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ABSTRACT 
 
 
 

BAYES’D AND CONFUSED: NOVEL APPLICATIONS OF BAYESIAN INFERENCE TO  
 

BETTER UNDERSTAND SENSORIMOTOR UNCERTAINTY   
 
 
 

 Effective motor control relies on accurate sensory information. However, sensory 

information is inherently variable and clouded with uncertainty.  Yet, humans perform motor skills 

with a high degree of proficiency and reliability.  How the central nervous system (CNS) controls 

motor function amid the uncertainty of sensory signals is not known.  Researchers in recent years 

have suggested that the brain may control movement in a way that can be explained by Bayesian 

inference. Bayesian inference posits that the most probable outcome is the product of both the 

currently available data (sensory information) as well as previously collected data (learned 

expectations).  Applying Bayesian inference to a motor control context, we suggest that the CNS 

accounts for the uncertainty in sensory information by filling in the gaps of uncertainty with learned 

expectations when forming beliefs on where our body parts are in space.  While initial findings on 

this topic are promising, they predominantly involve one-dimensional upper-body tasks.  The 

purpose of this dissertation was to determine if Bayesian model of sensorimotor control is 

consistent in a full body stepping movement and if it can be further utilized to understand sensory 

function in various contexts. The first study in this dissertation was done to discover if the center 

of mass (CoM) position is estimated in a Bayesian way during stepping, like what has been shown 

in upper body movements.  The second study sought to identify if Bayesian position estimations 

are beneficial to overall motor performance.  In the third study, we applied what we have 

discovered about Bayesian inference in full body movements to understand the effects of 

transcutaneous electric nerve stimulation (TENS) on positional awareness during motor control.  

We hope to build on these findings to better understand how sensory information is utilized by the 

CNS to control movement.  
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CHAPTER 1 – SOMATOSENSORY INFORMATION IN SKILLED MOTOR  
 

PERFORMANCE 
 
 
 
Introduction 

Whether restoring movements that have been impaired by disease or injury, offsetting 

the mobility deficits that accompany the aging process, or gaining competitive advantage, 

a common goal shared by many populations is to improve movement execution. As a 

result, people dedicate much time and money to enhance their ability to move effectively. 

Goal-oriented movements are the result of many electric signals sent from the central 

nervous system (CNS) to cause contraction of muscles in the periphery. Because it is the 

contraction of muscle that creates movement, most interventions and training protocols 

are employed to specifically improve muscle functions such as resistance training, 

cardiovascular exercise, or flexibility training (Cadore, Rodríguez-Mañas, Sinclair, & 

Izquierdo, 2013; Gunn, Markevics, Haas, Marsden, & Freeman, 2015a; Lloyd et al., 

2016b; Mak, Wong-Yu, Shen, & Chung, 2017; Pogrebnoy & Dennett, 2020). Undeniably, 

the contributions of a healthy muscular system play a significant role in the emergence of 

functional and adaptive movement. Accordingly, it is no surprise that many of these 

training regiments lead to positive results in improving mobility. However, the 

somatosensory feedback accompanying motor activity is essential towards effective 

movement as well. Just as a dirty windshield limits the success of a high-end sports car, 

sensory information dictates the efficacy of goal-directed movements.   

The purpose of this Introduction is threefold: First, I aim to emphasize the vital role of 

somatosensory information in the performance of skilled motor performance. To address 
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this first aim, I discuss evidence from the fields of neuroanatomy, bioenergetics, and 

computational motor control that, taken together, emphasizes the role of sensory 

information in movement control.  The second aim is to emphasize the need for careful 

intention in identifying the appropriate methods utilized to study or assess 

somatosensation’s role in skilled motor performance.  The final aim of the Introduction is 

to call attention to possible intervention approaches that show promise for improving 

motor performance specifically by targeting somatosensory function.  

I will begin by discussing the process that leads to the firing of sensory receptors in 

the periphery and the transmission of sensory data to supraspinal areas of the CNS. 

Following this discussion, I will lay out three essential neural calculations involved in 

sensory processing that enable effective movements and provide evidence from different 

areas of research that illustrate their importance.  

The motor control problem 

Controlling successful movements is an intricate process. Accordingly, the 

responsibility of planning, coordinating, and executing a movement is no small task. The 

neuromuscular system contains an overwhelming number of biomechanical elements 

known as degrees of freedom (DOF) (Bernstein, 1945). These DOF allow us to make 

dexterous, adaptable movements with smoothness and precision. However, this 

complexity also introduces an infinite number of possibilities when creating and executing 

a movement plan. To ensure that a proper movement is executed, the CNS relies on 

sensory information to deliver timely updates on the current state of the body and the 

environment before, during and after a movement is executed. Even so, this process of 

using sensory information to inform motor decisions is far from perfect.  
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All afferent information is accompanied by unavoidable uncertainty (Faisal, Selen, 

& Wolpert, 2008). For example, sensory data is merely the result of firing peripheral 

receptors and not a direct measurement of the parameter of interest (e.g. joint angles, 

limb position, velocity etc.) (Bays & Wolpert, 2007). Also, the numerous DOF combined 

with inherent dynamics in the body and environment ensure that no motor plan is ever 

duplicated in exactness. Consequently, each movement is accompanied by a unique 

dataset of resultant sensory information.  As follows, the estimation of the current state of 

the body cannot be as simple as ‘a + b = c’.  Rather, the CNS must infer the most likely 

body state from uncertain sensory evidence and use it to inform the execution of a motor 

plan that most effectively meets the task demands. Accordingly, the more accurate and 

up-to-date that incoming sensory information from a body part is, the more accurate the 

resultant estimate for the state of that body part will be. Taken further, a person with a 

sensory system that delivers richer information at a faster rate will perceive bodily states 

with greater fidelity than a person with less clear and slower sensory information.  

Ultimately, a person with cleaner sensory data (e.g., less noisy) has a greater chance of 

correctly executing an appropriate movement than a person with damaged sensory data. 

Because of this, acquiring and processing accurate sensory information is imperative 

towards successful movement. 

Sensory acquisition 

Sensory acquisition involves the passive process by which sensory data is 

obtained from peripheral receptors and relayed to various areas of the CNS to be further 

processed. In its most elementary form, somatosensory information results from specific 

stimuli activating sensory receptors embedded on and within the skin, joints, tendons, 
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and muscles. The exact information that each sensory nerve cell carries is dependent 

upon the type of sensory receptor it is associated with. Muscle spindles, located within 

skeletal muscle, communicate changes in muscle length and the speed of lengthening 

(Hulliger, 1984). Golgi tendon organs located at the junction between muscle and tendon 

detect muscle forces (Crago, Houk, & Rymer, 1982).  Joint receptors found in the 

connective tissue surrounding joints detect limits to range of motion (Proske & Gandevia, 

2009).  Cutaneous receptors in the skin detect pressure, vibration, and discriminative 

touch.  The following section will detail how and why the process of acquiring sensory 

data and transporting it back to the CNS for analysis is an integral component of the 

nervous systems’ ability to move the body.   

Signal strength  

In research, scientists labor to ensure the data they collect is truly reflective of the 

scientific questions involved in the study.  When designing a research experiments, 

elaborate procedures are often put in place to decrease the chance of tainted data and 

to maximize the chance of representing the true parameter(s) of interest. Researchers 

understand that the quality of data collected determines the conclusions that can be 

drawn from a specific dataset.  This idea is formalized by the data-processing inequality 

theorem that states that for any stage in data processing, the amount of information that 

can be extracted is limited to the efficacy of earlier stages (Cover & Thomas, 2006; Faisal 

et al., 2008). For the same reasons, the quality of sensory information that is acquired by 

receptors in the periphery greatly influences the perceptual capabilities of the CNS during 

later stages of processing. Interestingly, many structural and functional characteristics of 

the human nervous system help to ensure the accuracy of sensory information relayed to 
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the CNS.  This is made evident in both the quality and quantity of sensory data collected 

at the periphery. 

Sensory Data Quality 

In the human body, the delegation of energy sources can be used to understand 

which physiological processes are of priority when ensuring the overall health of the 

organism.  For example, the human brain requires roughly twenty percent of the overall 

metabolic budget of the body even though it makes up approximately two percent of the 

overall body mass (Sokoloff, 1960).  However, due to the essential role that brain function 

plays in overall health, this metabolic investment is supported by the energetic system. 

Within this metabolic budget, the majority of neural energy resources are dedicated to 

neural signaling(Rothman et al., 1999).  As follows, in most neurons within the CNS, 

energy producing mitochondria are strategically located near the nodes of Ranvier to 

provide adequate energy to the sodium potassium pump and assist in fast propagation of 

the action potential along the axon (Chiu, 2011; Ohno et al., 2011). However, in contrast 

to neurons in the CNS, the area of greatest mitochondrial density in peripheral sensory 

nerves is the distal synaptic junction to assist in efficient activation of the sensory nerve 

ending (Devine & Kittler, 2018; Kruger, Light, & Schweizer, 2003; Sajic et al., 2013). This 

finding suggests that, in contrast to maximizing the signal speed as is the case for most 

CNS neurons, peripheral sensory nerves maximize the proper function of the sensory 

nerve ending to respond to appropriate stimuli. In this case, the energetic system provides 

the ATP needed to transport mitochondria to the distal end of sensory nerves as well as 

the resultant ATP that is generated by the mitochondria to ensure the acquisition of quality 

sensory information.   
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Sensory Data Quantity 

In many scenarios when designing a research experiment, it is commonly 

understood that a larger sample size is advantageous towards estimating the true test 

parameter.  In a similar vein, by combining the sensory information from multiple sensory 

types, it provides a more accurate understanding for where the body parts are as they 

execute different motor tasks. Furthermore, it is believed that the human upper limb 

contains roughly 4,000 muscle spindles, each containing multiple afferent axons, 2,500 

Golgi tendon organs, a few hundred joint receptors and almost 20,000 myelinated 

cutaneous receptors solely located on the surface of the hand (Hulliger, 1984; Johansson 

& Vallbo, 1979; A. Prochazka, Westerman, & Ziccone, 1977). In a recent finding, 

Gesslbauer and colleagues (2017) examined the human brachial plexus, the neural 

bundle containing all nerve cells responsible for controlling arm and hand movements. 

The authors discovered that of the almost 350,000 axons found in the brachial plexus, 

ninety-three percent were sensory axons leaving the remaining seven percent to 

communicate the motor information needed to control arm and hand movements. Thus, 

by collecting multi-faceted sensory data from numerous locations throughout the involved 

limbs and joints, the CNS gains the greatest insight on the true state of the body.  In 

combination with the energetic evidence illustrating the priority placed on the acquisition 

of quality sensory information, the structure of the peripheral nervous system further 

implies the importance of the amount of sensory data available to the CNS in the control 

of movement. 

Signal Speed 

Once somatosensory information has been acquired from peripheral sensors, it 

must be transported to the CNS in a manner that maximizes signal integrity and time 
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efficiency.  Because there is an inherent delay between sensory stimulus and CNS 

perception, the accuracy of the state prediction is limited by the speed at which the 

sensory information becomes available to the CNS. Many movements, such as gait and 

balance, require near instantaneous access to sensory information to avoid harmful errors 

and ensure goal attainment.  Accordingly, the CNS is structured in a way to bring this 

essential sensory information to the brain as fast as possible. Once the adequate sensory 

stimulus has elicited the firing of a primary afferent nerve ending, neurons carrying 

proprioceptive information (muscle spindles, Golgi tendon organs and joint receptors) 

travel to the brain via group Ia afferent axons. This fact is important because these axons 

are the most myelinated axons in the CNS (Steffens, Dibaj, & Schomburg, 2012).  This 

heavy myelination maximizes the maintenance of signal quality and enables a conduction 

velocity among the fastest in the nervous system and, interestingly, faster than their 

efferent counterparts (Steffens et al., 2012).  Furthermore, the group Ia axons carrying 

proprioceptive information specifically to the cerebellum yield the fastest conduction 

velocity within the CNS (Edgley & Gallimore, 1988).  The heavy myelination of 

proprioceptive axons allows this crucial information to reach the brain faster than sensory 

information from vision notwithstanding the greater conduction length (Cluff, Crevecoeur, 

& Scott, 2015). As a result, goal-directed motor responses to somatosensory feedback 

can be generated roughly 30 ms faster than goal-directed motor responses from visual 

feedback (Dimitriou, Wolpert, & Franklin, 2013; Jin, Wang, Lashgari, Swadlow, & Alonso, 

2011; Scott, 2016). 

Fast access to somatosensory information comes at a high energetic price. 

Laughlin and colleagues estimated the energetic cost of acquiring and transporting 
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sensory information from the eye to the CNS to be 7 x 106 molecules of ATP per bit of 

sensory information (Laughlin, van Steveninck, & Anderson, 1998).  Furthermore, this 

cost increases with distance from the CNS as well as the priority placed on a specific 

sensory type.  Thus, it is likely that the metabolic cost of somatosensory information from 

the upper and lower extremities far surpasses Laughlin’s estimate.  For this cause, it has 

been suggested that the heavy myelination of peripheral axons is a central mechanism 

put in place to decrease the metabolic cost of transporting sensory information (Harris & 

Attwell, 2012).  However, when including the energy required by the oligodendrocytes 

and Schwann cells to myelinate group Ia axons into the calculation, Harris and Attwell 

discovered that the energy saved in signal transportation is insufficient to compensate for 

the energy spent to myelinate these sensory axons (Harris & Attwell, 2012).  Therefore, 

it is likely that the main role of this heavy myelination is solely to increase propagation 

speed rather than reduce the energy consumption of signal transportation.  As follows, 

the metabolic system allots the vast amount of ATP required to myelinate group Ia afferent 

axons (as plentiful as they are) to ensure the fast communication of sensory information 

from the skin, muscles and joints to the brain.  

Injury, disease and aging often negatively impact the availability of sensory 

information for the CNS to use when controlling movements (Cameron, Horak, Herndon, 

& Bourdette, 2008; van Hedel & Dietz, 2004; Vidoni & Boyd, 2009; York, Perell-Gerson, 

Barr, Durham, & Roper, 2009). An example of impairments caused by diminished sensory 

acquisition is sensory neuropathy caused by diabetes.  The most common symptom of 

diabetes is sensory nerve cell death in the periphery (Albers & Pop-Busui, 2014; 

Yagihashi, Mizukami, & Sugimoto, 2011). This damage causes decreased sensation in 
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the periphery hindering the ability to sense movement errors leading to further injury. York 

and colleagues (York et al., 2009) sought to teach diabetic patients an altered gait pattern 

that would decrease the prevalence of foot ulcerations. However, in contrast to healthy 

controls, patients were unable to retain the new skill. A likely contributor to this inability to 

learn a new movement is because they could not collect sufficient sensory information 

indicating movement errors/successes. Additionally, multiple sclerosis is a chronic 

neurodegenerative disease that impairs the quality of white matter within the CNS.  The 

harm to myelin impairs the quality of neural signaling leading to many motor impairments 

such as impaired balance and fall risk (Sosnoff et al., 2011). Cameron et al. (2008) 

discovered that the leading cause of balance impairments in people with multiple sclerosis 

is slowed conduction velocity of somatosensory information through the spinal cord.  

Thus, a prominent cause for mobility decrements in this population is due to an inability 

to access their sensory information fast enough to form an accurate estimate of the state 

of the limb/body part. Additionally, research in patients with decreased proprioception due 

to stroke, aging, or spinal cord injury has shown that the ability for these populations to 

learn locomotor tasks is governed by their remaining proprioceptive ability (Chisholm, 

Qaiser, Williams, Eginyan, & Lam, 2019; van Hedel & Dietz, 2004; Vidoni & Boyd, 2009).  

In summary, because of its large impact on successful movement, great priority is 

placed on acquiring and transporting somatosensory information to areas where it will be 

further processed. This is made evident in various mechanisms put in place to ensure a 

large amount of quality sensory information is acquired from somatosensory receptors 

throughout the body and transported to the brain as fast as possible. This assists the CNS 
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in calculating an accurate and up-to-date perception for the current state of the body as 

its various parts perform goal-oriented movements.   

Sensory processing 

When somatosensory data arrives at supraspinal regions to be further processed, 

there are inherent challenges that the CNS must address to use the incoming data to 

assist in movement control. First, the received input, in its raw form, is merely an 

assemblage of electric signals communicating a change in somatosensory stimuli.  To be 

processed into a perception of bodily state, the incoming data must be given meaning in 

the greater context of the body and environment.  Next, although proprioceptive 

information arrives with the shortest temporal delay, some degree of a delay is inevitable.  

Thus, the CNS must address this delay to coordinate movements with smoothness and 

precision.   

In this section, I highlight three essential neural processes that assist the CNS with 

these inherent challenges.  By understanding these crucial processes, we can gain 

important insight into the role that somatosensory information plays in movement control 

and better identify areas that can be improved through rehabilitation and intervention.  

First, I identify the need for accurate sensory predictions to give meaning to incoming 

sensory stimuli.  Afterwards, I review how the incoming sensory information is combined 

with sensory predictions to calculate the most optimal estimate of the current bodily state 

that decreases the harmful effects of variability.  Finally, I discuss how sensory 

information contributes to identifying a movement strategy that ensures the optimal 

performance of a motor skill. I begin each section by explaining each specific processing 

step and then provide examples that demonstrate their importance. Throughout this 
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section, I rely on theoretical and empirical research from multiple populations to 

demonstrate the importance of sensory processing in the overall control of movement. 

Sensory Prediction 

When sensory information arrives at supraspinal areas for further processing, it is 

relayed to multiple areas to inform the brain on the current state of the body parts involved 

in a motor task. However, because the brain does not have direct access to the parameter 

of interest (e.g. joint angle, limb position etc.), it is difficult to perceive the state of the body 

based off noisy afferent signals.  Much research over the last twenty years suggests that 

the brain addresses this challenge by comparing the incoming sensory information to a 

prediction that is heavily influenced by the sensory data obtained from previous 

movement attempts (McNamee & Wolpert, 2019; Miall & Wolpert, 1996; Wolpert, Miall, & 

Kawato, 1998). By retaining this sensory data, the brain can construct forward models 

that simulate the physical and sensory outcomes of ensuing motor commands of a similar 

type.  Thus, with every motor command there is an expected sensory consequence that 

is used to determine movement accuracy when the actual sensory information becomes 

available.   

Discrepancies between the predicted consequences and the actual sensory data 

are used to improve the forward model for ensuing movement attempts to minimize 

discrepancies in the future. However, this is only possible when the CNS reliably 

understands the motor system to the point that the sensory predictions are in line with the 

actual sensory consequences.  Flanagan and colleagues (2003) showed that when 

learning a novel motor task, participants learned the appropriate sensory consequences 

much faster than they learned the motor commands necessary to perform the task 
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reliably. Along those lines, there is ample evidence to show that structural and functional 

changes to sensory areas of the brain accompany improvements in motor skill 

performance in healthy and clinical populations (Gaser & Schlaug, 2003; Sehm et al., 

2014; Sidarta, Vahdat, Bernardi, & Ostry, 2016). But, Ohashi and colleagues used 

electroencephalography (EEG) and somatosensory evoked potentials (SEP) to show that 

plasticity in the somatosensory areas of the cortex precede those seen in motor areas 

while learning a novel motor skill (Ohashi, Gribble, & Ostry, 2019). Accordingly, a firm 

understanding of what a movement should feel like is indicative of the state of the body 

and essential toward the effective performance of that movement.  

The importance of accurate sensory predictions is evident in both healthy and 

clinical populations. A person whose incoming sensory information is more representative 

of the true state of the associated body part can construct forward models that more 

reliably predict the sensory consequences of a certain motor command. When describing 

athletic performance, Yarrow and colleagues described elite athletes as ‘people who have 

learnt very good forward models at various levels of representation allowing them to plan 

better movements in any context.’  In contrast, aging results in impairments in the sensory 

system which hinder one’s ability to form accurate forward models (Boisgontier & Nougier, 

2013). As a result, their understanding of the consequences of motor commands 

decreases along with the amount of body states they can reliably perceive (Boisgontier & 

Nougier, 2013; Ghafouri & Lestienne, 2000; Lafargue, Noel, & Luyat, 2013).  Additionally, 

Smith and Shadmehr (2005) showed that patients with cerebellar degeneration were 

unable to learn from previous movement attempts and accurately predict movement 

consequences.  This inability leads to deficits in movements of both the upper and lower 
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extremities (Fonteyn et al., 2010; Topka, Konczak, Schneider, Boose, & Dichgans, 1998). 

