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ABSTRACT

SUBNETWORK ENSEMBLES

Neural network ensembles have been effectively used to improve generalization by com-

bining the predictions of multiple independently trained models. However, the growing scale

and complexity of deep neural networks have led to these methods becoming prohibitively

expensive and time consuming to implement. Low-cost ensemble methods have become in-

creasingly important as they can alleviate the need to train multiple models from scratch

while retaining the generalization benefits that traditional ensemble learning methods afford.

This dissertation introduces and formalizes a low-cost framework for constructing Subnet-

work Ensembles, where a collection of child networks are formed by sampling, perturbing, and

optimizing subnetworks from a trained parent model. We explore several distinct method-

ologies for generating child networks and we evaluate their efficacy through a variety of

ablation studies and established benchmarks. Our findings reveal that this approach can

greatly improve training efficiency, parametric utilization, and generalization performance

while minimizing computational cost. Subnetwork Ensembles offer a compelling framework

for exploring how we can build better systems by leveraging the unrealized potential of deep

neural networks.
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Chapter 1

Introduction

1.1 Overview

Ensemble Learning has long been an active area of research in machine learning as it is one

of the most reliable, powerful, and flexible techniques for improving the predictive power of

machine learning systems. [57,88]. Rather than training a single model to make predictions,

ensemble methods instead train several models and use them in combination with one another

in order to make predictions. Combining the outputs of several models allows for ensembles

to improve generalization by leveraging the complementary strengths and weaknesses of its

members [28]. The principles behind ensemble learning algorithms are general and have been

used with many types of parametric models (e.g. decision trees, support vector machines,

neural networks) [10, 11, 32]. Recent research has shown that ensembles of deep neural

networks in particular are especially effective, often being implemented as a part of winning

solutions in high profile machine learning competitions [39, 76, 117,121,127,133,174].

Improvements in network architecture and training methodologies have led to a large

increase in both model size and predictive power. Networks with billions of parameters

are becoming increasingly commonplace as overparameterization is shown to be effective for

improved training dynamics. However, the resource intensive nature of these large mod-

els brings about important challenges related to computational requirements, memory con-

straints, and energy efficiency. As deep neural networks continue to grow in both scale and

complexity, the cost associated with traditional ensemble learning techniques quickly be-

comes untenable. The development of low-cost ensemble methods have become increasingly

important as they offer the opportunity to significantly reduce computational costs while

retaining the generalization benefits that full size ensembles afford.
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Meanwhile, pruning has emerged as a critical avenue of research for reducing the size

of deep neural networks. Large numbers of parameters can be removed from previously

trained models with little discernible loss in predictive power after a few epochs of continued

training [6, 43]. Saliency metrics are often used to select the most unnecessary parameters

to remove in order to produce the most accurate subnetwork [43, 98, 149]. However, there

is no single magic subnetwork that works best for every situation [20, 166]. A sufficiently

overparameterized network contains vast numbers of equally capable subnetworks and even

random sampling has been shown to result in highly accurate subnetworks at moderate levels

of sparsity [29, 107].

In light of these observations, we introduce a novel low-cost ensemble learning framework

that involves the dynamic generation of a collection of child networks spawned through the

random sampling of subnetworks in a trained parent model. This research introduces and

formalizes this process of constructing Subnetwork Ensembles with the goal of exploring how

we can improve the training efficiency, parametric utilization, and generalization of deep

ensembles while minimizing computational cost.

1.2 Challenges

The benefits of improved generalization have been well established in ensemble learning

literature as performance has been shown to increase with larger numbers of both accurate

and diverse members [28]. Diversity is an important concept that pertains to the correlation

of predictions made by individual models in an ensemble [13, 91, 154]. If each model in the

ensemble makes the same predictions or learns the same feature representations, then there

is little benefit to be gained by combining their outputs.

Traditional ensemble methods encouraged diversity by training large collections of fast

and simple classifiers on different subsets of the feature space [10, 32, 66]. However, these

dataset splitting techniques do not work well with deep neural networks due to their data

hungry nature. Deep neural network ensembles are more commonly trained on the entire

2



dataset, instead relying on random weight initialization, heterogeneous network architectures

and stochastic ordering of training samples to encourage diversity.

