt .. 201

Figure 4-6. Stages of earned value S-curve .. 202

Figure 4-7. Concavity changes indicating transition points between growth stages in planned value
... 203

Figure 4-8. Linearized planned and earned value curves using the same transition points 205

Figure 4-9. Project tasks, durations, and sequence, adapted from [178] 209

Figure 4-10. Cumulative probabilities of completing the aircraft project under various technical
debt and parallelism assumptions ... 214

Figure 4-11. Effect of compounding interest on task duration and end time 216

Figure 4-12. Interest amount for ‘engine/frame flight trials’ .. 217

Figure 4-13. Maximum and average percent error of linearization of earned value sliced by T, r,

and 𝜏𝜏 .. 221

Figure 4-14. The qualitative LEAP process as defined in [160]... 225

Figure 4-15. Application of the K* function and comparison with matrix multiplication 233

Figure 4-16. Functional Matrix accounting for technology dependencies 237

Figure 4-17. Qualitative (left) and quantitative (right) Development Matrices, based on [167] 238

Figure 4-18. Qualitative (left) and quantitative (right) Delivery Matrices, based on [167] 239

Figure 4-19. Qualitative (left) and quantitative (right) Investment Matrices, based on [167] 241

Figure 4-20. Aircraft example task relationships to increments ... 247

Figure 4-21. Technology Matrix for aircraft example. Based on [173] 248

Figure 4-22. Functional Matrix for aircraft example .. 248

Figure 4-23. Need Matrix for aircraft example. .. 249

Figure 4-24. Development Matrix for aircraft example .. 250

Figure 4-25. Delivery Matrix for aircraft example ... 251

Figure 4-26. Investment Matrix for aircraft example ... 252

Figure 4-27. Technical debt analysis process for individual tasks with the LEAP process 253

Figure 4-28. Overall probability of meeting stakeholders’ needs for the aircraft example 254

Figure 4-29. Satisfaction of each capability in the aircraft example .. 255

Figure 4-30. Average percent increase in task duration due to technical debt on tasks 1 and 11
... 256

Figure 4-31. Impact of technical debt from task 1 on technology development and capability
delivery ... 257

Figure 4-32. Probability of meeting stakeholders' needs based on r and 𝜏𝜏 for technology 1 259

Figure 5-1. Design capability availability ... 265

Figure 5-2. Comparison of technical debt impact on ‘ready to assemble task’ completion
probability ... 267

x

Figure 5-3. Delivery Matrix showing potential technical bankruptcy .. 269

Figure 5-4. Activity diagram for assessing technical bankruptcy with LEAP process 272

Figure 5-5. SDA capability delivery lifecycle .. 277

Figure 5-6. Example SDA timeline implementing the LEAP process in iterative fashion across
multiple tranches ... 284

Figure 5-7. Functional Matrix ... 286

Figure 5-8. Technology Matrix ... 287

Figure 5-9. Matrices used in the evaluation phase of the LEAP process 290

Figure 5-10. Investment Matrix .. 291

Figure 5-11. Updated Delivery and Investment Matrices based on investments 294

Figure 5-12. Initial qualitative LEAP Delivery Matrix .. 299

Figure 5-13. Delivery Matrix from quantitative LEAP application ... 301

Figure 5-14. Investment Matrix from quantitative LEAP application .. 301

Figure 5-15. Return-on-Investment calculated with LEAP .. 303

Figure 5-16. Simplified LEAP process description .. 306

Figure 5-17. Simplified LEAP process model .. 307

Figure 5-18. Plot of delivery timelines ... 308

Figure 5-19. Plot of availability timelines .. 309

1

CHAPTER 1 - INTRODUCTION

1.1 Motivation and Background

This research is motivated by a broad set of ongoing and evolving changes in the field of

systems engineering. The increased importance of software-intensive systems and rapid

development of technological capabilities have enabled a reduction in the time to market for

systems [1]. The ability of competitors to quickly release products has shifted the driving

motivation of systems development from decreasing the cost of the system to increasing the speed

with which the system is delivered [2]. The environments in which the systems are developed are

increasing volatile, uncertain, complex, and ambiguous (VUCA) [3]. Traditional systems

engineering methodologies, such as the Waterfall method [4], treat requirements as fixed and

therefore the changes associated with a VUCA environment can result in increases to budget or

schedule [5]. The combination of these factors has produced an increased emphasis on requiring

“increasing flexibility, innovation and rapid capability development” in systems development [6].

However, the ability to develop a flexible system often conflicts with the ability to rapidly deploy

the system [7].

Flexibility can be accomplished by engineering an agile system or by using agile systems

engineering methods. The two concepts are not the same [8]. An agile system is a system that can

adjust to changes in its environment and intended usage [9]. While customers may desire agility

in their system, they often do not want to pay for features that are unused in base cases [10].

Building an agile system may result in a more complex system with higher costs and longer

development schedules for the first delivery [7], which conflicts with the desire to increase the

speed of delivery.

2

In contrast, agile systems engineering seeks to add flexibility and agility to the processes used

to develop the system [8]. Traditional sequential development models define the requirements up

front and deliver the capability at the end. Iterative, incremental, and agile methods contain

processes to adjust and adapt to user feedback received on repeated deliveries of incrementally

developed capability [11]. Iterative and incremental development methods have been in use for

many years, having been used on the X-15 hypersonic jet and NASA’s Project Mercury [12], and

are becoming more commonplace within the system engineering community [13]. Iterative and

incremental methods are being used to rapidly develop multiple prototypes that can receive and

adjust to user feedback [14] instead of the traditional approach that tries to develop one perfect

prototype [3].

The push towards more flexible systems engineering development methods is driven, in part,

by the desire to shorten development cycles. The desire to decrease the time to market results in

developers seeking to deploy capabilities quickly. Developers may use approaches that require the

least amount of work and may implement technical compromises and shortcuts for the sake of

expediency [7]. These compromises include activities such as prioritizing functional requirements

over non-functional requirements [15]. Especially pernicious is the fact that technical shortcuts

may appear to be successful initially, justifying their use. However, these compromises may slow

projects down over time [16] due to the long-term impacts of the early decisions. These impacts

on product schedule, cost, and performance can be understood through the metaphor of technical

debt.

The technical debt metaphor was first introduced by Ward Cunningham in 1992 as a method to

explain to his management the need for refactoring software. He stated that “Shipping first time

code is like going into debt. A little debt speeds development so long as it is paid back promptly

3

with a rewrite” [17]. Technical debt can impact a program when “the debt is not repaid. Every

minute spent on not-quite-right code counts as interest on that debt” [17]. An accumulation of

technical debt in the system results in system developers working on fixing the debt instead of

continuing the development of the system.

Many authors have sought to expand and improve on the definition of technical debt within the

realm of software engineering. However, even though the issues associated with technical debt are

experienced by systems engineering practitioners [18], the technical debt terminology is not

prevalent within the published systems engineering literature [19] and is not commonly used by

systems engineering practitioners [18]. The lack of common terminology to describe similar

problems prevents the identification and use of common solutions [20]. This dissertation adopts

the definition of technical debt from [19]:

“Technical debt is a metaphor reflecting technical compromises that can yield

short-term benefit but may hurt the long-term health of a system.”

The definition identifies the critical aspects of technical debt: technical compromises that yield

initial benefits but cause later problems. Much like the technical debt metaphor, additional related

terms, such as ‘technical compromise’ and ‘health of a system’, are not well defined in the

literature [21]. Additional terms, such as ‘rework’ are used to describe similar conditions to

technical debt. A full ontology of technical debt within systems engineering needs to be created to

enable proper communication about the associated issues.

This dissertation seeks to understand the impacts of technical debt on systems developed using

incremental and iterative design methods, especially focusing on the ability to proactively identify

potential sources of technical debt during feature development that may prohibit the ability to

4

satisfy stakeholder needs. To do so requires the ability to associate stakeholder needs with

technology and feature development in both the temporal and functional dimensions.

1.1.1 Iterative and Incremental Development

Traditionally, a system lifecycle is associated closely with the development method – the set of

processes used to manage the system development, such as Waterfall [4], Spiral [22], or adaptive

and iterative methods. However, the selection of the development method is only one part of the

system lifecycle. Managing a system throughout its lifecycle requires the definition of a complete

technical strategy, consisting of the development method, the development strategy, and the

delivery strategy [23]. The development method defines the processes, such as how change is

handled, system decision points, and the handling of risk. The development strategy defines how

successive versions (if any) of the system will be developed. The delivery strategy defines if the

system will be delivered all at once or through a series of releases. Any development method can

be used with any combination of development strategy and delivery strategy. Table 1-1 provides

examples of several different development strategies.

Table 1-1. Examples of strategies and development methods

Technical Strategy Development Method
Development

Strategy
Delivery Strategy

Adaptive/Agile: flexible

development cycles to adapt

requirements and prioritize

development tasks based on

frequent stakeholder feedback

Scrum: The requirements

for each sprint are fixed

and flow through design,

implementation, and test,

with connections between

design and test [24]..

Iterative: Features

and components

developed in one

sprint may be refined

in future sprints.

Multiple: A

functional, and

potentially

releasable, system is

delivered at the end

of each sprint

Sequential Development: system

development progresses through a

defined series of phases

Waterfall: The

requirements are fixed at

the beginning and tested

at the end [4]

All-at-once: A single

iteration of the

system is delivered at

end of development

Once: A single

delivery at the end

of system

development

Successive Deployment:

incremental delivery of capabilities

Spiral: Risk based system

assessment performed

prior to initiation of each

increment [25]

Incremental: Each

spiral builds upon the

previous spiral to

deliver additional

capability

Multiple: A

delivery is released

at the end of each

increment

5

Development strategies may be all-at-once, incremental, or iterative. All-at-once strategies

deliver the entire system at one time. Incremental strategies start with a known set of high-level

requirements, which are then assigned to stages of development (increments). Each increment

delivers part of the overall capability [11]. An overall, connected view of the requirements is

critical in this development strategy, as the decisions made on early increments will result in

constraints on the capabilities delivered in future increments. For example, the Space Shuttle

delivered its engines in an early increment. Once the thrust output of the engines and the number

of engines was set, the maximum mass of the rest of the system was fixed and could not be

changed, limiting the overall payload capacity of the Space Shuttle [26].

Iterative strategies accept that the requirements have greater volatility and are not completely

known at the start of the system development [26]. As the development progresses, the

requirements for future iterations are generated from sources such as user feedback, technological

advances, and the results of previous iterations. Throughout the system development, several

requirements which may have been unclear during the initial iterations become more defined

through the future iterations [27]. Iterative methods are also referred to as evolutionary methods

and Agile methodologies use iterative development strategies [11].

Iterative development strategies often “stress delivering the most value as early as possible and

constantly improving it throughout the project lifecycle based on user feedback” [11]. With

flexible processes, the system developer can react to changing user requirements and needs as the

system development progresses. However, there will still be uncertainty about whether

requirements will change and the impact of those changes [5]. Whether using incremental or

iterative methods, the initial development cycles will impose constraints on future work and the

work done in each increment or iteration “limits design options for subsequent developments”

6

[26]. There is the risk that the system, focusing on delivering value to the user, implements the

‘easiest’ set of components, which break when future changes are required [25]. Understanding

the risk to the system requires understanding the connections between iterations.

Within a single iterative design cycle, the requirements for the iteration are selected based on

the current state of the system capabilities and the priorities of the stakeholders. The requirements

for each iteration define the iteration design. The iteration design is the implementation of the

requirements which provides the capabilities to the user. The design may augment or constrain the

current system capabilities depending upon the selection of requirements and the success with

which they were implemented. Based upon the updated capabilities delivered by the implemented

design, the requirements for the next iteration are prioritized and selected, and may include rework.

This pattern, illustrated in Figure 1-1, repeats for each iteration.

Figure 1-1. Iterative development cycle

Each iteration delivers a subset of the system requirements. The process of establishing the

requirements for each iteration is known as release planning. Release planning consists of

determining which features to implement in each iteration or series of iterations, based on a

prioritization scheme [28]. Release planning may occur once, such as in the case of incremental

System

Capabilities

Iteration

Requirements

Iteration

Design
Determine

Iterations

7

development with fixed requirements, or may occur prior to each iteration. Traditional systems

engineering methods, such as the Waterfall model [4], spend significant time on upfront release

planning – attempting to determine a full and complete set of requirements prior to beginning

work. Agile approaches spend less time on upfront planning and more time iterating on the system

designs and in integration [29]. Agile approaches can focus on selecting requirements that

maximize value delivered to the user in the shortest amount of time [30], enabling the rapid

delivery of capability and decreasing the time to market.

The prioritization scheme used to select the requirements for each iteration needs to balance the

user value proposition with the limitations that may be imparted on the future development of the

system. Many existing prioritization schemes give insufficient weight to non-functional

requirements and to the dependencies between functional requirements and non-functional

requirements. Similarly, the dependencies between functional requirements evolve with each

iteration and traditional risk assessment approaches do not account for the risk associated with

these dependencies [31]. If dependencies between functional and non-functional requirements are

not considered during the release planning activities, then there is the chance that the value-based

prioritization will result in a state where future iterations are impossible to complete, which will

require the rework of already completed features or the failure of the system. Managing the

dependencies between iterations is critical to the success of the system.

Agile development practices, which are designed to be highly iterative and flexible, first

appeared in software engineering. Systems engineering is closely related to software engineering

and has a history of borrowing processes form software engineering, including development

methods such as Waterfall [4], Spiral [22], and Agile [13]. The developers of large systems are

moving towards more flexible techniques, including the increased use of iterative and incremental

8

methods, in efforts to increase both the speed of delivery and the utility of the developed system.

The following sections demonstrate how specific organizations are transitioning to the use of

incremental and iterative methods.

1.1.1.1 United States Department of Defense

The United States Department of Defense (DoD) is one of the largest acquirers of complex

systems and systems of systems. These systems often require development of new capabilities,

which result in significant uncertainties in the ability to deliver on time and on budget. The DoD

has traditionally specified the requirements at the start of the program. Due to the contracting

mechanisms used, changing these requirements as the system development proceeds has the

potential for introducing large schedule and cost increases [32]. The DoD is attempting to reduce

its cycle time, defined as the time from the start of the program until the program fields its initial

operational capability (IOC) [33]. The DoD is continuously seeking to improve the quality of the

systems that it produces, for example, by adopting methods that include users more frequently

during the development process [11]. Recent DoD systems engineering guidelines emphasize the

use of iteration throughout the system development processes [34]. Government Accountability

Office (GAO) reports have explicitly stated that “programs can put themselves in a better position

to succeed by implementing incremental acquisition strategies that limit the time in development”

[35]. Examining the history of the DoD acquisition process, shown in Figure 1-2, provides an

overview of the progression towards more iterative and incremental methods.

9

Figure 1-2. History of the acquisition methods in the DoD, sourced from [12] [36] [37] [38] [39] [40]

The DoD acquisition process is controlled by two primary documents: DoD Directive (DoDD)

5000.1 and DoD Instruction (DoDI) 5000.2. The DoD first issued DoDD 5000.1 in 1971 and DoDI

5000.2 in 1975 as a method to control rising defense acquisition costs. The documents described

three phases of major defense programs – initiation, full-scale development, and

production/deployment with decision gates in between each phase. They also emphasized early

test and evaluation, using existing commercial hardware, and making tradeoffs between cost,

schedule, and performance where practical. The initial revisions focused on structuring the

acquisition process and reducing the cycle time, including the introduction of evolutionary

acquisition strategies in 1982 and emphasizing non-traditional and innovative methods, including

evolutionary and incremental acquisition, in 1996. However, these processes met with limited

success [36].

In 1998, the average DoD cycle time had increased approximately 25% relative to 1969. By

contrast, the automobile industry had reduced cycle time by an average of 50-75% during the same

time period. The long cycle times resulted in the DoD fielding of out-of-date components and

systems that no longer met the end user needs [41].

10

In part to address the problem of extended cycle times, the DoD released an updated version of

DoDI 5000.2 in 2000, titled the “Operation of the Defense Acquisition System” [12]. This version

replaced previous versions and also replaced MIL-STD-498, issued in 1994, which had introduced

changes to the approved software development process to improve “compatibility with incremental

and evolutionary development models” [42]. The 2000 version of DoDI 5000.2 stated an explicit

preference for the evolutionary approach over waterfall methods. Spiral development is also

explicitly called out as the preferred method for software development [12].

In 2002, the DoD released DoD 5000.2-R “Mandatory Procedures for Major Defense

Acquisition Programs (MDAPS) and Major Automated Information System (MAIS) Acquisition

Programs” [43]. This regulation allowed the program manager to choose between a single step

approach and an evolutionary approach to program acquisition. However, for the software portions

of the system, the regulations required the program manager to plan a spiral development process

for both evolutionary and single step acquisition strategies. The 2003 release [37], now termed

DoDI 5000.02, stated a preference for evolutionary acquisition to deliver capabilities in

increments. The program manager (PM) could choose between spiral development and

incremental development, although the instruction highlighted the reduction in risk and decrease

in cycle time that can accompany incremental development. Other substantial changes included a

change in focus from requirements-based processes to capabilities-based processes and an

increased focus on achieving interoperability between the military services through more

structured systems architectures [44]. The 2008 version [38] removed spiral development as an

explicit option in the evolutionary acquisition approach.

In 2013, the references to the evolutionary approach were removed and a generic process was

defined for different types of acquisitions, to include hardware-dominant, software-dominant, and

11

hybrid systems [39]. The generic approach follows a linear, non-iterative development process.

The hardware-dominant program follows a traditional waterfall process. The software-dominant

program either modifies the traditional waterfall program by releasing several builds or uses an

incrementally fielded process, where a separate request for proposal (RFP) is released for each

increment and the increments overlap. The hybrid model mixes the two based on whether or not

hardware or software is dominant. In the hardware dominant program, the multiple software builds

are combined with the hardware waterfall cycle. In the software dominant program, the hardware

components are integrated into the software increments. In 2020, the DoD released a new version

of Instruction 5000.02, which established the Adaptive Acquisition Framework (AAF) [45]. The

AAF reinforces the desire for PMs to tailor their acquisition methods to the capability and need

for which they are acquiring the system, giving additional freedom to the PM for rapidly fielded

capabilities. This version of the instruction integrates agile development processes for software

acquisitions, but does not mandate incremental, evolutionary, or spiral development processes for

other acquisition types. The AAF allows PMs to use the best approaches to meet their needs,

instead of requiring specific approaches for all systems.

The continual and ongoing revision of the DoDI 5000.02 guidelines illustrates that the DoD has

not solved the problem of delivering systems on-time and on-budget that meet the user’s needs.

The use of spiral development on programs has been both successful, such as with the Predator

Unmanned Aerial Vehicle Program (UAV), and unsuccessful, such as in the case of the Navy’s

Littoral Combat Ship (LCS) [41]. However, the changes in the directives and instructions show a

clear path of moving towards incremental and iterative methods with the goals of reducing cost

and time to market and delivering products that are of greater utility to the end user.

12

1.1.1.2 Space Development Agency

The 2020 version of DoDD 5000.01 states that Defense Acquisition Systems must be

responsive such that they can be “deployed to the operational community as soon as possible” and

that “approved, time-phased capability needs, matched with available technology and resources,

will enable incremental acquisition strategies and continuous capability improvement” [40].

The Space Development Agency (SDA) was created in 2019 to “accelerate the development

and fielding of new military space capabilities” [46]. To do so, SDA is creating the Proliferated

Warfighter Space Architecture (PWSA), which is a proliferated low Earth orbit (pLEO)

constellation of satellites to provide data transport and missile tracking capabilities. SDA is

incrementally delivering capabilities within two-year tranches, where a tranche is one iteration of

the PWSA. SDA adopted this development strategy to deliver ‘good enough’ capabilities to the

end user sooner as opposed to delivering the ‘perfect’ capability too late [47].

SDA epitomizes the instructions within the 2020 version of the DoDD 5000.01, developing

incremental capabilities that will be deployed operationally as soon as possible. The SDA

development process leverages existing commercial capabilities and the rapid timeline ensures

alignment with end user needs. Each delivered tranche will improve upon the previous set of

tranches and will include updated technology, reducing the impacts of stale technology on end

user capabilities [46].

1.1.2 Technical Debt in Iterative and Incremental Development

In iterative and incremental development, the decisions made in early iterations can become

constraints on the future design [48]. Managing technical debt requires making decisions that trade

immediate value against long term cost. Focusing on value, such as in agile approaches, will lead

to choices that accumulate technical debt. Focusing on cost, such as in traditional phased

13

approaches, will take longer to realize value. Technical debt management requires balancing these

factors throughout the release planning cycle [16]. Paying off accrued technical debt requires time

and cost that could have been spent on adding new features to the system, and therefore represents

an opportunity cost to the system developer [49]. Therefore, opportunities for paying down

technical debt within a release need to be prioritized along with the development of new features,

in context of the total cost and benefit to the system.

The timeline of technical debt [50] within a system is shown in Figure 1-3. Initially, technical

debt can be beneficial to the system, as taking on the debt can enable progress towards meeting

system milestones. The developer may be unaware of the debt after it occurs (T1), the state of

“blissful ignorance.” Once the technical debt is discovered (T2) it may still be an asset to the

system. However, at some point, the technical debt reaches the “tipping point” (T3), where it

becomes a liability to the system, causing more harm than good. The tipping point occurs when

the work involving the technical debt item becomes more difficult to perform or the fees reach an

intolerable level. After this point, the system developer can choose the path forward (T4), indicated

by the dashed lines in Figure 1-3. The developer can choose to repay the debt and enter

remediation, removing the liability. If left unmanaged, the system is defaulting (shown as dashed

orange lines) - technical debt continues to accumulate, eventually resulting in technical bankruptcy

(T5).

14

Figure 1-3. Technical debt timeline, adapted from [50]. Dashed lines show potential paths.

To include technical debt as a factor in release planning requires understanding the current state

of technical debt within the system, the cost of paying off the debt now, and the probable impact

of that technical debt in the future [51]. However, researchers and practitioners have found it

challenging to identify and communicate the technical debt within the system [52] and also to

estimate the cost and impact of the technical debt [53]. Furthermore, successful release planning

also requires the ability to proactively identify technical compromises that may result in the

introduction of technical debt. Identification of technical debt’s introduction at the time of the

compromise enables a complete assessment of the long-term costs of the short-term decision.

These long-term costs need to be associated with the satisfaction of stakeholder needs to determine

if the system will be successful.

An overall process for managing technical debt within software has been characterized as not

well defined [54]. The sparsity of research on technical debt within systems engineering [19]

implies that such a process is not well defined for systems engineering either. The basic steps to

managing technical debt would include identification, measurement, prioritization, repayment, and

15

monitoring of the technical debt [55]. This technical debt management process is shown in Figure

1-4.

Figure 1-4. Technical debt management cycle

The technical debt management process is presented here as a continuous activity. When an

instance of technical debt is identified, the potential impact is measured and the technical debt item

is prioritized against the other technical debt items and the features to be implemented. During a

release planning event, the technical debt item may be selected for repayment at which point the

work is completed. Whether or not the debt is repaid, the technical debt item is still monitored for

any changes. The system is continuously monitored for new instances of technical debt, both

looking for new instances in the system and assessing the potential impacts of design decisions.

1.1.2.1 Identifying Technical Debt

Technical debt management starts with identifying the current debt within the system by

making a list of the technical debt items (TD Item). A TD Item is “One atomic element of technical

debt connecting: (1) a set of development artifacts, with (2) consequences on quality, value and

cost of the system and triggered by (3) some causes related to process, management, context, or

business goals” [56].

• Causes

• Types

• Instances

• Principal

• Interest

Amount

• Interest

Probability

Monitor

• Cost

• Impact

• Timeliness

• Perform the

work

16

Technical debt can be inserted into a system either intentionally or unintentionally and in either

a prudent or reckless manner, as Fowler [57] identified with his technical debt quadrant. Tom,

Aurum, and Vidgen [52] identified different groups of technical debt based on McConnell’s [58]

classification. These two viewpoints are combined in Figure 1-5. Negligent technical debt is an

example of deliberate and reckless technical debt. It is incurred when a developer knowingly

inserts technical debt into the system without any plans to repay the debt. For example, a developer

may intentionally skip test cases to save schedule without any plans to run the tests at another time.

Strategic technical debt is also deliberate, but is inserted into the system with a plan to pay it down

(a prudent decision) [52]. The previous example can be turned from negligent to strategic (or

reckless to prudent) by included a reduced version of the test in a future test, thereby ensuring that

the functionality is tested and still saving the initial schedule.

Figure 1-5. Technical debt quadrant, adapted from [57] and [52]

Inadvertent debt is debt which the developer does not know that they are incurring.

Unintentional debt is unknown to the developer at the time that it is incurred and can only be

discovered later. Therefore, unintentional technical debt cannot be prudent – there is no plan in

place to account for repaying the debt. Tactical technical debt lies in the prudent/inadvertent

Reckless Prudent

Deliberate

Inadvertent

Negligent
no plans to repay the

debt incurred due to

known conditions

Strategic
planned response to

known conditions

Unintentional
accumulation of

technical debt due to

inadvertent means

Tactical
prudent response to

unplanned conditions

Programmatic

P
re

p
a

ra
ti
o

n

17

quadrant of Figure 1-5. This type of debt is described by Fowler as “Now we know how we should

have done it” [57] and Tom et al. define tactical technical debt as short-term technical debt that is

taken on to meet a milestone [52]. Here, tactical technical debt is defined as that which involves a

prudent response (a plan to repay the debt) due to unplanned conditions. Whereas strategic debt

has long-term consequences in response to known decisions, tactical debt is short-term in nature

and due to issues, such as late discovery of an issue that implements a work-around to make the

release.

Figure 1-5 also identifies that the occurrence of the different groups of technical debt can be

based on the developer’s preparation and on programmatic decisions. Technical debt can move

from inadvertent to deliberate based on the developer’s preparation. Inadvertent debt is often due

to an underprepared developer – they do not know that what they are doing will cause problems.

A prepared developer understands the results of their actions and therefore could plan accordingly.

Reckless and prudent debt are due to programmatic decisions – how the debt is planned (or not

planned) to be handled within the system development cycle.

1.1.2.2 Measuring Technical Debt

In keeping with the financial debt metaphor, TD Items are often assigned values of principal

and interest. The concept of technical debt principal has attracted various definitions, including the

cost or effort to fix the TD Item [59] [60] [61], the effort to rework the artifacts such that they have

their optimal implementation [62], and the savings that the original shortcut provided [56].

Generally, principal relates to the cost to implement the ‘proper’ solution instead of the shortcut

that resulted in technical debt.

Interest on technical debt relates to additional work or cost that the system incurs due to the

presence of technical debt [54]. This additional effort can be due to lower maintainability [63] [60]

18

[62] and the increased level of effort required to restore the system back to its debt-free state [61].

Interest compares the level of effort over time to the level of effort that would have been required

had a different decision been made initially [64].

Technical interest is a probabilistic concept composed of both the interest amount and the

interest probability. The interest amount is the estimate of the amount of extra work that will be

needed due to the presence of the TD Item [51]. The interest probability is the likelihood that the

technical debt will cause additional work and may be time-dependent [51] [60].

The measurement of technical debt has proven to be a difficult problem. Measuring technical

debt requires the ability to estimate the principal, interest amount, and interest probability [65].

The computed value of the technical debt must then be converted to terms that can be easily

understood in the course of the system development. Nord et al. [16] calculate the cost of a release

as summation of the cost of new features (the implementation cost) and the cost of rework, where

the rework cost is a function of the interdependencies within the system and the change

propagation throughout the release. Abad and Ruhe [66] use real options analysis to determine the

net present value of requirements decisions. Ampatzoglou et al. [62] identify the use of other

techniques, such as portfolio management, value-based approaches, and non-financial

implementations. Seaman and Guo [67] assign values of high, medium, and low to the principal,

interest, probability, and interest amount for each TD Item when it is created with more detailed

estimates performed only when needed. Curtis et al. [49] estimate technical debt principal in the

system as a function of the number of problems that must be corrected and the time and cost to

correct each one. Ampatzoglou et al. [68] developed a quantitative model relating the size of the

interest and the principal for a given TD Item. These various methods show that a consensus

19

method for measuring technical debt has not been reached and that it remains an open research

question.

1.1.2.3 Prioritization, Repayment, and Monitoring of Technical Debt

Once each TD Item has been measured and both its principal and interest determined as

functions of time, then the TD Item can be prioritized. Removing TD Items will often compete

with the ability to add new features and to correct defects in the system, however, there is not a

consensus approach on how to prioritize TD Items [69]. Considerations during prioritization

include the cost to repay a TD Item, the impact of the TD Item if it is not repaid, and the timeliness

with which the TD Item needs to be repaid prior to the impact being realized. Repayment involves

performing the work to correct the TD Item and monitoring is the process by which TD Items are

tracked, such as through a technical debt manifest [70], by tracking changes in principal and

interest, and through cost-benefit analysis of repaying each TD Item [71].

1.2 Reflections on Technical Debt in Systems Engineering

Technical debt, while originating in the field of software engineering, also impacts the field of

systems engineering. The United States Government Accountability Office (GAO) “provides

Congress, the heads of executive agencies, and the public with timely, fact-based, non-partisan

information that can be used to improve government and save taxpayers billions of dollars.” [72]

As such, the GAO provides reports on the state of development of several complicated systems

and systems of systems procured for the United States Government. Table 1-2 shows several

systems assessed by the GAO with issues that can be associated with technical debt, even though

the term technical debt is not explicitly used in all the reports.

20

Table 1-2. Examples of technical debt within United States Government systems, as assessed by the author

ID System Org Technical Compromise Long-term Impact on System Health

1 James Webb Space

Telescope (JWST)

[73]

NASA Reduction of ability to work on

other NASA projects to free up

funds for JWST

Extra funding sources required for

other NASA projects that faced risk of

cancellation

2 Multiple [73] NASA Contractors authorized to work

before final contract agreement

and requirements definition

reached

Poorly defined requirements, creating

requirements debt that increases the

risk to program cost and schedule

3 Artemis [73] NASA Failure to document decision-

making tools

Inability to track mission success

4 Mobile User

Objective System

(MUOS) [74]

DoD Development and deployment

of compatible user terminals not

prioritized

Advanced capabilities of satellite

system are unused and satellite lifetime

considerations require the purchase of

additional satellites

5 MUOS [11] DoD Failure to modernize ground

system software

Obsolescence of 72 percent of the

software in 2014, failure of operational

test and evaluation in 2015 due, in part,

to cybersecurity concerns in the ground

system

6 GPS Modernization

[74]

DoD Required use of the more secure

military (M-code) GPS signal

prior to availability of the M-

code cards

Use of M-code requires upgrades to

systems that receive a GPS signal.

Delays in the production of the M-code

cards resulted in the extension of

modernization efforts across the DoD,

affecting the schedules of multiple

systems

7 F-35 [75] DoD F-35 aircraft purchased prior to

certification

Simulator delays resulted in the

postponement of operational testing

and the start of full rate production. F-

35 aircraft continue to be purchased,

however, increasing the risk of higher

retrofit costs if there are issues.

8 Joint Space

Operations Center

(JSpOC) Mission

System (JMS) [11]

DoD Incomplete software

requirements and lack of

opportunities for user feedback

JMS was found not operationally

effective during its operational test and

was cancelled in 2019. [76]

Table 1-2 shows a wide range of long-term impacts from short-term decisions. Some of these

decisions were intentionally made to improve technical performance (the transition to the M-code

GPS signal), save cost (F-35 simulator transition), and save schedule (authorization of contractors

to start work prior to reaching a final contractual agreement). Other issues were likely the result of

the accumulation of unintentional decisions, such as failing to adequately document the decision-

making processes on Artemis and not prioritizing the user terminals on MUOS. In the case of JMS,

21

the build-up of technical debt was so severe that it resulted in technical bankruptcy and program

cancellation.

The programs cited in Table 1-2 can be placed within the technical debt quad chart as shown in

Figure 1-6. Program 1, the JWST, is an example of deliberate and prudent debt. The decision to

sustain the telescope was made intentionally, with a plan to take funding from other programs and

to gather extra funding from congress. Likewise, the GPS upgrade, program 6, is an example of

prudent debt – there was a known impact on the systems to upgrade to the new M-code system.

However, the debt was inadvertent, due to the delays from unforeseen supply chain issues.

Program 3, the failure of the Artemis program, is an example of inadvertent reckless debt. The

program failed to document their processes, but this was not an example of a deliberate decision.

Rather, this is an example of a mistake. The other programs, are all examples of reckless, deliberate

technical debt – making decisions that affect the long-term health of the system without a plan to

pay down the debt in place. Program 7, the F-35 simulator, falls into this category due to the

decisions to purchase aircraft prior to certification, which increases the risk of the need to retrofit

the aircraft. Program 5, the MUOS failure to modernize the ground system was a result of

intentionally sticking with the requirements and obsolete software, instead of updating the

requirements, with no plan for modernization.

22

Figure 1-6. U.S. Government program technical debt categorized notionally and with the judgement of the author

These programs demonstrate that decision making around, and management of, technical debt

is clearly an issue within the scope of systems development and is not contained solely to the realm

of software development. As systems engineering moves to more agile and rapid processes,

technical debt will become a larger issue. Although the term technical debt is used within the

context of systems engineering [77] [78] [34], there is not a common ontology that can be used to

discuss the problem [79]. There is also a lack of empirical evidence documenting the occurrence

of technical debt within the systems engineering lifecycle and the traditional lifecycle models do

not provide adequate tools for managing technical debt [19].

1.2.1 Technical Bankruptcy in Systems Engineering

Left unattended, technical debt can grow within a system, eventually forcing the system into a

state of technical bankruptcy. In this state, the system can no longer proceed with its lifecycle

without first repaying some or all of the technical debt [21]. Technical bankruptcy can occur when

the project budget or schedule is exceeded [63] or when the technical debt has reached a point

where the system can no longer support future development [60]. Technical debt that accumulates

within the system can delay updates and new versions of the system, resulting in unfilled feature

23

requests [80]. If a technically bankrupt project does not pay down its technical debt, then the

project risks cancellation [62].

Within the US DoD, programs that experience significant cost and/or schedule overruns

experience a Nunn-McCurdy breach. In 2009, Congress passed legislation requiring that programs

that experience Nunn-McCurdy breaches be terminated unless the Secretary of Defense provides

written certification of the program to Congress. Causes for Nunn-McCurdy breaches include

overly optimistic assumptions, misunderstanding of requirements, and changes to requirements

[35]. A Nunn-McCurdy breach is a realization of technical bankruptcy.

The Joint Space Operations Center (JSpOC) Mission System (JMS) is an example of a system

where technical bankruptcy led to system cancellation. JMS was designed to provide space

command and control and situational awareness capability for the Air Force. JMS planned to use

an incremental delivery method with three increments. Increment 1 planned to provide the basic

structure for the program. Increment 2 planned to add capabilities to the user such that JMS could

replace the legacy system. Increment 3 planned to augment the Increment 2 capabilities with data

from highly classified programs. The program was started in 2009 and Increment 2 was scheduled

to deliver by the end of fiscal year 2014 [81]. The Air Force Operational Test and Evaluation

Center (AFOTEC) tested JMS in 2016 [82], 2017 [83], and 2018 [84] and found the following

results:

• The risk of interoperability with other systems, specifically the Space Fence, was increased

due to the late delivery of JMS Increment 2 and the level of interoperability testing was

insufficient (2016 and 2017)

• Service Pack (SP) 7 was not operationally tested because it would not be used for mission

critical functions (2016)

24

• The SP9 developmental test campaign found numerous critical deficiencies, reducing the

scope of the operational delivery. The resulting delivery was “not operationally effective

or suitable for its Space Situational Awareness (SSA) mission” [84] (2018)

• Many problems could have been prevented with better organization and communication

between the program office and the development team throughout the entire system

lifecycle (2018)

• The SP11 schedule did not provide time to fix the issues with SP9, address lessons learned

from SP9 testing, or account for constraints due to SP9 and SP11 concurrent development.

These issues caused AFOTEC to determine that the SP11 schedule was not executable [84]

(2018)

At the time it was cancelled, JMS was 42% over budget and three years behind schedule [81].

The cancellation of JMS can be viewed as a result of poor performing program. However, when

viewed from the technical debt perspective, there are clear indications that the technical debt in

the system built up until the system became technically bankrupt. The author’s assessment of the

technical debt associated with the JMS system is shown in Figure 1-7, with green indicating the

technical debt principal, orange indicating the technical debt interest, and the blue line indicating

the technical bankruptcy threshold – the state at which project replanning to address the technical

debt is required.

25

Figure 1-7. Author’s assessed growth of technical debt principal (green) and interest (orange) within the JMS

program, based on GAO reports [11] [82] [83] [84] [85]

JMS was initially planned as a single acquisition that would be delivered through five releases

over a five-year period, from 2011 to 2016. The GAO assessed that while the capability would be

delivered over five releases, it was not applying best practices for incremental development.

Specifically, the JMS system “plans to proceed without knowledge of all critical technologies and

deferral of other planning activities” [85]. While using an incremental delivery method, the JMS

developers were not adequately looking ahead to identify critical technologies and capabilities that

would support future releases. Therefore, the design had the risk of being dependent upon

capability that would not exist [85]. This situation is an instance of architectural technical debt

which is due to architectural decisions that produce insufficient quality in the system [54]. The

JMS developers chose not to fully develop the system architecture, specifically the dependencies

between components and the capabilities required of each of those components. In 2011, JMS took

the GAO recommendation and restructured to release in multiple increments, repaying some of

the architectural technical debt [11].

Failure to apply best practices for

incremental development and schedule

Deferral of critical planning activities

COTS/GOTS limits evolvability

Not providing planned

opportunities for user

feedback

Reset of program

schedule into multiple

increments SP7 not

operationally

tested

Schedule breach –

technical bankruptcy

Delayed

interoperability

testing

Project

rescope

SP9 scope

reduction

Fails OT

26

JMS planned to use only existing software, both commercially available and government-

provided [11]. However, the lack of a fully defined architecture resulted in a failure to identify the

insufficiencies of the existing software to meet all needs of the system. The use of the existing

software incurred additional technical debt due to the limitations on the ability of the system to

evolve [86]. The delays in interoperability testing with Space Fence resulted in integration

technical debt – an increased effort required to connect systems and components together [79].

These sources of technical debt accumulated in the system, resulting in additional development

and accompanying schedule delays [11]. If the JMS program office had performed an initial,

detailed trace of the critical capabilities, they would have seen that the available software tools

would need to be modified and could have appropriately included those modifications in both the

schedule and the budget.

In 2015, the GAO assessed the JMS schedule and identified several deficiencies, including

artificial start dates and illogical connections. JMS did not follow the GAO’s best practices for

maintaining schedules and the GAO found that the resulting schedule was insufficient to determine

the ability of JMS to meet its schedule milestones [87]. The poor schedule practices are an example

of reckless and deliberate technical debt: JMS made a deliberate choice not to follow the best

practices (a reckless decision). Following schedule best practices may have resulted in early

identification of risks to delivery. Instead, the delivery of the system was substantially delayed,

resulting in a schedule breach in 2015 [11]. This schedule breach is an instance of technical

bankruptcy and resulted in a realignment and rescoping of JMS.

JMS failed its operational test in 2018, being declared neither effective nor suitable for its

mission [84]. Within the DoD, operational tests evaluate the system under real-world conditions

as used by operational users to determine factors such as effectiveness, reliability, maintainability,

27

and usability [88]. Developing a system that will pass operational test requires the inputs of the

operational users to ensure that their needs are being met. JMS planned to involve users early in

the development process and to keep them continually engaged. However, it failed to do so in

practice, which is another example of reckless and deliberate technical debt. JMS also did not

provide users the opportunity to provide feedback on working software components during

development [11]. The decision not to include users in the development process accrued domain

debt – the misalignment between the application and the domain in which it will be used. Domain

debt interest is paid “in terms of user satisfaction and usability” [89] and a significant amount of

domain debt will result in a system that is not usable. The domain debt and other technical debt

increased to the level that the JMS project was cancelled in 2019.

1.2.2 State of Technical Debt Research in Systems Engineering

Given the importance of the systems described above and the ubiquity of technical debt as a

metaphor in software engineering (a closely aligned field), it would be reasonable to assume that

technical debt is a well-researched topic within the field of systems engineering. However, a

systematic literature review [19] shows that there is little published research that uses the

terminology of technical debt in conjunction with systems engineering. The concepts of technical

debt are identified, but there is not a clear and well understood definition [79] or associated

ontology. A consistent ontology enables clear communication and discussion of common problems

and solutions. Agreement upon a common ontology will lead to the establishment of common

metrics to measure technical debt. Once technical debt can be measured, then control systems can

be put in place to manage and handle technical debt as it grows beyond tolerable thresholds.

Control systems aid communication with the stakeholders about the status of the system and can

give indications that the system is approaching technical bankruptcy. However, effective controls

28

need to be based on a clear understanding of the parameters that are measured [90]. A concise and

clear definition of technical debt, its sources, and associated terminology needs to be developed

within systems engineering.

Similar to the lack of definition of technical debt, there is not a concise process for identifying

technical debt within a system. Sangwan et al. identify the need to determine the dependencies of

architectural elements within a system [91], however they do not provide detailed information on

the process by which these dependencies are identified. Simply citing a dependency is not

sufficient – there needs to be a deeper understanding of how the components of systems are

interconnected and how the technical debt may propagate through the system. Technical debt can

be contagious: the technical debt and its impact can spread throughout the system, including hidden

effects [92]. The technical debt introduced in one part of the system can impact other parts of the

system and can accumulate through the reuse of components [80]. The resulting impacts may not

be known to the system developers. For example, if the power system of an electric car is changed

to use cheaper batteries with a faster delivery cycle, how does that impact the total range of the car

and on-board fast charging hardware? Can the debt incurred in that decision be made up in a future

development iteration, such as by redesigning the aerodynamic profile to increase range? Is it

worth making that change? Understanding the impact of a change to the system requires fully

understanding the interdependencies of the system components and the ability to complete a

component based on the state of completion of its dependent components.

1.2.2.1 Accounting for Technical Debt in Release Planning Methods

The iterations within iterative development are planned through the release planning process,

where the ‘best’ set of features are chosen to implement within each iteration [93]. Each iteration

is referred to as a release, as it represents capability that could be released to the end user. Release

29

planning methods and optimization strategies exist to help the system developer decide when to

implement features and requirements within iterative and incremental development [28]. In these

development paradigms, there is often a conflict between early value creation and the minimization

of later rework [91]. Several recent works provide methods for optimizing development paths to

maximize value or to minimize rework.

Nord et al. [16] utilized design structure matrices (DSMs) to highlight the architectural

dependencies of features and to model the cost of rework due to technical debt in release planning.

Sangwan et al. [91] extended this work and developed a method using mixed-integer linear

programming models to minimize total cost, maximize early value, and to find an optimal

combination of features. Their model is based on the initial creation of a dependency matrix

between the architectural elements and customer requirements and includes time-based discounts

for value and estimates of rework costs. The model uses simplified cash flow to determine the

rework effort and does not include significant uncertainty modeling.

Oni and Letier [28] created a model to analyze uncertainty for fixed-date release cycles. They

utilized Bayesian probability to model the uncertainty of both the value of a particular feature and

the effort required to complete it. The uncertainty is derived from expert opinion and is not

mathematically modeled. The model reflects the uncertainty that a feature will be completed within

the release to which it was assigned, giving the model a time-based dimension. The model assumes

that work items are independent and does not account for technical debt. Schmid [94] provides a

method for determining the release where a technical debt item should be repaid, based upon a

probabilistic estimate of the occurrence of the TD Item and the impact of the TD Item.

In incremental and iterative methods, technical debt has the tendency to increase as schedule

pressure mounts, especially towards the end of a fixed-time release cycle. The fixed-time release

30

cycles are often controlled by external factors, such as a company’s marketing team promising a

delivery date or a satellite launch vehicle’s schedule. Therefore, the dates often cannot be

compromised. Planning for these releases requires a careful assessment of what can and cannot be

accomplished within the set timeframe and makes them more likely to accumulate technical debt

in the rush to deliver. Planning the release, therefore, should account for the possibilities of

technical debt building up in the system and also should include the capacity to pay down the

technical debt in later releases. While several authors have created optimized release planning

methods to account for the tradeoff between value and cost [94] [91] [28], none of them have fully

integrated technical debt within their models. These models fail to account for the impact of

technical debt and interest on a feature’s development cost and value. The models also do not

provide a way to proactively identify technical debt when a technical compromise is made. Finally,

the models do not associate the ability to deliver capabilities with the satisfaction of stakeholder

needs – it is assumed that if value is delivered then the stakeholders will be satisfied, but this does

not account for the temporal component of the value delivery.

Therefore, release planning models that include technical debt must have the following

capabilities:

• A thorough understanding of the type of architectural dependencies between components;

• The ability to proactively assess the probability of creating technical debt in future releases;

• The ability to estimate the probabilistic technical debt impact within a release as a function

of time; and,

• The ability to estimate the capability of the project to repay technical debt as a probabilistic

function of time.

31

These models need to capture the state of these characteristics of the system at each release

planning event or each stage in the development process to account for changing external

conditions.

1.3 Research Agenda

On the basis of the above reflections on the state of the field, we can understand that there is a

need to manage technical debt throughout the system development lifecycle. Left unchecked,

technical debt can accumulate within a system and drive the system to technical bankruptcy. The

first step in managing technical debt within a systems lifecycle is to understand the current state

of research into technical debt within systems engineering. There is little published work on

technical debt specific to the field of systems engineering and the research that does exist does not

provide significant empirical evidence to understand the role that technical debt plays within a

system lifecycle [19]. Furthermore, there is no clear ontology for technical debt within systems

engineering, evidenced by the lack of a common definition of technical debt [79]. A clear

understanding of terminology is required to enable precise discussions about the impacts of

technical debt on the system lifecycle.

Systems and projects must be able to identify the features and requirements which have

significant dependencies later in the release cycle in order to understand the impact that changes

to these components will have on the future state of the system. The features must be directly

associated with the satisfaction of stakeholder needs in both the temporal and functional

dimensions. However, a sufficient model tying this information together does not exist today. A

sufficient model requires two separate parts: a description of the system, including the component-

level dependencies among components that may incur technical debt, and a planning model that

32

takes into account the probabilistic occurrence of technical debt and its impact on the ability to

deliver a system that satisfies the stakeholders in both the temporal and functional dimensions.

The first part of the model requires a description of a system focusing on the component-level

dependencies. One way to describe the system is through the use of the Systems Modeling

Language (SysML). This language produces a standard set of diagrams. The diagrams can be used

to lay out the system, identifying connections, interfaces, and data flows [95]. While these

diagrams are useful for identifying the structure of the system, they do not identify the

development-level dependencies between the components, especially when one factors in the

temporal development order. When considering the impact of technical debt, the temporal

development order becomes critical. In a schedule-constrained release cycle, if one component

does not finish on time or does not meet its performance requirements, it will impact the ability to

complete subsequent components and still stay on schedule. In iterative development, each

iteration can only build on what was completed in the previous iteration. The chronological order

of development becomes critical to understanding the impact of technical debt.

Project schedules will give the chronological order of system development but they are not

sufficient by themselves to identify occurrences of technical debt. Design structure matrices list

the functional dependencies of components and can be ordered to show temporal dependences

[96]. However, they do not account for partial completion and cascading impacts. A mathematical

relationship needs to be established between the level of completeness of one component and the

probability of completing future components. Establishing these relationships will identify the

ability of one component development plan to recover from incomplete prior components. For

example, consider the case where a car is being manufactured. Each part of the car is manufactured

independently, but the assembly of the car itself cannot complete until all parts are delivered. If

33

the timeframe for the assembly of the car is padded with margin, then it may be able to handle late

delivery of a part or two with little impact. If there was no margin on the assembly of the car, then

a late part delivery would cause the assembly of the car to finish late. The magnitude of the impact

depends on the component that was late. If the battery is delivered late, there may not be a large

impact since it is easily installed at the end of the build. However, if the engine is late then its

impact may be larger due to its integral role and the significant dependencies that other steps have

on the assembled engine. Similar examples can be created to consider cost and performance

implications. These dependencies become more important as you consider evolving a system

through iterative build and release strategies.

Once the component-by-component dependencies are identified, then the development of the

system can be planned, using release planning methods. These methods need to account for the

potential occurrence of technical debt, and its subsequent impact on the ability to complete a

release and future releases. Sangwan et al. [91] utilize design structure matrices to identify the

dependencies and map the impact of change, however, they assume that all dependencies are equal.

Schmid [94] provides a method to estimate the cost of a technical debt item, based on the

probability of it impacting future releases. The total cost across all releases can be compared to the

initial cost to fix the TD Item (the principal) to determine if the TD Item should be repaid in the

current release. This method relies on the validity of the probability estimates and does not account

for the interdependencies of the components. Oni and Letier [28] optimize a release plan based on

the net present value of the release and include uncertainty conditions. Their method accounts for

fixed-time releases. However, it does not include the impacts of technical debt, and how the failure

to include or complete one component in a release may impact the rest of the release cycles. These

34

models need to be evolved to account for the interdependencies of the components and the impacts

of technical debt.

This research proposes to identify the current state of understanding of technical debt within

systems engineering based on both a literature review and a survey of systems engineering

practitioners. Upon completion of this research, the results will be used to create a common

ontology for technical debt within systems engineering to enable clear and precise

communications. After establishing the baseline ontology, a process will be created to proactively

identify potential technical debt within iterative and incremental systems development. This

process will help to manage and predict technical debt within systems engineering and therefore

will reduce the risk of technical bankruptcy. This work will be performed through investigation of

the following research questions.

1.3.1 Research Questions

1.3.1.1 RQ1: How prevalent is the technical debt metaphor within systems engineering?

This question drives at the current state of knowledge of technical debt in the field of systems

engineering. Answering this question will form a baseline level of knowledge and will inform the

work going forward. RQ1 is addressed through the following subordinate research questions.

RQ1.1: What is the current state of research on technical debt within systems engineering?

This question seeks to understand the state of published research using the technical debt

metaphor in systems engineering fields.

Task 1.1.1: Perform a literature review of technical debt within systems engineering to answer

the following research questions derived from RQ1.1:

35

RQ1.1.1: What is the prevalence of the technical debt metaphor within systems engineering

research?

RQ1.1.2: How is technical debt defined for systems engineering?

RQ1.1.2.1: What types of technical debt are associated with systems engineering?

RQ1.1.2.2: What are the sources of technical debt in systems engineering?

RQ1.1.3: Where in the systems engineering lifecycle does technical debt occur?

RQ1.2: How prevalent is the concept of technical debt and the use of the metaphor among

systems engineering practitioners?

This question seeks to understand the use of the technical debt concept and metaphor by systems

engineering practitioners. The use of terms and concepts among practitioners and academia are

not always the same.

Task 1.2.1: Conduct a survey of systems engineers to gather empirical evidence

Task 1.2.2: Process the survey results to identify key sources and types of technical debt within

systems engineering lifecycles and also the stages of the lifecycle which are most susceptible to

technical debt

RQ1.3: What common ontology should be used to describe technical debt within the field of

systems engineering?

Upon completion of the research associated with RQ1.1 and RQ1.2, develop an ontology to

define technical debt and describe its likely sources within the systems engineering field. This

ontology can then be used within the rest of this work to establish a baseline for communication.

36

The ontology of technical debt from software engineering will be modified based upon the results

of RQ1.1. and RQ1.2.

Task 1.3.1: Create a definition of technical debt, principal, interest, and other terms as necessary

that is tailored to the field of systems engineering. Existing definitions may be used if they are

deemed appropriate to the field.

Task 1.3.2: Identify types of technical debt applicable to systems engineering. Based on the

results of the survey, clearly identify the key types of technical debt, including their projected

impacts.

1.3.1.2 RQ2: How can potential sources of technical debt be identified during the system

lifecycle?

This question seeks to understand how to identify technical debt during system development.

For technical debt to be a useful tool to guide system development, it must be able to be identified.

While the identification of the exact sources of technical debt will vary from project to project, the

establishment of a repeatable process will aid systems developers. RQ2 is addressed through the

following subordinate research questions.

RQ2.1: How is technical debt identified within software engineering?

Task 2.1.1: Perform research to understand how technical debt is identified within the field of

software engineering. This research includes identifying the types and sources of technical debt as

well as processes and procedures for identifying technical debt currently in use.

RQ2.2: What process can be used to identify potential technical debt sources within systems

engineering?

37

Task 2.2.1: Create a process to identify the dependencies between components, specifically

focusing on the impact of the chronological development process on the ability to complete

components and to deliver required capabilities. This process will identify qualitative methods for

describing the relationship between components and will provide examples to aid the process. This

work will be done in conjunction with the Space Development Agency, whose rapid, incremental

development cycle will serve as a testbed for the process development.

1.3.1.3 RQ3: How can technical debt be used as a guide in release planning?

This question seeks to understand how to include technical debt within the context of release

planning for iterative and incremental development cycles. Inclusion of technical debt

considerations as a decision support system for release planning models should limit the risk of

technical bankruptcy.

Task 3.1: Establish a quantitative model that is a companion to the qualitative process

established in Task 2.2.1. This model will create the probabilistic relationship between

components.

Task 3.2: Relate the quantitative model to the release planning process and demonstrate how it

can be used as a decision support system for release planning.

1.3.1.4 RQ4: How can the process and model be used to avoid technical bankruptcy?

This question seeks to understand how to use the created models and processes as tools to avoid

technical bankruptcy. Therefore, technical bankruptcy must be defined in the context of the model.

Using this definition, the model and processes can be validated through real-world applications.

Finally, since a model and a process are only useful if they can be communicated and used by

others, a simplified version of the model needs to be created to enable conceptual discussions.

38

Task 4.1: Create a definition of technical bankruptcy within the context of the process and

model outputs. This task will enable the users of the model to identify areas of concern when

performing their release planning, such that they can get ahead of the problems before they occur.

Task 4.2: Utilize the developed process and model at the Space Development Agency and report

on the results. The work at SDA will serve as a test ground for the process and model, enabling

validation of the work.

Task 4.3: Create a simplified way of presenting and communicating the process and model.

Systems models that are simple tend to be the most useful by the community. The Vee-model is

easy to visualize and understand, increasing its utility. This task seeks to identify a simple way to

communicate the key concepts behind the process and model to increase its general utility.

1.4 Structure of this Dissertation

The rest of this dissertation is structured as follows. Chapter 2 discusses RQ1, providing insight

into the prevalence of technical debt within systems engineering and proposing a technical debt

ontology for systems engineering. Chapter 3 answers RQ2, introducing the List, Evaluate,

Achieve, Procure (LEAP) process as a method to proactively identify potential sources of technical

debt within system development. Chapter 4 addresses RQ3, enhancing the LEAP process to

include probabilistic models and demonstrating how this version can be used as a decision support

system for release planning. Chapter 5 discusses RQ4, providing examples of using the LEAP

process to proactively identify potential technical debt sources in real-world scenarios. Finally,

Chapter 6 concludes the dissertation and provides recommendations for continued work.

This dissertation contains several works that have previously been published in journals or

presented at conferences. In these cases, the works are reproduced in whole within this dissertation

39

and have been reformatted to meet the dissertation style guidelines; however, the content has not

been altered.

40

CHAPTER 2 – TECHNICAL DEBT IN SYSTEMS ENGINEERING

2.1 Introduction

The previous chapter introduced the concept of technical debt and provided examples of its

occurrence within large scale systems engineering projects. However, the reports on these project

outcomes do not explicitly call out technical debt as a driving factor in project delays or failures.

Instead, various project-unique causes are cited which required project-unique solutions. If,

however, a common lexicon existed for technical debt, then relationships between these projects

may be found and common solutions identified. The apparent lack of a common ontology for

similar problems prevents the sharing of management and mitigation strategies [20]. Such an

ontology is only enabled if there is abundant research on technical debt within systems engineering

and if practitioners use technical debt terminology.

To assess these concerns, this chapter addresses Research Question (RQ) 1: How prevalent is

the technical debt metaphor within systems engineering? RQ1 is decomposed into three

subordinate research questions, which are individually addressed in the following sections:

• RQ1.1: What is the current state of research on technical debt within systems engineering?

• RQ1.2: How prevalent is the concept of technical debt and the use of the metaphor among

systems engineering practitioners?

• RQ1.3: What common ontology should be used to describe technical debt within the field

of systems engineering?

Addressing RQ1.1 will provide insight into the current state of technical debt research within

systems engineering. This assessment of current research is foundational to the creation of an

ontology by providing terms and definitions used with the academic community. Addressing

41

RQ1.2 will provide empirical evidence regarding the use of the technical debt metaphor. If it is

commonly used amongst systems engineering practitioners, then there should already be a lexicon

that can be leveraged to create a common ontology. These two research questions will establish

the prevalence of the technical debt metaphor.

Assessing the prevalence of the metaphor is not enough to enable the sharing of technical debt

mitigation and management strategies. Instead, a common ontology needs to be provided such that

practitioners can clearly communicate ideas and problems. Addressing RQ1.3 will develop a

proposed ontology, leveraging the results of the previous two research questions. The development

of a technical debt ontology will foster greater communication by standardizing terminology and

preventing the development of multiple descriptions for similar problems. If this ontology can be

adopted by the larger community, it will become easier to collaborate on solutions to common

problems.

2.2 RQ1.1: What is the Current State of Research on Technical Debt within Systems

Engineering?

Assessing the current state of research into technical debt within systems engineering is a

critical step to understanding the prevalence of the metaphor within the field. If the metaphor is

commonly used and understood then the logical conclusion is that it should appear throughout the

published body of knowledge. Therefore, a systematic literature review was conducted in early

2022, in accordance with Task 1.1.1: Perform a literature review of technical debt within systems

engineering. The literature review was designed to determine an assessment of the prevalence of

the technical debt metaphor based on the number of articles explicitly referencing both technical

debt and systems engineering. Further analysis included assessing the definition of technical debt

in systems engineering, the types and sources of technical debt in systems engineering, and the

42

occurrence of technical debt within the systems engineering lifecycle. This review identifies the

current state of research in the field and provides a baseline for the rest of this dissertation. The

literature review was published in Systems Engineering in 2023 [19] and is reprinted here.

2.2.1 Technical Debt in Systems Engineering – A Systematic Literature Review [19]

2.2.1.1 Abstract

The metaphor of “technical debt” is used in software engineering to describe technical solutions

that may be pragmatic in the near-term but may have a negative long-term impact. Similar

decisions and similar dynamics are present in the field of systems engineering. This work

investigates the current body of knowledge to identify if, and how, the technical debt metaphor is

used within the systems engineering field and which systems engineering lifecycle stages are most

susceptible to technical debt. A systematic literature review was conducted on 354 papers in

February, 2022, of which 18 were deemed relevant for inclusion in the study. The results of the

systematic literature review show that the technical debt metaphor is not prevalent within systems

engineering research and that existing research is limited to specific fields and theoretical

discussions. This paper concludes with recommendations for future work to establish a research

agenda on the identification and management of technical debt within systems engineering.

2.2.1.2 Introduction

Cunningham introduced the technical debt metaphor to explain the need for refactoring

software to his management. He stated, “shipping first time code is like going into debt. A little

debt speeds development so long as it is paid back promptly with a rewrite” [17]. Taking on

technical debt can benefit a project, as long as the debt is not allowed to grow. Much like traditional

(financial) debt can be a source of risk when it is not repaid, technical debt can be a source of risk

“when the debt is not repaid. Every minute spent on not-quite-right code counts as interest on that

43

debt” [17]. With this statement, Cunningham defined the concept of technical debt interest – the

additional time required when working with code that was “not-quite-right.”

Multiple secondary studies have researched the history of academic research into technical debt

(TD), its types, and its causes in the field of software engineering. Li et al. [60] performed a

systematic mapping study in 2015, finding a total of 94 studies on technical debt, with a total of

four studies published prior to 2008 and at least 15 studies published per year since 2010.

Verdecchia et al. [97] found 47 primary studies related specifically to architectural technical debt

from 2009 to 2017, with the number increasing in the later years. Lenarduzzi et al. [69] found 44

studies published between 2010 and 2020 that apply to technical debt prioritization. Melo et al.

[53] analyzed 61 primary studies published between 2010 and 2020 related to the use of technical

debt requirements in software engineering, with 71% of those studies published after 2015. These

secondary studies show that interest in technical debt in the software domain is increasing and

specializing.

Software engineering has traditionally served as a reservoir of analogous processes and tools

for systems engineering. Several systems engineering lifecycle models, including the Waterfall

model [4] and the Spiral model [22], started as software development lifecycle models. Agile

methods are becoming more prevalent in systems engineering as well [13]. These lifecycle models

migrate from software development to systems engineering due to the similarities between the two

disciplines: both involve the design and development of complex systems with multiple interfaces

and components that must be managed.

Leveraging analogous tools and processes from software engineering into systems engineering

also interjects some of the same problems. Decisions made in the course of system development

to satisfy near-term objectives may not be optimal for the long-term health of the system, adding

44

technical debt to the system. Given the similarity between the fields, we might expect that systems

engineering would see similar types and sources of technical debt as software engineering.

Published systems engineering research discusses similar concepts to technical debt, although

it is not always explicitly defined as technical debt. Bahill developed a process to identify

unintended consequences on other systems due to the decisions made during the development of

a particular system [98]. De Lessio et al. created a process to “identify the main uncertainty drivers

potentially affecting the future lifecycle performance of their systems” [99]. Etemadi and Kamp

identify that decisions made during early strategy phases of a project can have impacts on schedule

and schedule growth [32]. Bowlds et al. show that poor documentation leads to increased

maintenance costs and effort in software and hardware systems and component obsolescence is a

concern in both fields [100]. Boehm and Behnamghader discuss how inadequate systems

engineering resources can lead to “exponentially-large amounts of TD due to poorly-defined

interfaces, unaddressed rainy-day use cases and risks, and premature commitments to hopefully-

compatible but actually-incompatible COTS products, cloud services, open-source capabilities,

and hopefully-reusable components” [101]. Sharon et al. correlate systems engineering

management and project management and identify that “careful management of the relationships

between the product and the project is crucial to the successes of a project that aims to deliver a

defined product” [102]. These sources all discuss critical elements of technical debt – unintended

consequences, the impact of early decisions on long-term health of the system, and the need for

adequate resourcing and careful decision making. However, only Boehm and Behnamghader

explicitly use technical debt in their descriptions.

The lack of a common taxonomy within these sources motivated this work. While numerous

secondary studies of technical debt exist within the field of software engineering, the authors are

45

unaware of any such systematic studies within the field of systems engineering. The goal of this

paper is to determine the current state of research on technical debt within systems engineering

through a systematic literature review.

This goal led to the definition of the following research questions (RQs):

• RQ1: What is the prevalence of the technical debt metaphor within systems engineering

research?

• RQ2: How is technical debt defined for systems engineering?

• RQ2.1: What types of technical debt are associated with systems engineering?

• RQ2.2: What are the causes of technical debt in systems engineering?

• RQ3: Where in the systems engineering lifecycle does technical debt occur?

This paper is structured as follows: Section 2.2.1.3 presents the search methodology; Section

2.2.1.4 provides the results of the search; Section 2.2.1.6 presents a discussion of the results; and

Section 2.2.1.6.4 presents the conclusions and opportunities for future work.

2.2.1.3 Methodology

This section defines the methodology used to conduct a systematic literature review of systems

engineering technical debt, including the search strategy. The systematic literature review was

conducted based on the guidelines in Kitchenham [103]. The results of the search are discussed in

the following sections.

2.2.1.3.1 Search Strategy

The search string used to conduct the literature review included the technical debt phrase and

any extension of the word system, as follows:

(“tech* debt” AND “system*”)

46

For systems that did not allow the use of wildcards, the search string was set to:

 (“technical debt” AND “system”)

Searches were limited to the title and the abstract. The wild card character (*) was used to

account for different derivations of technical debt and system (i.e., systems) in the results. The

search was applied to the following online databases: IEEE eXplore, Science Direct, Wiley Online

Library, and Springer Link. Due to the limitations of the Springer Link online search tool, the

search on that site was limited to the title only.

Table 2-1 presents the inclusion and exclusion criteria that were applied as part of the search.

Articles had to meet both inclusion criteria to be considered for the literature review.

Table 2-1. Literature review inclusion and exclusion criteria

Type Criteria Field(s)

Inclusion Article discusses technical debt in context outside of software

engineering

Title, Abstract, Full Text

Inclusion Article identifies causes or types of technical debt in the context of an

engineering system or identifies the appearance or impact of technical

debt within a system life cycle

Title, Abstract, Full Text

Exclusion Article is not available in English Title, Abstract

Exclusion Article refers to financial debt Title, Abstract

Exclusion Article is not peer reviewed (blogs, tutorials, speeches are excluded) Title, Abstract

Exclusion Article discusses technical debt solely in the context of software

engineering

Title, Abstract, Full Text

Exclusion Article describes a specific product for use in detecting or managing

technical debt

Title, Abstract, Full Text

Exclusion Duplicate articles Title

Exclusion Technical debt in systems engineering is not the primary focus of the

article

Title, Abstract, Full Text

The search was conducted in February, 2022, included all articles available up to that time and

resulted in the identification of 354 articles. The inclusion and exclusion criteria were first applied

to the titles and abstracts and then the full text of the remaining articles was assessed. Application

of the criteria to the full text resulted in the identification of 18 papers to be included in the

47

assessment, as shown in Table 2-2. The preponderance of excluded papers referenced technical

debt in the context of software engineering.

Table 2-2. Search results at each stage of evaluation

Evaluation Stage # of Articles Found Articles Excluded by Criteria

Online database search 354 Not available in English: 3

Refers to financial debt: 47

Solely in context of software engineering: 202

Describes a specific product: 15

Duplicate article: 4

Technical debt in systems engineering is not the

primary focus: 41

Title and abstract

criteria

39 Solely in context of software engineering: 15

Duplicate article: 2

Technical debt in systems engineering is not the

primary focus: 4

Full reading 18

Quality assessment 18

Following the full text reading, a quality assessment was performed on each paper. The quality

assessment criteria presented in Lenarduzzi et al. [69] were used to assess the received papers,

which the exception of quality assessment criteria 1: “Is the paper based on research (or is it merely

a ‘lessons learned’ report based on expert opinion)?”. Since the goal of this study is to examine

the prevalence of the technical debt metaphor in systems engineering, “expert opinion” articles

have value in this context. The remaining criteria include assessments of the clarity of goals, the

collection of data, and the value of the study.

All 18 articles that passed the full text reading assessment also passed the quality assessment.

2.2.1.3.2 Data Extraction

Table 2-3 illustrates the mapping between the research questions and the data that was

extractable from the final set of 18 articles on systems engineering technical debt. To answer RQ1,

data on the field of study, the type of study conducted, and whether the study applies a new usage

of technical debt metaphor were extracted. These data inform our understanding of the prevalence

48

of the technical debt metaphor within systems engineering. The information identifies not only the

areas of active research but also the extent to which new methodologies for dealing with technical

debt are studied.

Table 2-3. Research questions and associated data extracted from the qualifying articles

Research Question Data Type Description

RQ1 Field of study The field within which the research was conducted

RQ1 Type of study Is the research based on survey data, case studies, or author

experience?

RQ1 Usage of

technical debt

Is the research reporting on existing usage of the technical debt

metaphor or proposing a new use?

RQ2 Technical debt

language

Is the research adapting software engineering terminology to

systems engineering or using systems engineering terminology?

RQ2.1 Technical debt

types

Types of technical debt applied to systems engineering identified in

the research

RQ2.2 Technical debt

causes

Causes of technical debt applied to systems engineering identified

in the research

RQ3 Life cycle

models

Identified systems engineering life cycle models where technical

debt occurs

RQ3 Life cycle

stages

Stages of the life cycle models where technical debt is instantiated,

where interested occurs, and when it is (or is not) paid back

Data supporting RQ2 include the prevalence in the paper of unique systems engineering

terminology and the inclusion of new types (RQ2.1) and causes (RQ2.2) of technical debt. These

data assist in identifying differences in technical debt occurrences between systems engineering

and software engineering. The data extracted from the articles to answer RQ2.1 are compared to

the set of software technical debt types from Li et al. [60]. The causes of technical debt retrieved

in support of RQ2.2 are mapped to the types of technical debt.

Studies that identified the occurrence of technical debt within the systems engineering life cycle

models provide data to answer RQ3. Data extracted from each article include the type of lifecycle

model and the stages within the lifecycle model where the technical debt initially occurs, where

its impact is felt, and where it must be paid back.

49

2.2.1.3.3 Threats to Validity

The findings of a literature review may be affected by numerous factors. Although large digital

databases were used for the search for articles for this study, it is possible that relevant articles

were not included in the search. The word “system” was required to be in the title or abstract, this

restriction may have eliminated studies in closely related fields that do not emphasize the term

(such as aerospace engineering). The researcher may have a bias on the study selection and the

data extraction. The potential bias on study selection was mitigated by using a clear set of selection

criteria, as outlined in Section 2.2.1.3.1. Potential bias at the data extraction stage was mitigated

by pre-identifying the data types to be extracted. The descriptions of each data type, shown in

Table 2-3, were used to guide the extraction of data. For example, the type of study was classified

as either empirical survey data, case study data, or author experience. These descriptions provide

the guidelines for coding the data from each article.