Furthermore, research in other clinical populations has shown that a disruption in one’s 

ability to accurately predict sensory consequences plays a very large role on their ability 

to move correctly (Arpin et al., 2017; Shaffer & Harrison, 2007; Smith & Shadmehr, 2005).  

Anatomically, the process of comparing incoming afferent information to sensory 

predictions to form a perception of the body state involves multiple neural structures 

throughout the brain.  However, much research suggests that the sensorimotor cortices 

and the cerebellum are heavily involved (Bastian, 2006; Blakemore, Frith, & Wolpert, 

2001; Ishikawa, Tomatsu, Izawa, & Kakei, 2016; Kumar, Manning, & Ostry, 2019; Makino, 

Hwang, Hedrick, & Komiyama, 2016; Miall & Wolpert, 1996; Wolpert et al., 1998).  It is 

well established that the cerebellum is the location that afferent sensory information is 

compared to sensory predictions (Blakemore et al., 2001; Cullen & Brooks, 2015; Wolpert 

et al., 1998) however, whether those sensory predictions are stored within the cerebellum 

is unknown.  In a recent review, Ishikawa et al. (2016) provide evidence that the cerebro-

cerebellum is the location of these sensory predictions. Yet, Galea used transcranial 

direct current stimulation (tDCS) to show that the cerebellum is involved with learning 

from prediction errors and improving subsequent attempts but the retention of sensory 

predictions are stored within the cortex (Galea, Vazquez, Pasricha, de Xivry, & Celnik, 

2011).  Kumar and colleagues (2019) also identified the cortex as the area that sensory 

predictions may reside.  Details of the neural resources required to form sensory 

predictions should be the focus of future research. In conclusion, somatosensory 

information is not only beneficial for the current movement but also greatly improves the 

efficacy of future attempts by contributing to predictive forward models.  
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State Estimation  

Sensory predictions assist the CNS in calculating the current state of the body 

while performing different motor tasks.  However, due to the ambiguity and variable nature 

of sensory information, some degree of uncertainty remains in this neural calculation. 

Additionally, the challenge of calculating the current state from delayed sensory 

information remains. A growing body of research suggests that the CNS addresses both 

the uncertainty of sensory data and the temporal delay in a way consistent with a 

statistical model known as Bayesian inference (Kording & Wolpert, 2004a, 2006; 

Shadmehr & Krakauer, 2008; Wolpert, 2007).   

Bayesian Inference 

Prior to elaborating on how Bayesian inference is used to understand sensory 

uncertainty in motor control, I will provide a brief explanation of this model and the 

variables involved in its use.  Bayesian inference stems from a statistical model of 

probability known as Bayes’ theorem developed by Thomas Bayes in 1763 (Figure 1.1).  

Figure 1.1.  Bayes theorem of probability.  
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Bayesian inference is a method of statistical inference that uses Bayes’ theorem to 

calculate the most probable estimate for an unknown parameter by considering multiple 

sources of information.   

The first source of data considered in Bayesian inference is the likelihood 

distribution. The likelihood is a function of the available evidence and can be interpreted 

as the probability of observing a value x given that x is equal to the unknown parameter.  

Figure 1.2 provides an illustration of Bayesian inference with simulated data.  In figure 

1.2, the likelihood distribution is displayed in yellow and generated from a dataset with a 

mean equal to fifteen and a standard deviation equal to either two or four.  The second 

source of information included in Bayesian inference is the prior distribution and can be 

described as the probability of a given value x being equal to the unknown parameter 

Figure 1.2.  The resultant posterior distribution (orange) under various characteristics 
of the prior (green) and likelihood (yellow) distributions. The posterior distribution is 
proportional to the likelihood distribution times the prior distribution 
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without considering any of the recent evidence.  In Bayesian inference, the prior 

distribution is often changing as new data is collected and is stored, in a way, to inform 

the interpretation of future datasets.  In figure 1.2, the prior distribution is represented in 

green and was generated from a dataset with a mean equal to either two or four.   

Bayesian inference relies on the posterior distribution to provide the most likely 

estimate of the unknown parameter considering both the likelihood and prior distributions.  

The posterior distribution is proportional to the likelihood distribution times the prior 

distribution and is described as the probability of the unknown variable being equal to x 

given that x is the observed value.  The characteristics of the posterior distribution, 

represented in orange in figure 1.2, are determined by the means and standard deviations 

of the prior and likelihood distributions.  By considering both the prior and the likelihood 

distributions, the variability of the posterior distribution is minimized to a value smaller 

than either of those sources of information taken in isolation, maximizing the likelihood of 

estimating a value nearest to the unknown parameter. 

When applied to sensorimotor control, Bayesian inference is used to estimate the 

unknown state of a given body part.  In the Bayesian inference context, the most likely 

estimate for the location of a body part is calculated by considering the mean and 

variability of both the recent sensory information as well as the expected location of the 

body part despite the current sensory data. As mentioned earlier in the Introduction, 

sensory information is ambiguous, and the same sensory data can represent many 

possible states of a given body part. For this purpose, the likelihood is represented by the 

incoming sensory information.  While it is true that a certain set of sensory information 

can represent multiple bodily states, not all possible body states are equally probable.  
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Additionally, body states that are more probable result in sensory information that is less 

variable.  In the Bayesian framework, the prior distribution represents the most likely body 

states based on previous experiences performing similar movements.  According to the 

Bayesian model of motor control, the posterior distribution is calculated by the CNS and 

is proportional to the likelihood distribution (sensory data) times the prior distribution (most 

likely body states). By allowing the most probable body states to influence the estimation 

of the actual body state, the CNS increases the probability of making an accurate 

estimate. Additionally, by combining the most recent sensory data, albeit temporally 

outdated, with the predicted bodily state, the CNS can form the optimal estimate for the 

immediate body state. For example, if the CNS is controlling a new movement, the 

expected bodily state and associated sensory prediction are unsure and thus, quite 

variable.  As a result, more weight will be placed on incoming somatosensory data to 

estimate the body’s location.  On the other hand, if a motor skill is well learned, the 

sensory predictions and expected bodily states are quite precise and will greatly influence 

the final estimate when incoming sensory data is compromised such as when walking 

after taking an ice bath. 

Many factors impact the quality of sensory information that the CNS uses to 

calculate the likelihood distribution.  Age, health status, previous movement history and 

fatigue level (among others) all can influence the variability that accompanies the sensory 

data collected by peripheral receptors.  Due to the iterative nature of the prior distribution, 

this sensory variability also impacts the uncertainty included in the prior distribution. A 

young healthy athlete with superior sensory acuity of the peripheral receptors would 

theoretically have less variability in their likelihood distribution which would then inform a 
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more certain prior distribution after many attempts of the movement.  In the same context, 

an elderly gentleman with peripheral neuropathy would likely have more variability in their 

likelihood distribution of sensory data and also have a wider spread of the prior 

distribution.  As follows, the young athlete would likely make a more accurate estimate of 

body position with less uncertainty than the elderly gentleman Figure 1.3). 

 

Anatomically, Ishikawa et al. suggest the neural location where incoming sensory 

information is compared to expected sensory predictions is at the granule cells of the 

cerebellum (Ishikawa et al., 2016). The granule cells receive projections from the cortex 

as well as incoming sensory information via the spinocerebellar tracts.  This suggestion 

is particularly interesting because over half of the energetic budget of the cerebellum is 

dedicated to the granule cells, further suggesting the prioritization of acquisition and 

Figure 1.3. Optimal estimation of the state of a limb comes when considering both the 
incoming sensory information as well as the sensory prediction based on previous 
experiences in the movement space.  An individual with better sensory function will 
form state estimates with greater fidelity to the actual state than an individual with an 
impaired sensory system. 
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processing of sensory information to control movement (Howarth, Gleeson, & Attwell, 

2012). While the comparison of expected and actual sensory data appears to occur in the 

cerebellum, neural markers of uncertainty appear to reside in other regions.  Tan and 

colleagues have shown consistently that the cortico-basal network is heavily involved in 

the indexing of confidence in expected sensory data and bodily states (Tan, Jenkinson, 

& Brown, 2014; Tan, Wade, & Brown, 2016; Tan, Zavala, et al., 2014; Zavala et al., 2016).  

Evidence shows that synchronization in the beta oscillations (measured with EEG) over 

the sensorimotor cortices is responsible for indexing the confidence one has in their 

sensory predictions following the completion of a motor skill (Tan et al., 2016). An 

increase in beta power (synchronization) over the sensorimotor cortex at the end of a 

movement signifies a strong agreement between the expected and actual sensory 

datasets. This post movement beta synchronization (PMBS) decreases with sensory 

prediction errors that signify low confidence in sensory predictions and high uncertainty.  

A decrease in PMBS has been interpreted as the CNS updating the current model to 

assist with future attempts (Tan et al., 2016).  Arpin et al. (2017) reported decreased 

PMBS in individuals with MS and showed that better motor performance correlated with 

greater PMBS indicating those with better performance maintain accurate state 

estimations. Similar work has shown that patients with sensory deafferentation report a 

decreased PMBS following performance of a fine motor task (Reyns, Houdayer, Bourriez, 

Blond, & Derambure, 2008). Interestingly, evidence shows that the PMBS is driven by the 

subthalamic nucleus, a crucial region of the basal ganglia that influences the activity of 

the indirect pathway (Tan, Zavala, et al., 2014).  Thus, it is possible that by means of 

manipulating the balance between the direct and indirect pathway of the basal ganglia, 
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the CNS indexes the confidence to be placed on sensory information or prior expectations 

when controlling for the noise inherent to sensory information. In summary, the unification 

of incoming sensory information with expected sensory and bodily states enables the 

CNS to make the most accurate estimate for the actual body state.  In a way consistent 

with Bayesian inference, the CNS can make these estimations throughout the completion 

of motor tasks minimizing the effects of uncertainty and time delay that accompany 

sensorimotor control.  In all areas of these neural processes, sensory information that is 

more accurate, and less variable will lead to greater performance in goal-oriented 

movements. 

Movement Optimization  

Whether reaching for a glass of water, walking around the neighborhood, or 

dribbling a basketball, each movement has a desired outcome that the CNS achieves 

through the contraction of muscle.  To this point, emphasis has been placed on monitoring 

the incoming sensory information to form the most accurate estimate for the state of the 

limb as it accomplishes the specific goal of the movement. However, in most cases it is 

not enough to simply achieve the movement goal. For example, if a ball is flying towards 

one’s face, the movement goal is to move a hand to the appropriate place to intercept the 

incoming ball. Undoubtedly, there are multiple ways to move the hand from its current 

location toward the face, but the ideal movement ensures that the hand will arrive in time 

to catch the oncoming ball and avoid injury.  Such a quick movement would involve 

energetically expensive contraction of muscles and other affiliated costs. However, it 

would avoid the harmful effects of the ball striking the face.  Thus, for every movement 

there is an overarching goal that is accompanied by an associated reward and cost, which 
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vary depending on the movement context. As a result, the optimal movement is often one 

that maximizes the chance of reward and decreases the associated cost of the 

movement.  Still, due to the complexity of the system and the accompanying variability, 

movement errors are unavoidable.  However, not all errors are created equal in the 

greater context of the movement goal.  In the context of the previous example, an error 

that resulted in the hand intercepting the ball one inch closer to the face than expected is 

more acceptable than the hand being one inch too low and missing the ball altogether. 

Thus, the optimal movement is one that maximizes the reward of a movement and 

decrease the affiliated cost by avoiding errors that are detrimental towards the movement 

goal and tolerating unrelated errors.  This model of how voluntary movements are 

controlled is known as optimal feedback control (OFC) and reliably explains the use of 

sensory information during movements (Krakauer & Mazzoni, 2011; Scott, 2004, 2012; 

Shadmehr & Krakauer, 2008; Shadmehr, Smith, & Krakauer, 2010; Todorov, 2004; 

Todorov & Jordan, 2002).  OFC emphasizes that the outcome of the movement is what 

matters and not the specific characteristics of the movements themselves. 

The process of identifying the sensory information that is most pertinent to the 

outcome of the movement involves multiple experiences learning the input-output 

relationships of the body parts involved.  By so doing, the CNS is able to observe the 

associated reward of a movement and retroactively give credit (or blame) to the sensory 

data that accompanied it (Wolpert, Diedrichsen, & Flanagan, 2011). This process of using 

reward values to fine-tune motor output is known as reinforcement learning and has been 

shown to largely be governed by the basal ganglia (Doya, 1999; Ito & Doya, 2011).  In 

reinforcement learning, the basal ganglia (and other regions by a lesser degree) use 
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dopaminergic projections to give associated reward values to each movement.  

Accordingly, with great amounts of experience in the movement space, the CNS can 

calculate an expected reward for each possible movement.  As a result, each motor 

command sent from the CNS involves a set of sensory predictions as well as the 

associated expectation of reward.   

While controlling a movement, if there is a large sensory prediction error but the 

associated reward was minimal, there is no need to expend energetic resources to correct 

the error prone movement. However, if there is great variability in the incoming sensory 

information, there is also uncertainty in the associated value of the movement (Lak et al., 

2020).  Accordingly, sensory information that is accurate and temporally relevant is 

incredibly beneficial in identifying the optimal movement.  Crevecoeur and colleagues 

(2016) provided evidence that proprioception has a larger contribution to optimal control 

than other sensory types due to its prompt availability to the CNS. In this sense, quality 

sensory information not only contributes to an accurate estimate for the current state of 

the body parts involved in the movement, but it also assists with the 

identification/execution of movements more/less likely to result in rewarding movements. 

Accordingly, an individual who is better able to accurately estimate the state of their body 

and the associated value that accompanies it, is better able to achieve the movement 

goal in a way that optimizes the value of the movement. 

Methods of Studying Somatosensation in Motor Control 

Thanks to the drove of research discussed above, we know that sensory information 

is important to successful motor performance. This reformed viewpoint on sensory 
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function has sparked a desire by many interested researchers and practitioners to 

administer methods of sensory assessment to the research participants, patients, and 

athletes that they interact with.  However, agreeing upon ideal methods of assessing 

sensory function in motor control has proven to be difficult for investigators participating 

in this area of research.  A large reason for this lack of agreement is due to the multi-

faceted nature of how sensory information is used to control movement. One of the most 

impactful conclusions that can be drawn from this renewed appreciation for sensory 

information in movement is that it is much more nuanced than previous attempts to reduce 

it to “body position sense” or “muscle sense.”  It is not the purpose of this section to 

provide an exhaustive list of the sensory mechanisms involved in motor control or all 

methods used to study and assess somatosensation. For reviews of this nature, refer to 

(Aman, Elangovan, Yeh, & Konczak, 2014; Elangovan, Herrmann, & Konczak, 2014; Han, 

Waddington, Adams, Anson, & Liu, 2016b; Arthur Prochazka, 2021; Proske & Gandevia, 

2009). Rather, I intend to discuss a few of the nuances involved with assessing sensory 

function in motor control to emphasize a need for careful planning and purposeful study 

design when seeking to assess or investigate these important neural processes. 

In many scenarios, sensory information from the muscles, joints and connective tissue 

is referred to as “proprioception.” This term was first used by Sir Charles Sherrington and 

referred to as “the perception of joint and body movement as well as position of the body, 

or body segments, in space” (Sherrington, 1906). Since Sherrington’s first definition, 

many subsequent definitions have been attempted and used to explain sensory function 

as it pertains to motor control.  In many cases, proprioception is meant to refer to 

neurophysiological processes such as the function of mechanoreceptors in the periphery 
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(Sokhangu, Rahnama, Etemadifar, Rafeii, & Saberi, 2021), the quality of neural pathways 

(Fling, Dutta, Schlueter, Cameron, & Horak, 2014), or the function and communication of 

cortical regions (Goble, 2010).  In other contexts, proprioception is used to describe the 

raw ability to sense limb position or motion without the use of vision (Elangovan et al., 

2014; Goble, 2010).  Furthermore, proprioception is often referred to as a broader sense 

of body awareness while motor skills are being performed (Han, Anson, Waddington, & 

Adams, 2014; Han, Waddington, Adams, Anson, & Liu, 2016a).   

To remove some of the confusion regarding the interpretation of proprioception, the 

term “kinesthesia” has been used to refer to the conscious perception of body position 

and movement and reserve “proprioception” for referring to the unconscious processes 

involving body position information (Elangovan et al., 2014; Arthur Prochazka, 2021; 

Proske & Gandevia, 2009).  However, this distinction is not universally acknowledged as 

“kinesthesia” and “proprioception” are often used interchangeably (Han et al., 2016a), or 

used to delineate motion sense and position sense, respectively (Aman et al., 2014).  

Regardless of how the terms are defined, proprioception is clearly more than simply the 

firing of mechanoreceptors in the periphery, and we must avoid “the fallacy of ascribing 

proprioception to proprioceptors”, as James Gibson argued in 1966 (Gibson, 1966).  For 

the purpose of this Introduction, I’m merely striving to highlight the importance of 

somatosensory information in skilled motor performance and thus, no distinction or 

preference for one view over the other shall be expressed.  Rather, I aim to emphasize 

the need for careful consideration when seeking to conduct or interpret research focusing 

on proprioception and related topics. 
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Neurophysiology and Anatomy 

A large component of how somatosensation impacts motor performance is the 

function and anatomy of the neurophysiological processes involved in acquiring and 

processing the incoming sensory data.  There are multiple methods available to 

investigate these crucial neural processes that must be chosen depending on the specific 

questions of a research study.  As mentioned previously, muscle spindles are found within 

each muscle and report crucial information regarding length and rate of muscle stretch.  

A common way to assess these key sensory receptors is to impose a muscle stretch and 

measure the reflexive response. The simplest way this is done is to impose a rapid stretch 

by tapping a tendon with a tendon hammer which rapidly elongates the muscles and 

evokes a burst of activity in the afferent muscle spindles responding in an activation of 

that same muscle through monosynaptic reflex mechanisms (Dick, 2003). In addition, one 

might be interested in the resultant cortical processes that are recruited to process and 

integrate sensory information that results from movement.  Once again, there are multiple 

ways to investigate these mechanisms.  When a burst of afferent information is received 

by the CNS (such as the resultant activity of the tendon tap assessment discussed 

above), a sensory evoked potential (SEP) can be measured at the level of the cortex 

using either electroencephalography (EEG) or magnetoencephalography (MEG) (Illman 

et al., 2020; Ohashi et al., 2019; Seiss et al., 2002).  These methods enable immediate 

measurement of the neural resources utilized to process incoming sensory data.  

However, although EEG and MEG provide superior temporal precision, they lack spatial 

precision to identify specific regions of activity resulting from afferent information. 

Additionally, both methods require many apical dendrites aligned in parallel close to the 

skull surface to be able to measure the underlying neural activity. For spatial resolution 
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or subcortical activity, functional magnetic resonance imaging (fMRI) is often used to 

locate highly specific regions of the brain that are involved with sensory processing, 

though fMRI lacks the temporal precision characteristic of EEG/MEG data (Iandolo et al., 

2018).  In addition to these methods, transcranial magnetic stimulation (TMS) methods 

are often utilized to identify neurophysiological properties or levels of neural excitability 

that allow sensory integration and motor learning (Mirdamadi & Block, 2020; Ohashi et 

al., 2019). 

