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We define a three-state generalization of the bursting gene

expression model [1,2]. We extend this model to allow for a time-

dependent input signal that controls the state transition reactions: k12,

k23, k21 or k32.

We fit these model hypotheses to a finite set of simulated single-

cell data, and we attempt to identify the model mechanisms and

parameters. We use multiple different analyses (e.g., deterministic and

stochastic) for the same model and same data, and we explore how

uncertainty in parameter space varies with respect to the chosen

analysis approach or specific experiment design.

The approach to be taken is based upon previous experimental and

computational investigations undertaken to explore signal-activated

gene expression models in yeast [3] and human cells [4].
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1. Deterministic Analysis of Averaged mRNA Expression
• We compute the likelihood that the average sample data comes from the

model’s deterministic ordinary differential equation (using the chi-

squared likelihood function).

2. Finite State Projection (FSP) Analysis of Full mRNA Distributions
• We compute the likelihood that the entire data histograms come from the 

full probability distributions.

3. Metropolis-Hastings Algorithm (MHA)
• We use a Markov Chain Monte Carlo analysis to estimate parameter

uncertainties for each model and each likelihood function (i.e., the ODE-

based chi-squared function or the FSP likelihood function).

Three-state bursting gene expression model.

▪ Fitting average behavior with ODE analyses can lead to poor and highly

uncertain identification of parameters.

▪ Fitting single-cell distributions using an FSP likelihood function can 

substantially improve identification results. 

▪ Certain single-cell experiments provide more information than others.

▪ The methods demonstrated here can be applied to a wide range of

gene regulation models for parameter identification and to gain

valuable insight into gene regulatory dynamics.
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Using the MHA, we 

find that the FSP fit 

comes much closer 

to the true 

parameter values.  

Furthermore, the 

FSP gives much 

tighter bounds on 

the parameter 

uncertainties.

The CH30-GUI provides 

a user-friendly means 

to generate or import 

simulated data, specify 

input signals, choose 

different models, and 

perform all analyses 

described here (ODEs, 

FSP and MHA).

The covariances for 

parameter combinations 

are much larger for the 

ODE compared to the 

FSP. The (+) indicates a 

positive covariance and 

(-) indicates a negative 

covariance.

(Left) Mean gene 

expression for Model 2 

for two parameter sets 

(Λ1 and Λ2 ) near the 

maximum of the chi-

squared likelihood 

function (ODE fit).

(Right) Full distributions 

at t = 44 min for Λ1 and Λ2

compared to the data and 

the true distributions.  

Both parameter sets from 

the ODE fit completely 

fail to capture the 

bimodal behavior. 

In contrast to the 

ODE approach, the 

FSP quantitatively 

captures the 

bimodal behavior 

of the data at all 

time points.

Problem Description
Our goal is to identify the mechanism of action (i.e., determine which kij

depends upon the input) and find the model parameters.

The input-dependent transition 

rates can be one of:    

M1: k12(t); M2: k23(t);

M3: k21(t); M4: k32(t).

11%Time-varying 

input signal

Input - We consider a known, deterministic input of the form:

Data - We simulate 100 single-cell 

measurements for each of 10 equally 

spaced time points.

Maximum likelihood fits using the FSP analysis. 

We simulated data from three different potential inputs: the original sinusoidal 

function, a step function, and a ramp function.  Each input results in a different 

amount of parameter uncertainty after running the MHA.  The step and sinusoidal 

inputs reduce uncertainty far more than does the ramp input (see also Fox/Munsky 

poster). 