2.2.1.4 Results and Discussion

This section presents the results of the literature review in response to the research questions.

The initial search returned 354 articles, of which only 18 passed the criteria for inclusion in the

literature review. The publication dates of the search results spanned 2009-2022. The IEEE

eXplore database returned 172 results, which was the most of any of the databases searched. By

contrast, a similar search for (“requirement” AND “system”) in the document title in the IEEE

eXplore database returned 1,898 results for the same timeframe. A similar search on “systems

engineering” in the document title returned 3,401 results. The limited number of search results

related to technical debt indicates that technical debt is not a well-studied concept within systems

engineering.

50

Figure 2-1 shows the breakdown of the passing articles by topic of study in relation to the

research questions. All articles applied to RQ1 and some articles addressed multiple research

questions.

Figure 2-1. Topics of study in selected articles applied to research questions

2.2.1.4.1 RQ1: Prevalence of Technical Debt in Systems Engineering

Figure 2-2 provides an overview of the articles that passed the criteria for inclusion in the

literature review, broken down by field of study and data source.

Figure 2-2. Overview of selected articles by field of study (left) and data source (right)

Of the eighteen sources that are applicable to this study, nine focus on the application of

technical debt in the development of automated production systems [104] [105] [106] [107] [108]

[109] [110] [111] [112]. These studies build upon each other and seek to identify the causes and

types of technical debt across the electronic, mechanical, and software components of automated

51

production systems. For example, Vogel-Heuser and Bi [113] expand their research from the realm

of automated production systems to mechatronic systems in general and gather empirical data on

the occurrence of technical debt within the mechatronic system life cycle, the types of technical

debt that are present, and the causes of the technical debt.

Five of the 18 papers focused on technical debt in traditional systems engineering. Rosser and

Norton [79] and Rosser and Ouzzif [70] provide a systems engineering view of technical debt. In

both papers, the researchers map technical debt types from the software engineering field to the

systems engineering field and identify new types of system-engineering-centric technical debt,

such as depreciation debt. Fairley and Willshire [114] identify high level applications of technical

debt to different systems engineering life cycle models and provide some methods for assessing

the accrual of technical debt during the development cycle. Fairley [64] identifies how technical

debt accrues due to rework in iterative and incremental system lifecycles. Storrle and Ciolkowski

[89] argue that technical debt needs to be considered at the domain-level and define domain debt

as “the mis-representation of the application domain by an actual system.” They argue that domain

debt, which applies at the system level, needs to be considered alongside other technical debt types,

and provide a case study example of sources and effects of domain debt.

The selected articles used a combination of case studies and surveys as empirical data sources.

Slightly more than half the articles were primarily derived from author experience, which includes

theoretical data, and the rest gathered empirical data from case studies and surveys. Figure 2-3

shows the breakdown of the articles by the field of study and associated data source.

52

Figure 2-3. Data source by field of study

From these results and in reference to research question 1, we can conclude that the technical

debt metaphor is not broadly utilized within published works on systems engineering. Of the

thousands of systems engineering papers published during the study period, only 18 were

identified as pertaining to technical debt in systems engineering. The majority of the 18 articles

focus on technical debt in specific systems and not on the application of technical debt to the

broader concept of systems engineering. The most extensive set of articles focus on the domain of

automated production systems. These systems provide a reasonable basis for extension to the

general systems engineering field due to the interdependencies of multiple engineering disciplines.

The literature on technical debt in automated production systems is primarily based on a

foundational set of case studies and industrial surveys, which provide an applied and empirical

underpinning to the research to date.

The few articles that focus on the broader scope of systems engineering do not provide

significant empirical evidence for their conclusions. The lack of empirical data supporting the

analysis of technical debt within systems engineering highlights the need for research into this

emerging field, including the generation of such data.

53

2.2.1.4.2 RQ2: Definition of Technical Debt in Systems Engineering

The definition of technical debt has evolved since Cunningham first coined the metaphor.

McConnell defined technical debt as “the obligation that a software organization incurs when it

chooses a design or construction approach that’s expedient in the short term but that increases

complexity and is more costly in the long term” [58]. Review of the selected articles revealed that

the majority use a modified version of the definition of technical debt from Li et al. [60]. Li defines

that “Technical debt is a metaphor reflecting technical compromises that can yield short-term

benefit but may hurt the long-term health of a software system” [60]. The use of the term “long-

term health” instead of costs expands McConnell’s definition to include non-cost impacts on the

system. Fairley and Willshire [114] define technical debt as the “difference between planned or

reported product delivery and actual delivery.” Biffl et al. [112] define technical debt as “violations

in the engineering data model or engineering data instances compared to an intended data model

architecture for data integration in systems engineering.” Rosser and Norton [79] do not explicitly

define technical debt, but state that “a consensus-based definition for system technical debt has not

yet emerged.” They instead identify multiple classes and types of technical debt for consideration

in systems engineering.

The selected studies show that technical debt is an evolving concept and its application to

systems engineering is expanding. 17% of the studies included a new or heavily modified

definition of technical debt. Of the five articles that focused on general systems engineering, two

(40%) provided a new definition of technical debt. These results reinforce that convergence on the

definition and scope of technical debt has not yet emerged.

Given these results, we conclude that the software-based definition of technical debt provided

by Li et al. is a valid starting point for a systems engineering-centric definition of technical debt.

54

To make the definition applicable for systems engineering, we suggest removing the software

focus of the definition, replacing it with a systems focus as follows: “Technical debt is a metaphor

reflecting technical compromises that can yield short-term benefit but may hurt the long-term

health of a system.”

These findings illustrate that there is a lack of a consensus definition for system technical debt,

and more broadly a lack of a common ontology for discussing technical debt within systems

engineering.

2.2.1.4.2.1 RQ2.1: Types of Technical Debt in Systems Engineering

The technical debt landscape consists of issues related to software evolvability and

maintainability [115]. These issues may be internal to the system and invisible to the user, such as

architectural issues, or they may be issues directly visible to the user such as poor usability.

Kruchten et al. [116] define a set of concepts to assist in identifying what issues should and should

not be considered technical debt:

• Technical debt does not consist only of bad quality

• New usages of a system can create technical debt

• Defects are not necessarily technical debt

• Unfinished or postponed work is not technical debt

• Work to be done in the future is not technical debt

These concepts informed the review of technical debt types in the selected articles.

Li et al. [60] identify ten types of technical debt prevalent in software engineering. This

typology served as the baseline point for comparison in the review of the selected articles. While

some articles identified different types of technical debt, many of those can be mapped into the

55

baseline set. For example, we assert that all types of technical debt associated with flaws in

software designs, whether they are in a database or source code, can be allocated to the code debt

type. Technical debt due to hardware assembly and software build processes were grouped

together into the “build debt” type and renamed to “build/assembly debt”. Within a systems

engineering framework, these types of debt are similar since they both are centered on the steps to

integrate and create the system. Table 2-4 presents the summary of that process of mapping the

literature to an expanded typology of technical debts.

Table 2-4. Types of technical debt identified in selected articles

Technical Debt Type Definition Source(s)

Architectural “Caused by architecture decisions that make compromises

in some internal quality aspects, such as maintainability”

[60]

[108] [111] [113] [79]

[70] [117]

Automation Technical debt associated with the automated machinery

used in hardware systems [70]

[70]

Build/Assembly “Flaws in a software system, in its build system, or in its

build process that make the build overly complex and

difficult” [60]

[113] [79]

Code “Poorly written code that violates best coding practices or

coding rules” [60]

[108] [111] [112] [79]

Commissioning Related to the commissioning and start-up of automated

production systems [113]

[113]

Configuration Hardware configuration and testing can be affected by

availability of the systems [70]

[79] [70]

Defect “Defects, bugs, or failures found in software systems” [60] [79] [70]

Depreciation Effect of aging system, outdated components, and the need

to replace/update them [70]

[79] [70] [86]

Design “Technical shortcuts that are taken in detailed design” [60] [111] [113] [117]

Documentation “Insufficient, incomplete, or outdated documentation in

any aspect of software development.” [60]

[108] [111] [113] [79]

[70] [86]

Domain “The misrepresentation of the application domain by an

actual system” [89]

[89]

Implementation Errors in hardware implementation resulting from poor

instructions [70]

[113] [70]

Infrastructure “Sub-optimal configuration of development-related

processes, technologies, supporting tools, etc.” [60]

[111] [113]

Integration Use of "non-standard connections, outdated or proprietary

interfaces, and infrequently used standards.” [27]

[79] [70] [86]

Modeling and

Simulation

Technical debt associated with the models and simulations

used to support a system [70]

[79] [70]

Operations /

Maintenance

“Any kind of handicap with adverse effects on the product

or system maintenance” [111]

[113]

56

Technical Debt Type Definition Source(s)

Organic “Refers to any combination and degree of technological,

systemic, project, and program decisions, behaviors, and

practices made by the workforce, management and/or

senior/executive leadership of the organization responsible

for introductions of new technologies and systems and/or

the sustainment of existing systems” [86]

[86]

Requirements “Distance between the optimal solution to a requirements

problem and the actual solution, with respect to some

decision space” [118]

[113] [79] [70] [86]

Start-up “Refers to shortcuts taken in the startup process of the

product or system.” May be specific to the field of

automated production systems [113]

[111]

Test “Shortcuts taken in testing” [60] [111] [113] [79] [70]

Versioning “Problems in source code versioning” [60] [113] [86]

In summary, the selected articles identified a total of 21 types of technical debt, many of which

are new types of technical debt compared to the baseline list. Figure 2-4 shows the occurrence of

each identified type of technical debt in the selected articles. The most commonly referenced types

are “architectural technical debt” and “documentation technical debt”. The largest occurring types

of technical debt map to the types identified by Li et al., as shown in Table 2-4.

Figure 2-4. Occurrence of technical debt types in selected articles

Six of the eleven new types of technical debt are defined within only one source, and twelve of

the total types of debt are defined within two or fewer sources. These findings show that there

57

exists a lack of a consensus categorizations for technical debt within systems engineering. Several

of the identified types of technical debt, such as commissioning debt, are unique to a specific field.

The lack of empirical data throughout many of the articles prevents an independent evaluation of

the rationale for each type of technical debt. Additional data would be required to verify and assert

a comprehensive list of the types of technical debt.

2.2.1.4.2.2 RQ3: Causes of Technical Debt in Systems Engineering

Ten of the articles identified causes of technical debt. Table 2-5 aggregates the identified

sources into major categories and maps those categories to the different types of technical debt

identified in Table 2-4.

Table 2-5. Technical debt causes in selected articles

Technical

Debt Cause
Description Technical Debt Type(s) Source(s)

External

factors

Factors external to the system, such as cost and

schedule limitations and external priorities that

result in the pressure to take short-cuts in any stage

of the system lifecycle

Domain, Architectural,

Implementation, Build,

Code, Modeling and

Simulation, Requirements,

Test, Organic

[111]

[113]

[70]

[114]

[89] [64]

Short cut

modifications

Poorly documented modifications, such as those

made in the field and not recorded and correction

of hardware deficiencies through software, that

lead to multiple versions of the system

Implementation,

Configuration, Infrastructure

[113]

[70]

Poor

requirements

Poorly specified requirements and poor initial

assumptions about the system may lead to rework

due to incorrect implementation

Requirements, Domain [114]

[64]

Inadequate

resources

Inadequate resources and lack of proper budgets

may result in work arounds that accumulate debt

Organic [111]

[114]

[64]

Multiple

disciplines

and parallel

development

Multiple disciplines require synchronized

planning. Lack of synchronization or knowledge of

the state of the other disciplines can cause

divergent designs and result in rework. Different

performance indicators and misaligned timelines

can contribute to divergent requirements and

designs.

Design, Architectural,

Organic

[111]

[112]

[113]

58

Technical

Debt Cause
Description Technical Debt Type(s) Source(s)

Deviations

from

standards and

poor or

incomplete

work

Failure to implement to a standard, either external

or internal, and developing poor (i.e., bad

architecture or containing multiple defects) or

incomplete work (i.e., incomplete refactoring)

leads to technical debt. Performing simplified

analyses when more detailed analyses are required

can result in an insufficient design.

Design, Code, Architectural,

Requirements, Build, Defect

[108]

[111]

[70] [64]

[117]

[119]

Environmental

changes

Changes to the system’s environment due to

regulatory or standards changes or evolution of the

domain result in shortfalls in the current system

that need to be remedied. Similarly, decay of the

system’s design and evolution of technology

beyond the system’s capabilities result in

performance shortfalls.

Domain, Depreciation [70] [89]

Third-party

products

Third-party or commercial products may not

completely satisfy the system requirements.

Design, Architectural,

Domain, Requirements

[111]

[89]

Human factors Personnel may have a lack of knowledge or skill

that contribute to the need for rework. Lack of

communication between personnel can also

contribute to rework.

Organic [111]

[113]

Proposal

effects

Solutions generated in a time and cost constrained

manner, such as for a proposal, can take shortcuts

in detailed analysis and cost-savings measures that

result in the need for rework later.

Architectural, Design [117]

Synthesizing the selected articles provides a substantial listing of causes of technical debt.

External factors, deviations from standards, and poor work are the most common causes of

technical debt (mentioned by six different articles). However, all articles lack empirical data

linking the causes to the types of technical debt or, more importantly, to the impact on the system

lifecycle.

2.2.1.5 RQ3: Technical Debt in the Systems Engineering Lifecycle

As shown in Figure 2-1, five of the studies addressed the role of technical debt in the systems

engineering lifecycle, and can therefore be referenced in answering RQ3. Fairley and Willshire

[114] discuss the management of technical debt in the linear-predictive (Waterfall), incremental-

predictive (incremental), and iterative-adaptive (agile) systems lifecycles. In linear-predictive

lifecycles, they propose to identify and review the technical debt at review gates at the end of each

59

stage. Similarly, they propose to review technical debt at the end of each increment in an

incremental-predictive lifecycle and suggest merging technical debt burndown into the future

increments of an iterative-adaptive lifecycle. Dong et al. [107] describe how technical debt created

in one discipline affects the others throughout the life cycle of automated production systems, but

they do not apply technical debt concepts directly to the stages of the life cycle. Vogel-Heuser and

Bi [113] show how technical debt is most prevalent early in the lifecycle of mechatronic systems

and how different types of technical debt emerge throughout the lifecycle of these systems.

Requirements, architecture, design, variants, and version technical debt occur within the

specification and design stages, code and test technical debt occur during the development stage,

and defect, start-up, and maintenance technical debt occur during the startup and operations stages.

They also note that infrastructure and documentation technical debt, which are two of their more

prevalent types of debt, can occur in any stage of the lifecycle. Callister and Andersson [117]

describe the occurrence of technical debt in multiple stages of subsea system development using a

Collapsed Vee lifecycle model. They provide a case study of two projects, showing technical debt

occurrences in the tender (proposal) phase, the system definition phase, and the detailed design

phase. Fairley [64] assesses technical debt in the context of an iterative and incremental lifecycle.

He identifies that in a well-managed project, technical debt accrued in one increment should be

paid back in the next increment. They assert that there may be the need to devote an entire

increment to paying back technical debt.

Although the mechanisms by which technical debt appears in the systems engineering lifecycle

were not addressed in a large number of the articles, those that did address it showed that technical

debt can occur in many stages of the systems engineering lifecycle. Vogel-Heuser and Bi [113]

provide a complete description of technical debt occurrence throughout the lifecycle of a

60

mechatronic system. There is an opportunity in the field to map technical debt within the most

common systems engineering lifecycles, based on empirical data, to identify the stages that are

most susceptible to technical debt accumulation. The effect of early-stage technical debt on end

stage capabilities could be quantified in key systems engineering applications such as aerospace

and energy systems. For example, Schutz [120] argues that there is insufficient research on

technical debt in the domain of smart grids.

2.2.1.6 Discussion

2.2.1.6.1 Implications of the Sparsity of the Technical Debt Metaphor within Systems Engineering

Although technical debt is illustrated here to be not well-researched in the context of systems

engineering, its existence is known and it is identified as a problem. Technical debt as it affects

systems engineering projects is an open area of research to which future work can contribute,

especially with empirical data gathering.

The results of RQ1 show that the technical debt metaphor is not prevalent within systems

engineering research. The limited usage of the metaphor does not imply that technical debt does

not occur within systems engineering. Rather, the limited usage of the metaphor implies that

systems engineering lacks a common ontology to discuss the types of problems that result from

technical debt. The lack of commonality can be seen in the different applications and definitions

of technical debt.

The implication of the confusion in definitions can be seen by examining two products from

the International Council on Systems Engineering (INCOSE): Project Manager’s Guide to

Systems Engineering Measurement for Project Success [78] and Needs, Requirements,

Verification, Validation Lifecycle Manual [77]. Each of these publications provide a different

definition of technical debt:

61

• “The promise to complete a technical shortcoming in the future while declaring it complete

today.” [78]

• “What occurs when a project team uses a quick short-term solution that will require

additional development work later to meet the needs of stakeholders.” [77]

The first definition does not include the concept of technical debt interest – that there will be

additional work required due to the technical shortcoming. The accumulation of technical debt

interest is what makes technical debt dangerous to systems development. In contrast to the second

definition, the first definition does not allow the system developer to properly understand the

potential impacts of their decisions on the ability to complete the system in the future.

Common ontologies produce commonly understood definitions of terms and enable

communication of ideas. Establishing such an ontology for technical debt in terms of systems

engineering will lead to increased communication about and identification of technical debt within

the systems development process. Once technical debt is identified then it can be measured, and

perhaps controlled. The sparsity and inconsistency of the technical debt metaphor in systems

engineering may weaken communication and collaborative control of technical debt in systems

development.

2.2.1.6.2 Research Agenda for a Systems Engineering-Centric View of Technical Debt

To use the technical debt metaphor as a tool for managing systems engineering projects requires

additional research to fully understand the implications of technical debt within systems

engineering. We propose the following research agenda for a systems engineering-centric view of

technical debt:

• Baseline the knowledge of both the concept behind technical debt and the use of the

metaphor within systems engineering by gathering empirical data in key systems

62

engineering applications. Such data could be gathered through a survey of industry and

academia and would be used to understand the current state of technical debt within

systems engineering.

• Develop a systems engineering-centric ontology of technical debt to provide clear

communication of the concepts, causes, and interrelationships among technical debts. The

types and causes of technical debt identified in this literature review and through the

gathering of additional empirical data can be mapped to standard systems engineering

processes and lifecycles to develop a comprehensive set.

• Develop techniques to identify causes of technical debt within the systems engineering

lifecycle. These techniques can be used to find technical debt before it accrues to the point

of affecting the system.

• Determine a method to quantify the future impact of technical debt. Technical debt must

be measurable for it to be controlled. Existing tools and techniques for technical debt

management need to be examined and, if necessary, expanded upon such that they can be

applied to systems engineering.

• Test and validate the methods to identify and measure technical debt through application

to systems engineering projects and programs.

2.2.1.6.3 Implications for the Management of Technical Debt in Systems Engineering Processes

Despite the relative obscurity of technical debt in the systems engineering literature, it’s

presence can dominate the performance of systems engineering projects. Left unchecked, it will

lead to technical bankruptcy – the state where the project can no longer proceed on time and budget

without first paying down the debt. Technical bankruptcy can result in significant schedule delays,

cost increases, or reductions in performance. In 2019, the United States Government

63

Accountability Office (GAO) issued a report on four systems that suffered from technical debt and

experienced technical bankruptcy (even though the terms “technical debt” did not appear in this

report). Impacts of the increase in technical debt included schedule breaches, failures in

developmental test, failures in operational test, obsolete software, inadequate cybersecurity,

incomplete systems engineering, and significant software rework [11]. Each of these issues

resulted in cost growth or schedule delays and some of the systems experienced failures of

development or operational testing.

The GAO report recommended focusing on including users early in the development process.

Doing so is a form of “Requirements Technical Debt” management. Users are better positioned to

give feedback on the long-term usability impacts of decisions that are made early, and as such, can

identify causes of technical debt as they occur. Early identification is a key technique for managing

any potential problem sources, including technical debt.

Many of the studies reviewed here focus on identification of technical debt, fewer focus on the

systems engineering processes, tools, and techniques that can be used to manage technical debt

within systems engineering processes, especially as systems engineering processes move to

become more agile [13]. With agility comes change and with change comes the potential for

technical debt. Without express management, technical debt build up will lead to technical

bankruptcy.

2.2.1.6.4 Conclusions and Future Work

In this systematic literature review, we searched for published articles that described the effect

of technical debt in systems engineering. Eighteen articles were retrieved and analyzed to help

answer research questions on the prevalence and definition of technical debt within the systems

engineering field and its impact on the systems engineering lifecycles.

64

The results of the review show that technical debt is not a well-studied concept within systems

engineering. We have developed a more comprehensive set of the types and sources of technical

debt, and have derived a set of critical elements for managing technical debt within systems

engineering: a common ontology, empirical data, and management tools and processes. These

findings illustrate that by enrichening the metaphor of technical debt for systems engineering, we

can enable the consideration of technical debt as a part of system development. Management of

the creation and impact of technical debt during system design development is a critical aspect of

minimizing the risk of technical bankruptcy.

This research will continue through the implementation of the proposed research agenda. An

empirical survey of practicing systems engineers will provide evidence for the prevalence of

technical debt within systems engineering. The results of this survey can be used to understand the

phases within the systems engineering lifecycle where technical debt is created and observed. This

data can then be used to develop effective technical debt management and mitigation tools for use

in systems engineering.

2.2.1.7 Appendix A: Selected Articles

The articles that passed the literature review process are listed in Table 2-6. Full bibliographical

information for each article is available in the references section.

Table 2-6. Selected articles

Author(s) Article Name Reference

Biffl, Ekaputra, Luder et al. Technical Debt Analysis in Parallel Multi-Disciplinary Systems

Engineering

[112]

Brenner, Weippi, and

Ekelhart

Security Related Technical Debt in the Cyber-Physical Production

Systems Engineering Process

[119]

Callister and Andersson Evaluation of System Integration and Qualification Strategies using

the Technical Debt metaphor; a case study in Subsea System

Development

[117]

65

Author(s) Article Name Reference

Cha, Dong, and Vogel-

Heuser

Preventing Technical Debt for Automated Production System

Maintenance Using Systematic Change Effort Estimation with

Considering Contingent Cost

[104]

Dong, Ocker, and Vogel-

Heuser

Technical Debt as indicator for weaknesses in engineering of

automated production systems

[107]

Dong and Vogel-Heuser Modelling Industrial Technical Compromises in Production Systems

with Causal Loop Diagrams

[106]

Dong and Vogel-Heuser Cross-disciplinary and cross-life-cycle-phase Technical Debt in

automated Production Systems: two industrial case studies and a

survey

[105]

Fairley Assessing, Analyzing, and Controlling Technical Work [64]

Fairley and Willshire Better Now Than Later: Managing Technical Debt in Systems

Development

[114]

Ocker, Seitz, Oligschlager,

Zou, and Vogel-Heuser

Increasing Awareness for Potential Technical Debt in the

Engineering of Production Systems

[110]

Rosser and Norton A Systems Perspective on Technical Debt [79]

Rosser and Ouzzif Technical Debt in Hardware Systems and Elements [70]

Storrle and Ciolkowski Stepping Away from the Lamppost: Domain-Level Technical Debt [89]

Vogel-Heuser and Bi Interdisciplinary effects of technical debt in companies with

mechatronic products — a qualitative study

[113]

Vogel-Heuser and

Neumann

Adapting the concept of technical debt to software of automated

Production Systems focusing on fault handling, mode of operation

and safety aspects

[108]

Vogel-Heuser and Rosch Applicability of Technical Debt as a Concept to Understand

Obstacles for Evolution of Automated Production Systems

[111]

Vogel-Heuser, Rosch,

Martini, and Tichy

Technical debt in Automated Production Systems [109]

Yang, Michel, Wage,

Verma, Torngren, and

Alelyani

Towards a taxonomy of technical debt for COTS-intensive cyber

physical systems

[86]

2.2.2 Addressing RQ1.1

This literature review addresses RQ1.1. The review identified that technical debt is a well-

researched field within software engineering but is not a well-researched field within systems

engineering. The research that does exist is largely applied to specific types of systems and a

wholistic view of technical debt impact across the field of systems engineering is not presented in

the published body of knowledge. There is a lack of common definitions and terminology for

technical debt within systems engineering, exacerbated by the fact that there is not a consensus

definition of the base technical debt term [79]. The definition of types and sources of technical

66

debt is not consistent across the published research, with unique types identified based on the type

of system assessed. This overspecification of types can lead to confusion and prevent the use of

common management methods. Technical debt is identified as occurring throughout the systems

lifecycle, but is not mapped to a specific lifecycle or stages. Such a mapping could increase the

understanding of the impacts of technical debt in the system lifecycle.

2.3 RQ1.2: How Prevalent is the Concept of Technical Debt and the use of the Metaphor Among

Systems Engineering Practitioners?

Full understanding of the prevalence of the technical debt concept and metaphor requires more

than just a literature review. If the concept is well-researched but is not well-used in practice, then

it cannot be considered prevalent. Alternatively, the concept of technical debt may be well-used

but not well researched. The components of technical debt may be known to practicing systems

engineers but they may not use the same terminology. To assess the knowledge and usage of the

technical debt concepts and terminology, a survey of practicing systems engineers was conducted

during the summer of 2022. The literature review identified that published systems engineering

research did not adequately address technical debt. The survey was designed to identify if technical

debt is a concern for systems engineers in accordance with Task 1.2.1 and Task 1.2.2: conducting

the survey and processing the results to identify causes of technical debt and the occurrence within

the system lifecycle. The survey results were presented at the 2023 INCOSE International

Symposium and published in the conference proceedings [18]. The paper from the conference is

reprinted here.

67

2.3.1 An Empirical Survey on the Prevalence of Technical Debt in Systems Engineering [18]

2.3.1.1 Abstract

The technical debt metaphor is used within software engineering to describe technical

concessions that produce a short-term benefit but result in long-term consequences. Systems

engineering is subject to these concessions, yet there is a limited amount of research associating

technical debt with systems engineering. This paper provides the results of an empirical survey

investigating the prevalence of technical debt in systems engineering, including the occurrence of

technical debt, the use of the metaphor, and the distribution of technical debt within the systems

engineering lifecycle. The results of the survey show that while technical debt is common in

systems engineering and occurs throughout the lifecycle, the metaphor and terminology of

technical debt is not consistently applied. These results emphasize the need to enrich the usage of

the technical debt metaphor within systems engineering to enable the management of technical

debt and to reduce the risk of technical bankruptcy.

2.3.1.2 Introduction and Background

Modern technology and the digital engineering transformation are increasing the emphasis on

delivering flexible systems more rapidly [6]. Agile systems engineering methods [13] and iterative

and incremental development strategies [23] are used to increase flexibility and to limit the cost

and schedule increases traditionally associated with requirements changes [3]. While Agile

processes can be mapped to the system development lifecycle [1], the increased emphasis on

shorter times to market can result in “system sponsors and stakeholders… encourag[ing]

developers to take shortcuts early in the development process in order to get system capabilities

deployed quickly” [7].

68

If not carefully managed, the decisions made during the planning and execution of iterations

can have far reaching consequences on the future state of the system. The work in each iteration

places design constraints on future iterations [26] which can result in more expensive changes later

in the development cycle [121] or the failure to meet performance objectives. Projects may start

work prior to fully understanding the problem in order to deliver a working system faster and then

rely on user feedback to improve the system to better meet the users’ needs. However, the initial

decisions made to produce early value may result in severe inefficiencies in the implemented

system, such as lower usability and increased rework later in the development schedule [63]. This

phenomenon is known as technical debt.

The technical debt metaphor was introduced as a method to communicate the need to refactor

software code to remove short-cuts that were put in place to meet a goal, such as a scheduled

release, before those short-cuts could add up to larger problems within the system [17]. Much like

financial debt, technical debt accrues interest, which manifests as increased development

timelines, increased project cost, and/or rework later in the development cycle. Unmanaged

technical debt may lead to technical bankruptcy – the state where system development cannot

continue without first repaying back the technical debt [60].

Since 2008, published research on technical debt in the field of software engineering has

steadily increased [54]. Technical debt has been classified into multiple types [69] [70], different

causes have been identified [122] [58], and multiple measurement techniques have been suggested

[65] [16] [67] [66]. This research, however, has been primarily constrained to the field of software

engineering [19]. Despite the fact that systems engineering has borrowed many concepts from

software engineering, including lifecycle models and development approaches [1], there is not a

substantial amount of published research on technical debt with systems engineering [19].

69

The concepts behind technical debt are not new to systems engineering. Terminology such as

‘rework’ has been used to define similar problems. Guenov and Barker [123] applied axiomatic

design theory and design structure matrices to identify design conflicts that result in delays due to

unplanning iterations and rework. Boehm, Valerdi, and Honour [124] discuss the reduction in

rework that can be achieved by applying systems engineering to software-intensive systems.

Broniatowski and Moses [125] define a “rework potential” to measure the rework associated with

design choices. Raman and D’Souza [126] developed a decision learning framework that, in part,

addresses the uncertainty of architectural design decisions, including those that may lead to more

effort than an optimal solution. Shallcross et al. [127] discuss the use of set based design to limit

premature design decisions which may result in expensive rework. Siyam, Wynn, and Clarkson

[128] identify a need to evaluate how changes in processes affect the value of a system later in the

lifecycle. Bahill [98] developed a process to deal with unintended consequences. These research

papers all define similar problems to technical debt - minimizing the amount of effort required to

correct a technical issue through early detection and mitigation. However, none of the cited works

include the term “technical debt.” Instead, each paper uses their own terminology to describe the

problem.

Recognizing that the lack of a common ontology prevents a common understanding of the

problem [129], Kleinwaks, Batchelor & Bradley [19] conducted a systematic literature review to

determine the prevalence of the technical debt metaphor within published systems engineering

research. They concluded that the technical debt metaphor is not prevalent in published papers on

systems engineering, that there is not a consensus definition for technical debt within systems

engineering, that there is little empirical evidence on the impact of technical debt within systems

70

engineering, and that a common ontology for technical debt in systems engineering has not been

established.

Kleinwaks, Batchelor, and Bradley [19] recommend gathering empirical data to understand the

use of the technical debt metaphor by practicing systems engineers to supplement the research in

the literature review. This paper provides the results of an empirical survey following this

recommendation. The survey was constructed to answer the following research questions:

• RQ1: Does technical debt occur within systems engineering, and if so, what is its impact?

• RQ2: What are the causes of technical debt within systems engineering?

• RQ3: How prevalent is the use of the technical debt metaphor among systems engineering

practitioners?

• RQ4: Where does technical debt occur within the systems engineering lifecycle?

The rest of this paper is structured in four sections. First, the research methodology is presented.

Next, the primary findings of the survey are presented. Then, the findings are discussed in the

context of the research questions. Finally, the paper is concluded and concepts for future work are

presented.

2.3.1.3 Research Methodology

2.3.1.3.1 Study Method

This research was conducted using an online survey tool to collect responses to a series of

questions designed to assess the respondents’ familiarity with situations that can be classified as

technical debt, their familiarity with the metaphor of technical debt, and the stages in the systems

engineering lifecycle where technical debt occurs.

71

Participants in the study were recruited through email solicitations and social media postings

sent to specific groups of systems engineers, including a corporate systems engineering community

of practice, a graduate university systems engineering department, the local INCOSE chapter, and

the authors’ LinkedIn networks. These participant groups were selected based on experience with

systems engineering as well as the ability of the authors to contact the group members.

The survey was conducted anonymously, however, some basic demographic questions, such as

current position and years of experience, were asked in order to inform the data analysis process.

The survey was first released on July 14, 2022 and was closed on August 31, 2022. 50 respondents

replied to at least one question in the survey.

2.3.1.3.2 Data Analysis

The collected data reports were generated with an anonymous respondent identifier that was

matched to the responses for each question. Respondents were not required to answer every

question and therefore percentages are reported based on the number of respondents who answered

the question and not on the total number of participants in the survey. Several questions allowed

the respondent to select multiple responses; in these cases, the percentages are reported as the

number of respondents who selected that answer and therefore the percentages may add up to be

greater than 100%.

2.3.1.3.3 Threats to Validity

The internal validity of a study is the measure of how well the collected data corresponds to the

research questions [130]. The internal validity is assessed by examining the potential biases that

may arise within the study formulation, including the development of the research questions and

the survey questions. To limit biases in the development of the research questions, gaps in the

current state of academic research on technical debt in systems engineering [19] formed the basis

72

of the research questions. Multiple researchers reviewed and developed the survey questions to

confirm that they mapped to the research questions. Upon completion, a professional systems

engineer evaluated the survey questions and the authors refined the questions based upon the

engineer’s feedback. Terminology was carefully selected in Question Group 2 to avoid the use of

the term “technical debt” in the questions to minimize previous familiarity (or lack thereof) with

the term from biasing the answers prior to the introduction of the technical debt metaphor within

the survey. The data was collected using an online survey tool that allowed for anonymous

responses to prevent biases in reviewing and analyzing the data.

The external validity of the study is the measure of how well the research findings can be

extended from the sample group to the general population of interest [130]. In this study, the

sample group was recruited through email and social media postings. The general population of

interest is the set of professional systems engineers, across all disciplines. The majority of

respondents indicated background in similar industries, especially the defense industry. This factor

has the potential to bias the results towards the defense industry, and therefore the results of the

survey may be more generalizable to that subset of professional systems engineers. Another

concern prior to the execution of the survey was that a potential bias may arise if software

engineers responded to the survey, due to the familiarity of the technical debt metaphor within

systems engineering. This concern is addressed in later in this paper.

Given the lack of published research on, and common definitions of, technical debt within

systems engineering, it is possible that the respondents do not represent a valid source of

knowledge for providing responses regarding the occurrence of technical debt within the systems

engineering lifecycle. This threat to the study validity is mitigated by providing the survey

73

participants with a common definition of technical debt prior to asking questions in Question

Group 3 and Question Group 4.

2.3.1.3.4 Survey Questions

Table 2-7 lists the questions included in the survey, along with a mapping to the research

questions. The starred question numbers indicate questions that allowed multiple answers.

Table 2-7. Survey questions

Question RQ

1.1 What is your current position? N/A

1.2 How many years of professional experience do you have? N/A

1.3 How many years of experience do you have as a systems engineer? N/A

1.4 What industry do you currently work in? N/A

2.1 Have you ever worked on a system where a less than ideal short-term solution to a problem

created negative long-term impacts on the system? Negative impacts may include issues such as

difficulty meeting requirements, decreased ease of use, and increased system maintenance.

RQ1

2.2* What negative long-term impacts have you experienced from less-than-ideal short-term

solutions? Select all that apply.

RQ1

2.3 Do negative long-term impacts arise primarily from decisions to implement less than ideal

short-term solutions (e.g., as way to reach a project completion milestone) or from the

accumulation of unintentional decisions (e.g., as the by-product of poor requirements)?

RQ2

2.4 When making the decision to implement the less-than-ideal short-term solution, were there any

considerations of the potential for negative long-term impacts?

RQ2

2.5* Which reasons explain why a systems engineer would implement a less than ideal solution that

has benefits in the short-term but negative long-term impacts? Select all that apply.

RQ2

2.6 Have you ever had to correct system issues that were due to less-than-ideal short-term solutions

that had negative long-term impacts?

RQ1

2.7 If you have had to correct negative long-term impacts of a decision, how did the effort to

correct the negative long-term impacts compare to the effort that would have been required to

implement the ideal original solution?

RQ1

3.1 Prior to this survey, how familiar were you with the term technical debt? RQ3

3.2 How frequently do you use the term technical debt in your daily work? RQ3

3.3 How familiar are your co-workers with the term technical debt? RQ3

3.4* In what engineering contexts have you used or heard the term technical debt? Select all that

apply.

RQ3

4.1* In which stage(s) of the systems engineering lifecycle is technical debt most likely to be created

(the decision is made to implement then less than ideal solution)? Select all that apply.

RQ4

4.2* In which stage(s) of the systems engineering lifecycle is the impact of the technical debt

(additional work due to the less-than-ideal solution) most likely to be observed? Select all that

apply.

RQ4

4.3* In what stages of the lifecycle is creating technical debt (deciding to implement the less-than-

ideal solution) acceptable? Select all that apply.

RQ4

4.4* In what stages of the lifecycle is creating technical debt (deciding to implement the less-than-

ideal solution) unacceptable? Select all that apply.

RQ4

74

Question Group 1 (QG1) included basic demographic questions to identify the professional

background and experience of the participants. Question Group 2 (QG2) contained questions that

were designed to identify if survey participants had experience with technical debt without using

the term “technical debt.” Instead, these questions used the terms “less than ideal short-term

solution” and “negative long-term impacts.” This terminology was specifically chosen to convey

the concepts behind the technical debt metaphor, without relying on the metaphor to convey the

meaning. In this way, it is possible to assess the participants experience with the conditions that

give rise to technical debt without biasing the answers towards familiarity with the metaphor.

After completing QG2, the respondents were provided with the following definition of technical

debt: “Technical debt is a metaphor reflecting technical compromises that can yield short-term

benefits but may hurt the long-term health of a system” (Kleinwaks, Batchelor & Bradley 2023).

If a respondent indicated that they were not familiar with technical debt, they were provided a

short example.

Question Group 3 (QG3) assessed the respondents’ familiarity with the technical debt

metaphor, introducing the terminology into the questions. These questions were designed to assess

the frequency with which the terminology is used in professional situations. Question Group 4

(QG4) assessed the respondents’ view of the impact of technical debt in the following phases of

the systems engineering lifecycle: needs analysis, requirements definition, preliminary design,

critical design, integration, verification and validation, and operations. These phases were chosen

since they occur in all system development, regardless of the development method used. Agile and

iterative development cycles include the same phases; however, the phases are repeated more

frequently. The questions in QG4 asked respondents to consider the lifecycle phases where

technical debt is likely to be created and observed, and in which lifecycle phases it is acceptable

75

and unacceptable to create technical debt. These questions were designed to identify the lifecycle

stages where technical debt identification and management is the most important in preventing

technical bankruptcy.

2.3.1.4 Research Findings

This section presents the main findings of the survey.

2.3.1.4.1 Participant Demographics

QG1 asked the respondents to provide information about themselves and their background as

systems engineers. The results are shown in Figure 2-5. The left chart shows the breakdown of the

participants by their current position. The middle chart shows the breakdown of the participants

by their current industry. The right chart shows the participants’ total professional experience

(Total) and their experience as a systems engineer (SE). The chart is colored based on the

participant’s current position. For example, the chart shows that 10% of the participants classified

themselves as management with 5-10 years of experience as a systems engineer.

Figure 2-5. Demographics of survey respondents

The majority (52%) of the survey respondents listed systems engineer as their current position

(shown in blue in Figure 2-5). 84% of the respondents reported more than 5 years of experience

as a systems engineer, indicating that the respondents have substantial backgrounds in the field,

76

even if they are not currently serving as a systems engineer. These results show that the survey

reached the targeted audience of experienced and professional systems engineers. Of note is that

only 2% of the respondents listed themselves as a software engineer. One potential concern with

the survey was familiarity with the technical debt term due to experience with software

engineering. While later results will show that there is likely carryover of terminology from the

software engineering field, the limited number of participants who identified as software engineers

reduces the concern that the results are biased based on a large number of responses from software

engineers.

The majority of respondents (68%) work in the Aerospace and Defense industries. The large

section of respondents with similar backgrounds has the potential to bias the results towards those

industries.

2.3.1.4.2 Technical debt is common in systems engineering

Question 2.1 asked if the respondents experienced the conditions that are defined as technical

debt, without using the metaphor. 100% of participants responded that they had worked on such

as system. Question 2.6 asked if participants had to correct issues associated with technical debt.

86% percent of the respondents stated that they have had to correct issues caused by less-than-

ideal short-term solution.

The answers to question 2.1 and 2.6 clearly indicate that technical debt is a common occurrence

within systems engineering. Every respondent experienced negative long-term effects due to short-

term decisions, and the large majority of the respondents have corrected issues associated with

these decisions. In other words, the respondents have repaid technical debt.

77

2.3.1.4.3 Technical debt accrues interest

Technical debt is typically measured in terms of principal and interest. The principal represents

the amount of effort that would have been required to implement the ideal solution [62] and the

interest refers to additional effort to implement that same solution at a later time, due to the

presence of the less-than-ideal solution [68]. Question 2.7 addressed the presence of technical debt

interest in systems engineering. If it is more difficult to correct the problems with a less-than-ideal

solution than it would have been to initially implement the ideal solution, then it can be inferred

that the technical debt has accrued interest. 79% of the respondents to question 2.7 stated that it

was either more effort (36%) or significantly more effort (43%) to correct the issues after the less-

than-ideal solution was implemented, as shown in Figure 2-6. These data indicate that technical

debt accrues interest within systems engineering.

Figure 2-6. Additional effort required to correct technical debt compared to the effort to implement the ideal

solution originally

Six survey respondents answered “no” to question 2.6, indicating that they never had to correct

issues associated with technical debt. Of those six respondents, three answered that question 2.7

was not applicable to them (N/A in Figure 2-6), two did not answer question 2.7, and one

respondent answered that correcting the issue required less effort. These answers are deemed to

have no impact on the overall conclusions from this question, namely that technical debt does

accrue interest.

78

2.3.1.4.4 Technical debt has multiple long-term impacts

Question 2.2 asked the participants to specify what negative long term impacts they had

observed from implementing less than ideal short-term solutions. Participants were able to select

more than one answer and the results are shown in Figure 2-7. “Failure to meet performance

objectives” and “Substantial rework of an earlier part of the system” were the most common

responses. Only 4% of the participants selected “Other”, indicating that the answer choices well

covered the negative impacts due to technical debt.

Figure 2-7. Negative long-term impacts of technical debt

These data indicate that there is not a single impact of technical debt on a system but rather that

the impact is felt in multiple areas. The answer choices cover two areas: those that occur during

system development, shown in blue in Figure 2-7, and those that occur after the system is deployed,

shown in orange in Figure 2-7. Over 50% of respondents indicated that negative long-term impacts

occur in both of these areas. From these data, it can be concluded that technical debt is something

that will need to be managed throughout the system lifecycle.

79

2.3.1.4.5 Technical debt is driven by schedule and cost pressures and both intentional and

unintentional decisions

Questions 2.3, 2.4, and 2.5 addressed the reasons why a project would take on technical debt.

79% of the respondents indicated that potential long-term consequences were considered when

making short-term decisions. These long-term consequences were determined to arise from both

intentional and unintentional decisions, as shown in the left side of Figure 2-8. The right side of

Figure 2-8 shows the reasons for accruing technical debt. Over 80% of the respondents stated that

schedule pressure contributes to the decisions to introduce technical debt into the system. Over

60% of the respondents stated that cost pressure contributes to the introduction of technical debt.

Technical compromise was selected by 36% of the respondents. These results indicate that cost

and schedule are the primary factors that drive a system to make technical compromises and

therefore incur technical debt.

Figure 2-8. Rationale for accruing technical debt

Participants were allowed to select multiple answers for question 2.5, including identifying

other reasons for taking on technical debt. Other responses included acceptance of a prototype,

political pressure from management and other external sources, the lack of consideration of long-

term goals and impacts in the daily decisions, and the inability to react to previous instances of

80

technical debt. Failure to react to previous instances of technical debt is an indicator that a system

may be on a path to technical bankruptcy.

2.3.1.4.6 The technical debt metaphor is not common terminology in systems engineering

QG3 assessed the participants’ familiarity with and usage of the technical debt metaphor after

providing all participants with a common definition of technical debt. The left side of Figure 2-9

shows the self-assessed familiarity with the metaphor, broken out by the participant’s years of

experience as a systems engineer. 47% of respondents stated that they were very or extremely

familiar with the metaphor and 30% of respondents stated that were either slightly familiar or not

at all familiar with the metaphor.

Figure 2-9. Participant familiarity with the technical debt metaphor

When examined through the lens of years of experience as a systems engineer, some interesting

trends appear. The right side of Figure 2-9 shows the percentage of respondents who are either

moderately familiar, very familiar, or extremely familiar with technical debt based on the

respondents’ years of experience as a systems engineer. The percentages are based on the total

number of respondents with the stated years of experience. For example, seven respondents had

less than five years of experience as a systems engineer. Of those respondents, six stated that they

were at least moderately familiar with technical debt, resulting in a value of 86%.

81

While there is not enough data to make conclusive arguments, it can be seen that the less

experienced (< 20 years of experience) systems engineers tend to be more familiar with technical

debt than the very experienced systems engineers (> 20 years of experience). This could be a result

of the small sample size (only eight respondents had > 20 years of experience); however, it could

also indicate that the technical debt terminology is better known to less experienced systems

engineers due to the relative newness of the terminology. Technical debt research in software

engineering accelerated around 2008 [60]. Systems have become more software intensive [131]

and familiarity with software engineering is now part of recommended systems engineering

graduate school curriculum [132]. It is possible that these trends contribute to a greater familiarity

with the metaphor among less experienced systems engineers.

Figure 2-9 shows that overall, there is familiarity with the technical debt metaphor among

systems engineers. However, familiarity with a term is not enough to establish that the term is a

common part of the lexicon. Therefore, participants were asked to identify how frequently they

use the technical debt metaphor and in which technical contexts it is used. These results are shown

in Figure 2-10. The left side of Figure 2-10 shows the usage of the technical debt metaphor. Only

26% of the participants reported using the technical debt metaphor frequently (gray) or very

frequently (yellow), and 56% of the participants reported not frequently using the metaphor (blue).

These results indicate that the metaphor, while it may be familiar to systems engineers, is not

commonly used.

82

Figure 2-10. Usage of and familiarity with the technical debt metaphor in various contexts

The right side of Figure 2-10 shows the answers to question 3.4, which assessed the contexts in

which participants have used or heard the technical debt metaphor. 35% of the respondents

reported that they have used or heard technical debt in both systems engineering (SE) and software

engineering (SW) context. Only 23% of the respondents said they have only used or heard the term

in just the SE context and 12% of the respondents stated that they have used or heard the term in

just the SW context. A likely interpretation is that the familiarity with the technical debt metaphor

from software engineering produces carryover usage in the field of systems engineering. Of note

is that the respondents who indicated usage in both the SE and SW context also indicated higher

levels of familiarity with the technical debt metaphor. From these results, it can be concluded that

the technical debt metaphor is present in the systems engineering lexicon, however, it is not a

frequently used component of that lexicon.

2.3.1.4.7 Technical debt occurs throughout the system lifecycle

QG4 focused on technical debt in the system lifecycle. The participants’ responses, shown in

Figure 2-11, demonstrate that technical debt occurs throughout the system lifecycle, both in terms

of its creation and its impact. The left chart in Figure 2-11 shows the design phases where technical

debt is most likely to be created and most likely to be observed, according survey responses. These

83

data show that technical debt is more likely to be created during the design phases of the system

and that the impact is more likely to be observed during the integration, verification and validation,

and operations phases. These results show why technical debt is dangerous to a program – it is

created based on decisions made in early phases, but the impacts are not felt until later phases,

when it is more difficult to correct the issues.

Figure 2-11. Technical debt in the system lifecycle

Questions 4.3 and 4.4 asked if there are specific phases within the system engineering lifecycle

where it is more or less acceptable to create technical debt. The right side of Figure 2-11 shows

the responses to these questions. The results show that participants generally viewed technical debt

created in the early phases of the program to be more acceptable, with technical debt created during

critical design to be the most unacceptable. However, the critical design phase is the phase that

was indicated as the most likely place for technical debt to be created. These data support the

premise that unmanaged technical debt is dangerous to a system. Technical debt is created where

it is deemed unacceptable to do so, since creation in those phases is likely to drive to poor outcomes

for the system. Therefore, it is critical to manage the creation of technical debt to prevent later

impacts.

84

2.3.1.4.8 Technical debt can be beneficial

The phrasing of the technical debt metaphor implies that the consequences of technical debt are

always negative. If true, then it would be expected that the survey respondents would never have

indicated that creating technical debt was acceptable. However, as shown in the right side of Figure

2-11, over 30% of respondents identified that technical debt is acceptable to create in the early

stages of the system lifecycle. Why would technical debt creation be acceptable?

While the survey did not ask this question, a reasonable answer is that technical debt creation

is acceptable if it provides a benefit to the development of as system. The initial technical debt

metaphor highlighted this aspect of technical debt stating “A little debt speeds development so

long as it is paid back promptly with a rewrite” [17]. Taking on technical debt can enable a system

to achieve critical results, such as delivering on schedule, even if compromises are made in the

design. However, without a plan to repay the debt, it may spiral out of control and result in

technical bankruptcy.

2.3.1.5 Discussion

This survey provides an empirical basis for understanding the prevalence of the technical debt

metaphor in the field of systems engineering. The results can be used to draw several conclusions

based on the research questions.

2.3.1.5.1 RQ1: Impact and occurrence of technical debt in systems engineering

The survey results clearly indicate that technical debt commonly occurs within systems

engineering. The impacts of technical debt, such as increased effort and increased rework, were

clearly identified by survey participants. Participants identified factors that can lead to technical

bankruptcy, such as failure to meet cost and schedule, as impacts of technical debt. Participants

85

identified that technical debt creation during early system development phases can be acceptable,

indicating that there can be benefits to taking on technical debt.

The confirmation of technical debt as a contributor to project success and failure means that it

needs to be managed within the systems lifecycle. Tools need to be created to identify, manage,

and monitor technical debt to minimize its impact. If a system developer waits until the impact of

technical debt is seen in the system, it may be too late or too expensive to correct the issues. The

survey results show that technical debt is more likely to be observed later in the system lifecycle,

when it is more expensive to correct problems [121]. Therefore, technical debt needs to be

monitored from the start of the system and should be repaid soon as possible.

2.3.1.5.2 RQ2: Causes of technical debt within systems engineering

Multiple factors contribute to technical debt; however, schedule pressure was cited as the top

cause by the survey respondents. Schedule pressure is a significant concern in iterative

development programs. As systems embrace Agile development strategies, they are often faced

with fixed-duration development periods (sprints). Each sprint is intended to deliver a potentially

releasable product [24]. This combination naturally exerts pressure on the developer to release a

working system and can result in the developer taking shortcuts, intentionally or unintentionally,

in order to make the delivery timeline. Proper planning involves sequencing tasks based on both

the functional value delivered to stakeholders and on the temporal value delivered to the system.

Understanding both the functional and temporal dependencies in the system development is critical

for avoiding the need to incur technical debt. Supporting requirements, such as quality

requirements (maintainability, reliability, etc.), must be given proper weight such that future

iterations can begin with all the required infrastructure in place, even if they are not perceived as

86

high-value to the stakeholder. Otherwise, the future iterations are likely to need to take shortcuts,

and thereby take on technical debt, to account for the missing components.

Another major driver of technical debt is cost pressure. The system may reach budget limits

that require compromise in one area or another. For example, insufficient funding for testing may

result in insufficient tests being performed on the system. The lack of testing may then result in an

underperforming system. Budget allocations must be sufficient to enable proper system

development, or else the system risks accruing technical debt.

While technical compromise was not cited by as many respondents as cost and schedule

pressure, it was still cited as a cause of technical debt by over 30% of the respondents. Technical

compromise means that the system developer makes technical concessions in one area to enable

satisfaction of technical goals in another area, such as reducing the size of a satellite antenna to

satisfy the mass constraints. If the full impacts are not assessed, the technical concessions can

result in a system that cannot meet its overall performance goals.

2.3.1.5.3 RQ3: Use of the technical debt metaphor among systems engineering practitioners

The respondents to the survey stated that they had a broad range of familiarity with the metaphor

of technical debt and that they were more familiar with it than their coworkers. However, they also

responded that they do not frequently use the metaphor. These results indicate that the metaphor

is not prevalent among systems engineering practitioners. Yet, the responses to QG2 indicate that

the impacts of technical debt were observed by all survey respondents. This apparent disconnect

highlights that the impacts associated with technical debt are real, but that it is not part of the

lexicon of systems engineering. Instead, systems engineers use terms such as rework [125] and

unintended consequences [98], however a detailed examination of the terminology in current use

was outside the scope of this survey.

87

The survey results show that systems engineers understand some aspects of technical debt, such

as the implications of short-term decisions on the long-term health of the system. However, the

lack of general usage of the metaphor implies that the full richness of the technical debt metaphor

is not used or understood. Simply delaying work does not result in technical debt and identifying

the potential for rework does not quantify the impact on the future state of the system.

The use of inconsistent vocabulary creates barriers to effective communications even amongst

practitioners in the same field [129]. The technical debt metaphor, through its use of concept such

as principal, interest amount, and interest probability, can create a consistent vocabulary to allow

systems engineers to quantify the impact of decisions. The quantified impact can then be used to

support the decision-making processes during system development. Technical debt ontologies

have been proposed within software engineering [133]; however, even the definition of technical

debt is not agreed upon within systems engineering [79]. The results of this survey indicate that

the technical debt terminology is not widespread within the systems engineering field, and this

may be due, in part, to the lack of a consistent ontology. Development of such an ontology, specific

to systems engineering applications, will aid in furthering the understanding of the impacts of

technical debt and developing strategies for managing technical debt when it occurs.

2.3.1.5.4 RQ4: Occurrence of technical debt within the systems engineering lifecycle

The survey results show that technical debt is more likely to be created early in the systems

engineering lifecycle and also more likely to be observed late in the systems engineering lifecycle.

This combination results in an accumulation of interest on the technical debt and is what makes

technical debt expensive to the systems developer.

Of particular interest is the combination of the most respondents stating that technical debt is

likely created during critical design and the most respondents stating that it was unacceptable to

88

create technical debt during critical design. These data indicate that systems engineers may “know

what they are doing is wrong” during the critical design phase, and yet they do it anyway –

intentionally creating technical debt to get the design completed. If there is no plan to manage and

pay back this technical debt, then it can be harmful to the system. This technical debt will then

likely appear in the integration and/or operations phases. These results also indicate how technical

debt can arise – schedule pressures and other outside influences can force the system developer to

take those short cuts to complete the design by a set time. These data reinforce the need to manage

and monitor technical debt. It is when the most critical elements of the development occur that

taking on technical debt is most likely, and also the most unacceptable.

2.3.1.6 Conclusion and Future Work

Kleinwaks, Batchelor, and Bradley [19] proposed a research agenda to develop a systems

engineering-centric view of technical debt. This agenda includes:

• Gathering empirical data to baseline the usage of the technical debt metaphor and the

impacts of technical debt within systems engineering applications;

• Developing an ontology of technical debt for the field of systems engineering, developing

methods and techniques to identify causes and occurrences of technical debt within systems

development, developing processes and methods to measure technical debt; and,

• Verifying and validating the processes developed through application to systems

engineering problems.

This survey represents the first step in the above research agenda and its results form the basis

from which the above research agenda can be continued. The survey provides an empirical basis

for the usage of technical debt within the systems engineering field and future work will continue

to develop this usage. The survey results will guide the development of the ontology of technical

89

debt by providing area of emphasis where common language is required. For example, the

prevalence of the impact of technical debt is clear from the survey results, but respondents do not

use the same terminology. Additional surveys can be conducted to determine the terminology that

is used in practice, which will further inform the development of the ontology.

This survey has provided a substantial amount of empirical evidence leading to the following

key conclusions:

• Technical debt is common in systems engineering applications, but the associated

terminology is not frequently used.

• Technical debt results in problems with system performance, cost, and schedule and bears

interest – it requires more effort to correct the problem then it would have taken to do it

correctly in the first place

• Cost and schedule pressure are the primary drivers of technical debt

• Technical debt is created early in the system lifecycle and observed late in the system

lifecycle

The impacts of technical debt on a system are real and substantial. By enriching the usage of

the technical debt metaphor within systems engineering, a common language can be used to

manage and reduce those impacts. This research will continue to fulfill the above research agenda

to provide a mechanism for managing technical debt to reduce the risk of technical bankruptcy.

2.3.2 Addressing RQ1.2

A summary of the results of the survey, originally presented at the 2023 INCOSE International

Symposium [134], is shown in Figure 2-12. The major conclusions from the survey are:

• Technical debt is common in systems engineering, but not commonly discussed

90

• Schedule pressure is the leading cause of technical debt

• Technical debt results in rework and performance issues

• Technical debt is generated early in the systems lifecycle but not observed until late in the

system lifecycle

Figure 2-12. Summary of results from the survey on the prevalence of technical debt from [134]

The top graphic in Figure 2-12 illustrates the conclusion that technical debt is common in

systems engineering but not commonly discussed. Every survey participant experienced technical

debt, but less than half were familiar with the metaphor and only 26% of the participants frequently

use the metaphor. The lack of common usage of the terminology prevents sharing of methods to

mitigate and manage technical debt. As shown in the bar chart in Figure 2-12, the survey identified

that the primary cause of technical debt is schedule pressure – system developers are pressured to

make technical compromises to release the system on time. Cost pressure, which requires technical

compromises to save budget, is also a significant contributor to technical debt. The word cloud on

91

the bottom left of Figure 2-12 highlights the long-term impacts of technical debt, with more

popular responses written in larger font. The survey identifies that rework and performance issues

are the two most common impacts of technical debt, followed closely by usage difficulty. The

graphic on the bottom right of Figure 2-12 shows where technical debt is likely to be created (left

side, blue) and observed (right side, green) throughout the system lifecycle. The numbers indicate

the percentage of survey respondents who stated that technical debt was likely to be created or

observed in the identified lifecycle stage. The most common stages for technical debt to be created

were requirements definition, design, and integration, which constitute the early stages of the

system lifecycle. The most common stages for technical debt observation were verification and

validation and operations, which are the later stages of the system lifecycle. This result indicates

why technical debt can be dangerous to a system – it is often not found until the later lifecycle

stages where it is more expensive to correct [135]. Therefore, proactive techniques for identifying

and managing technical debt are required to minimize its impact.

The survey provides results to address RQ1.2 and concludes that even though the concept of

technical debt is familiar to systems engineering practitioners they do not regularly use the

technical debt metaphor. These results indicate that the lack of a common lexicon may be

preventing the communication of mitigation and management strategies.

2.4 RQ1.3 What Common Ontology Should be used to Describe Technical Debt Within the Field

of Systems Engineering?

The literature review and the survey make clear two results:

1. Technical debt within systems engineering is not well researched and technical debt

terminology is not commonly used

2. Technical debt is a problem within systems engineering

92

The facts that technical debt within systems engineering is not well researched and that the

terminology is not commonly used could lead one to believe that technical debt is not a problem

within systems engineering. However, the survey results state otherwise – 100% of the respondents

have experienced technical debt. Therefore, it can be concluded that the problems associated with

technical debt, such as the long-term impacts of short-term decisions, are researched, but not under

the same terminology. A quick literature review finds work on rework [112] [136] and unintended

consequences [98] that are similar to the concepts associated with technical debt. However, the

definitions of these terms are not agreed upon, with eight different definitions of rework found in

[136].

Therefore, enabling a discussion about technical debt within systems engineering first requires

the development of a lexicon that can be shared amongst practitioners. Many authors have

proposed definitions of specific components of technical debt within systems engineering [92]

[137] [138], however these are mostly geared towards creating taxonomies to classify technical

debt types or components. Although there is greater agreement among terms within software

engineering, there is not a general ontology that can be applied to systems engineering [21]. An

ontology is a set of definitions while a taxonomy is a system for classification [129]. An ontology

provides a common lexicon for practitioners to use to discuss similar problems and solutions. A

taxonomy can then evolve from the ontology. For example, a taxonomy of technical debt types

within systems engineering can evolve from a systems engineering technical debt ontology.

This section addresses this problem and answers RQ1.3 by creating an ontology for technical

debt in systems engineering. In accordance with Task 1.3.1, the ontology provides a definition of

technical debt, principal, interest, and other key terms specific to systems engineering. This

ontology of technical debt for systems engineering was created and published in the IEEE Open

93

Journal of Systems Engineering in September, 2023 [21]. This ontology is based on the published

research in systems engineering and software engineering and informed by the results of the

literature review and survey conducted as part of this dissertation. The ontology paper is reprinted

here.

2.4.1 An Ontology for Technical Debt in Systems Engineering [21]

2.4.1.1 Abstract

The technical debt metaphor is used to describe the long-term consequences of engineering

decisions made to achieve a short-term benefit. The metaphor originated in the field of software

engineering and has begun to migrate to other fields, including systems engineering. The usage of

the metaphor, its associated terminology, and basic definitions vary both within the software field

and within the greater engineering community. The lack of consistent definitions inhibits the

ability of system developers to understand and control technical debt within their system

developments. This paper presents an ontology for technical debt, focusing on the field of systems

engineering. By providing a set of concise and consolidated definitions, this ontology enables

precise discussion of technical debt and associated techniques for mitigating its impact within

systems engineering.

2.4.1.2 Introduction

Technical debt (TD), originally defined within the context of software engineering [17], is

becoming a standard part of the technical lexicon, used by system engineers [77], program

managers [139], and corporate executives [140]. But what exactly is technical debt? It has been

variously defined as the long-term impact of compromises made for short-term benefit [60], the

difference between the planned system capabilities and the actual system capabilities [114], a

promise to complete work in the future [78], the acceptance of a short-term solution that will create

94

additional work in the long-term [77], and all the “technical work that has to be completed in the

future” [140]. Further complicating the problem is the use of different terms, such as rework [125]

and unintended consequences [98], to define similar problems. Even these terms do not have

consistent definitions, as up to eight different definitions of rework have been found within the

same paper [136]. These conflicting sources make it clear that a common definition of TD does

not exist, neither in the broader research community nor specifically within the field of systems

engineering [79].

The definitions of the components of TD also vary from author to author. Tom et al. [52]

mapped the components of TD to the associated forms of TD, showing that multiple components

can be classified into more than one form of debt. Li et al. [60] define the “cause” of TD as “the

reason for the existence of technical debt”, which corresponds to the “precedent” defined by Tom

et al. [52]. Rios et al. [137] use the term “consequence” to identify the impacts of TD on the system

while Tom et al. discuss the impacts in terms of the “attributes of technical debt.” Alves et al. [133]

define an ontology of TD types, but do not provide details on terminology beyond those types.

To address the terminology differences, several authors have developed taxonomies of TD. A

taxonomy provides methods to classify items while an ontology provides definitions of those items

[129]. Taxonomies are necessary to enable the classification of different TD types, however, an

accepted ontology is required to provide the basis for those taxonomies. Yang, Verma, and Anton

[141] recently defined a taxonomy focused on the incorporation of custom off the shelf (COTS)

products into complex systems. They expand Kruchten’s TD landscape [115] to include an

additional ‘Accountability’ access and define several factors leading to different types of TD. Tom

et al. [52] also define a taxonomy of TD, including methods for classifying the TD based on

precedents, outcomes, and attributes. They define several attributes of TD, such as technical

95

bankruptcy, but do not provide a full ontology and their definitions do not necessarily extend

beyond the field of software engineering. Alves et al. extended their earlier work to provide a

taxonomy of TD types [142]. Several other authors have proposed taxonomies related to TD [137],

[138], [92], but the taxonomies focus on classifying TD and do not provide consistent definitions

that can be uses across industries [20].

Furthering the problem, TD is not well researched within systems engineering literature [19].

The authors have provided empirical evidence that TD does occur within systems engineering,

even if the terminology is not widely used [18]. This survey identified that technical debt is more

likely to be created early in the system lifecycle and its impacts are more likely to be observed

later in the system lifecycle. The lack of a common ontology for common systems engineering

problems prevents the systematic identification of similar research and therefore the sharing of

tools and techniques to manage TD and to mitigate its impact throughout the system lifecycle [20].

With TD occupying significant portions of corporate technology portfolios [140], the management

of TD is increasing in importance and value. Within specific systems engineering contexts, the

problem of TD is increasing with the push to release products on shorter timelines [2] and an

increased emphasis on prioritizing value delivery over non-functional requirements [15]. These

pressures can result in developers taking shortcuts [7] and systems that break more easily when

changes are required and which are more difficult to maintain, both of which are symptoms of

unpaid TD [25].

Based on this examination of the state of the art in the field, it is clear that there is a need for a

common ontology for TD. While multiple taxonomies exist, the authors are unaware of a

comprehensive ontology of TD, particularly when considered in the field of systems engineering.

Establishing a common language for TD is a key step to enable cooperation between the business

96

and technology sectors of a company [143] and to enable communication between practitioners

throughout the field. This paper develops such an ontology for the field of systems engineering,

which will enable a consistent discussion about TD and its management within systems

engineering [129]. Standardization of terminology and definitions will lead to knowledge sharing

and the development of measurement and management techniques.

Communication between practitioners is especially important as systems become increasingly

complex and combined into systems of systems. In these cases, TD can be incurred in one system

and then compound throughout the systems of systems. With increased complexity, identifying

the source of the problem so that it can be remedied can become difficult and expensive, especially

since the source of the TD may be far removed from its impacts. These factors are exacerbated

within systems engineering, compared to software engineering, due to the increased interactions

with external influences that may be outside the control of the system developer. Therefore, an

ontology that provides a common basis for discussions across the entire system context is critical

to managing systematic risks.

The rest of this paper is structured as follows. Section 2.4.1.3 presents the proposed ontology

for TD for systems engineering. Section 2.4.1.4 discusses the use of the ontology and Section

2.4.1.5 concludes the paper and presents concepts for future work.

2.4.1.3 Technical Debt Ontology for Systems Engineering

2.4.1.3.1 Technical Debt Concept Map

The development of an ontology for TD starts with a conceptual understanding of technical

debt. The following example, originally provided in a survey on the prevalence of TD within

systems engineering [18], demonstrates how TD can impact the development of a system.

97

“Sydney is a test engineer tasked with writing test procedures to ensure that

each part being manufactured is of sufficient quality. Sydney has substantial

experience working with the parts and the test equipment. Sydney writes test

procedures that outline the steps to execute the tests such that executing the tests

should take one hour on each part. Following these procedures, Sydney can

verify the quality of each part in one hour. Months later, Sydney is promoted

and Jody is given the responsibility of testing the quality of the parts. Jody is

new to the company and to the specific product line. Jody follows Sydney’s test

procedures, but Jody takes two hours to test each part, instead of one, reducing

the overall throughput of the test team. Why?

The test procedures were written at a level relevant for Sydney's use and not for

someone with less experience on the product line. Doing so saved Sydney time,

but also increased the amount of time that someone unfamiliar with the testing

would need to test each part, which introduced technical debt into the system.

While Sydney saved time in creating the procedures, the system took on debt in

the form of a less than ideal set of test procedures. The debt impacts the system

when it takes Jody longer to test each part and slows down the process. In this

case, paying back the debt requires rewriting the test procedures such that they

are at a sufficient level for any engineer, regardless of experience, to be able to

use efficiently. The system suffered from delays due to the increased time to

evaluate each part and also from the time to rewrite the test procedures. This

technical debt can impact the project schedule, the cost of the project, and also

the quality of the outputs. Was this example helpful in explaining technical

debt?”

This example highlights the major concept of technical debt: a technical compromise made to

achieve a short-term benefit creates additional costs in the long-term. To visually explain the

concept of TD, Izurieta et al. [144] developed a conceptual map of TD for software engineering

which was extended by Rios et al. [137]. The concept maps visualize the major components of TD

and associate these components with the system and business goals. While a useful aid in

understanding the fundamental concepts of TD, these maps contain some notable deficiencies,

including the lack of a feedback loop between TD and the system performance.

To address these concerns, a modified concept map of TD within the context of systems

engineering has been developed based on a synthesis of TD components identified in the literature

and interactions between the system and its stakeholders. This concept map is shown in Figure

2-13. In this concept map, the business goals exert pressure on the system and its developers, who

98

are then forced to make a technical compromise. This technical compromise can yield a short-term

benefit, which satisfies the business goals, but which may create TD.

Figure 2-13. Conceptual map of technical debt for systems engineering, based on [29] and [13]

Technical debt is composed of one or more technical debt items (TD Item), which have several

attributes, including the affected artifact, the type of TD, the cause of the TD Item, and the long-

term consequences. The cause is associated with the short-term benefit that satisfies the business

goals. The long-term consequence is measured in principal, interest, and fees and impacts the

system health – the ability of the system to meet its performance objectives. These impacts on the

system health can also impact the satisfaction of the business goals, which leads to additional

pressure on the system or to technical bankruptcy. TD management is an activity associated with

the control of TD items. This map shows the feedback between TD and system health as an

indicator of system performance.

The concept map defined in Figure 2-13 provides a starting point for the creation of a TD

ontology by identifying the relationship between the critical components of TD. This ontology is

designed to provide common terminology and definitions that are focused to the systems

engineering field. It leverages terminology from the software engineering field where possible.

99

However, the ontology also redefines terms and introduces new terms as necessary to clarify the

definitions and usages within systems engineering specific applications.

2.4.1.3.2 Background Terminology

This section defines the background concepts and terminology used to establish the ontology.