Proprioceptive Assessments 

While neurophysiological and anatomical investigations are vital to understand 

sensory function, many clinicians and practitioners do not have access to the equipment 

mentioned above, nor are they interested in the results that they provide.  Rather, they 

are often interested in the raw ability to detect and sense body position (with the 

assumption that it is informed by functioning mechanoreceptors mentioned above).  Many 

clinical assessments have been used to measure proprioception in various contexts.  One 

method commonly used is the threshold to detect passive motion test (TTDPM).  In this 

method, the investigator will move isolated body segments (either manually or with a 

machine) in a predetermined direction while other peripheral information is occluded, 

usually by blindfolds or headphones, etc.  Participants are instructed to push a button or 

verbally respond as soon as they perceive the movement and direction (Han et al., 2016a; 

Refshauge, Chan, Taylor, & McCloskey, 1995).  Gibson (1966) labeled this type of 

proprioceptive information as “imposed proprioception” as it results entirely from external 

manipulation.  For this purpose, Elangovan et al. (2014) refer to this method as the 

“purest” possible measure of proprioceptive function. In contrast, Han and colleagues 
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(2016b) argue that this method of assessing proprioceptive function lacks ecological 

validity because few daily movements involve passively imposed movements.  Also, 

Gandevia et al. (1992) suggest that muscle spindle activity is diminished in passive 

movements and, as a result, the TTDPM test is largely measuring only the function of 

cutaneous receptors.   

Alternatively, the joint position matching (JPM) test has been used to incorporate 

self-generated movement in the assessment of proprioception.  In this assessment, 

individuals are asked to replicate a reference joint position without the assistance of vision 

(Elangovan et al., 2014; Goble, 2010).  There are two variations of this task that are 

generally used to assess proprioceptive acuity in clinical populations. In the contralateral 

JPM task, the opposite limb is passively moved to a target joint angle and participants are 

asked to concurrently match the target joint angle with their opposite limb. The difference 

in joint angle between the two limbs has been used as a quantitative mark of 

proprioceptive acuity in that specific limb and joint (Goble, 2010). In the ipsilateral JPM 

task, the participant’s limb is passively moved to a target joint position and then returned 

to a base position.  Participants are then asked to re-create the target joint angle with the 

same limb. Like the contralateral task, the difference between the reference and matching 

joint angles is used to measure proprioceptive function.  While the JPM does involve 

active movement in its assessment of proprioception, it is not without limitations.  In all 

variations of this assessment, the individual is required to compare two different sensory 

signals and identify the point where they are identical.  In the contralateral JPM task, this 

is often done while comparing the sensory signals from both limbs simultaneously.  

However, the reference limb is usually moved to its position passively by the investigator 
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and the matching limb must be actively moved by the participant. As mentioned above, 

the sensory consequences of passive versus active movements are different and thus, it 

introduces a degree of error as participants are required to match the same joint angle.  

In the ipsilateral JPM task, participants must maintain the sensory signal of the reference 

limb in memory as they reproduce the exact limb position with the same limb (either 

actively or passively).  In this scenario, a degree of error is introduced as participants’ 

short-term memory will play a large role on their ability to match the two sensory signals.  

While both methods of assessment (TTDPM and JPM) are useful for specific aspects of 

proprioceptive function, investigators need be aware of the differences in neural 

processes that are being assessed.  Especially because research has shown that 

performance in these two types of tests is not correlated when measured from the same 

ankle (Jong, Kilbreath, Refshauge, & Adams, 2005).   

Behavior 

I have discussed ad nauseum the levels of complexity that are associated with 

skilled motor performance in daily lives, in athletic competition, and other realms of human 

performance.  Thus far I have highlighted many ways that somatosensation permits the 

motor behavior observed in many of these areas.  A large reason for the ambiguity and 

lack of agreement in what proprioception is and how its assessed is because, by in large, 

our understanding of it can only be inferred from human behavior.  Clearly the 

neurophysiology and anatomical systems that gather and process the information are 

vital, but it is always behavior that we most want to understand and improve.  Again, I 

refer to the early definition of proprioception by Sherrington as “the perception of joint and 

body movement as well as position of the body, or body segments, in space.” As we 
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endeavor to study and assess proprioception, we must remember that we are chasing a 

perception that is built upon sensory information and demonstrated through skilled 

behavior. This approach to assessing sensorimotor control, known as psychophysics, 

refers to the quantitative investigation of the relationship between an objective stimulus 

and the subjective perceptions that it causes (Han et al., 2016b; Schmidt, 1991). Sensory 

information is inherently uncertain and clouded with variability and, as a result, the CNS 

must form an estimate for the perceived state of each limb and joint.  By using behavior 

to inform our understanding of this neural perception, we also must make an estimate for 

the function of one’s somatosensory/proprioceptive system.  We, as researchers, 

practitioners or clinicians are attempting to make an estimate of the estimate made by the 

CNS in perceiving body position. Due to this inherent limitation to the study of these 

sensory systems, vigilant intention must be given to identify the proper methods utilized 

to glean the desired data regarding a study design or assessment purpose. 

The aim of cognitive neuroscience is to understand, through experimental 

investigation, the mechanisms that give rise to intelligent behavior (Waskom, Okazawa, 

& Kiani, 2019).  In many regards, this aim is shared in the realm of sensorimotor control.  

The amount of insight that can be gained from the results of an assessment is dictated 

by the quality of experimental control that was put in place to produce the experimental 

results.  When attempting to estimate the perception that results from sensory input, we 

must account for the inherent error present in both the estimate made by the CNS as well 

as our estimate gleaned from the experimental protocol.  One method of controlling this 

inherent error is by controlling the amount of practice that is given for a given task prior 

to assessment.  There is not an accepted amount of familiarization that is given for each 
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test which leads to differing familiarization effects that may impact the overall score.  

Furthermore, these assessments generally involve only a few trials.  When attempting to 

remove the uncertainty from one’s prediction of sensory function, more trials are needed 

to more accurately reflect the actual distribution of sensory signal utilized by the CNS in 

perceiving body position.  The increase in trials need also come with variability in task 

demands to minimize any learning effect as well as gain clearer insight into the ability of 

the CNS to form a perception of body position throughout a movement.  Though these 

suggestions of controlled practice, increase in trials included and variability are contrary 

to current methods of sensory function in motor control, the resultant behavioral data will 

provide a clearer understanding of one’s ability to utilize sensory input to perceive body 

state during skilled motor performance. 

Conclusion 

In conclusion, there are many different approaches and methods that provide data 

regarding the role of sensory information during motor performance. Depending on the 

specifics of the research question, one method is likely a better fit than others.  As is the 

case in most scientific fields, the important thing is to carefully design an experiment or 

choose an assessment based on a specific and carefully formed research question.  

Similarly, it is also important to ensure the interpretation of the results gathered from an 

experiment or assessment are in line with the actual data that was gathered.  As we 

continue to recognize that somatosensation and proprioception are much more nuanced 

than previously assumed, a vigilant attention to research and assessment methods will 

be vital towards increasing this understanding in the future. 
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Areas of intervention 

In this introduction, I have provided evidence for the importance of collecting quality 

information from somatosensory nerves and explained various neural processes put in 

place to maximize the perception of our bodies as we perform movements, given the 

inherent variability in sensory data. Altogether, this evidence demonstrates that sensory 

information is essential in the control of movement and provides many areas that could 

potentially be exploited to improve human movement control.  The following section will 

examine methods of intervention that approach movement training from a somatosensory 

perspective.  These approaches, though relatively new, show promising evidence for 

improving motor function and ultimately to improve movement capabilities. 

Electric stimulation 

One method of improving movement through sensory interventions is with external 

electric stimulation. Nervous communication occurs via electric activity that can be 

modified in specific ways with the addition of external electric properties. The specifics of 

how nervous system communication is impacted is determined by the electric properties 

of the stimulation and where it is applied. This review will include examples from 

transcranial direct current stimulation (tDCS), transcranial alternating current stimulation 

(tACS) and transcutaneous electric nerve stimulation (TENS). 

Transcranial direct current stimulation involves the passing of a low intensity 

electric current through the brain via electrodes placed on the scalp (Jacobson, 

Koslowsky, & Lavidor, 2012). This approach is relatively new and lacks consistent 

research findings. However, tDCS has received a lot of recent attention in the literature 

as a way to improve motor performance and has been included in this review because it 
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will likely continue to be highly investigated because it is a relatively cost-effective method 

with potential for positive findings. The justification for this stimulation is to moderate the 

resting potential of the neurons in the area receiving the current. Recent work has shown 

that tDCS does indeed alter the cortical excitability of the brain (Minarik, Sauseng, Dunne, 

Berger, & Sterr, 2015). Cathodal tDCS raises the absolute resting potential, making it less 

likely for neurons to fire.  Alternatively, anodal tDCS decreases the absolute resting 

potential of neurons making it more likely for neurons to fire. It is hypothesized that tDCS 

promotes neural plasticity through Hebbian processes that strengthen or weaken neural 

connections via an unsupervised learning framework. This type of neural adaptation 

occurs by strengthening synapses where the post-synaptic neuron consistently fires after 

the presynaptic neuron and weakening synapses that regularly fire in the opposite 

direction  (Caligiore, Arbib, Miall, & Baldassarre, 2019; Doya, 2000).  Azarpaikan et al. 

applied anodal tDCS over the cerebellum and parietal cortex as participants learned a 

novel bimanual coordination task (Azarpaikan, Taherii Torbati, Sohrabi, Boostani, & 

Ghoshuni, 2019).  The authors showed that tDCS applied over the cerebellum and 

parietal cortices independently improved motor learning more than a group receiving no 

stimulation.  Additionally, they showed that tDCS applied to the cerebellum was 

significantly more effective in improving motor learning than over the parietal cortex.  

These findings resonate with the role of the cerebellum in comparing the most recent 

sensory information with sensory predictions.   

Most consistent findings applying tDCS over the parietal cortex come by applying 

cathodal stimulation to decrease the overall activity in this brain region (de Oliveira et al., 

2019; Ishigaki, Imai, & Morioka, 2016; D. R. Young, P. J. Parikh, & C. S. Layne, 2020; 
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David R. Young, Pranav J. Parikh, & Charles S. Layne, 2020).  This approach is often 

used with an investigative goal to identify the parietal cortex as a key brain region involved 

in proprioceptive processing and the internal representation of various motor tasks.  

Young and colleagues have shown consistently that cathodal tDCS over the posterior 

parietal cortex decreases the rate at which participants can adapt to various postural and 

gait perturbations (D. R. Young et al., 2020; David R. Young et al., 2020).  These findings 

give hope that if anodal tDCS is used over the same region, participants may increase 

their rate of adaptation.  However, this has not been consistently shown in the current 

literature when applied to motor skill performance (Doppelmayr, Pixa, & Steinberg, 2016; 

Pixa, Berger, Steinberg, & Doppelmayr, 2019), but body awareness and sensory 

integration has been shown to improve with anodal tDCS applied to the parietal cortex 

(Hirayama, Koga, Takahashi, & Osu, 2021; Hornburger, Nguemeni, Odorfer, & Zeller, 

2019; Lira, Pantaleão, de Souza Ramos, & Boggio, 2018). Taken together, I believe more 

research needs to be completed to uncover the role of tDCS in improving movement 

through contributing to more accurate state predictions before during and after movement 

execution.  

Transcranial alternating current stimulation relies on a similar neural framework to 

tDCS. But, in contrast to tDCS, tACS endeavors to capitalize on the cortical oscillations 

that are seen in different neural systems (the same brain waves measured with EEG). 

The basic goal of tACS is to interfere with these rhythms and modulate cortical excitability 

in a frequency-specific manner (Dissanayaka, Zoghi, Farrell, Egan, & Jaberzadeh, 2017). 

Miyaguchi and colleagues have published many promising findings using tACS to deliver 

an alternating current between the primary motor cortex (M1) and the cerebellum while 
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participants learn different motor skills (Miyaguchi et al., 2020; Miyaguchi et al., 2018; 

Miyaguchi et al., 2019).  As we’ve described, the cerebellum is highly involved with 

sensory input and sensory predictions while M1 is largely responsible for issuing 

conscious motor signals to the lower motor neurons involved in a task.  Miyaguchi and 

colleagues have consistently shown that this alternating current benefits motor 

performance and motor learning of various motor skills.  The cerebellum and M1 

communicate through cortical projections to the cerebellum to calculate the most likely 

state of the effector limb based on the outgoing motor command. The discrepancy 

between expected sensory consequence and actual feedback is then communicated 

back to the M1 to assist in subsequent motor actions (Miall & Wolpert, 1996; Shadmehr 

& Krakauer, 2008; Wolpert et al., 2011).  These findings suggest that tACS could help to 

strengthen this neural circuit to calculate more accurate sensory predictions. Additionally, 

the PMBS has shown to index confidence in internal models (Tan et al., 2016; Tan, 

Zavala, et al., 2014).  I believe future work should endeavor to exploit the role of the PMBS 

in motor learning to promote correct movements via tACS assisting the CNS is 

constructing accurate forward models. 

The exact neural mechanisms effected by tDCS and tACS alone have yet to be 

clarified and additional research is needed to identify standard protocols of use.  Initial 

findings with these technologies indicate that there is potential to impact motor 

performance.  Whether they can be reliably implemented to improve skilled motor 

performance will be seen as more research is done in coming years.  Of note, it should 

be mentioned that tDCS and tACS promote neural plasticity to strengthen consistently 

executed neural patterns.  However, this works under an unsupervised learning 
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mechanism that is not governed by a distal teacher communicating error signals.  Thus, 

in the framework that tDCS/tACS does in fact work to improve motor learning, if incorrect 

movements are consistently occurring while receiving this stimulation, incorrect neural 

pathways will be promoted to hinder the correct movement.  Accordingly, it is important 

to ensure correct movements are being learned while utilizing tDCS/tACS. 

An alternative use of electric stimulation applies electrical stimulation to sensory 

nerves in the periphery.  Transcutaneous electric nerve stimulation (TENS) can be used 

to excite heavy myelinated sensory fibers in the peripheral nervous system.  This serves 

to prime the ascending sensory pathways that relay somatosensory information to the 

brain.  Almuklass et al. applied TENS to patients with multiple sclerosis and reported an 

immediate improvement in motor performance of gait and balance as well as fine motor 

skills (Almuklass, Capobianco, Feeney, Alvarez, & Enoka, 2019). Additionally, Elboim-

Gabyzon et al. (2019) showed that patients recovering from hip surgery walked further 

during a 2-minute walk test when receiving TENS than a group that received no 

stimulation.  In a review article including 11 studies that applied TENS to stroke survivors 

to improve mobility, Kwong et al. (2018) concluded that TENS is beneficial towards 

mobility and walking in stroke patients as well as improves their walking capacity. 

In reference to an earlier section, TENS may serve to increase the quantity and 

quality of sensory information coming from somatosensors in the periphery and to 

decrease the delay between sensory stimulation and central processing.  This 

improvement in the incoming sensory data gives the CNS a better opportunity to calculate 

the correct location of their body parts as they perform various motor skills.  I believe that 

TENS is a promising method of improving sensory function that is cost-effective and easy 
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to apply in clinical or healthy populations. I also believe that because such elaborate 

neural processes are put in place to extract relevant data from the inherently noisy 

sensory data, the least bit of improvement at the lowest level may provide the means for 

large improvements in movement capabilities. 

Virtual reality 

Virtual reality (VR) and augmented reality (AR) have received substantial attention 

in recent years due to the increased availability of inexpensive AR/VR headsets and user-

friendly software platforms that allow custom AR/VR protocols.  Simply put, VR involves 

an artificial environment containing visual information that allows natural behaviors to 

emerge (Felsberg, Maher, & Rhea, 2019). AR systems merge computer-generated virtual 

objects with real world scenes (Wang & Wang, 2017). These technologies allow the 

researcher/practitioner to provide ecologically valid scenarios in a safe environment that 

can be shaped to the needs and skill level of each individual (de Bruin, Schoene, Pichierri, 

& Smith, 2010).  Generally, somatosensation, vision and the vestibular system are 

predominantly relied upon to control motor skills. AR and VR are particularly beneficial 

towards assessing/improving somatosensation because AR and VR technologies give 

practitioners complete control over visual feedback permitting researchers to remove 

visual feedback of body position and force a reliance on somatosensory and vestibular 

sources.   In the past, proprioception has been trained/assessed while individuals’ eyes 

are closed, forcing a complete reliance on proprioception (Han et al., 2016b).  However, 

most movements that involve proprioception also require interaction with objects within 

the environment. VR is an optimal tool for improving proprioceptive function because it 

allows complete control over visual input throughout the performance of a motor task. As 
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a result, training protocols can be created with specific movement goals requiring 

interaction with objects in the environment.  And, while maintaining visual feedback on 

the object’s location(s), visual feedback of their own body can be systematically 

manipulated, forcing the CNS to rely on proprioceptive sources when planning, 

coordinating and executing the movement.  

In clinical populations, VR has been effectively used as a rehabilitation tool to 

improve motor function, predominantly with stroke (Felsberg et al., 2019). Cho et al. and 

Kim and colleagues have demonstrated that VR can be effective towards improving 

proprioception in stroke patients by practicing upper extremity tasks with controlled visual 

feedback of their arms as they trained (Cho et al., 2014; Kim et al., 2013).  Similar findings 

have also been shown in full body gait protocols (Lewek, Feasel, Wentz, Brooks, & 

Whitton, 2012; Virk, McConville, & Ieee, 2006). By limiting visual feedback of one’s own 

body throughout the performance of a goal-directed movement, the estimation of body 

state is heavily based on proprioceptive sensory information and predictions.  As a result, 

the CNS must adapt to become more effective at using proprioceptive information when 

controlling movements. Similarly, Cyma-Wejchenig et al. (Cyma-Wejchenig, Tarnas, 

Marciniak, & Stemplewski, 2020) developed a VR training protocol to specifically trigger 

proprioception in construction workers whose jobs require them to work at high altitudes 

where impaired balance abilities may lead to injurious or fatal accidents.  The authors 

showed that six weeks of proprioceptive training in VR significantly improved their static 

balance on a force plate placed at ground level as well as static balance on a force plate 

placed at an elevated position. 
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I believe VR is an optimal tool to improve sensory controlled movements.  Of note, 

with the ability to control the reliance on proprioceptive movement control, a combination 

of VR with one (or more) of the above-mentioned stimulation techniques could promote 

neuroplastic adaptations towards identifying the correct sensory information that 

accompanies optimal movement.  I believe that further advancements in technology will 

continue to provide additional methods that VR can be used to train the proprioceptive 

system as well as assess it in clinical and healthy populations. 

Conclusion 

Skilled motor performance can’t exist without sufficient somatosensory input. In this 

introduction, I have articulated many perspectives to stress the immense benefits that 

somatosensation provides to motor control. Due to these various perspectives that I’ve 

mentioned, I believe there is much potential to improve motor performance by specifically 

targeting sensory function with rehabilitative practices and therapeutic 

technologies/devices.  However, to be able to properly measure the effect of these 

therapeutic and rehabilitative practices, accurate and robust methods for measuring their 

impact on motor performance need to be developed.  The following chapters will describe 

three successive studies that I have completed to address these knowledge gaps in the 

current literature. 

My first study will assess whether the Bayesian model of body position estimation is 

a valid method of psychophysical assessment to assess body position awareness in a full 

body ecologically valid motor task.  Bayesian inference in motor control has been well 

established in simple upper extremity movements.  When assessing behavior to infer 
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body state perceptions that result from sensory information, controlled task familiarization, 

many trials, and constant variability are needed to form an accurate estimate for a 

person’s sensory function.  The current methods that have been used to assess Bayesian 

inference in motor control account for all three of the necessities though they have not 

been utilized in a way to assess sensory function in common daily movements.  This first 

study will determine if the Bayesian model of motor control is consistent in a full-body 

stepping movement.   

The second study included in this dissertation will clarify whether ideal Bayesian 

position estimates are seen in individuals with superior sensorimotor control.  Much 

research has been done to understand the scope of how this statistical model of 

probability applies to body position estimates in motor control.  However, there has been 

very little work to translate this research towards improving motor performance in various 

populations.  By assessing the Bayesian framework in individuals with superior 

sensorimotor control, we can establish a standard to compare additional populations in 

assessing how they behave in this assessment.   

The final study of this dissertation will assess the impact of a therapeutic technology 

on the Bayesian framework and ultimately their ability to use somatosensory information 

as they perform the Bayesian assessment.  I mentioned previously that there is a need 

for more specific methods of assessing sensory functions to measure the impact of 

therapeutic approaches aimed at improving sensory function.  This study will measure 

the impact of transcutaneous electric nerve stimulation (TENS) applied on the muscles of 

the legs to minimize somatosensory uncertainty of a full body stepping movement. 
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This collection of studies will demonstrate a novel method and approach towards 

assessing sensorimotor function and the use of sensory information in skilled motor 

performance.  Using psychophysical methods of assessing behavior in a stepping 

movement, I provide a quantitative way at measuring the amount that individuals rely on 

their sensory information during this movement as well as their own perceived uncertainty 

in the movement decisions they make.  I explain how uncertainty in sensory information 

impacts the degree that individuals rely on learned expectations for the state of their 

bodies and how their movement decisions are impacted by sensorimotor expertise and 

electric stimulation.  I intend the results of these studies to inform future methods of 

measuring sensory uncertainty in all populations, enlighten our understanding of the 

neural processes involved with elite motor performance, and provide explanation for any 

observed benefits or hindrances that come with therapeutic interventions aimed at 

impacting somatosensory function. 
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CHAPTER 2 – BAYESIAN INFERENCE IN A FULL-BODY STEPPING MOVEMENT TO  
 

ESTIMATE CENTER OF MASS POSITION 
 
 
 
Introduction 

One’s capacity to move within their environment and perform daily tasks is strongly 

related to actual and perceived quality of life across many healthy and clinical populations 

(de Paula, Sawada, Nicolussi, Andrade, & Andrade, 2013; Forhan & Gill, 2013; 

Musselwhite & Haddad, 2010). An important contributing factor to a person’s mobility is 

their aptitude to maintain upright balance.  Balance is accomplished by keeping the 

vertical projection of the center of mass (CoM) within the boundaries of the base of 

support (often defined by the outer boundaries of the feet).  Impaired balance leads to 

reduced quality of life across many populations (Haider et al., 2016; Maki, Holliday, & 

Topper, 1994) due to the increased risk of falls that accompanies impaired balance 

(Cattagni, Scaglioni, Laroche, Gremeaux, & Martin, 2016; Fernie, Gryfe, Holliday, & 

Llewellyn, 1982; Maki et al., 1994; Mignardot, Beauchet, Annweiler, Cornu, & 

Deschamps, 2014).  Indeed, postural sway is larger in older adults with a recent history 

of falls (Fernie et al., 1982; Mignardot et al., 2014; Simoneau, Billot, Martin, Perennou, & 

Van Hoecke, 2008).  Furthermore, falls are the leading cause of fatal and non-fatal injuries 

among adults sixty-five years of age and older ((WISQARS), 2018). In contrast, superior 

balance ability leads to enhanced athletic performance and fewer lower limb injuries (Han, 

Anson, Waddington, Adams, & Liu, 2015; Hrysomallis, 2007, 2011; Kiers, van Dieen, 

Dekkers, Wittink, & Vanhees, 2013). As follows, a person who is better at controlling the 
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movement of their CoM will be more effective in their overall motor performance than 

those with inferior balance control. 

Because balance is accomplished by maintaining the CoM within the boundaries of 

the base of support, an accurate and up-to-date estimate for the CoM’s location is 

essential to ensure effective mobility and avoid harmful falls. This estimate is informed by 

sensory information received by the central nervous system (CNS) from various sources 

with a heavy emphasis from vision, proprioception, and the vestibular system.  The CNS 

takes in information from all these sources and combines them to form the best estimate 

for the location of the CoM as we perform daily mobility related tasks.  Visual input 

informing body position may simultaneously be informing the CNS of visual cues in the 

environment specific to the current task such as where to turn, or who is approaching that 

we’d like to interact with.  Similarly, somatosensory inputs that inform proprioception and 

body position awareness may also be used to provide input for objects we interact with 

such as a phone or dog leash.  Thus, it is the task of the CNS to put emphasis on the 

sensory sources that are most important to the balance task at hand.  Sensory re-

weighting theory suggests that the CNS shifts reliance to more reliable sources of sensory 

input to optimize balance control (Han, Anson, et al., 2015; Pasma, Boonstra, Campfens, 

Schouten, & Van der Kooij, 2012).  Nevertheless, even in the most ideal scenarios, there 

remains a degree of uncertainty in all sensory information received by the CNS to control 

balance. 

All afferent information received by the CNS is accompanied by unavoidable 

uncertainty (Faisal et al., 2008). For example, proprioceptive sensory data is merely the 

result of firing peripheral receptors and not a direct measurement of the parameter of 
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interest (e.g. joint angles, limb position, velocity etc.) (Bays & Wolpert, 2007). Also, the 

numerous degrees of freedom of the human body combined with inherent dynamics in 

the environment ensure that no motor plan is ever duplicated in exactness. Consequently, 

each movement is accompanied by a unique dataset of resultant sensory information.  As 

follows, the estimation of the current state of the body cannot be as simple as ‘a + b = c’.  

Rather, the CNS must infer the most likely body state from uncertain sensory evidence 

and use it to choose a motor plan that is most likely to assist in meeting the task demands.  

This process is further complicated when you consider the impairments to sensory 

function that occur in healthy aging or because of disease or injury (Cameron et al., 2008; 

van Hedel & Dietz, 2004; Vidoni & Boyd, 2009; York et al., 2009).  Overall, the ambiguity 

and uncertainty that is inherent to sensory information prompts many questions as to how 

the CNS effectively coordinates smooth and precise movements (Yuille & Kersten, 2006). 

That healthy individuals can balance and walk with little difficulty signifies that the CNS 

has become proficient at decoding this sensory puzzle, yet the exact mechanisms remain 

to be seen. 

In 2004, Kording and Wolpert suggested that the CNS may address sensory 

uncertainty in a way that is consistent with a statistical model known as Bayesian 

inference when coordinating movement (Kording & Wolpert, 2004a).  Bayesian inference 

posits that when estimating a certain parameter (e.g. CoM position), the most probable 

value comes when we combine the current dataset (incoming sensory data) with 

previously recorded data (learned expectations of CoM position) (Bayes, 1763; 

Freedman, 1996). In the context of sensory-driven motor control, the CNS estimates the 

most probable state of a body part given the current sensory information from vision and 
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proprioceptors as well as learned expectations of body position based on many previous 

movements. In this framework, when controlling a movement, if the current sensory 

information is more variable/less certain, more weight will be placed on learned 

expectations when forming a decision on where a body part is (figure 1.2).  Conversely, 

if sensory information conflicts with learned expectations, but is more certain, more weight 

will be placed on the current sensory information when forming a decision for where a 

body part is. 

While initial findings on this topic are promising, they predominantly involve one-

dimensional upper-body tasks (Chambers, Sokhey, Gaebler-Spira, & Kording, 2018; 

Darlington, Beck, & Lisberger, 2018; Jarbo, Flemming, & Verstynen, 2018; Palmer, 

Auksztulewicz, Ondobaka, & Kilner, 2019).  Typical human behavior requires movements 

in many directions involving multiple joints and body parts.  Specifically, gait and balance 

are both imperative to quality of life and functional independence. As follows, it is 

important to clarify how the CNS addresses uncertainty when controlling balance.  The 

purpose of this project was to determine if the CNS controls full body, multi-directional 

stepping tasks in a way that is consistent with the Bayesian framework that has been 

shown in simple upper extremity movements.  I hypothesized that as sensory information 

becomes uncertain, the CNS relies more on learned expectation for CoM position when 

forming a decision for its current state.  In addition, I expected that the uncertainty of 

participants’ responses would also increase as the sensory information they received 

became less certain.  The results from this study will inform our understanding of how 

CoM position is estimated by the CNS as well as provide a vital model that can be used 

to measure sensory uncertainty across many populations. 
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Methods 

Participants 

A total of 57 young adult females participated in this study (age range, 18-31 years; 

mean age 21.9 ± 2.3 years).  All participants were healthy with no serious injuries or 

ailments limiting their physical abilities.  A complete description of participant 

demographics and characteristics can be found in Table 2.1.  

 

Table 2.1 Demographics and Participant Characteristics 

variable Min. Max. Mean St. Dev. 

Age (years) 18.0 31.0 21.9 2.3 

BMI 19.5 30.7 23.5 2.6 

Exercise (min/week) 25.0 1,200.0 392.9 266.5 

Height (inches) 61.0 74.0 66.7 2.9 

Weight (lbs.) 110.0 220.0 148.8 20.0 

BMI = Body mass index reported in kilograms of body mass per squared 
meter 

 

Study Protocol 

Participants came into the lab for a single two-hour visit where they completed a 

virtual reality motor learning protocol based off the methods from (Kording & Wolpert, 

2004a) but adapted to a full body stepping motion. This study was approved by the 

Colorado State University Institutional Review Board, and all participants provided written 

informed consent prior to participation. 
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Virtual Reality Motor Learning Protocol 

Setup 

Upon arrival at the lab and following the informed consent process, each 

participant was prepared for participation in the virtual reality protocol (Figure 2.1).  This 

process began by placing two reflective markers on distinct locations on their body for 

motion capture purposes (Figure 2.1 A).  The first marker was placed at the location of 

each participant’s center of mass.  Previous research has shown the CoM location to 

equal fifty six percent of the body height for young adult active females (measured from 

the ground) (Virmavirta & Isolehto, 2014).  Accordingly, the first marker was placed at that 

specific location based on their own height.  The second marker was placed on their 

greater trochanter to determine the step length that would be used in the protocol.   For 

each trial within the protocol, participants stood in a balanced stance in the middle of the 

assessment area while wearing the virtual reality headset (Oculus Rift S, Facebook 

Technologies LLC, Irvine CA).  Vicon motion capture cameras continuously collected the 

3-dimensional positions of the two reflective markers placed on their CoM and left greater 

trochanter and live streamed with Vicon Tracker software (Vicon Motion System Ltd., 

Yarnton, England, UK) into the VR environment (Unity Software Inc., San Francisco, CA).  

All behavior within the Unity virtual environment was created with custom scripts written 

in C# language. 

Training Block 

The purpose of this protocol was to assess the degree that participants rely on 

their expectations of CoM position when sensory information is uncertain during a full 

body stepping motion, as well as measure the effect that sensory uncertainty has on 

overall position uncertainty as participants estimate their position.  Thus, I needed to 
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control for the fact that each participant enters the lab with their own unique positional 

expectations.  As follows, I first needed to get participants on the same page and have 

similar expectations for the whereabouts of their CoM as they perform the steps included 

Figure 2.1. Virtual reality protocol details. 
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in this protocol. To achieve this expectation, I first had participants complete a training 

block where they were able to learn certain characteristics of the motor task prior to the 

assessment blocks.   

For each trial within the training block, participants stood in a balanced stance in the 

middle of the assessment area.  In virtual reality, participants see a pink sphere directly 

in front of them (Figure 2.1 B).  The behavior of that pink sphere is controlled, in real-time, 

with the reflective marker worn on their CoM.  The pink sphere (which will be referred to 

as the cursor) begins within a green start box at the beginning of each trial (Figure 2.1 C).  

A red target box appears in one of five locations (0°, 45°, 90°, 135°, and 180° from the 

green start box).  The distance in between the start and target boxes was thirty five 

percent of the vertical distance from the ground to the greater trochanter marker.  In this 

way, the step length to be performed was individualized to each participant.  The amount 

of thirty five percent was chosen during pilot testing for this study and concluded to be a 

comfortable step length for all participants that mimics a common step length that would 

be normal in daily life.  Participants were instructed to bring the cursor from the green 

start box to the red target box with a single step with one leg (Figure 2.1 D). The direction 

and leg used to step changed on each trial since the target angle varied randomly from 

trial to trial.  Participants were also instructed that although visual feedback of the cursor 

position would only be available partway through the movement, it was consistently there 

albeit invisible at times.  As follows, the instant the cursor left the green start box it was 

occluded from vision and only made visible partway through the movement (Figure 2.1 

D).  When participants believe the cursor is in the target box, they push a button with the 

VR controller and the actual cursor position is revealed to them briefly (Figure 2.1 F).   
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As previously mentioned, the purpose of the training block was to get all 

participants on the same page of CoM location expectations.  To accomplish this purpose 

and unbeknownst to participants, a backwards shift was added to the cursor location on 

each trial as it exited the starting block and was occluded from vision (Figure 2.1 E).  As 

a result, the participant had to move their CoM past the target an amount equal to the 

backwards shift to place the cursor in the target box.  The visual feedback given partway 

informed participants of the degree of the shift and the amount needed to compensate to 

hit the target.  The shift amount varied on every trial and was randomly chosen from a 

normal distribution N(μ=-7.5 cm, σ= 2.5 cm).  The training block involved five trials 

performed while receiving verbal instruction from study coordinators and then one 

hundred trials on their own with the purpose of implicitly learning to compensate for the 

shift in their movements. 

Assessment Blocks 

Following the training block, participants completed five more blocks of 100 trials 

each.  The trials within these blocks were very similar to the trials of the training block 

with the exception of the visual feedback of the cursor position.  In the assessment blocks, 

the visual certainty of the cursor location shown partway through the movement was 

systematically manipulated.  For the majority of trials, the uncertainty level was the same 

as the training block where they were shown the precise cursor location (referred to as 

the small uncertainty level).  However, on some trials, uncertainty was added to the cursor 

location by adding 2-dimensional gaussian noise to its location. This noise gave the 

perception of an approximate area of where the cursor was located.  The size of noise 

varied between two levels (referred to as medium and large uncertainty): N(μ= 0 cm, σ= 
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2.5 cm) and N(μ= 0 cm, σ= 5 cm).  There was also a condition of complete uncertainty 

where no visual feedback was given at all for the cursor location after it left the start box 

until the next trial began.  On trials where the uncertainty level was either medium, large 

or complete, no final feedback was given to participants informing them of their accuracy 

after they pressed the VR controller.  This was done to eliminate participants from using 

final feedback to inform their performance on uncertain trials but rather to be limited to 

just the feedback received during the movement.  The uncertainty level on each trial was 

chosen randomly, with the relative frequencies of the uncertainty levels (small, medium, 

large and complete) being (4,1,1,1) respectively for assessment blocks 1 and 2 and 

(3,1,1,1) for blocks 3-5.  The bias of the small uncertainty condition was chosen to ensure 

participants continued to expect the added shift in their movements.   

Analysis 

Data Analysis 

For the analysis of each participants’ data, all the responses from the assessment 

blocks are plotted with each trial’s cursor shift on the x axis and the deviation of the cursor 

from the target when they pressed the VR controller on the y axis (Figure 2.2 A).  Each 

trial is then sorted by the level of visual feedback uncertainty given partway through the 

movement (Figure 2.2 B).  The first hypothesis is that participants will increase their 

reliance on their expected CoM location as the sensory feedback that they receive 

becomes less certain.  As follows, this would be shown by the cursor shift influencing 

participants’ responses more as the feedback uncertainty increased. Accordingly, I fit a 

regression line of the deviation of participants’ final cursor position on each trial versus 

the amount of cursor shift for that trial in each of the four feedback uncertainty levels 
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(Figure 2.2 C).  The slope of each regression line is used as a metric to gauge how much 

each participant is relying on the expected shift in each feedback condition (Figure 2.2 

D).  A regression line with a slope of zero signifies that the cursor shift had no impact on 

their final responses and didn’t influence their accuracy at all.  A regression line with a 

slope of one would indicate a complete reliance on the shift or, in other words, no matter 

Figure 2.2.  Data analysis of virtual reality assessment data.   
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what feedback they received, they compensated by moving their CoM 7.5 cms past the 

target.  I expected that reliance on the shift would increase as feedback uncertainty 

increased which would be displayed as a gradual increase from 0-1 across the four 

feedback conditions.   

Furthermore, I expected that the degree of uncertainty in the feedback given during 

a trial would lead to uncertainty in participants’ responses and that it would increase as 

the feedback uncertainty increased.  To quantify uncertainty, I use the root mean squared 

error (RMSE) of the accuracy vs. shift linear model which displays the spread of the data 

along the regression line (Figure 2.2 E).  Obviously, there are many things that lead to 

variability along a regression line. However, the only variable that changes across these 

test conditions is the certainty of the visual feedback given to inform participants of their 

CoM position.  As a result, the change in RMSE across conditions can only be due to 

participants becoming more uncertain/less certain of their responses.  This method of 

measuring uncertainty has been reliably shown in previous research (Kording & Wolpert, 

2004a, 2004b).  

Statistical Analysis 

All statistical analysis was conducted in R software (version 4.1.1) with an alpha 

level set at 0.05.  To ensure statistical assumptions were met prior to running any 

statistical tests, assessments of normality and equality of variance were performed on all 

outcome metrics of this study such as: Shapiro-Wilk tests, QQ plots and plots of the 

residual vs. fitted data.  These assessments indicated that measurements of slope and 

uncertainty all met the assumptions needed and were included in the analysis. 
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To assess differences in the slope of the regression line for all 57 participants 

across the four feedback uncertainty levels, a one by four repeated measures analysis of 

variance (ANOVA) was performed with random effects to account for each participant 

being represented by more than one observation within the analyzed data.  The 

independent variable for the ANOVA was the four feedback uncertainty levels (small, 

medium, large and complete).  To identify specific differences between conditions, follow 

up pairwise comparisons were calculated using Tukey’s honest significance test. The 

same statistical model was used for the second hypothesis but with the uncertainty 

measurement (RMSE) as the response variable. 

Results 

In total 57 neurotypical healthy female participants were included in the final analysis.  

Characteristics of all study participants are presented in table 2.1. 

Learning to Compensate for The Cursor Shift 

On each trial performed in the study protocol, a backwards shift was added to the 

cursor location forcing participants to move their CoM past the target an amount equal to 

the shift for them to bring the cursor into the target box. Also, the degree of shift varied 

on each trial and was randomly chosen from a normal distribution N(μ= -7.5 cm, σ= 2.5 

cm).  Accordingly, the ideal distribution of the participants’ final CoM position would mirror 

the distribution of the shift (N(μ= +7.5 cm, σ= 2.5 cm)).  The ideal distribution would imply 

that participants perfectly learned to expect the shift and compensated for it successfully 

in their trials. As can be seen in Figure 2.3, the final CoM position for all trials from all 

participants is very similar to the ideal distribution.  In fact, to demonstrate that participants 
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had learned to compensate for the shift in their movements, I conducted a one-sample t 

test for the average CoM position for all participants after completion of the study.  Results 

from the one sample t test indicated that there was not enough evidence to conclude that 

the expected cursor shift was not equal to 7.5 cm (t(56)= -0.829, p = 0.4107).  This result 

suggests that participants did indeed expect a 7.5 cm backwards shift to the cursor when 

moving to the target.  

Reliance on Expected Shift and Uncertainty 

As can be seen in figure 2.4 showing the data from one individual participant, the 

slopes of the fitted regression lines increase as the feedback incertainty increases.  This 

implies a greater reliance on the expected cursor shift when estimating their CoM position 

and a gradual disregard for the visual feedback given as that feedback becomes more 

uncertain.  Similarly, when I combined the data from all participants in the repeated 

Figure 2.3. Density distributions of the cursor shift 
(green) and final CoM location (orange) for all trials 
from all participants.  The ideal distribution is also 
shown (gray) to demonstrate how well participants 
learned to compensate for the cursor shift. 
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measures ANOVA, I found a significant main effect of feedback uncertainty level on 

participants’ reliance on the expected cursor shift (F(3,168)= 118.84, p < 0.001).  Follow 

up pairwise comparisons with Tukey’s honest significance test (Figure 2.5 A) indicated 

significant differences of reliance between the small and medium feedback uncertainty 

levels (p< 0.001), the small and large feedback uncertainty levels (p<0.001), the small 

and complete feedback uncertainty levels (p < 0.001), the medium and complete 

feedback uncertainty levels (p < 0.001), and the large and complete feedback uncertainty 

levels (p < 0.001).  Their was not enough evidence to conclude a significant difference of 

reliance in the medium and large feedback uncertainty levels with alpha = 0.05 (p = 

0.0657).  Taken together, these results confirm the first hypothesis that learned 

Figure 2.4.  Cursor accuracy and cursor shift on every trial for one representative 
participant.  Fitted regression lines indicate an increase in slope as feedback 
uncertainty increases.  The density plots to the right also indicate greater variability in 
this participant’s responses as feedback uncertainty increases.   
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expectations for CoM position would influence CoM position estimates during a full body 

stepping task as uncertainty of the incoming sensory information increased.  