2.4.1.3.2.1 System Dimensions

The development of a system can be characterized along three major dimensions: budget,

schedule, and performance, where performance is defined as the combination of the system scope

(what the system does) and its quality (how well it does it). These dimensions are linked together

through a concept similar to the “Iron Triangle” of program management [145]: stakeholders must

conduct tradeoffs between the three dimensions. For example, the customer can define the scope

through a requirements specification and can define a delivery timeline. The system developer

then determines the cost of the project that provides the developer with a sufficient value. The

value is not necessarily a profit-driven parameter; a project may have other value to a system

developer, such as development of new technology. Alternatively, if the stakeholder asks for a

product within a specified budget and on a specified schedule, then the scope of the deliverable

may need to change. In this case, the stakeholder must conduct a tradeoff between the achievable

scope and available budget and schedule.

The triangle concept can be represented visually, as shown in Figure 2-14, where the vertices

are performance (P), profitability ($), and speed to market (T). The area of the triangle represents

the value of the system. As the values of the dimensions change, the vertices will move, altering

the system value. The farther the vertices are from the center of the triangle, the larger the area of

the triangle and therefore the larger the value provided by the system: faster time to market, higher

profitability, and better performance all deliver higher value. Increased costs cause the profitability

100

vertex to move left, which lowers the area of the triangle and decreases the overall value. Similarly,

realized cost savings increase the profitability, moving the vertex to the right and increasing the

overall value.

Figure 2-14. Interconnected system dimensions showing an estimation of system value

2.4.1.3.2.2 Phases

System lifecycles flow through characteristic stages, regardless of the development strategy

that is employed [146]. Different strategies result in different frequency and numbers of iterations

through the system lifecycle. Broadly speaking, the systems lifecycle can be divided into two

phases: system development and system deployment. The development phase might consist of the

following stages, adapted from [146]:

• Needs Analysis: definition of system capabilities to satisfy stakeholder needs

• Requirements Definition: decomposition of stakeholder requirements into system

requirements

• Preliminary Design: development of design specifications to prove the ability of the system

to meet requirements

• Critical Design: detailed design of the system

• Integration: implementation and integration of the components of the system

101

• Verification: verification that the components and the integrated system meet the

requirements

The deployment phase might consist of the following stages:

• Validation: validation that the integrated system meets the stakeholders needs

• Operations: post-development phases of the system, consisting of production, use,

maintenance, and retirement of the system

Within this ontology, the development phase will be used to refer to the activities leading up to

system validation and the deployment phase will be used to refer to activities that occur during

and after system validation, including production, operations, maintenance, and retirement.

2.4.1.3.3 Technical Debt Definition

Cunningham introduced the concept of TD stating:

“Although immature code may work fine and be completely acceptable to the customer,

excess quantities will make a program unmasterable, leading to extreme specialization of

programmers and finally an inflexible product. Shipping first time code is like going into debt.

A little debt speeds development so long as it is paid back promptly with a rewrite. Objects make

the cost of this transaction tolerable. The danger occurs when the debt is not repaid. Every

minute spent on not-quite-right code counts as interest on that debt. Entire engineering

organizations can be brought to a stand-still under the debt load of an unconsolidated

implementation, object- oriented or otherwise.” [17]

He used the term as a metaphor and not a definition. Since its introduction the metaphor has

proven useful in explaining the impact of technical decisions in terminology familiar to personnel

who are not involved in the system development.

With its increased use, there is a need to provide a consensus definition of the TD metaphor.

Many authors have provided definitions of TD, especially within the realm of software

engineering. These definitions have subtle differences and nuances; however, the following

components are common across the definitions:

102

• TD occurs due to decisions made for short-term benefit that have long-term negative

consequences [54] [147] [148] [110] [149] [65].

• Taking on TD involves making a compromise in one area to achieve a benefit in another

area (e.g., reducing the quality of testing to save schedule) [110] [66] [51] [62] [58] [89]

• The effect of taking on TD is an increased amount of work in the future [66] [150] [49].

Some authors propose alternate definitions of TD, including presenting it as a gap between the

actual and should-be state of a system [114], [52], [120], the existence of incomplete or immature

components [78], [67], or work not yet done [77]. We assert that these definitions do not reflect

the central tenant of the Cunningham’s initial concept – that the decisions made today may result

in increasing consequences tomorrow.

Rosser and Ouzzif provide a systems engineering based definition: “Expedient engineering

decisions in requirements, architecture, design, documentation, integration and test are made to

gain short term advantage, with similar negative effects on productivity and quality as have been

shown in software” [70]. This definition is cumbersome and does not detail the negative effects,

instead relying on a foreknowledge of the application of TD within software engineering.

Jones et al. define TD as consisting of “design or implementation constructs that are expedient

in the short term, but that set up a technical context that can make a future change more costly or

impossible” [151] This definition does not define what an “expedient construct” is and whether it

is due to poor design or intentional choices. Additionally, this definition states that TD only

impacts the system when future changes are required. However, as will be discussed later, there is

a component of TD associated with the use of a system.

103

To enable clear communication, a concise and easily understood definition of TD is preferred.

Therefore, the definition of TD for systems engineering proposed by Kleinwaks, Batchelor, and

Bradley [19] is adopted here:

Definition 1: Technical debt is a metaphor reflecting technical compromises that can yield

short-term benefit but may hurt the long-term health of a system.

Definition 1 identifies the TD metaphor – the application of the concept of TD to describe

potential problems within a system. The metaphor is used to talk about the abstract concept without

necessarily relating it to concrete numbers and measurements. However, the term “technical debt”

is also commonly used to refer to “the complete set of TD items” [56] within the system and as a

value representing something the system “owes”. When used in this context, the term technical

debt takes on a different meaning, as listed in Definition 2. To limit the confusion, the term “TD

metaphor” is used in the conceptual context and the term “technical debt” or “TD” is used in the

quantitative context.

Definition 2: Technical debt is the quantitative impact on the long-term health of the system

accrued as the result of a technical compromise made to achieve a short-term benefit.

These definitions of TD consist of four main components: technical compromises, short-term

benefits, and the potential for negative impacts, and the long-term health of the system. The

following sections explain these components in more detail.

2.4.1.3.3.1 Technical Compromises

Referencing Figure 2-14, compromises can be made that affect one or more of the system

dimensions. For example, the stakeholder can compromise on budget by adding funding or

104

compromise on schedule by delaying delivery until the system reaches the specified level of

quality. Technical compromises are defined in Definition 3.

Definition 3: A technical compromise is a concession made in the performance dimension,

either in scope or quality.

Only decisions that require concessions in the performance dimension are included in this

definition. Decisions such as increasing the development timeline to enable the full realization of

the system design (concession on schedule, benefit on performance) do not constitute TD.

2.4.1.3.3.2 Short-term Benefit

A system-level benefit is an increase in system capability in one of the three dimensions. A

benefit in schedule would be the reduction in the time required to release a product. A benefit in

performance would be the increase of capability in one area of the system. A short-term benefit is

one that quickly realizes the benefit for the stakeholders and the system developers. For example,

releasing a product two days earlier is a short-term benefit. A long-term benefit would be one that

is not manifested until later in the system lifecycle. For example, an increase in system

documentation may produce a benefit by reducing the complexity of system level maintenance

and a corresponding increase in the performance dimension. Generating the documentation during

the system design phase results in a long-term realization of the benefit. The actual calendar times

associated with short-term and long-term are subjective and dependent upon the system being

developed.

Decisions that do not yield short-term benefits do not constitute TD. For example, the decision

to invest in the development of a new factory instead of running additional shifts at the current

factory provides a long-term benefit instead of a short-term benefit, and therefore does not

constitute TD.

105

2.4.1.3.3.3 Potential for Negative Impacts

Unlike financial debt, TD has intrinsic uncertainty about when it will need to be repaid and

exactly how large the cost will be to repay the debt. Cunningham captured this concept when he

said “The danger occurs when the debt is not repaid. Every minute spent on not-quite-right code

counts as interest on that debt” [17]. If system developers have to interact with the portion of the

system that has TD, then they will have to expend additional effort to develop that portion of the

system. However, if developers never interact with that component, then the technical compromise

will not impact the system development. Definition 1 captures the probabilistic nature of TD –

there is a chance that the debt will need to be repaid and also a chance that the debt may not

negatively impact the system. The probabilistic nature of TD must be considered when making the

initial technical compromise.

2.4.1.3.3.4 Long-term Health of the System

The result of the technical compromise is often a long-term impact on the system health, if the

technical concessions are not restored. Cunningham recognized this fact when he stated “Entire

engineering organizations can be brought to a stand-still under the debt load of an unconsolidated

implementation, object- oriented or otherwise” [17]. If the technical concessions that are made are

left uncorrected, then the system health may become compromised over time. Kothamasu et al.

define the health of a deployed system as the ability of the system to stay in an operable condition

[152], characterized by margins in design specifications, lack of observable damage to the system,

system reliability and performance parameters that are within the required bounds, and lack of any

issues that would compromise the integrity of the system [153]. However, technical compromises

affect both the development and operational phases of the system lifecycle [18] and therefore an

updated system health definition covering both phases is required.

106

Definition 4: The system health is the ability of the system to meet its objectives in the

performance dimension without changes to the budget or schedule dimensions.

During system development, objectives in the performance dimension include designing and

implementing the system in line with the scope and quality requirements. After the system is

deployed, these objectives include meeting the quality requirements, such as usability and

maintainability. A system that fails to meet either set of objectives within its planned schedule and

budget is unhealthy. In development, an unhealthy system requires additional funds and/or

schedule to deliver the required performance. After deployment, an unhealthy system

underperforms its requirements, especially in areas of maintenance and usability.

To be considered TD, the impacts on the system health must be long-term. The use of the long-

term qualifier implies that the impacts will be remain in the system unless they are corrected. A

short-term impact of a decision is resolvable and, if resolved, may have no significant impact on

future changes. As such, this type of decision is an alternative design choice and does not incur

TD [66]. For example, a test is specified to be conducted with a flight model of a satellite

component. However, the component is delayed, and in order to keep the test schedule an

engineering model of the satellite component is used instead. This decision represents a technical

compromise – the exact flight unit is not tested. However, if the engineering model is of sufficient

quality, the test results will be valid and not require retesting and there is no long-term impact.

2.4.1.3.3.5 Impact of Technical Debt on the System Dimensions

Figure 2-15 shows the progressive impact of TD on the overall value of the system. Section 1

of the diagram shows the baseline system, with target performance (P), profitability ($), and speed

to market (T) objectives resulting in a defined system value. TD affects the long-term health of the

system through a concession made in the performance dimension. The system may still meet the

107

overall scope requirements, but the concessions may make additional changes more complicated.

This system state is represented in section 2 of the diagram. Here, a small amount of TD has been

introduced into the system (the arrow labelled TD) which does not have a significant impact on

the overall value of the system. Section 2 represents system states such as taking on prudent,

deliberate debt, which is debt incurred with a known repayment plan, to meet a specified release

date, where the reduction in performance is acceptable. In fact, not all TD taken on during the

course of system development is detrimental, as debt incurred intentionally to meet a deadline may

benefit the system [116]. Prudent TD can be recovered in future releases.

Figure 2-15. Impact of TD on project schedule, performance, and cost during project execution. Restoring system

performance requires reducing the time to market or the profitability of the project.

In section 3 of Figure 2-15, the TD has grown significantly, indicated by the larger arrow,

drastically reducing both the system performance and the overall system value. The performance

can no longer be recovered without adjustments to the other vertices. This state arises from the

accumulation of TD, either through reckless and inadvertent means, where technical debt is

108

incurred without a defined repayment plan [57], or through the failure to follow the TD repayment

plan. Section 4 of Figure 2-15 shows how the system performance can be recovered, by paying

down the TD. The schedule and profitability vertices have both been moved inwards to prop up

the performance vertex, representing an increase in time to market (schedule delays) and a lower

profitability (increasing cost). While the performance has been restored, the overall value of the

system (the area of the triangle) is reduced.

This analysis shows how TD, which is incurred in the performance dimension, can have impacts

on the other system dimensions. The system dimensions are interconnected and therefore require

a system-level view of TD in order to mitigate the impact of the debt. This ontology provides the

communication framework necessary to support the system-level view.

2.4.1.3.4 System Technical Debt

“System technical debt” refers to the set of TD items present in the system. It is used to address

the accumulation of TD from multiple sources within a system and separates the definition of the

total TD (system TD) from the TD associated with each TD item (technical debt). The system TD

provides a method to quantitatively understand the accumulation of TD within the system.

Definition 5: System technical debt is the concrete set of TD items present in the system.

2.4.1.3.5 Technical Debt Measurement Units

Addressing TD quantitatively requires that TD be measured in a consistent unit across all

occurrences. A consistent measurement enables comparison of the impact of multiple TD items.

TD has been measured as the financial cost [65], the amount of time required to do the work [68],

and the work required to be performed [67]. Each of these terms have varying degrees of usability

in systems engineering, and roughly align to the three system dimensions of budget (financial

cost), schedule (time required), and performance (work required). Definitions 1 and 3 state that

109

TD starts with a technical compromise in the performance dimension of the system that results in

impacts on the long-term health of the system. Definition 4 states the health of the system is the

ability to meet requirements in the performance dimension. The health of the system can be

measured in the performance dimension by assessing the change in performance required to

achieve the objectives. Since both the technical compromise and the long-term health can be

measured in the performance dimension, TD should also be measured in the performance

dimension.

The units used to measure the performance dimension will be different across different systems.

For example, some systems may choose to measure the performance dimension based on the

number of labor hours required to complete the work. Other systems may measure the performance

dimension in terms of the lines of code that need to be written and other systems may use the

number of verified requirements. Still other systems may convert the performance dimension into

strict financial terms. With respect to TD, the specific unit does not matter, so long as each TD

item is represented in the same unit for comparison and the unit used is understood to the system

development team. Given the freedom of a system to report instances of TD in their own units, the

term UNIT will be used within this ontology as the measurement of the TD.

Definition 6: The UNIT of technical debt is a quantified measurement of a change in the

performance dimension of the system.

2.4.1.3.6 Technical Bankruptcy

Technical concessions may increase the cost to develop new features and the costs to maintain

the system [63]. The project development schedule may be exceeded due to the impact of the

technical concessions. The impacts in the performance dimension may be so severe that the system

development cannot continue or that the maintainability and reliability of the deployed system is

110

insufficient [62]. Reaching any of these conditions puts the system into a state of technical

bankruptcy, defined as follows:

Definition 7: Technical bankruptcy is the state where the system can no longer proceed with

its lifecycle until some, or all, of the system technical debt is repaid

Systems that are technically bankrupt are no longer able to support future development without

first repaying some or all of the existing system TD [60]. This situation can occur when the effort

required to repay system TD exceeds the capacity of the development team. The development team

will not be able to make progress on the system, resulting in a bankrupt state. Bankrupt systems

are no longer able to either verify or validate their requirements within the system development

timeline and budget [63].

A system may also reach technical bankruptcy once it is deployed due to an accumulation of

technical fees. Technical fees, which define the increased difficulty in using the system due to the

presence of unpaid principal, impact the quality of the delivered product. An excessive

accumulation of fees will make the system unusable until the TD that resulted in the fees is

corrected.

Systems reach technical bankruptcy when the technical costs, associated with system

development and system use exceed system benefits, such as delivering on time and budget.

Technically bankrupt systems require an increase in the budget or schedule dimension or a

reduction in the expectations in the performance dimension to emerge from bankruptcy.

2.4.1.3.7 Technical Debt Item

A technical debt item (TD Item) is a concrete instance of TD within a system that connects the

technical concession and its consequences on system artifacts [56]. The TD item represents the

111

concession that was made as part of the technical compromise and is used to track the impacts on

the long-term health of the system. The following sections discuss each of the TD Item attributes.

2.4.1.3.7.1 Description

The description provides a narrative of the technical concession and the steps required to restore

the system in the performance dimension.

2.4.1.3.7.2 Consequence

The consequence of the TD item refers to the potential impacts on the long-term health of the

system [144]. It consists of a narrative description of the impacts and the quantitative measures of

principal, interest, and fees.

2.4.1.3.7.3 Principal

The existing definitions of the principal vary, but are typically centered on the effort required

to correct the issue causing the TD [60], [68], [69], [59]. Ampatzoglou et al. define it as “the effort

that is required to address the difference between the current and the optimal level of design-time

quality” [62]. Izurieta et al. state that principal “refers to the cost or effort (measured monetarily

or in time units) necessary to restore a software artifact back to health” [61]. Avgeriou et al.

identify principal as the “cost savings gained by taking some initial approach or ‘shortcut’ in

development (the initial principal). Or the cost it would take now to develop a different or better

solution (the current principal)” [56].

This quick review of the literature identifies two major methodologies for calculating the

principal: it is either the UNIT to implement the optimal solution originally (the savings from the

original concession), or it is the current UNIT to implement the optimal solution now. The

principal measures the initial concession made as part of the technical compromise – it is the UNIT

of system performance that is given up in order to achieve the desired benefit. The principal is like

112

the principal in financial debt – it does not increase with time, although payments can be made to

reduce the principal and therefore the following definition is adopted.

Definition 8: The principal, P, is a measurement of the concession made in the performance

dimension to achieve a short-term benefit.

2.4.1.3.7.4 Interest and Fees

The long-term impact of TD on a system’s users is different than the impact on the system’s

developers. System users may experience decreased usability, maintainability, or reliability of the

system. These impacts are likely to occur each time the system is used and to be the same

magnitude with each occurrence. System developers may experience the same issues, but also may

experience increased difficulties in continuing the system development to meet performance

requirements. The impacts seen by developers occur when the system is modified, either due to

the natural development process or due to changes in the system requirements. These impacts tend

to be less predictable both in occurrence and in the magnitude of the impact. Therefore, the long-

term impact of the technical concession needs to be considered from both perspectives. This

consideration results in two separate quantities: interest and fees.

Interest and fees can be distinguished based on how they impact the system. Interest is based

on impacts to the development of the system – if the technical concession results in increased costs,

schedule, or difficulty in making modifications to the system, then the system has accrued interest.

Interest is variable – both the interest amount and the interest probability are functions of the state

of the system. Fees are based on impacts observed during usage of the system – if the system is

more difficult or complicated to use as a result of the technical concession, then the system has

incurred a fee. The magnitude of the fee is constant; however, the fee must be paid by the user

every time that the impacted artifact is used.

113

Fees are paid by the user and interest is paid by the system developer. The system developer

must repay the principal. The repayment of the principal constitutes the correction of the original

technical concessions and removes the technical debt. This repayment must be done by the

developers and then the updated system is released to the users.

2.4.1.3.7.4.1 Interest

Interest on TD is traditionally defined as the extra effort required to modify the system due to

the presence of deficiencies [60], [54], [149], [62], [68]. TD interest has also been defined as the

work to correct a deficiency [61], the additional work to implement new functionality [56], and

the additional work to maintain the system due to the presence of the deficiency [63], [154].

TD interest results from the lower design-time quality of a component (poor documentation,

low maintainability, etc.) that requires additional effort in subsequent development efforts. TD

interest can be contagious [92] – each new component that interacts with a component containing

TD may require additional effort to develop and may then carry forward that interest into its

successor components (compounding the interest). If a sub-optimal component is included in the

architecture instead of correcting the component (the principal), each new application that connects

to that component would suffer from its sub-optimality [69]. The build-up of dependencies on the

sub-optimal component results in overall sub-optimal performance and increased work to add new

components (the interest).

Within the systems engineering context, the TD interest refers to the long-term impacts on the

system as encountered by the system developers. The interest will accrue in the performance

dimension of the system and can impact both the scope and the quality of the system. The interest

definition, therefore, is limited to the impact on the system developers.

114

Definition 9: The interest, I, is the expected value of additional UNITs incurred by the system

developers in the performance dimension due to the presence of unpaid principal.

Applying a direct financial analog to TD would require the definition of an “interest rate” for

TD, which would associate the total amount to be repaid with a known growth rate of the debt.

However, a relationship between TD principal and interest that would apply to all projects has not

been defined. Ampatzogolou et al. suggest that such a rate cannot be defined, since the specific

growth of TD interest depends on aspects unique to each system such as the system

implementation, the system context, and the maintenance activities performed [68]. Due the

complexities in calculating and predicting the effort associated with interest, Seaman et al. [51]

divide the interest into two categories: interest amount and interest probability.

2.4.1.3.7.4.2 Interest Amount

The interest amount reflects the long-term change in the performance dimension that is

traceable to the original concession (the principal) [51].

Definition 10: The interest amount, a, is the additional UNITs incurred by the system

developers in the performance dimension due to the presence of unpaid principal as a function of

the state of the system.

The interest amount represents the impact of the principal on the future state of the system. For

example, if the principal was incurred due to a decision to not complete documentation, then the

interest amount would be an increase in the effort required to update that part of the system in

future iterations. The interest amount is measured in the same UNIT as the principal. The interest

amount is a function of the state of the system development and the development timeline. For

example, a system may initially have few interfaces and components, and the ability to work

around the initial concession is small. As the system grows, the number of interfaces increases and

115

the impact of the initial concession spreads to a larger number of interfaces and components.

Therefore, the change in the performance dimension has increased due to the larger number of

impacted components, increasing the interest amount. The interest amount may also decrease due

to changes in the system development, such as removing an interface.

2.4.1.3.7.4.3 Interest Probability

Unlike financial debt, which has a known schedule of payments and interest, TD interest may

or may not be realized. Once the technical compromise is made, the principal exists in the system.

The technical compromise may be made in a component of the system that never has to be altered

again, and therefore the compromise does not need to be resolved. The interest probability

accounts for the likelihood of the interest being realized [51]. For example, a system may choose

smaller batteries that reduce the upgradability of the system. However, if those upgrades are not

implemented, then the interest is never realized.

Definition 11: The interest probability, r, is the probability that the interest amount will be

realized as a function of the state of the system.

Like the interest amount, the interest probability is also a function of the state of the system and

the development timeline. As the system development changes, especially in iterative design

cycles, the probability of the interest being realized may change. For example, an incompletely

implemented standard may initially have a low interest probability if the component that

implements the standard is isolated. If the system design changes such that the component is no

longer isolated, then the interest probability will increase.

116

2.4.1.3.7.4.4 Fees

Users of a system use a released version of the system and therefore the system’s capability in

the performance dimension is largely fixed. Design choices made in the system development may

result in a less-than optimal experience for the user. Activities may take longer than they should

due to underperforming hardware or due to poor user interface design. Capabilities may not be

fully implemented and require work-arounds by the user. The system may not be easily maintained

or may not be as reliable as it should have been. These issues all tend to occur in the quality aspect

of the performance dimension. Unlike TD interest, these issues occur with each use of the system.

The total impact of the issues is dependent upon the number of times that the system is used and

is not based on the effort required to add capability to the system or to modify the system design.

Therefore, these impacts on the health of the system are separated out from the TD interest and

are instead termed TD fees. Fees are the recurring costs of using a system containing TD and are

measured in UNIT every time that the system is used. Izurieta et al. [144] defined this concept as

recurring interest. An example of a fee occurs when a poorly developed user interface results in

several extra minutes spent inputting system parameters in a software system. Every time the user

has to input the parameters, users will have to “pay the fee” of those extra minutes, until the

principal on that TD Item (reworking the interface) is repaid by the developers. A fee is defined as

follows:

Definition 12: The fee, f, is the amount of additional UNIT incurred by the user with each use

of the system due to the presence of technical debt.

A system that performs poorly does not necessarily have fees. Fees must be associated with a

technical compromise, and as such, an instance of TD. For example, a race car that is slower than

its competitors does not necessarily have any fees associated with the use of the car – it is just not

117

as well designed as its competitors. However, a cost savings compromise made to use a metal

frame instead of a composite frame which reduces the gas mileage would be an example of a fee

– the user (the driver) must perform additional pit stops every time the car is raced.

2.4.1.3.7.5 Balance

The balance, B, is the summation of the principal and the interest and represents the total UNITs

required to repay the TD item. The balance does not include the fees (either realized or anticipated)

in the system, as fees are not repaid. The expected value of the balance is calculated as shown in

Equation 2-1. The subscript, t, indicates the parameters that change with time.

𝐵𝐵𝑡𝑡��� = 𝑃𝑃 + 𝑎𝑎𝑡𝑡 ∗ 𝑟𝑟𝑡𝑡 (2-1)

2.4.1.3.7.6 Total Cost

The total cost, C, in terms of UNIT, due to the TD item is inclusive of the balance and the fees.

The total cost is a time-dependent value, as it includes the interest, which is a function of the state

of the system, and the expected fees. Fees are fixed in magnitude, but the number of fees, n, will

change with time. The expected value of the total cost is calculated as shown in Equation 2-2. The

subscript, t, indicates the parameters that change with time.

𝐶𝐶𝑡𝑡� = 𝐵𝐵𝑡𝑡 + 𝑓𝑓 ∗ 𝑛𝑛𝑡𝑡 (2-2)

2.4.1.3.7.7 Artifact

The artifact is the part of the system that is affected by the TD [144]. A TD item may impact

multiple artifacts – the principal may be associated with one artifact while the interest and fees

may be associated with a different artifact. An artifact may be a piece of documentation, a

component of the system, a test case, or any other part of the system itself.

Definition 13: An artifact is the part of the system affected by technical debt.

118

2.4.1.3.7.8 Cause

The cause of a TD item defines the reasons why the technical compromise was made [144]. It

consists of two attributes: the specific cause and the cause category. The cause provides traceability

of the TD item to the original decision which can then be used in forensic evaluations.

2.4.1.3.7.8.1 Specific Cause

The specific cause of a TD item is the short-term benefit provided to the system developers,

stakeholders, or users that is realized through a technical concession. The specific cause includes

the rationale for why achieving the short-term benefit required a technical concession. For

example, a technical compromise may be made such that a program increment can be released on

time. In this example, the specific cause is the on-time release of the program increment. The

rationale defines why a technical concession had to be made to release the increment on schedule,

such as supply chain issues forcing a switch to a different, less reliable part.

Definition 14: The specific cause of a technical debt item is the short-term benefit realized

through the technical concession.

2.4.1.3.7.8.2 Cause Category

The cause category provides a general categorization of the cause. The cause category is defined

as follows:

Definition 15: A cause category is the dimension of the system development where the short-

term benefits are achieved as a result of the technical concession.

Kleinwaks, Batchelor, and Bradley [18] conducted an empirical survey of systems engineering

professionals. This survey included questions on reasons why a system developer may incur TD.

Over 80% of the respondents identified schedule pressure as a reason, over 60% of the respondents

119

identified cost pressure as a reason, and over 30% of the respondents identified technical

compromise as a reason. Kruchten et al. similarly identified schedule pressure as the primary cause

of TD [115]. These results lead to the following cause categories:

• Schedule: consists of pressures put on the technical solution due to the need for the system

to meet schedule. For example, any TD incurred such that the system can meet its

scheduled release date is caused by the schedule category.

• Cost: consists of pressures put on the technical solution due to the need for the system to

stay on budget. For example, technical concessions associated with the use of a cheaper

part are associated with the cost category.

• Performance: consists of technical concessions made in one area to achieve technical

benefits in another area of the system. For example, a satellite system may choose to use a

less performant antenna such that system mass requirements are met.

These categories mirror the system dimensions defined in Section 2.4.1.3.2 . As evidenced by

Figure 2-15, pressure on any of the dimensions may result in movement in the other dimensions.

Figure 2-16 shows an example of this process. Stakeholders, such as management executives, may

put pressure on the system to release earlier in order to beat a competitor to market. This pressure

pulls the schedule vertex (T) to the left as shown in section 1 in Figure 2-16. Without other

resources, the movement of the schedule vertex would result in a corresponding decrease in system

performance (P), shown in section 2 of Figure 2-16. This reduction indicates that a technical

compromise is required, which introduces TD to the system. To restore the system performance,

the cost vertex ($) is moved left, decreasing the system profitability, shown in section 3 of Figure

2-16. Therefore, the stakeholders would have to accept a tradeoff in the system – either a decreased

performance and the introduction of TD or decreased profitability due to an increase in costs. Note

120

that the profitability factor here does not account for the potential future benefits of releasing the

system earlier to market.

Figure 2-16. Example of schedule pressure creating TD

2.4.1.3.7.9 Type

The type of a TD item provides a means to categorize the TD item. TD items with similar types

may have similar causes or similar methods for repaying the TD. Examples of different types of

TD can be found throughout the literature and include items such as architectural TD [97], domain

debt [89], and requirements debt [118]. TD occurs in various stages throughout a system’s lifecycle

and for various reasons. Classification of TD into different types assists in understanding and

managing it, however, too many disparate types risk diluting the strength of the TD metaphor

[115]. A definition for a TD type, such as that provided in Definition 16, can assist in restricting

the accumulation of differing TD types.

Definition 16: A technical debt type is a classification of technical debt based on the artifacts

that are negatively affected by the technical concessions made to realize a short-term benefit.

This definition restricts a TD type to be associated with specific artifacts and the technical

concessions that are made. Domain debt, defined as the “misrepresentation of the application

domain by an actual system” [89], is associated with the documentation of stakeholder needs and

the system requirements. Technical concessions that result in domain debt can include limiting

121

user interactions to save development time. Defect debt, defined as any defect found within the

system [60], would not be a type of TD according to Definition 16. Defect debt can be mapped to

an artifact, such as the source code, but not to technical concessions. Defects are the result of poor

work and are not inserted into the system to realize a short-term benefit.

2.4.1.4 Discussion

The ontology provided in this paper provides a starting point for developing a common

framework for discussing TD within systems engineering. This commonality is critical to enable

the sharing of methods and processes for identifying and mitigating the impacts of TD. The need

for a common set of definitions can be seen by examining a listing of types of TD.

Kleinwaks, Batchelor, and Bradley [19] identified the types of TD found within published

systems engineering research. Recognizing that creating too many types of TD risks diluting the

strength of the metaphor [115], the types of systems engineering TD were reevaluated in context

of this TD ontology. This evaluation resulted in the consolidation of the TD types as shown in

Figure 2-17, with the types classified as interest bearing (associated primarily with impacts during

system development), fee bearing (associated primarily with impacts during system usage), or both

interest and fee bearing. Several of the identified types of TD proved to be instances of other types

of TD. For example, versioning debt is an instance of documentation debt and not a separate type

of TD. Automation debt, build/assembly debt, depreciation debt, and infrastructure debt were

originally listed as different types of TD [19]. These types of TD all impact the same artifacts –

the supporting tools used to develop the system. Therefore, according to the ontology, they

represent different facets of the same type of TD. Figure 2-17 shows the subtypes as italicized

items under the new parent type, which is listed in bold. After application of the definition of a TD

type, several types of TD listed in [19] were found to not be TD types: defect, operations and

122

maintenance, and organic. These items reflect causes or impacts of TD instead of types of TD.

This short example demonstrates the utility of the ontology – it provides clear guidelines of what

is and is not TD and can prevent over classification, which impedes communication and the

development of effective management strategies [115].

Figure 2-17. Consolidation of TD types from [19], organized by interest and fee bearing status.

2.4.1.5 Conclusions

Kleinwaks, Batchelor, and Bradley [19] proposed a research agenda for understanding TD in

the context of systems engineering. This agenda includes baselining the knowledge of TD in the

field of systems engineering through empirical data collection, developing a systems engineering

ontology of TD, developing techniques to identify causes of TD within systems engineering,

developing methods to quantify and predict the impact of TD within systems development, and

verifying and validating these methods.

The first agenda item was addressed through a survey on the prevalence of TD in systems

engineering [18]. The research question presented in this paper address the second agenda item –

identifying an ontology of TD within the context of systems engineering. This research presents a

starting point for the development of a complete ontology. It introduces and defines the key terms,

with clear explanations. These explanations and definitions begin the creation of a common

123

lexicon and provides practitioners with the semantics necessary to create clarity in

communications.

The ontology presented here is not complete. Further work needs to be performed to create

taxonomies of TD types and of specific causes of TD. Too many classes of either TD types or

specific causes can dilute the strength of the TD metaphor [115]. Future research needs to provide

guidance on how to classify TD such that it is precise enough to be meaningful without

overspecification.

The socialization of this ontology, of which this paper is the first step, will provide a starting

point for clear and concise terminology usage within the field of systems engineering, which is a

necessary step towards mitigation of the risks associated with technical debt and the prevention of

technical bankruptcy.

2.4.2 Addressing RQ1.3

The technical debt ontology addresses RQ1.3 by providing a common ontology for technical

debt within systems engineering. To demonstrate the utility of the ontology, the following sections

provide example applications, including developing a consolidated set of types of technical debt

within systems engineering, an example application of the ontology to the development of a

notional satellite system, and a discussion on items that do not constitute technical debt based on

the ontology.

Application of the ontology to the list of types of technical debt found in the literature review

addresses Task 1.3.2 by providing concise definitions of types of technical debt applicable to

systems engineering. The survey results are used to map these types of technical debt into the

systems engineering lifecycle to identify the artifacts and phases affected by each type.

124

2.4.2.1 Technical Debt Types in Systems Engineering

With the ontology defined, it can be applied to multiple cases to demonstrate its utility. As an

example, the types of technical debt in systems engineering identified in [19] can be reevaluated

using the definitions contained in the ontology. Table 2-8 lists the types of technical debt in

systems engineering identified in [19] after applying the ontology and associates the type with the

affected artifact. In accordance with the definitions, Table 2-8 identifies the types of technical debt

that are interest bearing (associated primarily with impacts during system development), fee

bearing (associated primarily with impacts during system usage), or both interest and fee bearing.

The following sections define these technical debt types in more detail. Several types of technical

debt identified in [19] were found not to be technical debt after application of the ontology. Section

2.4.2.3 discusses why these types do not constitute technical debt.

Table 2-8. Technical debt types in systems engineering

Technical Debt Type Artifact where Technical Concessions are Made Interest or Fee bearing

Architecture System architecture Interest

Design Component specifications and detailed system

design

Interest and Fee

Documentation System documentation Interest and Fee

Domain Statement of needs, system requirements, system

architecture, test plans

Fee

Implementation System components and integrated system Interest and Fee

Infrastructure Supporting equipment for system components, the

integrated system, and verification and validation

tests

Interest

Modeling and Simulation Supporting models and digital twins Interest

Requirements System requirements Interest

Test Test artifacts Interest and Fee

2.4.2.1.1 Architecture Debt

Architecture debt is incurred through technical compromises that impact the system

architecture, such as decisions related to the structure and implementation of interfaces in the

system [97]. Architecture debt can result in impacts on the quality attributes of the system, such

125

as maintainability and evolvability [155]. Architecture debt is present in both systems engineering

and software engineering, and its use in systems engineering is a direct analog of its use in software

engineering. Similar architectural decisions and processes are made in both fields. Technical

concessions made in the system architecture result in the accrual of interest on those concessions.

Architecture issues such as incompletely implemented standards, adoption of immature system

components, and reliance on outdated architectures make developing and improving the system

more complicated.

Examples of architecture debt include [97]:

• The Minimum Viable Product that Stuck: the focus on delivering value quickly to

stakeholders results in the generation of a minimum viable product (MVP), which

minimally meets the requirements. The adoption of the MVP as the baseline for the

architecture can then result in immature system implementations that result in future

complexities.

• The Workaround that Stayed: Architectural workarounds are introduced in the system,

such as creating temporary interfaces between components. Over time, these workarounds

become critical features of the system, even though the workaround may not have been

implemented to the required standards.

• Re-inventing the Wheel: Components are developed when existing components with

similar functions are available. This type of architectural debt is the result of build versus

buy decisions and can cause future impacts due to the additional work associated with

testing a new developmental item.

126

• Architectural Lock-in: Architectural components become deeply embedded in the system

design, making them costly or impossible to replace. The use of these components can

incur performance costs in the future if they cannot be upgraded.

• New Context, Old Architecture: The context in which a system is deployed may change.

The failure to keep the system architecture updated with changes in the context can result

in new fees being applied to the system every time it is used.

Architecture debt is interest bearing. It reduces the future evolvability and development of the

system and the architecture becomes more difficult to change as system development progresses.

2.4.2.1.2 Design Debt

Design debt is incurred through technical compromises that impact the design of the system

[110]. Design debt can be incurred during preliminary design or detailed design and can result

from “an under-focus on qualities such as maintainability and adaptability, or subsequent

piecemeal design with an absence of refactoring” [52]. Design debt can occur in hardware and

software designs. Parts of code debt as identified in software engineering apply to design debt,

such as violations of good object-oriented design [133].

Design debt is interest bearing and fee bearing. Concessions made during design will have

impacts on the ability to make future modifications to the system. The design choices may also

result in fees where design compromises result in a system that is more difficult to maintain or use.

2.4.2.1.3 Documentation Debt

Documentation debt refers to all issues pertaining to the documentation of the system, including

poor documentation, version control, and configuration management. Versioning debt is included

in documentation debt as version control and configuration management are related to document

management. Documentation debt occurs due to “insufficient, incomplete, or outdated” [60]

127

documentation and applies to any of the documents used to design or maintain a system or a system

component [70], such as user manuals, test plans, or source code comments.

Documentation debt incurs both interest and fees. Poor documentation related to the

development of the system, such as insufficient source code commenting, incurs interest since it

makes the future development of the system more complicated and costly. Poor documentation

related to the usage of the system, such as an incomplete user manual, can make user training more

complicated, incurring a fee at each training event.

2.4.2.1.4 Domain Debt

Domain debt is the “misrepresentation of the application domain by an actual system” [89] and

impacts the system itself. The impact of this type of technical debt is seen when a system fails

validation – the developers built a system that does not meet the needs of the end users. Domain

debt can be caused by poor requirements and poor stakeholder involvement during development

or by changes in the system context and use cases after development [63].

Domain debt results in fees – the user experiences low usability on a product that may not meet

their needs. Domain debt may not impact the development of the system, however, decisions made

during development can incur domain debt if they drive the system to a solution that is not

representative of its intended use and operational domain [89].

2.4.2.1.5 Implementation Debt

Implementation debt occurs while the system is being built - after the design is completed and

prior to the release of the system. During the implementation and integration phases, the system

developer is often faced with decisions about how to implement the system. These choices do not

change the system design or architecture. For example, a software system may choose an

inefficient algorithm or produce code without following proper coding practices [60], resulting in

128

larger rework times the next time the software is used. In a hardware system, the use of a

customized part and proprietary interfaces can make future updates more complicated [70].

Implementation debt is interest and fee bearing. The concessions made during system

implementation and integration may make future system development more challenging, as in the

case of an incomplete implementation of a standard. These concessions may make using the system

more difficult, as in an under-implemented interface between two components. The latter case may

result in unreliable or low-rate data flow across the interfaces, thereby increasing the time it takes

to transmit data from a remote system.

2.4.2.1.6 Infrastructure Debt

Systems are not developed in a vacuum, instead they rely on infrastructure and supporting

processes. Infrastructure includes the development tools used by the system developer, the

supporting systems at the deployment location, and third-party components used by the developer

within their system. Infrastructure debt includes technical concessions made in the configuration

of the tools that are used to support the development and deployment of the system [60]. These

concessions can be made in areas involving the depreciation of parts and components and the

automation of machinery [70]. In software systems, concessions made with the automated build

pipelines, such as the failure to include adequate cybersecurity scanning tools to save cost,

constitute infrastructure debt. Technical compromises made to enable the use of commercial off-

the-shelf (COTS) products, such as accepting lower system performance or more complicated

integration, also constitute infrastructure debt [86].

Infrastructure debt is interest-bearing. Concessions made in the infrastructure related to the

development of the system will incur interest when the development is more complicated, such as

the need to modify a COTS product to meet the system requirements. Poor infrastructure in a

129

deployed system is a result of design decision and is perhaps more properly characterized as design

debt.

2.4.2.1.7 Modeling and Simulation Debt

Digital engineering relies on a substantial increase in the use of modeling and simulation tools

to verify system-level performance through analysis. Digital tools are used to verify requirements,

assess system performance, and predict system behavior. If these models and simulations are

performed to improper fidelity levels, are not maintained in parallel with the system under

development, or are poorly documented, then the model’s predictions will differ from the system

reality. In these cases, the technical concessions made in the model development will impact the

health of the system, as the system may need to be redesigned to meet the required performance

parameters. Modeling and simulation debt is the result of technical concessions made in the digital

engineering environment for a system [70].

Modeling and simulation debt is interest-bearing. Concessions made in the modeling phase can

make the development of the actual system more challenging and result in redesigns. For example,

if an overly simplistic thermal model of a satellite is used, then the satellite may be designed with

insufficient radiators. During thermal testing, the satellite would not perform as expected and

would require a redesign.

2.4.2.1.8 Requirements Debt

Requirements debt has been defined as the “distance between the optimal solution to the

requirements problem and the actual solution, with respect to some decision space” [118], issues

with requirements formatting and content [70], and trade-offs in the requirements specification

[66] or implementation [133]. There is disagreement in the published literature about whether or

130

not requirements debt is a type of technical debt [149]. In systems engineering, requirements debt

should be considered as a type of technical debt.

Requirements debt occurs when concessions are made during the formulation of the system

requirements. Requirements debt can have large impacts on various aspects of the system, such as

the design, implementation, and operations and maintenance, and could be seen as an analog of

domain debt. However, domain debt occurs when the system developer does not implement the

requirements in accordance with the stakeholder’s expectations and requirements debt occurs

during the formulation of the requirements themselves. Requirements debt results from

compromises made when creating the system requirements and not from poorly formatted

requirements. However, it can occur when a poorly formatted requirement results in an inaccurate

understanding of the requirement. The lack of clear requirements can result in a system that

requires redesign, additional acceptance testing, or multiple rounds of validation. Missing

requirements can result in the need to add unbudgeted work to the system to complete it to

specifications.

Requirements debt is interest bearing. Technical concessions made during requirements

development, such as the failure to include all relevant stakeholders during elicitation and the

failure to verify the requirements to confirm that they are complete and conflict-free, can have

large impacts later in the system development process.

2.4.2.1.9 Test Debt

Test debt is incurred due to technical concessions made in the development of test artifacts and

in conducting testing activities [133]. Test debt can occur due to shortcuts taken when executing

the tests [60] or due to insufficient coverage of the system functions and behaviors in the set of

test cases [70]. Specific instances of test debt include commissioning and start-up debt (shortcuts

131

in commissioning and startup process of automated systems [113]) and configuration debt (issues

with the hardware configuration and availability for testing [70]).

Test debt is interest bearing as tests are part of the development process of the system. Test debt

can lead to test failures which will lead to additional development work to correct the system. Test

debt is also fee bearing. If the system is not fully tested, then inadequate performance may not be

discovered during the operational phase, resulting in increased difficulty when the system is used.

2.4.2.2 Example usage of the Ontology

The use of the technical debt ontology for systems engineering is best understood through an

example. This example considers the development of a notional communications satellite with a

primary radio-frequency (RF) antenna for communications with users on the ground. The satellite

is launching as part of a rideshare and therefore has a strict mass limit and a strict schedule. The

satellite must be ready in twelve months or else it will miss the launch, and will have to sacrifice

the budget allocated to the launch. If the satellite is over mass or fails the specified environmental

testing, then it will not be allowed to connect to the launch vehicle. The RF antenna needs to

connect to an existing set of ground terminals and ground antennas (more than one combination),

without modifying those systems. Therefore, there are minimum performance requirements on the

antenna. Further complicating the development of this system is the fact that a satellite cannot be

serviced once it is launched, with the exception of software updates. This example examines the

impacts of technical debt on the development path of the satellite. For this example, technical debt

principal, interest, and fees will be measured in UNITs of time. Table 2-9 contains the details of

the technical debt items created and observed throughout this example, identified by the step

number associated with each paragraph. The column C/O indicates if technical debt is created (C)

132

or observed (O) and the column CC indicates the cause category for that technical debt item, with

S used to indicate schedule, C used to indicate cost, and P used to indicate performance.

1. The first step in the system development process is identifying the stakeholder needs. The

stakeholders identify an exemplar terminal and antenna to which the satellite needs to

connect. The stakeholders do not identify any other constraints and, to enable the quick

start of the system development on a tight timeline, the system developer does not pursue

any further information. Domain debt is created.

2. Following the identification of the stakeholder needs, the satellite requirements and system

architecture are defined. The requirements for the satellite include the overall mass limit.

The architecture requires the development of a new antenna for the satellite; however, an

existing radio can be used. The new antenna is an evolution from an existing antenna and

the mass and power of the existing antenna are used in the initially proposed design. The

exemplar terminal specifications that were provided represent a worst-case scenario for the

antenna performance. No size requirements are flowed down to the antenna manufacturer

as the previous design was small enough to fit within the launch vehicle restrictions.

Requirements and modeling and simulation debt are created.

3. During the preliminary design of the system, the initial antenna models are revisited. It is

determined that the antenna does not produce enough gain to close the link with the

exemplar terminal. The design has to be reworked, resulting in an increase in size and mass

of the antenna. Modeling and simulation debt is observed and design debt is created.

4. The critical design of the system takes longer than expected due to the larger mass of the

antenna, which produced a need to rework the guidance systems. The mass increase also

resulted in the need to increase the size of the satellite reaction wheels, which further

133

increased the mass of the system. To counteract the increase in mass, a battery is removed

from the system, which decreases the duty cycle of the antenna. Design debt is observed

and domain debt is created.

5. In the integration phase, the command-and-control software for the satellite and its payload

are implemented from the design. Due to the short timelines, best practices for the

development of the software are not followed and the documentation produced for the

software is minimized. Implementation and documentation debt are created.

6. Following integration, the satellite is verified and validated, including the execution of the

tests required by the launch vehicle provider prior to allowing the satellite to be integrated

on the launch vehicle. To save time, radiation testing is not performed. Instead, the

requirements are verified by analysis. Test debt is created.

7. Eventually, the satellite is qualified for launch and is placed into orbit by the launch vehicle.

As the satellite enters operations, it becomes apparent that it does not meet the needs of the

users. It is limited in duty cycle and experiences a limited ability to close the link with a

majority of the terminals that it was supposed to support. Radiation events occur semi-

frequently, causing the satellite to go out of service due to the need to reset the system. The

software is complicated to update and patch, resulting in longer outages whenever an error

occurs. Domain, test, and documentation debt are observed.

This example shows how technical debt can build up within a system through decisions made

to achieve short-term benefits. As a result, the system was more expensive to develop and is less

usable by its end-users, which could result in a monetary failure of the system.

134

Table 2-9. Example creation and observation of technical debt

Step TD Type C/O Compromise CC
Potential

Consequence
Principal Interest/Fee

1 Domain C Failure to identify

all operational

needs and

constraints

S System may not work

for all user terminals,

in all weather

conditions, or at all

ranges

Seven work days saved

by not completing

needs analysis

Fee: inability to transfer all data in one

pass causes user to wait for a second orbit

to complete transfers; due to orbital

geometry delay can be 90 minutes to 12

hours

2

Requirements C Failure to

consider all

sources of

requirements in

development of

subsystem

requirements

S Rework of design if

launch vehicle

constraints are not met

Two weeks earlier start

on design

Interest Amount: four weeks of redesign

if constraints are not met

Interest Probability: 50%

Mod/Sim C Simplified models

used to assess

system design

S, C Rework of the design

if simplified models

are incorrect

Two months earlier

start on design

Interest Amount: One month of redesign

effort

Interest Probability: 30%

3

Mod/Sim O N/A N/A N/A N/A Interest Paid: time spent to rework

design, which reduces schedule margin

and increases cost

Design C Acceptance of

larger antenna

mass

P Larger mass makes

attitude control, launch

deployment, and

power management

more complicated

Three weeks saved on

antenna design

optimization

Interest Amount: Two weeks of effort to

redesign the reaction wheels and attitude

control software

Interest Probability: 90%

4

Design O N/A N/A N/A N/A Interest Paid: time spent to rework

design, increasing cost and reducing

schedule margin

Domain C Lowering of

battery capacity

P Lower duty cycles

reduce the usability of

the system for the end

user

Six weeks of effort to

optimize other areas of

the satellite to meet new

power requirements

Fee: lower duty cycle results in ability to

only service one user per orbit, creating

operational delays from 90 minutes to 12

hours based on orbital geometry

5

Implementation C Not following

software best

practices for peer

review

S Increased risk of

software errors and

increased difficulty in

updating software

Four weeks of

development time saved

Interest Amount: Two days of additional

work for each update

Interest Probability: 75%

135

Step TD Type C/O Compromise CC
Potential

Consequence
Principal Interest/Fee

Documentation C Reduction in

software

documentation

S Increased risk of

software errors and

increased difficulty in

updating the software

Four weeks of

development time saved

Interest Amount: Four days of additional

work for each update

Interest Probability: 60%

6

Test C Radiation tests not

performed

S Susceptibility of

system to single event

upsets may decrease

the usability of the

system resulting in

technical fees

Two weeks of test time Fee: Single event upsets cause a reset of

the satellite every day, which may result

in missed connection opportunities or

data loss, creating operational delays

from 90 minutes to 12 hours based on

orbital geometry

7

Domain O N/A N/A N/A N/A Fee Paid: Links to most terminals only

close at high elevation angles, reducing

effective communication times and

increasing the time for a customer to

receive service

Test O N/A N/A N/A N/A Fee Paid: Single event updates cause

frequent system resets and outages,

increasing the wait time for customer to

receive service

Domain O N/A N/A N/A N/A Interest Paid: Increased timeline for

patching and updating the satellite

software due to poor documentation

136

2.4.2.3 Is It Technical Debt?

When evaluating potential technical debt within a system, it is simple to describe every problem

as a type of technical debt. After all, most problems encountered in a system development will

eventually cause issues. However, this generalization of problems can lead to two undesirable

conclusions [115]:

1. Fine-grained distinctions between different types of technical debt prevent the

development of efficient tools to manage technical debt; and,

2. Over-generalization prevents the application of the right tools, such as risk and schedule

management techniques, to the right problem.

If every technical problem is not technical debt, then there needs to be a methodology for

determining what is and what is not technical debt. The definition of technical debt from [21] will

be used to address several situations that should not be considered technical debt. For an issue with

the system to be considered technical debt it needs to meet the following criteria:

• A technical concession was made (trading schedule for budget does not constitute a

technical concession);

• There was a short-term benefit received as a result of the concession;

• There is the potential for damage to the long-term health of the system; and,

• The technical concession can be associated with a system artifact.

Table 2-10 provides example categories of items that are often confused with technical debt but

fail to correspond to the definitions provided in the ontology.

137

Table 2-10. Examples of items that are not technical debt

Category Definition Why it is Not Technical Debt Could be Technical Debt If

Incomplete

work

Unfinished work that is on

schedule [58], new

features, or additional

functionality [115]

Not the result of a technical

compromise

Work is left undone to meet a

release, thereby representing

a technical compromise

Defects and

failures

Software bugs, poor work,

errors in the system [49]

Not inserted into a system to

achieve a benefit; tend to have

an immediate impact on the

system instead of a long-term

impact [116]

Defects arise due to

misinterpretation of the

requirements; the defects are

then a symptom of

requirements debt

Technical

compromise

with no long-

term impacts

Reducing the performance

of the system through a

technical compromise that

still enables the system to

meet its objectives

No long-term impacts since the

system still meets all the

objectives

Unexpected long-term

impacts arise from the

concessions

Poorly

designed or

implemented

systems

Systems that are properly

built to their requirements,

but the design is poor

No technical compromises are

made in the development of the

system

Misunderstanding of the

customer needs led to the

initial requirements, resulting

in domain debt

Using the definitions in the ontology, several types of technical debt identified in [19] no longer

fit the requirements to be considered technical debt. These types include defect debt, operations

and maintenance debt, and organic debt. Defect debt is defined as any defect found within the

system [60]. However, as identified in Table 2-10, defects themselves are not technical debt, and

therefore defect debt is not a type of technical debt. Instead, defects should be viewed as symptoms

of other types of technical debt [49]. Operations and maintenance debt is defined as “any kind of

handicap with adverse effects on the product or system maintenance” [112]. This definition is

overly broad and the adverse effects on maintenance, which are technical fees, could arise from

any of the other types of technical debt. Therefore, operations and maintenance debt should not be

a separate category to avoid overspecification. Organic technical debt refers to the impact of

external factors, such as decisions by management, on the system [86]. This definition implies that

these external factors force the system developers to make technical concessions due to driving

138

concerns, such as limited budgets and speed to market. Per the ontology, these external factors are

causes of technical debt and not a specific type of technical debt themselves.

2.5 Technical Debt in the Systems Engineering Lifecycle

Section 2.4.2.1 states that the types of technical debt are defined based upon the artifacts that

they impact. By evaluating the stages in the system lifecycle based on where the affected artifacts

are created and used, it is possible to map the types of technical debt to the system lifecycle. Figure

2-18 shows a mapping of the system lifecycle stages used in the survey by Kleinwaks, Batchelor,

and Bradley [18] to the types of technical debt identified above. In the figure, each stage outputs

an artifact, which then may be used as an input to another stage. For example, the statement of

needs is used as an input to the requirements definition stage, the verification and validation stage,

and the operations stage. These input/output relationships are shown via the blue arrows. The

technical debt type that may be created in the development of each artifact is shown in red italicized

text to the left of the artifact. The types of technical debt that impact the development or the usage

of the artifact are shown in bold purple text to the right of the artifact. For example, the preliminary

design stage produces the component specifications. During the development of these

specifications, technical compromises may occur that result in design debt – the design of the

specification is non-optimal. Therefore, design debt is shown in red italics to the left of the

component specification icon in Figure 2-18. The process of developing the component

specification itself may be more complicated due to the presence of requirements, architecture, or

modeling and simulation technical debt. These types of technical debt are shown in bold purple

text to the right of the specification icon in Figure 2-18. If technical compromises existed in the

development of the requirements, such as not validating the requirements for consistency in order

to meet schedule, then it may be impossible to develop proper component specifications. The

139

system developer would have to go back to the stakeholders to renegotiate the inconsistent

requirements, which increases the execution time.

Figure 2-18. Technical debt type creation and observation based on impacted artifacts throughout the system

lifecycle

Of note in Figure 2-18 is that modeling and simulation debt (Mod & Sim) is created during the

development of a digital twin. The term digital twin here is used to refer to any models or

simulations used during the development of the system. The digital twin provides inputs to and

receives outputs from the needs analysis, requirements definition, preliminary design, and critical

design stages. The system documentation is both generated and used throughout the system

lifecycle. Therefore, documentation debt may be created or observed at any point in the lifecycle.

The documentation artifact is not shown connected to the stages for clarity in the diagram. Table

2-11 defines the rationale for the depictions shown in Figure 2-18.

Test plans

Needs Analysis

Requirements

Definition

Preliminary

Design

Critical Design

Integration

Verification and

Validation

Operations

Statement of

Needs

System

Requirements

System

Architecture

Component

Specifications

Detailed

Design

System

Usage

System Tests

Domain

Domain
Test

Implementation

Architecture

Design

Implementation

Infrastructure

Design

Design

Design

Domain

Implementation

Technical debt types that

impact development or usage

of the artifact

Technical debt created in the

development of the artifact

Requirements

Architecture

Design

Mod & Sim

Requirements

Architecture

Mod & Sim

Requirements

Test
Infrastructure

Infrastructure

Digital Twin

Mod & Sim

System

Documentation

Mod & Sim

Mod & Sim

Mod & Sim

Documentation Debt

Created in all phases

Observed in all phases

Architecture

Design

Domain

Implementation

Infrastructure

Requirements

Test

Requirements

Domain

Domain

Domain

140

Table 2-11. Creation and impact of technical debt types

Technical Debt Type Creation Impact Artifact(s)

Architecture The system architecture is created at the end of the

requirements analysis, which occurs during the

requirements definition stage [146].

Compromises in the system architecture such as

incompletely implemented standards can make

system design more complicated. Similarly, these

incomplete interface implementations can impact

the ability to verify and validate the system.

System architecture

Design The design consists of the component specifications

and the detailed design, which are created during the

preliminary and critical design stages [146].

The design directly impacts the system

implementation and the creation of the system

components and the integrated system.

Compromises in the design may make the system

harder to implement, require redesign late in the

process, or make the system more difficult to use.

Component

specifications and

detailed system design

Documentation Documentation occurs throughout the system

development. Compromises in any source of

documentation can create technical debt, such as

poor user manuals, failure to capture requirements

rationale, and poor source code commenting.

Documentation is used throughout the system

lifecycle and any concessions made in the

documentation may impact the ability to design,

develop, and utilize the system.

System documentation

Domain Domain debt occurs due to a misunderstanding of

the stakeholder needs and operating environment.

Domain debt is created throughout the system

lifecycle system any time a technical compromise is

made that results in a system that does not properly

meet the stakeholder needs.

Domain debt is not observed until late in the

system development cycle, when the system is

validated by the stakeholders. Concessions made

early, such as forgoing user input to meet

schedule, show up late in a system that fails

validation or does not operate as expected.

Statement of needs,

system requirements,

system architecture, test

plans

Implementation Implementation debt occurs due to technical

concessions made while implementing the detailed

design. These concessions can be intentional or

unintentional.

Implementation debt impacts the system itself

and begins to be observed in the integration stage

as one part of the implementation can affect

others. Concessions made in the implementation

of the system can impact the verification and

validation of the system and the operations.

System components and

integrated system

Infrastructure Infrastructure debt broadly captures the impacts on

the elements in the system context, beyond the

system itself, that are required to support the

development of the system. It is created in the

requirements phase when the infrastructure

requirements are specified.

The impact of infrastructure debt is felt in the

integration and verification and validation stages.

If concessions are made with respect to the tools

used to build or test the system, then the

processes may not be as efficient or may require

a redesign of the system to fit the available tools.

Supporting equipment

for system components,

the integrated system,

and verification and

validation tests

141

Technical Debt Type Creation Impact Artifact(s)

Modeling and

Simulation

Modeling and simulation debt is created during the

process of defining models, simulations, and digital

twins that support the design of the system. An

example of a concession made in the modeling and

simulation process is using low fidelity models to

decrease model run time.

Digital twins are used to support the development

of the system needs, requirements, architecture,

and designs. Therefore, any concessions made in

the digital twins will impact these processes.

Supporting models and

digital twins

Requirements The requirements are created during the

requirements definition stage [146]. Requirements

debt occurs if the system does not properly validate

the requirements to ensure that they are conflict free,

understood, and support the stakeholder needs.

Requirements debt impacts the design of the

system and the verification and validation of the

system. Concessions made in the requirements

can result in a system design that is inaccurate,

which can then result in the failure of verification

testing.

System requirements

Test Test debt is associated with the test plans and

processes used to test the system. It is created during

the development of the test plans as part of the

requirements definition and again during the

verification and validation stage, where the detailed

test plans and procedures are run.

Test debt impacts the verification and validation

stage. During this stage the system is tested to

ensure that it meets the requirements and

concessions made during the test development

may result in additional tests if the test results are

inadequate.

Test artifacts

142

Figure 2-19 relates the types of technical debt to the systems engineering Vee. Dark green areas

of the Vee indicate areas where that type of technical debt is likely to be created (the left side of

Figure 2-19) or observed (the right side of Figure 2-19). Technical debt is more likely to be created

on the left side of the Vee and observed on the right side of the Vee, in accordance with the results

presented in [18].

Figure 2-19. Technical debt creation (left) and observation (right) by type in the systems engineering lifecycle

While the general trend shown in Figure 2-19 matches that in [18], one key difference is the

number of types of technical debt observed in the Operations stage. According to [18], over 70%

of the survey respondents stated that technical debt is likely to be observed in the Operations stage.

Figure 2-19 shows only four types of technical debt (design, documentation, domain, and

implementation) being observed in the Operations stage. There are two reasons for this difference.

First, the definitions provided in the technical debt ontology make a clear difference between those

types of technical debt that affect the development stage (those that cause interest) and the

deployment stage (those that cause fees). These concepts were not provided to the survey

participants. Second, the survey participants were not provided with the detailed breakdown of

TD Creation

Critical

Design

Requirements

Definition

Operations

Verification and

Validation

Integration

Needs Analysis

Preliminary

Design

TD Observation

Critical

Design

Requirements

Definition

Operations

Verification and

Validation

Integration

Needs Analysis

Preliminary

Design

143

types of technical debt. Any technical compromise in the system can result in difficulties in

operations, including under-performance and more complicated maintenance. However, the

definition of domain debt, the failure of the system to meet the user’s needs, covers most of these

circumstances. Domain debt can be created at multiple steps throughout the systems engineering

lifecycle leading to the observation of the technical debt in the Operations stage. Domain debt

combined with design and implementation debt, which cover concessions made during the design

and build of the system, produces the majority occurrences of technical debt in the operations

phase.

2.6 Conclusion

This chapter addresses RQ1: How prevalent is the technical debt metaphor within systems

engineering? Through the literature review and empirical survey, it was determined that the

metaphor of technical debt is not widely used either in published research or in practice. However,

the impacts of technical debt on a system development are commonly observed in the field of

systems engineering. Therefore, there is a need to establish a common lexicon to enable

discussions about technical debt, its impact, and its management. The ontology for technical debt

[21] created as part of this dissertation provides the first known comprehensive lexicon for

technical debt within systems engineering.

Application of the ontology allows types of technical debt to be defined while minimizing the

risk of overspecification. By associated a type of technical debt with the affected artifact, similar

management and mitigation techniques can be developed. Finally, the likelihood of creating and

observing technical debt throughout the system lifecycle is defined, both in terms of empirical data

from survey participants and through analysis of the presented types of technical debt. This data

144

supports the conclusion from the survey that technical debt is likely to be created early in the

system lifecycle and observed late, but that it can occur anywhere.

This chapter provided an overview of the current state of technical debt research within systems

engineering. The provided ontology, tailored specifically to systems engineering, serves as a

starting point for practitioners to develop a shared language that can be used to determine methods

and processes to mitigate and manage technical debt throughout the system lifecycle. The next

chapters of this dissertation provide a process by which technical debt can be proactively assessed

and then mitigated within the context of system development.

145

CHAPTER 3 – IDENTIFICATION OF TECHNICAL DEBT IN THE SYSTEM LIFECYCLE

3.1 Introduction

The system lifecycle defines how a system progresses from its initial conception through design

and development and into operations, sustainment, and disposal. Each system ends up following a

unique lifecycle, however, the lifecycle stages and process are defined by the technical strategy

used to execute the lifecycle. The technical strategy consists of the development method,

development strategy, and delivery strategy used to complete the system [23]. Iterative delivery

strategies execute similar lifecycle stages repeatedly, increasing the overall value delivery of the

system with each iteration. In these delivery strategies, technical debt can be a major contributor

to delays, as the concessions made in early iterations may significantly impact the ability to

complete work in later iterations [25]. Therefore, identifying technical debt within the system

lifecycle is a critical capability that will enable improved satisfaction of stakeholder needs.

This chapter addresses Research Question 2: How can potential sources of technical debt be

identified during the system lifecycle? As discussed in Chapter 2, technical debt occurs throughout

the system lifecycle, often created in the early stages of the lifecycle and identified late in the

lifecycle. This dichotomy is what makes technical debt a threat to the success of system

development. Late detection of technical debt during system development increases the expected

value of the technical debt interest and therefore the overall cost (in technical debt UNIT) required

to repay the debt.

The late detection of technical debt can be mitigated by developing proactive mechanisms to

identify potential sources of technical debt early in the system lifecycle and through detected

146

management of technical debt once it is discovered. This chapter focuses on the identification of

technical debt in the lifecycle through two subordinate research questions:

• RQ2.1: How is technical debt identified within software engineering?

• RQ2.2: What process can be used to identify potential technical debt sources within

systems engineering?

Addressing RQ2.1 provides insight into the tools currently used within the software engineering

field to identify technical debt. The majority of technical debt research occurs within software

engineering [19], and therefore understanding the methods used in that field may provide insights

into appropriate methods for systems engineering. Addressing RQ2.2 will identify an existing

process that can be used to identify technical debt within systems engineering, if possible. If such

a process does not exist, then one will be created to enable proactive identification of potential

technical debt in systems engineering.

3.2 RQ2.1: How is technical debt identified within software engineering?

This section provides a review of existing methods of technical debt identification within the

published literature. There is limited research on technical debt within systems engineering [19].

Associated issues, such as rework, see limited published research on mitigation techniques within

program development and specific to systems engineering [136]. Therefore, in accordance with

Task 2.1.1, technical debt identification methods within software engineering are surveyed and the

identified methods are assessed for their applicability to systems engineering.

3.2.1 Existing Methods of Technical Debt Identification in Software Engineering

It has already been established that the current state of technical debt research is primarily

focused on the field of software engineering [19]. This section performs a review of technical debt

147

identification methods within software engineering from which knowledge may be derived for

adaptation and application to the field of systems engineering.

Technical debt in software can be identified through automated approaches or through manual

approaches. Automated approaches use tools to analyze artifacts to find indicators of potential

technical debt, primarily focusing on source code analysis [156]. Manual approaches ask the

system developers and stakeholders to identify instances of technical debt. While more time

consuming, manual approaches can find sources of technical debt outside of the source code and

provide additional context for each instance of technical debt [156]. Either automated or manual

approaches can be used with different technical debt identification methods. Table 3-1 summarizes

the methods for identifying technical debt in software engineering found within the literature.

Table 3-1. Methods for identifying technical debt within software engineering

Method Description

Code Analysis Using automated tools to identify existing problems in source code [157]

Self-admitted

Technical Debt

Identification of problems in source code based upon the comments submitted by the

system developers [158]

Requirements

Validation

Ensuring that each requirement conforms to the organization’s guidelines. Requirements

validation confirms that the requirements are written clearly and unambiguously in the

documentation style required by the project rules and that the interpretation will meet the

stakeholders’ needs [159]

Architectural

Analysis

Evaluation of the system architecture to assess interconnectedness and potential

disconnects among the components through modularity and dependency analyses [97]

3.2.2 Applicability of Software Engineering Methods to Systems Engineering

Systems engineering shares a lot of characteristics with software engineering, and therefore it

a reasonable assumption that the methods for identifying technical debt within software

engineering could be applied to systems engineering. Although the methods identified in Table

3-1 are not directly analogous to systems engineering, components of each method can be applied.

Code analysis investigates software for the following problems [157]:

148

• Code smells: software implementations that do not follow good object-oriented design

practices;

• Modularity violations: software modules that are supposed to be independent develop co-

dependencies;

• Design patterns and grime buildup: identification of software classes that fail to follow

established design patterns and accumulate grime (code not related to the design pattern)

and rot (breakage of the integrity of the design pattern); and,

• Automatic static analysis issues: tools automatically review source code for violations of

best practices that may lead to future issues in software quality.

These techniques could be migrated to systems engineering with minor modifications, although

their automatic implementation may be more complicated. For example, modularity violations can

occur between hardware components in addition to software components. Hardware designs can

accumulate grime and rot when the components fail to follow the established design patterns and

interfaces. Smells can occur if system components do not follow good design practices, such as

not including proper mass growth allowances on a satellite system build. These techniques may

become more relevant with the rise of digital engineering and model-based systems engineering,

where structured designs are more amenable to automatic scanning tools.

Self-admitted technical debt analysis is a process by which system developers admit that they

have contributed technical debt to the system, through comments such as “FIX ME” or “TO DO”

in the source code [158]. Within systems engineering, self-admitted technical debt is the equivalent

to self-identification of shortcuts taken in a design process, such as redlines in a test procedure or

the results of engineering review boards where a technical compromise is accepted and logged into

the system.

149

Requirements validation is currently a part of systems engineering best practices [159]. If

applied prior to the baselining of requirements, then the process can help identify and prevent

technical debt from arising – the validation will clarify ambiguous requirements statements or

intents and can therefore prevent domain debt. If the requirements validation is not performed until

after the requirements have been baselined, then the validation process can reveal requirements

debt and domain debt that is already in the system.

Architectural analysis methods include [97]:

• Modularity analysis: an assessment of the independence of the system functionalities;

• Dependency analysis: an assessment of the dependencies between components, with an

emphasis on identifying ‘irregularities’ such as circular dependencies, typically conducted

through the use of design structure matrices (DSM);

• Human analysis: identification by the system developers;

• Compliance checking: analysis of the difference between the designed and the

implemented architecture; and,

• Change impact analysis: analysis of alternatives designs with the goal of limiting the

development of technical debt.

These techniques can also be adapted for use within systems engineering. System components

are often modular and have dependencies upon each other. Identifying these dependencies and

their potential impacts in the future is a critical part of technical debt assessments.

3.2.3 Addressing RQ2.1

Research Question 2.1 sought to understand how technical debt is identified within software

engineering. It was anticipated that a technique, or techniques, from software engineering could

150

be extended to systems engineering to easily create a method for the proactive identification of

technical debt. However, the evaluation of the current technical debt identification and

management methods within software engineering did not reveal a proactive method that could be

extended to systems engineering. Certain aspects of these methods, such as the modularity and

dependency analyses of architectural analyses, can be migrated to systems engineering, but a

usable end-to-end process was not identified.

Therefore, to reduce the risks of technical bankruptcy associated with technical debt, a proactive

process needs to be established that can convert negligent debt into strategic debt. A rapid, easy-

to-use, proactive process for identifying technical debt could enable more widespread use,

promoting the assessment of technical debt when decisions are made. Such assessments turn

negligent debt into strategic debt and reduce the risk of reaching technical bankruptcy. This process

has the following objectives:

1. Identification of the system features that support the realization of the stakeholder needs;

2. Identification of the dependencies between the features and needs and between features

and features, in the temporal and functional dimensions;

3. Assessment of the potential impact of a technical concession on the satisfaction of the

stakeholder needs; and,

4. Easy to use, update, and understand by both system developers and stakeholders.

Such a process can be used throughout the lifecycle of the system, including in the design and

implementation stages. Iterative use of the process identifies the appropriate needs and features at

each level of development and supports decision making in the performance, cost, and schedule

dimensions.