Figure 2.5. Boxplots for the reliance and uncertainty measurements across feedback 
uncertainty levels. A. Reliance on the expected body position increased as feedback 
uncertainty increased showing that the degree of uncertainty within the incoming 
sensory data does influence how much it informs body position estimations.  B. 
Uncertainty in participants’ responses increased as the feedback they received 
became less certain.  ★= p <.006. 
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The second hypothesis of this study was that participants would demonstrate more 

uncertainty in their assessment responses as the feedback uncertainty increased.  I 

defined response uncertainty as the RMSE of the regression line of the linear fit between 

response accuracy and the cursor shift on each trial for each feedback uncertainty 

condition.  Similar to the first hypothesis, I performed a one-way repeated measures 

ANOVA with random effects to identify the effect of feedback uncertainty on participants’ 

response uncertainty.  Results from the repeated measures ANOVA identified a 

significant main effect of feedback uncertainty level on response uncertainty (F(3,168)= 

41.981, p < 0.001).  Follow up pairwise comparisons with Tukey’s honest significance test 

(Figure 2.5 A) indicated significant differences of uncertainty between the small and large 

uncertainty levels (p< 0.001), the medium and large feedback uncertainty levels (p = 

0.005), the small and complete feedback uncertainty levels (p < 0.001), the medium and 

complete feedback uncertainty levels (p < 0.001), and the large and complete feedback 

uncertainty levels (p < 0.001).  Their was not enough evidence to conclude a significant 

difference of reliance in the small and medium feedback uncertainty levels with alpha = 

0.05 (p = 0.1671).  Taken together, these results confirm the second hypothesis that 

uncertainty in sensory feedback would lead to more uncertainty in CoM estimates as 

participants perform full-body stepping movements.  

Discussion 

The purpose of this work was to determine if the CNS controls full body multi 

directional stepping tasks in a way that is consistent with the Bayesian framework that 

has been shown in simple upper extremity movements.  These results show that 

Bayesian inference is indeed a reliable model to apply towards understanding how the 
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CNS monitors CoM position during a full body stepping movement.  As a result, this 

means that uncertainty accompanying incoming sensory data impacts how much weight 

is placed on it in the CoM position estimate.  Also, these results imply that learned 

expectations for where the CoM has been during previous movements of a similar type 

inform the position estimate made by the CNS during stepping tasks. 

I expected that the degree to which learned expectations for CoM position influenced 

the final position estimate would increase as the incoming sensory input became less 

certain. These results are in line with previous work showing Bayesian inference in simple 

upper extremity reaching tasks (Hewitson, Sowman, & Kaplan; Kording & Wolpert; Vilares 

& Kording).  Stevenson and colleagues (Stevenson, Fernandes, Vilares, Wei, & Kording, 

2009) found that center of pressure (CoP) application during a one-dimensional balance 

task fit the Bayesian framework accounting for visual uncertainty.  These results add to 

the current work by showing the CoM position is also estimated in a way that fits the 

Bayesian framework.  In addition, the motor task involved in this study involved three-

dimensions of movement stepping to multiple targets at different angles.  This involved 

building expectations for CoM behavior in one direction and applying it to different targets 

with the same radial distance.  Work done by both Hewitson et al. (2018) and Fernandes 

et al. (2014) has found that position expectations built in one movement can generalize 

to similar movements either with an opposite limb or a nearby target.  This work confirms 

that this behavior is also consistent in the lower body.  Whether learned expectations built 

in upper extremity movements can generalize to movements of the lower body will be the 

focus of future research.  If this is the case, it may be an effective method of rehabilitation 

for injuries or impairments that limit the functionality of a limb.   
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Furthermore, I anticipated that participants would show more uncertainty in their CoM 

estimates when their available sensory information became uncertain.  Using the RMSE 

of the relationship between the cursor shift and the cursor accuracy, I showed that 

participants did in fact show more uncertainty when estimating their CoM position.  

Uncertainty in incoming sensory data is impossible to eliminate.  Light conditions, 

disease, injury and many other conditions lead to uncertainty in the sensory information 

our CNS receives.  Combining the data that we receive with our learned expectations is 

a way that the CNS can compensate for this unavoidable uncertainty and still minimize 

the overall uncertainty in our position estimates.  Using this method, we have a 

quantifiable way of measuring how confident a person is on where their CoM is.  This 

metric could be used to measure the efficacy of rehabilitative practiced aimed specifically 

at improving sensory function.  The majority of methods used to measure sensory function 

are applied at the peripheral level (Han et al., 2016b).  While these methods have shown 

promise, combining them with this new metric of uncertainty may provide crucial insight 

into how sensory information is integrated and used by the CNS.   

There has been much work done in recent decades on estimating the CoM position 

from the researchers perspective (Cotton, Murray, & Fraisse, 2009; Cotton et al., 2011; 

Rabuffetti & Baroni, 1999; Schinkel-Ivy, Komisar, & Duncan, 2020).  When considering 

how balance is accomplished, it makes sense that the scientific community would be 

interested in knowing exactly where the CoM is as we perform mobility related tasks.  As 

follows, the behavior of the CoM is used to indicate balance ability across many 

populations (Pasma et al.; B. S. Richmond, Fling, Lee, & Peterson).  Furthermore, much 

work has also shown that motor plans during mobility are created to prioritize a smooth 
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trajectory of the CoM (Bucklin, Wu, Brown, & Gordon; Hicheur, Vieilledent, Richardson, 

Flash, & Berthoz; Welch & Ting). There has also been much work to explain how sensory 

information is integrated and processed by the CNS to control balance (Forbes, Chen, & 

Blouin, 2018; Peterka, 2018).  With so much emphasis on the importance of the CoM to 

control balance, there is a lack of research on how the CNS monitors and estimates CoM 

position during balance.   

I show here that the CNS estimates CoM position in a way consistent with 

Bayesian inference by accounting for the uncertainty of sensory information and relying 

on learned expectations from previous balance attempts.  Overall, I believe this 

information will help understand how CoM behavior influences overall body position 

awareness and ultimately lead to a greater understanding of mobility across all 

populations. 
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CHAPTER 3 – IS BAYESIAN INFERENCE IN A FULL-BODY STEPPING MOVEMENT  
 

BENEFICIAL TO OVERALL MOTOR PERFORMANCE? 
 
 
 
Introduction 

Daily life requires movements of many types.  Whether it be reaching to grab a bottle 

of water or avoiding a collision with a fellow shopper at the grocery store, each movement 

requires us to adapt to unique criterion to ensure the task is carried out properly.  When 

reaching for the water bottle, it’s location, other objects in the way, one’s body position 

and fatigue level (among many other factors) are constantly varying and must be 

accounted for as the central nervous system (CNS) creates a motor plan to perform the 

movement.  In the example at the grocery store, more variables are added due to the 

introduction of mobility and in-motion regulatory conditions.  With the ever-present 

dynamics that are inherent to goal-directed movement, it is essential that one can adapt 

to the task demands and create a motor plan that efficiently completes the movement 

goal.  One of the biggest influences on how a motor plan is created is sensory information 

notifying the CNS of body position at the beginning and throughout the movement. This 

influence is why Impairments to incoming sensory data often lead to motor errors that 

frequently bring negative consequences. 

Incomplete sensory information leads to uncertainty.  In the context of motor 

performance, this uncertainty involves both the state of our bodies and the external world.  

There has been much research exploring the deficits in sensory information that result 

from injury, disease, or aging (Cameron et al., 2008; Carabellese et al., 1993; Cattaneo, 

Ferrarin, Jonsdottir, Montesano, & Bove, 2012; Kraiwong, Vongsirinavarat, Hiengkaew, 
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& Wagert, 2019; Lew, Weihing, Myers, Pogoda, & Goodrich, 2010).  Accordingly, 

research has found these populations to have more uncertainty in their movements due 

to the inadequate sensory data received by the CNS (Arpin et al., 2017; Reyns et al., 

2008).  Still, uncertainty in motor control is not unique to populations with impaired 

sensory function.  In fact, the human nervous system is challenged with sensory 

uncertainty to some degree in every movement we make.  Differing light conditions, levels 

of physical and cognitive fatigue, visual and proprioceptive acuity all lead to body position 

uncertainty in even neurotypical populations (Abd-Elfattah, Abdelazeim, & Elshennawy, 

2015; van Beers, Baraduc, & Wolpert, 2002). Furthermore, noise and variability are 

present in all stages of acquiring and processing sensory information (Faisal et al., 2008). 

As follows, the CNS must account for the uncertainty in sensory information to minimize 

uncertainty in the overall body state estimate and effectively complete each motor task. 

Bayesian inference is a statistical model that is often used to estimate an unknown 

parameter when the available evidence is uncertain (Bayes, 1763; Vilares & Kording, 

2011).  In this model, the current evidence (termed the likelihood) is combined with 

previously collected data (termed the prior) to create an optimal distribution to estimate 

the parameter with the least variability (termed the posterior).  Kording and Wolpert 

(2004a) were the first to apply Bayesian inference to motor control to explain how the 

CNS accounts for uncertainty in sensory data.  Since 2004, their work has been expanded 

into many different areas of goal-directed motor control to better understand the limits to 

using Bayesian inference to understand sensorimotor control (Darlington et al., 2018; 

Genewein & Braun, 2012; Kording, Ku, & Wolpert, 2004; Remington, Parks, & Jazayeri, 

2018; Roach, McGraw, Whitaker, & Heron, 2017; Sato & Kording, 2014; Shadmehr & 
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Krakauer, 2008; Stevenson et al., 2009; Vilares & Kording, 2017; Wei & Kording, 2010).  

Most of this work has sought to understand Bayesian motor control in different contexts 

of movement.  There has been much work done to expand on how the prior is generalized 

to other types of movement (Chambers, Fernandes, & Kording, 2019; Hewitson et al., 

2018; Wolpe, Wolpert, & Rowe, 2014; Yin, Wang, Wei, & Kording, 2019), how it differs 

when put under a time constraint (Roach et al., 2017; Tassinari, Hudson, & Landy, 2006), 

and how the Bayesian model differs between types of movement (Kording et al., 2004; 

Stevenson et al., 2009).  Indeed, I showed in chapter 2 that Bayesian inference also can 

be used to explain how the CNS estimates CoM position during a stepping movement.   

While all this work has benefited our understanding of the neural control of movement, 

there is a lack of research translating what is known about Bayesian motor control to 

improve movement in any population.  Predominantly, most of the current research has 

sought to understand this model in various movement contexts.  Certainly, the search to 

understand is one of the central goals of science, and even more so for basic research 

(Frigg & Hartmann, 2020; Rubio et al., 2010).  As follows, models and theories are often 

used in science to better understand the natural world (Cartwright, 1997; Lohse, 2020). 

However, the pursuit of improving the human experience in one or many populations is 

also a central goal of science and is the driving purpose of translational science (Zerhouni, 

2005).  Without testing the Bayesian model across multiple populations and assessing 

the differences that arise, its predictive power is limited. Is a person at less risk of injury 

if their movements strongly fit the Bayesian model better than someone who weakly fits 

the model? Does an individual with movements that are Bayes optimal have a lower 

probability of being diagnosed with a neurodegenerative disease? A thorough search of 
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the relevant literature yielded only one article using this model to explain motor control in 

a different population (Vilares & Kording, 2017).  This gap in the literature is due, in part, 

to the fact that it remains unknown whether Bayes optimal movements are associated 

with better motor performance. Once this knowledge is gained, this well-established 

theory can be used to assess and improve moto control in all populations. 

Individuals who excel at high level sport often can do so because they are able to 

consistently create and execute motor plans that accomplish the task more effectively 

than their peers.  In sports that involve gross motor skills, this often requires moving the 

entire body through space and meticulously coordinating the movement of multiple limbs 

and joints with varying time constraints.  These types of movements rely on constant 

neural communication of afferent sensory information relaying details about speed and 

position of involved limbs, integration by central and peripheral mechanisms that give 

meaning and context to sensory cues that can be used to plan future movements, and 

numerous efferent signals working simultaneously to control the necessary muscle 

groups.  Not surprisingly, high-level athletes have been shown to perform better in almost 

all these crucial neural processes (Han et al., 2014; Nakata, Yoshie, Miura, & Kudo, 2010; 

Zwierko, Osinski, Lubinski, Czepita, & Florkiewicz, 2010).  In the context of balance and 

mobility, athletes appear to be less vulnerable to external disturbances and more precise 

in balance related tasks (Borzucka, Krecisz, Rektor, & Kuczynski, 2020; Snyder & Cinelli, 

2020). Similarly, physical activity leads to benefits in the neural control of movement and 

mobility (Petroman & Rata, 2020; Prakash, Snook, Motl, & Kramer, 2010; Sexton et al., 

2016).  If making body position estimates in a way that better fits the Bayesian framework 
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is beneficial to motor performance, it would follow that athletic and physically fit individuals 

would fit the model better than peers that exercise less.   

The purpose of this study was to clarify if Bayesian inference in full body stepping 

movements is beneficial to overall mobility and balance performance.  I hypothesized that 

elite athletes would perform in a way that better fits the Bayesian framework than non-

athletic peers and that physically active non-athletes would also fit the model better than 

their less active peers.  Bayesian inference is a statistical model that is used to improve 

accuracy and decrease uncertainty in the overall estimate.  Due to the enhanced neural 

processes that have been reported in high level athletes, I also expected that the athletic 

group would demonstrate a smaller amount of uncertainty in their position estimates while 

performing this full-body mobility task.  Also, in line with previous research, I anticipated 

that the athletic group would demonstrate superior balance performance when compared 

to the non-athletic group. Finally, I predicted that the degree to which individuals fit the 

Bayesian framework would be associated with their balance performance regardless of 

study group.   

Methods 

Participants 

A total of 56 young adult females participated in this study (age range: 18-27 years) 

and were divided into three groups depending on their athletic participation and physical 

activity level.  The athletic group (ATH) consisted of female athletes who were currently 

participating in NCAA Division I sports (14 soccer, 4 softball, 2 volleyball, 2 divers). The 

active group (ACT) were healthy female adults who regularly exercise at a moderate or 
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vigorous intensity more than 150 min/week (exercise amount chosen because of physical 

activity recommendations from the American College of Sports Medicine (ACSM) (Garber 

et al., 2011)). The healthy control group (HC) were healthy female adults who were 

recreationally active but self-reported regularly exercising less than ACSM guidelines.  All 

participants were healthy with no serious injuries or ailments limiting their physical 

abilities.  A complete description of participant and group demographics and 

characteristics can be found in Table 3.1. 

Table 3.1 Demographics and Participant Characteristics 

 HC ACT ATH p-value* 

n 16 18 22  

Age: Years        
(mean (SD)) 

21.6 (1.8) 23.1 (2.1) 20.59 (1.3) <0.001 

Height: Inches  
(mean (SD)) 

66.9 (3.4) 65.8 (2.6) 67.17 (2.7) 0.327 

Weight: Pounds 
(mean (SD)) 

148.9 (16.8) 142.1 (16.3) 153.23 (24.0) 0.220 

BMI: Kg/M2        
(mean (SD)) 

23.5 (2.5) 23.1 (2.5) 23.81 (3.0) 0.683 

Exercise: 
Min/week (mean 
(SD)) 

99.6 (42.5) 305.6 (113.7) 679.09 (140.2) <0.001 

HC = Healthy Control, ACT = Active Control, ATH = Athlete 

* p values represent the significance level from a group effect in a one-way ANOVA 
with each respective variable as the response variable 

 

Study Protocol 

Participants came into the lab for a single two-hour visit where they completed the 

virtual reality motor learning protocol previously described in chapter 2 as well as the 
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modified Clinical Test of Sensory Integration for Balance (mCTSIB) (Freeman et al., 

2018). This study was approved by the Colorado State University Institutional Review 

Board, and all participants provided written informed consent prior to participation. 

Virtual Reality Motor Learning Protocol 

Please refer to chapter 2 for details on the virtual reality motor learning protocol.  

Balance Assessment 

The modified Clinical Test of Sensory Integration for Balance (mCTSIB) is a clinical 

test of balance used in many rehabilitation settings to quantify one’s ability to maintain 

standing balance under differing sensory conditions (Freeman et al., 2018; Goble, Brar, 

Brown, Marks, & Baweja, 2019).  It involves four balance trials each lasting 30 seconds 

where participants are to stand as still as possible for the duration of the trial (Figure 

3.1.A). Each trial is designed to challenge the sensorimotor system differently to identify 

any weaknesses an individual may have in controlling balance.  For this assessment, 

participants stood on a BTrackS portable force plate (Balance Tracking Systems, Inc., 

San Diego, CA) that continuously collected the position of participants’ center of pressure 

(CoP) throughout each trial.  CoP behavior was measured to assess balance control 

because the CoP reflects the neuromuscular response to maintain stability of the CoM 

(B. S. Richmond et al., 2021). Participants stood unshod with their feet together and their 

hands on their hips for the duration of each trial.  Trials involve standing directly on the 



68 

rigid force plate with eyes open and closed, as well as standing on a compliant foam pad 

placed directly on top of the plate with their eyes open and closed.  

 

Figure 3.1. Balance collection and analysis protocol.  A. Participants complete 

all trials of the mCTSIB on a BTrackS force plate tracking center of pressure 

(CoP) behavior. B. VTC is calculated for every time point within a trial. C. 

Extract the minima values of the VTC signal.  The mean of the VTC minima 

was used in analysis. 
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Analysis 

Data Analysis 

Please refer to chapter 2 for the analysis used to get the outcome metrics of the 

VR protocol.  Furthermore, to quantify the degree to which each participant fits the 

Bayesian framework, I developed a measurement I refer to as “Bayes value.”  The Bayes 

value for each participant was calculated by taking the sum of the differences in reliance 

on the expected shift between the feedback uncertainty conditions (Figure 3.2).   

Bayesian inference predicts that the body position estimate will progressively rely on the 

expected shift as feedback uncertainty increases.  As follows, I would expect the reliance 

on the shift to be close to zero in the small uncertainty condition and incrementally 

increase as feedback uncertainty transitions from small to complete.  Ultimately resulting 

in a complete reliance on the shift in the complete uncertainty condition (reliance equal to 

1).  In a Bayes optimal individual, this would result in a Bayes value closer to 1 when 

compared to an individual that does not fit the model as well.  The first hypothesis was 

that the athletic group would perform in a way that better fits the Bayesian model than 

Figure 3.2. Bayes value was calculated by summing the reliance on the expected shift 

changes that occurred as feedback uncertainty increased. A participant with a Bayes 

value closer to 1 (A) signifies a greater fit to the Bayesian model than a participant with 

a smaller Bayes value (B). 
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non-athletic peers and that the physically active group would fit it better than the less 

active control group.  In this sense, I expected the athletic group to have a Bayes values 

closer to 1 compared to the other 2 groups and that the active group would report Bayes 

values higher than the HC group.   

With regards to the CoP data from the mCTSIB trials, I calculated the virtual time-

to-contact (VTC) for each trial and extracted the minima of the VTC signal to use in the 

analysis (Figure 3.1).  The VTC metric considers the instantaneous position, velocity and 

acceleration of the CoP, to predict how long it would take the CoP to reach the boundary 

of the base of support for every data point in a trial. In other words, a lower VTC value 

means that it would take less time to reach the boundary of the BoS and subsequently 

fall, thus exemplifying a state of low stability.  Previous research has shown VTC to be a 

superior metric at assessing balance performance in clinical and healthy populations 

compared to traditional metrics (Hertel, Olmsted-Kramer, & Challis, 2006; S. B. 

Richmond, Dames, Shad, Sutherlin, & Fling, 2020; van Wegen, van Emmerik, & Riccio, 

2002; Whittier, Richmond, Monaghan, & Fling, 2020). The minimum points of the VTC 

signal represent the points that a motor response is evoked to avoid reaching a point of 

instability.  I used the average of all the VTC minima across a balance trial in the analysis 

to quantify balance performance.   

Statistical Analysis 

All statistical analysis was conducted in R software (version 4.1.1) with an alpha 

level set at 0.05.  To ensure statistical assumptions were met prior to running any 

statistical tests, assessments of normality and equality of variance were performed on all 

outcome metrics of this study such as: Shapiro-Wilk tests, QQ plots and plots of the 
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residual vs. fitted data.  These assessments indicated that all of the outcome metrics used 

in this study met the assumptions needed and were included in the analysis. 

The first hypothesis for this study was that the ATH group would fit the Bayesian 

framework better than non-athletic groups and that the ACT group would be better than 

the HC group.  This was assessed in two different ways.  First, to assess differences in 

reliance on the expected shift across the feedback conditions, a three (groups) by four 

(feedback uncertainty levels) repeated measures ANOVA was calculated with random 

effects to account for each participant being represented by more than one observation 

within the analyzed data.  To identify specific differences between groups, follow up 

pairwise comparisons were calculated using Tukey’s honest significance test.  The 

second way that I assessed the first hypothesis was using the Bayes values from each 

participant.  I conducted a three (group) by one ANOVA to identify differences in Bayes 

values between the three groups.  Similarly, follow up pairwise comparisons were 

calculated using Tukey’s honest significance test to identify specific differences between 

the three groups. 

The second hypothesis was that the athletes would demonstrate a smaller amount 

of uncertainty in their position estimates while performing the full-body mobility task.  To 

assess this hypothesis, the same repeated measures ANOVA as was used for the first 

hypothesis but with the uncertainty measurement (RMSE) as the response variable.  I 

used the same statistical model to assess differences in VTC between the three groups 

across the four balance conditions included in the mCTSIB.  I expected that the athletic 

group would perform better across the balance conditions.  
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Finally, to assess associations between how well individuals fit the Bayesian framework 

and their balance performance, I fit a linear model between the Bayes values (response 

variable) and the VTC minima for the four balance conditions (predictor variables).  For 

any significant associations, the r squared value was used to indicate the strength of the 

association.   

Results 

In total, 56 neurotypical healthy female participants were included in the final analysis 

(22 ATH, 18 ACT, 16 HC).  Characteristics of all study participants and groups are 

presented in table 3.1. 

Learning To Compensate For The Cursor Shift 

On each trial performed in the study protocol, a backwards shift was added to the 

cursor location forcing participants to move their CoM past the target an amount equal to 

the shift for them to bring the cursor into the target box. Also, the degree of shift varied 

on each trial and was randomly chosen from a normal distribution N(μ= -7.5 cm, σ= 2.5 

cm).  Accordingly, the ideal distribution of the participants’ final CoM position would mirror 

the distribution of the shift (N(μ= +7.5 cm, σ= 2.5 cm)).  The ideal distribution would imply 

that participants perfectly learned to expect the shift and compensated for it successfully 

in their trials. As can be seen in Figure 3.3, the final CoM position for all trials performed 

by the ATH group are closer to the ideal distribution, followed by the ACT group and finally 

the HC group.  Taken together, these results suggest that all groups learned the cursor 

shift with some evidence that the physically active groups learned slightly better than the 

HC group.  
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Reliance On Expected Shift And Bayes Value 

Figure 3.4 shows data from two participants and includes only data from the small 

feedback uncertainty condition.  The Bayesian model predicts that the slope of the 

regression line between cursor shift and response accuracy should be close to zero in 

this condition, indicating that sufficient sensory data was available to compensate for the 

cursor shift regardless of its magnitude.  From the two participants in Figure 3.4, it is 

evident that the participant from the ATH group has a slope closer to zero indicating a 

better fit to the Bayesian model when compared to the participant in the HC group.  As 

can be seen in Figure 3.5.A, this was consistent for both groups as well. I found a 

significant group by feedback uncertainty level interaction effect (F(6,159)= 2.80, p = 

0.013) indicating that the three groups responded differently to the feedback uncertainty 

levels in their reliance on the expected shift.  Although not significant in pairwise 

Figure 3.3. Density distributions for all trials within each group.  The cursor shift on 

each trial is randomly chosen from the normal distribution N(μ = -7.5 cm, σ = 2.5 
cm).  Ideally, participants responses will mirror the shift distribution showing they’ve 
learned to compensate for it in their movements.  Density plots for each group show 

the ATH group closest to the ideal distribution, followed by the ACT group and then 

the HC group. 
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comparisons, Figure 3.  5.A shows that the ATH group relies less on the expected shift 

across the first three conditions than the other two groups and then relies completely on 

the shift in the complete uncertainty condition.   

In addition, the one way ANOVA assessing differences in the Bayes values across 

the three groups showed a significant main effect for group (F(2,53)= 3.56, p = 0.035) 

and pairwise comparisons also found the ATH group to be significantly higher than the 

HC group (p = 0.026) but not the ACT group (p = 0.515) (Figure 3.6).  Also, the ACT group 

was not significantly different than the HC group (p = 0.286).  Taken together, these 

results confirm that the ATH group estimated their CoM positions during full body 

movement in a way that better fit the Bayesian framework when compared to the HC 

Figure 3.4.  Two participants’ data from the small feedback uncertainty condition. 
According to the Bayesian framework, the slope of the regression line should be 

close to zero in this condition indicating a greater reliance on the available sensory 

data and a small reliance on the expected shift. A. Data from participant #36 of the 

HC group. B. Data from participant #18 of the ATH group.    
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group.  Furthermore, results suggest that the ACT group also fit the Bayesian framework 

better than the HC group though this was not found to be significantly different.   

I also expected that the athletic group would demonstrate a smaller amount of 

uncertainty in their position estimates while performing the full-body mobility task.  As a 

Figure 3.5. Plots for reliance on the expected shift and the uncertainty values 

across the four feedback uncertainty levels. A. I found a significant Group x 

Feedback Uncertainty Level interaction effect (p = 0.012) for the Reliance on 

the shift variable. B. I also found a significant Group x Feedback Uncertainty 

Level interaction effect for the response uncertainty variable (p = 0.032).  

Pairwise comparisons also showed a significant difference in uncertainty 

between the ATH group and the HC group when feedback uncertainty was low.   

★= p < 0.05. 
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reminder, I defined response uncertainty as the RMSE of the regression line of the linear 

fit between response accuracy and the cursor shift on each trial for each feedback 

uncertainty condition.  Like the first hypothesis, I performed a three-way repeated 

measures ANOVA with random effects to identify differences across the three groups in 

their response uncertainty.  Results from the repeated measures ANOVA identified a 

significant group by feedback interaction effect on response uncertainty (F(6,159)= 2.36, 

p = 0.032).  Follow up pairwise  comparisons with Tukey’s honest significance test (Figure 

3.5. B) indicated a significant difference of uncertainty between the ATH group and the 

HC group in the small feedback uncertainty level (p = 0.015).   

Finally, to examine a difference in balance performance across the three groups I 

performed a three (group) by four (feedback uncertainty levels) repeated measures 

ANOVA on the VTC minima value described previously.  The results of this ANOVA 

showed a significant main effect of group (F(2,53)= 3.717, p = 0.031) (Figure 3.7).  

Figure 3.6. Bayes values for the three groups.  A significant group effect was 

found from a one-way ANOVA (p = 0.035) and pairwise comparisons found 

the ATH group higher than the HC group. ★= p < 0.05. 
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Pairwise comparisons indicated a significant difference in VTC between the ATH group 

and the HC group in both the eyes open-rigid surface condition (p = 0.043) and the eyes 

open-compliant surface condition (p = 0.039).  A significant difference was also found 

between the ATH group and the ACT group in the eyes open-compliant surface condition 

(p = 0.047).  All other pairwise comparisons between groups were not significant.   

Interestingly, when analyzing the balance data from all participants, I found that 

the athletes within the ATH group that played soccer performed much better than all other 

participants included in this study (Figure 3.8).  They showed significantly higher VTC 

values than all other groups in the study in each of the four mCTSIB conditions (p < 0.05).  

Figure 3.7. Balance results for all groups across the conditions of the mCTSIB.  ★= p 

< 0.05. 
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Of interest, the other athletes included in this study actually performed worse than the 

ACT and HC groups although these were not found to be significant. 

No associations between any of the Bayesian metrics and the balance 

performance measurements were found to be significant in the statistical analysis. 

Discussion 

The purpose of this study was to clarify if Bayesian inference in full body stepping 

movements is beneficial to overall mobility and balance performance.  I found that the 

ATH group best fit the Bayesian model of body position estimation when compared to the 

ACT and HC groups.  I also found that the ATH group estimated their positions with a 

smaller amount of uncertainty compared to the HC group.  A main purpose of Bayesian 

inference is to minimize the amount of uncertainty when estimating an unknown 

Figure 3.8. Balance results for all groups with the soccer athletes divided into their 

own group (SOC) and all other athletes making the ATH group.  The SOC group 

was significantly better in all conditions than the other three groups.  ★= p < 0.05. 
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parameter by combining the available evidence with previously acquired knowledge/data.  

These results indicate that elite athletes utilize Bayesian inference in their body position 

estimates, and that they do it in a more optimal way according to the Bayesian model.  

Though not statistically significant, I also showed that the physically active group (ACT) 

followed behind the ATH group in fitting the Bayesian model better than the HC group.  

These results add interesting clarity to the use of the Bayesian model in estimating body 

position and provide compelling evidence that physical activity aids in a person’s ability 

to make Bayes optimal body position estimates.  The following paragraphs will expound 

on these results, elaborate on their possible implications and set forth a few viable paths 

for future research on this topic. 

I hypothesized that the ATH group would put more weight on their sensory information 

in scenarios where the available sensory information was more certain when compared 

to the non-athletic groups.  These results confirmed this hypothesis and showed that the 

degree that participants relied on their sensory input in the first three feedback uncertainty 

levels was impacted by their athletic status and physical activity level.   This difference in 

sensory weight may be due to the improved sensory acuity that often accompanies elite 

sport performance.  Previous research by Han and others (Marie Fabre, Blouin, & 

Mouchnino, 2021; Han et al., 2014; Han, Anson, et al., 2015; Han, Waddington, Anson, 

& Adams, 2015; Muaidi, Nicholson, & Refshauge, 2009) has shown that proprioceptive 

acuity is heightened in athletes and actually correlates with the amount of competitive 

success an athlete has.  Though I didn’t measure sensory acuity directly in this study, the 

VTC results I collected from the balance performance indicate that the ATH group was 

better at handling challenging sensory conditions.  Moreover, the finding that the ATH 



80 

group had less uncertainty in their responses further confirms the hypothesis that the ATH 

group is superior at using sensory information to control balance related movements. 

Whether this advantage is attributed to the acquisition of sensory data less plagued with 

noise or a heightened ability to integrate and perceive uncertain sensory cues will be the 

focus of future research.  Truthfully, it is likely a combination of both methods as they both 

have shown to be elevated in elite motor performers (Adkins, Boychuk, Remple, & Kleim, 

2006; Fong & Ng, 2012; Johnson & Woollacott, 2011; Koceja, Davison, & Robertson, 

2004; Vuillerme, Teasdale, & Nougier, 2001; Zehr, 2006). 

Also, I found that the athletic group relied almost entirely on the learned expectation 

of CoM position in the complete feedback uncertainty condition.  This finding does not 

come as a surprise when considering the numerous occasions that athletes must 

generate a movement in scenarios where sensory information is either uncertain or not 

temporally available to inform the movement parameters.  In situations where an athlete 

must quickly respond to an external cue or perform a rapid motor skill, the resulting 

sensory data is not received by the CNS in enough time to inform a subsequent efferent 

signal.  In these scenarios, an athlete’s (or non-athlete performing a movement of a similar 

context) nervous system must control motor skills using predictions of body state based 

on previously attempted movements of a similar type (Flanagan et al., 2003; Shadmehr 

et al., 2010; Wolpert & Ghahramani, 2000).  In these scenarios, an individual with the 

most accurate prediction of body dynamics is more likely to successfully execute the 

movement being performed.  As follows, athletes generally have significantly more 

experience performing goal-oriented voluntarily generated motor skills that help to sculpt 

an accurate internal representation of their motor capabilities.  These findings are in line 
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with previous research showing that athletic performance helps to build accurate internal 

representations of one’s body (Callan & Naito, 2014; Marie Fabre et al., 2021; Mouchnino, 

Aurenty, Massion, & Pedotti, 1992).  This previous research may also shed light onto the 

finding that the HC group, that were more sedentary than the other groups, did not rely 

on the learned expectation of CoM position as well as the ATH group in the complete 

feedback uncertainty condition.   

I found that athletes rely more on their sensory information in circumstances of 

uncertainty and that they are better at relying on learned expectations of body position 

when sensory information is unavailable.  These findings can be applied in many ways.  

One possible area of applying these findings would be to emphasize the benefit of 

promoting sensory acuity in all populations.  There is a vast body of successful research 

on improving sensory function in healthy and clinical populations (Alexandre de Assis, 

Luvizutto, Bruno, & Sande de Souza, 2020; Aman et al., 2014; Lorach, Marre, Sahel, 

Benosman, & Picaud, 2013).  Additionally, the findings from this study and past research 

(Herpin et al., 2010; P. Perrin, Deviterne, Hugel, & Perrot, 2002; P. P. Perrin, Gauchard, 

Perrot, & Jeandel, 1999) suggest that physical activity can be effective at improving 

proprioception in both old and young people.  Along with the need to improve sensory 

acuity in all populations, I also found that working to improve movement expectations can 

be effective at improving motor function.  Fabre and colleagues (2021) found that dance 

and sport training can effectively improve internal body representations and improve 

mobility in many populations.  Additionally, Fabre et al. (2020) showed that a rehabilitative 

intervention aimed at improving the internal body representation of obese patients helped 

to improve balance in this population without losing weight.  These results are promising 
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when considering that movement predictions are gradually more important as sensory 

information becomes less certain.  Also, in clinical populations when sensory input is 

directly affected, an impaired ability to predict movement dynamics can lead to harmful 

motor errors (Arpin et al., 2017).   

The athletic group in this study also performed significantly better in the balance 

assessment than the HC group.  The advantages of athletic participation on balance 

performance have been consistently reported in previous research (Hammami, Behm, 

Chtara, Ben Othman, & Chaouachi, 2014; Muaidi et al., 2009).  Interestingly, a post-hoc 

analysis identified the soccer athletes as the group with superior balance control 

compared to all other participants in the study.  Bressel and colleagues (2007) also found 

soccer athletes to have superior balance when compared to other sports.  This may be 

due to the nature of the sport of soccer in comparison to the other sports included in this 

study.  Soccer is a very dynamic sport that likely demands greater variability and 

adaptability in one’s motor toolbox.  These demands may foster the development of 

sensory abilities that benefit balance and mobility better than other sports.  Hammami 

and colleagues (2014) also found that athletes involved in a sport that included in-motion 

regulatory conditions had better balance than athletes in sports with stationary regulatory 

conditions.   

This study was among the first to translate the vast body of research on Bayesian 

inference in motor control to a different population with the purpose of understanding and 

improving motor function.  Vilares et al. (2017) used the Bayesian model to measure the 

degree that patients with Parkinson’s disease relied on their sensory information while on 

and off of dopaminergic medication.  Combined with the work of Vilares et al. (2017) I 
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showed that the Bayesian model of understanding sensory uncertainty can be used to 

measure motor performance and that individuals who more ideally fit the model are at an 

advantage in performing motor skills.   

Interestingly, I found no correlation between the Bayesian measurements of reliance 

on the expected CoM position or uncertainty with the balance measurements included in 

this study.  As previously mentioned, athletes clearly performed better in both 

assessments but the lack of association between the two suggests that, although both 

involved with mobility and balance related skills, may be controlled by different neural 

mechanisms.  Hrysomallis et al. (2006) found that young healthy individuals performed 

well in both static and dynamic balance assessments, but the two metrics showed only 

weak associations.  The virtual reality protocol involved stepping in multiple directions to 

move the CoM to varying targets.  It may be that the ability to maintain static balance 

under challenging conditions requires different perceptual processes than stepping to 

move the CoM to visual targets.  Stevenson and colleagues (2009) showed that the center 

of pressure is estimated in a Bayesian way in a one-dimensional balance task.  The way 

these two mobility related motor skills differ in handling sensory uncertainty will be the 

focus of future research. 

This study involved a few limitations that restrict the area of application for the resultant 

findings.  First, I only included females in this study.  One of the main purposes of the 

study was to assess the Bayesian model of motor control in individuals with superior 

balance and motor control and because athletes and women have both shown to perform 

better in balance and mobility, I included only females in this study (Goble et al., 2019).  

Also it would have been advantageous to have equal representations of all sports in the 
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athletic group however, scheduling and available sports teams to recruit were limited to 

the athletes included in this study.  Finally, I used self-reported physical activity levels to 

delineate between the active control group (ACT) and the healthy control group (HC).  

Although self-reported physical activity is not an ideal way to measure physical fitness 

levels, previous work has shown it to be an effective way to measure physical activity in 

a young healthy population (Nelson, Taylor, & Vella, 2019).  

To conclude, I assessed the Bayesian model of sensory uncertainty in a full-body 

stepping movement in three different populations.  I found that the athletic population fit 

the model best and that the non-physically active control group fit the Bayesian model 

least.  These results add to a large body of research to understand how sensory 

uncertainty is handled by the CNS.  I also showed that the Bayesian model of motor 

control can be used to assess how sensory information is being used in any population.  

This provides an additional method to measure the efficacy of rehabilitative practices 

aimed at improving sensory function.  Overall, I found that individuals are at an advantage 

if they make Bayes optimal body position estimates which will ultimately help them in 

mobility related motor tasks. 
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CHAPTER 4 – BAYESIAN INFERENCE REVEALS DECREASES IN SENSORIMOTOR  
 

UNCERTAINTY RESULTING FROM TENS  
 
 
 
Introduction 

Balance and mobility are fundamental contributors to independent living throughout 

the lifespan.  Walking ability is an important predictor of quality of life in multiple 

populations (Gunn, Creanor, Haas, Marsden, & Freeman; Neufeld, Machacova, Mossey, 

& Luborsky), whereas poor mobility leads to decreased quality of life, falls, and often 

harmful injuries.  In adults over the age of sixty-five, falls are the leading cause of fatal 

and non-fatal injuries (WISQARS).  This is particularly troubling as is it predicted that by 

2030, older adults will outnumber children for the first time in U.S. history (Bureau, 

Accessed February, 2020).  Therefore, much research has endeavored to develop 

effective rehabilitative practices to mitigate, or even eliminate, mobility impairments in 

aging and neurodegenerative populations (Baird, Sandroff, & Motl, 2018; Melese, Alamer, 

Hailu Temesgen, & Kahsay, 2020; Zhang, Low, Gwynn, & Clemson, 2019). 

One therapeutic approach that has shown to be an effective method to improve 

mobility in clinical populations is the use of electrical stimulation of muscle groups used 

in gait and balance (Enoka, Amiridis, & Duchateau, 2020).  Of the many ways to apply 

stimulation to muscle fibers in the periphery, transcutaneous electric nerve stimulation 

(TENS) is a relatively new approach to improving sensorimotor function that has shown 

promising results (Almuklass, Capobianco, Feeney, Alvarez, & Enoka, 2020; Elboim-

Gabyzon et al., 2019; Kwong et al., 2018).  TENS has historically been used in other 

realms of physical health to manage pain (Resende et al., 2018) and muscle spasticity 
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(Ping Ho Chung & Kam Kwan Cheng, 2010), but has recently been applied to improve 

gait and balance in various populations (Almuklass et al., 2020; Elboim-Gabyzon et al., 

2019; Enoka et al., 2020; Kwong et al., 2018).  TENS is a method of electrical stimulation 

in which the applied current is targeted directly at sensory nerve fibers.  When applied to 

improve sensorimotor function of mobility, electrodes are placed on the muscles of the 

lower limbs and the applied current is set at a level below the motor threshold, to minimize 

any evoked muscle contractions.  Used in this way, action potentials in several sensory 

receptors are elicited both in and around the targeted muscle (Rangwani & Park, 2021; 

Zéronian, Noé, & Paillard, 2021).   

Recent research has found that, when used concurrently with clinical metrics of 

mobility and motor function, TENS improves performance when compared to the same 

metric without the addition of TENS (Almuklass et al., 2020; Elboim-Gabyzon et al., 2019; 

Kwong et al., 2018).  Almuklass and colleagues  (2020) applied continuous asymmetrical 

biphasic pulses (0.2 ms) at a rate of 50 Hz just below the motor threshold for both people 

with MS as well as age-matched controls as they performed various metrics of overall 

sensorimotor function.  Almuklass et al. (2020) found that both groups (MS and controls) 

improved in the 6-minute walk test and the MS group also improved in a timed chair rise 

test when compared to performing with no TENS.  Additionally, Elboim-Gabyzon et al. 