151

3.3 RQ2.2: What process can be used to identify potential technical debt sources within systems

engineering?

The previous section reviewed the technical debt identification methods used within software

engineering and concluded that a new systems engineering-centric process is required for technical

debt identification within systems engineering. The creation of this process starts with developing

an understanding of the technical debt identification timeline.

3.3.1 Technical Debt Identification Timeline

The technical debt context map in Figure 2-13 identifies a pathway by which technical debt

occurs within a system. Figure 3-1 shows how this pathway is realized within a system

development and associates the expected repayment cost with each step in the pathway. The

stakeholder demands a short-term benefit from the system developers. The developers evaluate

alternate solutions to provide this benefit, which may require technical concessions. The

developers then select a solution and implement it, delivering the short-term benefit to the

stakeholder and possibly introducing technical debt into the system. If not managed, then at some

point in the future, the long-term consequences of those technical concessions are observed in the

system, by both the developers and the stakeholders.

152

Figure 3-1. Technical debt identification method application in the occurrence of technical debt. Repayment cost

based on [135]

The sequence shown in Figure 3-1 indicates three timeframes where technical debt can be

identified. During the evaluation of alternative solutions and the identification of technical

concessions, the potential consequences of the concessions can be identified. Techniques and

methods such as requirements validation are used during this phase. Finding the technical debt at

this phase of the implementation is proactive – it identifies the potential technical debt prior to a

decision to make a technical concession. Identifying technical debt at this phase enables the

ramifications of the concessions to be considered as part of the selection process.

The second timeframe where technical debt can be identified is during the selection and

implementation of the solution. Identification of technical debt at this timeframe is active – the

technical debt is identified as it is put into the system. For example, the developers may note the

impacts of the concessions during implementation, such as identifying that a standard is

incompletely implemented. Methods such as tracking self-admitted technical debt can be applied

in this stage, if the developers track the concessions that they make. Active technical debt

153

identification, if properly managed, enables the technical debt item to be tracked as soon as it is

created and therefore enables mitigation of its long-term consequences.

The third timeframe for technical debt identification occurs once the long-term consequences

of the technical concession are observed within the system. This type of technical debt

identification is reactive – it finds technical debt that is already within the system. Code analysis

techniques are used in this stage to identify existing technical debt. Reactive identification of

technical debt can assist in explaining system-level behavior but results in more expensive

repayment of the debt.

Architectural analysis techniques can be applied across all stages identified above and provide

methods to assess the interdependencies of the system. By applying these techniques early in the

system lifecycle, the developer can prevent locking in architectural decisions that will require

significant effort to correct in later stages.

3.3.2 The Need for Proactive Technical Debt Identification

As shown by the cost graph at the bottom of Figure 3-1, the cost of repaying technical debt

increases the later in the system development cycle that it is identified [135]. Therefore, there is a

need to enable early and proactive identification of technical debt to limit its impact on the system

development, across all three system dimensions: cost, schedule, and performance.

Mapping the groups of technical debt identified in Section 1.1.2.1 onto the technical debt

timeline yields Figure 3-2. Figure 3-2 shows a notional alignment of the groups of technical debt

on the timeline and Table 3-2 provides a definition of each of the stages and entry gates identified

in the figure. Prudent technical debt, both strategic and tactical, skips the blissful ignorance phase,

since the intentional decision to take on the technical debt implies that the technical debt is

identified when it enters the system. Negligent technical debt, while a deliberate decision, does not

154

include a repayment plan, and therefore the technical debt may be forgotten about or may not be

shared with other system developers, resulting in a period of time where the debt is hidden and the

system is ignorant of its presence. Prudent technical debt is less likely to induce technical

bankruptcy, due to established repayment plans. Therefore, transition point T5 (Potential for

Technical bankruptcy) is removed from the strategic and tactical timelines.

Figure 3-2. Notional timeline of technical debt occurrence by group

Table 3-2. Stages and gates of the technical debt timeline

Stage Definition Entry Gate

Blissful Ignorance The developer is unaware of the technical

debt in the system

T1 - Occurrence: the entry of technical

debt into the system

Getting value out of

debt

The developer is aware of the technical debt,

but the technical compromise is still yielding

a short-term benefit and the long-term

impacts on the system health have not

manifested

T2 - Awareness: the technical debt has

been identified

Suffering from debt The long-term impacts on system health

outweigh the short-term benefits

T3 - Tipping Point: the technical debt

has begun to cause issues in the system

development lifecycle

Recovery from debt The technical debt is paid back and the long-

term impacts are mitigated

T4 - Remediation Start: the technical

debt is managed and on a known

repayment plan

Defaulting on debt The technical debt is not sufficiently paid

back, and the system enters technical

bankruptcy

T5 - Potential for Technical Bankruptcy:

the technical debt impacts have

increased to the point where the system

cannot continue with its lifecycle until

the debt is repaid or reduced

155

The timing of the transition points (labelled with “T”) in Figure 3-2 provide insight into the

notional phased benefits of each of the technical debt groups. Negligent technical debt has a shorter

period of value return, a longer period of suffering from the technical debt, and a quicker potential

for technical bankruptcy compared to strategic technical debt. The timeframes for tactical technical

debt, both in terms of getting value and suffering from the debt are shorter than those of strategic

technical debt.

To limit the impact of technical debt, the durations of the blissful ignorance, suffering, and

recovering phases need to be minimized. The blissful ignorance phase allows for unknown and

unmanaged accumulation of technical debt interest, thereby increasing the potential future cost of

repayment. The suffering phase is when the system is impacted by the technical debt and the

performance is decreased. Reducing recovery timelines enables a quicker return to delivering

value. Therefore, the earlier that technical debt is identified within a system, the less harmful it is

likely to be. Proactive technical debt identification allows for identification of technical debt prior

to its introduction into the system. These methods can move technical debt from negligent and

unintentional to strategic – early identification enables plans to be put into place to mitigate the

impact of technical debt.

Proactive methods are necessary due to the volatile, uncertain, complex, and ambiguous

(VUCA) environment into which most systems are deployed [3]. Environmental changes can force

the system to be used in unintended ways or to react to unintended inputs. Careful design is

required to implement, operate, maintain, and monitor systems in these environments [150].

Decisions that are made regarding the system design and architecture incur cost and accrue debt

since they lock in a system configuration and need to be actively managed [65]. However, these

decisions are often made in short-time frames without consideration of the future consequences.

156

The later that technical debt associated with these decisions is discovered, the more expensive it

is likely to be to correct, as the cost to implement a change becomes significantly more costly with

each program phase [135]. During systems development, technical debt is likely created during

the critical design phase where it is also unacceptable to create the technical debt [18]. This

seeming paradox is an indicator of the creation of negligent technical debt – system developers

create technical debt to complete the design even though they know that it is not the best solution.

Technical debt can also be “contagious” within a system. As the system grows, technical debt

can spread, “infecting” other parts of the system [92]. For example, an electrical system can be

designed to connect components in series or in parallel to achieve a required reliability of 0.95.

For a system where a “short cut” decision is made to connect an uncertain number of components

in series, the interest on this technical debt item (the decision to implement in series instead of in

parallel) grows with every new component added. Each new component connected in series is

affected by an electrical failure in any of the connected components, reducing the reliability of the

system, as shown in Figure 3-3. In this example, each component has an individual reliability of

0.99. When connected in series, the reliability of component F is reduced to 0.94, due to the

dependencies on the previous components. When connected in parallel, the reliability of

component F stays at 0.99. With the series connection, a redesign would need to occur to meet the

requirement, either by improving the reliability of several components in the chain or by

redesigning the entire system. The cost of this redesign goes up with the number of components

connected.

157

Figure 3-3. Series and parallel implementation of components showing the change in reliability of each component

Based on this analysis of the state of the art of technical debt identification methods, it is clear

that the majority of the methods used within software engineering are reactive identification

methods. Most of these approaches “focus on defect detection and avoidance, rather than a

strategic management of key infrastructure decisions, especially in the context of architecture”

[16]. Techniques such as source code analysis can only be applied to detect technical debt that is

already within the system and these techniques do not inform the decision paths as the system is

developed, potentially resulting in large accumulations of technical debt that are expensive to

correct [16].

Proactive methods of technical debt identification, where potential technical debt is identified

during the analysis of design choices and ahead of design implementation, are necessary to

minimize the impact of technical debt within the system. Active methods detect technical debt

when it occurs and make it easier to manage, but the debt has already found its way into the system.

Reactive methods find existing technical debt. Only proactive methods can prevent the

introduction of technical debt within the system.

A B C D E F

0.99 0.99 0.99 0.99 0.99 0.99

0.99 0.98 0.97 0.96 0.95 0.94

A B C D E F

Parallel Connections

Combined Reliability

Series Connections

Combined Reliablity

Power Source

158

3.3.3 The LEAP Process

A proactive process for technical debt identification within systems engineering could not be

found within the published research. Section 3.2.3 established criteria for a proactive technical

debt identification process. Techniques found within software engineering are mostly reactive and

do not meet these criteria. Therefore, the List, Evaluation, Achieve, and Procure (LEAP) process

was developed, in accordance with Task 2.2.1. This process provides mathematical methods to

associate stakeholder needs with technology development timelines. By directly associating the

need dates and the development timelines, the process clearly indicates which technologies affect

the ability to deliver capabilities needed by the stakeholder on schedule. This association enables

the identification of technologies that are likely to produce technical debt by determining the

dependencies of each capability on the technology. The technologies with more capability

dependencies are likelier to be larger sources of technical debt if compromises are made in their

development. The LEAP process was defined in a paper presented at the 2023 INCOSE

International Symposium [160] and is reprinted here.

3.3.3.1 LEAP – A Process for Identifying Potential Technical Debt in Iterative System

Development [160]

3.3.3.1.1 Abstract

Systems engineering has seen a rise in the use of iterative methods to design and develop both

hardware and software systems which allow for system refinement to be responsive to user needs.

However, focusing on items with high value to the user can result in technical debt, where technical

compromises made for short-term gain impact the long-term health of the system. Current methods

for identifying technical debt focus on finding existing technical debt items within a system and

not on proactive identification of technical debt during the iterative system planning process. This

159

paper presents a novel technique to identify technologies that impact the ability of the system to

satisfy the needs of its stakeholders. The method is used to evaluate different choices of

technological implementations in both the temporal and the functional dimensions to reduce the

risk of incurring technical debt which prevents the successful delivery of the system.

3.3.3.1.2 Introduction

System development and operating environments have become increasingly volatile, uncertain,

complex, and ambiguous (VUCA) [3]. VUCA environments require both the development of agile

systems and the use of agile systems engineering methods. Iterative development methods, which

include agile systems engineering methods, add flexibility and agility to the system development

processes [8]. Although not novel techniques, iterative development methods enable the system

developer to respond to the VUCA environment by releasing new iterations of the system [11].

The use of iterative development methods is driven, in part, by the desire to shorten

development cycles. This desire can result in stakeholders “encourag[ing] developers to take

shortcuts early in the development process in order to get system capabilities deployed quickly”

[7]. This pressure can result in a system developer making technical compromises to meet schedule

[2] and prioritizing perceived high-value functional requirements over quality requirements [15].

These compromises, while appearing to be successful early, may slow the system development

down over time, as their impacts need to be overcome [16]. This phenomenon is known as

technical debt.

Technical debt is a metaphor that identifies how technical compromises made for short-term

benefit can have long-term impacts on the health of the system [19]. Systems that are iteratively

developed are at additional risk of technical debt, since decisions made early in the development

cycle impose additional constraints on the later iterations [26]. There is a risk that the system

160

developers will select the “easiest” set of components to deliver value to the stakeholder, resulting

in a system that breaks when changes are required in the future [25].

Existing methods for managing technical debt focus on the identification of technical debt

within the system and the repayment of that debt in future iterations. While important to

maintaining a healthy system, these methods do not provide techniques that enable the

stakeholders and system developers to assess the impact of their decisions on the ability of the

system to deliver the required capabilities on the required timelines. Therefore, this paper

introduces a new process called LEAP – List, Evaluate, Achieve, and Procure. The LEAP process

provides a structured method to identify critical technologies that enable the stakeholders’ desired

capabilities. The identification of the technologies is followed by a mathematical analysis to

determine the impact of incomplete or late technology development on the ability to deliver the

capabilities on time. The analysis can be used to examine different development paradigms,

identifying choices that may cause long-term impacts through a delay in the development of a key

technology. The LEAP process proactively identifies sources of technical debt prior to incurring

the debt.

The rest of this paper is structured in three sections. First, an overview of related work on

technical debt management and prediction is presented. Next, the LEAP process is described in

detail. Finally, the process is discussed and the paper is concluded with a presentation of

recommendations for future work.

3.3.3.1.3 Related Work

Iterative system development consists of either fixed-scope or fixed-time iterations. Fixed-

scope iterations deliver a known scope in each iteration but the time it takes to deliver that scope

may vary. Fixed-time iterations deliver a variable scope in each iteration as the work is constrained

161

by the length of the iteration [28]. Pressures associated with releasing the iteration on time make

fixed-time iterations especially susceptible to technical debt.

Agile methodologies, such as Scrum, use fixed-time iterations known as sprints to plan and

execute the work of developing the system. Agile frameworks, such as the Scaled Agile

Framework (SAFe), add program increments to the sprints and plan the high-level features

delivered in the next set of sprints [161]. Program increments are an example of release planning,

a steady cadence of planning for successive releases. Release planning methodologies often stress

the need to deliver value to the stakeholders as early as possible. SAFe uses a methodology called

‘weighted shortest job first’, where tasks are selected based on the ratio of delivered value to the

time to complete the task [30]. These prioritization methods produce an increased stress on

delivering short-term benefit at the risk of damaging the long-term health of the system.

Release planning models and methods exist to try to optimize the features that are included in

each release [28]. In iterative development, there is often a tradeoff between early value creation

and future rework [162], requiring the use of optimization methods to determine the best course of

action. Nord et al. [16] modeled the interdependencies of architectural features to estimate the

rework costs. Sangwan et al. [91] extended this work to optimize release plans by minimizing total

cost, by maximizing early value, or by finding an optimal combination of the features. This model

does not estimate the uncertainty associated with the development of each feature or any technical

debt incurred during feature development. It does provide a method to assess cost and value trade-

offs, but does not track these trade-offs against the temporal need dates of the stakeholders. Oni

and Letier [28] created a model that examines uncertainty associated with fixed-time release

cycles. They use expert opinion to determine the uncertainty associated with completing a feature

in a specific release cycle and then probabilistically estimate the ability to complete the release as

162

planned. However, they do not model the propagation of delays of each feature on the delivery of

future releases. Schmid [94] provides an analytical method to determine the optimal release to

repay a technical debt item, based on the interest amount and interest probability of the item.

However, this method does not assist in identifying the technical debt items.

Based on this examination of the state of the field, it is clear that a technique is required to

enable proactive identification of technical debt sources. Early identification of potential technical

debt allows a system developer to take measures to address the source of technical debt prior to it

impacting the health of the system. Proactive management of potential technical debt sources

reduces the risk of incurring technical debt through incomplete technology development.

3.3.3.1.4 The LEAP Process

Rapid and successful iterative development requires the inclusion of mature technologies in

each iteration [162]. Identifying mature technologies requires understanding the functional and

temporal dependencies of capabilities on those technologies. This process, known as List,

Evaluate, Achieve, and Procure (LEAP), allows the identification of technology areas that require

investment to ensure that they will be available for use on the desired timeline.

The LEAP process consists of four major steps:

1. List: list the strategic and tactical capabilities and technologies required to achieve the

system objectives, based on the stakeholders’ functional and temporal requirements

2. Evaluate: evaluate the ability of the state of the art to meet both the functional and temporal

stakeholder requirements

3. Achieve: identify the gaps between the current development timelines and the capability

need dates and provide or leverage resources to close those gaps, on both tactical (short-

term) and strategic (long-term) timelines

163

4. Procure: produce a solicitation to acquire a system to provide capabilities, ideally limiting

the amount of non-recurring engineering (NRE) included within the system development

Figure 3-4 provides an overview of the LEAP process. In the figure, solid lines indicate forward

progress and dashed lines indicate feedback paths. The following sections discuss the details of

each step.

Figure 3-4. The LEAP process

Table 3-3 provides the ontology of terms used in the LEAP process and defines the symbology

used throughout the rest of this paper.

Table 3-3. Definition of LEAP terms and symbols

Term Definition

Strategic

Capability

Derived from the end users, strategic capabilities identify the intended behavior of a system in

its operational environment. Strategic capabilities identify the full desired capability and the

minimum viable product.

Tactical

Capability

Tactical capabilities represent the ability of a system to provide part of a strategic capability

that delivers value to the end user. A tactical capability is required at a specific time.

Technology Methods and devices resulting from the practical application of knowledge. A technology is a

tangible product (hardware or software) that is delivered at a specific time.

164

Term Definition

System A set of hardware, software, and/or physical and logical interfaces developed based on

technologies with the intent of delivering capabilities.

Symbols T Technology Matrix I Investment Matrix

N Need Matrix J Hadamard identity matrix

F Functional Matrix t Number of technologies considered

s Summation vector c Number of tactical capabilities considered

S Summation Matrix p Number of time periods considered

V Development Matrix ∘ Hadamard product operator

A Availability Matrix H Heaviside function

D Delivery Matrix ⨂ Outer product operator

3.3.3.1.4.1 LEAP Phase 1: List

The List phase decomposes the stakeholder needs into the strategic and tactical capabilities and

identifies the technologies required to support these capabilities. The stakeholder needs are first

broken down into strategic capabilities, which define the long-term objectives and the end

capabilities provided to the user. However, developing only to the long-term strategic capabilities

could result in delays of system development. Therefore, the strategic capabilities are broken down

further into tactical capabilities, in a process similar to the Agile software development process of

breaking down an epic into features. Tactical capabilities are designed to be achievable within a

single procurement. The tactical capabilities serve as the primary point of analysis for the rest of

the LEAP process.

With the tactical capabilities defined, the technologies required to support these capabilities are

identified. Each tactical capability is supported by one or more enabling technologies.

Technologies can vary in scope, but are generally broken down to the level of items that can be

separately developed. Each technology may support the development of one or more tactical

capabilities.

The Functional Matrix captures the dependencies of the tactical capability on the enabling

technologies, an example of which is shown in Figure 3-5. The Functional Matrix is a (c x t) matrix,

165

with the tactical capabilities listed in the rows and the technologies listed in the columns. If the

tactical capability depends on the technology, then a one (1) is entered in the cell. For example, in

the Functional Matrix shown on the left side of Figure 3-5, tactical capabilities C1 and C3 both

depend on technology T1. The Functional Matrix is the connecting fabric between the technologies

and the capabilities and will be used as a baseline in the following analysis.

Figure 3-5. Input matrices of the list phase of the LEAP process

The critical technologies identified in the Functional Matrix may be dependent upon other

technologies. Identifying these dependencies, including their required order of development, is

necessary to properly estimate the timelines on which technologies will be available. Therefore, a

design structure matrix (DSM) is created for the technologies. The DSM is a square matrix, where

the technologies are listed in both the rows and the columns. If information flows from the item in

column j to the item in row i, then a one (1) is placed in cell (i, j). Therefore, any entries in the

DSM with a one (1) indicate a dependency of the row on the column. If the rows are arranged in

chronological order of development, then the dependencies located below the diagonal indicate

the forward flow of information (from column to row), and the dependencies above the diagonal

indicate feedback mechanisms [163].

In the LEAP process, the DSM is referred to as the Technology Matrix, which is a (t x t) matrix.

In the Technology Matrix, the technologies are listed in both the rows and the columns. An

166

example of the Technology Matrix is shown on the right side of Figure 3-5. The one (1) in the first

column of the second row indicates that information flows from T1 to T2. Therefore, T2 depends

on T1. Additionally, technology T4 depends on T2 and T3. T3 and T1 have no dependencies. In

this example, the matrix only contains entries below the diagonal, indicating that there are no

feedback dependencies.

After creation, the Technology Matrix is partitioned to reduce the dependencies and set the

order of technology development. Partitioning attempts to reduce the matrix to a lower triangular

matrix to remove any of the feedback dependencies. This effort results in a reordering of the matrix

and a possible adjustment to development order [164]. After partitioning, the order of the matrix

represents the notional chronological development order. If the partitioning does not result in a

fully lower triangular matrix, then there are cyclic dependencies between technologies. The

Technology Matrix serves as a guideline for creating the Development Matrix, which is described

in the following section.

3.3.3.1.4.2 LEAP Phase 2: Evaluate

The Evaluate phase uses the output from the List phase and determines if the tactical capabilities

can be satisfied based on the current state of technology development. The first step is to establish

the Need Matrix, which defines the required delivery timelines for each tactical capability to meet

the needs of the end user. The Need Matrix (N) is a (p x c) matrix and is shown on the left side of

Figure 3-6. The time periods in which needs or development occur are labelled as P1, P2, P3, and

P4. A one (1) is entered in any cell where the capability is required in the time period and a zero

(0) is entered in a cell where the capability is not required in the time period. Capabilities may not

be needed in every time period and may also no longer be needed after a specific time. In the Need

167

Matrix in Figure 3-6, capability C1 is first needed in P2 and is required through P4, capability C2

is not needed until P4, and capability C4 is only needed in P2 and P3.

Figure 3-6. Input matrices of evaluate phase of the LEAP process

The partitioned Technology Matrix, T, is used as an input to the Development Matrix (V),

which establishes the timelines for technology development. The Development Matrix, shown on

the right side of Figure 3-6, is a (t x p) matrix. A one (1) is entered in any cell where the technology

is expected to have a technology readiness level (TRL) of at least six (6), in accordance with the

best practices for rapid development identified by Tate [162]. In Figure 3-6, technology T1 reaches

TRL 6 in P2. Therefore, it will be available in P2, P3, and P4. Technology T4 is not expected to

reach TRL 6 until P4.

The completion of the Development Matrix represents the end of the set of inputs that must be

provided by subject matter experts. The Evaluation phase takes these inputs and computes the next

set of matrices to identify expected delivery dates of the tactical capabilities. These dates are used

to identify the technologies that may impact the on-time delivery of tactical capabilities.

The first computation is the Availability Matrix (A), which is a (p x c) matrix. This matrix

combines the Development and Functional Matrices together to determine when each tactical

capability will be available. The Functional Matrix (c x t) uses the technologies as the columns

and the Development Matrix (t x p) uses the technologies as the rows. The dot product of a row of

the Functional Matrix and a column of the Development Matrix results in the count of the number

168

of technologies that support the capability (a one (1) in the Functional Matrix) and are available in

a time period (a one (1) in the Development Matrix). If the technology either does not support the

capability or is not available in the time period, then it will not contribute to the dot product. For

example, to determine how many technologies that support capability C3 in P1, the dot product is

taken between the third row of the Functional Matrix (shown in Figure 3-5) and the first column

of the Development Matrix (shown in Figure 3-6). As shown in Equation 3-1, the result is 1,

indicating that one technology that supports the capability is ready in P1.

𝐹𝐹[2, :] ⋅ 𝑉𝑉[: ,0] = [1 0 1 0] ⋅ �00
1

0

� = 1 (3-1)

Multiplying the Functional and Development Matrices together produces a (c x p) matrix. This

matrix is transposed to produce a (p x c) matrix, where each cell represents the number of

developed technologies that support each capability (columns) in the time period (rows). However,

this product is insufficient to determine if the capability will be available, as it does not indicate

how many technologies are required to support the capability. This number is found by summing

the values in each row in the Functional Matrix to produce the Summation vector s, as shown in

Equation 3-2. The Summation vector is length c.

𝑠𝑠 = �∑ 𝐹𝐹[0, i]𝑡𝑡𝑖𝑖=0 ⋮∑ 𝐹𝐹[c, i]𝑡𝑡𝑖𝑖=0 � (3-2)

The Summation vector is turned into a matrix of the same dimensions as the transpose product

of the Functional and Development matrices (p x c) by taking the outer product of the Summation

vector and a row vector of all ones with length p, indicated by 1𝑝𝑝 in Equation 3-3. The outer

product produces the Summation Matrix (S).

169

 𝑆𝑆 = 1𝑝𝑝⨂𝑠𝑠 (3-3)

An example of the Summation Matrix is shown on the left side of Figure 3-7. The Summation

Matrix is a (p x c) matrix, with the number of technologies required to support each capability

listed in the cells. In this example, capability C1 requires two technologies, while capability C2

only requires one technology.

Figure 3-7. Calculated matrices of the evaluate phase of the LEAP process

The Summation Matrix provides the number of required technologies, and the product of the

Functional and Development matrices provides the number of available technologies. Subtracting

the two matrices determines if enough technologies are available to fully support the capability.

Equation 3-4 defines the function to compute the temporary availability matrix (a), a (p x c) matrix.

𝑎𝑎 = (𝐹𝐹𝑉𝑉)𝑇𝑇 − 𝑆𝑆 (3-4)

In the temporary availability matrix, a zero (0) indicates that the capability is available in the

time period and a negative number indicates that it is not available. The use of negative numbers

and zeros is confusing and can produce undesired mathematical results later in the process. Instead,

it is desirable to have the Availability Matrix contain a one (1) when the capability is available and

a zero (0) when it is not. Therefore, the temporary availability matrix is modified by using the

Heaviside function [165], which converts the input values as shown in Equation 3-5.

170

𝐻𝐻(𝑥𝑥) = � 0, 𝑥𝑥 < 0

0.5, 𝑥𝑥 = 0

1, 𝑥𝑥 > 0
 (3-5)

Prior to the application of the Heaviside function, 0.5 is added to each value in the temporary

availability matrix. This addition serves to ensure that values of zero (0) will become one (1). In

matrix notation, 0.5 is multiplied times a (p x c) Hadamard identity matrix, J, which consists of a

one (1) in every entry in the matrix [166]. The resulting matrix is added to the temporary

availability matrix such that negative values in a will remain negative and zero (0) values in a

become positive. Applying the Heaviside function to each cell in the resulting matrix produces the

Availability Matrix (A), which will have values of either zero (0) or one (1). Equation 3-6 shows

the final equation for calculating the Availability Matrix.

𝐴𝐴 = 𝐻𝐻((𝐹𝐹𝑉𝑉)𝑇𝑇 − 𝑆𝑆 + 0.5𝐽𝐽) (3-6)

An example of the Availability Matrix is shown in the center of Figure 3-7. A value of one (1)

indicates that the capability is available in the time period, while a value of zero (0) indicates that

the capability is not available. In this figure, it can be seen that capabilities C1 and C2 are not

available until P4. Both capabilities depend on technology T4, which, according to the

Development Matrix in Figure 3-6, is not available until P4. Capability C3, on the other hand,

depends on technologies T1 and T3 which are both available by P2, and therefore, C3 is available

in P2.

The final step in the Evaluation phase is to calculate the Delivery Matrix, which is a (p x c)

matrix. The Delivery Matrix, shown on the right side of Figure 3-7, indicates if the capability will

be available on the timelines identified in the Need Matrix without any intervention. The Delivery

Matrix has the same dimensions as the Availability Matrix and is calculated by subtracting the

Availability Matrix from the Need Matrix, as shown in Equation 3-7.

171

𝐷𝐷 = 𝑁𝑁 − 𝐴𝐴 (3-7)

This subtraction results in the following possible values in each cell in the Delivery Matrix:

• 1: indicates that the capability is late to need - it is not available in the time period and it

was needed in time period

• 0: indicates that the capability is available when needed or the capability is not available

and was not needed

• -1: indicates that the capability is available and is not needed, either because the capability

is available early or is available but no longer required

The Delivery Matrix shown in Figure 3-7 shows that capability C1 is not available when needed

in P2 or P3, but is available in P4, at which point there is still a need for the capability. Capability

C2 is delivered on time. Capability C4 is not ready when needed in P2 and is still available in P4,

even though it is no longer needed.

3.3.3.1.4.3 LEAP Phase 3: Achieve

The Delivery Matrix provides a traceable indication of the ability of the developer to deliver

capabilities on the required timelines. This evaluation is made based on the timelines established

in the Development Matrix. However, an organization has the ability to influence the timelines of

key technologies by funding research, partnering with other organizations, and encouraging

development by industry. The Achieve phase of LEAP focuses on identifying the key areas for

investment by any of the means specified above. The first step in the Achieve phase is to identify

the capabilities that will be late to need by finding the negative values in the Delivery Matrix.

These values can be traced through the Functional Matrix to identify the technologies that support

172

the capability. The technologies can be traced through the Development Matrix to identify which

specific technologies will be late to need.

This traceability is mathematically performed by calculating the Investment Matrix. The

Investment Matrix determines which technologies are delivered late to need, and how many

capabilities those technologies are impacting in each time period. The Investment Matrix is a (t x

p) matrix and is initially calculated as shown in Equation 3-8:

𝑖𝑖 = (𝐷𝐷𝐹𝐹)𝑇𝑇 (3-8)

The Investment Matrix multiplies the rows of the Delivery Matrix, which contain the time

period where each capability is available, by the columns of the Functional Matrix, which contain

the technologies supporting each capability. This multiplication results in the identification of the

technology available within a time period in support of the capabilities. However, without further

adjustment, the produced term does not properly account for whether or not the technology is

planned to be ready for that time period.

Accounting for the planned development of the technology requires an element-wise

multiplication by the Development Matrix, known as the Hadamard product [166]. First, the

Development Matrix is subtracted from a (t x p) Hadamard identity matrix (J), which only retains

cells where the technology is not planned to be developed. The Hadamard product of this matrix

and the matrix i calculated in Equation 3-8 removes any technology identifications where the

technology is planned to be developed from the Investment Matrix. The final Investment Matrix

equation is shown in Equation 3-9.

𝐼𝐼 = (𝐷𝐷𝐹𝐹)𝑇𝑇 ∘ (𝐽𝐽 − 𝑉𝑉) (3-9)

173

An example of the Investment Matrix is shown in the lower right of Figure 3-8. A non-zero cell

in the Investment Matrix indicates the number of capabilities that the technology impacts by not

being developed in the time period. For example, in Figure 3-8, technology T4 will not complete

development until P4 and therefore impacts one capability in P2 and two capabilities in P3. A

negative number in the Investment Matrix indicates that the technology contributes to early

delivery of capabilities, and therefore could be delayed with minimal impact to meeting

stakeholder needs.

Figure 3-8. Investment Matrix, calculated in the achieve phase of the LEAP process

Once the technologies that are late to need are identified, the organization evaluates which type

of investment is appropriate to accelerate the development. Achievement is considered in both

tactical (short-term) and strategic (long-term) viewpoints. The Delivery Matrix identifies which

capabilities will fall short, whether they will fall short in the next time period, or in a time period

farther in the future. The Investment Matrix indicates how critical each technology is to meeting

the overall needs and requirements of the organization in both the short and the long-term. This

viewpoint leads to the early identification of key technologies required for the support of future

iterations.

3.3.3.1.4.4 LEAP Phase 4: Procure

The final phase in LEAP is the Procure phase. In the Procure phase, the organization selects

which capabilities, and therefore the associated technologies, to include in the next iteration of

174

system development. A reduction in the complexity of the system requires minimizing NRE

occurring within the iteration. The first three steps of the LEAP process, when performed

iteratively, identify the tactical and strategic investments that the organization can use to develop

these technologies in response to the stakeholder needs. In a perfect world, all technologies would

be available on schedule and no NRE would need to occur within a release. However, NRE often

does need to occur within a given release development. Therefore, the technologies need to be

carefully chosen to minimize risk.

The Procure phase includes an assessment of the current state of available technology against

the stakeholder needs, starting with the Delivery Matrix. From there, the organization selects

which capabilities need to be included in the release in association with the stakeholders. Other

considerations, such as system constraints, are included to ensure that an achievable system is

designed and deployed within the required schedule. During this iterative process, the risk

associated with delaying technology development is considered. The final product is a set of

system requirements for the next iteration of system development.

3.3.3.1.4.5 Iterations within the LEAP process

The LEAP process is an inherently iterative process. The Procure phase is when the

organization commits to developing a system and locking in the associated schedule, cost, and

capabilities. Therefore, it is necessary to iterate within the List, Evaluate, and Achieve phases

repeatedly prior to entering the Procure phase. Figure 3-4 shows the feedback paths as dotted lines.

The iterative process begins after the determination of the Delivery Matrix in the Evaluate

phase. The Delivery Matrix indicates which components will currently be late to need.

Stakeholders review this information to reconsider and to alter the specified need dates as

necessary in the Need Matrix. Additional iterations occur after the completion of the Achieve

175

phase. The Achieve phase accelerates technology development, which can adjust the Development

Matrix. The results of the Achieve phase are returned to the stakeholders, who may adjust their

needs and the associated capability requirements.

Finally, the Procure phase feeds back into the List phase, as each procurement results in a

selection of implemented and developed capabilities. These capabilities will impact the priorities

and needs for the next iteration.

3.3.3.1.4.6 Assessing the Potential for Technical Debt with LEAP

Technical debt within iterative releases can appear in two ways: a release may not deliver all of

its intended capabilities or technology may not be ready in time for use in a release. Managing this

technical debt requires identification of all of the capabilities and technologies needed in the

current release and in future releases. The dependencies between these capabilities must be

identified in both the temporal and the functional dimensions.

The LEAP process provides a clear indication of technical debt potential, primarily through the

Investment Matrix. This matrix shows the impact of the late delivery of a technology on future

capabilities. Larger numbers in the Investment Matrix indicate the technologies that are likelier

sources of technical debt in the system, especially when they occur in later time periods. The

Achieve phase attempts to reduce the accumulation of technical debt by investing in specific

technology development.

The LEAP process can also be used to assist in assessing changes made during the course of

system development. Particularly in a cost and schedule constrained environment hard trades must

be made on system performance. These trades may occur during the design of the procurement or

during program execution. Sometimes these trades may require the acceptance of lesser

performance while other times they require selecting one technology over another. The impact of

176

these trades can be evaluated by modifying the Development Matrix and then seeing the changes

propagate into the Delivery and Investment Matrices, paying particular attention to later time

periods. These matrices can identify the long-term impacts of short-term decisions and therefore

proactively identify potential sources of technical debt.

For example, consider a delay to the development of technology T1 in the matrices shown in

Figure 3-6 that pushes its development time period from P2 to P3. The Technology Matrix shows

that technology T2 is dependent upon technology T1, and therefore the delay in T1 delays the

development of T2 by one time period. This delay cascades into the delivery of capabilities. Figure

3-9 shows the changes to the development timeline and the associated impacts, highlighting the

changes in the gray squares. Clearly, the delay in the development of technology T1 impacted the

delivery capabilities C3 and C4. The delay in C4 is not due directly to the delay of T1. Instead, it

is the associated delay of T2 that causes C4 to slip, thus revealing a source of technical debt that

otherwise may been missed.

Figure 3-9. Impact of delay in Technology T1 development time on delivered capabilities

177

3.3.3.1.5 Discussion

The LEAP process is a newly developed process. Kleinwaks et al. [167] provide an example of

its use to determine the right mix of research and development investments within the Space

Development Agency (SDA). The LEAP process is iteratively applied in conjunction with large

contract procurements and smaller research investments to develop and field technologies on two-

year timelines. They conclude that the LEAP process enabled identification of technologies in

need of investment in order to meet stakeholder need dates. In response, SDA made several

research investments designed to accelerate technology development. The new development

timelines were inserted into the LEAP process and the Delivery and Investment Matrices updated.

Examination of the updated Delivery Matrix shows that satisfaction of stakeholder needs will

occur sooner, but that further acceleration of technology development is still required. The

Investment Matrix reveals the critical technologies that require additional investment and the

impact they have on overall satisfaction of stakeholder needs in the required timelines. By using

LEAP in an iterative process, SDA is able to carefully choose the requirements for its next iteration

of satellites, which are developed on short, two-year cycles. These procurements necessitate steps

to minimize schedule risk, including the use of mature technologies whenever possible [162].

LEAP identifies those technologies that require significant development ahead of their inclusion

in a system procurement. If there is flexibility in the requirements selected for each iteration, then

the technology can be developed outside of the main system iteration and therefore the risk to the

iteration is reduced.

Although the LEAP process is newly developed, it builds off of agile and iterative development

processes. Traditional agile and iterative development processes do not intrinsically consider

technical debt and do not directly link the development of each technology with the ability to

178

satisfy the stakeholders’ needs in both the functional and temporal dimensions. In Agile

development, the iterations are often fixed in time, but they allow the value delivered in each

iteration to change, limiting the ability to properly forecast the time at which a set of requirements

will be satisfied. The selected features are often based on delivering the most immediate value to

the stakeholder which can produce systems that are complicated and more expensive to change in

later increments. Spiral development focuses on incrementally adding capability and using

evidence-based risk assessments to continue development. However, the method does not provide

processes to identify the long-term impacts of technology development timelines, instead relying

on expert assessments [25]. The LEAP process augments these development methods by providing

a proactive and objective method to assess the timeframe of stakeholder need satisfaction based

on the maturity of supporting technologies.

However, the LEAP process itself is also under continuous refinement. The process deals in

“absolutes” – technologies and capabilities are assumed to be fully developed in a specific time

period. In reality, there are variances in schedules, cost, and performance that need to be accounted

for when planning out the development cycles. The LEAP process relies on the ability to perform

a full functional breakdown of the stakeholder needs into the supporting technologies. In practice,

it can be challenging to determine the proper level of detail in each category to enable conclusive

analysis of the outcomes. Future development and additional use cases will aid in clarifying the

proper dividing lines between capabilities and technologies.

3.3.3.1.6 Conclusions and Future Work

The LEAP process, as presented in this paper, provides a novel approach to identifying the

future impact of technology development on system capability. By identifying both the functional

and temporal needs of the stakeholders and the developmental timelines of critical technologies,

179

the LEAP process deterministically assesses which technologies require investments to enable the

on-time delivery of the needed capabilities. This assessment enables the reduction of technical

debt input into the system by clearly identifying the impacts of technology completion and

investment decisions. The user of the LEAP process can identify which technologies have the most

impact on the ability to implement capabilities in future iterations of their system and therefore

realistically assess multiple possible investment pathways for overall value and contribution to

program success. Early identification of these technologies can reduce the risk of future rework

and therefore prevent increases in development costs [121].

The ability to understand the impact of investments in critical technologies on the delivery of

system capabilities has far-reaching implications for multiple users. Those users interested in the

long-term development of a system can use the LEAP process to understand how to phase their

investments over time and where they need to encourage the participation of other organizations

to spur technology development. Users with shorter-term horizons can apply the same process to

guide decisions to minimize the impact on the future system. The LEAP process can be used to

determine corporate investments that are likely to pay the largest dividends and can also be used

to assess the required technology developments that will prevent the system from entering

technical bankruptcy.

The LEAP process as presented is undergoing continuous improvement. Topics for additional

development of the process include the following:

• Adding a prioritization matrix to enable ranking of capabilities in each time period. The

effect of this additional multiplication would be to change the values in the Investment

Matrix to give insight into how valuable the late capabilities are to the stakeholders. While

providing valuable insight, prioritization also has the potential to skew the results to a

180

preferred solution based on the input values. The impact of prioritization on the outputs of

the process needs to be investigated in further detail.

• Adding probabilistic dependencies to the calculations to indicate the probability of

delivering a capability on time. This methodology would allow for estimates of delivery

based on probabilistic analysis instead of the binary condition presented in this paper. The

probabilistic analysis facilitates the development of optimal development timelines and

strategies for iterative releases through Monte Carlo simulations.

• Directly linking the Technology Matrix to the Development Matrix. This capability would

enable the Development Matrix to be generated automatically from a sequenced

Technology Matrix resulting in additional capability for automation and optimization.

• Continued verification and validation of the LEAP process. The LEAP process is newly

developed and therefore there is not a significant amount of usage data on its successes and

failures. Kleinwaks et al. [167] provide an example use of the LEAP process at the Space

Development Agency. However, additional verification and validation of the process and

its conclusions is required, in additional real-world scenarios. The authors plan to continue

examining the use of LEAP in multiple case-studies and industries.

3.3.4 Addressing RQ2.2

The LEAP process identified in [160] provides a qualitative mechanism to identify potential

technical debt sources within system development, addressing RQ2.2. By using the process,

stakeholders can assess the impacts of decisions related to the timelines of technology development

on the ability to deliver capabilities. With a detailed functional breakdown, critical technologies

can be identified, even if those technologies do not provide high value to the user. Then, when

schedule pressures or cost pressures increase, the impact of a compromise on a specific technology

181

can be assessed within the iterative system lifecycle. Technologies with large impacts are more

likely to introduce technical debt into the system if compromises are made in their development.

The process as defined in [160] satisfies the objectives identified in the Section 3.2.3 for

consideration as a proactive process for identifying technical debt as shown in Table 3-4.

Table 3-4. LEAP satisfaction of proactive process for technical debt identification

 Objective LEAP Capability

1 Identification of the system features that

support the realization of the stakeholder

needs

The Functional Matrix maps the stakeholder needs to the

system features

2 Identification of the dependencies

between the features and needs and

between features and features, in the

temporal and functional dimensions

The Technology Matrix maps the dependencies between

features and the Functional Matrix maps the functional

dependencies between needs and features. The Need Matrix

shows the temporal dimension of the needs and the

Development Matrix shows the temporal dimension of the

features.

3 Assessment of the potential impact of a

technical concession on the satisfaction of

the stakeholder needs

The Delivery Matrix shows how the ability to temporally

satisfy a stakeholder need changes with the delivery timeline

of a technology (temporal dimension), which may change as

a result of a technical concession (functional dimension).

The Investment Matrix shows the impact level of a specific

technology.

4 Easy to use, update, and understand by

both system developers and stakeholders

The LEAP process can be implemented in a spreadsheet or

simple software script and produces simple values of

“delivered or not”. Appendix A contains a sample Python

implementation of the LEAP process.

Based on this assessment, the LEAP process meets the requirements to be a proactive process

for identifying technical debt. However, as defined in [160], it is a qualitative process and its use

as a decision support system for release planning is limited. The next chapter focuses on updating

this process to be probabilistic, accounting for technical debt within the technology development

timelines, and integrating the process into release planning, both within an iterative system

development and also within a single iteration.

182

3.4 Conclusion

This chapter addresses RQ2: How can potential sources of technical debt be identified during

the system lifecycle? Unfortunately, the tools enabled within software engineering to identify

technical debt are not directly applicable to systems engineering and are primarily reactive tools.

Therefore, their application identifies technical debt after it has been inserted into the system. To

minimize the impact of technical debt, proactive methods need to be implemented such that

mitigation plans can be put in place immediately, moving the technical debt from negligent to

strategic.

The LEAP process is proposed as a proactive method of identifying potential sources of

technical debt. It enables the system developer to assess the impact of a delay in technology

development on the ability to meet the temporal and functional requirements of the system

stakeholders. By identifying which technologies drive delays in the delivery of capability to

stakeholders, the process can proactively identify potential technical debt sources. If a

technology’s development path does not support the stakeholder delivery dates, it will be identified

through this process. By altering the values in the LEAP Development Matrix, the system

developer can assess how different investments affect the ability to deliver capability, highlighting

situations where delivery of high value items at the expense of infrastructure can end up delaying

the satisfaction of the stakeholder needs. This process highlights where investments should be

made to achieve on time delivery, but does not directly model the impact of technical debt created

by one technology on its successors.

The next chapter updates the LEAP process to address these considerations by quantitatively

modeling the impact of technical debt and including probabilistic values in the LEAP matrices.

183

These updates enable the LEAP process to be used to assess the likelihood of satisfying the

stakeholder needs in the presence of technical debt.

184

CHAPTER 4 – USING TECHNICAL DEBT AS A GUIDE IN RELEASE PLANNING

4.1 Introduction

Iterative system development methods are often used when the requirements for the system are

uncertain or when the environment is complex and changing [28]. By releasing a system in

multiple iterations, the requirements can be adjusted as system context and environment evolve.

Planning these iterations is the domain of release planning: the act of selecting which features of

the system to include in each release to maximize value to stakeholders while accounting for

constraints and dependencies [93]. While release planning is frequently used in conjunction with

Agile software development strategies, systems are also iteratively and incrementally developed.

Release planning in systems engineering is not a direct analog to release planning in software

engineering as the constraints associated with hardware development add complexity to the

increments and iterations [13]. This added complexity increases the need for proactive

identification of technical debt within systems engineering release planning.

There are many different methods for release planning, each of which tries to produce the “best”

combination of features for each release. The definition of “best” varies based on the method,

criteria, and viewpoints of the stakeholders. The available set of software release planning models

are not thoroughly validated through practice, and have difficulties with less than certain

requirements or when stakeholders are not available to provide context [168]. These methods are

also limited in their application of uncertainty [28], especially with regards to the impact of

technical debt. Technical debt introduces uncertainty into the system due to the nature of the

technical debt interest – it is uncertain whether or not the interest will be realized and how large

the impact will be. Release planning methods involving technical debt often focus on paying back

185

the technical debt as part of the release [94]. However, the impact of technical debt on the ability

to complete future features, such as the increased level of effort required to implement a feature

that is subject to significant technical debt, needs to be included in the release plan. Including these

impacts enables accurate representations of the ability to complete the feature list within a given

release. Proactive identification of potential technical debt sources should change the priority of

feature implementation within a release planning cycle to limit the future impact. The earlier that

a potential issue is addressed, the less costly it will be to correct that issue [135].

Based on this background, there is a need to account for technical debt within release planning

methods, especially within systems engineering contexts. However, as Chapter 2 identified,

technical debt is not a well-researched phenomenon within systems engineering and the author

was unable to locate any iterative development methods within systems engineering or software

engineering that proactively account for technical debt. The LEAP process, introduced in Chapter

3, provides a capability to proactively identify potential technical debt sources. Therefore,

integration of the LEAP process into release planning will account for technical debt. This chapter

provides this integration to address RQ3: How can technical debt be used as a guide in release

planning?

This research question is addressed through the accomplishment of two tasks. Task 3.1

establishes a quantitative version of the LEAP process to create a probabilistic analysis model.

Task 3.2 demonstrates how the quantitative LEAP process can be used as a decision support system

for release planning.

4.2 Quantitative LEAP Process

The qualitative LEAP process, presented in Chapter 3, provides a starting point for enabling

the assessment of technical debt within release planning. It provides a mechanism to identify the

186

schedule impact of technical compromises on the satisfaction of stakeholder needs. However, to

be used as a resource for release planning, the LEAP process needs to be updated to add two key

elements:

• Quantitative assessment of the impact of technical debt on the duration of a task and its

successor tasks; and,

• Probabilistic determination of the temporal satisfaction of stakeholder needs.

The quantitative assessment of technical debt impact is required to enable tradeoffs between

different release plans. A system developer can model the technical debt introduced into the system

against the temporal ability to complete a task, thereby determining not only a preferred

development order of features but also determining the impact of injecting or reducing technical

debt within the system. Section 4.2.1 discusses the modeling of technical debt within a Monte

Carlo schedule analysis process.

The Monte Carlo schedule analysis will generate probabilities for the development timelines of

technologies, accounting for their interdependencies and technical debt. These probabilities can

then be included in the LEAP process model. However, the basic matrix operations used in the

qualitative LEAP process are insufficient to deal with the probabilistic representation and therefore

the equations used to generate the outputs of the LEAP process need to be modified. Section 4.2.2

discusses the modifications to the LEAP process to enable probabilistic analysis.

4.2.1 Including Technical Debt in Project Schedule Analysis

Technical debt is introduced into a system as a result of a technical compromise that has long-

term impacts [21]. The long-term nature of the impacts is what make technical debt so pernicious.

It is not the task where the compromise is made that will require increased effort. Rather, any of

the successor tasks, including those several steps removed from the initial technical debt

187

introduction, could be impacted by the technical compromise. Traditional schedule analysis

techniques account for task relationships and variations on task durations, but tend to assume that

each task is completed perfectly. Successor tasks are assumed to have the same duration and level

of effort regardless of any technical debt introduced by predecessor tasks. However, the presence

of technical debt can cause increased effort to complete a task and this impact on successor tasks

is not included in traditional schedule analysis techniques. Therefore, a new method for schedule

analysis in the presence of technical debt was created and the following paper was submitted to

IEEE Access in July, 2023 [169]. This paper applies notional technical debt considerations to an

aircraft development project to demonstrate how technical debt can be included in schedule

analysis.

4.2.1.1 Predicting the Dynamics of Earned Value Creation in the Presence of Technical Debt

[169]

4.2.1.1.1 Abstract

Technical debt, the long-term impact of decisions made to achieve a short-term benefit, has a

unique impact on a project schedule. Technical debt does not impact the ability to complete the

task on which it is incurred but rather impacts successor tasks causing unplanned schedule delays

or budget increases. The impact of technical debt is uncertain and therefore must be modeled

probabilistically. When unaccounted for and unmanaged, technical debt can build up in the project

with increasing impact, eventually forcing forward progress to stop while the technical debt is

remedied. Traditional project scheduling methods allow for uncertain task durations but do not

provide explicit means of modeling the impacts of technical debt. Instead, they assume that each

task is unaffected by the completion status of its predecessors and its duration is only dependent

upon the initial estimates. This research addresses this gap by providing a novel model of the

188

impact of technical debt on the project schedule through estimating the dynamics of value creation

in the presence of technical debt. Equations are developed for estimating the probabilistic impacts

of technical debt on the generation of earned value. These equations are then inverted and used to

calculate task duration in the presence of technical debt and included in a Monte Carlo analysis.

Comparisons are made to an existing Monte Carlo schedule analysis and technical debt impacts

are explored.

4.2.1.1.2 Introduction

Project managers traditionally handle uncertainty by including cost and schedule margin in their

project plans [170]. These margins can be used to mitigate the impact of rework and technical debt

within a project. Love defines rework as the “unnecessary effort of re-doing a process or activity

that was incorrectly implemented the first time” [171]. Kleinwaks, Batchelor, & Bradley define

technical debt as “a metaphor reflecting technical compromises that can yield short-term benefit

but may hurt the long-term health of a system” [19]. Within the context of a project, technical debt

occurs when decisions made in the completion of one task negatively impact the ability to complete

successor tasks on time and on budget. The impact of technical debt is not certain: the compromises

made on one task may or may not impact a successor task [51] and the compromises may

proliferate throughout the system and cause significant issues [92]. Within this article, technical

debt is distinguished from rework by asserting that rework is the result of the poor execution of

defined processes and methods and technical debt is the result of shortcuts taken in the

requirements development, design, and/or implementation in order to achieve a short-term benefit.

Rework requires the repeated execution of existing process and unplanned iterations of existing

tasks. Technical debt does not typically require the redoing of a specific task but instead technical

debt makes completing successor tasks more complicated, costly, or time-consuming. If technical

189

debt is not accounted for in project scheduling, then successor task duration may increase

unexpectedly, resulting in late completion of tasks compared to stakeholder expectations.

However, traditional schedule analysis techniques do not model changes in successor task

durations based on the fidelity of predecessor task completions. This article provides a novel

mechanism to address this gap and enable more realistic schedule assessments.

Properly assessing project schedules requires the ability to proactively predict risks associated

with both technical debt and rework [172]. Monte Carlo simulation is often used to assign

probabilistic durations to tasks, assuming that the task will be completed within the bounds of the

assigned distribution. However, these simulations can overlook the costs associated with changes

to the schedule [170] as a result of technical debt or rework [173]. Several authors have

investigated the use of design structure matrices (DSM) to predict the impact of design iterations

on project schedule [174] [175] [176] [177]. These techniques can be used to assess the probability

of rework occurring within a project and the extensions to schedule that occur. However, they do

not model the potential for technical debt. Ma et al. [174] extend DSMs to include a probability of

rework and its impact on future tasks in the context of design iterations. However, in many

projects, iterations are not planned – the successor tasks must be extended or changed to address

the shortcomings of the predecessor tasks. Furthermore, while modeling rework can account for

project extensions, it is not the same as modeling technical debt. Rework results in repeated

execution of the same tasks. Technical debt may result in longer durations of successor tasks and

the potential need for unplanned effort to remove the debt from the system.

Maheswari and Varghese [177] provide a method to use DSMs to determine a project schedule

accounting for overlapping tasks. By assessing the necessary condition of task overlap in a project,

they demonstrate that tasks do not always abide by strict finish-to-start schedule relationships.

190

However, their work assumes a fixed value of the overlap time and does not provide a mechanism

to calculate when a task reaches that level of completion. Additionally, they assume that the work

completes perfectly until the overlap time is reached without considering technical debt’s task to

task dependencies.

From this review, it is clear that additional techniques to handle the presence of technical debt

within a project schedule are required. Failure to model technical debt can result in overly

optimistic schedule estimates due to the failure to account for the cascading impact of technical

debt interest. The technical debt incurred on one task can compound, impacting multiple successor

tasks, resulting in significant delays and cost increases to the project.

In this article, we extend existing project schedule analysis methods to include technical debt

analysis. The impact of technical debt incurred on one task on successor tasks is modeled through

earned value computations. The earned value equations are inverted to estimate the duration of

successor tasks subject to technical debt from their predecessors. With these equations, the impact

of technical debt is then included in a Monte Carlo schedule analysis and the results compared to

a traditional Monte Carlo schedule analysis. Various impacts of technical debt are explored by

altering the parameters in the analysis. This article answers the following research question:

How can technical debt be accounted for within project scheduling activities?

By answering this research question, this article presents a mathematical model that can be used

by project managers and schedulers in Monte Carlo schedule analysis techniques. This model uses

the technical debt formulation to compute increased duration of successor tasks, thereby providing

a more realistic schedule analysis.

191

The rest of this article is structured as follows: first, overview of related work is provided. Next,

the method used to account for technical debt within a schedule is described and is followed by an

example application of the method within Monte Carlo schedule analysis. Finally, the results are

discussed and opportunities for future work are presented.

4.2.1.1.3 Related Work

Earned value management expresses the project progress in terms of value created, where value

is expressed in monetary terms. The creation of value is then used to predict both the project cost

at completion and the schedule at completion through linear extrapolation of the current state

[178]. While EVM is traditionally effective in cost management, its schedule management

component is usually considered insufficient, especially since the schedule is expressed in cost

parameters [179]. These weaknesses led to the development of earned schedule (ES) techniques

[180]. ES techniques have been shown to be more accurate in predicting the schedule at completion

[181] and can be more easily understood, as they measure the earned schedule in units of time (and

not cost). Both EVM and ES use the same planned value and earned value curves, which take the

form of an ‘S-curve’, shown in Figure 4-1. The planned value is based on the baselined project

development plan, while the earned value is based on measured project progress. EVM techniques

measure the difference between the two curves in the vertical direction while ES techniques

measure the difference between the two curves in the horizontal direction.

192

Figure 4-1. Planned and earned value 'S-curves'

Warburton [182] formulated (4-1) to (4-4) to represent planned value (PV) and earned value

(EV) curves. Lowercase letters represent the instantaneous value and capital letters represent the

cumulative value. Note that (4-4) in [182] contains an error where the negative sign on the first

exponential was excluded. That error has been corrected in (4) in this article. The variables used

in these equations are defined in Table 4-1.

𝑝𝑝𝑝𝑝(𝑡𝑡) =
𝑁𝑁𝑡𝑡𝑇𝑇2 𝑒𝑒−𝑡𝑡22𝑇𝑇2 (4-1)

𝑃𝑃𝑉𝑉(𝑡𝑡) = ∫ 𝑝𝑝𝑝𝑝(𝑠𝑠)𝑑𝑑𝑠𝑠 =
𝑡𝑡𝑜𝑜 𝑁𝑁 �1 − 𝑒𝑒−𝑡𝑡22𝑇𝑇2� (4-2)

𝑒𝑒𝑝𝑝(𝑡𝑡) = � (1− 𝑟𝑟)𝑝𝑝𝑝𝑝(𝑡𝑡), 𝑡𝑡 ≤ 𝜏𝜏

(1− 𝑟𝑟)𝑝𝑝𝑝𝑝(𝑡𝑡) + 𝑟𝑟 ∗ 𝑝𝑝𝑝𝑝(𝑡𝑡 − 𝜏𝜏), 𝑡𝑡 > 𝜏𝜏

𝑒𝑒𝑝𝑝(𝑡𝑡) = � (1− 𝑟𝑟)
𝑁𝑁𝑡𝑡𝑇𝑇2 𝑒𝑒−𝑡𝑡22𝑇𝑇2 , 𝑡𝑡 ≤ 𝜏𝜏

(1− 𝑟𝑟)
𝑁𝑁𝑡𝑡𝑇𝑇2 𝑒𝑒−𝑡𝑡22𝑇𝑇2 + 𝑟𝑟 𝑁𝑁𝑡𝑡𝑇𝑇2 𝑒𝑒−(𝑡𝑡−𝜏𝜏)22𝑇𝑇2 , 𝑡𝑡 > 𝜏𝜏 (4-3)

𝐸𝐸𝑉𝑉(𝑡𝑡) = ⎩⎪⎨
⎪⎧ 𝐸𝐸𝑉𝑉1(𝑡𝑡) = � 𝑒𝑒𝑝𝑝(𝑠𝑠)𝑑𝑑𝑠𝑠, 𝑡𝑡 ≤ 𝜏𝜏𝑡𝑡

0

𝐸𝐸𝑉𝑉2(𝑡𝑡) = 𝐸𝐸𝑉𝑉1(𝜏𝜏) + � 𝑒𝑒𝑝𝑝(𝑠𝑠)𝑑𝑑𝑠𝑠𝑡𝑡
𝜏𝜏 , 𝑡𝑡 > 𝜏𝜏

193

𝐸𝐸𝑉𝑉(𝑡𝑡) = � (1− 𝑟𝑟)𝑁𝑁 �1− 𝑒𝑒−𝑡𝑡22𝑇𝑇2� , 𝑡𝑡 ≤ 𝜏𝜏 𝑁𝑁 − 𝑁𝑁(1 − 𝑟𝑟)𝑒𝑒−𝑡𝑡22𝑇𝑇2 − 𝑟𝑟𝑁𝑁𝑒𝑒−(𝑡𝑡−𝜏𝜏)22𝑇𝑇2 , 𝑡𝑡 > 𝜏𝜏 (4-4)

Table 4-1. Variables used in earned value equations

Symbol Definition

N The number of tasks occurring in the project

T The time at which the maximum value of the instantaneous planned value curve occurs

t The independent time variable

r Percentage of activities that require extra work 𝜏𝜏 Delay introduced into the project due to extra work

Equation 1 defines the instantaneous planned value function. This equation models a project

where the planned value achieved at each point in time, for example, work accomplished each day,

initially increases until time T, which is the time at which the maximum instantaneous planned

value is reached. After this point, the contributions to planned value in each time period steadily

decrease. The cumulative planned value is calculated using (2). This equation, the integral of (1),

produces the traditional S-curve, as shown in Figure 1. Equation 3 calculates the instantaneous

earned value by assuming that a fraction of the tasks, r, are late by a time τ, thereby delaying the

accumulation of value. Equation 4 computes the cumulative earned value as the integral of the

instantaneous earned value [182].

This related research forms the basis of the process for accounting for technical debt in the

schedule analysis. Building off of the equations for earned value, the time at which a task reaches

the necessary conditions for the successor task to start can be established. The r and 𝜏𝜏 parameters

allow for the modeling of delays introduced into a task from its predecessor tasks, a key component

of technical debt. Attaching these equations to a Monte Carlo analysis allows for the modeling of

the probabilistic aspects of technical debt interest.

194

4.2.1.1.4 Accounting for Technical Debt in Schedule Analysis

Accounting for technical debt in schedule analysis starts with understanding how to measure

task completion. Technical debt occurs when technical compromises are made in the execution of

a task in order to achieve a short-term benefit [19]. The technical compromises may impact the

scope of the task, resulting in reduced performance relative to its objectives, or in the quality of

the task, resulting in lower maintainability, upgradability, sustainability, and other -ilities. These

compromises may then impact the ability to complete future tasks on time, on budget, or to their

performance specifications [18]. For example, technical debt is incurred when the documentation

associated with a system component is reduced (technical compromise) to release on time (short-

term benefit). The lack of documentation may make integration and testing of the component more

time consuming and more costly (long-term impact). Kleinwaks, Batchelor, and Bradley

conducted a survey on the presence of technical debt within systems engineering, concluding that,

although the terminology of technical debt is not well used within systems engineering, the impacts

of technical debt are substantial [18].

The size of the impact of technical debt, referred to as the interest amount within software

engineering [51], is uncertain and dependent upon both the technical compromise and the

interconnectedness of the task within the system context. The occurrence of the interest, defined

as the interest probability [51], is uncertain – if no changes need to be made to the component

carrying the technical debt, then no interest needs to be paid. Technical debt may remain hidden

in a system and linger for extended periods of time, compounding the interest amount and resulting

in more complicated, or even impossible, design changes.

195

4.2.1.1.4.1 Utility as Value

When modeling project value for schedule analysis, the use of a monetary metric as the project

value can confuse value and utility. While project duration ultimately relates to project cost, the

ability of one task to begin work is not related to how much profit that predecessor task generates.

Therefore, this article assumes that a value function can be formulated in terms other than financial

terms [183]. Specifically, this article models value as the utility of a task to its successor tasks,

where utility is measured as the completion percentage of the predecessor task. A successor task

may be able to begin work when a predecessor task is not complete (has a utility of less than one

(1)), an implementation of the start-start relationship [178] of traditional project scheduling

techniques. The value function is modeled as an S-curve, a relationship that has been shown to

hold for task duration as well as cost [179] and which enables the time at which the task reaches a

specified utility (value) to be found. Therefore, the start time of the successor tasks can be

determined, leading to the calculation of the overall project duration.

4.2.1.1.4.2 Modeling Earned Value from Multiple Predecessors

Modeling technical debt impact requires the ability to determine both the interest amount and

the interest probability and to account for their impacts on the value creation of a specific task.

Since the interest could come from any of the predecessor tasks, it is necessary to determine the

contributions to the value of a task that is derived from each of its predecessors. Adopting an S-

curve formulation of the value function, modifications to Warburton’s equations can be made to

calculate the earned value contributions from each predecessor task in turn. As written,

Warburton’s equations assume that the earned value is contributed evenly from multiple

predecessor tasks. The N parameter is used to represent the number of predecessor tasks, which

changes the magnitude of the overall planned and earned value, but only in aggregation. Each

196

predecessor task contributes the same portion of the value. This model is appropriate for planned

value, which assumes perfect schedules. However, earned value, which attempts to model the

actual value creation schedule, must account for the individual impacts of predecessor tasks on the

earned value of the successor task. Equations 4-5 and 4-6 show the updated equations for earned

value accounting for the impacts of the predecessors. N becomes a scaling variable applied evenly

to all the predecessor tasks.

𝑒𝑒𝑝𝑝(𝑡𝑡) = ∑ � (1− 𝑟𝑟𝑖𝑖)𝛼𝛼𝑖𝑖𝑝𝑝𝑝𝑝𝑖𝑖(𝑡𝑡), 𝑡𝑡 ≤ 𝜏𝜏𝑖𝑖
(1− 𝑟𝑟𝑖𝑖)𝛼𝛼𝑖𝑖𝑝𝑝𝑝𝑝𝑖𝑖(𝑡𝑡) + 𝑟𝑟𝑖𝑖𝛼𝛼𝑖𝑖𝑝𝑝𝑝𝑝𝑖𝑖(𝑡𝑡 − 𝜏𝜏𝑖𝑖), 𝑡𝑡 > 𝜏𝜏𝑖𝑖𝑛𝑛𝑖𝑖=0

𝑒𝑒𝑝𝑝(𝑡𝑡) = ∑ � (1− 𝑟𝑟𝑖𝑖) 𝛼𝛼𝑖𝑖𝑁𝑁𝑡𝑡𝑇𝑇2 𝑒𝑒−𝑡𝑡22𝑇𝑇2 , 𝑡𝑡 ≤ 𝜏𝜏𝑖𝑖
(1− 𝑟𝑟𝑖𝑖) 𝛼𝛼𝑖𝑖𝑁𝑁𝑡𝑡𝑇𝑇2 𝑒𝑒−𝑡𝑡22𝑇𝑇2 + 𝑟𝑟𝑖𝑖 𝛼𝛼𝑖𝑖𝑁𝑁𝑡𝑡𝑇𝑇2 𝑒𝑒−(𝑡𝑡−𝜏𝜏𝑖𝑖)22𝑇𝑇2 , 𝑡𝑡 > 𝜏𝜏𝑖𝑖𝑛𝑛𝑖𝑖=0 (4-5)

 𝐸𝐸𝑉𝑉(𝑡𝑡) = ∑ � 𝐸𝐸𝑉𝑉1𝑖𝑖(𝑡𝑡) = ∫ 𝑒𝑒𝑝𝑝𝑖𝑖(𝑠𝑠)𝑑𝑑𝑠𝑠, 𝑡𝑡 ≤ 𝜏𝜏𝑖𝑖𝑡𝑡0 𝐸𝐸𝑉𝑉2𝑖𝑖(𝑡𝑡) = 𝐸𝐸𝑉𝑉1𝑖𝑖(𝜏𝜏) + ∫ 𝑒𝑒𝑝𝑝𝑖𝑖(𝑠𝑠)𝑑𝑑𝑠𝑠𝑡𝑡𝜏𝜏𝑖𝑖 , 𝑡𝑡 > 𝜏𝜏𝑖𝑖𝑛𝑛𝑖𝑖=0

𝐸𝐸𝑉𝑉(𝑡𝑡) = ∑ ⎩⎨
⎧ (1− 𝑟𝑟𝑖𝑖)𝛼𝛼𝑖𝑖𝑁𝑁 �1 − 𝑒𝑒−𝑡𝑡22𝑇𝑇2� , 𝑡𝑡 ≤ 𝜏𝜏𝑖𝑖
𝛼𝛼𝑖𝑖𝑁𝑁 − 𝛼𝛼𝑖𝑖𝑁𝑁(1− 𝑟𝑟𝑖𝑖)𝑒𝑒−𝑡𝑡22𝑇𝑇2 − 𝑟𝑟𝑖𝑖𝛼𝛼𝑖𝑖𝑁𝑁𝑒𝑒−�𝑡𝑡−𝜏𝜏𝑖𝑖�22𝑇𝑇2 , 𝑡𝑡 > 𝜏𝜏𝑖𝑖𝑛𝑛𝑖𝑖=0 (4-6)

In (4-5) and (4-6), it is assumed that each predecessor task independently impacts a portion of

the successor’s task earned value. This portion is controlled by the 𝛼𝛼 variable, which is the

percentage of the successor task’s earned value that is impacted by predecessor task i. The 𝛼𝛼

variables are constrained to add up to one, as shown in (4-7). ∑ 𝛼𝛼𝑖𝑖𝑛𝑛𝑖𝑖=0 = 1 (4-7)

𝛼𝛼0 is the percentage of the successor task’s earned value that is not impacted by any predecessor

and can be calculated using (4-8).

197

𝛼𝛼0 = 1 − ∑ 𝛼𝛼𝑖𝑖𝑛𝑛𝑖𝑖=1 (4-8)

Figure 4-2 depicts the contribution of multiple predecessors to the earned value of a successor

task. In Case 1, each predecessor contributes equally to the earned value of Task D. In Case 2, the

individual contributions are not equal, resulting in different values of 𝛼𝛼. Changing the values of r

and 𝜏𝜏 for each predecessor task will change the overall earned value based on the values of 𝛼𝛼,

which is discussed in the next section.

Figure 4-2. Multiple predecessor contribution to earned value

4.2.1.1.4.3 Technical Debt and Earned Value

Warburton’s equations can be used to model the impacts of technical debt interest on the system

by redefining the variables r and 𝜏𝜏. Warburton defines r as the percentage of activities that require

rework. Within the multiple predecessor and technical debt context, r is redefined as the percentage

of the predecessor task’s impact on the successor task that is subject to a delay. This relationship

is shown in Figure 4-3. In this figure, 𝛼𝛼𝐴𝐴 = 0.25: task A impacts 25% of the earned value of task

D. 𝑟𝑟𝐴𝐴 = 0.25 and therefore 25% of task A’s impact on task D is subject to technical debt interest

from task A. Combined, 6.25% of task D is subject to delays due to technical debt interest from

task A.

198

Figure 4-3. Definition of r parameter in the context of multiple predecessors and technical debt

The definition of 𝜏𝜏 is unchanged from Warburton – it is a measure of the delay introduced to

the system due to technical debt interest. It measures how much longer a task takes to complete

based on the technical debt introduced by a predecessor task. The impact of changing r and 𝜏𝜏 is

shown in Figure 4-4. Increasing r shifts the earned value curve to the right along the time axis but

does not significantly change the slope – it changes the time at which the value is accumulated but

not the rate. Changing 𝜏𝜏 changes the slope of the earned value curve thereby affecting the rate of

value accumulation along with the time at which the value is earned.