(2019) showed that patients recovering from hip surgery walked further during a 2-minute 

walk test when receiving TENS than a group that received no stimulation.  Finally, in a 

review article including 11 studies and 439 stroke survivors, Kwong et al. (2018) 

concluded that TENS is beneficial to walking and mobility and improves patients’ walking 

capacity.  
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While there is ample evidence of the benefit that TENS has on gait and mobility, the 

underlying mechanisms that lead to these improvements are not understood.  As 

mentioned previously, the amplitude of TENS is often set at a level below the motor 

threshold, i.e., the minimal intensity of stimulation that generates an involuntary motor 

response (Zéronian et al., 2021).  Thus, the argument that any benefit comes from direct 

excitation of additional muscle activation is unlikely.  TENS has generally been applied 

as a way of sensory augmentation where the applied electric current elicits additional 

sensory information that conveys pertinent information about body orientation (Sienko et 

al., 2018).  Recent work has provided evidence that sensory input has a much larger 

impact on overall motor function than has previously been understood (Gesslbauer et al., 

2017; Kumar et al., 2019; Mirdamadi & Block, 2020, 2021; Ostry & Gribble, 2016).  Thus, 

the observed benefits in gait and mobility that result from the use of TENS may be due to 

increased sensory input relaying additional information about body orientation. However, 

it is not clear how the additional information is used by the central nervous system to 

inform body position awareness or construct motor plans.  One hypothesis is that the 

additional sensory input decreases the total noise in the incoming sensory data leading 

to less uncertainty in the central nervous system’s (CNS) estimation of body orientation.  

If this were the case, the observed benefits that accompany the use of TENS would be 

due to improved positional awareness leading to more efficient motor plans.  Though this 

hypothesis seems conceptually valid, identifying a way to measure and quantify it requires 

robust assessment.  

Bayesian inference is a statistical model that has been used to identify an unknown 

parameter when the available data is clouded with uncertainty (Bayes, 1763; Kording & 
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Wolpert, 2004a).  Simply put, Bayesian inference posits that the most likely estimate of 

an unknown parameter comes by combining the available data with previously collected 

data.  The variability of either dataset determines the influence that it will have on the final 

estimate. Specific to the context of motor control, this suggests that the most likely 

estimate for the location of a body part is calculated by considering the mean and 

variability of both the recent sensory information as well as the expected location of the 

body part despite the current sensory data. Past research has shown that the CNS 

calculates body position in a way consistent with Bayesian inference (Kording & Wolpert, 

2004a, 2006).  Additionally, I have shown in previous chapters that the CNS estimates 

the position of the center of mass (CoM) during full body stepping movements in a way 

consistent with Bayesian inference.  What’s more, I also provide evidence in previous 

chapters that individuals with superior mobility capabilities estimate the position of their 

CoM with less uncertainty in the same movement.  Using the Bayesian methods in a novel 

way, I hope to expose some of the underlying perceptual mechanisms that benefit with 

the addition of TENS on the lower extremities during mobility related movements. 

The purpose of this study was to clarify the underlying mechanisms that lead to 

the benefits of using TENS to improve gait and mobility.  Using the model of Bayesian 

inference in motor control, I expected that participants would display less uncertainty 

when estimating the position of their CoM during a mobility related movement.  

Furthermore, I expected that participants would rely more on sensory cues and less on 

the learned expectation of their CoM position when receiving TENS.  Finally, I 

hypothesized that participants would also display better static balance when receiving 

TENS than without TENS.   
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Methods 

Participants 

A total of 31 young adults participated in this study (age range: 19-33 years, 18 

female).  One participant suffered a musculoskeletal injury in between study visits and 

was excluded from the analysis.  As a result, 30 participants were included in the final 

analysis. All participants were pseudo-randomly assigned to one of three study groups 

(accounting for balanced representations of male/females).  Group NN (no TENS/no 

Tens) received no TENS stimulation on either of their study visits.  Group NT (no 

TENS/TENS) received TENS stimulation on only their second visit.  Group TN (TENS/no 

TENS) received TENS stimulation on their first visit only.  All participants were healthy 

with no serious injuries or ailments limiting their physical abilities.  A complete description 

of participant and group demographics and characteristics can be found in Table 4.1. 

Table 4.1. Group Demographics and Characteristics 

Group NN NT TN p – value* 

n 10 10 10  

Sex: Male (%) 4 (40.0) 4 (40.0) 5 (50.0) 0.873 

Age: Years      
(mean (SD)) 

23.40 (2.17) 24.70 (4.00) 23.80 (3.39) 0.666 

Height: Inches 
(mean (SD)) 

67.75 (3.79) 67.80 (4.45) 68.60 (3.05) 0.855 

Weight: Pounds  
(mean (SD)) 

163.80 (37.55) 161.10 (35.33) 171.40 (31.03) 0.791 

BMI: Kg/M2         
(mean (SD)) 

24.96 (4.02) 24.41 (3.49) 25.64 (4.40) 0.788 

Exercise: Min/week 
(mean (SD)) 

318.89 (202.00) 394.00 (219.91) 343.75 (103.45) 0.657 

NN= No TENS/No TENS, NT = No TENS/TENS, TN = TENS/No TENS.  
* p values represent the significance level from a group effect in a one-way ANOVA with 
each respective variable as the response variable 
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Study Protocol 

As mentioned above, participation involved two visits to the laboratory where they 

completed the same protocol on each visit (Figure 4.1) with the only differences being 

whether they received TENS. Following the consent process on their first visit (and 

Figure 4.1. Study Design and Protocol. Thirty healthy young participants were pseudo-

randomly assigned to one of three study groups.  The NN group received no TENS 

stimulation on either visit.  The NT group received TENS stimulation only on their 

second visit.  The TN group received TENS stimulation on their first visit.  All 

participants visited the lab twice and completed the same protocol on each visit.  Visit 

protocol involved completion of a motor learning protocol performed in virtual reality 

as well as completion of the modified clinical test of sensory integration for balance 

(mCTSIB). 
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immediately upon entering the lab on their second visit), the TENS electrodes were 

placed over the distal and proximal end of the vastus lateralis and tibialis anterior of both 

legs with the cathode placed at the distal end (Figure 4.1).  Participants first completed 

the modified clinical test of sensory integration for balance (mCTSIB) (refer to chapter 3 

for details on the mCTSIB) followed by set up and completion of the Bayesian inference 

motor learning protocol performed in virtual reality (refer to chapter 2 for details on the 

motor learning assessment). 

TENS Protocol 

Following similar methods of Almuklass et al. (2020), the TENS intervention was 

applied with an FDA-approved clinical TENS device LG-TECELITE Therapy System 

(LGMedSupply, Cherry Hill, NJ).  Stimulation involved continuous asymmetrical biphasic 

pulses delivered with electrode pairs (2 in. X 4 in. pads) placed on the skin over the vastus 

lateralis and tibialis anterior muscles of both legs.  Stimulus frequency was set at 50 Hz 

with pulse width of 0.2 ms. The area over the skin was shaved to minimize electrical 

impedance for all participants.  Electrodes were placed at the same locations on both 

visits, but a current was only delivered on the appropriate visit according to their group 

designation.  Amplitude of TENS stimulation varied for each participant and was 

determined by their specific motor threshold.  To identify the motor threshold for each 

participant, TENS amplitude was slowly increased at 1 mA increments on each individual 

muscle until non-voluntary muscle contractions could either be seen or felt by the 

researcher.  The TENS amplitude used during assessments was 2 mA below the motor 

threshold for each muscle and limb (Almuklass et al.).  During the assessment, the TENS 



92 

was only applied while the assessment was being performed and was not applied in 

between blocks and assessments. 

Analysis 

Data Analysis 

Analysis of the Bayesian motor learning assessment data from each group and 

participant was analyzed in two different ways.  The first way (referred from here on as 

the “participant level”) was consistent with what has been done in chapters 2 and 3 (refer 

to chapter 2/Figure 2.2 for a full description).  In this way, the 600 trials performed by a 

participant on one study visit are reduced to 8 values: 4 values for the slope of the 

regression line between the cursor shift and their cursor accuracy for each feedback 

uncertainty condition and 4 values for the RMSE of each of those regression lines.  As a 

reminder, the slope of the regression line is used as a measurement of how much the 

expected cursor shift impacted their final position estimate.  A slope closer to zero would 

indicate that the shift had little impact on their response, and they relied more on the 

sensory input that they received.  A slope closer to one would indicate a greater reliance 

on the expected shift when estimating the cursor position (the position of their CoM).  The 

RMSE is used to measure the response uncertainty of the participant as they are required 

to estimate their cursor position with limited sensory input. A smaller value represents 

less uncertainty in their responses/more confidence in the responses that they make.  A 

higher value represents the opposite: more uncertainty in their responses/less confidence 

in the responses they make.  
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The second way that the data from the motor learning assessment was assessed 

was by including all trials performed by all participants in the analysis (referred from here 

on as the “trial level”).  In this study, thirty participants performed six hundred trials on two 

separate visits to the lab.  That resulted in roughly 36,000 trials performed for this project.  

For the trial analysis, the total trials performed were partitioned depending on the visit, 

group, TENS condition, and feedback uncertainty level.  From there, a linear model for 

each partitioned dataset was calculated with the cursor shift as the predictor variable and 

the cursor accuracy (distance of the cursor from the target) as the response variable.  The 

model parameters were then used in further analysis to identify differences between 

visits/groups/TENS conditions (Figure 4.2).  In the trial level of analysis, all trials 

completed in the study are included in the analysis.  

Analysis of the balance performance data was done using the virtual time-to-

contact measurement that was used in chapter 3.  Virtual time-to-contact (VTC) considers 

the instantaneous position, velocity and acceleration of the center of pressure (CoP), to 

predict how long it would take the CoP to reach the boundary of the base of support for 

every data point in a trial. A lower VTC value means that it would take less time to reach 

the boundary of the base of  support and subsequently fall, thus exemplifying a state of 

low stability.  Details on the calculation of the VTC variable can be found in chapter 3. 

Statistical Analysis 

All statistical analysis was conducted in R software (version 4.1.1) with an alpha 

level set at 0.05.  To ensure statistical assumptions were met prior to running any 

statistical tests, assessments of normality and equality of variance were performed on all 

outcome metrics of this study such as: Levene’s test for equality of variance, 
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Figure 4.2. Analysis and results of data at the trial level.  A. The total trials performed 

in the study were sorted into specific conditions based on study visit, group, and 

feedback uncertainty level.  B. For each partitioned dataset, a linear model was 

calculated, and characteristics of each model are listed above.  The slope (β1) value 

is used to measure reliance on the cursor shift and RMSE is used to measure the 

amount of uncertainty in participants’ responses. 
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Shapiro-Wilk tests, QQ plots and plots of the residual vs. fitted data.  These assessments 

indicated that all the outcome metrics used in this study met the assumptions needed and 

were included in further analysis.  

The first hypothesis for this study was that, according to the model of Bayesian 

inference in motor control, participants would display less uncertainty when estimating 

the position of their CoM during a mobility related movement while receiving TENS.  This 

was assessed in two different ways.  At the participants level, to assess differences in 

uncertainty between visits and research groups, a three (groups) by two (research visits) 

repeated measures ANOVA was calculated with random effects to account for each 

participant being represented by more than one observation within the analyzed data (four 

values of uncertainty across the feedback uncertainty conditions).  To identify specific 

differences between groups and visits, follow up pairwise comparisons were calculated 

using Tukey’s honest significance test.  The second way that I assessed the first 

hypothesis was at the trial level.  For this analysis, I calculated a separate linear model 

for each visit, group, and feedback uncertainty condition, also with random effects to 

account for the variability inherent to each participant (Figure 4.2).  In this analysis, 

differences in uncertainty between models can identify the effect of TENS. 

Furthermore, I expected that participants receiving TENS would rely more on 

sensory cues and less on the learned expectation of their CoM position when compared 

to the same movements performed without TENS. Like the first hypothesis, this was 

assessed in two separate ways.  At the participants level, to assess differences in sensory 

reliance between visits and research groups, a three (groups) by two (research visits) 

repeated measures ANOVA was calculated with random effects to account for each   
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participant being represented by more than one observation within the analyzed data (four 

values of sensory reliance across the feedback uncertainty conditions).  To identify 

specific differences between groups and visits, follow up pairwise comparisons were 

calculated using Tukey’s honest significance test.  The second method of analysis was 

at the trial level.  For this analysis, I calculated a separate linear model for each visit, 

group, and feedback uncertainty condition, also with random effects to account for the 

variability inherent to each participant (Figure 4.2).  In this analysis, differences in the 

slope of the regression line between the cursor shift and cursor accuracy between models 

can identify the effect of TENS. 

Finally, I hypothesized that participants would display better static balance when 

receiving TENS than without TENS.  To address this hypothesis, a three (groups) by two 

(research visits) repeated measures ANOVA was calculated with random effects to 

account for each participant being represented by more than one observation within the 

analyzed data (four values of VTC across the sensory conditions of the mCTSIB).  To 

identify specific differences between groups and visits, follow up pairwise comparisons 

were calculated using Tukey’s honest significance test. 

Results 

In total, 30 neurotypical healthy adult participants were included in the final analysis.  

Characteristics of all study participants and groups are presented in table 4.1. 

Participant Level Analysis 

To assess differences in the uncertainty of participants’ responses across study 

visits and groups, I performed a three by two repeated measures ANOVA with random 
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effects. The results of that ANOVA showed a significant main effect for visit (F(1,207)= 

37.28, p < 0.001) indicating that response uncertainty, on average across all participants 

irrespective of group, decreased from visit 1 to visit 2 (Figure 4.3 A).  Additionally, I found 

a significant visit by group  interaction effect (F(2,207)= 3.29, p = 0.039) indicating that 

the change in uncertainty across visits was not the same for each group.  Follow up 

pairwise comparisons indicated that the groups that received TENS both significantly 

decreased in their response uncertainty from visit 1 to visit 2 (p < 0.001).  However, the 

group that received no TENS on both visits did not significantly reduce their response 

uncertainty (p = 0.108).  These results corroborate the first hypothesis that TENS would 

decrease the uncertainty in participants’ estimates for where they were in space.  

I also expected that TENS would result in participants relying more on the sensory 

input they received and less on the learned expectation of CoM position.  This would be 

measured by a decrease in the slope of the regression line between cursor shift and 

cursor accuracy.  The results of the three by two repeated measures ANOVA with random 

effects indicated no significant main effect for visit (F(1,207)= 0.0001, p = 0.992) and also 

no significant visit by group interaction effect (F(2,207)= 0.140, p = 0.869) (Figure 4.3 B).  

These results failed to reject the null hypothesis that their was no difference in the slope 

value across groups or visits and no effect of TENS. 

Finally, I hypothesized that TENS would result in participants performing better in 

a static test of balance.  This would be measured by an increase in the VTC measurement 

when TENS was applied compared to when TENS was not applied.  The results of the 

three by two repeated measures ANOVA with random effects indicated no significant 

main effect for visit on the VTC measurement (F(1,207)= 0.473, p = 0.492) and also no 
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Figure 4.3. A. Response uncertainty for the three groups across visits. B. Reliance on 

the expected shift across visits. C. Virtual time-to-contact across study visits. 

Significant differences were only found in the response uncertainty metric across 

visits.  The groups that received TENS significantly decreased their response 

uncertainty from visit to visit 2. ★= p value < 0.001. 
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significant visit by group interaction effect (F(2,207)= 0.135, p = 0.874) (Figure 4.3 C).     

These results failed to reject the null hypothesis that their was no difference in the VTC 

value across groups or visits and no effect of TENS.  

Trial Level Analysis 

In addition to assessing the first two hypotheses at the participant level, I 

performed further analysis with a higher granularity at the trial level.  To accomplish this, 

I sorted all participants’ trials into various subsets depending on the study visit, group, 

and feedback uncertainty level.  Figures 4.4-8 illustrate the results of these analyses.  

Also, the specific parameters and results of each regression model can be found in figure 

4.2.  The first step of the trial level of analysis was to assess differences between visits 

for each group individually.   

Group NN 

Figure 4.4 shows the results from group NN across study visits.  This group 

received no TENS on either visit.  On both visits, their reliance on the expected shift 

Figure 4.4. Trial analysis for group NN (received no TENS on either visit) across 

study visits. A. Reliance on expected shift and response uncertainty across 

feedback uncertainty levels. B. Response distributions of Group NN’s responses for 
each visit compared to the distribution of cursor shift and ideal response 

distribution. 
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increased as feedback uncertainty increased.  However, there was little difference for this 

reliance between visits except in the small feedback uncertainty condition where reliance 

on the shift appears to decrease from visit 1 to visit 2.  Similarly, the response uncertainty 

(demonstrated by color in figure 4.4 A) appears to increase across feedback uncertainty 

conditions with little difference between visits except in the small feedback uncertainty 

condition where response uncertainty decreased in visit 2.  Taken together, performance 

between visits in the group that received no TENS was very similar except in the small 

feedback uncertainty condition.  

Group NT 

Figure 4.5 shows the results from group NT across study visits.  This group 

received no TENS on their first visit and TENS on their second visit.  Similar to what has 

been shown previously, their reliance on the expected shift increased as feedback 

uncertainty increased on both visits.  Also, there was little difference in reliance on the 

expected shift in the small and complete feedback uncertainty conditions, but an increase 

Figure 4.5. Trial analysis for group NT (received no TENS on their first visit and TENS 

on their second visit) across study visits. A. Reliance on expected shift and 

response uncertainty across feedback uncertainty levels. B. Response distributions 

of Group NT’s responses for each visit compared to the distribution of cursor shift 

and ideal response distribution. 
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in reliance in the medium and complete feedback uncertainty conditions on their second 

visit when they received the TENS.   With regards to the response uncertainty, it was 

decreased in visit 2 across all feedback uncertainty conditions when they received the 

TENS.  Taken together, participants in the NT group appear to rely similarly on the 

expected shift, if not more so in certain scenarios with TENS, but are more confident in 

the responses that they make while receiving TENS.  

Group TN 

Figure 4.6 shows the results from group TN across study visits.  This group 

received TENS on their first visit and no TENS on their second visit.  Like what has been 

shown previously, their reliance on the expected shift increased as feedback uncertainty 

increased on both visits.  Their reliance on the expected shift decreased from visit 1 to 

visit 2 in the first three feedback uncertainty conditions and increased in the complete 

feedback uncertainty condition. Similar to group NT, response uncertainty decreased 

from visit 1 to visit 2 across all feedback uncertainty conditions. Interestingly, their 

Figure 4.6. Trial analysis for group TN (received TENS on their first visit and no TENS 

on their second visit) across study visits. A. Reliance on expected shift and response 

uncertainty across feedback uncertainty levels. B. Response distributions of Group 

TN’s responses for each visit compared to the distribution of cursor shift and ideal 

response distribution. 
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response distribution in visit 1 where they received TENS is very close to the ideal 

response distribution and then in visit 2 is almost identical to the ideal distribution. Taken 

together, participants that received TENS in the first visit, relied more on their sensory 

input and showed less response uncertainty when estimating their body position in their 

second visit where they received no TENS.  

Visit 1 

The next step in the trial level analysis was to assess differences between groups 

on each study visit.  Figure 4.7 shows the results from all trials in visit 1.  Figure 4.7 A 

shows a scatterplot of all trials from all participants identified by color.  Figure 4.7 B shows 

the response distributions for all three groups on visit one compared to the distributions 

Figure 4.7. Trial analysis for visit 1. A. Scatter plot of all trials on visit 1 sorted by group and 

TENS condition. B. Response distributions of all groups’ responses compared to the cursor 

shift distribution and ideal response distribution. C. Reliance on expected shift and response 

uncertainty for group NT (gray) and group TN (yellow). 
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of the cursor shift and the ideal response distribution.  Group TN’s responses are a better 

fit to the ideal response distribution compared to group NN and group NT who are very 

similar to one another and both did not receive TENS on their first visit.  Figure 4.7 C 

demonstrates the differences in reliance on the shift and response uncertainty between 

group NT and group TN on their first visit.  Group TN, who received TENS, relied less on 

the expected shift and more on their sensory input in all feedback uncertainty conditions 

when compared to Group NN, who received no TENS.  Furthermore, the response 

uncertainty for group TN was also less than group NT in all feedback uncertainty 

conditions.  On the whole, the group that received TENS stimulation in visit 1 relied less 

on the expected shift and showed less uncertainty in their responses when compared to 

the other groups.  

Visit 2 

Figure 4.8 shows the results from all trials in visit 2.  Figure 4.8 A shows a 

scatterplot of all trials from all participants identified by color.  Figure 4.8 B shows the 

response distributions for all three groups on visit two compared to the distributions of the 

cursor shift and the ideal response distribution.  Group TN’s responses are a very similar 

fit to the ideal response distribution whereas the distributions of group NN and group NT 

are very similar to one another.  Figure 4.8 C demonstrates the differences in reliance on 

the shift and response uncertainty between group NT and group TN on their second visit.  

Group TN, who received TENS on their first visit but not their second, relied less on the 

expected shift and more on their sensory input in all feedback uncertainty conditions when 

compared to Group NN, who received TENS.  Moreover, the response uncertainty for 

group TN was also less than group NT in all feedback uncertainty conditions.  Overall, 
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group TN relied less on the learned expectation of body position when receiving TENS in 

the first visit and displayed less uncertainty in their responses when compared to group 

NT who did not receive TENS, and this difference between groups was consistent in their 

second visit when group TN did not receive TENS and group NT did receive TENS.  

Discussion 

The purpose of this study was to clarify the underlying mechanisms that lead to the 

observed improvements in gait and balance that are seen with the use of TENS. To 

address this purpose, I applied a theoretical model of Bayesian inference to measure and 

assess sensory uncertainty and how it influences body position estimates during a full 

body stepping movement.  Furthermore, I applied a crossover study design that consisted 

Figure 4.8. Trial analysis for visit 2. A. Scatter plot of all trials on visit 2 sorted by group and 

TENS condition. B. Response distributions of all groups’ responses compared to the cursor 
shift distribution and ideal response distribution. C. Reliance on expected shift and response 

uncertainty for group NT (yellow) and group TN (gray). 
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of three study groups performing the Bayesian motor learning assessment on two 

separate visits either with or without the addition of concurrent TENS.  All methods of 

these analyses corroborate the hypothesis that TENS decreases the uncertainty that 

participants showed as they were required to estimate body position in the assessment.  

The following pages will elaborate on how the measurements of sensory reliance and 

uncertainty were deduced from the Bayesian motor learning assessment as well as 

address the main findings gathered from this study. 

As I performed the analysis of all groups, both at the participant level and at the trial 

level, I observed that the response uncertainty variable decreased with the addition of 

TENS.  However, the response uncertainty metric that was used in this study is a latent 

variable that cannot be directly observed but rather, was taken from the RMSE of the 

regression line between the cursor shift on each trial and the observed cursor accuracy 

on the same trial.  This approach towards assessing the uncertainty within a participant 

is based off the methods of (Kording & Wolpert, 2004a) and feed off the overall theory of 

Bayesian statistics.  Bayesian statistics are used to decrease the uncertainty when 

estimating an unknown parameter and the available evidence is clouded with uncertainty.  

In this way, the uncertain available data is combined with previously collected data 

(accompanied by its own variability) to calculate a probability distribution that provides the 

optimal estimate for the unknown parameter with the least degree of uncertainty.  In the 

context of Bayesian inference in motor control, the available evidence is the sensory data 

acquired by various sensory receptors and relayed to the CNS to provide essential 

updates on bodily states and environmental variables.  
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Sensory data of all types is clouded with noise and uncertainty and, as a result, leads 

to variability in the perceived body state by the CNS (Faisal et al., 2008).  However, as 

we gain experience performing similar types of movements, the CNS is able to store and 

combine the resultant sensory data of previous motor performances to calculate 

expectations for both how a movement will be performed, and the sensory data that will 

result from it (Berniker, Voss, & Kording, 2010; Kording & Wolpert, 2004b; Shadmehr et 

al., 2010; Wolpert & Ghahramani, 2000).  According to Bayesian inference in motor 

control, the ideal estimate for the state of the body comes by combining the two sources 

of information in a Bayes optimal way to maximize the accuracy and minimize the 

uncertainty in the final position estimate (Berniker & Kording; Kording & Wolpert, 2006; 

Körding & Wolpert, 2004).  In this study, I control the uncertainty of expected body 

positions by first teaching participants to expect a backwards shift to the cursor they see 

that is controlled by their CoM.  The distribution of this shift is meant to represent the 

distribution of the learned expectation, or the prior distribution as referred to in Bayesian 

statistics.   

I manipulated the uncertainty of available sensory information in two ways:  First, I 

influenced the level of visual feedback uncertainty by adding noise to the location of the 

cursor controlled by their CoM.  In the medium and large feedback conditions I added 

two-dimensional Gaussian noise to the cursors location with a mean equal to zero and a 

standard deviation of 2.5 and 5 centimeters, respectively.  This is one way that I 

manipulated the uncertainty of incoming information, or the likelihood distribution referred 

to in Bayesian statistics. The second way that I manipulated sensory information is with 

the addition of TENS.  The CNS incorporates all sensory information to calculate an 
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overall body position estimate, though many variables dictate how much influence a 

singular sensory source has on the final estimate (Peterka, 2018).  Accordingly, the 

addition of TENS while performing the Bayesian motor learning assessment certainly 

influenced the uncertainty in incoming sensory information, whether for good or for bad.  

It was my hypothesis that TENS would decrease the uncertainty of incoming sensory 

information which would be made evident as participants decided the position of their 

CoM in the assessment. 

Participants’ responses on each trial display how they combined the available sensory 

data (systematically manipulated as we’ve previously discussed) with the learned 

expectation for their CoM position (obtained during the training block as they learn the 

backwards cursor shift).  The characteristics of participants’ responses allow us to infer 

how they combined these two sources of information.  In Bayesian inference, the optimal 

combination of the prior and likelihood distributions is known as the posterior distribution 

and is influenced most by the source with the least variability.  If the likelihood has less 

variability than the prior distribution, the mean of the posterior will be more influenced by 

the likelihood distribution.  In addition, the posterior will display less variability than in 

circumstances where the likelihood is more variable.  In the context of this experiment, 

the cursor shift constantly varied and was drawn from a continuous variable (N~(μ = -7.5, 

σ = 2.4), so the magnitude of the cursor shift was never duplicated and no two trials 

shared the same shift.  As a result, I don’t have a distribution of responses for each cursor 

shift amount that can be observed to infer how participants combine both sources of 

information.  Rather, we can observe the linear relationship between the cursor shift and 

how it influenced participants’ responses across all conditions of feedback uncertainty.   
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As mentioned previously, the slope of the linear relationship informs us of the influence 

that the expected cursor shift (the prior distribution) has on position estimates.  However, 

I use the RMSE of the regression line to infer the variability of the posterior distribution, 

i.e. participants’ resultant estimate of body position based on the available sensory data 

and the learned expectation of body position. The RMSE is a measure of how 

concentrated the observed data is around the line of best fit.  In the context of this study, 

I am using it to represent the posterior distribution and the variability that accompanies it.  

A higher RMSE represents a higher degree of uncertainty in participants’ responses.  

Figure 4.9 displays the data from two participants on the first visit of their participation.  

Participant #53 received TENS while performing their trials whereas participant #67 did 

not.  As can be observed from their respective data, the participant who received TENS 

Figure 4.9. Scatter and density plots of NN participant # 67 (gray) who received no TENS 

and TN participant #53 (yellow) who received TENS. These data are both from visit 1 in 

the small feedback uncertainty condition. Differences between participants in the   

relationship between the cursor shift and the deviation of the cursor from the target 

are evident in the slope of the regression line and tightness of the fit suggesting that 

participant #53 relied more on incoming sensory input and less on the expected shift 

and showed less uncertainty in their responses. 
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displayed a tighter fit to their regression line than the participant who did not.  In this small 

comparison, and when considering all participants, I found that the addition of TENS 

reduced the uncertainty in participants’ responses.  

The exact mechanisms that lead to the decrease in positional uncertainty due to TENS 

remain to be seen.  Previous work using various methods of peripheral stimulation of 

sensory fibers have suggested stochastic resonance may be a large reason for the 

benefits that accompany these types of sensory augmentation (Ross, 2007; Zéronian et 

al., 2021).  In this sense, the electrical stimulation provided by TENS may add low-level 

noise that enhances the detection and transmission of weak sensory signals by amplifying 

the total signal and, as a result, the sensory cues most important to coordinating the 

current motor task.  Furthermore, Paillard (2021) suggests that this also can change the 

ion permeability of the mechanoreceptors (group Ia and IIa afferents of muscle spindles) 

priming them, in a sense, to make them more likely to fire action potentials and increase 

sensory input to the brain and spinal cord. Applying a similar study purpose to decrease 

sensory uncertainty, Macerello and colleagues (2018) applied peripheral nerve 

stimulation with high-frequency vibration to the muscle of the wrist as healthy and clinical 

participants completed a battery of upper extremity motor tasks.  They found that both 

groups decreased completion time of the motor tasks and showed a decrease in EEG 

beta power over the sensorimotor cortices as they received the stimulation.  Altogether, 

these results combined with previous research, support the hypothesis that TENS, and 

other methods of afferent stimulation, improve motor performance by decreasing the 

noise inherent to sensory data and permitting users to be more certain of their body 

position as they perform motor tasks. 
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Furthermore, I showed that group TN, who received TENS on their first visit only, 

demonstrated the least reponse uncertainty in their first visit when compared to other 

groups on the same visit.  Interestingly, group TN went on to further decrease their 

response uncertainty in the second visit where they didn’t receive TENS and still reported 

less uncertainty than both groups on the second visit.  A constant concern that is 

associated with many forms of sensory augmentation is whether or not any observed 

benefits will persist once the additional sensory stimulus is removed.  One implication of 

these findings is that, at least in certain circumstances, the benefit that is gained from the 

addition of TENS while learning and performing a new movement is retained in future 

performances of the same movement.  Furthermore, when compared to group NT who 

received TENS in their second visit, it seems that TENS is most beneficial when it is 

applied early in the motor learning process.  Recent work has shown that when learning 

a new motor skill, functional changes occur in the somatosensory cortex to process 

incoming sensory data prior to any observed changes in the specific motor areas of the 

brain (Mirdamadi & Block, 2020; Ohashi et al., 2019). Taken together, this further 

emphasizes the importance of sensory input to motor performance and specifically to 

motor learning.  As mentioned previously, Bayesian motor control theory posits that the 

CNS combines incoming sensory information with learned expectations of body position 

based on previous attempts.  However, when performing a novel movement, expectations 

of body position are often ill-informed or absent altogether.  In this case, learning the 

physical and sensory consequences of a new motor skill is a priority to ensure accurate 

position estimation and movement performance.  From this perspective, it seems logical 

that enhancing the incoming sensory information with TENS would assist the CNS in 
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identifying pertinent sensory information that informs it of bodily states while performing 

new movements.  The finding that this benefit is retained and even continues to improve 

following a two-week washout period is compelling and merits the need for further 

examination.  An intervention as simple and cost-effective as TENS could be incredibly 

beneficial to clinical populations striving to learn, or re-learn, new motor skills in response 

to injury or disease. 

I implemented two different methods of analyzing the data in this study.  The first way 

involved reducing all of participants’ six hundred trials down to eight values.  This method 

has been utilized in previous research (Kording & Wolpert, 2004a; Vilares & Kording, 

2017) as well as in previous chapters of this dissertation.  I found no significant differences 

in the slope variable, which is used to measure the degree of reliance on the learned 

expectation, between groups or visits.  This lack of findings may be due to a need for 

more trials for each participant.  Indeed, previous work using similar methods has involved 

test sessions with more than one thousand trials per visit for each participant (Kording & 

Wolpert, 2004a; Vilares & Kording, 2017), while I only include six hundred trials per study 

visit in this study.  The amount of trials included per session of this study was specifically 

determined based off the increase in energetic demands that accompany a full-body 

stepping motion when compared to the simple upper extremity tasks used in previous 

work.  While this reduction in trials may be seen as a limitation, I believe that it is 

necessary for the nature of the task and will be especially pertinent if these methods are 

to be utilized in clinical populations, such as MS, where increased levels of fatigue greatly 

influence the appropriate physical exertion involved in a research study.  To address this 

concern, I performed an additional level of analysis combining all trials performed in the 
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study by all participants.  Using this method, I saw differences in the slope variable that 

wen unnoticed in the participant level of analysis.  

I found that the addition of TENS enhanced participants’ reliance on incoming sensory 

information and led to them relying on the learned body expectation less.  In this research 

project, I have shown that the Bayesian model of motor control is effective at identifying 

improvements in sensorimotor uncertainty.  If these methods are to be used in future 

attempts to research sensorimotor uncertainty in clinical populations, I believe the trial 

level of analysis may be most beneficial to accommodate for limits on the amount of trials 

participants may be able to perform. 

Interestingly, I found that the addition of TENS had no effect on static balance, as 

assessed by the mCTSIB.  Also, I observed that there was no difference in balance 

performance between each study visit.  The consistency of findings in the mCTSIB 

validates previous work showing there to be no learning effect of the mCTSIB assessment 

(Antoniadou et al., 2020).  However, the lack of effect of the TENS is contrary to the third 

hypothesis.  Much previous research has found external electric stimulation of the lower 

limbs to be effective at improving balance metrics (Magalhães & Kohn, 2014; Woo et al., 

2017; Zéronian et al., 2021).  However, Paillard et al. (Paillard, 2021) recently found that 

participants’ responsiveness to electrical stimulation of sensory nerves to improve 

balance depends on their baseline balance abilities.  This study included only young 

participants that historically have exceptional balance abilities.  It is possible that any 

effect of TENS on balance performance in this healthy population goes unnoticed 

because they are already proficient at controlling balance.  Also, it is of interest that much 

of the previous research that has shown improvements in performance with the addition 
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of TENS included methods of assessment that were much more dynamic in nature 

requiring movement of many joints in multiple planes of motion in contrast to the static 

conditions inherent to the mCTSIB balance assessment (Almuklass et al., 2020; Kwong 

et al., 2018). 

In conclusion, I demonstrated that TENS applied to the muscles of the lower 

extremities while performing a multi-directional full body stepping motion decreases the 

uncertainty in sensory information and improves participants’ estimation of the location of 

their CoM.  Furthermore, I demonstrated that the Bayesian model of sensoimotor 

uncertainty can be used to assess and measure the underlying processes that benefit 

from a therapeutic device aimed at improving sensory function.  Future work applying 

these findings and methods to various contexts is needed to further understand the 

underlying mechanisms that enable effective gait and mobility in all populations. 
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CHAPTER 5 – CONCLUSION 
 
 
 

Movement is the result of efferent electric signals sent from the CNS that cause the 

contraction of muscles in the periphery.  This movement causes a dataset of sensory 

information to be sent back to the CNS that is used to determine the efficacy of the 

previous motor command.  Because it is the motor signal that ultimately causes 

movement, attention aimed at improving the neural control of movement has focused on 

the motor aspect of movement control.  For example, rehabilitation practices to 

maintain/improve mobility in clinical populations are dominated by resistance and 

endurance training (Cadore et al., 2013; Gunn, Markevics, Haas, Marsden, & Freeman, 

2015b; Mak et al., 2017; Pogrebnoy & Dennett, 2020).  Training for athletic performance 

centers largely around speed and strength training (Lloyd et al., 2016a).  It is not the intent 

of this dissertation to suggest that those practices are ineffective or overutilized.  Rather, 

I advocate the development and use of rehabilitative/training practices that enhance the 

sensory aspect of human movement in addition to the previously accepted “gold 

standard” methods of improving movement.  Part of the reason that proprioceptive 

training has previously been neglected is due to its difficulty to measure in a way that is 

consistent with the goal-directed movements of our daily lives (Han et al., 2016b; Krewer, 

Van de Winckel, Elangovan, Aman, & Konczak, 2016). Recent developments in VR make 

it a prime contender as a method to address this inherent difficulty.  I believe that as 

methods to assess proprioception improve, so will the general understanding of its role in 

effective movement.    
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This dissertation provided evidence to emphasize the substantive role of sensory 

information in this process.  An individual with a higher functioning sensory system can 

perceive body states that more accurately resemble their true state.  As a result, their 

ability to construct a movement plan will benefit movement performance.  Thus, a 

person’s movement is only as good as their ability to sense themselves performing it.  

Conventionally, training protocols aimed at improving motor function rely on multiple 

repetitions to provide the individual multiple opportunities to perform the correct motor 

commands.  The evidence stated in the previous chapters suggest that it may be 

beneficial to approach training protocols with the perspective of giving individuals multiple 

opportunities to feel the sensory consequences of correct motor commands.  Flanagan 

et al. showed that once an individual is able to predict the sensory consequences of a 

movement, the appropriate neural changes occur to consistently and accurately control 

the motor system to perform the movement (Flanagan et al., 2003). Along those lines, 

Adams and colleagues suggest that it is the sensory prediction that actually descends the 

spinal cord and the resulting motor command occurs via reflexive mechanisms (Adams, 

Shipp, & Friston, 2013). Further work need be done to clarify this suggestion but 

nevertheless, it emphasizes that the sensory information resulting from motor commands 

is a fundamental component of movement control. This is made evident when considering 

the priority placed on acquiring and transporting somatosensory information as well as 

vital neural processes employed to effectively use sensory information to control 

movement.  
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Summary 

The three research studies included in this dissertation examined how the central 

nervous system (CNS) estimates center of mass (CoM) position while performing a full 

body dynamic mobility movement.  In all three studies, this was examined by applying the 

statistical model of probability Bayesian inference as a model to understand how the CNS 

addresses uncertainty in sensory information. Previous work applying Bayesian inference 

in a similar way has examined only simple upper extremity movements.  To facilitate the 

application of this model to a dynamic full body movement, I built a virtual reality (VR) 

program that mimicked the task constraints used in previous Bayesian work but allowed 

for the necessary movements in the full body task. Using this VR program I then 

investigated the Bayesian model of position estimation as it applies to the full body 

stepping task instead of a simple arm task, as has been seen previously.  I also 

investigated how sensorimotor uncertainty impacts body position awareness for 

individuals with varying levels of sensorimotor competence with the purpose of better 

understanding how the Bayesian model can be applied to all manners of populations.  In 

my last study, I used the Bayesian model to better understand the impact that 

transcutaneous electric nerve stimulation (TENS) has on balance and mobility.   

This research is beneficial because there is a great need for specific approaches to 

assess sensory function in all population.  Much recent work has suggested that 

somatosensory information plays a much larger role in movement than has previously 

been understood and I believe it is an area of scientific intervention that has been 

underdeveloped as a way to improve skilled motor performance in all populations.  Due 

to this increased appreciation for somatosensation’s role in motor performance, there will 
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continue to be a surge of interest in understanding the crucial neural processes involved.  

With this increased interest need also come an appreciation for the complex nature of 

somatosensation and how it informs motor control.  The findings form these three 

research studies provides important insight into how the CNS uses sensory information 

during movement and into how we can better assess sensorimotor function. 

In the first study, I showed that uncertainty in sensory information is taken into account 

when the CNS estimates CoM position and that learned expectations for CoM position 

inform this estimation as sensory input becomes less reliable. The second study 

confirmed that CoM position estimates that better fit the Bayesian model of CoM state 

estimation are consistently seen in individuals that display superior sensorimotor function.  

Furthermore, I also showed that individuals with greater sensorimotor function displayed 

less uncertainty in their own estimates indicating that their somatosensory input was more 

reliable as they performed the stepping task.  These findings demonstrate that we can 

use the Bayesian model to assess a person’s somatosensory function to assess how 

much it is informing their movement decisions. In the third study I showed that the 

observed benefits that come from wearing TENS on the muscles of the lower extremities 

are likely due to the electrical stimulation improving the quality of the somatosensory input 

coming from the muscles and skin of the involved limbs.  These findings are of great 

importance as we search for simple ways to improve somatosensory function and how to 

assess them.   
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