199

Figure 4-4. Effect of changing r and 𝝉𝝉 on earned value

In terms of technical debt, r and 𝜏𝜏, when combined, represent the interest amount. The interest

probability can be modeled through the specification of probability distributions for r and 𝜏𝜏 and

the use of Monte Carlo analysis. The impact of r and 𝜏𝜏 and the relationship to technical debt is best

understood through an example.

Williams [173] defines a schedule for the development of a test aircraft, including the expected

duration for each of the tasks. This schedule will be used throughout the rest of this article as an

example project. Williams provides a relevant example to technical debt through the discussion of

the third management action in his aircraft example: if avionics production is delayed, then a

temporary avionics kit may be installed in production aircraft. The technical compromise is to use

a non-fully functional avionics kit to achieve the short-term benefit of meeting the task schedule.

The long-term impact is the lack of fully functional aircraft and the potential for rework to retrofit

200

the avionics kit. In Williams’ example, 28% of the aircraft had the temporary kit installed, so r =

0.28. Williams does not provide the timeline to produce additional kits, but it is fair to estimate

that it would be the same as the avionics production task and range between 12-18 months.

Therefore, 𝜏𝜏 could be estimated through a distribution that produces values in the range of 12-18

months. r and 𝜏𝜏 would then be applied to the earned value equation for the aircraft assembly along

with an estimate of the alpha value – the portion of the aircraft assembly affected by the avionics.

4.2.1.1.4.4 Compounding Technical Debt Interest

One of the most pernicious qualities of technical debt is that the interest compounds. Technical

debt may impact multiple successor tasks, may not appear until several successor tasks have

completed, and it may grow in impact as it affects more tasks [92]. To model the compounding of

technical debt interest, it is necessary to consider all the predecessor tasks as having some

contribution to the earned value of the successor task. If direct predecessor tasks are the only ones

considered, then there is a chance that the technical debt contribution is underestimated. For

example, consider the development of a software interface with three tasks: development of the

interface control document (ICD), writing the software code, and integrating the software

interface. An ICD may contain documentation debt [60], which includes the under specification

of the interfaces. The software developer can take the ICD and perfectly implement it as written,

and may not be aware that the interfaces were underspecified. It is not until the next task, the

integration of the interface, that the technical debt in the ICD will appear, even though the ICD is

not a direct predecessor of the integration task.

To model the compounding of technical debt interest, it is necessary to specify the 𝛼𝛼, r, and 𝜏𝜏

values for each possible predecessor for every task. Figure 4-5 shows an example of how to specify

the values using two design structure matrices (DSM), based on the aircraft project provided in

201

Williams [173]. The dependency matrix, on the left of Figure 4-5, indicates the direct predecessor

(value of 1) and indirect predecessor relationships (value of 2). The alpha matrix, on the right side

of Figure 4-5, indicates the value of alpha for the relationships. These matrices are read like other

DSMs, where a value in a cell indicates that the column contributes to the row. The dependencies

of task 5, interim avionics, are found by reading down the column. This task has one immediate

successor (task 7, assemble d/b aircraft) and several secondary successors. The value of alpha for

the immediate successor is 0.1. To maintain the constraint identified in (4-7), the summation of

the values in the rows of the alpha matrix must equal one (1). Similar DSMs could be created for

r and 𝜏𝜏.

Figure 4-5. Specification of compounding technical debt

From these matrices, it becomes clear which tasks may have larger impacts throughout the

system. For example, summing the columns in the 𝛼𝛼 matrix will provide a total of the impact

percentage of a specific task. Larger values will have higher potential for compounding technical

debt interest.

202

4.2.1.1.4.5 Calculating the Time at Which Earned Value is Reached

Equation 4-6 models the earned value, in the presence of technical debt and multiple

predecessors, as a function of time. Therefore, if this equation could be solved for t, then the time

at which a specified earned value is reached could be analytically determined. However, this

equation is a transcendental equation and is not analytically solvable, especially in the presence of

an unknown number of predecessor tasks. Numerical techniques could be used; however, they do

not lend themselves to easy application.

Examining the shape of the S-curve reveals that there are four distinct sections [184]:

• Stage 1: value accumulation starts out slowly, usually as the project is ramping up

• Stage 2: value accumulates rapidly as more resources are put into the project and work is

delivered

• Stage 3: value accumulation slows down as the bulk of the work is completed and

resource loading starts to reduce

• Stage 4: additional value accumulation is minimal as tasks are finalized and the project is

concluded

These stages are shown in Figure 4-6.

Figure 4-6. Stages of earned value S-curve

203

Between each of these stages, the concavity of the S-curve changes direction. A piece-wise

linear function can be used to approximate the curve, with a separate line for each of the four

sections [184]. Determining this piecewise function requires identifying the transition points

between the changes in concavity.

The changes in concavity of the function are found by taking the derivatives of the function and

setting those derivatives to zero. The derivatives of the earned value function are not directly

solvable, due to the presence of multiple exponentials and the unknown number of predecessor

tasks. However, the planned value function only contains a single exponential and does not depend

on the number of predecessor tasks and therefore the transition points on the planned value curve

can be found. Figure 4-7 plots the cumulative planned value (PV), instantaneous planned value

(pv), and the derivative of the instantaneous planned value (
𝑑𝑑𝑝𝑝𝑑𝑑𝑡𝑡). The solid black lines represent the

transition points on the PV curve. The three transition points, G1, G2, and G3, can be found by

applying successive derivatives of the pv curve.

Figure 4-7. Concavity changes indicating transition points between growth stages in planned value

The first transition point to be found is G2 – the transition from stage 2 to stage 3 [185]. As seen

in Figure 4-7, this transition point occurs where the concavity of pv changes. Candidates for

204

changes in concavity are found by finding the roots of the second derivative of a function. Equation

4-9 shows the second derivative of the pv function. Therefore, G2 is found by solving (4-9) for t,

which is shown in (4-10)1. Only the positive roots are considered in this analysis.

𝑑𝑑2𝑝𝑝𝑝𝑝(𝑡𝑡)𝑑𝑑𝑡𝑡2 =
𝑁𝑁𝑇𝑇6 𝑡𝑡𝑒𝑒−𝑡𝑡22𝑇𝑇2(𝑡𝑡2 − 3𝑇𝑇2) (4-9)

𝐺𝐺2 = ±√3𝑇𝑇 (4-10)

Transition points G1 and G3 occur when the concavity of
𝑑𝑑𝑝𝑝𝑑𝑑𝑡𝑡 changes, as shown in Figure 4-7.

Therefore, the second derivative of
𝑑𝑑𝑝𝑝𝑑𝑑𝑡𝑡 , which is the third derivative of pv, needs to be found and

solved. Equation 4-11 shows the third derivative of pv, and solution is shown in (4-12). Again,

only the positive roots are used in this analysis.

𝑑𝑑3𝑝𝑝𝑝𝑝(𝑡𝑡)𝑑𝑑𝑡𝑡3 =
𝑁𝑁𝑇𝑇8 𝑒𝑒−𝑡𝑡22𝑇𝑇2(𝑡𝑡4 − 6𝑡𝑡2𝑇𝑇2 + 3𝑇𝑇4) (4-11)

𝐺𝐺1 = ±�−�√6− 3�𝑇𝑇2,𝐺𝐺3 = ±��√6�𝑇𝑇2 + 3𝑇𝑇2 (4-12)

With the transition points known, the piecewise linear equation for the planned value (LPV) can

be found, as shown in (4-13).

𝑚𝑚1 =
𝑃𝑃𝑉𝑉(𝐺𝐺1)𝐺𝐺1

𝑚𝑚2 =
𝑃𝑃𝑉𝑉(𝐺𝐺2)− 𝑃𝑃𝑉𝑉(𝐺𝐺1)𝐺𝐺2 − 𝐺𝐺1

1 Derivatives and solutions were checked using the Online Equation Solver from Wolfram Alpha, available at

https://www.wolframalpha.com/calculators/equation-solver-calculator/.

205

𝑚𝑚3 =
𝑃𝑃𝑉𝑉(𝐺𝐺3)− 𝑃𝑃𝑉𝑉(𝐺𝐺2)𝐺𝐺3 − 𝐺𝐺2

𝑚𝑚4 =
1 − 𝑃𝑃𝑉𝑉(𝐺𝐺3)

1 − 𝐺𝐺3

𝐿𝐿𝑃𝑃𝑉𝑉(𝑡𝑡) = � 𝑚𝑚1∗𝑡𝑡, 𝑡𝑡≤𝐺𝐺1𝑚𝑚2∗(𝑡𝑡−𝐺𝐺1)+𝑃𝑃𝑃𝑃(𝐺𝐺1), 𝐺𝐺1<𝑡𝑡≤𝐺𝐺2𝑚𝑚3∗(𝑡𝑡−𝐺𝐺2)+𝑃𝑃𝑃𝑃(𝐺𝐺2), 𝐺𝐺2<𝑡𝑡≤𝐺𝐺3𝑚𝑚4∗(𝑡𝑡−𝐺𝐺3)+𝑃𝑃𝑃𝑃(𝐺𝐺3), 𝐺𝐺3<𝑡𝑡≤1 (4-13)

Equation 4-13 can be easily solved for t to determine the time at which a specific planned value

occurs. Following the same process to linearize the earned value equations results in unsolvable

derivative equations due to the combination of multiple exponentials and the unknown number of

predecessor tasks. A possible solution is to use the transition points found in the planned value

curve as the transition points of the earned value curve. The reuse of these points will induce error

in the time dimension of the linearization, which needs to be characterized. The resulting

linearization of planned value and earned value is shown in Figure 4-8. In this case, the linearized

earned value plot underestimates the earned value in the stage 4 and overestimates the earned value

in stage 1.

Figure 4-8. Linearized planned and earned value curves using the same transition points

With the transition points set, the linearized earned value equations can be determined and then

solved for t, as shown in (4-14) and (4-15), where V is the desired earned value. The impact of

206

multiple predecessors is included in the linearization by using the complete earned value (EV)

equation (4-6) at each of the transition points.

𝑚𝑚1 =
𝐸𝐸𝑉𝑉(𝐺𝐺1)𝐺𝐺1

𝑚𝑚2 =
𝐸𝐸𝑉𝑉(𝐺𝐺2)− 𝐸𝐸𝑉𝑉(𝐺𝐺1)𝐺𝐺2 − 𝐺𝐺1

𝑚𝑚3 =
𝐸𝐸𝑉𝑉(𝐺𝐺3)− 𝐸𝐸𝑉𝑉(𝐺𝐺2)𝐺𝐺3 − 𝐺𝐺2

𝑚𝑚4 =
𝐸𝐸𝑉𝑉(1)− 𝐸𝐸𝑉𝑉(𝐺𝐺3)

1− 𝐺𝐺3

𝐿𝐿𝐸𝐸𝑉𝑉(𝑡𝑡) = � 𝑚𝑚1∗𝑡𝑡, 𝑡𝑡≤𝐺𝐺1𝑚𝑚2∗(𝑡𝑡−𝐺𝐺1)+𝐸𝐸𝑃𝑃(𝐺𝐺1), 𝐺𝐺1<𝑡𝑡≤𝐺𝐺2𝑚𝑚3∗(𝑡𝑡−𝐺𝐺2)+𝐸𝐸𝑃𝑃(𝐺𝐺2), 𝐺𝐺2<𝑡𝑡≤𝐺𝐺3𝑚𝑚4∗(𝑡𝑡−𝐺𝐺3)+𝐸𝐸𝑃𝑃(𝐺𝐺3), 𝐺𝐺3<𝑡𝑡≤1 (4-14)

𝑡𝑡 = ⎩⎪⎨
⎪⎧ 𝑉𝑉𝑚𝑚1, 𝑃𝑃≤𝐸𝐸𝑃𝑃(𝐺𝐺1)�𝑉𝑉−𝐸𝐸𝑉𝑉(𝐺𝐺1)�𝑚𝑚2 +𝐺𝐺1,𝐸𝐸𝑃𝑃(𝐺𝐺1)<𝑃𝑃≤𝐸𝐸𝑃𝑃(𝐺𝐺2)�𝑉𝑉−𝐸𝐸𝑉𝑉(𝐺𝐺2)�𝑚𝑚3 +𝐺𝐺2,𝐸𝐸𝑃𝑃(𝐺𝐺2)<𝑃𝑃≤𝐸𝐸𝑃𝑃(𝐺𝐺3)�𝑉𝑉−𝐸𝐸𝑉𝑉(𝐺𝐺3)�𝑚𝑚4 +𝐺𝐺3,𝐸𝐸𝑃𝑃(𝐺𝐺3)<𝑃𝑃≤1

 (4-15)

t represents the time at which the task reaches a particular earned value. Successor tasks may

be able to start at t, however, the task is not necessarily complete at this point in time. The time of

task completion is found by calculating when the earned value equals the total planned value for

the task. The total planned value is input into (4-15) as V and then the task completion time is

found. The difference between the task completion time and the original planned duration is the

penalty on the task due to technical debt.

207

With (4-15), it is now possible to determine the time at which a task earns a particular value

and the time at which it will finish in the presence of technical debt from multiple predecessors.

The algorithm is as follows:

1. Set the values of 𝛼𝛼, r, and 𝜏𝜏 for each predecessor task

2. Based on the value of T for the task, determine the transition points G1, G2, and G3 using

equations

3. Calculated the earned value at each transition point for each predecessor task using (6)

4. Given the desired earned value V, calculate t from (4-15)

An accuracy assessment of this method is provided in the appendix.

4.2.1.1.5 Application to Monte Carlo Schedule Analysis

The prior analysis shows how to calculate the time at which a task reaches a desired earned

value in the presence of technical debt. A Monte Carlo analysis can be used to determine the most

likely duration of the entire project, accounting for technical debt along the way. Table 4-2 shows

the parameters used in the analysis and recommended random and static variables. The random

variables are assigned probability distributions, such as normal or triangular distributions and the

accompanying distribution parameters are set as static variables. Static variables are held constant

through each trial of the Monte Carlo analysis while random variables are resampled and changed

with each Monte Carlo trial. Variables either apply to a singular task, such as the independent

duration, or to a pair of tasks, such as r and U.

Table 4-2. Recommended random and static variables for Monte Carlo analysis

Random Variables Static Variables

D – independent duration for each task 𝛼𝛼 – % of successor impacted by predecessor. Applies

to task pairs 𝛼𝛼0 - % of successor that is not impacted by

predecessors. Applies to each task

208

Random Variables Static Variables

r - % of 𝛼𝛼 that is impacted by technical debt interest.

Applies to task pairs. 𝑟𝑟0 - % of 𝛼𝛼0 that is impacted by self-inflicted technical

debt interest. Applies to each task

U – earned value when successor task can start/finish

(based on relationship). Applies to task pairs

𝜏𝜏 - delay introduced into the successor task due to the

technical debt interest on the predecessor task. Applies

to task pairs. 𝜏𝜏0 - self-inflicted delay on a task. Applies to each task

T – the time of peak planned value. Applies to each

task

Earliest start time – defines the earliest that a particular

task can start development

Distribution parameters for r, D, 𝜏𝜏 will be static (e.g.,

mean and standard deviation for normal distributions)

With the task duration, D, expressed as a random variable, it becomes simpler to express the

time parameters (T, t, and 𝜏𝜏) as percentages of the task duration, forcing them to have values

between zero (0) and one (1). Setting the value of N to one (1) treats each task as a single activity.

Then, the calculated earned value is the percentage of the planned value and the utility U is

expressed as a percentage of planned value. This convention allows all the parameters in the Monte

Carlo analysis, with the exception of the task duration to be on the same scale, from 0 to 1. It also

enables automatic adjustments of the technical debt delay based on the duration of the task. 𝜏𝜏 is

expressed as the percentage of the successor task duration and therefore adjusts with the random

selection of the task duration in the Monte Carlo analysis. The actual task duration is found by

multiplying the time at which the utility threshold is reached by the duration. This method is shown

in the following example.

Williams [173] performed a Monte Carlo analysis for a new airplane development project,

including modeling management actions. The tasks, their sequence, and the parameters for the

distributions of the task durations are shown in Figure 4-9. This analysis will serve as a test case

for the method presented in this article, including updating the analysis to account for technical

debt.

209

Figure 4-9. Project tasks, durations, and sequence, adapted from [178]

Williams assessed the project duration, found by determining the completion time of the ‘Ready

to assemble’ task, in two cases: the baseline case which only uses the distribution of the durations

and a case that represents the application of management actions that cause impacts to subsequent

tasks such as “downstream quality issues” [173]. These impacts can be interpreted as technical

debt.

Table 4-3 compares the mean duration of the project and the 90% point (the time at which 90%

of the Monte Carlo trials show completion of the project) provided by Williams with those

calculated using the method presented in this article. The parameters used in this method are also

provided for each case. Since planned value curves for each task were not provided by Williams,

the value of T used for all tasks was iteratively determined by running the algorithm with different

values until results comparable to Williams was achieved. In cases where the planned value curves

of each task are known, T would be determined as the point of maximum instantaneous planned

210

value as defined by Warburton [182]. The high value of 𝜏𝜏 is used to force t to be less than 𝜏𝜏 in

cases where technical debt is not applied.

Table 4-3. Comparison of results with [173]

Case Values from [173] Calculated Values Parameters Used

Baseline

analysis

Mean Duration: 90.5

90% Value Duration:

103

Mean Duration: 90.5

90% Value Duration:

100.5

𝑇𝑇 = 0.395 (all tasks) 𝑈𝑈 = 1 (all tasks) 𝑟𝑟, 𝑟𝑟0 = 0 (constant value, all tasks) 𝜏𝜏, 𝜏𝜏0 = 0 (constant value, all tasks) 𝛼𝛼0 = 1 (all tasks) 𝛼𝛼 = 0 (all tasks)

Expediting

engine design

Not provided Mean Duration: 88.1

90% Value Duration:

95.7

Same as previous case except:

Engine Design

Duration: custom triangular distribution where

the value is reduced by 1/3 if it exceeds 34, per

[173]

d/b Engine Manufacture

for the dependency on engine design: 𝜏𝜏: Uniform Distribution between [0, 0.2] 𝑟𝑟: Normal Distribution with 𝜇𝜇 = 1,𝜎𝜎 = 0 𝛼𝛼: 0.5 𝛼𝛼0 = 0.5

Engine Development

for the dependency on engine design: 𝜏𝜏: Uniform Distribution between [0, 0.05] 𝑟𝑟: Normal Distribution with 𝜇𝜇 = 1,𝜎𝜎 = 0 𝛼𝛼: 0.5 𝛼𝛼0 = 0.5

211

Case Values from [173] Calculated Values Parameters Used

Increased

parallelism

Mean Duration: 87.2

90% Value Duration:

95

Mean Duration: 88.2

90% Value Duration:

95.6

Same as previous case except:

Engine Production

Add a dependency on engine flight trials with

the following parameters: 𝑇𝑇 = 0.395 𝑈𝑈 = 0.2 𝑟𝑟 = 0 𝜏𝜏 = 0 𝛼𝛼 = 1/3

For the dependency on engine development

set: 𝜏𝜏: Uniform Distribution between [0, 0.1] 𝑟𝑟: Normal Distribution with 𝜇𝜇 = 1,𝜎𝜎 = 0 𝛼𝛼: 1/3 𝛼𝛼0 = 1/3

As can be seen in Table 4-3, the new method provides answers that are similar to those provided

by Williams. Of note is that a custom distribution for duration had to be applied to account for the

management actions associated with expediting the engine development to better map to the

method used by Williams. The closeness of the results lends confidence to the baseline algorithms

presented in this article.

4.2.1.1.5.1 Implementation

The equations described in the previous sections can be implemented as part of a Monte Carlo

schedule analysis. The algorithm requries the user to specify the task duration and technical debt

parameters. Static variables, as defined in Table 4-2, have their specific values defined. Random

variables, as defined in Table 4-2, have the parameters of their associated probability distributions

set. For this algorithm, it is assumed that the sequence of tasks is known. The algorithm is defined

as follows:

1. Define the sequence of tasks and establish the predecessor-successor relationships

2. Define the parameters 𝛼𝛼, T, and U

3. Define the distribution parameters for D, r, and 𝜏𝜏

212

4. For each trial in the Monte Carlo analysis:

a. Randomly set all values of D, r, and 𝜏𝜏 using the suppplied distribtuions

b. For each task;

i. Determine the earned value at the transition points using (4-6)

ii. For all predecessors:

1. Calculate tu, the time at which the earned value threshold, U, is

reached using (4-15). This value will be between zero and one

2. Calculate the actual task duration, td, by multiplying tu times D

3. Calculate the predecessor end time as predecessor start time plus

tu

4. Set the task start time to the maximum predecessor end time

c. Determine the completion time as the end time of the last task

5. Average the results of the Monte Carlo analysis to produce the results

4.2.1.1.6 Discussion

Using the same example project provided in [173], the impact of technical debt and increased

parallelism on the project schedule can be assessed by rerunning the Monte Carlo analysis for

conditions assessing both technical debt and increased parallelism. Starting with the baseline

analysis case, two different technical debt conditions were run: low technical debt and high

technical debt. In the high technical debt case, the technical debt is assumed to affect a higher

portion of the successor task and with a larger impact – both r and 𝜏𝜏 are higher. The distributions

used are listed in Table 4-4. The values for alpha were set using the values shown in Figure 4-5.

The increased parallelism case sets the values for U to 0.9 for all task dependencies, indicating that

a task can start once all of its predecessors have reached at least 90% of their earned value. Figure

213

4-10 shows the cumulative distribution function for each of the cases. Note that it is possible to

calculate durations that are of extreme length due to the probabilistic analysis. Outliers were

defined as total project durations above 200 months and these outliers were removed from the

results.

Table 4-4. Technical debt and increased parallelism impact on the airplane project

Technical Debt Condition Case

 No Parallelism (U = 1) Increased Parallelism

(U = 0.9)

No Technical Debt:

r: Normal Distribution with 𝜇𝜇 = 0,𝜎𝜎 = 0 𝜏𝜏: Normal Distribution with 𝜇𝜇 = 0,𝜎𝜎 = 0

Mean duration

90.5

90% duration

101.0

Mean duration

65.2

90% duration

72.1

Low Technical Debt:

r: Normal Distribution with 𝜇𝜇 = 0.2,𝜎𝜎 = 0.05 𝜏𝜏: Normal Distribution with 𝜇𝜇 = 0.2,𝜎𝜎 = 0.05

Mean duration

92.0

90% duration

102.0

Mean duration

68.9

90% duration

76.9

High Technical Debt:

r: Normal Distribution with 𝜇𝜇 = 0.5,𝜎𝜎 = 0.2 𝜏𝜏: Normal Distribution with 𝜇𝜇 = 0.5,𝜎𝜎 = 0.2

Mean duration

108.2

90% duration

123.5

Mean duration

100.7

90% duration

114.5

 No compounding interest Compounding interest

Low Technical Debt, Compounding

Interest:

U = 1 for all task

R and 𝜏𝜏: same as the low technical debt

case except for engine design task. All

dependencies on engine design have the

following distributions

r: Normal Distribution with 𝜇𝜇 = 0.5,𝜎𝜎 = 0.2 𝜏𝜏: Normal Distribution with 𝜇𝜇 = 0.8,𝜎𝜎 = 0.1

Mean duration

104.4

90% duration

123.2

Mean duration

108.0

90% duration

128.4

214

Figure 4-10. Cumulative probabilities of completing the aircraft project under various technical debt and

parallelism assumptions

4.2.1.1.6.1 Impact of Increased Parallelism on Project Schedule

The third column and the second through fourth rows in Table 4-4 show the impact of assuming

that tasks can start when their predecessors reach at least 90% of their value. Evaluating the start

time of successor tasks based on the accumulation of value can significantly decrease the

subsequent start time of each task and therefore decrease the overall project duration.

Conceptually, this conclusion follows from the evaluation of an earned value curve, such as shown

in Figure 4-1, where accumulating the last 10% of the project value can take over 20% of the time.

This last 10% of value often does not add value to the successor tasks, and therefore, by starting

earlier, the entire project can be accelerated. For example, a software interface between two

separate components is typically defined by an interface control document (ICD). To start

developing the software interface, it is necessary to have the majority of the ICD complete, but the

final version, which may include non-technical aspects such as formatting and obtaining

signatures, is not required.

215

4.2.1.1.6.2 Impact of Technical Debt on Project Schedule

The third and fourth rows in Table 4-4 show the impact of technical debt on the project. In both

cases, the mean duration of the project increased when technical debt is assumed to occur on each

task. In the ‘high technical debt’ case increasing the parallelization is not sufficient to bring the

schedule back to the original baseline. These results model the impact that technical debt can have

on a schedule and highlight one of the deficiencies of traditional Monte Carlo schedule analysis.

Every task carries some risk of creating technical debt for its successor tasks, either through design

or implementation deficiencies or through a change in the context of the system. Traditional

methods add margin for the duration of impacted tasks without actually assessing the downstream

impacts. The method presented in this article allows for the project manager to assess both

increases in task duration and different levels of impact through setting the distribution and

technical debt parameters. By varying these assumptions on individual tasks, the project manager

can determine which tasks carry the largest risk associated with technical debt. Evaluating these

risks allows a project manager to determine the likelihood that a task moves onto the critical path

due to technical debt.

4.2.1.1.6.3 Impact of Compounding Technical Debt Interest

The last row of Table 4-4 shows the impact of compounding technical debt interest. In this

scenario, the tasks all demonstrate low technical debt, except for the engine design task. The engine

design task is modeled as completing with exceptionally high technical debt, resulting in high

values of r and 𝜏𝜏. In the second column of Table 4-4, it is assumed that the technical debt interest

does not compound, and that the technical debt accrued in the engine design task only affects its

direct successor. In the third column of Table 4-4 the technical debt from the engine design task

affects all of the possible successors. The results show that compounding the technical debt interest

216

causes increased delays to the project: a 3.5% increase in mean project duration and a 4.2%

increase in the 90% point.

Figure 4-11 shows the average duration and completion time for each task in the low technical

debt case with no parallelism, the low technical debt case with a high technical debt engine design

and no compounding interest, and the compounding interest case. The task with high technical

debt, engine design, does not suffer from significant delays. The technical debt of the engine design

impacts the d/b engine manufacture task and the engine development task directly. In the

compounding case, additional delays are seen in the engine production, assemble d/b aircraft, and

engine/frame trials since the additional dependencies on the technical debt from the engine design

are modeled.

Figure 4-11. Effect of compounding interest on task duration and end time

4.2.1.1.6.4 Quantifying Technical Debt Interest

As defined in (4-6), this method allows for the quantification of technical debt interest. The

technical debt interest amount is represented by r and 𝜏𝜏 and the interest probability is represented

through the distribution parameters selected for the Monte Carlo analysis. For each task, the

interest amount can be evaluated by assessing the delay in task completion due to the technical

217

debt of the task predecessors. Using the normalized parameter representation, the task is complete

when the earned value reaches a value of one (1). This time, 𝑡𝑡𝑐𝑐, can be found by calculating t using

(4-15), with 𝑉𝑉 = 1. The interest amount, 𝑖𝑖𝐴𝐴, is expressed as a percentage of the task duration and

is calculated using (4-16):

𝑖𝑖𝐴𝐴 = 𝑡𝑡𝑐𝑐 − 1 (4-16)

𝑖𝑖𝐴𝐴 can be multiplied by the task value to convert it to the value units. If this value is also tracked

through the Monte Carlo analysis, then the results of the analysis can be used to predict the

expected value of the technical debt interest. Figure 4-12 shows the cumulative probability of the

interest amount for the ‘engine/frame flight trials’ task for the low technical debt with no

parallelism, the high technical debt with no parallelism, and the compounding interest cases found

in Table 4-4. This task depends on several other tasks with both primary and secondary

dependencies, as seen in Figure 4-9.

Figure 4-12. Interest amount for ‘engine/frame flight trials’

The low technical debt case has a small standard deviation and does not compound the interest;

therefore, the predicted interest amount is relatively static. The compounding interest case, which

propagates the effects of a single task with large technical debt, incurs close to the same level of

interest as the high technical debt case, where all tasks carry technical debt. This result highlights

218

how technical debt can permeate through the system – a single task can cause cascading delays

throughout the rest of the project.

4.2.1.1.6.5 Comparison to Existing Methods

Using the equations and processes defined in this article, it is possible to model increases to the

durations of successor tasks based on technical debt introduced in predecessor tasks. This

technique is important to schedule analysis as it highlights which tasks need more effective process

control methods to prevent the entire project from being delayed.

Compared to existing methods of Monte Carlo schedule analysis, the method presented in this

article adds additional capability to evaluate technical debt and its impacts. This method leverages

the existing approaches and adjust the duration calculation for each task based on the technical

debt parameters. While requiring a larger upfront investment of effort to determine the parameters,

the method adds minimal runtime to the analysis, yet produces leading indicators for the project

manager.

4.2.1.1.7 Limitations and Future Work

While providing a novel approach to including technical debt contributions in a Monte Carlo

schedule analysis, this work is not without its limitations, which can be explored through future

efforts. This work assumes that the technical debt parameters remain constant between predecessor

and successor task pairs. However, it is likely that the potential impact of technical debt could

change based on the state of the predecessor task. This dynamic model could be implemented in

future versions of the algorithm. The linearization of the earned value equations introduce error

into the analysis, as shown in Appendix A. These equations can be refined and better solutions

found to reduce the error. Finally, the major limitation in the work is reliability of the input

parameters and estimates. In any schedule analysis, the output is only as good as the original

219

estimates. The same principle holds with this approach – the overall fidelity of the assessment is

based on the accuracy of the input task durations and technical debt parameters. Future work can

explore relationships between different task types to established guidelines for the parameters to

be used. Additional future work includes verification and validation of the method through

application to real project development. These applications will reveal the success of the method

in predicting technical debt impacts and the cost-benefit tradeoff of early introduction of technical

debt reduction efforts.

4.2.1.1.8 Conclusion

Monte Carlo schedule analysis provides a probabilistic estimate of the duration for completing

a project. However, traditional techniques do not consider the impact of the quality of each task

on the ability to complete the successor task on schedule. They also tend to assume finish-to-start

relationships, which do not accurately represent task sequencing, especially in high level

schedules. This article provides a novel method to assess the technical debt of each task and its

impact on successors by modeling technical debt contributions and impacts on successor tasks. It

also allows for the modeling of relationships where a task starts once its predecessor reaches a

specified percentage of its final value. This combination allows for more accurate schedule

modeling early in projects based on real world conditions and for the inclusion of technical debt

effects. By estimating technical debt impacts on successor tasks, the project manager has the ability

to evaluate leading indicators of future delays. Leading indicators provide project managers with

time to implement corrective actions, such as increased quality control, while the cost to do so is

low. Regularly updating the schedule analysis based on the evaluated technical debt of tasks in

progress can identify the risk of delays to future tasks, and therefore the entire project.

220

Identification of these risks enable project managers to introduce proper mitigation strategies

before the risks become issues

4.2.1.1.9 Appendix A: Accuracy Assessment

Given the piecewise nature of the linearization function, it is beneficial to look at the accuracy

in each of the four sections. An exhaustive analysis was done examining the linearized earned

value functions for values of T, r, and 𝜏𝜏 for the single predecessor case. All three parameters were

varied from 0.1 to 0.9 in steps of 0.1. For all cases, N = 1 to enable consistent scaling. The

maximum absolute error and the maximum percent error were calculated for each of the four

linearization stages for each combination of input parameters. The maximum and average values

found are shown in Table 4-5, showing that while the percent errors are large in some cases, the

absolute errors are of similar magnitudes for each case. Therefore, the linearization can be

considered a valid approximation to the true function.

Table 4-5. Accuracy assessment of earned value linearization

Output Parameter
Input

Condition
Stage 1 Stage 2 Stage 3 Stage 4

Maximum absolute error All 0.057 0.079 0.034 0.579

Maximum percent error All 318% 141% 33% 554%

Average absolute error All 0.032 0.022 0.011 0.095

Average percent error All 107% 11% 3% 25%

Maximum absolute error 𝑡𝑡 ≤ 𝜏𝜏 0.052 0.025 0.016 0.042

Maximum percent error 𝑡𝑡 ≤ 𝜏𝜏 187% 5% 2% 5%

Average absolute error 𝑡𝑡 ≤ 𝜏𝜏 0.028 0.014 0.009 0.021

Average percent error 𝑡𝑡 ≤ 𝜏𝜏 98% 4% 2% 2%

Maximum absolute error 𝑡𝑡 > 𝜏𝜏 0.057 0.079 0.034 0.579

Maximum percent error 𝑡𝑡 > 𝜏𝜏 318% 141% 33% 554%

Average absolute error 𝑡𝑡 > 𝜏𝜏 0.049 0.026 0.013 0.098

Average percent error 𝑡𝑡 > 𝜏𝜏 148% 15% 3% 26%

The earned value function itself is piecewise, changing equations when 𝑡𝑡 = 𝜏𝜏. Therefore, rows

have been added to Table 4-5 showing the results for the cases where 𝑡𝑡 ≤ 𝜏𝜏 and where 𝑡𝑡 > 𝜏𝜏. The

largest percent error values are for stage 1. This section of the linearization curve applies when the

221

calculated earned values are small which can lead to large discrepancies in percent error. The

magnitude of the absolute error, while higher that the other sections, is still in the same general

range.

Figure 4-13 plots the maximum and average percent errors for each analyzed value of T, r, and 𝜏𝜏. From these plots, it can be clearly seen that large values of r (center plots) consistently lead to

higher error values, while the largest values of the other parameters do not exhibit consistent

behavior. Therefore, it can be inferred that the r parameter drives the errors when it gets large. The

impact of r is to shift the earned value plot to the right. Large values decrease the similarity that

was assumed when reusing the inflection points from the planned value curve. Figure 4-13 shows

that the linearization accuracy is within 10% on average for the final three linearization stages

when T, r, and 𝜏𝜏 are all less than or equal to 0.5. Note that values of zero in the plot indicate cases

that were not realized. For example, high values of T did not enter the limited growth phase in the

cases tested.

Figure 4-13. Maximum and average percent error of linearization of earned value sliced by T, r, and 𝜏𝜏

222

Although the linearization produces some areas of large percent error, these errors are low in

absolute magnitude. Additionally, these errors are likely to be smaller than any errors introduced

through the initial estimation of the task duration. Therefore, it can be concluded that the

linearization does not cause a significant impact on the overall accuracy of the schedule

assessment.

The transition points in the linearization are controlled by the value of T. T changes as the shape

of the planned value curve changes and therefore the transition points will change. As seen in the

first column of Figure 13, the percent error in the analysis is relatively constant across different

values of T, expect for the first and last stage. Therefore, values of T that produce longer first or

last stages would produce additional errors.

4.2.1.1.10 Appendix B: Computation Environment

The Monte Carlo analysis in this article was conducted using Python 3.9.7 scripts executed

within the Spyder integrated development environment (version 5.1.5). The software was executed

on a Dell Vostro 15 7510 computer running 64-bit Windows 11 Pro with a dual 2.30 GHz 11th

Gen Intel® Core ™ i7-11800H processor and 16.0 GB of RAM. All cases in this article were

executed for 1000 trials and the execution time was between 2.3 and 2.6 seconds

4.2.1.2 Summary of Technical Debt Inclusion in Project Schedule Analysis

The above paper shows how technical debt could be included in a schedule analysis and

combined with Monte Carlo methods to generate probabilistic delivery timelines for tasks. In view

of the LEAP process, this method provides a mathematical way to develop a probabilistic

Development Matrix from the Technology Matrix. The next section defines how the probabilistic

Development Matrix is incorporated into the LEAP process.

223

4.2.2 Quantification of the LEAP process

The mathematics behind the LEAP process [160] relies on the ability to associate the Functional

and the Development Matrices through matrix multiplication. When the inputs to the matrices are

binary (one (1) or zero (0)), the multiplication of the Functional and Development Matrices

provides the number of technologies developed in a time period that support a capability. However,

as soon as probabilities are introduced into the Development Matrix, the assumptions underpinning

the process break down. The matrix multiplication will sum the probabilities of delivering each

technology, which can erroneously produce probabilities of delivering the capabilities of greater

than one (1). Therefore, the mathematical process underpinning the LEAP process need to be

updated. The following paper, submitted to IEEE Access in September, 2023 [186], provides this

mathematical update.

4.2.2.1 Probabilistic Enhancement to the Leap Process for Identifying Technical Debt in

Iterative System Development [186]

4.2.2.1.1 Abstract

The List, Evaluate, Achieve, Procure (LEAP) process defines a methodology for

mathematically associating the delivery of system capabilities with the temporal satisfaction of

stakeholder needs while identifying technologies at high risk of imparting technical debt into the

system. The original process is qualitative, relying on binary definitions of timelines for

technology development – the technology either is or is not developed in a specific time period.

The binary definitions allow for rapid high-level assessments of the potential for technical debt.

However, they fail to capture more realistic scenarios of uncertain technology development

timelines. This paper resolves these issues by introducing probability into LEAP process. This

224

paper also provides examples of using the probability in the LEAP process and compares the

probabilistic (quantitative) and binary (qualitative) models.

4.2.2.1.2 Introduction

Kleinwaks et al. [160] developed the List, Evaluate, Achieve, Procure (LEAP) process to

provide a structured approach to identifying technologies that are critical to meeting the

stakeholders’ needs. This process uses matrix operations to mathematically combine a system

functional breakdown with stakeholder needs to identify capabilities that will be delivered late to

need and the technologies that drive the delivery timelines. The LEAP process is designed for use

within increasingly volatile, uncertain, complex, and ambiguous (VUCA) system development and

operating environments [3]. By applying LEAP in an iterative manner, the system developer can

identify investments that reduce level of non-recurring engineering (NRE) in system development

to enable rapid and successful iterative development cycles [162]. The LEAP process can also be

used as a decision support system to assess the long-term impacts of decisions made to achieve a

short-term benefit, known as technical debt [19]. Examples of technical debt include minimizing

documentation or system modeling and analysis to ensure an on-time release, which can result in

increased effort to change the system in the future.

The LEAP process consists of four major steps [160]:

1. List: establish the system definition by decomposing the stakeholder needs into capabilities

and perform a functional breakdown of the capabilities into enabling technologies

2. Evaluate: assess the capabilities and technologies to determine the need dates and expected

development timelines and compute the ability of the system to meet the needs

225

3. Achieve: identify the technologies that have the largest contribution to late need

satisfaction, either in the current time period or in the future. The system developer can

invest in these technologies to reduce the development timeline

4. Procure: include mature technologies within a larger-scale development cycle to develop

the system that meets the stakeholders’ needs

The ability of the system to meet the temporal needs of the stakeholders is computed using

matrix operations. Kleinwaks et al. define the process in detail, including the explanation of the

supporting mathematics [160]. The baseline process, referred to in this paper as the qualitative

LEAP process, is shown in Figure 4-14.

Figure 4-14. The qualitative LEAP process as defined in [160]

The qualitative LEAP process relies on three primary inputs: the Functional Matrix (F), the

Development Matrix (V), and the Need Matrix (N). These inputs are uniquely defined for each

system of interest, based on an analysis of the stakeholder needs and system requirements. The

Functional Matrix defines the functional breakdown of capabilities into supporting technologies.

The Development Matrix defines the development timelines for each of the technologies. The

226

Need Matrix defines the times at which the stakeholders require each capability. In the qualitative

LEAP process, the values in each of these matrices are binary: either zero (0) or one (1). In these

matrices, one (1) indicates that the rows and columns are connected – the technology supports the

capability, the technology will be developed in the time period, or the capability is needed by the

stakeholders in the time period.

The binary inputs enable rapid instantiation of the process and support standard matrix

multiplication methods. However, the use of binary inputs provides a qualitative assessment of

absolute technology development timelines: technologies will or will not be developed in a given

time period. Unfortunately, technology development rarely follows well defined timelines. Several

methods exist to estimate the duration of a technology development program, such as the critical

path method and the program evaluation and review technique (PERT) [187]. Schedule risk

analysis combines these methods with Monte Carlo analysis to produce the probability of a

technology being developed in a specific time period [188]. To increase the usability of the LEAP

process, it needs to be able to input these probabilities into the Development Matrix and to

propagate the probabilities through the rest of the analysis. This paper defines updates to the LEAP

process and equations to account for probability and to produce the likelihood of delivering

capabilities on time to the stakeholders. The updated process is referred to as the quantitative LEAP

process.

The rest of this paper is structured in three sections. First, an overview of related work is

presented. Next, the quantitative LEAP model is described in detail and an example of its usage

and comparison to the qualitative model is provided. Finally, the paper is concluded and

recommendations for future work are presented.

227

4.2.2.1.3 Related Work

Satisfying stakeholder needs is critical to the success of a project. Unfortunately, satisfying

these needs often produces schedule and cost pressure on a system developer, resulting in the

introduction of technical debt into the system [18]. Increasing the awareness of technical debt upon

its introduction to the system is can improve overall project performance [189]. de Almeida et al.

connect technical debt prioritization with business processes, and show accounting for business

processes affects how technical debt is prioritized [190]. However, they do not provide a

generalizable and mathematical approach to link the stakeholder needs and the system

development to assist in the prioritization of development.

The LEAP process provides a novel approach for linking the delivery timeline of system

capabilities to the times when the stakeholder needs the capability [160]. It can be used in iterative

development scenarios or in project planning. An example of its usage for identifying

technological investments is provided in [167]. The primary objective of the process is to identify

technologies that may exacerbate system development schedules, resulting in the failure to meet

stakeholder needs on time. The LEAP process allows technologies that contribute to the late

delivery of multiple capabilities to be identified early. Therefore, the LEAP process can provide

leading indicators of technical debt and the impact of technical compromises involving these

technologies can be assessed. However, the LEAP process in [160] only deals in absolute delivery

timelines and needs to be augmented with probabilistic delivery estimates.

Similar work has been performed by other authors investigating the impacts of rework on

project schedules. Rework is associated with the repetition of tasks which were not performed to

the required quality levels of the project [171] while technical debt is associated with the increased

effort required to complete successor tasks [19]. Research on rework includes the connection

228

between project iterations [176] [191], causes of rework [171] [170], and task and project durations

[175] [192]. These overlapping conditions are critical to project success, since a successful project

requires acceptable performance in addition to on-time and on-budget delivery [192].

Kim incorporates rework probabilities into a linear programming solution to determine the cost

of crashing schedule and the impact on total project duration [192]. Smith and Eppinger identify

methods to determine which tasks are contributing the most work in iterative design [191], using

off-diagonal rework probabilities [176]. While these methods allow for the successive build-up of

downstream impacts, they do not account for increases to a successor task’s duration based on the

technical compromises made during the execution of the predecessor tasks.

Krishnan, Eppinger, and Whitney analyze the duration of successor tasks based on the overlap

with predecessor tasks [175]. They assess that starting a successor task too early may increase the

effort and duration of the successor task and may also result in a quality loss of the predecessor

activity due to a loss of flexibility in the predecessor task. Their model attempts to determine how

many iterations to perform with overlapping tasks. However, in many situations, iterations are not

included in a project plan and the model does not provide methods to address the impact on the

successor tasks of quality loss in a predecessor task. Maheswari and Varghese [177] address task

overlaps but do not quantify the rework duration, identifying the assessment of this duration as a

critical area for future work.

Ma et al. recognize that current schedule analysis tools offer only passive management

capabilities for rework and that leading indicators of rework potential are required [174]. They

identify rework probability, the chance of rework occurring, and rework impact, the impact of each

activity, and then apply a learning curve to each iteration to measure its impact. This work is

similar in concept to the LEAP method in that it attempts to predict the future impact of rework

229

on project schedule. However, it focuses on calculating the iterations required within a project and

not on the association between delivery timelines and the satisfaction of stakeholder needs.

The methods and techniques identified in this review focus on the technology delivery aspects

of a project – estimating when the project will be complete. While they provide quantitative

estimates, they do not directly connect the technology delivery timelines to the need dates of the

project stakeholders. The original LEAP process performs this association, but is restricted to

qualitative estimates. Therefore, enhancing the LEAP process by adding probabilistic methods will

provide a quantitative method to mathematically associate the likelihood of capability delivery

with the temporal satisfaction of stakeholder needs.

4.2.2.1.4 Including Probabilities in the LEAP Model

The updates to the LEAP model presented in this section focus on including probabilities in the

Development Matrix. The Development Matrix defines the timelines on which the individual

technologies are developed [160]. Switching the representation of this matrix from binary values

(one (1) and zero (0)) to probabilities enables a more realistic modeling of technology

development.

4.2.2.1.4.1 Matrix Multiplication with Probabilities

The original LEAP model [160] uses matrix operations to identify relationships and to compute

the availability of capabilities. The Availability Matrix (A), which defines whether or not a

capability will be available in a specified time period, is computed by first multiplying the

Functional Matrix (F) and Development Matrix (V), which gives a matrix containing the number

of developed technologies that support each capability in each time period. The total number of

technologies that support the capability (S) is subtracted from the product to determine if the

capability is complete. Finally, the Heaviside function (H) is used to restrict the output values to

230

be between zero (0) and one (1). The Availability Matrix calculation is shown in (4-17) and a

complete explanation of the supporting mathematics can be found in [160].

𝐴𝐴 = 𝐻𝐻((𝐹𝐹𝑉𝑉)𝑇𝑇 − 𝑆𝑆 + 0.5𝐽𝐽) (4-17)

The critical concept in the Availability Matrix calculation is the combination of the Functional

and Development Matrices through matrix multiplication. The dot product of the row of one matrix

and the column of the other is used to determine the count of technologies that are developed

(column of the Development Matrix) that support the capability (row of the Functional Matrix).

The dot product adds the products of each of the corresponding elements of the row and column

vectors.

If the Development Matrix includes probabilities instead of binary values, then (4-17) is no

longer valid. Assuming that the development of each technology is independent, then the

probability of developing a capability c in a specific time period p is the product of the probabilities

of developing each supporting technology t in that same time period p, as depicted in (4-18).

𝑃𝑃�𝐶𝐶𝑝𝑝� = ∏ 𝑃𝑃(𝑡𝑡𝑖𝑖,𝑝𝑝:𝑡𝑡𝑖𝑖 𝑠𝑠𝑠𝑠𝑝𝑝𝑝𝑝𝑜𝑜𝑠𝑠𝑡𝑡𝑠𝑠 𝑐𝑐)𝑖𝑖 (4-18)

The matrix multiplication 𝐹𝐹𝑉𝑉 produces a summation of independent probabilities and not the

product, as shown in (4-19). Additionally, (4-19) includes all the cells of each row of the

Functional Matrix in the computation. This inclusion creates a problem when 𝐹𝐹[𝑖𝑖, 𝑗𝑗] = 0. When

adding the products of each cell, a zero (0) value in F simply eliminates the corresponding value

of V from the sum. However, when multiplying the products of corresponding cells by applying

(4-18), a zero (0) value in F results in a zero (0) product. In the definition of the Functional Matrix,

a zero (0) equates to a technology that does not support the capability, and therefore the V value

should be eliminated from the product instead of the reducing the product to zero.

231

𝐹𝐹𝑉𝑉 = �∑ 𝐹𝐹[0, 𝑖𝑖] ∗ 𝑉𝑉[𝑖𝑖, 0]𝑛𝑛𝑖𝑖 ⋯ ∑ 𝐹𝐹[0, 𝑖𝑖] ∗ 𝑉𝑉[𝑖𝑖, 𝑝𝑝]𝑛𝑛𝑖𝑖⋮ ⋱ ⋮∑ 𝐹𝐹[𝑚𝑚, 𝑖𝑖] ∗ 𝑉𝑉[𝑖𝑖, 0]𝑛𝑛𝑖𝑖 ⋯ ∑ 𝐹𝐹[𝑚𝑚, 𝑖𝑖] ∗ 𝑉𝑉[𝑖𝑖, 𝑝𝑝]𝑛𝑛𝑖𝑖 � (4-19)

Based on these observations, standard matrix operations do not meet the requirements for

updating the LEAP process to include probabilities in the Development Matrix. The required

function must input two vectors of the same size and compute the product of the products of

corresponding elements, if, and only if, the element of one vector is non-zero.

Two separate functions are required: one that selects the elements of a vector and one that

produces the multiplication of the elements in the matrix. These functions are defined in the

following sections.

4.2.2.1.4.1.1 Selecting Elements of a Vector: the k Function

A new function, called the k function, is defined in (4-20) to select and replace non-zero input

values. It inputs three values x, y, and z. If x is not zero (0), then the k function outputs y. If x is

zero (0), then the k function outputs z. The function provides a simple method to select a value

based on another input. Equation 4-21 extends the k function to apply to vectors and (4-22) extends

it to matrices. A capital K is used to denote the matrix version of the equation. Note that in (4-21)

vectors 𝑢𝑢�⃗ and �⃗�𝑝 must be the same length and in (4-22) matrices U and V must have the same

dimensions.

𝑘𝑘(𝑥𝑥,𝑦𝑦, 𝑧𝑧) = �𝑦𝑦, 𝑥𝑥 ≠ 0𝑧𝑧, 𝑥𝑥 = 0
 (4-20)

𝑘𝑘�⃗ (𝑢𝑢�⃗ , �⃗�𝑝, 𝑧𝑧) = [𝑘𝑘(𝑢𝑢�⃗ [0], �⃗�𝑝[0], 𝑧𝑧) … 𝑘𝑘(𝑢𝑢�⃗ [𝑛𝑛], �⃗�𝑝[𝑛𝑛], 𝑧𝑧)] (4-21)

𝐾𝐾(𝑈𝑈,𝑉𝑉, 𝑧𝑧) = � 𝑘𝑘(𝑈𝑈[0,0],𝑉𝑉[0,0], 𝑧𝑧) ⋯ 𝑘𝑘(𝑈𝑈[0,𝑛𝑛],𝑉𝑉[0, 𝑛𝑛], 𝑧𝑧)⋮ ⋱ ⋮𝑘𝑘(𝑈𝑈[𝑚𝑚, 0],𝑉𝑉[𝑚𝑚, 0], 𝑧𝑧) ⋯ 𝑘𝑘(𝑈𝑈[𝑚𝑚,𝑛𝑛],𝑉𝑉[𝑚𝑚,𝑛𝑛], 𝑧𝑧)
� (4-22)

232

4.2.2.1.4.1.2 Multiplying Matrices: the k* Function

The k function provides the first step of the required multiplication process – the elimination of

the zero (0) terms from one of the vectors. A second function is required to address the

multiplication of the elements in two matrices instead of the summation. The k* function is defined

in (4-23). For two vectors, it computes the product of the application of the k function to the

corresponding elements of the vectors. Equation 4-24 shows the matrix version of the k* function,

denoted with a capital K.

𝑘𝑘∗(𝑢𝑢�⃗ , �⃗�𝑝, 𝑧𝑧) = ∏ 𝑘𝑘(𝑢𝑢�⃗ [𝑖𝑖], �⃗�𝑝[𝑖𝑖], 𝑧𝑧)𝑛𝑛𝑖𝑖 (4-23)

𝐾𝐾∗(𝑈𝑈,𝑉𝑉, 𝑧𝑧) = � 𝑘𝑘∗(𝐹𝐹[0, :],𝑉𝑉[: ,0], 𝑧𝑧) ⋯ 𝑘𝑘∗(𝐹𝐹[0, :],𝑉𝑉[: ,𝑝𝑝], 𝑧𝑧)⋮ ⋱ ⋮𝑘𝑘∗(𝐹𝐹[𝑚𝑚, :],𝑉𝑉[: ,0], 𝑧𝑧) ⋯ 𝑘𝑘∗(𝐹𝐹[𝑚𝑚, :],𝑉𝑉[: ,𝑝𝑝], 𝑧𝑧)
� (4-24)

The K* function has the requirements necessary to combine the Functional and Development

matrices when the Development Matrix contains probabilities: it eliminates zero values in the

Functional Matrix from the product and also multiplies the elements of the matrices instead of

adding them.

4.2.2.1.4.1.3 Application of the K* function

The application of the K* function is shown in Figure 4-15. In the figure, the Development

Matrix contains the probabilities of completing each technology in each time period. If this matrix

is multiplied by the Functional Matrix F using standard matrix multiplication, the result is the third

matrix, FV, located in the lower left of the figure. The red cells indicate results where the

probability of delivering the capability in a time period are greater than one. The application of the

K* function results in the matrix on the lower right of Figure 4-15. The same cells are highlighted

233

in red, however, they now have the actual probability values for delivering the capability in the

specified time periods.

Figure 4-15. Application of the K* function and comparison with matrix multiplication

The first row of the final matrix is unchanged between the standard matrix multiplication and

the K*. This row represents the availability of capability C1, which, as seen in the Functional

Matrix, only depends on one technology (T1). Therefore, the matrix multiplication and the

application of the K* function produce the same results. The yellow cells in the final matrix

changed their values to zero (0). This result is due to the multiplication of probabilities instead of

the summation of probabilities. Both capability C2 and capability C3 depend on technology T2.

Technology T2 has a zero probability of being developed in time period P1. Therefore, when the

probabilities are multiplied, there is a zero probability of completing C2 and C3 in time period P1.

The traditional matrix math summed the probabilities of the supporting technologies, thereby

producing incorrect results.

4.2.2.1.4.2 Including Probabilities in the LEAP Process

Having demonstrated the usage of the K* function to combine probabilities in matrix

multiplication, the LEAP equations presented in [160] can be updated to account for the

234

probabilistic Development Matrix. As a result of these updates the Availability and Delivery

Matrices, which are the outputs of the Evaluation phase of the LEAP process, will both produce

probabilistic values for capability availability and delivery. The probabilistic Delivery Matrix

defines the likelihood of meeting the stakeholders’ needs on time and therefore becomes a decision

aid for the system developer.

4.2.2.1.4.2.1 Availability Matrix

The Availability Matrix determines if a capability will be available in a specific time period

[160]. The K* function computes this probability when applied to the Functional and Development

Matrices. Therefore, calculating the probabilistic Availability Matrix requires using the K*

function as shown in (4-25).

𝐴𝐴 = (𝐾𝐾∗(𝐹𝐹,𝑉𝑉, 1))𝑇𝑇 (4-25)

Within the K* function, z is set to one (1) such that a zero (0) value in the Functional Matrix

translates to one (1) in the multiplication instead of the value in the Development Matrix. This

choice effectively eliminates the zero entry in the Functional Matrix from the probability

computation. This behavior is desired since that capability is not dependent on the technology. The

transpose of the K* function is taken to produce an Availability Matrix with the same dimensions

as the Need Matrix in [160].

4.2.2.1.4.2.2 Delivery Matrix

While the Availability Matrix specifies when capabilities are available, the Delivery Matrix (D)

defines whether or not the capabilities are delivered in time to meet the stakeholders’ needs. In the

qualitative LEAP process, the Delivery Matrix is calculated by subtracting the Availability Matrix

from the Need Matrix [160]. Applying the same calculation here would result in the Delivery

235

Matrix specifying the probability of not delivering the capability on time. Logically, it makes more

sense to have the Delivery Matrix indicate the probability of delivering on time instead. Since the

Availability Matrix contains probability values, it is necessary to distinguish between capabilities

that have zero probability of being delivered on time and those that are not needed in a time period.

Therefore, the Delivery Matrix is calculated using the K function on the Need and Availability

Matrices as shown in (4-26). The z value in the K function is set to negative one (-1) to identify

the time periods where a capability is not needed.

𝐷𝐷 = 𝐾𝐾(𝑁𝑁, 𝐴𝐴,−1) (4-26)

The values in the Delivery Matrix take on different meaning than those in the qualitative LEAP

process. A value that is greater than or equal to zero (0) indicates the probability of delivering a

capability in the time period. A negative value indicates that the capability is not needed in that

time period.

4.2.2.1.4.2.3 Investment Matrix

The final matrix produced by the LEAP process is the Investment Matrix (I). The Investment

Matrix identifies those technologies that have the greatest contributions to the late satisfaction of

stakeholder needs. In the qualitative LEAP formulation, the values in the Investment Matrix

represent the number of late capabilities contributed to by each technology [160]. Using the

probabilistic formulation of the Development Matrix, the values in the Investment Matrix become

a score – the higher the value, the larger the impact of the technology. The updated Investment

Matrix equation is shown in (4-27).

𝐼𝐼 = (𝑁𝑁𝐹𝐹)𝑇𝑇 ∘ (𝐽𝐽 − 𝑉𝑉) (4-27)

236

The Need and the Functional Matrices both contain binary values, so standard matrix

multiplication is used. This product gives the number of needed capabilities affected by a specific

technology. J is the Hadamard identity matrix, which is a matrix of all ones (1) [166]. Subtracting

the Development Matrix, V, from J, produces a matrix of probabilities of not delivering

technologies. The two resulting matrices are then combined element-wise using the Hadamard

product (∘) [166], producing an Investment Matrix where each value is the number of affected

capabilities times the probability of late delivery.

Larger scores in the Investment Matrix represent a greater contribution of that technology to

the late delivery of the system in the specified time period. The score is the number of affected late

capabilities times the probability of late delivery of the technology. Table 4-6 shows examples of

Investment Matrix scores including the number of impacted capabilities and the probability of late

delivery.

Table 4-6. Examples of investment matrix scores

Number of Late Capabilities

Impacted

Probability of Late

Delivery
Score

Formula (𝑁𝑁𝐹𝐹)𝑇𝑇 (𝐽𝐽 − 𝑉𝑉) (𝑁𝑁𝐹𝐹)𝑇𝑇 ∘ (𝐽𝐽 − 𝑉𝑉)

Technology 1 1 0.1 0.1

Technology 2 4 0.1 0.4

Technology 3 1 0.7 0.7

Technology 4 4 0.7 2.8

From these examples, it can be clearly seen that the score provides additional insight into the

importance of a technology. Larger scores indicate a larger potential return-on-investment (ROI)

if the likelihood of delivering the technology on time can be increased. Consider a situation where

a choice is made to invest in either Technology 2 or Technology 3. The qualitative LEAP model

would imply that Technology 2 provides the bigger ROI as it impacts more capabilities than

Technology 3. The quantitative LEAP process, on the other hand, indicates that Technology 3

237

provides the bigger ROI. Although it only affects one capability, it has a much higher likelihood

of delivering late and therefore a correspondingly larger score.

4.2.2.1.4.2.4 Adjustments for Dependent Technologies

The above process relies on an assumption of independence between the technologies. In

situations where technologies depend upon each other, the model defined above will incorrectly

calculate the probabilities. This restriction is remedied by redefining the Functional Matrix. The

Functional Matrix maps the capabilities to the supporting technologies. When the technologies are

independent, then all technologies should be included in each row of the Functional Matrix.

However, if technologies are dependent upon each other, then only the latest technology should

be included in the row in the Functional Matrix. For example, consider the Functional Matrix in

Figure 4-15. If Technology 2 is dependent upon Technology 1, then the Functional Matrix would

be rewritten as shown in Figure 4-16, with Capability 2 only showing Technology 2 as a supporting

technology. The highlighted cell indicates the change in the matrix. With this redefinition of the

Functional Matrix, the capabilities are still composed of independent technologies and the rest of

the analysis process is valid.

Figure 4-16. Functional Matrix accounting for technology dependencies

4.2.2.1.4.3 Example Application of the Quantitative LEAP Process

The updates to the LEAP process are best understood through an example application.

Kleinwaks et al. [167] applied the qualitative LEAP process to the development of optical

terminals at the Space Development Agency. As an example of the quantitative LEAP process,

238

this work is modified to use notional probabilistic values in the Development Matrix. The left side

of Figure 4-17 shows the initial qualitative Development Matrix from [167] after notional

investments were made to increase the likelihood of meeting the stakeholder capabilities. To

estimate the probabilities, a normal distribution was applied to each technology, with a mean set

to the first time period identified in [167] minus two years and the standard deviation set to two

years. This distribution was chosen to give an 84% probability of delivering at the times identified

in the qualitative analysis, which is based on the expert opinions used to establish the delivery

timelines in [167]. The probability of delivering each technology in each time period is computed

from the distribution. The resulting probabilistic Development Matrix is shown on the right side

of Figure 4-17, where the colors go from red (low probability of delivering) to green (high

probability of delivering).

Figure 4-17. Qualitative (left) and quantitative (right) Development Matrices, based on [167]

The probabilistic Development Matrix is used in the quantitative LEAP process to determine

the likelihood of delivering the capabilities in each time period. Figure 4-18 shows the Delivery

2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032

T1 1 1 1 1 1 1 1 1 1 T1 0.31 0.50 0.69 0.84 0.93 0.98 0.99 1.00 1.00 1.00 1.00 1.00

T15 1 1 1 1 1 1 1 1 1 1 1 1 T15 0.84 0.93 0.98 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

T2 1 1 1 1 1 1 1 1 1 1 1 T2 0.69 0.84 0.93 0.98 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00

T4 1 1 1 1 1 1 1 1 1 1 T4 0.50 0.69 0.84 0.93 0.98 0.99 1.00 1.00 1.00 1.00 1.00 1.00

T6 1 1 1 1 1 1 1 1 1 T6 0.31 0.50 0.69 0.84 0.93 0.98 0.99 1.00 1.00 1.00 1.00 1.00

T3 1 1 1 1 1 1 1 1 1 T3 0.31 0.50 0.69 0.84 0.93 0.98 0.99 1.00 1.00 1.00 1.00 1.00

T8 1 1 1 T8 0.00 0.00 0.01 0.02 0.07 0.16 0.31 0.50 0.69 0.84 0.93 0.98

T10 1 1 1 1 1 1 1 1 T10 0.16 0.31 0.50 0.69 0.84 0.93 0.98 0.99 1.00 1.00 1.00 1.00

T11 1 1 1 1 1 1 1 1 1 1 1 T11 0.69 0.84 0.93 0.98 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00

T12 1 1 1 1 1 1 1 1 1 1 1 T12 0.69 0.84 0.93 0.98 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00

T7 1 T7 0.00 0.00 0.00 0.00 0.01 0.02 0.07 0.16 0.31 0.50 0.69 0.84

T13 1 1 1 1 1 1 1 1 1 1 1 1 T13 0.84 0.93 0.98 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

T5 1 1 1 1 1 1 1 1 1 1 1 T5 0.69 0.84 0.93 0.98 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00

T9 1 1 1 1 1 1 1 1 1 1 T9 0.50 0.69 0.84 0.93 0.98 0.99 1.00 1.00 1.00 1.00 1.00 1.00

T14 1 1 1 1 1 1 1 T14 0.07 0.16 0.31 0.50 0.69 0.84 0.93 0.98 0.99 1.00 1.00 1.00

T22 1 1 1 1 1 1 1 1 1 1 1 T22 0.69 0.84 0.93 0.98 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00

T21 1 1 1 1 1 1 1 1 1 1 1 T21 0.69 0.84 0.93 0.98 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00

T16 1 1 1 1 1 1 1 1 1 1 1 T16 0.69 0.84 0.93 0.98 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00

T17 1 1 1 1 1 1 1 1 1 1 T17 0.50 0.69 0.84 0.93 0.98 0.99 1.00 1.00 1.00 1.00 1.00 1.00

T18 1 1 1 1 1 1 1 1 1 1 1 T18 0.69 0.84 0.93 0.98 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00

T19 1 1 1 1 1 1 1 1 1 1 T19 0.50 0.69 0.84 0.93 0.98 0.99 1.00 1.00 1.00 1.00 1.00 1.00

T20 1 1 1 1 1 1 1 1 T20 0.16 0.31 0.50 0.69 0.84 0.93 0.98 0.99 1.00 1.00 1.00 1.00

T23 1 1 1 1 1 1 1 1 1 1 1 T23 0.69 0.84 0.93 0.98 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00

T24 1 1 1 1 1 1 1 1 1 T24 0.31 0.50 0.69 0.84 0.93 0.98 0.99 1.00 1.00 1.00 1.00 1.00

T25 1 1 1 1 1 1 1 1 1 1 1 T25 0.69 0.84 0.93 0.98 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00

T26 1 1 1 1 1 1 1 T26 0.07 0.16 0.31 0.50 0.69 0.84 0.93 0.98 0.99 1.00 1.00 1.00

239

Matrix from [167] on the left and the probabilistic Delivery Matrix on the right. The qualitative

LEAP Delivery Matrix uses zero (0) to indicate that the capability is either on time or not needed

in a specific time period and one (1) to indicate that the capability is late. In Figure 4-18, late

capabilities are highlighted in red in the qualitative Delivery Matrix. The quantitative LEAP

Delivery Matrix gives the probability of the capability being ready in a time period it is needed, or

a negative one (-1) if the capability is not needed. In the quantitative Delivery Matrix in Figure

4-18, the color scale goes from low likelihood of delivering a needed capability (red) to a high

likelihood of delivering the needed capability (green). White cells indicate when the capability is

not needed.

Figure 4-18. Qualitative (left) and quantitative (right) Delivery Matrices, based on [167]

In the qualitative Delivery Matrix, capability C7 is late marked as late to need in 2028 (a red

1). However, in the quantitative matrix, the probability of delivering C7 in 2028 is 0.153. While

this probability is small, there is still a chance of delivering the capability on time. There is a

greater than 50% chance that C7 is delivered in 2031, while the qualitative matrix says that it still

will not be ready. Other capabilities, such as C5, may be late (a 50% chance of delivering in 2022)

at their first needed time period, a factor which is missed in the qualitative LEAP matrix. The

C1 C2 C3 C4 C5 C6 C7 C1 C2 C3 C4 C5 C6 C7

2021 0 0 0 0 0 0 0 2021 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000

2022 -1 0 0 0 0 0 0 2022 -1.000 -1.000 -1.000 -1.000 0.501 -1.000 -1.000

2023 0 0 0 0 0 0 0 2023 0.724 0.417 -1.000 -1.000 0.758 -1.000 -1.000

2024 0 0 0 0 0 0 0 2024 0.901 0.732 -1.000 -1.000 0.912 0.507 -1.000

2025 0 0 0 0 -1 0 0 2025 0.973 0.912 0.790 -1.000 -1.000 0.775 -1.000

2026 0 0 0 -1 -1 0 0 2026 0.994 0.978 0.919 -1.000 -1.000 0.922 -1.000

2027 0 0 0 -1 -1 0 0 2027 0.999 0.996 0.975 -1.000 -1.000 0.979 -1.000

2028 0 0 0 0 -1 0 1 2028 1.000 0.999 0.993 0.976 -1.000 0.996 0.153

2029 0 0 0 0 -1 0 1 2029 1.000 1.000 0.999 0.994 -1.000 0.999 0.306

2030 0 0 0 0 -1 0 1 2030 1.000 1.000 1.000 0.999 -1.000 1.000 0.499

2031 0 0 0 0 -1 0 1 2031 1.000 1.000 1.000 1.000 -1.000 1.000 0.691

2032 0 0 0 0 -1 0 0 2032 1.000 1.000 1.000 1.000 -1.000 1.000 0.841

240

movement away from the binary nature of the qualitative LEAP model increases the fidelity and

the realism of the Delivery Matrix. The quantitative model clearly distinguishes between time

periods where the capability is delivered on time and when it is not required. For example, the

quantitative model identifies that capability C1 is required in 2023 and that there is a 72%

probability of it being delivered on time. The qualitative model shows a zero (0) in the entry for

C1 in 2023, which is interpreted as either delivering on time or not being needed. The increased

fidelity of the model makes the quantitative LEAP model more effective in predicting outcomes

for the stakeholders.

The final calculation in the LEAP model is to determine the Investment Matrix, which

highlights which technologies are contributing to the late delivery of capabilities in each time

period. In the qualitative model, shown on the left of Figure 4-19, technologies T8 and T7 are

identified as each contributing to a late capability starting in 2028 (shown as red boxes). The

quantitative model, shown on the right side of Figure 4-19, shows the investment ‘score’ for each

of the technologies in each time period with low values in green and high values in red.

241

Figure 4-19. Qualitative (left) and quantitative (right) Investment Matrices, based on [167]

The values in the quantitative Investment Matrix take on a slightly different meaning from those

in the qualitative model. In the qualitative model, the Investment Matrix values indicate the count

of the late capabilities that depend on the technology [160]. In the quantitative model, the value is

a score that represents how important the technology is in driving late capability deliveries in the

time period. For example, consider technologies T8 and T7 in 2028. In the qualitative model, they

both have the same value (1) in the Investment Matrix since they each contribute to the late

delivery of a single capability. In the quantitative model, the value for T8 is 0.5 and the value for

T7 is 0.841 in 2028. The higher score for T7 indicates a higher potential ROI if the probability of

delivering the technology on time could be increased. The cost to increase the delivery probability

would need to be accounted for in any ROI calculation, but that is out of the scope of this paper.

4.2.2.1.4.4 Accounting for Technical Debt in the Quantitative LEAP Process

Including probabilities in the LEAP process enhances its ability to identify the technologies that

can be potential sources of technical debt within a system development. Kleinwaks, Batchelor, and

2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032

T1 0 0 0 0 0 0 0 0 0 0 0 0 T1 0.000 0.000 0.000 0.159 0.067 0.023 0.006 0.003 0.000 0.000 0.000 0.000

T15 0 0 0 0 0 0 0 0 0 0 0 0 T15 0.000 0.000 0.317 0.134 0.068 0.019 0.004 0.001 0.000 0.000 0.000 0.000

T2 0 0 0 0 0 0 0 0 0 0 0 0 T2 0.000 0.309 0.159 0.134 0.023 0.006 0.001 0.000 0.000 0.000 0.000 0.000

T4 0 0 0 0 0 0 0 0 0 0 0 0 T4 0.000 0.000 0.000 0.067 0.023 0.006 0.001 0.000 0.000 0.000 0.000 0.000

T6 0 0 0 0 0 0 0 0 0 0 0 0 T6 0.000 0.000 0.000 0.159 0.067 0.023 0.006 0.003 0.000 0.000 0.000 0.000

T3 0 0 0 0 0 0 0 0 0 0 0 0 T3 0.000 0.000 0.000 0.159 0.067 0.023 0.006 0.003 0.000 0.000 0.000 0.000

T8 0 0 0 0 0 0 0 1 1 0 0 0 T8 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.500 0.309 0.159 0.067 0.023

T10 0 0 0 0 0 0 0 0 0 0 0 0 T10 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.006 0.001 0.000 0.000 0.000

T11 0 0 0 0 0 0 0 0 0 0 0 0 T11 0.000 0.000 0.317 0.134 0.068 0.019 0.004 0.001 0.000 0.000 0.000 0.000

T12 0 0 0 0 0 0 0 0 0 0 0 0 T12 0.000 0.309 0.476 0.267 0.091 0.025 0.005 0.001 0.000 0.000 0.000 0.000

T7 0 0 0 0 0 0 0 1 1 1 1 0 T7 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.841 0.691 0.500 0.309 0.159

T13 0 0 0 0 0 0 0 0 0 0 0 0 T13 0.000 0.000 0.317 0.134 0.068 0.019 0.004 0.001 0.000 0.000 0.000 0.000

T5 0 0 0 0 0 0 0 0 0 0 0 0 T5 0.000 0.309 0.317 0.200 0.068 0.019 0.004 0.001 0.000 0.000 0.000 0.000

T9 0 0 0 0 0 0 0 0 0 0 0 0 T9 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

T14 0 0 0 0 0 0 0 0 0 0 0 0 T14 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.023 0.006 0.001 0.000 0.000

T22 0 0 0 0 0 0 0 0 0 0 0 0 T22 0.000 0.000 0.317 0.134 0.068 0.019 0.004 0.001 0.000 0.000 0.000 0.000

T21 0 0 0 0 0 0 0 0 0 0 0 0 T21 0.000 0.000 0.317 0.134 0.068 0.019 0.004 0.001 0.000 0.000 0.000 0.000

T16 0 0 0 0 0 0 0 0 0 0 0 0 T16 0.000 0.000 0.159 0.067 0.046 0.012 0.003 0.000 0.000 0.000 0.000 0.000

T17 0 0 0 0 0 0 0 0 0 0 0 0 T17 0.000 0.000 0.159 0.067 0.046 0.012 0.003 0.000 0.000 0.000 0.000 0.000

T18 0 0 0 0 0 0 0 0 0 0 0 0 T18 0.000 0.000 0.159 0.067 0.023 0.006 0.001 0.000 0.000 0.000 0.000 0.000

T19 0 0 0 0 0 0 0 0 0 0 0 0 T19 0.000 0.000 0.159 0.067 0.023 0.006 0.001 0.000 0.000 0.000 0.000 0.000

T20 0 0 0 0 0 0 0 0 0 0 0 0 T20 0.000 0.000 0.000 0.000 0.159 0.067 0.023 0.006 0.001 0.000 0.000 0.000

T23 0 0 0 0 0 0 0 0 0 0 0 0 T23 0.000 0.309 0.159 0.134 0.023 0.006 0.001 0.000 0.000 0.000 0.000 0.000

T24 0 0 0 0 0 0 0 0 0 0 0 0 T24 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.000 0.000 0.000 0.000

T25 0 0 0 0 0 0 0 0 0 0 0 0 T25 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

T26 0 0 0 0 0 0 0 0 0 0 0 0 T26 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.023 0.006 0.001 0.000 0.000

242

Bradley [19] use the technical debt metaphor to reflect the long-term system impacts of short-term

decisions. The LEAP framework enables a system developer to rapidly assess the potential for

long-term impacts of short-term decisions that impact the development of critical technologies and

capabilities. For example, system developers are often faced with choices on the sequencing of

technology development due to cost, schedule, and performance limitations. Often, a particular

technology is delayed because it is viewed as less valuable, even though it may be necessary for

later development tasks.

In the LEAP model, technologies with the high potential for technical debt manifest themselves

in the Investment Matrix. Higher scores in the Investment Matrix indicate increased dependencies

on on-time delivery and therefore the potential for impacts due to the presence of technical debt.

With the probabilistic nature of the quantitative LEAP model, these relationships become clearer

as the potential late delivery of a technology can be assessed, including its cascading impacts on

the delivery of capabilities.

4.2.2.1.5 Conclusions and Future Work

Including probabilities within the LEAP framework enables a more realistic assessment of the

ability of the system to deliver in time to meet the stakeholders’ needs. This research updates the

LEAP process defined in [160] to account for a probabilistic Development Matrix and to propagate

those probabilities through the system. This update is critical to better align the LEAP process to

real-world systems. Real systems do not guarantee system delivery in a specific time period and

the ability to estimate the likelihood of delivery allows for higher fidelity modeling.

The user of the quantitative LEAP process can more accurately assess the potential for

achieving technology development by determining the increase in the likelihood of delivering a

capability. An achievement initiative may speed up technology development, but does not

243

guarantee that the technology will be achieved in a specific time frame. The quantitative LEAP

process enables the modeling of this change in probability, instead of an assumption of complete

success. This change in probability can also be mapped more directly to an implementation cost,

enabling a calculation of the ROI for these decisions. The score in the Investment Matrix provides

a more refined estimate of the impact of a technology’s late delivery, highlighting the potential for

higher ROI.

These updates to the process represent the second step in defining a full process for accounting

for technical debt within system development planning, as defined in [160]. Similar to the

qualitative model, the quantitative LEAP framework highlights technologies with the potential for

introducing technical debt into the system. Combining the quantitative LEAP framework with a

scheduling model that accounts for technical debt will highlight the downstream impacts of the

technical debt on the delivery of system capabilities. By modeling the impact of the technical debt

of one technology on its successor technologies in the development cycle, the probabilities of

delivering each technology in a defined time period can be estimated. These estimates, when

included in the quantitative LEAP process, will provide insight to system stakeholders to enable

proper investment decisions to limit the risk of late deliveries. Further verification and validation

of the process includes implementing the quantitative LEAP process on additional real-world

systems to identify insights provided by the process to assist users in delivering capabilities on

time.

4.2.3 Summary of LEAP Quantitative Updates

With the updates to the mathematical processes defined in this section and the ability to

determine a probabilistic development matrix discussed earlier, the LEAP process is ready to use

within a release planning context, as described in the following section.

244

4.3 Including Proactive Technical Debt Assessments in Release Planning

Several authors [28] [91] [94] have discussed the inclusion of technical debt in release planning.

However, the focus of most of their work has been on deciding when to repay the technical debt

and when to let the technical debt remain in the system. For example, Schmid [94] provides a

quantitative assessment of the value of repaying technical debt compared to the risk of leaving it

in the system. This assessment can be used to assist in deciding when to repay technical debt by

performing a value trade. While accounting for technical debt repayment is required to maintain a

healthy system, it is a reactive mechanism for dealing with technical debt.

A proactive mechanism for considering technical debt in release planning would identify the

potential long-term impacts due to the inclusion or exclusion of features in each release of the

system. Running these tools in conjunction with a traditional release planning algorithm would

enable the incorporation of technical debt forecasts and risk assessments into the planning cycle.

In release planning activities, the features are selected and prioritized based on their value,

either to the stakeholders, the developers, or a combination of both [93]. Traditional release

planning methods do not have a method for assessing the potential technical debt introduced into

the system due to the selected order of feature development. Taking the selected development

order and running it through the LEAP process provides an assessment of the potential for

technical debt. The following section describes how to use the LEAP process as a decision support

system for release planning.

4.3.1 LEAP as a Decision Support System for Release Planning

The complete LEAP process involves accounting for technical debt to create probabilistic

technology development timelines and then using those probabilities to assess the ability to deliver

capabilities that meet the stakeholders’ temporal needs. The process identifies sources of outside

245

investments to achieve earlier technology development. The final LEAP phase, the Procure phase,

involves the execution of a system iteration or release to develop and deliver a set of capability.

The accomplishments of that delivery are then fed back into the need and capability decomposition

in an iterative manner to inform future releases.

The LEAP process is a decision support system that can be used to support release planning

while accounting for technical debt. The technology development timelines created in the Evaluate

phase represent the release plan – the order in which technologies and features will be developed.

The process then evaluates this plan to determine if capabilities are delivered on time to the

stakeholders. The Investment Matrix indicates which technologies are likely to produce the largest

return on investment if their development timelines are changed.

By explicitly and mathematically tying the development of technologies to the temporal

satisfaction of stakeholder needs, the LEAP process becomes a tool for evaluating release plans

and project schedules. It enables an assessment of the specified release plan and its projection into

the future. The LEAP process accounts for technical debt by identifying the impacts of technical

concessions based on the temporal ability to satisfy stakeholder needs.

4.3.1.1 Example of LEAP as a Decision Support System in Incremental Development

While the LEAP process was originally designed for use within iterative system development,

it can also be used within a single iteration to identify critical technologies and the impacts of

technical debt. Williams [173] presents a schedule for the development of an aircraft which was

used as the baseline for the evaluation of technical debt impacts using Monte Carlo schedule

analysis techniques [169]. The next sections demonstrate how the LEAP process can be used with

this example project.

246

In the LEAP process, the first step is the List step, which identifies the stakeholder needs and

decomposes them into tactical capabilities and their component technologies. To demonstrate the

use of the quantitative LEAP mode, the aircraft development project is assumed to be an

incremental development project with the following increments:

1. Design completion;

2. Manufacturing of d/b (development batch, or test) components;

3. Assembly of d/b aircraft;

4. Flight trials; and,

5. Production of components leading to the ready to assemble state.

Therefore, the overall stakeholder need – the assembly of the aircraft, can be decomposed into

a capability representing each increment in the above list. These capabilities are further

decomposed into the technologies identified as the tasks in the schedule in [173]. The

interdependencies of the technologies are identified through the schedule as well. Figure 4-20

shows the relationship between the tasks, color coded by increments. The numbers represent the

identifier for each of the tasks.

247

Figure 4-20. Aircraft example task relationships to increments

The resulting Technology Matrix is shown in Figure 4-21 and the resulting Functional Matrix

is shown in Figure 4-22, which completes the List phase of the LEAP process. Note that the project

represented in this analysis consists of dependent technologies, and therefore the mapping of

capability to technology only includes the last technologies in the dependency tree, as identified

in the Technology Matrix. This restriction is required to enable proper calculation of probabilities

[186]. For the technical debt analysis, the T, 𝛼𝛼, r, 𝜏𝜏, and U parameters must also be set during this

phase. 𝛼𝛼, T, and U are set corresponding to the compounding interest case in [169]. r and 𝜏𝜏 will be

varied to demonstrate the impacts of technical debt on the ability to deliver the system on time.

248

Figure 4-21. Technology Matrix for aircraft example. Based on [173]

Figure 4-22. Functional Matrix for aircraft example

The next phase in the LEAP process is the Evaluate phase, where the timelines required for

capability delivery and the development timelines of the technologies are calculated and then

combined into the Delivery Matrix [160]. For this analysis, it is assumed that the stakeholders were

presented with the “no technical debt” schedule from [169], where the mean duration is 90.5

months and the 90% point (the time at which there is a 90% probability that the system will be

complete) is 101 months. It is further assumed that the stakeholders have agreed to adjust their

need dates to accept delivery no later than 101 months after project start. Therefore, the need date

for capability 4, having the aircraft ready to assemble, is set to 102 months after project start,

249

allowing for delivery throughout the 101st month. Using the maximum durations for predecessor

tasks from [173], the need dates for the other capabilities can be set as shown at the top of Figure

4-23. These dates result in the Need Matrix shown in Figure 4-23, where the time periods are listed

as months after program start.

Figure 4-23. Need Matrix for aircraft example.

Using the schedule analysis techniques defined in [169], a Monte Carlo analysis was run to

produce the estimated development timelines for each technology. Figure 4-24 shows the

Development Matrix created as a result of the schedule analysis.

250

Figure 4-24. Development Matrix for aircraft example

This probabilistic matrix is used as the input to the quantitative LEAP process defined in [186]

to produce the Delivery Matrix shown in Figure 4-25. If need satisfaction is assessed as the

probability of completing capability 4 when needed, then there is 91% chance of delivering the

system on time at month 102 without the presence of technical debt. This result is shown

highlighted in the red box in Figure 4-25. While the overall project has a relatively high probability

of delivering on time, several of the increments, represented by the capabilities, are likely to be

late to need. Capability 0, the component design, only has a 57% change of completing by the

251

stated need date and capability 1, the manufacturing of the test articles, only has a 51% chance of

being complete. However, these delays are compensated for by the overall schedule margin.

Figure 4-25. Delivery Matrix for aircraft example

The Investment Matrix shows the technologies that have direct impact on the late delivery of

capabilities [160]. The calculated Investment Matrix for the aircraft example is shown in Figure

4-26. The larger values in the Investment Matrix indicate which technologies would most benefit

from investments to increase the speed of delivery. In this instance, technologies 1, 4, and 7 have

the largest values in the Investment Matrix, indicating that they have the largest overall impact.

These technologies drive the development of their respective capabilities, which can be determined

by examining the Functional Matrix. In this case, however, there is not likely a large return on

252

investment available by investing in these technologies, as the overall project has a 91% chance of

delivering on time.

Figure 4-26. Investment Matrix for aircraft example

In this analysis, the component designs, represented as Capability 0, are only 57% likely to be

delivered at the need date specified by the stakeholders (month 43). The Investment matrix shows

that it is primarily Technology 1, the engine design, that is driving this late delivery. During project

execution, stakeholders may push for an earlier release of the engine design with the perception

that the entire aircraft project will be late. Since schedule pressure is a primary cause of technical

debt [18], it is reasonable to assume that this pressure could create technical debt in the engine

253

design, which could then percolate through the system. Technical debt could easily be added to

other technologies within the system in similar manners.

To isolate the impacts of technical debt on a particular technology, variations in r and 𝜏𝜏 were

input for each technology. Using the above example, and analysis was performed iterating through

values of r and 𝜏𝜏 from 0.1 to 1 in steps of 0.1 for each technology while leaving the other tasks

unchanged. The technical debt was assumed to compound with time and r and 𝜏𝜏 were assumed to

have the same value for each successor technology. For example, if Technology 1 creates the

technical debt, r and 𝜏𝜏 for Technology 1 are left unchanged, but r and 𝜏𝜏 for its successor tasks

(Technologies 4, 7-9, and 12-15) are all set to the same values, which are varied through the

analysis. After setting the parameters for each run, the Development Matrix is created through a

Monte Carlo analysis. The Development Matrix is then input to the quantitative LEAP process to

determine the probability of satisfying the stakeholder needs. Figure 4-27 summarizes this process.

Figure 4-27. Technical debt analysis process for individual tasks with the LEAP process

Figure 4-28 shows the results of the analysis. In this figure, the probability of overall

satisfaction, defined as delivering Capability 4 on time, is plotted against the id number of each

case, where each case represents a different combination of r and 𝜏𝜏 values. The color coding

indicates which technology was modeled as having technical debt in each case. Lower values on

the y-axis indicate combinations of r and 𝜏𝜏 values for a particular technology that create a reduced

254

likelihood of delivering the entire project on time, represented as P(satisfaction). In the figure, it

can be seen that Technologies 0 (blue circles), 1 (navy squares), 2 (orange exes), 3 (purple

triangles), and 8 (green exes) have multiple combinations of r and 𝜏𝜏 values which produce

substantially lower probabilities of delivering the system on time. Therefore, technical debt

incurred on these technologies have a greater chance of longer-term impacts on the system

development.

Figure 4-28. Overall probability of meeting stakeholders’ needs for the aircraft example

Figure 4-29 shows the probability of delivering the remaining four capabilities by their stated

need dates for each case that was run. It can be seen that Technology 0, the general design, has a

large potential impact on the ability to satisfy each capability if it incurs technical debt. Technical

debt on Technologies 1, 2, and 3 also has substantial impacts on the delivery of Capabilities 1, 2,

and 3. These tasks are the initial design tasks, and therefore their outsized impact on the delivery

of system capabilities is not unexpected. However, the impact of Technology 0 was not highlighted

in the initial Investment Matrix as a potential source of late delivery. It is only when technical debt

is assessed that the impacts of the general design are revealed. Therefore, it can be concluded that

255

it is critical to minimize the technical debt incurred by the general design phase, which occurs

early in the lifecycle.

Figure 4-29. Satisfaction of each capability in the aircraft example

The initial Investment Matrix (Figure 4-26) highlighted that Technology 1 had a large impact

on the late delivery of Capability 0. However, this is due to the duration estimates of Technology

1 and not to its technical debt. The technical debt incurred on Technology 1 does not delay

Capability 0, but it will impact the delivery timelines of the completed aircraft. The reason for this

impact can be explored in more detail. Figure 4-30 shows the average percent increase in task

duration due to technical debt on specified predecessor tasks. The top plot shows the increase due

to technical debt created by task 1 and the bottom plot shows technical debt created by task 11,

which is independent from task 1 and occurs in a later increment. Technical debt from task 1

increases the duration of subsequent tasks by up to 14%. Even tasks that are several steps away,

such as task 12, experience duration increases of over 6%. Task 11, on the other hand, does not

have a significant impact on future tasks, increasing durations by less than 2%, which is within the

256

error bounds of the Monte Carlo analysis. Note that the decrease in task 10 duration is also less

than 2% and therefore within the same error bounds of the Monte Carlo analysis.

Figure 4-30. Average percent increase in task duration due to technical debt on tasks 1 and 11

Figure 4-31 examines the direct impact on development timelines of the technologies and

delivery timelines of the capabilities due to the creation of technical debt by Technology 1. The

top plot shows the average change in the development probability (the value in the Development

Matrix) for each of the successors of Technology 1 across all the technical debt cases examined.

The dashed line represents the overall probability of delivering the project on time. The technical

debt from Technology 1 significantly decreases the probability of developing Technology 9

(engine production) on time. In these cases, the probability of delivering the entire project doesn’t

257

reach the 90% threshold until month 114, twelve months later than the baseline case without

technical debt.

Figure 4-31. Impact of technical debt from task 1 on technology development and capability delivery

The bottom plot of Figure 4-31 shows the average change in the delivery probability for the

capabilities based on the technical debt induced by Technology 1. The sharp changes in the plot

show the change at the specified need date for each of the capabilities, where probabilities

significantly reduce for all capabilities except Capability 0. Capability 0 depends directly on

Technology 1 but on none of its successors, and therefore the changes are due to the expected

variations within the Monte Carlo analysis process.

258

Figure 4-31 averages the impacts of technical debt induced by Technology 1 across all the

different variations of r and 𝜏𝜏 used in the analysis. However, understanding the separate

contributions of r and 𝜏𝜏 can yield insight into how the technical debt impacts can be minimized: is

it more important to limit the proportion of the successor task subject to the technical debt (lower

values of r) or to minimize the delays associated with the technical debt (lower values of 𝜏𝜏)?

Figure 4-32 shows the overall probability of meeting the stakeholder needs (completing the

project on time) as a function of the changing values of r and 𝜏𝜏 for Technology 1. In this figure, it

is clearly seen that 𝜏𝜏 has a greater individual impact than r. If 𝜏𝜏 is kept at or below 0.5, then the

probability of meeting the need stays above 80%, regardless of the value of r. These results show

that it is more important to limit the amount of delay caused by the technical debt compared to

how much of the successor task is affected by the technical debt – in this example, small amounts

of technical debt in more places cause smaller impacts than large amounts of technical debt in one

place.

259

Figure 4-32. Probability of meeting stakeholders' needs based on r and 𝜏𝜏 for technology 1

This analysis shows the ability of the LEAP process to identify the technologies that can cause

program delays based on their technical debt parameters. Using the Investment Matrix, the key

late technologies are identified, which can then be traced through the Technology Matrix to

identify responsible predecessors. The analysis shows that the downstream impacts of technical

debt, modeled as increased durations for successor tasks, can be responsible for delays in the

delivery of capabilities. For example, technical debt associated with Technology 1 is more likely

to prevent the on-time delivery than technical debt associated with Technology 9, the last task in

the engine development sequence. This conclusion reinforces the understanding that early errors

have a greater change to propagate through the system. Additional cases could be run combining

technical debt parameters for each task to evaluate additional scenarios.

260

4.4 Conclusion

This chapter addresses RQ3: How can technical debt be used as a guide in release planning?

In the release planning process, it is critical to select features that not only deliver value to the

stakeholders but that also do not incur significant technical debt. Within fixed-time iterations, it is

easy for system developers and stakeholders to focus on the delivery of value to the detriment of

the future health of the system. Proactive technical debt assessment can guide release planning by

identifying the features within the system that are most likely to cause future problems if not

addressed early. Within the release planning cycle, these features must be prioritized and also

additional resources must be allocated to support additional evaluation and control of the

development of these features. The occurrence of technical debt on a task does not necessarily

impact that specific task’s development timelines, but could impact the overall ability to deliver

the system on time. Therefore, proactive identification of tasks with large impacts on the rest of

the system enables their development to be prioritized and the controls to be put in place to limit

the potential for technical debt. For example, if a release is behind schedule due to two tasks, the

system developer can assess which task has a higher potential downstream impact and divert the

resources to ensure that task completes successfully. The developer can also assess and prioritize

the repayment of technical debt in the next release given that they are aware that it has been

introduced into the system.

The quantitative LEAP process presented in this chapter can be used as a probabilistic decision

support system to investigate the impacts of design choices on the ability to deliver in accordance

with the stakeholder needs. By modeling technical debt through earned value analysis, the

technical debt impacts associated with each potential decision can be quantified. Using these

development timelines within the LEAP process enables a system developer to identify which

261

stakeholder needs and system capabilities are likely to be affected based on the decisions made

during release planning. The system developer can identify which technologies need to have

improved process controls to limit the impact of incurred technical debt. These capabilities enable

the system developer to minimize the risks associated with technical debt, including technical

bankruptcy. The next chapter defines technical bankruptcy in the context of the LEAP process and

provides example usages of the LEAP process in industry.

262

CHAPTER 5 – AVOIDING TECHNICAL BANKRUPTCY

5.1 Introduction

The previous chapters introduced the concept of technical debt and the LEAP process, which

is a proactive method to identify potential technical debt in system development. This chapter takes

the process one step further by answering RQ4: How can the process and model be used to avoid

technical bankruptcy? This research question is broken into three tasks, each of which are

addressed in this chapter:

• Task 4.1: Create a definition of technical bankruptcy within the context of the process and

model outputs;

• Task 4.2: Utilize the developed process and model at the Space Development Agency and

report on the results; and;

• Task 4.3: Create a simplified way of presenting and communicating the process and model.

First, Task 4.1 is addressed by defining technical bankruptcy in the context of the LEAP process

and demonstrating how the process can be used to proactively identify systems that are at risk of

technical bankruptcy. Next, Task 4.2 is addressed through an example use of the LEAP process,

demonstrating how the process has been used in real-world situations to identify potential sources

of technical bankruptcy. Finally, a simplified presentation of the LEAP process is provided to

address Task 4.3.

5.2 Technical Bankruptcy in the Context of the LEAP Process

The technical debt ontology introduced in Chapter 2 defines technical bankruptcy as “the state

where the system can no longer proceed with its lifecycle until some, or all, of the system technical

263

debt is repaid” [21]. A system may not be able to proceed with its lifecycle due to considerations

in any of the three system dimensions: budget, schedule, or performance. The term “technical

bankruptcy” does not imply that a system is only limited in the performance dimension. Rather, it

means that the buildup of technical debt has reached the point where the compromises made in the

performance dimension can no longer be covered by margins held in the other dimensions.

To determine the utility of the LEAP process to prevent technical bankruptcy, it is first

necessary to define technical bankruptcy within the context of LEAP. The LEAP process utilizes

technology and capability delivery timelines to indicate the health of the system. A healthy system

has a sufficient probability of delivering capabilities on time to satisfy the stakeholders. Therefore,

an unhealthy system is one which has an insufficient probability of delivering at least one

capability on time, resulting in unsatisfied stakeholders. Definition 2 of the technical debt ontology

states “Technical debt is the quantitative impact on the long-term health of the system accrued as

the result of a technical compromise made to achieve a short-term benefit” [21]. Therefore, an

unhealthy system can result from the accrual of technical debt. Within the LEAP process, the

quantitative impact, and therefore the technical debt, can be measured as the difference in the

delivery probability of capabilities as a result of a technical compromise.

5.2.1 Quantifying Technical Debt in the LEAP Process

Within the LEAP process, the quantitative impact of technical debt appears as changes in the

probability of delivering a system that meets the stakeholder needs. The Delivery Matrix can be

calculated prior to the implementation of a technical compromise. Then, the technical debt

associated with that compromise can be estimated and a new Delivery Matrix calculated. The

change in the delivery probabilities of each capability represent the quantitative impact of technical

debt. Figure 4-31 shows this measurement by plotting the change in capability delivery

264

probabilities due to technical debt from a single task. In this figure, the technical debt is modeled

as a random variable and its impacts are averaged. However, the same calculation could easily be

applied to a single case.

Using the same aircraft scenario used in Chapter 4, an example scenario can be developed and

examined. Assume that due to the anticipated late delivery of the engine design task, which is

delaying the entire design increment, stakeholders pressure the development team to release the

design sooner. The system developers determine that there are two ways that they can speed up

the design release within the allocated budget. They can either reduce the amount of performance

modeling of the engine design, incurring modeling and simulation debt, or they can reduce the

design documentation, incurring documentation debt. If the performance modeling of the engine

is reduced, then the maximum duration of the engine design task is reduced from 55 months to 45

months and the most likely duration is reduced from 32 to 27 months. If the documentation

associated with the engine design is reduced, then the maximum duration of the engine design task

is reduced from 55 months to 50 months and the most likely duration is reduced from 32 to 30

months. Figure 5-1 shows the resulting availability of the design capability, as calculated by the

LEAP process. For this scenario, reducing the performance modeling, and thereby incurring

modeling and simulation debt, increases the likelihood of delivering the design at the need date of

month 43 by approximately 0.13, while reducing the documentation increases the delivery

probability by approximately 0.09. Therefore, reducing the performance modeling appears to

provide the highest probability of accelerating the release.

265

Figure 5-1. Design capability availability

To understand the technical debt impacts, the technical debt parameters (r and 𝜏𝜏) are

enumerated for each case as shown in Table 5-1. The modeling and simulation debt has the

potential to significantly impact the engine and frame flight trials, since incomplete modeling may

misrepresent the capabilities of the design. Modeling and simulation debt may also impact engine

development, as the actual engine test cases may fail due to improper modeling assumptions. The

modeling and simulation debt will have limited impact on the production of the engine and

integration of the aircraft. This impact is captured through larger values of 𝜏𝜏 when r is specified.

The documentation debt affects a larger number of successor tasks due to incomplete

documentation. However, for most tasks, the individual impacts are smaller since it is expected

that personnel will be available to provide information in support of later tasks, even if that

information is not written down. The documentation debt impacts are assumed to be larger on the

immediate successor tasks, engine development and d/b engine manufacture. These impacts are

captured by larger values of r with smaller values of 𝜏𝜏. In all cases, r and 𝜏𝜏 are modeled as normally

distributed variables. Table 5-1 defines the mean (𝜇𝜇) and standard deviation (𝜎𝜎) used for each

parameter in each analysis case.

266

Table 5-1. Technical debt parameters for engine design choice

Successor Task Modeling and Simulation Debt Documentation Debt

Engine Development 𝑟𝑟: 𝜇𝜇 = 0.5,𝜎𝜎 = 0.2 𝜏𝜏: 𝜇𝜇 = 0.5,𝜎𝜎 = 0.3

𝑟𝑟: 𝜇𝜇 = 0.5,𝜎𝜎 = 0.2 𝜏𝜏: 𝜇𝜇 = 0.5,𝜎𝜎 = 0.2

Engine Production 𝑟𝑟: 𝜇𝜇 = 0,𝜎𝜎 = 0 𝜏𝜏: 𝜇𝜇 = 0,𝜎𝜎 = 0

𝑟𝑟: 𝜇𝜇 = 0.2,𝜎𝜎 = 0.1 𝜏𝜏: 𝜇𝜇 = 0.2,𝜎𝜎 = 0.05

D/b Engine Manufacture 𝑟𝑟: 𝜇𝜇 = 0,𝜎𝜎 = 0 𝜏𝜏: 𝜇𝜇 = 0,𝜎𝜎 = 0

𝑟𝑟: 𝜇𝜇 = 0.5,𝜎𝜎 = 0.2 𝜏𝜏: 𝜇𝜇 = 0.5,𝜎𝜎 = 0.2

Assemble d/b Aircraft 𝑟𝑟: 𝜇𝜇 = 0,𝜎𝜎 = 0 𝜏𝜏: 𝜇𝜇 = 0,𝜎𝜎 = 0

𝑟𝑟: 𝜇𝜇 = 0.2,𝜎𝜎 = 0.1 𝜏𝜏: 𝜇𝜇 = 0.2,𝜎𝜎 = 0.05

Engine/frame Flight Trials 𝑟𝑟: 𝜇𝜇 = 0.9,𝜎𝜎 = 0.2 𝜏𝜏: 𝜇𝜇 = 0.8,𝜎𝜎 = 0.2

𝑟𝑟: 𝜇𝜇 = 0.2,𝜎𝜎 = 0.1 𝜏𝜏: 𝜇𝜇 = 0.2,𝜎𝜎 = 0.05

Avionics Production 𝑟𝑟: 𝜇𝜇 = 0,𝜎𝜎 = 0 𝜏𝜏: 𝜇𝜇 = 0,𝜎𝜎 = 0

𝑟𝑟: 𝜇𝜇 = 0.2,𝜎𝜎 = 0.1 𝜏𝜏: 𝜇𝜇 = 0.2,𝜎𝜎 = 0.05

Airframe Production 𝑟𝑟: 𝜇𝜇 = 0,𝜎𝜎 = 0 𝜏𝜏: 𝜇𝜇 = 0,𝜎𝜎 = 0

𝑟𝑟: 𝜇𝜇 = 0.2,𝜎𝜎 = 0.1 𝜏𝜏: 𝜇𝜇 = 0.2,𝜎𝜎 = 0.05

Ready to Assemble 𝑟𝑟: 𝜇𝜇 = 0,𝜎𝜎 = 0 𝜏𝜏: 𝜇𝜇 = 0,𝜎𝜎 = 0

𝑟𝑟: 𝜇𝜇 = 0.2,𝜎𝜎 = 0.1 𝜏𝜏: 𝜇𝜇 = 0.2,𝜎𝜎 = 0.05

The values in Table 5-1 were input into the LEAP process, starting with the generation of a new

Monte Carlo schedule analysis. Figure 5-2 shows the outcome of the process, with the availability

timelines of the ready to assemble task on the left and the delivery timelines of the same task on

the right. These figures clearly show that the modeling and simulation debt has a larger impact on

the ability to deliver the entire system, reducing the probability of delivery to 0.81 at the specified

need date of 102 months. If the design capability was accelerated by reducing the documentation

instead, then the probability of delivering the final system at month 102 would be 0.87, which is

closer to the baseline value of 0.91. This analysis provides a quantitative measurement of the

technical debt impact by measuring the likelihood of capability delivery. In this case, the analysis

demonstrated that a choice that may appear more advantageous initially introduces additional

technical debt into the system, resulting in a greater long-term impact. This result highlights the

need to model technical debt throughout all phases of the system to ensure that technical

concessions, if required, are chosen such that the lowest risk is imparted to the system

development.

267

Figure 5-2. Comparison of technical debt impact on ‘ready to assemble task’ completion probability

5.2.2 Assessing Technical Bankruptcy with the LEAP Process

Having demonstrated the ability to assess technical debt within the LEAP process, it is

necessary to determine when the system can no longer proceed with its lifecycle. A system which

is proceeding with its lifecycle is continuing its development according to plan; there are no

increases to schedule or cost outside of previously allocated system margins and the performance

is within the required bounds. Therefore, if a system cannot proceed with its lifecycle, then it must

acquire extra funds, increase its development timeline, or alter requirements to accept reduced

performance.

Within the LEAP process, technical bankruptcy manifests as the inability to develop

technologies on the timelines required to satisfy the stakeholder needs. The timeline, cost, and

performance of a system are related through the triple constraint, which defines the interconnected

nature of project time, scope, and cost [193]. Therefore, a change in schedule can be related to a

268

change in cost or to a change in performance (or both). For example, a longer schedule may be

required due to rework required to reach desired performance levels and an increase in funding

may enable a shortening of that schedule. By modeling the technology development using time,

the LEAP process enables a stakeholder to ‘buy back’ time through increasing funding or

decreasing performance requirements.

Hence, if the required technology development timelines cannot be adjusted within the

available margins of funding or performance, then the system cannot proceed with its lifecycle: it

is technically bankrupt. The severity of the bankruptcy and its mitigations will be project-

dependent and based on the prioritization and importance of the individual stakeholder needs. A

system that is likely to be technically bankrupt can be identified from the Delivery Matrix by the

presence of cells where the probability of capability delivery is less than a threshold value specified

by the system stakeholders. For example, Section 4.3.1.1 defined a large number of Monte Carlo

simulations. Figure 5-3 shows a section of the Delivery Matrix from one of these simulations. In

this Delivery Matrix, Capability 4 is unlikely to be delivered in time period 102 (only 18% likely),

which is the time that it is needed by the stakeholder. The stakeholder’s threshold is 90%

probability of delivery. In this particular case, technical debt on the engine design task is driving

the late delivery of the capability which results in the potential for technical bankruptcy.

269

Figure 5-3. Delivery Matrix showing potential technical bankruptcy

Although the Delivery Matrix identifies the potential for technical bankruptcy, it does not

declare a system bankrupt. This distinction is necessary because a system developer may still be

able to take actions to adjust the values in the Delivery Matrix to increase the likelihood of meeting

the stakeholder needs. For example, the developer could follow the Achieve phase of the LEAP

process to develop long-lead technologies outside of system procurement. Within an iteration, the

system developer could increase resources to decrease the development time of a specific

technology or to decrease the likelihood of a technology introducing technical debt to the system.

The sequence of tasks could also be rearranged to develop more impactful technologies earlier in

the iterative development cycle, even if they provide less initial value.

Therefore, the LEAP process does not provide an absolute determination of a technically

bankrupt system. Instead, it provides leading indicators that a system is heading towards technical

bankruptcy, in a timeframe where the system developer may still take steps to avoid reaching

bankruptcy.

270

5.3 Using LEAP to Avoid Technical Bankruptcy

The LEAP process is a proactive process, and therefore can be used to avoid technical

bankruptcy. The LEAP Delivery Matrix identifies which capabilities are not likely to be developed

in time to meet the stakeholders’ needs. Modelling different sequences of technology development,

investments to achieve earlier capability development, and different procurement strategies can all

be accounted for in the LEAP process to investigate the ability to satisfy the stakeholder needs.

The utility of the LEAP process in assessing technical bankruptcy can be evaluated by using

the aircraft assembly example from Chapter 4. In this example, the system design capability is

likely to be late to need, even though the overall system delivers on time. The lateness of the first

design tasks could induce stakeholders to push for early delivery, resulting in technical

compromises and creating technical debt. As seen in Figure 4-28, if that technical debt is limited

and controlled, then the system still has a high likelihood of satisfying the stakeholder needs.

However, if the technical debt is not carefully managed, then it may drive the system to technical

bankruptcy.

The ability to quantify these technical debt aspects leads to an evaluation of potential technical

bankruptcy within the LEAP process. Figure 5-4 shows the activity diagram by which the LEAP

process is used to assess the potential for technical bankruptcy. The process starts with List phase

of the LEAP process, shown in light blue in Figure 5-4. This phase decomposes the stakeholder

needs into capabilities and creates the Functional Matrix. The creation of the Technology Matrix

is updated to include the identification of technical debt parameters (r, 𝜏𝜏, and 𝛼𝛼) between

dependent technologies. Once all the dependencies are defined, the Evaluate phase of the LEAP

process is executed, shown in dark blue. This phase runs the schedule analysis, accounting for

technical debt, to create the Development Matrix and evaluates the stakeholder timelines to

271

produce the Need Matrix. These matrices are combined to produce the Delivery Matrix. If the

Delivery Matrix outcomes are acceptable, then the system moves directly to the Procure phase,

shown in yellow. In the Procure phase, the release plan is set. With stakeholder concurrence, the

system is procured and the next iteration of the process begins with the List phase for the next

release. If the stakeholders do not concur with the release plan, then there is the potential for

technical bankruptcy, highlighted in orange.

272

Figure 5-4. Activity diagram for assessing technical bankruptcy with LEAP process

273

If the Delivery Matrix is unacceptable, then the system moves into the Achieve phase, shown

in green. Within this phase, the Investment Matrix is created enabling the identification of driving

technologies. At this point, the system developer has several choices to adjust the delivery

timelines. The development schedule can be adjusted to prioritize the driving technologies,

additional resources can be applied to manage and control the potential technical debt, or

investments can be made in independent technologies to accelerate their development. If any of

these outcomes are possible, then the development order and dependencies will have changed and

the process repeats, starting with the creation of the Technology Matrix. If none of the outcomes

are possible, then the system has the potential to be technically bankrupt, highlighted as the dark

orange activity.

If the system reaches the potential bankruptcy state, then the system developer must work with

the stakeholders to determine if there is flexibility in the set of stakeholder needs in any of the

system dimensions. If there is flexibility, then the process resets back to the start of the List phase

with a redefinition of the stakeholder needs. If there is no flexibility, then the system is technically

bankrupt (shown in red in Figure 5-4): it cannot satisfy the stakeholder needs and therefore will

not be able to continue with its lifecycle until some other change is executed, such as acquiring

additional resources to adjust development timelines.

The choices made within the Achieve phase of the process show the utility of the LEAP process

as a decision support system. If the system developer has a choice of when to develop internal

technologies as part of their release planning cycle, they can adjust the development sequence. By

adjusting the development sequence and evaluating the resulting Delivery Matrix, the developer

can identify technologies that are more likely to induce large delays in the overall system

development. These technologies can then be prioritized in the release plans, even if they do not

274

deliver high levels of perceived value to the stakeholder. The LEAP process enables rapid

assessment of the development order and release plans to highlight the outcomes of different

delivery cadences to support decisions.

Technical debt mitigation is another important step that can be applied in the achieve phase.

Capability delivery may be delayed due to technical debt induced by one of the technologies on

the rest of the system. By tracing the late capabilities to the driving technologies and identifying

the predecessors of those technologies, the source of technical debt can be found within the LEAP

process. Resources can then be applied to either mitigate the occurrence of technical debt in the

originating technology or to mitigate the effects of the technical debt on successor tasks. By

enabling the identification of technical debt, the LEAP process allows the system developer to put

controls in place to mitigate the effects.

Finally, the achieve phase also highlights the ability to invest in independent technologies,

where an independent technology is defined as one that is developed outside the scope of the

current system. By adding resources to the independent technologies, the development timelines

of those technologies may be accelerated, thereby reducing risk to the system under development.

This step is especially important for iteratively developed systems. In these systems it is critical to

understand the reliance on outside technologies and to limit the risk on a specific procurement by

only including mature technologies [162]. The LEAP process proactively identifies these

technologies and therefore can provide early indications to the system stakeholders on the risk

associated with including the technologies in a given release.

Iterating on the LEAP process with various assumptions of resource allocation, technical debt

controls, and development schedules enables rapid assessments of release plans and timelines.

These assessments can quantify the risks associated with each option. Therefore, the risk of

275

technical bankruptcy can be quantified and presented to the stakeholders. The following section

provides an example application of the LEAP process and discusses the assessment of technical

bankruptcy within each application.

5.3.1 Example Applications

The LEAP process described in [160] enables a decision maker to rapidly assess the impact of

their decisions. The achieve phase of the process allows the decision maker to investigate different

potential investments to determine which one best increases the chances of delivering capability

on time to the stakeholders. This section provides two example applications of the LEAP process

at the Space Development Agency (SDA). First, an application of the qualitative LEAP process to

a notional selection of optical communications terminal investments is presented. Second, an

example of the application of the quantitative LEAP process to identify and prevent potential

technical debt within the iterative ground system development is presented.

The qualitative LEAP application at SDA was presented at the 2023 INCOSE International

Symposium [167] and the paper is reprinted here.

5.3.1.1 LEAPing Ahead – The Space Development Agency’s Method for Planning for the

Future

5.3.1.1.1 Abstract

The Space Development Agency (SDA) is a constructive disruptor within the Department of

Defense, tasked with rapidly acquiring and delivering space-based capabilities. SDA delivers

dozens of satellites on two-year cycles and this pace requires defined processes to ensure that the

technology exists to support the required capabilities. SDA has developed a process called List,

Evaluate, Achieve, Procure (LEAP) which is used to identify technologies that require additional

development resources to meet both current Warfighter needs and those that will occur in the

276

future. This paper provides an illustrative example of SDA applying the LEAP process to the

development of SDA’s optical communications terminals, demonstrating how it is used to identify

critical technologies to be supported through investment opportunities that augment the system

acquisitions.

5.3.1.1.2 Introduction

The Department of Defense (DoD) develops and delivers capabilities into the hands of the

warfighters. In recent years, the DoD has emphasized rapid acquisition timelines - less than five

years from program approval to delivery, with less than two years for urgent needs [32]. Achieving

these objectives requires reducing the cycle time for a system, defined as the time from program

start until the system is declared to have initial operational capability [33]. The actual cycle times

for Major Defense Acquisition Programs (MDAPs) from 1997 to 2015 averaged 6.9 years with a

median time of 7.6 years, both of which are above the planned values [194]. The Space

Development Agency (SDA) was created in 2019 as a constructive disruptor within the Office of

the Secretary of Defense to deliver space-based capabilities within this rapid acquisition

environment.

SDA will “deliver a minimum viable product – on time, every two years – by employing spiral

development methods, adding capabilities to future generations as the threat evolves” [46]. SDA

is building the Proliferated Warfighter Space Architecture (PWSA), a proliferated low Earth orbit

(pLEO) constellation of hundreds of satellites providing missile warning, low-latency

communications direct to the warfighter, alternate position navigation and timing services, and in-

space computation nodes. SDA is driven by the need to provide “good-enough” capability to the

warfighter on a regular schedule, ensuring that the capability exists in time to meet the need. The

277

SDA delivery cycle, shown in Figure 5-5, provides a new release of capability, called a Tranche,

on a two-year cadence [46].

Figure 5-5. SDA capability delivery lifecycle

Maintaining a two-year delivery cycle for a complex system eventually consisting of hundreds

of satellites requires extensive planning and trade-offs. In the rapid acquisition environment, the

development timelines cannot delay delivery of capability to the field (i.e., satellites on orbit

providing support to tactical operations). Any changes to the planned capabilities delivered by the

system have the potential to impact the future state of the system. When making any such changes,

SDA must be careful not to introduce too much technical debt into the system. Technical debt, the

negative long-term impacts of short-term decisions, can accumulate such that a system can no

longer meet its requirements without first addressing the technical debt [60]. For example, a system

developer may forgo completing interface documentation in order to release a component on

schedule. The lack of that documentation complicates future development involving those

interfaces and increases the cost and schedule of capability upgrades in the long-term. SDA

developed the List, Evaluate, Achieve, and Procure (LEAP) process [160] to identify and assess

278

the current state of technology and identify investments required to deliver the capability required

by the warfighter on schedule.

This paper introduces the concepts that led to the creation of the LEAP process and presents an

example of the use of the LEAP process within SDA. First, related work in the field of rapid

acquisition development is reviewed. Next, the LEAP process is introduced and an overview of its

use at SDA is provided. The next section provides an example of using the LEAP process at SDA,

specifically focusing on the technology development of the optical communications terminals.

Finally, the paper is concluded and recommendations for future work are presented.

5.3.1.1.3 Related Work

Traditional DoD programs emphasize meeting performance requirements at the risk of cost

growth and/or schedule delays. Both the DoD and the Government Accountability Office (GAO)

have identified best practices to mitigate these negative results. The DoD recommends that systems

achieve technical maturity prior to Milestone B [195]. Milestone B is the transition point between

the technology maturation and risk reduction (TMRR) phase and the engineering and

manufacturing development phase (EMD) in a traditional acquisition program. Milestone B occurs

after the system preliminary design review (PDR) and prior to the system critical design review

(CDR) [196]. The GAO also recommends that systems achieve technical maturity [197] by

Milestone B. In both cases, technical maturity is defined by the technology readiness level (TRL).

The DoD recommends that systems achieve TRL 6, where a model or prototype of the system or

subsystem is tested in a relevant environment, while the GAO recommends that systems achieve

TRL 7, where the system prototype is tested in its operational environment [197]. In addition, the

GAO recommends that systems achieve design maturity, where 90 percent of the design drawings

have been released, by CDR [195].

279

Katz et al. [195] demonstrated that the technical maturity of a system is correlated with the

schedule change of the system – a less technically mature system is more likely to experience

schedule slips and budget increases. Schedule slips in defense systems, especially those designed

to counter immediate adversary threats, can significantly impact the Warfighter. In these systems,

a partial solution delivered now is more valuable than an optimal solution delivered late to need

[162]. Tate [162] identifies seven different types of systems that can be delivered and fielded

quickly:

1. Commercially purchased products: existing products that require no additional

development

2. Upgrades to existing systems to add existing products and systems: adding mature

technology and components onto an already mature system, where the addition does not

put undue stress on the host system capabilities (size, weight, power, computational load)

3. Integrating existing systems: combing already existing mature systems to produce a new

system

4. New systems developed through direct collaboration with the users to identify the required

capabilities that should be fielded: Agile methods focusing on user feedback can evolve

requirements instead of driving towards preset objective and threshold requirements

5. New systems with limited requirements: systems that provide one or two critical

capabilities while other capabilities may be at or below the current level in other systems

6. New systems developed external to the program: leveraging a system developed by an

external agency, such as corporate internal research, and demonstrated to high TRL. The

system must only be modified to work within the operational environment

280

7. Modular subsystems that replace legacy subsystems: requires a modular architecture with

sufficient design margin to accommodate the new upgrades

With the exception of items (4) and (5), each of these types of systems relies on the reuse of

existing technology and capability.

Knoll, Fortin, and Golkar [198] identify that complex systems often involve concurrent design

and therefore changes in one discipline must be propagated to the other disciplines. Decisions

made in one discipline are not isolated events; they impact every other part of the system. Issues

such as technical debt present in one discipline or one part of a system can aggregate and grow as

the complete system is developed [80]. In iterative development systems, Sangwan et al. [91]

identify the need to consider dependencies for release planning, which exist between the

requirements and features, between features and architectural elements, and between all

architectural elements.

These processes and techniques identify the types of systems amenable to rapid development

and methods for considering dependencies and impacts during system development. However,

they do not provide guidelines for how to manage the dependencies across iterations to minimize

increases in complexity during system development. To address this gap, Kleinwaks et al. [160]

developed a process called List, Evaluate, Achieve, Procure (LEAP). The LEAP process provides

mathematical processes to identify which technologies drive the development of capabilities

required by the system users in both the functional and temporal dimensions. The process consists

of four phases:

• List – the identification of dependencies between the required capabilities and the

supporting technologies

281

• Evaluate – the application of temporal needs to the capabilities and the determination of

the ability to deliver capabilities on time

• Achieve – the identification of technologies which require investments to accelerate their

development, and

• Procure – the acquisition of the system that will meet the user’s needs.

5.3.1.1.4 SDA and the LEAP Process

The PWSA is an interconnected set of ground and space-based systems with a priority on

delivering each Tranche on schedule. Each satellite consists of optical communications terminals,

radio frequency (RF) communications systems, on-board battle management systems, tactical data

links, and mission payloads. Each Tranche is scheduled for launch approximately 30 months after

contract award. To enable this schedule, SDA has adopted several of the principles from Tate

[162], namely:

• Leveraging commercial products where possible to reduce non-recurring engineering

activities

• Integrating new Tranches into existing Tranches to augment the delivered capability and

to add new capability

• Frequently collaborating with the users and the warfighters to ensure that the right

capabilities are developed

• Encouraging and leveraging the development of critical technologies outside of the SDA

Tranches

In developing each Tranche, SDA identifies which technologies are mature enough to include

in the Tranche, such that non-recurring engineering (NRE) is limited. SDA developed the LEAP

process [160] to identify the functional and temporal dependencies between the capabilities needed

282

by the Warfighter and the technologies that support those capabilities. This process provides a

direct linkage between technology development timelines, system iterations, and the satisfaction

of stakeholder needs not found in other similar processes. The LEAP process also identifies

technologies that require investment such that they can support future Tranches. The ability of the

LEAP process to identify both the functional and temporal dependencies is critical to SDA

maintaining its rapid development schedule.

SDA applies the four steps of the LEAP process as follows:

1. List: identify the strategic (long-term) and tactical (short-term) capabilities required by the

Warfighter and identify the technologies required to achieve these capabilities

2. Evaluate: determine the current development timelines for the technologies and evaluate

those timelines against the Warfighter’s need dates

3. Achieve: identify the technologies that will be late to need and the create investments to

accelerate the development of those technologies through programs and partnerships with

other Government agencies and industry

4. Procure: produce a solicitation to for a Tranche to proliferate the technologies that provide

the capabilities to the Warfighter

Each step in the LEAP process produces matrices that map capabilities to technologies and time

periods. By following the steps in Kleinwaks et al. [160], it is possible to mathematically identify

the technologies that will be developed late to need and the impact of each late technology on

SDA’s ability to meet the Warfighter’s needs.

5.3.1.1.4.1 Iterations within the LEAP process

Figure 5-6 shows the technical timeline targeted by SDA starting with its first application of

LEAP during the first quarter of Government Fiscal Year 2021 and broken into the various phases

283

of LEAP. The List, Evaluate, and Achieve phases occur for each Tranche as part of the road

mapping exercise for the Tranche. A full cycle is performed approximately 18 months prior to the

start of the system definition for the Tranche, allowing short-term achievements to positively affect

the technology development timelines. A short LEAP cycle begins approximately one year prior

to the release of the acquisition documentation. In this cycle, the List and Evaluate phases lead to

the definition of the minimum viable product (MVP) for the Tranche, which represents the planned

acquisition for the minimum viable capability (MVC) that the system will deliver. The MVP

definition is socialized with industry through the Request for Information (RFI) process, and any

last changes are made prior to the technology freeze (TF). The TF marks the beginning of the

Procurement phase. At this point, the decision is made on which capabilities will make it into the

solicitation including which, if any, will require development during the Tranche. Finally, the

acquisition documentation is drafted (the draft solicitation (DS)) and released (the final solicitation

(FS)) and the contract is awarded following standard Government acquisition processes. At award,

the selected contractors are given authority to proceed (ATP) to begin developing the system.

Within 30 months from ATP, the system is scheduled to achieve initial launch capability (ILC)

consisting of the launch of the first set of newly developed satellites. Subsequent launches occur

on a one-month cadence to complete the on-orbit population of the Tranche.

284

Figure 5-6. Example SDA timeline implementing the LEAP process in iterative fashion across multiple tranches

Critical to the process is the inclusion of strategic achievements, indicated in the royal-blue

sections of Figure 5-6. The Delivery and the Investment Matrices created as part of the Evaluate

and Achieve steps clearly indicate which technologies and capabilities will be late to need not only

for the next Tranche, but also for future Tranches. Early investments in developing these long-

term technologies reduce the risk in those future Tranches. Figure 5-6 shows the application of

these long-term technologies through Tranche 5.

285

5.3.1.1.5 Application of LEAP to SDA’s Optical Communications Terminal Development

A key pillar of the PWSA is the development of global beyond line-of-sight (BLOS), low-

latency, high data rate communications. This section provides a notional example of using the

LEAP process on a subset of the development of this capability. The mathematical equations used

to perform the matrix transformations are defined in Kleinwaks et al. [160].

5.3.1.1.5.1 LEAP Phase 1: List

The List phase decomposes the stakeholder need into strategic and tactical capabilities and

identifies the technologies required to support the tactical capabilities. Table 5-2 shows the

breakdown of the need for BLOS, low-latency, high data rate communications into strategic and

tactical capabilities. This need decomposes into two strategic capabilities: an optical

communications network providing communications, and optical global operations - the ability to

connect to multiple users anywhere on the globe at any point in time. These strategic capabilities

are decomposed into tactical capabilities and then the enabling technologies are identified. The

technologies may support one or more capabilities. In these cases, the technologies are listed in

one row by their identifier only.

Table 5-2. Decomposition of stakeholder needs to strategic capabilities, tactical capabilities, and technologies

Strategic

Capabilities
Tactical Capabilities Technologies

Optical

Communications

Network

C1. Space-to-ground (S2G)

optical communications

T15. Communications standards

T11. Multiple vendor interoperability

T12. Tasking and scheduling algorithms

T13. Common network protocols and routing mechanisms

T21. Pointing, acquisition, and tracking algorithms

T22. Bus stability

C2. Space-to-space (S2S)

communications in the same

orbital shell (same altitude

and inclination)

T11, T12, T13, T15, T22, T21

T5. Space-based mesh network

T16. Space-to-space same vendor communications

T17. Space-to-space different vendor communications

T18. Space-to-space in-plane communications

T19. Space-to-space out-of-plane communications

T5, T11, T12, T13, T15, T16, T17, T21, T22

286

Strategic

Capabilities
Tactical Capabilities Technologies

C3. Space-to-space (S2S)

communications in different

orbital shells

T20. Space-to-space out-of-shell communications

C4. High data rates T24. 1 Gbps data rates

T25. 10 Gbps data rates

T26. 100 Gbps data rates

Optical Global

Operations

C5. Regional Access (the

ability of the constellation to

communicate optically with

at least one user within a

specified region for a

specified period of time)

T5, T12

T2. Small satellite compliant size, weight, and power

(SWAP) for bus and payloads

T23. Ranges up to 6500 km

C6. Global Access (the

ability of the constellation to

communicate optically with

at least one user anywhere on

the globe for a specified

period of time)

T2, T5, T12, T23

T1. Commoditization of satellite bus and payloads

T3. Satellite proliferation

T4. Manufacturing at scale

T6. Fleet-based environmental testing

C7. Global Operations (the

ability of the constellation to

communicate optically with

multiple users anywhere on

the globe at any time)

T1, T2, T3, T4, T5, T6, T12, T23

T7. Multiple terrestrial users per space-based

communications terminal

T8. Mobile/transportable ground terminals

T9. Orbit-aware network routing protocols

T10. Operation in all lighting conditions

T14. All weather communications

The data in the table is translated into the Functional Matrix, shown in Figure 5-7, where only

the capability and technology identifiers (e.g., C1 and T1) are used. The highlighted cells indicate

the dependencies between the capabilities and technologies. The Functional Matrix shows that the

identified technologies support multiple capabilities.

Figure 5-7. Functional Matrix

287

In addition to the dependence of capabilities on technologies, there are also interdependencies

between the technologies themselves. These interdependencies are captured in a design structure

matrix (DSM) called the Technology Matrix. The Technology Matrix shown in Figure 5-8 has

undergone a preliminary partitioning to make it a lower triangular matrix, which results in

reshuffling of the technologies compared to the order in Table 5-2. Further ordering and

partitioning can be performed to have the rows in the matrix correspond to the expected

development order as well. The Technology Matrix is used to inform the technology development

sequence included in the Development Matrix, which is discussed in the next section.

Figure 5-8. Technology Matrix

5.3.1.1.5.2 LEAP Phase 2: Evaluate

The Evaluate phase starts with the identification of the capability need dates and the expected

development timelines for each technology. SDA delivers its capabilities in two-year cycles which

would imply a two-year time period for the LEAP analysis. However, as shown in Figure 5-6, the

288

procurements (FS) are released in the off years from the launches (ILC). To fully establish the

technological availability, a maximum of a one-year spacing for the time periods is required. The

Need Matrix for the tactical capabilities associated with delivering global BLOS high data rate

communications is shown in the upper center of Figure 5-9, with one-year time periods through

the notional Tranche 5 timeline. A value of one (1) in the Need Matrix indicates that a capability

is needed in a time period and a blank cell indicates that the capability is not needed in the time

period. Note that tactical capability C5, regional access, is only needed until tactical capability C6,

global access, is delivered.

The next step is to evaluate the technologies to determine their development timelines. The

development timelines indicate when a technology is expected to be ready to incorporate into a

larger capability development. The Development Matrix, shown on the left of Figure 5-9, includes

the expected development timelines for the SDA technologies as estimated in 2020, prior to any

investments or procurements. In this matrix, a one (1) indicates that a technology is expected to be

fully developed in the time period and a blank cell indicates that the technology is not expected to

be complete in the time period.

With the Need and Development Matrices evaluated, the Availability Matrix is computed using

the methods from Kleinwaks et al. [160]. The Availability Matrix shows when each capability is

expected to be available based on the technical development timelines and the functional

dependencies. A value of one (1) indicates that the capability is expected to be available in the

time period and a value of zero (0) indicates that the capability is not expected to be available. The

result, shown in the lower center of Figure 5-9, shows that tactical capability C1, S2G optical

communications, and tactical capability C5, regional access, are expected to be available in 2022.

Tactical capability C3, S2S optical communications in the same orbital shell, is expected to be

289

available in 2023. Tactical capability C7, global operations, is not expected to be available in the

considered time frame, based on the current development path of its supporting technologies.

The final step in the evaluation phase is to calculate the Delivery Matrix to determine which

capabilities, if any, will be available late to need. This Matrix is shown on the right side of Figure

5-9, with late capabilities highlighted in red. In the Delivery Matrix, a value of one (1) indicates

that a capability is late to need: it is needed but not available. A value of zero (0) in the Delivery

Matrix indicates that either the capability is available and not needed or the capability is not

available but is not needed. A value of negative one (-1) in the Delivery Matrix indicates that the

capability is available and not needed, either due to early delivery or the removal of the need

(Kleinwaks et al. 2023). In this example, tactical capability C4, high data rates, is late by two years.

It is needed in 2028, but not available until 2030. Tactical capability C7, global operations, is

needed in 2028, but is not expected to be available in the specified time frame. Tactical capability

C5, regional access, remains available after 2025 even though it is no longer needed.

290

Figure 5-9. Matrices used in the evaluation phase of the LEAP process

5.3.1.1.5.3 LEAP Phase 3: Achieve

The Delivery Matrix in Figure 5-9 clearly shows tactical capabilities that will be delivered late

to need. The Achieve phase analyzes the technologies that contribute to the late delivery to

determine investments that could accelerate the development of those key technologies. Within

SDA, investment strategies include investing in technology development programs, partnering

with other U.S. Government agencies, and encouraging industry growth and investment. Parallel

investments may be made to reduce the risk associated with a single technology development

cycle. Using the methods in Kleinwaks et al. [160], the Investment Matrix is calculated. This

calculation determines the technologies that drive the late arrival of capabilities. The Investment

Matrix is shown in Figure 5-10. Technologies that contribute to the late delivery of tactical

291

capabilities are highlighted in red. The number in the matrix indicates how many late tactical

capabilities are contributed to by the technology in that time period [160].

Figure 5-10. Investment Matrix

The Investment Matrix clearly shows that the following technologies contribute late delivery:

• T7. Multiple terrestrial users per space-based communications terminal

• T8. Mobile/transportable ground terminals

• T10. Operation in all lighting conditions

• T14. All weather communications

• T26: 100 Gbps data rates

Technologies T7, T8, T10, and T14 directly impact the ability to deliver the global operations

tactical capability. Technology T26, 100 Gbps data rates, delays the high data rate tactical

capability by two years. Of note is that SDA’s practice of using existing technology where possible

292

to minimize NRE on contracts limits the number of non-zero entries in the Investment Matrix.

Technology T10 is a traditional non-functional requirement, specifying that the optical

communications terminal must minimize the impact of communications outages due to solar

impingement on the device. These types of technologies typically are lower priority during

development, but the Investment Matrix makes clear that developing this technology, although

potentially not seen as adding as much value as the other technologies, impacts the satisfaction of

the stakeholders’ needs.

The Investment Matrix identifies technologies which can benefit from additional investments

to shorten the development timeline. SDA invests by encouraging industry development of new

technologies. In 2021, SDA funded efforts shown in Table 5-3. Table 5-3 also identifies which

technology is supported by each topic and the expected change in the development timeline of that

technology.

Table 5-3. SDA investments mapped to the enabling technologies

Investment Technology Addressed
Projected Change in Development

Timeline

Reduction of SWAP-C per bit T2. Small satellite compliant size,

weight, and power (SWaP) for bus

and payloads

None. However, smaller terminals

with less power are still beneficial

Design for manufacturing

considerations to support high-

rate production

T4. Manufacturing at scale None, but improvements to

manufacturing processes buy down

system risk

Demonstration of a path to 100

Gbps for S2S comms

T26. 100 Gbps OCTs The investment is expected to

accelerate the development timeline

from 2030 to 2026

Development of low-cost, mobile,

or fixed optical ground terminals

T8. Mobile/transportable ground

terminals

Without the investment, there was no

known timeline for creating these

terminals. With the investment, the

delivery timeline is expected to be

2030

Demonstration of enhanced S2G

and space-to-air (S2A) links

T14. All weather communications Without the investment, there was no

known timeline for this technology.

With the investment, the technology is

expected to be ready for all-weather

optical communications by 2026

293

Investment Technology Addressed
Projected Change in Development

Timeline

Development of compact systems

capable of supporting coherent

(e.g., QPSK) and non-coherent

(e.g., OOK) links

T13. Common network protocols

and routing mechanisms

T17. Space-to-space different

vendor communications

Developing these technologies

enables better S2S communication

links and a more robust mesh

network. With the investment, the

technology is expected to be ready for

inclusion in a procurement by 2027

Demonstration of one-to-many

optical terminal links

T7. Multiple terrestrial users per

communications terminal

The investment is expected to

accelerate the development timeline

from 2035 to 2032

The benefit of the investments made by SDA is seen by updating the Development Matrix with

the new timelines. Then, the rest of the matrices are recalculated, which produces the updated

Delivery and Investment matrices shown in Figure 5-11 with changes highlighted in green.

Compared to the Delivery Matrix in Figure 5-9, it is immediately apparent that capability C4, high

data rates, is achieved ahead of the user’s needs (values of negative one (-1) in 2026 and 2027).

Capability C7, global operations, is achieved in 2032, which is still not in time to meet the

stakeholder’s needs. The Investment Matrix (right side of Figure 5-11) shows that technologies T8

and T7 are the sources for the delay in capability delivery.

294

Figure 5-11. Updated Delivery and Investment Matrices based on investments

Technology T7 is the development of multiple terrestrial users per space-based optical terminal

and the investment accelerates the development schedule to 2032. Technology T8 is the

development of mobile and transportable optical ground terminals. Both of these technologies

represent novel technologies that offer significant improvements in optical communications

between space and ground. Even with the updated development timelines, the technologies may

not be ready in time for inclusion in a procurement in 2028. Therefore, SDA will iterate on the

LEAP process as a way to monitor the development progress of these technologies. SDA may

choose to commit additional investments or to utilize the investments of partners to reduce the

development timelines of these technologies. There may be other technologies that can achieve

the same capability, such as including additional optical communications terminals on each

satellite, and the results of the LEAP process indicate that these technologies should also be

explored. The iterative nature of the LEAP process allows SDA to reconsider these investments

and others in light of the changing needs of the Warfighter.

295

Technology T10 is the ability to operate optical communications terminals in all lighting

conditions, including when the sun is in the field of regard. SDA’s investments do not directly

address technology T10. Instead, data collected during the execution of the SDA Tranches that

will establish if there is truly a need for a technological improvement to the optical

communications terminals or if there is a planning solution that can provide the required network

connectivity while working around solar exclusion angles. Therefore, this technology is expected

to be developed in 2025, after of SDA’s Tranche 1 enters operations. As this example shows,

technology can be advanced through materiel solutions or through non-materiel solutions, such as

tactics, techniques, and procedures (TTP). LEAP is designed to aid technology advancement

through materiel solutions and to help identify where TTP development may be a more appropriate

solution.

5.3.1.1.5.4 LEAP Phase 4: Procure

SDA will monitor the progress of its investments to inform the capabilities that will be included

in its Tranche 2 procurement and other future development efforts. SDA’s goal is to utilize as

much proven technology as possible in each Tranche. The use of proven technology reduces the

complexity of the satellites. Satellite complexity correlates with larger costs and development

timelines [199]; therefore, a less complex system allows faster development timelines and reduced

risk in large program acquisitions. Multiple iterations of the LEAP process will occur prior to the

procurement release for each SDA Tranche to ensure that technology is developed in parallel with

Warfighter needs. The iterative nature of the SDA development cycle allows for the adjustment of

the requirements for a specific iteration to account for cases where technologies are not delivered

on schedule.

296

5.3.1.1.6 Conclusions and Future Work

In a rapid development program, like that used by SDA, it is necessary to ensure that technology

is developed on a pace commensurate with the system delivery to reduce the need for NRE efforts

as part of the development contract. However, when the system needs to incorporate new

capabilities, it is often difficult to understand and track where and when outside development must

happen to enable the rapid deployment of production systems.

The LEAP process provides a mechanism to identify the functional and temporal dependencies

between the required capabilities of a system and the technologies that enable those capabilities.

SDA has applied the LEAP process to identify critical technologies that require investments to

accelerate their development schedules. By using this process, SDA is ensuring that the

technological landscape is ready to support the Tranche procurements that delivers the capabilities

required by the Warfighter when they need them.

The LEAP process will continue to be refined through use at SDA as it builds out the PWSA.

The usage of LEAP for the selection of optical investments represents the first use of the newly

developed process. Future developments on the process itself are defined in Kleinwaks et al. [160]

and include implementing probabilistic estimations of the values in the Development Matrix. As

it is currently defined, the Development Matrix assumes that a technology either is or is not

developed in a particular time period. Modeling the probability of the technology being developed

will produce a more usable process for the stakeholders. Additional future work will include

investigating the scalability of the LEAP process to requirement sets beyond the specific set

defined herein. The LEAP process is designed to be scalable, relying on matrix math to enable the

rapid processing of large numbers of tactical capabilities and supporting technologies. Application

beyond a small subset of capability will demonstrate this scalability and potential for widespread

297

use. SDA’s rapid development schedule provides an excellent testbed for the process and will

guide its future refinement.

5.3.1.2 Application of Quantitative LEAP to Iterative Ground System Development

SDA is a schedule focused organization [46], producing and launching significant numbers of

satellites in short time frames. As stated in Section 1.1.1.2, SDA delivers two-year tranches of

satellites on two-year cycles, using a spiral development cycle where each tranche improves upon

the capability of the previous tranche. This development cycle enables rapid fielding of critical

capabilities [46]. In addition to the satellites, SDA also develops the corresponding ground system

for each tranche. The ground systems are cyber-physical systems, where there is a large software

component and a large hardware component, both of which must be managed and delivered on

time.

Within Tranche 1 of the SDA system, the ground system is developed using an incremental

development approach. The first several increments focus on capability that is delivered on the

ground and is gated by the ground readiness review (GRR) and the first satellite launch. On-orbit

capability is increased through three increments, called Crawl, Walk, and Run. Within each on-

orbit increment, additional capabilities are brought into the ground system and additional levels of

interoperability are implemented in the on-orbit constellation. Although the SDA satellites are the

primary mechanism for delivering capability to the user, the ground system is a critical enabler of

the satellites. The ground system must be developed on similar timelines and the resulting schedule

pressure could easily create technical debt if it is not carefully managed. Therefore, this ground

system is a logical choice of a system that could benefit from implementation of the LEAP process.

The SDA ground system developer implements the Scale Agile Framework (SAFe)

methodology [200], using 3-month program increments (PI) for planning and executing

298

development cycles. As part of the SAFe methodology, each feature is reviewed at each PI

planning event and assigned a business value. The features with the highest business value are

selected for implementation in that PI. This method leads to a value-based development cycle,

which is susceptible to technical debt, as discussed in Section 3.3.3.1.3. The LEAP process was

applied in the middle of the ground system development cycle, starting at PI-3. It was first used to

qualitatively assess the state of delivery of the system. Next, the quantitative LEAP process was

applied to understand the driving technologies behind any late capability deliveries and the risk of

technical bankruptcy. The results of these applications are described in the rest of this section.

The application of the LEAP process began with the List phase and an independent assessment

of the system needs and a decomposition into capabilities by the system stakeholders. At the time

of evaluation, the ground system developer had decomposed their requirements into their own set

of capabilities and features. The set of capabilities identified by the stakeholders largely aligned

with those in use by the ground system developer after adjusting for differences in nomenclature.

These capabilities were mapped to the technologies provided by the ground system developer. This

mapping resulted in the creation of the Functional Matrix and the developer’s PI schedule

produced the Development Matrix.

Since the ground system development had already begun, the stakeholders desired to get a quick

understanding of the potential for technical bankruptcy of the system – was it on track to deliver

on time or was it behind? Therefore, the qualitative LEAP process was applied. The qualitative

LEAP process can be used to provide a rapid assessment of state of system delivery and a starting

point for investigating which technologies may be driving late capability delivery. These results

can then be used as a starting point for explorations into why the capabilities are late. The Evaluate

phase began with the creation of the Need Matrix using the major increments (GRR, Launch,

299

Crawl, Walk, and Run) as the time periods. The ground system developer program increments

were mapped to these major increments by associating the end date of the PI with the need date

for the major increment. The resulting Delivery Matrix, shown in Figure 5-12, was calculated

through the process. In the qualitative LEAP process, a value of one (1) indicates that a capability

is late to need. From this matrix, it appeared that very few capabilities were on track to deliver on

time, as indicated by the red cells.

Figure 5-12. Initial qualitative LEAP Delivery Matrix

The problems identified with the system delivery by the Delivery Matrix prompted discussions

with the ground system developer. The developer’s original plan included executing testing and

evaluation of new software capabilities for a full year prior to declaring them complete. However,

SDA’s expectations were that some of this testing would occur with the on-orbit assets. Therefore,

the stakeholders expected that the technologies would be considered complete once they are

integrated into the deployed system, and not when the testing with the on-orbit assets is completed.

This early conversation prevented a form of domain technical debt – where miscommunications

about the needs of the stakeholders result in an improperly implemented system. Without this

analysis, the system would have appeared to be late, potentially driving additional pressure from

the stakeholders.

300

With the new definitions of task completeness in place, the quantitative LEAP process was

executed. Delivery probabilities were assigned based on the priority of the features being

developed in each PI as shown in Table 5-4. Low priority features assigned to PIs are still planned

to be completed by the ground system developer, but they will be out-prioritized by other work if

required. Therefore, even low priority features have a relatively high probability of completion. If

a feature was not planned to be worked on within a PI, then it was assigned a probability of zero.

Table 5-4. Probabilities of completing features based on feature priority

Priority in PI Probability of Completing within the PI

Low 75%

Medium 85%

High 100%

The Delivery Matrix resulting from the application of the quantitative LEAP process is shown

in Figure 5-13. The delivery probability value is in the cell (from zero (0) to one (1)) are

highlighted from red (lowest probability) to green (highest probability). If a capability is not

needed by the stakeholder in a particular increment, then the cell is white and the value is negative

one (-1). Examining this figure, it can be seen that some capabilities are now delivered on time,

indicated by the dark green cell with a value of one (1) below a white cell in a column. This shift

in results from the qualitative LEAP analysis is due to the recharacterization of the delivery

definition following the initial analysis. However, even though the end state of the system is likely

to deliver on time, several capabilities still have low probabilities of delivering by the stakeholder

need date, indicated by red and orange cells.

301

Figure 5-13. Delivery Matrix from quantitative LEAP application

To determine the driving technologies behind the late deliveries, the Investment Matrix shown

in Figure 5-14 was calculated. In the Investment Matrix, higher values are less desirable – they

indicate that the technology has a higher likelihood of causing late delivery of one or more

capabilities in each time period. Therefore, the cells with values greater than one (1) in Figure 5-14

are highlighted in red. The highest scoring cells in the matrix are shown in red. Clearly,

Technologies 11 and 24 are driving factors for the late delivery of the capabilities required at GRR

as they had the highest scores in the Investment Matrix.

Figure 5-14. Investment Matrix from quantitative LEAP application

302

Using the results from the Investment Matrix, the stakeholders came into the next program

increment planning meeting with new priorities and assessments of business value. Technology

24 involved the creation of a user interface for external users to interact with the system. After

discussing this specific technology with the system developer, potential requirements technical

debt was identified – the developer’s interpretation of the requirement did not match the

stakeholder’s interpretation of the requirement and would not have satisfied the user’s needs. This

requirements debt was the reason for the late delivery – the system developer had not planned on

adding features to the user interface that the stakeholder deemed critical and, from the

stakeholder’s view, could not complete the technology, which forced the associated capabilities to

be considered late. Therefore, an improved definition of the user interface requirements was

created, and the appropriate scope was added to the contract, including the prioritization of the

activities in the next program increment. While removing this potential technical debt required the

use of additional funds, the early identification mitigated the potential long-term consequences.

In this particular case, the misunderstanding of the stakeholder needs could be, and was,

identified in parallel with the LEAP process. However, the LEAP process provides a structured

approach for assessing potential technical debt within the development cycle, enabling repeated

and objective application. Having this process ensures that all features will be considered for their

ability to introduce technical debt into the system without relying on the intuition of a few capable

engineers. Additionally, the LEAP process enables an estimate of the return-on-investment made

by accelerating the development of this technology. By shifting the prioritization of Technology

24 development to High in each time period, the change in delivery probability for each of the

capabilities dependent upon Technology 24 can be calculated. Figure 5-15 shows the change in

delivery probability for Capability 46 across each time period due to the changes in Technology

303

24 development timelines. In this case, the largest increase in delivery probability is seen in the

earlier phases. Additional technologies would need to be accelerated to ensure delivery by the

launch phase, but the investments in Technology 24 have significantly increased the likelihood of

existing capability in this time phase. Similar values could be calculated for each affected

capability and aggregated for the entire system.

Figure 5-15. Return-on-Investment calculated with LEAP

Technology 11, which also has a high score in the Investment Matrix, provides an example of

where the process revealed a potential problem that was not uncovered by the system developers

and stakeholders prior to the application of the LEAP process. Technology 11 involves functions

that were well understood but planned for later program increments that would not likely complete

prior to GRR. However, the stakeholders stated that these functions were necessary to support

capabilities that they deemed required for GRR. The LEAP process identified the disconnect in

the timelines and that Technology 11 was the driving factor. Using this information, the

stakeholders and the system developer were able to have productive conversations about the

capabilities that were really required at GRR. In this case, the stakeholders desired to have this

capability at GRR, however it would not be used until after launch. Therefore, the stakeholders

304

were convinced to shift their need date to align with the developer’s schedule to avoid additional

cost increases.

This example shows the full path through the LEAP process as follows.

1. The stakeholders identified their capability need dates and supporting technologies (List)

2. The stakeholders, in collaboration with the ground system developer, evaluated the

probability of the system, as planned, to deliver the capabilities in accordance with the

need dates (Evaluate)

3. The stakeholders identified which technologies needed to have need dates adjusted and

decided on a plan (Achieve)

4. The stakeholders adjusted their procurement requirements to minimize cost (Procure)

Through the use of the LEAP process, the ground system developer and the stakeholders were

able to identify disconnects in the delivery cadence and come to a mutually agreed-upon path to

system delivery. In doing so, the risk of introducing technical debt was reduced. The change in the

procurement strategy reduces the schedule pressure on the ground system developer to deliver

capabilities ahead of plan and therefore the risk of taking shortcuts and introducing technical debt

is reduced.

Similar processes were used to discuss all of the potentially late technologies identified in the

delivery matrix at the PI planning meeting. Having the LEAP Delivery and Investment Matrices

available enabled more fruitful discussions between the stakeholders and ground system

developer, and resulted in reprioritization of other key technologies in the development cycle.

305

5.3.1.3 Review of the Example Applications

The above applications show how the LEAP process can be used to identify investments that

are critical to meeting future capability needs. The initial Evaluation phase identified technologies

that would be late to need. Utilizing the Achieve phase of the process, it is possible to determine

which capabilities would benefit from investments in these technologies, following the “Driving

Technologies Independent” pathway identified in Figure 5-4. By making investments to develop

critical technologies, the decision maker can prevent technical debt from building up within their

system and can therefore avoid technical bankruptcy.

The LEAP process can also be used to evaluate the consequences of an investment decision

between different technologies. For example, decision makers will often have to make choices in

a budget constrained environment. Such environments prohibit the ability to invest in all

technologies and often require compromises. By clearly associating the stakeholder needs with the

technology development timelines, the LEAP process enables an assessment of the consequences

of those decisions.

Finally, the application of the LEAP process to the ground system development demonstrates

how it can be used to proactively identify potential technical debt. By using the LEAP process to

identify disconnects between the system developers and the stakeholders, technical debt was

prevented from entering the system, reducing the risk of future problems within the system

development.

5.4 Presentation of the Process in simplified terms

Task 4.3 is to produce a simplified way of presenting and communicating the LEAP process.

Expressing a complicated process through simplified graphics and concepts enhances its utility as

a communication device. The technical debt metaphor was initially created for this exact reason,

306

as Cunningham sought to find a method to communicate needs to refactor software to his

management [17]. The LEAP process attempts to bridge the divide between the technical staff and

management and stakeholders and therefore needs to present a simplified way of discussing the

technical concepts contained in the process.

The presentation of the LEAP process starts with the intentional choice of the acronym – the

names List, Evaluate, Achieve, and Procure convey the intent of each step in easy-to-understand

terminology. These names help to understand what the process is intended to do. The List phase

lists out the capabilities and technologies. The Evaluate phase evaluates the current state of the

system and the stakeholder needs. The Achieve phase accelerates development as required, and

the Procure phase procures a new release.

Graphically, the LEAP process has been depicted as a set of interconnected matrices, as shown

in Figure 3-4. While this depiction helps to understand the technical details of the process, it is not

a simple, easy-to-grasp graphical representation of the process. Figure 5-16, originally presented

at the 2023 INCOSE International Symposium [201], shows the LEAP process as an inherently

iterative process, but does not provide any details of the events associated with each step.

Figure 5-16. Simplified LEAP process description

307

Figure 5-17 provides an alternative depiction of the process. It removes the mathematical

formulas and the matrices from the graphics and instead shows simple information flow through

the steps in the process. In this graphic, the steps occur from bottom to top and color coding is

used to match the step to the graphic. First, the List step establishes the capabilities and their

supporting technologies, creating the x-axis of the graph. Next, the Evaluate step determines the

availability timelines for each capability, locating the orange circles on the graph. The Achieve

step accelerates timelines for selected capabilities by investing in technology development,

converting the orange circles into blue squares. Finally, the Procure step selects the set of

capabilities to include in each release for a given time period, shown as the circles and squares

included in the gray ellipse.

Figure 5-17. Simplified LEAP process model

Figure 5-17 provides a simpler conceptual version of the LEAP process, using colors and steps

to indicate the passage of time through each step of the process. This representation conveys the

overall goals of the process without using the matrices, which makes the rationale for the process

easier to discuss.

308

The construction of the Delivery Matrix enables multiple viewing options to convey the

likelihood of delivering capabilities on time to the stakeholders. Time-based graphs, such as those

shown in Figure 5-18, can easily be created from the matrix outputs. The Delivery Matrix only

contains positive values for when the capability is needed, and therefore the graph provides an

instantaneous view of the initial and time-based likelihood of satisfying stakeholder needs.

Figure 5-18. Plot of delivery timelines

Similarly, the Availability Matrix can also be plotted, as shown in Figure 5-19. The Availability

Matrix contains information on when each capability is likely to be available, independent of the

stakeholder needs. This graph shows the likelihood of delivering each capability over time,

regardless of when it is needed.

309

Figure 5-19. Plot of availability timelines

These visualizations quickly show the state of stakeholder satisfaction to both technical and

non-technical stakeholders. Simple outputs like these increase the ability of the LEAP process to

convey critical information to stakeholders to enable investments that minimize the risk of

technical bankruptcy.

For the system developer, the matrix-based nature of the process enables simple

implementation. Appendix A includes Python scripts implementing both the qualitative and

quantitative LEAP processes.

5.5 Conclusion

This chapter focuses on technical bankruptcy, presenting a definition of technical bankruptcy

in the context of the LEAP process and providing example usages of the LEAP process in real-

world scenarios. These examples identify how the LEAP process can be used to avoid technical

bankruptcy through use of both the qualitative and quantitative versions of the process, thereby

addressing RQ4: How can the process and model be used to avoid technical bankruptcy? Figure

5-4 shows a process by which the potential for technical debt is identified through iterative use of

the LEAP process during system development. Tasks which have a larger potential for inducing

310

technical debt are identified and therefore can be controlled. Tasks which are late to need are

highlighted through the investment matrix, allowing the diversion of resources or alteration of

release plans to prevent the occurrence of the associated technical debt. Finally, the process can be

used to evaluate release plans and to present results to the stakeholders showing the rationale

behind the construction of the release plans.

The applications of the LEAP process at SDA provide real-world examples of proactive

identification of technical debt. Advantageous technology investments were identified such that

their development timelines could be accelerated to support larger-scale procurements. Sources of

technical debt were identified prior to their introduction into the system, reducing the cost of

correcting these issues in later iterations. These applications reduced the risk of accumulated

technical debt and demonstrate the utility of the LEAP process.

311

CHAPTER 6 – CONCLUSIONS AND FUTURE WORK

6.1 Research Contributions

This dissertation contributed to the state of the art of systems engineering by developing the

following items: 1) an understanding of the prevalence of technical debt within the field, 2) a

recommended ontology for furthering technical debt discussions, and 3) a defined process for

determining system dependencies that may be susceptible to technical debt in order to limit the

potential for technical bankruptcy.

Technical debt, while present in systems engineering [18], was found to be not-well researched

in the field [19]. Existing research on technical debt was found to focus on specific areas of systems

engineering, such as automated production systems [108]. This research contributed novel

empirical data on the prevalence of systems engineering by surveying systems engineers across

multiple disciplines [18]. Using the results from the systematic literature review and the empirical

survey, a new ontology for discussing technical debt within the context of systems engineering

was created [21]. Published discussions of technical debt tend to focus on creating taxonomies for

classifying technical debt. This ontology is the first that the author is aware of to focus on

producing concise definitions of technical debt terms with specific applications to systems

engineering. Adoption of this ontology will enable practitioners to share methods for technical

debt management and mitigation by using concise and unambiguous terminology.

Managing technical debt, and avoiding technical bankruptcy is found to be a real problem in

systems engineering. Systems fail due to the accumulation of technical debt, especially when using

stakeholder value-driven development methodologies that force technical compromises to be made

at the expense of preferred development schedules. Through the definition of the LEAP process,

312

this research has contributed a novel method of combining the temporal and functional

dependencies of a system to identify the time-phased capability to satisfy stakeholder needs [160].

The quantitative LEAP method discussed in Chapter 4 provides a probabilistic approach, including

a new method of estimating project schedules based on technical debt [169]. This process, when

used within iterative development, identifies which technologies will require additional investment

ahead of the need to incorporate those technologies into the system development. These results

enable a system developer to minimize the non-recurring engineering on their system by scoping

the release to include components that meet specified readiness threshold. By investing in

technology development outside the release cycle, the system developer can ensure that the needed

components are ready in time to include in larger system procurements. The LEAP process

provided mathematical identification and integration of these components.

The LEAP process is developed as a decision support system for release planning by identifying

the probability of delivering capabilities on time, including technical debt estimates. While

traditional schedule analysis can provide predictions of completion dates, the inclusion of technical

debt’s impacts on successor task duration in the schedule process is a new contribution to schedule

analysis. Additionally, traditional schedule analysis can be used to define when a system is

complete, but does not directly associate system completion with the schedule of stakeholder

needs. The LEAP process provides a mathematical relationship between the capability delivery

and the stakeholder needs. This linkage enables the LEAP process to be used as a decision support

system for iterative development – different release plans can be modeled in the LEAP process to

determine the different outcomes which can lead to an evaluation of the return-on-investment for

release planning decisions.

313

The LEAP process was applied at the Space Development Agency to assess potential

investments in optical communications terminal technology and to evaluate and prioritize tasks

within the iterative development of the ground segment for the satellite constellation. This

translational research task was able to measure the costs and benefits of LEAP as a program of

quantifying, managing, and planning for technology development. Both the qualitative and

quantitative LEAP processes were applied, enabling rapid identification of technologies whose

development required acceleration to meet the stakeholder needs. The quantitative LEAP

application revealed instances of technical debt early in the development process, enabling the

technical debt to be addressed before it compounded into a larger problem. These results are novel

in that similar on-site studies of proactive technical debt identification have not been performed to

date. The application of the LEAP process to the rapid development programs at SDA identified

issues that could have produced undesirable outcomes.

This research program has produced the following peer-reviewed publications:

1. H. Kleinwaks, A. Batchelor and T. H. Bradley, "Technical Debt in Systems Engineering -

A Systematic Literature Review," Systems Engineering, vol. 26, no. 5, pp. 675-687, 2023.

[19]

2. H. Kleinwaks, A. Batchelor and T. H. Bradley, "An Empirical Survey on the Prevalence

of Technical Debt in Systems Engineering," INCOSE International Symposium, vol. 33,

no. 1, pp. 1640-1658, 2023. [18]

3. H. Kleinwaks, A. Batchelor, T. H. Bradley, M. Rich and J. F. Turner, "LEAP - A process

for identifying potential technical debt in iterative system development," INCOSE

International Symposium, vol. 33, no. 1, pp. 535-553, 2023. [160]

314

4. H. Kleinwaks, M. Rich, M. C. Butterfield and J. F. Turner, "LEAPing Ahead - The Space

Development Agency's Method for Planning for the Future," INCOSE International

Symposium, vol. 33, no. 1, pp. 925-942, 2023. [167]

5. H. Kleinwaks, A. Batchelor and T. H. Bradley, "An Ontology for Technical Debt in

Systems Engineering," IEEE Open Journal of Systems Engineering, vol. 1, pp. 111-122,

September 2023. [21]

At the time of submission of this dissertation, the following manuscripts have been submitted

for publication:

1. H. Kleinwaks, A. Batchelor and T. H. Bradley, "Predicting the Dynamics of Earned Value

Creation in the Presence of Technical Debt," Submitted to IEEE Access, 29 July 2023.

[169]

2. H. Kleinwaks, A. Batchelor and T. H. Bradley, "Probabilistic Enhancement to the LEAP

Process for Identifying Technical Debt in Iterative System Development," Submitted to

IEEE Access, 9 Sep 2023. [186]

6.2 Future Work

This dissertation introduced a new technical debt ontology and defined and developed the

LEAP process. Additional work in each of these areas can further advance the state of the art in

the field.

The technical debt ontology should be evaluated for its costs and benefits through practical

applications in systems engineering domains. The ontology can be introduced to systems

engineering practitioners and their usage of it can be evaluated. Research questions such as “Does

the use of the technical debt ontology impact the occurrence of technical debt?” can be evaluated

315

and new technical debt identification and mitigation techniques identified as a result. Based on the

usage of the ontology, the definitions contained within should be updated and additional

definitions added as required.

The LEAP process should also be further evaluated through practical applications. Empirical

evidence of its utility can be gathered through multiple applications in various systems engineering

contexts. Different applications of the LEAP process can be explored, such as the application to

additional industries and fields and the utility of the LEAP process in return-on-investment studies.

The LEAP process can be improved by adding prioritization matrices and optimizing the

process. Prioritization matrices were explicitly excluded from this dissertation since prioritization

has the potential to skew the results based on the supplied priority values. However, with the

baseline process defined, the Need Matrix could be augmented by prioritization of the needs and

any adjustments to the ensuing equations identified. The result could then be used to optimize the

development order of technologies within the LEAP process to minimize the impact of the late

delivery of capabilities, which would be associated with the priority of the needs. This optimization

would convert the LEAP process from a decision support system for release planning to a release

planning tool.

6.3 Conclusion

In the volatile and uncertain market, system developers often face pressure from stakeholders

to release high-performance systems faster and cheaper. Such pressures can result in the system

developer making technical compromises, thereby introducing technical debt into the system. If

the technical debt remains in the system, then it can accumulate, eventually resulting in technical

bankruptcy. To limit this risk, technical debt must be defined, predicted, and managed in both the

316

temporal and functional dimensions, and there must be the knowledge, processes, and tools to do

so.

This dissertation addressed this problem by first defining technical debt in the context of

systems engineering. Common definitions and terminology enable systems engineers to leverage

work done by other systems engineers to develop processes and techniques for identifying and

managing technical debt. This dissertation also introduced the LEAP process as a decision support

system for accounting for technical debt within release planning. Proactive methods that identify

technical debt at the time that technical compromises are made are critical to avoid technical

bankruptcy. It is by planning ahead that the impacts of decisions can be estimated and mitigated

through the application of additional resources or through the selection of alternative choices.

Application of the LEAP process, as seen through the examples presented in this dissertation,

enables both a proactive assessment of the readiness of a system to begin development as well as

an assessment of potential release plans and design choices. These assessments can be used to

simply communicate with stakeholders on the repercussions of their decisions, identify where

technical debt may occur, and identify when a system may be on the verge of bankruptcy. Armed

with these data sets, system developers can work with the stakeholders to determine the right

technical compromises to make or not to make to ensure that the system development continues

on plan.

317

REFERENCES

[1] M. A. G. Darrin and W. S. Devereux, "The Agile Manifesto, design thinking, and systems
engineering," in 2017 Annual IEEE International Systems Conference (SysCon), 2017.

[2] S. Koolmanojwong and J. A. Lane, "Enablers and inhibitors of expediting systems
engineering," Procedia Computer Science, vol. 16, pp. 483-491, 2013.

[3] T. S. Schmidt, S. Weiss and K. Paetzold, "Expected vs. real effects of agile development of
physical products: Apportioning the hype," in DS 92: Proceedings of the DESIGN 2018

15th International Design Conference, 2018.

[4] W. Royce, "Managing the development of large software systems: concepts and
techniques," in Proceedings of the 9th international conference on Software Engineering,
1987.

[5] R. F. Bordley and J. M. Keisler, "Managing Systems Engineering Projects with Uncertain
Requirements," in INCOSE International Symposium, Orlando, FL, 2019.

[6] H. Dunlap and D. Chesebrough, "Transforming Our Systems Engineering Approach Using
Digital Technology," National Defense Industrial Association, 4 October 2021. [Online].
Available: https://www.nationaldefensemagazine.org/articles/2021/10/4/transforming-our-
systems-engineering-approach-using-digital-technology. [Accessed 10 April 2022].

[7] J. A. Lane, S. Koolmanojwong and B. Boehm, "4.6.3 Affordable Systems: Balancing the
Capability, Schedule, Flexibility, and Technical Debt Tradespace," in INCOSE

International Symposium, 2013.

[8] R. Haberfellner and O. de Weck, "Agile SYSTEMS ENGINEERING versus AGILE
SYSTEMS engineering," in Fifteenth Annual International Symposium of the International

Council On Systems Engineering (INCOSE), 2005.

[9] A. P. Schulz and E. Fricke, "Incorporating flexibility, agility, robustness, and adaptability
wihtin the design of integrated systems - key to success?," in Gateway to the New

Millenium. 18th Digial Avionics System Conference Proceedings, 1999.

[10] A. M. Ross, D. H. Rhodes and D. E. Hastings, "Defining Changeability: Reconciling
Flexibility, Adaptability, Scalability, Modifiability, and Robustness for Maintaining
System Lifecycle Value," Systems Engineering, vol. 11, no. 3, pp. 246-262, 2008.

[11] United States Government Accountability Office, "DoD Space Acquisitions: Including
Users Early and Often in Software Development Could Benefit Programs," United States
Government Accountability Office, Washington, D.C., 2019.

[12] C. Larman and V. R. Basili, "Iterative and Incremental Development: A Brief History,"
Computer, vol. 36, no. 6, pp. 47-56, 2003.

[13] B. P. Douglass, Agile Systems Engineering, Waltham: Morgan Kaufmanm, 2016.

[14] A. Atzberger, C. Gerling, J. Schrof, T. S. Schmidt, S. Weiss and K. Paetzold, "Evolution of
the Hype around Agile Hardware Development," in 2019 IEEE International Conference

on Engineering, Technology and Innovation (ICE/ITMC), 2019.

[15] G. Robiolo, E. Scott, S. Matalonga and M. Felderer, "Technical Debt and Waste in Non-
functional Requirements Documentation: An Exploratory Study," in International

Conference on Product-Focused Software Process Improvement, 2019.

318

[16] R. L. Nord, I. Ozkaya, P. Kruchten and M. Gonzalez-Rojas, "In Search of a Metric for
Managing Architectural Technical Debt," in 2012 Joint Working IEEE/IFIP Conference on

Software Architecture and European Conference on Software Architecture, 2012.

[17] W. Cunningham, "The WyCash Portfolio Management System," 26 March 1992. [Online].
Available: http://c2.com/doc/oopsla92.html. [Accessed 29 January 2022].

[18] H. Kleinwaks, A. Batchelor and T. H. Bradley, "An Empirical Survey on the Prevalence of
Technical Debt in Systems Engineering," INCOSE International Symposium, vol. 33, no.
1, pp. 1640-1658, 2023.

[19] H. Kleinwaks, A. Batchelor and T. H. Bradley, "Technical Debt in Systems Engineering -
A Systematic Literature Review," Systems Engineering, vol. 26, no. 5, pp. 675-687, 2023.

[20] S. Malakuti and J. Heuschkel, "The Need for Holistic Technical Debt Management across
the Value Stream: Lessons Learnt and Open Challenges," in 2021 IEEE/ACM International

Conference on Technical Debt (TechDebt), 2021.

[21] H. Kleinwaks, A. Batchelor and T. H. Bradley, "An Ontology for Technical Debt in
Systems Engineering," IEEE Open Journal of Systems Engineering, vol. 1, pp. 111-122,
September 2023.

[22] B. W. Boehm, "A Spiral Model of Software Devleopment and Enhancement," Computer,

pp. 61-72, May 1988.

[23] H. Mooz and K. Forsberg, "Clearing the Confusion About Spiral/Evolutionary
Development," INCOSE International Symposium, vol. 14, no. 1, pp. 1675-1688, June
2004.

[24] M. Cohn, Succeeding with Agile: Software Development Using Scrum, Upper Saddle
River, NJ: Addison-Wesley, 2010.

[25] B. W. Boehm, J. A. Lane, S. Koolmanojwong and R. Turner, The Incremental Commitment
Spiral Model: Principles and Practices for Successful Systems and Software, Upper Saddle
River, NJ: Addison-Wesley, 2014.

[26] K. Forsberg and H. Mooz, "Application of the 'Vee' to Incremental and Evolutionary
Development," INCOSE International Symposium, vol. 5, no. 1, pp. 848-855, 1995.

[27] P. Laplante, What Every Engineer Should Know about Software Engineering, Boca Raton,
FL: CRC Press, 2007.

[28] O. Oni and E. Letier, "Analyzing Uncertainty in Release Planning: A Method and
Experiment for Fixed-Date Release Cycles," ACM Transactions on Software Engineering

and Methodology (TOSEM), vol. 31, no. 2, pp. 1-39, 2021.

[29] D. Dalcher, O. Benediktsson and H. Thorbergsson, "Development Life Cycle Management:
A Multiproject Experiment," in 12th IEE International Conference and Workshops on the

Engineering of Computer-Based Systems (ECBS'05), 2005.

[30] Scaled Agile, Inc., "Weighted Shortest Job First," 10 February 2021. [Online]. Available:
https://www.scaledagileframework.com/wsjf/. [Accessed 2 November 2022].

[31] M. Roy, N. Deb, A. Cortesi, R. Chaki and N. Chaki, "Requirement-oriented risk
management for incremental software development," Innovations in Systems and Software

Engineering, vol. 17, no. 3, pp. 187-204, 2021.

[32] A. Etemadi and J. Kamp, "Acquisition strategy factors related to faster defense
acquisitions," Systems Engineering, vol. 25, no. 2, pp. 144-156, 2022.

319

[33] A. Etemadi and J. Kamp, "Market and contractor factors affecting rapid acquisition
strategies," Systems Engineering, vol. 24, no. 4, pp. 250-265, 2021.

[34] United States Department of Defense, Office of the Undersecretary of Defense for Research
and Engineering, Office of the Deputy Directory for Engineering, "Systems Engineering
Guidebook," United States Department of Defense, Washington, D.C., 2022.

[35] United States Government Accountability Office, "DOD Cost Overruns: Trends in Nunn-
McCurdy Breaches and Tools to Manage Weapon Systems Acquisition Costs," United
States Government Accountability Office, Washington, D.C., 2011.

[36] J. Ferrara, "DoD's 5000 Documents: Evolution and Change in Defense Acquisition Policy,"
Acquisition Review Quarterly, pp. 109-130, 1996.

[37] United States Department of Defense, Office of the Undersecretary of Defense
(Acquisition, Technology, and Logistics), "Department of Defense Instruction Number
5000.2," United States Department of Defense, 2003.

[38] United States Department of Defense, Office of the Undersecretary of Defense for
Acquisition, Technology, and Logistics, "Department of Defense Instruction Number
5000.02," United States Department of Defense, 2008.

[39] United States Department of Defense, Office of the Undersecretary of Defense for
Acqusition, Technology, and Logistics, "Department of Defense Instruction Interim
Number 5000.02," United States Department of Defense, 2013.

[40] United States Department of Defense, Office of the Undersecretary of Defense for
Acquisition and Sustainment, "DoD Directive 5000.01 The Defense Acquisition System,"
United States Department of Deferense, Washington, D.C., 2020.

[41] J. S. Gansler, W. Lucyshyn and A. Spiers, "Using Spiral Development to Reduce
Acqusition Cycle Times," Center for Public Policy and Private Enterprise. University of
Maryland School of Public Policy, 2008.

[42] United States Department of Defense, "Military Standard Software Development and
Documentation," United States Department of Defense, 1994.

[43] United States Department of Defense, Office of the Undersecretary of Defense
(Acquisition, Technology, and Logistics), "DoD 5000.2-R: Mandatory Procedures for
Major Defense Acquisition Programs (MDAPS) and Major Automated Information System
(MAIS) Acquisition Programs," United States Department of Defense, 2002.

[44] C. H. Spenny and D. R. Jacques, "A Perspective on System Engineering Under the New
US Department of Defense Acquisition Policy," in INCOSE International Symposium,
2004.

[45] United States Department of Defense, Office of the Undersecretary of Defense for
Acquisition and Sustainment, "Depatment of Defense Instruction 5000.02 Operation of the
Adaptive Acquisition Framework," United States Department of Defense, 2020.

[46] Space Development Agency, "SDA About Us 2020 to 2021," Space Development Agency,
2022.

[47] Space Development Agency, "Space Development Agency," [Online]. Available:
https://www.sda.mil/home/about-us/faq/. [Accessed 11 June 2022].

[48] V. Lenarduzzi, D. Fucci and D. Mendez, "On the Perceived Harmfulness of Requirement
Smells: An Empirical Study," in Joint 26th Internation Conference on Requirements

320

Engineering: Foundation for Software Quality Workshops, Doctoral Symposium, Live

Studies Track, and Poster Track, Pisa, Italy, 2020.

[49] B. Curtis, J. Sappidi and A. Szynkarski, "Estimating the Size, Cost, and Types of Technical
Debt," in 2012 Third International Workshop on Managing Technical Debt (MTD), 2012.

[50] I. Ozkaya, "Managing Technical Debt throughout the Software Development Lifecycle,"
Carnegie-Mellon University, Pittsburgh, PA, 2022.

[51] C. Seaman, Y. Guo, C. Izurieta, Y. Cai, N. Zazworka, F. Shull and A. Vetro, "Using
Technical Debt Data in Decision Making: Potential Decision Approaches," in 2012 Third

International Workshop on Managing Technical Debt (MTD), 2012.

[52] E. Tom, A. Aurum and R. Vidgen, "An exploration of technical debt," The Journal of

Systems and Software, vol. 86, pp. 1498-1516, 2013.

[53] A. Melo, R. Fagundes, V. Lenarduzzi and W. Santos, "Indentification and Measurement of
Technical Debt Requirements in Software Development: a Systematic Literature Review,"
arXiv preprint arXiv:2105.14232.

[54] T. Besker, A. Martini and J. Bosch, "Managing architectural technical debt: A unified
model and systematic literature review," The Journal of Systems and Software, vol. 135,
pp. 1-16, 2017.

[55] Z. Li, P. Liang and P. Avgeriou, "Architectural debt management in value-oriented
architecting," in Economics-Driven Software Architecture, Morgan Kaufmann, 2014, pp.
183-204.

[56] P. Avgeriou, P. Kruchten, R. L. Nord, I. Ozkaya and C. Seaman, "Reducing friction in
software development," IEEE Software, vol. 33, no. 1, pp. 66-73, 2015.

[57] M. Fowler, "TechnicalDebtQuadrant," 14 October 2009. [Online]. Available:
https://martinfowler.com/bliki/TechnicalDebtQuadrant.html. [Accessed 27 January 2022].

[58] S. McConnell, "Managing Technical Debt," Construx Software Builders, 2008.

[59] A. Martini, J. Bosch and M. Chaudron, "Investigating Architectural Technical Debt
accumulation and refactoring over time: A multiple case study," Information and Software

Technology, vol. 67, pp. 237-253, 2015.

[60] Z. Li, P. Avgeriou and P. Liang, "A systematic mapping study on technical debt and its
management," The Journal of Systems and Software, vol. 101, pp. 193-220, 2015.

[61] C. Izurieta, G. Rojas and I. Griffith, "Preemptive Management of Model Driven Technical
Debt for Improving Software Quality," in 2015 11th International ACM SIGSOFT

Conference on Quality of Software Architectures (QoSA), 2015.

[62] A. Ampatzoglou, A. Ampatzoglou, A. Chatzigeorgiou and P. Avgeriou, "The financial
aspect of managing technical debt: A systematic literature review," Information and

Software Technology, vol. 64, pp. 52-73, 2015.

[63] M. Ciolkowski, V. Lenarduzzi and A. Martini, "10 Years of Technical Debt Research and
Practice: Past, Present, and Future," IEEE Software, vol. 38, no. 6, pp. 24-29, 2021.

[64] R. E. Fairley, "Assessing, Analyzing, and Controlling Technical Work," in Systems

Engineering of Software-Enabled Systems, John Wiley & Sons, Inc, 2019, pp. 291-328.

[65] N. Brown, Y. Cai, Y. Guo, R. Kazman, M. Kim, P. Kruchten, E. Lim, A. MacCormack, R.
Nord, I. Ozkaya, R. Sangwan, C. Seaman, K. Sullivan and N. Zazworka, "Managing

321

Technical Debt in Software-Reliant Systems," in Proceedings of the FSE/SDP workshop

on Future of software engineering research, 2010.

[66] Z. S. H. Abad and G. Ruhe, "Using Real Options to Manage Technical Debt in
Requirements Engineering," in 2015 IEEE 23rd International Requirements Engineering

Conference (RE), Ottawa, 2015.

[67] C. Seaman and Y. Guo, "Measuring and Monitoring Technical Debt," Advances in

Computers, vol. 82, pp. 25-46, 2011.

[68] A. Ampatzoglou, N. Mittas, A.-A. Tsintzira, A. Ampatzoglou, E.-M. Arvanitou, A.
Chatzigeorgiou, P. Avgeriou and L. Angelis, "Exploring the Relation between Technical
Debt Principal and Interest: An Empirical Approach," Information and Software

Technology, vol. 128, 2020.

[69] V. Lenarduzzi, T. Besker, D. Taibi and A. Martini, "A systematic literature review on
Technical Debt prioritization: Strategies, processes, factors, and tools," The Journal of

Systems and Software, vol. 171, 2021.

[70] L. A. Rosser and Z. Ouzzif, "Technical Debt in Hardware Systems and Elements," in IEEE

Aerospace Conference (50100), 2021.

[71] C. Fernandez-Sanchez, J. Garbajosa and A. Yague, "A Framework to Aid in Decision
Making for Technical Debt Management," in 2015 IEEE 7th International Workshop on

Managing Technical Debt (MTD), 2015.

[72] United States Government Accountability Office, "What GAO Does," [Online]. Available:
https://www.gao.gov/about/what-gao-does. [Accessed 24 May 2022].

[73] United States Government Accountability Office, "NASA: Lessons from Ongoing Major
Projects Could Improve Future Outcomes," United States Government Accountability
Office, Washington, D.C., 2022.

[74] United States Government Accountability Office, "Space Acquisitions: Changing
Environment Presents Continuing Challenges and Opportunities for DOD," United States
Government Accountability Office, Washington, D.C., 2022.

[75] United States Government Accountability Office, "F-35 Joint Strike Fighter: Cost Growth
and Schedule Delays Continue," United States Government Accountability Office,
Washington, D.C., 2022.

[76] S. Erwin, "‘Agile software’ to replace troubled JMS," 8 May 2019. [Online]. Available:
https://spacenews.com/agile-software-to-replace-troubled-jms/.

[77] L. Wheatcraft, T. Katz, M. Ryan and R. B. Wolfgang, "Needs, Requirements, Verification,
Validation Lifecycle Manual," INCOSE, 2022.

[78] R. S. Carson, P. J. Frenz and E. O'Donnell, "Project Manager’s Guide to Systems
Engineering Measurement for Project Success: A Basic Introduction to Systems
Engineering Measures for Use by Project Managers (Version 1.0)," INCOSE, San Diego,
CA, 2015.

[79] L. A. Rosser and J. H. Norton, "A Systems Perspective on Technical Debt," in IEEE

Aerospace Conference (50100), 2021.

[80] J. Y. Monteith, J. D. McGregor and J. Zhang, "Technical Debt Aggregation in Ecosystems,"
in 2012 Third International Workshop on Managing Technical Debt (MTD), 2012.

322

[81] United States Government Accountability Office, "Space Command and Control:
Opportunities Exist to Enhance Annual Reporting," United States Government
Accountability Office, Washington, D.C., 2021.

[82] J. M. Gilmore, "Director, Operational Test and Evaluation FY 2016 Annual Report," The
Office of the Director, Operational Test and Evaluation, 2016.

[83] R. F. Behler, "Director, Operational Test and Evaluation FY 2017 Annual Report," The
Office of the Director, Operational Test and Evaluation, 2017.

[84] R. F. Behler, "Director, Operational Test and Evaluation FY 2018 Annual Report," The
Office of the Director, Operational Test and Evaluation, 2018.

[85] United States Government Accountability Office, "Space Acquisitions: Development and
Oversight Challenges in Delivering Improved Space Situational Awareness Capabilities,"
United States Government Accountability Office, Washington, D.C., 2011.

[86] Y. Yang, R. Michel, J. Wade, D. Verma, M. Torngren and T. Alelyani, "Towards a
taxonomy of technical debt for COTS-intensive cyber physical systems," Procedia

Computer Science, vol. 153, pp. 108-117, 2019.

[87] United States Government Accountability Office, "Defense Major Automated Information
Systems: Cost and Schedule Commitments Need to Be Established Earlier," United States
Government Accountability Office, Washington, D.C., 2015.

[88] Air Force Operational Test and Evaluation Center, "Air Force Operational Test and
Evaluation Center," [Online]. Available: https://www.afotec.af.mil/About-Us/Fact-
Sheets/Display/Article/872935/air-force-operational-test-and-evaluation-center/.
[Accessed 9 July 2022].

[89] H. Storrle and M. Ciolkowski, "Stepping Away from the Lamppost: Domain-Level
Technical Debt," in 2019 45th Euromicro Conference on Software Engineering and

Advanced Applications (SEAA), 2019.

[90] J. L. Homer, "The role of project control systems in facilitating and measuring project
success," in PMI(R) Global Congress 2004 - North America, Anaheim, CA. Newton
Square, PA, 2004.

[91] R. S. Sangwan, A. Negahban, R. L. Nord and I. Ozkaya, "Optimization of Software Release
Planning Considering Architectural Dependencies, Cost, and Value," IEEE Transactions

on Software Engineering, 2020.

[92] A. Martini and J. Bosch, "The Danger of Architectural Technical Debt: Contagious Debt
and Vicious Circles," in 2015 12th Working IEEE/IFIP Conference on Software

Architecture, 2015.

[93] D. Ameller, C. Farre, X. Franch and G. Rufian, "A survey on software release planning
models," in Product-Focused Software Process Improvement: 17th International

Conference, PROFES 2016, Trondheim, Norway, November 22-24, Proceedings 17,
Trondheim, Norway, 2016.

[94] K. Schmid, "A formal approach to technical debt decision making," in Proceedings of the

9th international ACM Sigsoft conference on Quality of software architectures, 2013.

[95] L. Delligatti, SysML Distilled: A Brief guide to the Systems Modeling Language, Upper
Saddle River, NJ: Addison-Wesley, 2014.

323

[96] T. R. Browning, "Applying the Design Structure Matrix to System Decomposition and
Integration Problems: A Review and New Directions," IEEE Transactions on Engineering

Management, vol. 48, no. 3, pp. 292-306, 2001.

[97] R. Verdecchia, I. Malavolta and P. Lago, "Architectural Technical Debt Identification: the
Research Landscape," in 2018 ACM/IEEE International Conference on Technical Debt,
2018.

[98] A. T. Bahill, "Diogenes, a Process for Identifying Unintended Consequences," Systems

Engineering, vol. 15, no. 3, pp. 287-306, 2012.

[99] M. P. De Lessio, M.-A. Cardin, A. Astaman and V. Djie, "A process to analyze strategic
design and management decisions under uncertainty in complex entrepreneurial systems,"
Systems Engineering, vol. 18, no. 6, pp. 604-624, 2015.

[100] T. F. Bowlds, J. M. Fossaceca and R. Iammartino, "software obsolescence risk assessment
approach using multicriteria decision-making," Systems Engineering, vol. 21, no. 5, pp.
455-465, 2018.

[101] B. Boehm and P. Behnamghader, "Anticipatory development processes for reducing total
ownership costs and schedules," Systems Engineering, vol. 22, no. 5, pp. 401-410, 2019.

[102] A. Sharon, O. L. de Weck and D. Dori, "Project Management vs. Systems Engineering
Management: A Practitioners’ View on Integrating the Project and Product Domains,"
Systems Engineering, vol. 14, no. 4, pp. 427-440, 2011.

[103] B. Kitchenham, "Procedures for Performing Systematic Reviews," Keele University, Keele,
UK, 2004.

[104] S. Cha, Q. H. Dong and B. Vogel-Heuser, "Preventing Technical Debt for Automated
Production System Maintenance using Systematic Change Effort Estimation with
Considering Contingent Cost," in 2018 IEEE 16th International Conference on Industrial

Informatics (INDIN), 2018.

[105] Q. H. Dong and B. Vogel-Heuser, "Cross-disciplinary and cross-life-cycle-phase Technical
Debt in automated Production Systems: two industrial case studies and a survey," IFAC-

PapersOnLine, vol. 51, no. 11, pp. 1192-1199, 2018.

[106] Q. H. Dong and B. Vogel-Heuser, "Modelling Industrial Technical Compromises in
Production Systems with Causal Loop Diagrams," IFAC-PapersOnline, vol. 54, no. 4, pp.
212-219, 2021.

[107] Q. H. Dong, F. Ocker and B. Vogel-Heuser, "Technical Debt as indicator for weaknesses
in engineering of automated production systems," Production Engineering, vol. 13, no. 3,
pp. 273-282, 2019.

[108] B. Vogel-Heuser and E.-M. Neumann, "Adapting the concept of technical debt to software
of automated Production Systems focusing on fault handling, mode of operation, and safety
aspects," IFAC-PapersOnLine, vol. 50, no. 1, pp. 5887-5894, 2017.

[109] B. Vogel-Heuser, S. Rosch, A. Martini and M. Tichy, "Technical Debt in Automated
Production Systems," in 2015 IEEE 7th International Workshop on Managing Technical

Debt (MTD), 2015.

[110] F. Ocker, M. Seitz, M. Oligschlager, M. Zou and B. Vogel-Heuser, "Increasing Awareness
for Potential Technical Debt in the Engineering of Production Systems," in 2019 IEEE 17th

International Conference on Industrial Informatics (INDIN), 2019.

324

[111] B. Vogel-Heuser and S. Rosch, "Applicability of Technical Debt as a Concept to
Understand Obstacles for Evolution of Automated Production Systems," in 2015 IEEE

International COnference on Systems, Man, and Cybernetics, 2015.

[112] S. Biffl, F. Ekaptura, A. Luder, J. L. Pauly, F. Rinker, L. Waltersdorfer and D. Winkler,
"Technical Debt Analysis in Parallel Multi-Disciplinary Systems Engineering," in 2019

45th Euromicro Conference on Software Engineering and Advanced Applications (SEAA),
2019.

[113] B. Vogel-Heuser and F. Bi, "Interdisciplinary effects of technical debt in companies with
mechatronic products - a qualitative study," Journal of Systems and Software, vol. 171,
2021.

[114] R. E. Fairley and M. J. Willshire, "Better Now Than Later: Managing Technical Debt in
Systems Development," Computer, vol. 50, no. 5, pp. 80-87, 2017.

[115] P. Kruchten, R. L. Nord and I. Ozkaya, "Technical Debt: From Metaphor to Theory and
Practice," IEEE Software, vol. 29, no. 6, pp. 18-21, 2012.

[116] P. Kruchten, R. L. Nord, I. Ozkaya and D. Falessi, "Technical debt: towards a crisper
definition report on the 4th international workshop on managing technical debt," ACM

SIGSOFT Software Engineering Notes, vol. 38, no. 5, pp. 51-54, 2013.

[117] P. S. Callister and J. Andersson, "Evaluation of System Integration and Qualification
Strategies using the Technical Debt metaphor; a case study in Subsea System
Development," in 26th Annual INCOSE International Symposium, Edinburgh, Scotland,
2016.

[118] N. A. Ernst, "On the Role of Requirements in Understanding and Managing Technical
Debt," in 2012 Third International Workshop on Managing Technical Debt (MTD), 2012.

[119] B. Brenner, E. Weippl and A. Ekelhart, "Security Related Technical Debt in the Cyber-
Physical Production Systems Engineering Process," in IECON 2019-45th Annual

Conference of the IEEE Industrial Electronics Society, 2019.

[120] J. Schutz and M. Uslar, "Introducing the Concept of Technical Debt to Smart Grids: A
System Engineering Perspective," in 25th International Conference on Electricity

Distribution, Madrid, 2019.

[121] D. D. Walden, G. J. Roedler, K. J. Forsberg, R. D. Hamelin and T. M. Shortell, Eds.,
Systems Engineering Handbook, 4th ed., Hoboken: John Wiley and Sons, 2015.

[122] A. Martini, J. Bosch and M. Chaudron, "Architecture Technical Debt: Understanding
Causes and a Qualitative Model," in 2014 40th EUROMICRO Conference on Software

Engineering and Advanced Applications, 2014.

[123] M. D. Guenov and S. G. Barker, "Application of axiomatic design and design structure
matrix to the decomposition of engineering systems," Systems Engineering, vol. 8, no. 1,
pp. 29-40, 2005.

[124] B. Boehm, R. Valerdi and E. Honour, "The ROI of systems engineering: Some quantitative
results for software-intensive systems," Systems Engineering, vol. 11, no. 3, pp. 221-234,
2008.

[125] D. A. Broniatowski and J. Moses, "Measuring flexibility, descriptive complexity, and
rework potential in generic system architectures," Systems Engineering, vol. 19, no. 3, pp.
207-221, 2016.

325

[126] R. Raman and M. D'Souza, "Decision learning framework for architecture design decisions
of complex systems and system-of-systems," Systems Engineering, vol. 22, no. 6, pp. 538-
560, 2019.

[127] N. Shallcross, G. S. Parnell, E. Pohl and E. Specking, "Set-based design: The state-of-
practice and research opportunities," Systems Engineering, vol. 23, no. 5, pp. 557-578,
2020.

[128] G. I. Siyam, D. C. Wynn and P. J. Clarkson, "Review of value and lean in complex product
development," Systems Engineering, vol. 18, no. 2, pp. 192-207, 2015.

[129] M. Uschold and R. Jasper, "A framework for understanding and classifying ontology
applications," in Proceedings of the IJCAI-99 Workshop on Ontologies and Problem-

Solving Methods (KRR5), Stockholm, Sweden, 1999.

[130] L. M. Crawford, "Qualitative Research Designs," in Research Design and Methods: An

Applied Guide for the Scholar-Practitioner, United States, SAGE Publications, 2019, pp.
81-98.

[131] B. Boehm, "Some future trends and implications for systems and software engineering
processes," Systems Engineering, vol. 9, no. 1, pp. 1-19, 2006.

[132] A. Pyster, D. H. Olwell, T. L. Ferris, N. Hutchison, S. Enck, J. F. Anthony, D. Henry and
A. Squires (eds), "Graduate Reference Curriculum for Systems Engineering (GRCSE™)
V1.0," The Trustees of Stevens Institute of Technology, Hoboken, NJ, USA, 2012.

[133] N. S. R. Alves, L. F. Ribeiro, V. Caires, T. S. Mendes and R. O. Spinola, "Towards an
Ontology of Terms on Technical Debt," in 2014 Sixth International Workshop on Managing

Technical Debt, 2014.

[134] H. Kleinwaks, "An Empirical Survey on the Prevalence of Technical Debt in Systems
Engineering [Poster Presentation]," in INCOSE International Symposium, Honoulu, HI,
United States, 2023.

[135] D. Allaverdi and T. R. Browning, "A methodology for identifying flexible design
opportunities in large-scale systems," Systems Engineering, vol. 23, no. 5, pp. 534-556,
2020.

[136] S. Dullen, D. Verma and M. Blackburn, "Review of Research into the Nature of
Engineering and Development Rework: Need for a Systems Engineering Framework for
Enabling Rapid Prototyping and Rapid Fielding," Procedia Computer Science, vol. 153,
pp. 118-125, 2019.

[137] N. Rios, M. G. de Mendonca Neto and R. O. Spinola, "A tertiary study on technical debt:
Types, management strategies, research," Information and Software Technology, vol. 102,
pp. 117-145, 2018.

[138] D. Pina, A. Goldman and G. Tonin, "Technical Debt Prioritization: Taxonomy, Methods
Results, and Practical Characteristics," in 2021 47th Euromicro Conference on Software

Engineering and Advanced Applications (SEAA), 2021.

[139] Project Management Institute, "Technical Debt," February 2022. [Online]. Available:
https://www.pmi.org/disciplined-agile/agile/technicaldebt. [Accessed 11 March 2023].

[140] V. Dalal, K. Krishnakanthan, B. Munstermann and R. Patenge, "Tech debt: Reclaiming tech
equity," McKinsey Digital, 2020.

326

[141] Y. Yang, D. Verma and P. S. Anton, "Technical debt in the engineering of complex
systems," Systems Engineering, 7 April 2023.

[142] N. S. Alves, T. S. Mendes, M. G. de Mendonca, R. O. Spinola, F. Shull and C. Seaman,
"Identification and Management of Technical Debt: A Systematic Mapping Study,"
Information and Software Technology, vol. 70, pp. 100-121, 2016.

[143] S. Blumberg, R. Das, J. Lansing, N. Motsch, B. Munstermann and R. Patenge,
"Demystifying digital dark matter: A new standard to tame technical debt," McKinsey
Digital, 2022.

[144] C. Izurieta, I. Ozkaya, C. Seaman, P. Kruchten, R. Nord, W. Snipes and P. Avgeriou,
"Perspectives on Managing Technical Debt: A transition point and roadmap from
Dagstuhl," in Joint of the 4th International Workshop on Quantiative Approaches to

Software Quality, QuASoQ 2016 and 1st International Workshop on Technical Detb

Analytics, TDA 2016, 2016.

[145] J. W. Boswell, F. T. Anbari and J. W. Via III, "Systems Engineering and Project
Management: Points of Intersection, Overlaps, and Tensions," in 2017 Portland

International Conference on Management of Engineering and Technology, Portland, 2017.

[146] A. Kossiakoff, S. J. Seymour, D. A. Flanigan and S. M. Biemer, Systems Engineering:
Principles and Practice, 3rd ed., Hoboken, NJ: John Wiley and Sons, 2020.

[147] R. Verdecchia, P. Kruchten and P. Lago, "Architectural Technical Debt: A Grounded
Theory," in European Conference on Software Architecture, 2020.

[148] K. Borowa, A. Zalewski and A. Saczko, "Living With Technical Debt – A Perspective from
the Video Game Industry," IEEE Software, vol. 38, no. 6, pp. 65-70, 2021.

[149] V. Lenarduzzi and D. Fucci, "Towards a Holistic Definition of Requirements Debt," in
2019 ACM/IEEE International Symposium on Empirical Software Engineering and

Measurement (ESEM), 2019.

[150] D. Sculley, G. Holt, D. Golovin, E. Davydov, T. Phillips, D. Ebner, V. Chaudhary and M.
Young, "Machine Learning: The High-Interest Credit Card of Technical Debt," Google,
Inc, 2014.

[151] C. L. Jones, G. Draper, B. Golaz and P. Januz, "Practical Software and Systems
Measurement Continuous Iterative Development Measurement Framework. Part 3:
Software Assurance and Technical Debt Version 2.1," Practical Software and Systems
Measurement, National Defense Industrial Association, and International Council on
Systems Engineering, 2021.

[152] R. Kothamasu, S. H. Huang and W. H. VerDuin, "System health monitoring and
prognostics - a review of current paradigms and practices," The International Journal of

Advanced Manufacturing Technology, vol. 28, no. 9, pp. 1012-1024, 2006.

[153] D. H. Collins, C. M. Anderson-Cook and A. V. Huzurbazar, "System health assessment,"
Quality Engineering, vol. 23, no. 2, pp. 142-151, 2011.

[154] G. Digkas, A. Ampatzoglou, A. Chatzigeorgiou, P. Avgeriou and O. Matel, "The Risk of
Generating Technical Debt Interest: A Case Study," SN Computer Science, vol. 2, no. 1,
pp. 1-12, 2020.

[155] M. Soliman, P. Avgeriou and Y. Li, "Architectural design decisions that incur technical
debt – An industrial case study," Information and Software Technology, vol. 139, 2021.

327

[156] R. O. Spinola, N. Zazworka, A. Vetro, F. Shull and C. Seaman, "Understanding automated
and human-based technical debt identfication approaches - a two-phase study," Journal of

the Brazilian Computer Society, vol. 25, no. 5, pp. 1-21, 2019.

[157] N. Zazworka, A. Vetro', C. Izurieta, S. Wong, Y. Cai, C. Seaman and F. Shull, "Comparing
four approaches for technical debt identification," Software Quality Journal, vol. 22, no. 3,
pp. 403-426, 2014.

[158] G. Sierra, E. Shihab and Y. Kamei, "A survey of self-admitted technical debt," The Journal

of Systems and Software, vol. 152, pp. 70-82, 2019.

[159] INCOSE, "INCOSE-TP-2010-006-03 Guide for Writing Requirements," INCOSE, San
Diego, CA, 2019.

[160] H. Kleinwaks, A. Batchelor, T. Bradley, M. Rich and J. F. Turner, "LEAP - A Process for
Identifying Potential Technical Debt in Iterative System Development," INCOSE

International Symposium, vol. 33, no. 1, pp. 535-553, 2023.

[161] Scaled Agile, Inc., "Program Increment," 6 September 2022. [Online]. Available:
https://www.scaledagileframework.com/program-increment/. [Accessed 2 November
2022].

[162] D. M. Tate, "Acquisition Cycle Time: Defining the Problem (Revised)," Institute for
Defense Analyses, Alexandria, United States, 2016.

[163] T. R. Browning, "Use of Dependency Structure Matrices for Product Development Cycle
Time Reduction," in Proceedings of the Fifth ISPE International Conference on

Concurrent Engineering: Research and Applications, Tokyo, Japan, 1998.

[164] A. A. Yassine, D. E. Whitney and T. Zambito, "Assessment of rework probabilities for
simulating product development processes using the design structure matrix (DSM)," in
Proceedings of DETC '01 ASME 2001 International Design Engineering Technical

Conferences as Computers and Information in Engineering Conference, Pittsburgh,
Pennsylvania, 2011.

[165] E. W. Weisstein, "Heaviside Step Function," From Mathworld--A Wolfram Web Resource,
[Online]. Available: https://mathworld.wolfram.com/HeavisideStepFunction.html.
[Accessed 22 August 2022].

[166] E. Million, "The Hadamard Product," 2007. [Online]. Available:
http://buzzard.ups.edu/courses/2007spring/projects/million-paper.pdf. [Accessed 22
August 2022].

[167] H. Kleinwaks, M. Rich, M. C. Butterfield and J. F. Turner, "LEAPing Ahead - The Space
Development Agency's Method for Planning for the Future," INCOSE International

Symposium, vol. 33, no. 1, pp. 925-942, 2023.

[168] M. Svahnberg, T. Gorschek, R. Feldt, R. Torkar and S. Bin Saleem, "A systematic review
on strategic release planning models," Information and Software Technology, vol. 52, pp.
237-248, 2010.

[169] H. Kleinwaks, A. Batchelor and T. H. Bradley, "Predicting the Dynamics of Earned Value
Creation in the Presence of Technical Debt," Submitted to IEEE Access, 2023.

[170] P. E. D. Love, F. Ackermann, J. Smith, Z. Irani and D. J. Edwards, "Making Sense of
Rework Causation in Offshore Hydrocarbon Projects," Project Management Journal, vol.
47, no. 4, pp. 16-28, 2016.

328

[171] P. E. D. Love, "Influence of Project Type and Procurement Method on Rework Costs in
Building Construction Projects," Journal of construction engineering and management,

vol. 128, no. 1, pp. 18-29, 2002.

[172] R. L. Yim, J. M. Castaneda, T. L. Doolen, I. Y. Tumer and R. Malak, "Exploring the
Relationship Between Rework Projects and Risk Indicators," Project Management Journal,

vol. 46, no. 4, pp. 63-75, 2015.

[173] T. Williams, "Why Monte Carlo Simulations of Project Networks Can Mislead," Project

Management Journal, vol. 35, no. 3, pp. 53-61, 2004.

[174] G. Ma, J. Jia, T. Zhu and S. Jiang, "A Critical Design Structure Method for Project Schedule
Development under Rework Risks," Sustainability, vol. 11, no. 24, p. 7229, 2019.

[175] V. Krishnan, S. D. Eppinger and D. E. Whitney, "A Model-Based Framework to Overlap
Product Development Activities," Management Science, vol. 43, no. 4, pp. 437-451, 1997.

[176] R. P. Smith and S. D. Eppinger, "A Predictive Model of Sequential Iteration in Engineering
Design," Management Science, vol. 43, no. 8, pp. 1104-1120, 1997.

[177] J. U. Maheswari and K. Varghese, "Project Scheduling using Dependency Structure
Matrix," International Journal of Project Management, vol. 23, no. 3, pp. 223-230, 2005.

[178] Project Management Institute, Inc, A Guide to the Project Management Body of Knowledge
(PMBOK Guide), 6th ed., Newtown Square, Pennsylvania, USA: Project Management
Institute, Inc, 2017.

[179] H. Khamooshi and H. Golafshani, "EDM: Earned Duration Management, a new approach
to schedule performance management and measurement," International Journal of Project

Management, vol. 32, no. 6, pp. 1019-1041, 2014.

[180] W. Lipke, "Schedule is different," The measurable news, vol. 31, no. 4, 2003.

[181] S. Vandevoorde and M. Vanhoucke, "A comparison of different project duration
forecasting methods using earned value metrics," International Journal of Project

Management, vol. 24, no. 4, pp. 289-302, 2006.

[182] R. D. Warburton, "A time-dependent earned value model for software projects,"
International Journal of Project Management, vol. 29, no. 8, pp. 1082-1090, 2011.

[183] T. R. Browning, "Planning, Tracking, and Reducing a Complex Project's Value at Risk,"
Project Management Journal, vol. 50, no. 1, pp. 71-85, 2019.

[184] K. Fordyce, "Some Basics on the Value of S Curves and Market Adoption of a New
Product," Arkieva, 1 April 2020. [Online]. Available: https://blog.arkieva.com/basics-on-
s-curves/. [Accessed 26 March 2023].

[185] E. W. Weisstein, "Inflection Point," From MathWorld - A Wolfram Web Resource,
[Online]. Available: https://mathworld.wolfram.com/InflectionPoint.html. [Accessed 26
March 2023].

[186] H. Kleinwaks, A. Batchelor and T. H. Bradley, "Probabilistic Enhancement to the LEAP
Process for Identifying Technical Debt in Iterative System Development," Submitted to

IEEE Access, 2023.

[187] F. T. Anbari, "Earned Value Project Management Method and Extensions," Project

Management Journal, vol. 34, no. 4, pp. 12-23, 2003.

[188] D. T. Hulett, "Advanced Quantitative Schedule Risk Analysis," Hulett & Associates, LLC.,
2004.

329

[189] T. Walworth, M. Yearworth, J. Davis and P. Davies, "Early estimation of project
performance: the application of a system dynamics rework model," in 2013 IEEE

international systems conference (SysCon), 2013.

[190] R. R. de Almeida, U. Kulesza, C. Treude, D. C. Feitosa and A. H. G. Lima, "Aligning
Technical Debt Prioritization with Business Objectives: A Multiple-Case Study," in 2018

IEEE Interantional Conference on Software Maintenance and Evolution (ICSME), 2018.

[191] R. P. Smith and S. D. Eppinger, "Identifying Controlling Features of Engineering Design
Iteration," Management Science, vol. 43, no. 3, pp. 276-293, 1997.

[192] J. Kim, C. Kang and I. Hwang, "A practical approach to project scheduling: considering the
potential quality loss cost in the time-cost tradeoff problem," Internation Journal of Project

Management, vol. 30, no. 2, pp. 264-272, 2012.

[193] C. J. Van Wyngaard, J.-H. C. Pretorius and L. Pretorius, "Theory of the Triple Constraint -
a Conceptual Review," in 2012 IEEE International Conference on Industrial Engineering

and Engineering Management, Hong Kong, China, 2012.

[194] F. Kendall, "Performance of the Defense Acquisition System 2016 Annual Report," 2016.

[195] D. R. Katz, S. Sarkani, T. Mazzuchi and E. H. Conrow, "The relationship of technology
and design maturity to DoD weapon system cost change and schedule change during
engineering and manufacturing development," Systems Engineering, vol. 18, no. 1, pp. 1-
15, 2015.

[196] United States Department of Defense, Office of the Undersecretary of Defense for
Acquisition and Sustainment, "DoD Instruction 5000.85: Major Capability Acquisition,"
United States Department of Defense, Washington, D.C., 2021.

[197] United States Government Accountability Office, "Technology Readiness Assessment
Guide," United States Government Accountability Office, 2020.

[198] D. Knoll, C. Fortin and A. Golkar, "A process model for concurrent conceptual design of
space systems," Systems Engineering, vol. 24, no. 4, pp. 234-49, 2021.

[199] D. A. Bearden, "A complexity-based risk assessment of low-cost planetary missions: when
is a mission too fast and too cheap?," Acta Astronautica, vol. 52, pp. 371-379, 2003.

[200] Scaled Agile, Inc., "SAFe 6.0," [Online]. Available: https://scaledagileframework.com/.
[Accessed 7 September 2023].

[201] H. Kleinwaks, "LEAP - A Process for Identifying Potential Technical Debt in Iterative
Systems Engineering [Conference Presentation]," in INCOSE International Symposium,
Honolulu, HI, United States, 2023.

330

APPENDIX A: EXAMPLE PYTHON CODE FOR LEAP IMPLEMENTATION

A.1 Probability Distribution Classes

-*- coding: utf-8 -*-
import math
import numpy as np
import random
import matplotlib.pyplot as plt
import datetime
from multiprocessing import Pool
import sys

class distribution():

 """
 Base class for different distribution types
 """
 NORMAL_DISTRIBUTION = 0
 TRIANGULAR_DISTRIBUTION = 1
 GAMMA_DISTRIBUTION = 2
 DISCRETE_DISTRIBUTION = 3
 UNIFORM_DISTRIBUTION = 4
 CUSTOM_DISTRIBUTION = 5
 CONSTANT_DISTRIBUTION = 6

 def __init__(self):

 """
 default constructor, sets to normal distribution
 Returns

 None.
 """
 self.distributionType = distribution.NORMAL_DISTRIBUTION

 def getRandomVariable(self):

 """
 base class function for getting a random variable from the distribution
 Returns

 int always returns 0
 """
 pass

 def getMean(self, n=10000):

 """
 returns the mean value of the distribution
 Parameters

 n: int
 number of trials to run (default = 10000)
 Returns

 None.
 """
 x = np.zeros(n)
 for i in range(0, len(x)):
 x[i] = self.getRandomVariable()
 return np.average(x)

 def decrement(self, percentage):

 """

331

 decrement the values in the distribution settings by the specified percentage
 value of 0.1 means that the new value will be 90% of the original (1-0.1)*value
 Parameters

 percentage : float
 percent by which the value is decremented
 Returns

 None.

 """
 pass

 def clone(self):

 """
 return a new distribution that clones this one
 Returns

 clone of the distribution
 """
 pass

 def __str__(self):

 """
 print out the parameters of the distribution
 Returns

 string description of distribution
 """
 return str(self.distributionType)

class ConstantDistribution(distribution):

 """
 constant distribution: always returns the same value
 """

 def __init__(self, value):

 """
 Parameterized constructor
 Parameters

 value : float
 the value to return
 Returns

 None.
 """
 self.value = value

 def getRandomVariable(self):

 """
 returns the constant value
 Returns

 float the random number
 """
 return self.value

 def decrement(self, percentage):

 """
 decrement the values in the distribution settings by the specified percentage

 value of 0.1 means that the new value will be 90% of the original (1-0.1)*value
 Parameters

 percentage : float
 percent by which the value is decremented

332

 Returns

 None.
 """
 self.value = (1-percentage)*self.value

 def clone(self):

 """
 return a new distribution that clones this one

 Returns

 clone of the distribution
 """
 return ConstantDistribution(self.value)

 def __str__(self):

 """
 print out the parameters of the distribution
 Returns

 string description of distribution
 """
 return "Constant Value {}".format(self.value)

class CustomTriangularDistribution(distribution):

 """

 custom distribution to model the distribution used in Williams:
 triangular distribution that reduces the time by 2/3 if the value is over a specified limit
 """
 def __init__(self, low, mode, high, threshold, reduction):

 """
 Parameterized constructor
 Parameters

 low : float
 the low end of the triangular estimate
 mode : float
 the most likely value in the estimate
 high : float
 the high end of the triangular estimate
 threshold : float
 the value at which the reduction is applied

 reduction : float
 reduction to apply (from 0 to 1), multiplied by the difference in random value and threshold
 Returns

 None.
 """
 self.distributionType = distribution.CUSTOM_DISTRIBUTION
 self.low = low
 self.mode = mode
 self.high = high
 self.threshold = threshold
 self.reduction = reduction

 def getRandomVariable(self):

 """
 returns a random number selected from the distribution using the random.triangular function
 and then applies the reduction based on the threshold

 Returns

 float the random number
 """
 #note that input order into np random function is low, high, mode,
 value = random.triangular(self.low, self.high, self.mode)

333

 if (value > self.threshold):
 value = self.threshold + self.reduction*(value-self.threshold)
 return value

 def decrement(self, percentage):

 """
 decrement the values in the distribution settings by the specified percentage
 value of 0.1 means that the new value will be 90% of the original (1-0.1)*value
 Note that decrement only applies to the triangular distribution parameters and not the threshold or

reduction
 Parameters

 percentage : float
 percent by which the value is decremented
 Returns

 None.
 """
 self.low = (1-percentage)*self.low
 self.mode = (1-percentage)*self.mode
 self.high = (1-percentage)*self.high

 def clone(self):

 """
 return a new distribution that clones this one
 Returns

 clone of the distribution
 """
 return CustomTriangularDistribution(self.low, self.mode, self.high, self.threshold, self.reduction)

 def __str__(self):

 """
 print out the parameters of the distribution
 Returns

 string description of distribution
 """
 return "CustomTriangular Low {} Mode {} High {} Threshold {} Reduction {}".format(self.low,

self.mode, self.high, self.threshold, self.reduction)

class NormalDistribution(distribution):

 """
 Normal Distribution
 """
 def __init__(self, mean, standardDeviation):

 """
 Parameterized constructor
 Parameters

 mean : float
 mean of the distribution
 standardDeviation : float
 standard deviation of the distribution
 Returns

 None.
 """
 self.distributionType = distribution.NORMAL_DISTRIBUTION

 self.mean = mean
 self.standardDeviation = standardDeviation

 def getRandomVariable(self):

 """
 returns a random number selected from the distribution using the random.gauss function

334

 Returns

 float the random number
 """
 return random.gauss(self.mean, self.standardDeviation)

 def decrement(self, percentage):

 """
 decrement the values in the distribution settings by the specified percentage

 value of 0.1 means that the new value will be 90% of the original (1-0.1)*value
 Parameters

 percentage : float
 percent by which the value is decremented
 Returns

 None.
 """
 self.mean = (1-percentage)*self.mean
 self.standardDeviation = (1-percentage)*self.standardDeviation

 def clone(self):

 """
 return a new distribution that clones this one
 Returns

 clone of the distribution
 """
 return NormalDistribution(self.mean, self.standardDeviation)

 def __str__(self):

 """
 print out the parameters of the distribution
 Returns

 string description of distribution
 """
 return "Normal Mean {} Std Dev {}".format(self.mean, self.standardDeviation)

class TriangularDistribution(distribution):

 """
 Triangular Distribution

 """
 def __init__(self, low, mode, high):

 """
 Parameterized constructor
 Parameters

 low : float
 the low end of the triangular estimate
 mode : float
 the most likely value in the estimate
 high : float
 the high end of the triangular estimate
 Returns

 None.
 """
 self.distributionType = distribution.TRIANGULAR_DISTRIBUTION

 self.low = low
 self.mode = mode
 self.high = high

 def getRandomVariable(self):

 """

335

 returns a random number selected from the distribution using the random.triangular function
 Returns

 float the random number
 """
 #note that input order into numpy random function is low, high, mode
 return random.triangular(self.low, self.high, self.mode)

 def decrement(self, percentage):

 """
 decrement the values in the distribution settings by the specified percentage
 value of 0.1 means that the new value will be 90% of the original (1-0.1)*value
 Parameters

 percentage : float
 percent by which the value is decremented
 Returns

 None.
 """
 self.low = (1-percentage)*self.low
 self.mode = (1-percentage)*self.mode
 self.high = (1-percentage)*self.high

 def clone(self):

 """

 return a new distribution that clones this one

 Returns

 clone of the distribution
 """
 return TriangularDistribution(self.low, self.mode, self.high)

 def __str__(self):

 """
 print out the parameters of the distribution
 Returns

 string description of distribution
 """
 return "Triangular Low {} Mode {} High {}".format(self.low, self.mode, self.high)

class GammaDistribution(distribution):

 def __init__(self, alpha, beta):

 """
 Parameterized constructor
 Parameters

 alpha : float
 alpha parameter for the gamma distribution
 beta : float
 beta parameter for the gamma distribution
 Returns

 None.
 """
 self.distributionType = distribution.GAMMA_DISTRIBUTION
 self.alpha = alpha

 self.beta = beta

 def getRandomVariable(self):

 """
 returns a random number selected from the distribution using the random.gammavariate function
 Returns

336

 float the random number
 """
 return random.gammavariate(self.alpha, self.beta)

 def decrement(self, percentage):

 """
 decrement the values in the distribution settings by the specified percentage
 value of 0.1 means that the new value will be 90% of the original (1-0.1)*value

 Parameters

 percentage : float
 percent by which the value is decremented
 Returns

 None.
 """
 self.alpha = (1-percentage)*self.alpha
 self.beta = (1-percentage)*self.beta

 def clone(self):

 """
 return a new distribution that clones this one
 Returns

 clone of the distribution

 """
 return GammaDistribution(self.alpha, self.beta)

 def __str__(self):

 """
 print out the parameters of the distribution
 Returns

 string description of distribution
 """
 return "Gamma {} {}".format(self.alpha, self.beta)

class DiscreteDistribution(distribution):

 def __init__(self, values, probabilities):

 """
 Parameterized constructor

 Parameters

 values : array of float
 array of possible values for the discrete distribution, must be same length as probabilities
 probabilities : array of float
 array of probabilities for each of the values, must be the same length as values
 Returns

 None.
 """
 self.distributionType = distribution.DISCRETE_DISTRIBUTION
 self.values = values
 self.probabilities = probabilities

 def getRandomVariable(self):

 """
 returns a random number selected from the distribution using the random.choices function

 Returns

 float the random number
 """
 return random.choices(self.values, self.probabilities)[0]

337

 def decrement(self, percentage):

 """
 decrement the values in the distribution settings by the specified percentage
 value of 0.1 means that the new value will be 90% of the original (1-0.1)*value
 Note: only changes the values not the probabilities
 Parameters

 percentage : float
 percent by which the value is decremented

 Returns

 None.
 """
 vals = []
 for i in range(0, len(self.values)):
 vals.append((1-percentage)*self.values[i])
 self.values = vals

 def clone(self):

 """
 return a new distribution that clones this one
 Returns

 clone of the distribution
 """
 return DiscreteDistribution(self.values, self.probabilities)

 def __str__(self):

 """
 print out the parameters of the distribution
 Returns

 string description of distribution

 """
 return "Discrete Values {} Probabilities {}".format(self.values, self.probabilities)

class UniformDistribution(distribution):

 """
 Uniform distribution
 """
 def __init__(self, low, high):

 """
 Parameterized constructor
 Parameters

 low : float
 low end of the value range for the distribution
 high : float
 high end of the value range for the distribution
 Returns

 None.
 """
 self.distributionType = distribution.UNIFORM_DISTRIBUTION
 self.low = low
 self.high = high

 def getRandomVariable(self):

 """
 returns a random number selected from the distribution using the random.uniform function
 Returns

 float the random number
 """

338

 return random.uniform(self.low, self.high)

 def decrement(self, percentage):

 """
 decrement the values in the distribution settings by the specified percentage
 value of 0.1 means that the new value will be 90% of the original (1-0.1)*value
 Parameters

 percentage : float

 percent by which the value is decremented
 Returns

 None.
 """
 self.low = (1-percentage)*self.low
 self.high = (1-percentage)*self.high

 def clone(self):

 """
 return a new distribution that clones this one
 Returns

 clone of the distribution
 """
 return UniformDistribution(self.low, self.high)

 def __str__(self):

 """
 print out the parameters of the distribution
 Returns

 string description of distribution.
 """
 return "Uniform Low {} High {}".format(self.low, self.high)

A.2 Implementation of the LEAP Process

class leap():

 #Supporting functions
 #K and K* functions
 g1Param = -(math.sqrt(6)-3)
 g2Param = math.sqrt(3)
 g3Param = math.sqrt(6)

 def kFunction(x,y,z):

 """
 executes the k function:
 k (x,y,z) = y, if x != 0 and z if x = 0
 Parameters

 x : float or int
 Value checked to see if it is 0
 y : any type
 Value returned if x != 0
 z : any type
 Value returned if x = 0
 Returns

 y or z depending on the value of x
 """
 if (x == 0):

 return z
 else:
 return y

339

 def KFunction(U,V,z):

 """
 matrix version of the k function, returns a matrix where each cell is the result of the k function of

the input matrices
 Matrices U and V must be the same dimensions
 Parameters

 U : 2d numpy array

 first matrix
 V : 2d numpy array
 second matrix
 z : float
 value to use when U[i,j] = 0
 Returns

 matrix of k(U[i,j], V[i,j], z)
 """
 K = np.zeros((U.shape[0], U.shape[1]))
 for i in range(0, U.shape[0]):
 for j in range(0, U.shape[1]):
 K[i,j] = leap.kFunction(U[i,j], V[i,j], z)
 return K

 def kStarFunction(u, v, z):

 """

 returns the product of the k function of each element of u and v
 Parameters

 u : 1d numpy array
 first array
 v : 1d numpy array
 second array
 z : float
 value to use if u[i] == 0
 Returns

 product of the k function of each element of u and v
 """
 prod = 1
 for i in range(0, len(u)):
 prod *= leap.kFunction(u[i],v[i],z)

 return prod

 def KStarFunction(U,V,z):

 """
 matrix version of the kStarFunction
 the value in each cell of the resultant matrix is the kStarFunction of the row of U and column of V
 traditional matrix multiplication rules about dimensions apply (# columns of U = # rows of V)
 Parameters

 U : 2d numpy array
 first matrix
 V : 2d numpy array
 second array
 z : float
 value to use if U[i,j] == 0
 Returns

 Matrix containing kStar results of each row/column pair
 """
 K = np.zeros((U.shape[0], V.shape[1]))
 for i in range(0, U.shape[0]):
 for j in range(0, V.shape[1]):
 K[i,j] = leap.kStarFunction(U[i,:], V[:,j], z)
 return K
 #End K and K* functions

340

 #Monte Carlo supporting functions
 def getGrowthInflectionPoints(T):

 """
 determines the roots of the second and third derivatives of the planned value curve
 which give the inflection points
 G1: boundary between initial slow growth and rapid growth
 G2: boundary between rapid growth and concluding slow growth
 G3: boundary between concluding slow growth and limited growth

 Parameters

 T : time of peak instantaneous planned value, expressed as a percentage of duration (0 to 1)
 Returns

 tuple of (G1, G2, G3)
 """
 #ensure all values are between zero and 1
 t = np.clip(T, 0, 1)
 t2 = t*t

 g1 = np.sqrt(leap.g1Param*(t2))
 g2 = leap.g2Param*t
 g3 = np.sqrt(leap.g3Param*t2+3*t2)
 return (g1,g2,g3)

 def getRandomVariables(techParameters, techTechParameters, distributionList):

 """
 determine random variables based on the input parameters
 Distributions are selected from the distribution classes
 Currently available distributions are:
 NORMAL_DISTRIBUTION: two parameters - mean and standard deviation
 TRIANGULAR_DISTRIBUTION: three parameters - low, most likely, and high estimatesf
 GAMMA_DISTRIBUTION: two parameters - alpha and beta
 DISCRETE_DISTRIBUTION: two parameters: list of relative weights, list of values
 Parameters

 techParameters : 2d numpy array
 2d array where the number rows is equal to the number of technologies
 Columns are:
 [0] T - time of peak instantaneous planned value, expressed from 0 to 1
 [1] earliest start time, expressed in time units
 [2] distribution index into the the distributionList

 techTechParameters : 2d numpy array
 2d array where the number rows is equal to a maximum of the number of technologies squared (one for

each combination)
 Columns are:
 [0] predecessor technology index
 [1] successor technology index
 [2] alpha - impact on successor, from 0 to 1
 [3] U - utility threshold, from 0 to 1
 [4] r distribution index into the the distributionList
 [5] tau distribution index into the the distributionList

 distributionList : array of distribution
 array of distribution classes containing the distribution information
 Returns

 tuple of (randomDuration, randomTechTechParameters)

 randomDuration is a 1d array of the duration for each technology
 randomTechTechParameters is a 2d numpy array with the following columns:
 [0] predecessor technology index
 [1] successor technology index
 [2] alpha - impact on successor, from 0 to 1
 [3] U - utility threshold, from 0 to 1
 [4] r for the predecessor-successor combination
 [5] tau for the predecessor-successor combination

341

 """

 #start with the tech paramenters
 randomDuration = np.zeros(len(techParameters))
 for i in range(0, len(techParameters)):
 dist = distributionList[int(techParameters[i,2])]
 randomDuration[i] = dist.getRandomVariable()
 #randomDuration[i] = leap.randomVariable(techParameters[i,2], techParameters[i,3:])
 if (randomDuration[i] < 0):

 randomDuration[i] = 0
 #get the tech-tech parameters
 randomTechTechParameters = np.zeros((len(techTechParameters), 6))
 for i in range(0, len(techTechParameters)):
 randomTechTechParameters[i,0] = techTechParameters[i,0]
 randomTechTechParameters[i,1] = techTechParameters[i,1]
 randomTechTechParameters[i,2] = techTechParameters[i,2]
 randomTechTechParameters[i,3] = techTechParameters[i,3]
 #get the r value
 rDist = distributionList[int(techTechParameters[i,4])]
 randomTechTechParameters[i,4] = np.clip(rDist.getRandomVariable(), 0, 1)
 tDist = distributionList[int(techTechParameters[i,5])]
 randomTechTechParameters[i,5] = np.clip(tDist.getRandomVariable(),0, 1)
 return (randomDuration, randomTechTechParameters)

 def getEarnedValue(t, r, tau, alpha, T):

 """

 return the cumulative earned value at time T
 Parameters

 t : float
 time at which cumulative earned value is calculated, from 0 to 1
 r : float
 portion of alpha subject to delays, from 0 to 1
 tau : float
 delay introduced by predecessor task, from 0 to 1
 alpha : float
 % of successor task impacted by predecessor task
 T : float
 time (from 0 to 1) of maximum instantaneous planned value
 Returns

 Cumulative Earned Value at t

 """
 N = 1 #N always equals 1 in this implementation
 if (t <= tau):
 return (1-r)*alpha*N*(1-math.exp((-t**2)/(2*(T**2))))
 else:
 return alpha*N-alpha*N*(1-r)*(math.exp((-t**2)/(2*T**2)))-r*alpha*N*math.exp(-((t-

tau)**2)/(2*(T**2)))

 def getEarnedValueAtTransitionPoints(techParameters, randomTechTechParameters):

 """
 return the earned value at each of the transition points for each technology
 Parameters

 techParameters : 2d numpy array
 2d numpy array where the number rows is equal to the number of technologies
 Columns are:
 [0] T - time of peak instantaneous planned value, expressed from 0 to 1

 [1] earliest start time, expressed in time units
 [2] distribution type (as a enumerated type from the LEAP class) for the duration
 columns 3 and higher are the parameters used for the distribution of the duration
 randomTechTechParameters : 2d numpy array
 2d numpy array where the number rows is equal to a maximum of the number of technologies squared

(one for each combination)
 Columns are:
 [0] predecessor technology index

342

 [1] successor technology index
 [2] alpha - impact on successor, from 0 to 1
 [3] U - utility threshold, from 0 to 1
 [4] r randomly determined r value
 [5] tau randomly determined tau value
 Returns

 2d numpy array where each row is a technology and the columns are G1, G2, G3, EV(G1), EV(G2), EV(G3),

EV(1) for that technology

 """
 res = np.zeros((len(techParameters),7))
 for i in range(0, len(techParameters)):
 T = techParameters[i][0]
 (G1, G2, G3) = leap.getGrowthInflectionPoints(T)
 #get the predecessor indices
 rows = randomTechTechParameters[np.where(randomTechTechParameters[:,0] == i)[0]]
 EV1 = 0
 EV2 = 0
 EV3 = 0
 EV4 = 0
 for j in range(0, len(rows)):
 ri = rows[j][4]
 ai = rows[j][2]
 taui = rows[j][5]
 EV1 += leap.getEarnedValue(G1, ri, taui, ai, T)
 EV2 += leap.getEarnedValue(G2, ri, taui, ai, T)

 EV3 += leap.getEarnedValue(G3, ri, taui, ai, T)
 EV4 += leap.getEarnedValue(1, ri, taui, ai, T)

 res[i]= [G1, G2, G3, EV1, EV2, EV3, EV4]
 return res

 def getTimeFromEarnedValue(V, G1, G2, G3, EV1, EV2, EV3, EV4):

 """
 return the time based on the specified earned value V
 Uses a piece-wise linear approximation to the earned value to calculate
 Parameters

 V : float
 the earned value of interest
 G1 : float
 first inflection point - transition point between initial slow growth and rapid growth

 G2 : float
 second inflection point - transition point between rapid growth and concluding slow growth
 G3 : float
 third infleciton point - transition point between concluding slow growth and limited growth
 EV1 : flaot
 earned value at G1
 EV2 : float
 earned value at G2
 EV3 : float
 earned value at G3
 EV4: float
 earned value at 1
 Returns

 the time corresponding to the input earned value
 """
 #values less than or equal to zero always returns zero

 if (V <= 0):
 return 0
 if (V <= EV1):
 return V*G1/EV1
 elif (V <= EV2):
 m2 = (EV2-EV1)/(G2-G1)
 return (V-EV1)/m2+G1
 elif (V <= EV3):
 m3 = (EV3-EV1)/(G3-G2)

343

 return (V-EV2)/m3+G2
 else:
 m4 = (EV4-EV3)/(1-G3)
 if (m4 == 0):
 return 0
 return (V-EV3)/m4+G3
 #End Monte Carlo supporting functions

 def getLinearizedEarnedValue(t, G1, G2, G3, EV1, EV2, EV3, EV4):

 """
 return the linearized earned value for the specified time
 Parameters

 t : float
 the time of interest
 G1 : float
 first inflection point - transition point between initial slow growth and rapid growth
 G2 : float
 second inflection point - transition point between rapid growth and concluding slow growth
 G3 : float
 third infleciton point - transition point between concluding slow growth and limited growth
 EV1 : flaot
 earned value at G1
 EV2 : float
 earned value at G2
 EV3 : float

 earned value at G3
 EV4: float
 earned value at 1
 Returns

 the time corresponding to the input earned value
 """
 if (t <= G1):
 m = EV1/G1
 return t*m
 elif (t <= G2):
 m = (EV2-EV1)/(G2-G1)
 return m*(t-G1)+EV1
 elif (t <= G3):
 m = (EV3-EV2)/(G3-G2)
 return m*(t-G2)+EV2

 else:
 m = (EV4-EV3)/(1-G3)
 return m*(t-G3)+EV3

 def runErrorAnalysis(TArray,rArray,tauArray, tStep):

 """
 run an error analysis for the input combinations of T, r, and tau
 Parameters

 TArray : list (of float)
 values of T to consider, from 0 to 1
 rArray : list (of float)
 values of r to consider, from 0 to 1
 tauArray : list (of float)
 values of tau to consider, from 0 to 1
 tSetp : float
 step to use for t, will evaluate from 0 to 1 at tStep

 Returns

 array of [[T, r, tau, t1, max e1, max % e1, t2, max e2, max % e2, t3, max e3, max % e3, t4, max e4,

max %e4]]
 e1-4 refer to the sections of the linearized ev plot
 e1: t <= G1
 e2: t > G1 and <= G2
 e3: t > G2 and <= G3

344

 e4: t > G3 and <= G4
 """
 res = []
 for i in range(0, len(TArray)):
 T = TArray[i]
 #get the inflection points, these are functions of T only
 (G1, G2, G3) = leap.getGrowthInflectionPoints(T)
 print("G1", G1, "G2", G2, "G3", G3)
 for j in range(0, len(rArray)):

 r = rArray[j]
 for k in range(0, len(tauArray)):
 tau = tauArray[k]
 t = tStep
 #get the earned value at the inflection points
 EV1 = leap.getEarnedValue(G1, r, tau, 1, T)
 EV2 = leap.getEarnedValue(G2, r, tau, 1, T)
 EV3 = leap.getEarnedValue(G3, r, tau, 1, T)
 EV4 = leap.getEarnedValue(1, r, tau, 1, T)
 maxErr = [0,0,0,0]
 maxPercentError = [0,0,0,0]
 maxTime = [0,0,0,0]

 answer = [T,r,tau,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1]
 while t <= 1:
 ev = leap.getEarnedValue(t, r, tau, 1, T) #actual earned value
 lev = leap.getLinearizedEarnedValue(t, G1, G2, G3, EV1, EV2, EV3, EV4) #linearized ev

 err = abs(ev-lev)
 percentErr = err/ev*100
 if (t <= G1):
 if (err >= maxErr[0]):
 maxErr[0] = err
 maxPercentError[0] = percentErr
 maxTime[0] = t
 elif (t <= G2):
 if (err >= maxErr[1]):
 maxErr[1] = err
 maxPercentError[1] = percentErr
 maxTime[1] = t
 elif (t <= G3):
 if (err >= maxErr[2]):
 maxErr[2] = err
 maxPercentError[2] = percentErr

 maxTime[2] = t
 else:
 if (err >= maxErr[3]):
 maxErr[3] = err
 maxPercentError[3] = percentErr
 maxTime[3] = t

 t += tStep
 for n in range(0, len(maxErr)):
 answer[3+n*3] = maxTime[n]
 answer[4+n*3] = maxErr[n]
 answer[5+n*3] = maxPercentError[n]

 res.append(answer)
 return res
 #End supporting functions
 ##

 def qualitativeLeap(functionalMatrix, developmentMatrix, needMatrix, debug=False):

 """
 runs the qualitative leap algorithm.
 t = number of technologies
 c = number of capabilities
 p = number of time periods
 Parameters

345

 functionalMatrix : c x t numpy array
 matrix defining the mapping of capabilities to the technologies that support them.
 Technologies are the columns (t) and the capabilities are the rows (c).
 A one (1) is entered in cell (c, t) if the technology t supports the capability c
 developmentMatrix : t x p numpy array
 matrix defining the development timelines of the technology.
 Technologies are the rows (t) and the time periods are the columns (p)
 A one (1) is entered in cell (t, p) if the technology t will be developed in the time period p
 needMatrix : p x c numpy array

 matrix defining the mapping of capabilities to the time periods in which they are needed
 time periods are the rows (p) and the capabilities are the columns (c)
 A one (1) is entered in cell (p, c) if the capability c is needed in time period p
 debug: boolean
 If true, prints debug information, such as the values of the matrices
 Returns

 tuple of (numpy array, numpy array, numpy array)
 First element of the tuple is the availability matrix, a (p x c) numpy array that defines if a

capability c will be available in time period p
 A one in the cell indicates that the capability will be available
 Second element of the tuple is the delivery matrix, a (p x c) numpy array that defines if a

capability will be delivered late
 A one (1) in the cell indicates that the capability will be late to need
 A zero (0) in the cell indicates that the capability either is ready when needed, or is not ready

and not needed
 A negative one (-1) in the cell indicates that the capability is ready ahead of need

 Third element of the tuple is the investment matrix, a (t x p) matrix that shows how many late
capabilities that the technology impacts in the time period

 Positive values indicate the number of late capabilities in that time period that depend on the
technology

 Negative values indicate the number of early capabilities in that time period that are impacted by
the technology

 """
 #create the summation matrix
 summationMatrix = np.zeros(needMatrix.shape)
 for i in range(0, numCapabilities):
 summationMatrix[:,i] = np.sum(functionalMatrix[i,:])

 #calculate the availability matrix
 #A=H((FV)^T-S+0.5J)
 #J = hadamard identity matrix
 J = np.ones(needMatrix.shape)

 #determine transpose of Functional Matrix * development matrix
 FVT = np.transpose(np.matmul(functionalMatrix, developmentMatrix))

 #calculate the temporary availability matrix and then apply the heaviside function
 #apply heaviside function
 # note that the numpy implementation allows for specification of the x2 term in the heaviside
 # function.
 availabilityMatrix = np.heaviside(FVT-summationMatrix,1)

 #calculate delivery matrix
 #D = N-A
 deliveryMatrix = needMatrix-availabilityMatrix

 #investment matrix
 #I = transpose(D*F).(J-V)
 #in numpy, the multiplication operator (*) for matrices provides the hadamard product
 #reset J to be size of the development matrix

 J = np.ones(developmentMatrix.shape)
 investmentMatrix = np.transpose(np.matmul(deliveryMatrix, functionalMatrix))*(J-developmentMatrix)

 #print the results
 if (debug):
 #availability results
 print("Availability Matrix\n", availabilityMatrix)
 #determine when a capability is first available
 availableCapabilityIndices = np.where(np.transpose(availabilityMatrix) == 1)

346

 #print out so that the output is [capability index, time period index], ordered by capability index
 availableCapabilities = np.transpose(np.array([availableCapabilityIndices[0],

availableCapabilityIndices[1]]))
 print("capability availability times\n", availableCapabilities)

 #delivery results
 print("Delivery Matrix\n", deliveryMatrix)
 #determine what capabilities are late
 deliveryCapabilityIndices = np.where(np.transpose(deliveryMatrix) == 1)

 #print out so that the output is [capability index, time period index], ordered by capability index
 deliveryCapabilities = np.transpose(np.array([deliveryCapabilityIndices[0],

deliveryCapabilityIndices[1]]))
 print("late capability deliveries\n", deliveryCapabilities)

 #investment results
 print("Investment Matrix\n", investmentMatrix)
 #determine which technologies need to be invested in
 investmentIndices = np.where(investmentMatrix > 0)
 #print out so that the output is [technology, time period, value]
 print("investments by technology")
 for i in range(0, len(investmentIndices[0])):
 printString = ""
 if (i == 0):
 printString = "["
 printString += "[{} {} {}]".format(investmentIndices[0][i], investmentIndices[1][i],

investmentMatrix[investmentIndices[0][i],investmentIndices[1][i]])

 if i == len(investmentIndices[0])-1:
 printString += "]"
 print(printString)
 return (availabilityMatrix, deliveryMatrix, investmentMatrix)

 def quantitativeLeap(functionalMatrix, developmentMatrix, needMatrix, debug = False,

includeInvestmentMatrix = False):

 """
 runs the quantitative leap algorithm.
 t = number of technologies
 c = number of capabilities
 p = number of time periods
 Parameters

 functionalMatrix : c x t numpy array
 matrix defining the mapping of capabilities to the technologies that support them.

 Technologies are the columns (t) and the capabilities are the rows (c).
 A one (1) is entered in cell (c, t) if the technology t supports the capability c
 developmentMatrix : t x p numpy array
 matrix defining the development timelines of the technology.
 Technologies are the rows (t) and the time periods are the columns (p)
 Each cell contains the probability (0 to 1) that t will be developed in the time period p
 needMatrix : p x c numpy array
 matrix defining the mapping of capabilities to the time periods in which they are needed
 time periods are the rows (p) and the capabilities are the columns (c)
 A one (1) is entered in cell (p, c) if the capability c is needed in time period p
 debug: boolean
 If true, prints debug information, such as the values of the matrices
 includeInvestmentMatrix: boolean
 If true, calculates the investment matrix. If False, returns an empty array
 Returns

 tuple of (numpy array, numpy array, numpy array)

 First element of the tuple is the availability matrix, a (p x c) numpy array that defines if a
capability c will be available in time period p

 The value in the cell indicates the probability that the capability will be available in the time
period p

 Second element of the tuple is the delivery matrix, a (p x c) numpy array that defines if a
capability will be delivered late

 The value in the cell indicates the probability (0 to 1) that the capbility will be available when
it is needed

347

 Third element of the tuple is the investment matrix, a (t x p) matrix that shows how many late
capabilities that the technology impacts in the time period

 The value in the cell indicates the score of the technology in that time period. Higher scores
indicate a larger impact - larger number of capabilities and/or higher probabilities

 """

 #calculate the availability matrix
 #A=K*(F,V,1)
 availabilityMatrix = np.transpose(leap.KStarFunction(functionalMatrix, developmentMatrix, 1))

 #calculate delivery matrix
 #D = K(N,A,-1)
 deliveryMatrix = leap.KFunction(needMatrix, availabilityMatrix, -1)

 #investment matrix
 #I = transpose(D*F).(J-V)
 #in numpy, the multiplication operator (*) for matrices provides the hadamard product
 #reset J to be size of the development matrix
 if (includeInvestmentMatrix):
 J = np.ones(developmentMatrix.shape)
 investmentMatrix = np.transpose(np.matmul(needMatrix, functionalMatrix))*(J-developmentMatrix)
 else:
 investmentMatrix = []

 #print the results

 if (debug):
 #availability results
 print("Availability Matrix\n", availabilityMatrix)

 #delivery results
 print("Delivery Matrix\n", deliveryMatrix)

 #investment results
 print("Investment Matrix\n", investmentMatrix)

 return (availabilityMatrix, deliveryMatrix, investmentMatrix)

 def findDevelopmentProbabilitySingleTrial(predecessorKeyDictionary, schedule, techParameters,

techTechParameters, distributionList, timePeriods,debug = False):

 """
 runs a single instance of the earned value calculatiosn to find the develpoment timelines

 Parameters

 schedule : TYPE
 DESCRIPTION.
 techParameters : TYPE
 DESCRIPTION.
 techTechParameters : TYPE
 DESCRIPTION.
 distributionList : TYPE
 DESCRIPTION.
 timePeriods : TYPE
 DESCRIPTION.
 plotTechs : TYPE, optional
 DESCRIPTION. The default is [].
 debug : TYPE, optional
 DESCRIPTION. The default is False.
 outputFile : TYPE, optional

 DESCRIPTION. The default is "".
 maxAllowableValue : TYPE, optional
 DESCRIPTION. The default is 1e20.
 Returns

 None.
 """
 startTimes = np.zeros(len(techParameters)) #start time of each technology
 endTimes = np.zeros(len(techParameters)) #end time of each technology

348

 taskDurations = np.zeros(len(techParameters))
 pens = np.zeros(len(techParameters))
 #set up monte carlo parameters
 (randomDuration, randomTechTechParameters) = leap.getRandomVariables(techParameters,

techTechParameters, distributionList)
 if (debug):
 print("randomTechTechParameters")
 print(randomTechTechParameters)
 print("randomDuration", randomDuration)

 #get the earned value at the transition points for each technology
 ev = leap.getEarnedValueAtTransitionPoints(techParameters, randomTechTechParameters)
 #go through the schedule and determine the start and finish date of each task
 # step 1. get the predecessor tasks
 for j in range(0, len(schedule)):
 predecessorKeys = predecessorKeyDictionary[j]
 predecessorIndices = techTechParameters[predecessorKeys]
 # step 2. for each predecessor, find the utility time. Start time is the maximum utility time + the

start time of the previous task
 startTime = 0
 earliestStartTime = techParameters[schedule[j]][1]
 for k in range(0, len(predecessorIndices)):

 kp = int(predecessorIndices[k][0])
 #do not adjust start time if we are looking at self-inflicted technical debt
 if (kp != int(predecessorIndices[k][1])):
 #find the index into the techTech array - need to have

 p = int(techTechParameters[predecessorKeys][k][1])
 u = techTechParameters[predecessorKeys][k][3]
 tu = leap.getTimeFromEarnedValue(u, ev[p][0], ev[p][1], ev[p][2], ev[p][3], ev[p][4], ev[p][5],

ev[p][6])
 #multiply tu by the duration of the task and add to the start time of the prior task
 pStart = startTimes[int(predecessorIndices[k][1])]
 utilityTime = randomDuration[p]*tu
 startTime = max(earliestStartTime, startTime, utilityTime+pStart)
 if (debug):
 print("***********")
 print("kp", kp,"k", k, "u", u, "p", p)
 print("schedule[j]", schedule[j])
 print("randomDuration", randomDuration[p])
 print("ev[p]", ev[p])
 print('tu', tu)
 print("utilityTime", utilityTime)

 print('pstart', pStart)
 print('tu=1', leap.getTimeFromEarnedValue(1, ev[p][0], ev[p][1], ev[p][2], ev[p][3], ev[p][4],

ev[p][5], ev[p][6]))

 startTimes[schedule[j]] = startTime
 #Step 3. add the duration to the start time for each technology
 # impact of self-inflicted technical debt is in the earned value calculations for utility as seen by

successors
 # need to calculate the time at which the earned value = 1, this is the td penalty - this is the

accumulated td interest
 tdPenalty = leap.getTimeFromEarnedValue(1, ev[j][0], ev[j][1], ev[j][2], ev[j][3], ev[j][4],

ev[j][5], ev[j][6])
 #tdPenalty = 1
 endTimes[schedule[j]] = startTime + randomDuration[schedule[j]]*tdPenalty

 taskDurations[schedule[j]] = randomDuration[schedule[j]]*tdPenalty
 pens[schedule[j]] = (tdPenalty-1)

 return (startTimes, endTimes, taskDurations, pens)

 def threadedFindDevProbabilities(input_index):

 res = leap.findDevelopmentProbabilitySingleTrial(input_index[0], input_index[1], input_index[2],
input_index[3], input_index[4], input_index[5], False)

 return res

349

 def findDevelopmentProbabilities(numTrials, schedule, techParameters, techTechParameters,
distributionList, timePeriods, debug = False, maxAllowableValue=1e20, outputDurations = False):

 """
 Determine the probability of each technology completing in each time period by doing a Monte Carlo

analysis
 Parameters

 numTrials : int
 number of Monte Carlo trials to run

 schedule : 1d numpy array
 list of technologies, in notional schedule order. This is the order in which the durations will be

evaluated

 techParameters : 2d array
 2d numpy array where the number rows is equal to the number of technologies
 Columns are:
 [0] T - time of peak instantaneous planned value, expressed from 0 to 1
 [1] earliest start time, expressed in time units
 [2] distribution inded for the duration
 techTechParameters : 2d numpy array
 2d numpy array where the number rows is equal to a maximum of the number of technologies squared

(one for each combination)
 Columns are:
 [0] predecessor technology index
 [1] successor technology index
 [2] alpha - impact on successor, from 0 to 1

 [3] U - utility threshold, from 0 to 1
 [4] r distribution index
 [5] tau distribution index
 distributionList : array
 array of distrbution, which are indexed by tech parameters and techtechparameters
 timePeriods : 1d numpy array
 array of time periods, expressed as time units from start for which the development probabilities

will be calculated
 debug : boolean
 if true, prints debug information to the console
 maxAllowableValue: float
 any iterations that return end times for the last schedule item greater that this value will be

ignored
 Returns

 Development matrix a (t x p) matrix where the rows represent each technology and the columns

represent each time period.
 The value in the cell is the probability of the technology being ready in the time period
 """
 #output array stores each trial in a row and the development time for each technology in the columns
 results = np.zeros((numTrials, len(techParameters)))
 penalties = np.zeros((numTrials, len(techParameters)))
 durations = np.zeros((numTrials, len(techParameters)))
 validTrials = numTrials
 predecessorKeyDictionary = {}
 for i in range(0, len(schedule)):
 predecessorKeyDictionary[i] = np.where(techTechParameters[:,0] == schedule[i])[0]

 inputs = []
 for i in range(0, numTrials):
 inputs.append((predecessorKeyDictionary, schedule, techParameters, techTechParameters,

distributionList, timePeriods))

 with Pool(8) as pool:
 count = 0
 mapResults = pool.map(leap.threadedFindDevProbabilities, inputs)
 for res in mapResults:
 results[count] = res[1]
 durations[count] = res[2]
 penalties[count] = res[3]
 count += 1

350

 #remove the invlaid rows
 if (validTrials < numTrials):
 if (debug):
 print("removing ", numTrials-validTrials, "invalid rows")
 results = np.delete(results,slice(validTrials,numTrials,1), 0)
 if (debug):
 print("results")
 print(results)
 # step 5. create the development matrix with the probabilities

 devMatrix = np.zeros((len(techParameters), len(timePeriods)))
 for i in range(0, len(devMatrix)):
 for j in range(0, len(devMatrix[i])):
 timePeriod = timePeriods[j]
 #for each technology (columns of results), count the number of times that it finishes before the

specified time period
 #dev matrix is the cumulative probability
 devMatrix[i,j] = len(np.where(results[:,i]<=timePeriod)[0])/numTrials
 if (outputDurations):
 return (devMatrix, durations)
 else:
 return devMatrix

A.3 Example Application from Section 4.3.1.1

from leap_forAppendix import leap, NormalDistribution, ConstantDistribution, TriangularDistribution,

GammaDistribution, DiscreteDistribution, UniformDistribution, CustomTriangularDistribution
import numpy as np
import datetime
from multiprocessing import set_start_method

if __name__ == "__main__":

 #data import from Williams, Why Monte Carlo Simulations of Project Networks can Mislead
 #tasks
 #ID, Name, Distribution, Triangular Parameters (Min, Most Likely, Max)
 # 0, General Design, Triangular, 4,10,21
 # 1, Engine Design, Triangular, 21,32,55
 # 2, Avionics Design, Triangular, 1, 7, 19
 # 3, D/b airframe design, Triangular, 6,15,32
 # 4, D/b engine manufacture, Triangular, 7,9,11
 # 5, Interim avionics, Triangular, 7,14,27
 # 6, D/b airframe manufacture, Triangular, 8,11,17
 # 7, Assemble d/b aircraft, Triangular, 3,5,10
 # 8, Engine development, Triangular, 20,23,40
 # 9, Engine production, Triangular, 12,13,14
 # 10, Avionics Test, Gamma mean 10 mode 5

 # 11, Avionics flight trials, discrete, relative probability 1:2;1:1 of 4,5,6,24
 # 12, Engine/frame flight trials, discrete, relative probability of 1:2;2:1:0.5 of 5,6,7,8,13
 # 13, Airframe production, Triangular, 12,14,18
 # 14, Avionics Production, Triangular, 14, 16, 24
 # 15, ready to assemble

 #Duration parameters are:
 #[0] T - time of peak instantaneous planned value, expressed from 0 to 1
 #[1] earliest start time, expressed in time units
 #[2] duration distribution type, as an enumerated type from the LEAP class
 #[3] duration mean - mean duration of the technology development in time units
 #[4] duration standard deviation - standard deviation of the time units

 #times are in months
 numTechnologies = 16
 distributionList = []

 durationDistributions = []
 #corresponding data T = 0.395, alpha = 0, alpha0 = 1, U = 1, r = 0, tau = 0 for ALL
 numTrials = 1000
 T = 0.395
 alpha = 0

351

 runComparativeAnalysis = False
 runTDAnalysis = not runComparativeAnalysis
 plotTechs = np.array([15])
 maxvalue = 200

 debug = False
 useCompound = False
 useLowQualityEngine = False
 techParameters = np.zeros((numTechnologies, 3))

 #General design
 d0 = TriangularDistribution(4,10,21)
 durationDistributions.append(d0)
 techParameters[0] = [T, 0, 0]
 #Engine design
 d1 = TriangularDistribution(21,32,55)
 durationDistributions.append(d1)
 engineDesignDistributionIndex = len(durationDistributions)-1
 techParameters[1] = [T, 0, 1]
 #Avionics design
 d2 = TriangularDistribution(1, 7, 19)
 durationDistributions.append(d2)
 techParameters[2] = [T, 0, 2]
 #D/b airframe design
 d3 = TriangularDistribution(6,15,32)
 durationDistributions.append(d3)
 techParameters[3] = [T, 0, 3]

 #D/b engine manufacture
 d4 = TriangularDistribution(7,9,11)
 durationDistributions.append(d4)
 techParameters[4] = [T, 0, 4]
 #interim avionics
 d5 = TriangularDistribution(7,14,27)
 durationDistributions.append(d5)
 techParameters[5] = [T, 0, 5]
 #d/b airframe manufacture
 d6 = TriangularDistribution(8,11,17)
 durationDistributions.append(d6)
 techParameters[6] = [T, 0, 6]
 #assemble d/b aircraft
 d7 = TriangularDistribution(3,5,10)
 durationDistributions.append(d7)
 techParameters[7] = [T, 0, 7]

 #engine development
 d8 = TriangularDistribution(20,23,40)
 durationDistributions.append(d8)
 techParameters[8] = [T, 0, 8]
 #engine production
 d9 = TriangularDistribution(12,13,14)
 durationDistributions.append(d9)
 techParameters[9] = [T, 0, 9]

 #avionics test
 gamma_alpha = 5
 gamma_beta = 0.5
 d10 = GammaDistribution(gamma_alpha, gamma_beta)
 durationDistributions.append(d10)
 techParameters[10] = [T, 0, 10]
 #avionics flight trials
 d11 = DiscreteDistribution([4,5,6,24],[1,2,1,1])

 durationDistributions.append(d11)
 techParameters[11] = [T, 0, 11]
 #engine/frame flight trials
 d12 = DiscreteDistribution([5,6,7,8,13],[1,2,2,1,0.5])
 durationDistributions.append(d12)
 techParameters[12] = [T, 0, 12]
 #airframe production
 d13 = TriangularDistribution(12, 14, 18)
 durationDistributions.append(d13)
 techParameters[13] = [T, 0, 13]

352

 #avionics production
 d14 = TriangularDistribution(14,16,24)
 durationDistributions.append(d14)
 techParameters[14] = [T, 0, 14]
 #ready to assemble
 d15 = TriangularDistribution(0,0,0)
 durationDistributions.append(d15)
 techParameters[15] = [T, 0, 15]

 for i in range(0, len(durationDistributions)):
 distributionList.append(durationDistributions[i])

 #predecessors
 #ID, predecessor IDs
 # 0, N/A
 # 1, N/A
 # 2, 0
 # 3, 0
 # 4, 1
 # 5, 2
 # 6, 3
 # 7, 4,5,6
 # 8, 1
 # 9, 8
 # 10, 2
 # 11, 10

 # 12, 7
 # 13, 12
 # 14, 11,12
 # 15, 9,13,14

 schedule = np.array([0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15])
 techTechParameters = np.zeros((35, 6))
 #include the dependencies on other technologies
 U = 1
 rMean = 0
 rSD = 0
 tauMean=500
 tauSD =0
 rDist = ConstantDistribution(rMean)
 tauDist = ConstantDistribution(tauMean)
 distributionList.append(rDist)

 rIndex = len(distributionList)-1
 baseRIndex = rIndex
 distributionList.append(tauDist)
 tauIndex = len(distributionList)-1
 baseTauIndex = tauIndex

 techTechParameters = np.zeros((80, 6))
 #include the dependencies on other technologies
 U = 1
 rIndex = baseRIndex#len(distributionList)-1
 tauIndex = baseTauIndex#len(distributionList)-1
 rConDist = NormalDistribution(0.5,0.2)
 tauConDist = NormalDistribution(0.8,0.1)
 distributionList.append(rConDist)
 rConIndex = len(distributionList)-1
 distributionList.append(tauConDist)

 tauConIndex = len(distributionList)-1
 if (useCompound):
 edsTauIndex = tauConIndex
 edsRIndex = rConIndex
 else:
 edsTauIndex = tauIndex
 edsRIndex = rIndex
 engineTauIndex= tauIndex
 engineRIndex = rIndex
 if (useLowQualityEngine):

353

 engineTauIndex = tauConIndex
 engineRIndex = rConIndex

 techTechParameters[0] = [2,0,0.4,U,rIndex, tauIndex] #td in general design impact avionics design
 techTechParameters[1] = [3,0,0.4,U,rIndex, tauIndex] #td in general design impact d/b airframe design
 techTechParameters[2] = [4,1,0.7,U,engineRIndex, engineTauIndex] #td in engine design impact d/b

engine manufacture
 techTechParameters[3] = [5,0,0.1,U,rIndex, tauIndex] #td in general design impact interim avionics
 techTechParameters[4] = [5,2,0.7,U,rIndex, tauIndex] #td in avionics design impact interim avionics

 techTechParameters[5] = [6,0,0.1,U,rIndex, tauIndex] #td in general design impact d/b airframe
manufacture

 techTechParameters[6] = [6,3,0.7,U,rIndex, tauIndex]#td in d/b airframe design impact d/b airframe
manufacture

 techTechParameters[7] = [7,0,0.2,U,rIndex, tauIndex] #td in general design impact assemble d/b
aircraft

 techTechParameters[8] = [7,1,0.1,U,edsRIndex, edsTauIndex]#td in engine design impact assemble d/b
aircraft

 techTechParameters[9] = [7,2,0.1,U,rIndex, tauIndex]#td in avionics design impact assemble d/b
aircraft

 techTechParameters[10] = [7,3,0.2,U,rIndex, tauIndex]#td in d/b airframe design impact assemble d/b
aircraft

 techTechParameters[11] = [7,4,0.1,U,rIndex, tauIndex]#td in d/b engine manufacture impact assemble d/b
aircraft

 techTechParameters[12] = [7,5,0.1,U,rIndex, tauIndex]#td in interim avionics impact assemble d/b
aircraft

 techTechParameters[13] = [7,6,0.1,U,rIndex, tauIndex]#td in d/b airframe manufacture impact assemble

d/b aircraft
 techTechParameters[14] = [8,1,0.7,U,engineRIndex, engineTauIndex]#td in engine design impact engine

development
 techTechParameters[15] = [9,1,0.4,U,edsRIndex, edsTauIndex]#td in engine design impact engine

production
 techTechParameters[16] = [9,8,0.4,U,rIndex, tauIndex]#td in engine development impact engine

production
 techTechParameters[17] = [10,0,0,U,rIndex, tauIndex]#td in general design impact avionics test
 techTechParameters[18] = [10,2,0.7,U,rIndex, tauIndex]#td in avionics design impact avionics test
 techTechParameters[19] = [11,0,0,U,rIndex, tauIndex]#td in general design impact avionics flight

trials
 techTechParameters[20] = [11,2,0.4,U,rIndex, tauIndex]#td in avionics design impact avionics flight

trials
 techTechParameters[21] = [11,10,0.4,U,rIndex, tauIndex]#td in avionics test impact avionics flight

trials
 techTechParameters[22] = [12,0,0.2,U,rIndex, tauIndex]#td in general design impact engine flight

trials
 techTechParameters[23] = [12,1,0.2,U,edsRIndex, edsTauIndex]#td in engine design impact engine flight

trials
 techTechParameters[24] = [12,2,0,U,rIndex, tauIndex]#td in avionics design impact engine flight trials
 techTechParameters[25] = [12,3,0.2,U,rIndex, tauIndex]#td in d/b airframe design impact engine flight

trials
 techTechParameters[26] = [12,4,0.1,U,rIndex, tauIndex]#td in d/b engine manufacture impact engine

flight trials
 techTechParameters[27] = [12,5,0,U,rIndex, tauIndex]#td in interim avionics impact engine flight

trials
 techTechParameters[28] = [12,6,0.1,U,rIndex, tauIndex]#td in d/b airframe manufacture impact engine

flight trials
 techTechParameters[29] = [12,7,0.1,U,rIndex, tauIndex]#td in assemble d/b aircraft impact engine

flight trials
 techTechParameters[30] = [13,0,0.2,U,rIndex, tauIndex]#td in general design impact airframe production
 techTechParameters[31] = [13,1,0,U,edsRIndex, edsTauIndex]#td in engine design impact airframe

production

 techTechParameters[32] = [13,2,0,U,rIndex, tauIndex]#td in avionics design impact airframe production
 techTechParameters[33] = [13,3,0.7,U,rIndex, tauIndex]#td in d/b airframe design impact airframe

production
 techTechParameters[34] = [13,4,0,U,rIndex, tauIndex]#td in d/b engine manufacture impact airframe

production
 techTechParameters[35] = [13,5,0,U,rIndex, tauIndex]#td in interim avionics impact airframe production
 techTechParameters[36] = [13,6,0,U,rIndex, tauIndex]#td in d/b airframe manufacture impact airframe

production
 techTechParameters[37] = [13,7,0,U,rIndex, tauIndex]#td in assemble d/b aircraft impact airframe

production

354

 techTechParameters[38] = [13,12,0,U,rIndex, tauIndex]#td in engine flight trials impact airframe
production

 techTechParameters[39] = [14,0,0.2,U,rIndex, tauIndex]#td in general design impact avionics production
 techTechParameters[40] = [14,1,0,U,edsRIndex, edsTauIndex]#td in engine design impact avionics

production
 techTechParameters[41] = [14,2,0.7,U,rIndex, tauIndex]#td in avionics design impact avionics

production
 techTechParameters[42] = [14,3,0,U,rIndex, tauIndex]#td in d/b airframe design impact avionics

production

 techTechParameters[43] = [14,4,0,U,rIndex, tauIndex]#td in d/b engine manufacture impact avionics
production

 techTechParameters[44] = [14,5,0,U,rIndex, tauIndex]#td in interim avionics impact avionics production
 techTechParameters[45] = [14,6,0,U,rIndex, tauIndex]#td in d/b airframe manufacture impact avionics

production
 techTechParameters[46] = [14,7,0,U,rIndex, tauIndex]#td in assemble d/b aircraft impact avionics

production
 techTechParameters[47] = [14,10,0,U,rIndex, tauIndex]#td in avionics test impact avionics production
 techTechParameters[48] = [14,11,0,U,rIndex, tauIndex]#td in avionics flight trials impact avionics

production
 techTechParameters[49] = [14,12,0,U,rIndex, tauIndex]#td in engine flight trials impact avionics

production
 #impacts on ready to assemble
 techTechParameters[50] = [15,0,0.1,1,rIndex, tauIndex]
 techTechParameters[51] = [15,1,0.1,1,edsRIndex, edsTauIndex]
 techTechParameters[52] = [15,2,0.1,1,rIndex, tauIndex]
 techTechParameters[53] = [15,3,0,1,rIndex, tauIndex]

 techTechParameters[54] = [15,4,0,1,rIndex, tauIndex]
 techTechParameters[55] = [15,6,0,1,rIndex, tauIndex]
 techTechParameters[56] = [15,7,0,1,rIndex, tauIndex]
 techTechParameters[57] = [15,8,0,1,rIndex, tauIndex]
 techTechParameters[58] = [15,9,0.1,1,rIndex, tauIndex]
 techTechParameters[59] = [15,10,0,1,rIndex, tauIndex]
 techTechParameters[60] = [15,11,0,1,rIndex, tauIndex]
 techTechParameters[61] = [15,12,0,1,rIndex, tauIndex]
 techTechParameters[62] = [15,13,0.1,1,rIndex, tauIndex]
 techTechParameters[63] = [15,14,0.1,1,rIndex, tauIndex]

 #include the self-inflicted technical debt
 U = 1
 #tech 0 and tech 1 always have alpha 0 = 1 since they have no dependencies
 alpha0 = 1-np.sum(techTechParameters[np.where(techTechParameters[:,0] == 0)[0]][:,2])
 techTechParameters[64]= [0,0,alpha0,U,rIndex, tauIndex]

 alpha0 = 1-np.sum(techTechParameters[np.where(techTechParameters[:,0] == 1)[0]][:,2])
 techTechParameters[65] = [1,1,alpha0,U,rIndex, tauIndex]
 alpha0 = 1-np.sum(techTechParameters[np.where(techTechParameters[:,0] == 2)[0]][:,2])
 techTechParameters[66] = [2,2,alpha0,U,rIndex, tauIndex]
 alpha0 = 1-np.sum(techTechParameters[np.where(techTechParameters[:,0] == 3)[0]][:,2])
 techTechParameters[67] = [3,3,alpha0,U,rIndex, tauIndex]
 alpha0 = 1-np.sum(techTechParameters[np.where(techTechParameters[:,0] == 4)[0]][:,2])
 techTechParameters[68] = [4,4,alpha0,U,rIndex, tauIndex]
 alpha0 = 1-np.sum(techTechParameters[np.where(techTechParameters[:,0] == 5)[0]][:,2])
 techTechParameters[69] = [5,5,alpha0,U,rIndex, tauIndex]
 alpha0 = 1-np.sum(techTechParameters[np.where(techTechParameters[:,0] == 6)[0]][:,2])
 techTechParameters[70] = [6,6,alpha0,U,rIndex, tauIndex]
 alpha0 = 1-np.sum(techTechParameters[np.where(techTechParameters[:,0] == 7)[0]][:,2])
 techTechParameters[71] = [7,7,alpha0,U,rIndex, tauIndex]
 alpha0 = 1-np.sum(techTechParameters[np.where(techTechParameters[:,0] == 8)[0]][:,2])
 techTechParameters[72] = [8,8,alpha0,U,rIndex, tauIndex]
 alpha0 = 1-np.sum(techTechParameters[np.where(techTechParameters[:,0] == 9)[0]][:,2])

 techTechParameters[73] = [9,9,alpha0,U,rIndex, tauIndex]
 alpha0 = 1-np.sum(techTechParameters[np.where(techTechParameters[:,0] == 10)[0]][:,2])
 techTechParameters[74] = [10,10,alpha0,U,rIndex, tauIndex]
 alpha0 = 1-np.sum(techTechParameters[np.where(techTechParameters[:,0] == 11)[0]][:,2])
 techTechParameters[75] = [11,11,alpha0,U,rIndex, tauIndex]
 alpha0 = 1-np.sum(techTechParameters[np.where(techTechParameters[:,0] == 12)[0]][:,2])
 techTechParameters[76] = [12,12,alpha0,U,rIndex, tauIndex]
 alpha0 = 1-np.sum(techTechParameters[np.where(techTechParameters[:,0] == 13)[0]][:,2])
 techTechParameters[77] = [13,13,alpha0,1,rIndex, tauIndex]
 alpha0 = 1-np.sum(techTechParameters[np.where(techTechParameters[:,0] == 14)[0]][:,2])

355

 techTechParameters[78] = [14,14,alpha0,1,rIndex, tauIndex]
 alpha0 = 1-np.sum(techTechParameters[np.where(techTechParameters[:,0] == 15)[0]][:,2])
 techTechParameters[79] = [15,15,alpha0,1,rIndex, tauIndex]

 #increments:
 #increment 1: complete design (C0, complete by 43 months)
 #increment 2: manufacture components (C1, complete by 54 months)
 #increment 3: assemble d/b aircraft (C2, complete by 64 months)
 #increment 4: flight trials (C3) complete by 77 months

 #increment 5: final production/ready to assemble (C4): complete by 102 months
 numCapabilities = 5
 satisfactionIndices=[4]
 functionalMatrix = np.zeros((numCapabilities, numTechnologies))
 #design completion
 functionalMatrix[0]= [0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
 #manufacturing of d/b components
 functionalMatrix[1] = [0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0]
 #assemble d/b aircraft
 functionalMatrix[2] = [0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0]
 #flight trials
 functionalMatrix[3] = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0]
 #ready to assemble
 functionalMatrix[4] = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1]
 #time periods to cover the need dates of interest
 timePeriods = np.arange(35,126,1)
 numPeriods = len(timePeriods)

 needMatrix = np.zeros((numPeriods, numCapabilities))
 satisfactionIndex = -1
 for i in range(0, len(timePeriods)):
 if (timePeriods[i]<43):
 needMatrix[i] = [0,0,0,0,0]
 elif (timePeriods[i] < 54):
 needMatrix[i] = [1,0,0,0,0]
 elif (timePeriods[i] < 64):
 needMatrix[i] = [1,1,0,0,0]
 elif (timePeriods[i] < 77):
 needMatrix[i] = [1,1,1,0,0]
 elif (timePeriods[i] < 102):
 needMatrix[i] = [1,1,1,1,0]
 else:
 if (satisfactionIndex == -1):
 satisfactionIndex = i

 needMatrix[i] = [1,1,1,1,1]
 replace = True #if true, changes the r/tau parameters to investigate the impact. if false, decrements

the values instead
 # run cases where we modify the different parameters
 techTechIndicesToModify = np.arange(0, len(techParameters),1)
 rPercentReductions = np.arange(0.1,1,0.1)
 tauPercentReductions = np.arange(0.1,1,0.1)
 metaNumTrials = len(techTechIndicesToModify)*(len(rPercentReductions)*len(tauPercentReductions))
 trials = []
 (baselineDevMatrix, baselineDurations) = leap.findDevelopmentProbabilities(1, schedule,

techParameters, techTechParameters, distributionList, timePeriods, False, maxvalue, outputDurations=True)
 (baselineAvailabilityMatrix, baselineDeliveryMatrix, baselineInvestmentMatrix) =

leap.quantitativeLeap(functionalMatrix, baselineDevMatrix, needMatrix, debug=False,
includeInvestmentMatrix=True)

 #find all successor dependencies in the tech parameters list based on the indices to modify
 for i in range(0, len(techTechIndicesToModify)):
 techTechKeys = np.where(techTechParameters[:,1] == techTechIndicesToModify[i])[0] #index 1 is the

predecessor
 for j in range(0, len(rPercentReductions)):
 for k in range(0, len(tauPercentReductions)):
 trials.append([techTechKeys, rPercentReductions[j], tauPercentReductions[k],

techTechIndicesToModify[i]])
 for i in range(0, len(trials)):
 trial = trials[i]
 print("trial", (i+1), "of", metaNumTrials)
 #reset the distribution for each key in the list
 origValueDictionary ={}

356

 for j in range(0, len(trial[0])):
 key = trial[0][j]
 if (techTechParameters[key][0] != techTechParameters[key][1]):
 #ignore the self-inflicted TD
 origValueDictionary[key] = (techTechParameters[key][4],techTechParameters[key][5])
 #need to clone the distribution and add it to the list and decrement the values
 deltaR = trial[1]
 deltaTau = trial[2]
 newRDistribution = distributionList[int(techTechParameters[key][4])].clone()

 newTauDistribution = distributionList[int(techTechParameters[key][5])].clone()
 if (not replace):
 newRDistribution.decrement(deltaR)
 newTauDistribution.decrement(deltaTau)
 else:
 newRDistribution = ConstantDistribution(deltaR)
 newTauDistribution = ConstantDistribution(deltaTau)
 distributionList.append(newRDistribution)
 techTechParameters[key][4] = len(distributionList)-1
 distributionList.append(newTauDistribution)
 techTechParameters[key][5] = len(distributionList)-1

 #run the monte carlo for the new distribution list
 durations = np.zeros((1000, len(techParameters)))
 (devMatrix, durations) = leap.findDevelopmentProbabilities(1000, schedule, techParameters,

techTechParameters, distributionList, timePeriods, False,maxvalue, True)
 (availabilityMatrix, deliveryMatrix, investmentMatrix) = leap.quantitativeLeap(functionalMatrix,

devMatrix, needMatrix, debug=False, includeInvestmentMatrix=True)
 investmentMatrixSum += investmentMatrix
 pMeetingNeed =1
 for p in range(0, len(satisfactionIndices)):
 pMeetingNeed = pMeetingNeed*deliveryMatrix[satisfactionIndex][satisfactionIndices[p]]
 print("p Meeting need",pMeetingNeed)
 for key in origValueDictionary:
 techTechParameters[key][4] = origValueDictionary[key][0]
 techTechParameters[key][5] = origValueDictionary[key][1]

	ABSTRACT
	ACKNOWLEDGEMENTS
	LIST OF TABLES
	LIST OF FIGURES
	Chapter 1 - Introduction
	1.1 Motivation and Background
	1.1.1 Iterative and Incremental Development
	1.1.1.1 United States Department of Defense
	1.1.1.2 Space Development Agency

	1.1.2 Technical Debt in Iterative and Incremental Development
	1.1.2.1 Identifying Technical Debt
	1.1.2.2 Measuring Technical Debt
	1.1.2.3 Prioritization, Repayment, and Monitoring of Technical Debt

	1.2 Reflections on Technical Debt in Systems Engineering
	1.2.1 Technical Bankruptcy in Systems Engineering
	1.2.2 State of Technical Debt Research in Systems Engineering
	1.2.2.1 Accounting for Technical Debt in Release Planning Methods

	1.3 Research Agenda
	1.3.1 Research Questions
	1.3.1.1 RQ1: How prevalent is the technical debt metaphor within systems engineering?
	1.3.1.2 RQ2: How can potential sources of technical debt be identified during the system lifecycle?
	1.3.1.3 RQ3: How can technical debt be used as a guide in release planning?
	1.3.1.4 RQ4: How can the process and model be used to avoid technical bankruptcy?

	1.4 Structure of this Dissertation

	Chapter 2 – Technical Debt in Systems Engineering
	2.1 Introduction
	2.2 RQ1.1: What is the Current State of Research on Technical Debt within Systems Engineering?
	2.2.1 Technical Debt in Systems Engineering – A Systematic Literature Review [19]
	2.2.1.1 Abstract
	2.2.1.2 Introduction
	2.2.1.3 Methodology
	2.2.1.3.1 Search Strategy
	2.2.1.3.2 Data Extraction
	2.2.1.3.3 Threats to Validity

	2.2.1.4 Results and Discussion
	2.2.1.4.1 RQ1: Prevalence of Technical Debt in Systems Engineering
	2.2.1.4.2 RQ2: Definition of Technical Debt in Systems Engineering
	2.2.1.4.2.1 RQ2.1: Types of Technical Debt in Systems Engineering
	2.2.1.4.2.2 RQ3: Causes of Technical Debt in Systems Engineering

	2.2.1.5 RQ3: Technical Debt in the Systems Engineering Lifecycle
	2.2.1.6 Discussion
	2.2.1.6.1 Implications of the Sparsity of the Technical Debt Metaphor within Systems Engineering
	2.2.1.6.2 Research Agenda for a Systems Engineering-Centric View of Technical Debt
	2.2.1.6.3 Implications for the Management of Technical Debt in Systems Engineering Processes
	2.2.1.6.4 Conclusions and Future Work

	2.2.1.7 Appendix A: Selected Articles

	2.2.2 Addressing RQ1.1

	2.3 RQ1.2: How Prevalent is the Concept of Technical Debt and the use of the Metaphor Among Systems Engineering Practitioners?
	2.3.1 An Empirical Survey on the Prevalence of Technical Debt in Systems Engineering [18]
	2.3.1.1 Abstract
	2.3.1.2 Introduction and Background
	2.3.1.3 Research Methodology
	2.3.1.3.1 Study Method
	2.3.1.3.2 Data Analysis
	2.3.1.3.3 Threats to Validity
	2.3.1.3.4 Survey Questions

	2.3.1.4 Research Findings
	2.3.1.4.1 Participant Demographics
	2.3.1.4.2 Technical debt is common in systems engineering
	2.3.1.4.3 Technical debt accrues interest
	2.3.1.4.4 Technical debt has multiple long-term impacts
	2.3.1.4.5 Technical debt is driven by schedule and cost pressures and both intentional and unintentional decisions
	2.3.1.4.6 The technical debt metaphor is not common terminology in systems engineering
	2.3.1.4.7 Technical debt occurs throughout the system lifecycle
	2.3.1.4.8 Technical debt can be beneficial

	2.3.1.5 Discussion
	2.3.1.5.1 RQ1: Impact and occurrence of technical debt in systems engineering
	2.3.1.5.2 RQ2: Causes of technical debt within systems engineering
	2.3.1.5.3 RQ3: Use of the technical debt metaphor among systems engineering practitioners
	2.3.1.5.4 RQ4: Occurrence of technical debt within the systems engineering lifecycle

	2.3.1.6 Conclusion and Future Work

	2.3.2 Addressing RQ1.2

	2.4 RQ1.3 What Common Ontology Should be used to Describe Technical Debt Within the Field of Systems Engineering?
	2.4.1 An Ontology for Technical Debt in Systems Engineering [21]
	2.4.1.1 Abstract
	2.4.1.2 Introduction
	2.4.1.3 Technical Debt Ontology for Systems Engineering
	2.4.1.3.1 Technical Debt Concept Map
	2.4.1.3.2 Background Terminology
	2.4.1.3.2.1 System Dimensions
	2.4.1.3.2.2 Phases

	2.4.1.3.3 Technical Debt Definition
	2.4.1.3.3.1 Technical Compromises
	2.4.1.3.3.2 Short-term Benefit
	2.4.1.3.3.3 Potential for Negative Impacts
	2.4.1.3.3.4 Long-term Health of the System
	2.4.1.3.3.5 Impact of Technical Debt on the System Dimensions

	2.4.1.3.4 System Technical Debt
	2.4.1.3.5 Technical Debt Measurement Units
	2.4.1.3.6 Technical Bankruptcy
	2.4.1.3.7 Technical Debt Item
	2.4.1.3.7.1 Description
	2.4.1.3.7.2 Consequence
	2.4.1.3.7.3 Principal
	2.4.1.3.7.4 Interest and Fees
	2.4.1.3.7.4.1 Interest
	2.4.1.3.7.4.2 Interest Amount
	2.4.1.3.7.4.3 Interest Probability
	2.4.1.3.7.4.4 Fees

	2.4.1.3.7.5 Balance
	2.4.1.3.7.6 Total Cost
	2.4.1.3.7.7 Artifact
	2.4.1.3.7.8 Cause
	2.4.1.3.7.8.1 Specific Cause
	2.4.1.3.7.8.2 Cause Category

	2.4.1.3.7.9 Type

	2.4.1.4 Discussion
	2.4.1.5 Conclusions

	2.4.2 Addressing RQ1.3
	2.4.2.1 Technical Debt Types in Systems Engineering
	2.4.2.1.1 Architecture Debt
	2.4.2.1.2 Design Debt
	2.4.2.1.3 Documentation Debt
	2.4.2.1.4 Domain Debt
	2.4.2.1.5 Implementation Debt
	2.4.2.1.6 Infrastructure Debt
	2.4.2.1.7 Modeling and Simulation Debt
	2.4.2.1.8 Requirements Debt
	2.4.2.1.9 Test Debt

	2.4.2.2 Example usage of the Ontology
	2.4.2.3 Is It Technical Debt?

	2.5 Technical Debt in the Systems Engineering Lifecycle
	2.6 Conclusion

	Chapter 3 – Identification of Technical Debt in the System Lifecycle
	3.1 Introduction
	3.2 RQ2.1: How is technical debt identified within software engineering?
	3.2.1 Existing Methods of Technical Debt Identification in Software Engineering
	3.2.2 Applicability of Software Engineering Methods to Systems Engineering
	3.2.3 Addressing RQ2.1

	3.3 RQ2.2: What process can be used to identify potential technical debt sources within systems engineering?
	3.3.1 Technical Debt Identification Timeline
	3.3.2 The Need for Proactive Technical Debt Identification
	3.3.3 The LEAP Process
	3.3.3.1 LEAP – A Process for Identifying Potential Technical Debt in Iterative System Development [160]
	3.3.3.1.1 Abstract
	3.3.3.1.2 Introduction
	3.3.3.1.3 Related Work
	3.3.3.1.4 The LEAP Process
	3.3.3.1.4.1 LEAP Phase 1: List
	3.3.3.1.4.2 LEAP Phase 2: Evaluate
	3.3.3.1.4.3 LEAP Phase 3: Achieve
	3.3.3.1.4.4 LEAP Phase 4: Procure
	3.3.3.1.4.5 Iterations within the LEAP process
	3.3.3.1.4.6 Assessing the Potential for Technical Debt with LEAP

	3.3.3.1.5 Discussion
	3.3.3.1.6 Conclusions and Future Work

	3.3.4 Addressing RQ2.2

	3.4 Conclusion

	Chapter 4 – Using Technical Debt as a Guide In Release Planning
	4.1 Introduction
	4.2 Quantitative LEAP Process
	4.2.1 Including Technical Debt in Project Schedule Analysis
	4.2.1.1 Predicting the Dynamics of Earned Value Creation in the Presence of Technical Debt [169]
	4.2.1.1.1 Abstract
	4.2.1.1.2 Introduction
	4.2.1.1.3 Related Work
	4.2.1.1.4 Accounting for Technical Debt in Schedule Analysis
	4.2.1.1.4.1 Utility as Value
	4.2.1.1.4.2 Modeling Earned Value from Multiple Predecessors
	4.2.1.1.4.3 Technical Debt and Earned Value
	4.2.1.1.4.4 Compounding Technical Debt Interest
	4.2.1.1.4.5 Calculating the Time at Which Earned Value is Reached

	4.2.1.1.5 Application to Monte Carlo Schedule Analysis
	4.2.1.1.5.1 Implementation

	4.2.1.1.6 Discussion
	4.2.1.1.6.1 Impact of Increased Parallelism on Project Schedule
	4.2.1.1.6.2 Impact of Technical Debt on Project Schedule
	4.2.1.1.6.3 Impact of Compounding Technical Debt Interest
	4.2.1.1.6.4 Quantifying Technical Debt Interest
	4.2.1.1.6.5 Comparison to Existing Methods

	4.2.1.1.7 Limitations and Future Work
	4.2.1.1.8 Conclusion
	4.2.1.1.9 Appendix A: Accuracy Assessment
	4.2.1.1.10 Appendix B: Computation Environment

	4.2.1.2 Summary of Technical Debt Inclusion in Project Schedule Analysis

	4.2.2 Quantification of the LEAP process
	4.2.2.1 Probabilistic Enhancement to the Leap Process for Identifying Technical Debt in Iterative System Development [186]
	4.2.2.1.1 Abstract
	4.2.2.1.2 Introduction
	4.2.2.1.3 Related Work
	4.2.2.1.4 Including Probabilities in the LEAP Model
	4.2.2.1.4.1 Matrix Multiplication with Probabilities
	4.2.2.1.4.1.1 Selecting Elements of a Vector: the k Function
	4.2.2.1.4.1.2 Multiplying Matrices: the k* Function
	4.2.2.1.4.1.3 Application of the K* function

	4.2.2.1.4.2 Including Probabilities in the LEAP Process
	4.2.2.1.4.2.1 Availability Matrix
	4.2.2.1.4.2.2 Delivery Matrix
	4.2.2.1.4.2.3 Investment Matrix
	4.2.2.1.4.2.4 Adjustments for Dependent Technologies

	4.2.2.1.4.3 Example Application of the Quantitative LEAP Process
	4.2.2.1.4.4 Accounting for Technical Debt in the Quantitative LEAP Process

	4.2.2.1.5 Conclusions and Future Work

	4.2.3 Summary of LEAP Quantitative Updates

	4.3 Including Proactive Technical Debt Assessments in Release Planning
	4.3.1 LEAP as a Decision Support System for Release Planning
	4.3.1.1 Example of LEAP as a Decision Support System in Incremental Development

	4.4 Conclusion

	Chapter 5 – Avoiding Technical Bankruptcy
	5.1 Introduction
	5.2 Technical Bankruptcy in the Context of the LEAP Process
	5.2.1 Quantifying Technical Debt in the LEAP Process
	5.2.2 Assessing Technical Bankruptcy with the LEAP Process

	5.3 Using LEAP to Avoid Technical Bankruptcy
	5.3.1 Example Applications
	5.3.1.1 LEAPing Ahead – The Space Development Agency’s Method for Planning for the Future
	5.3.1.1.1 Abstract
	5.3.1.1.2 Introduction
	5.3.1.1.3 Related Work
	5.3.1.1.4 SDA and the LEAP Process
	5.3.1.1.4.1 Iterations within the LEAP process

	5.3.1.1.5 Application of LEAP to SDA’s Optical Communications Terminal Development
	5.3.1.1.5.1 LEAP Phase 1: List
	5.3.1.1.5.2 LEAP Phase 2: Evaluate
	5.3.1.1.5.3 LEAP Phase 3: Achieve
	5.3.1.1.5.4 LEAP Phase 4: Procure

	5.3.1.1.6 Conclusions and Future Work

	5.3.1.2 Application of Quantitative LEAP to Iterative Ground System Development
	5.3.1.3 Review of the Example Applications

	5.4 Presentation of the Process in simplified terms
	5.5 Conclusion

	Chapter 6 – Conclusions and Future Work
	6.1 Research Contributions
	6.2 Future Work
	6.3 Conclusion

	References
	Appendix A: Example Python Code for LEAP Implementation
	A.1 Probability Distribution Classes
	A.2 Implementation of the LEAP Process
	A.3 Example Application from Section 4.3.1.1