Diversity is an especially important consideration for low-cost ensemble learning methods

as they typically alleviate the need to train multiple deep neural networks from scratch by

sharing network structure, gradient information, or learned parameters among ensemble

members. This sharing of information invariably increases correlation and reduces diversity,

which can have a significant negative impact on generalization [13, 91,154].

Low-Cost ensemble methods often struggle to balance this trade-off between member

diversity, member accuracy and ensemble size. Prioritizing one aspect often comes at the

expense of another when working with a fixed compute budget. Low-cost methods can

also lack algorithmic flexibility as they typically require particular training procedures or

specialized network architectures to construct ensemble members [50,70,100,159]. This can

make it challenging to adapt these ensembles to accommodate evolving problem spaces.

Subnetwork Ensembles alleviate many of the challenges that typically plague competing

methods. Our approach builds on the idea that we can train a single parent network and

spawn diverse child networks by sampling, perturbing, and optimizing unique subnetworks

from the parent. The decoupled nature between the parent and child networks allow for

highly flexible implementations. The parent network can use any standard training procedure

or network architecture without modification. This offers an opportunity to leverage pre-

trained models which is becoming more valuable as networks continue to scale in size and

cost. This also enables the ability to generate new child networks dynamically, which can

lead to larger and more robust ensembles than are typically seen with deep neural networks.

Child networks can be generated and optimized in parallel which allows for wide scaling

as independent members don’t rely on the weights of other child networks in the ensemble.

Using sparse subnetworks allows for the potential to greatly reduce computational complexity

while maintaining accuracy. The investigation of Subnetwork Ensembles could prove to be

an important avenue of research for not only improving the efficiency and generalization of
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low-cost ensemble methods, but also for advancing the theoretical underpinnings of neural

computation.

1.3 Contributions

This work introduces, generalizes and formalizes the process of constructing, training,

and evaluating Subnetwork Ensembles. We explore several approaches for generating child

networks through noise perturbations, network pruning, and stochastic masking. We conduct

a thorough and in depth evaluation of these methods across a number of benchmark tasks

and with a wide variety of deep neural network architectures.

Chapter 2 introduces relevant background information and related work grounded in

the foundations of modern deep learning. We explore how this work relates to the natural

structures observed in biological neural networks. We discuss the state of deep neural net-

work architectures and optimization methods. We also discuss traditional ensemble learning

techniques and conduct a literature review of recent low-cost deep neural network ensemble

methods.

Chapter 3 introduces the theoretical framework and formalizes Subnetwork Ensembling

at a high level. We provide a mathematical overview of this approach and discuss various hy-

perparameters that govern how Subnetwork Ensembles could be formulated through different

sampling, perturbation, and optimization methodologies. We introduce Neural Partitioning

as a novel technique for encouraging diversity by dividing the parent network into inde-

pendent partitions such that sets of child networks are formed with no inherited parameter

overlap.

Chapter 4 introduces Noisy Subnetwork Ensembles, where child networks are generated

by applying noise perturbations to subnetworks. We connect the ideas behind this approach

to popular neuroevolutionary methods that use dense mutations and model selection strate-

gies to generate populations of child networks. We conduct several ablation studies exploring

the impact of noisy subnetwork mutations on network behavior. We introduce a grid search

4



algorithm for finding good perturbation hyperparameters by using trust region constraints,

which limits divergence in the output space as a result of perturbation [130]. We evalu-

ate Noisy Subnetwork Ensembles with many different deep neural network architectures on

the difficult ImageNet dataset and we explore how this technique can be used on difficult

reinforcement learning tasks with the ProcGen benchmark [22,27].

Chapter 5 introduces Sparse Subnetwork Ensembles, where we generate child networks

by pruning randomly sampled subnetworks from the trained parent network. We explore

the efficacy of Neural Partitioning and demonstrate how it can reduce variance and improve

performance by creating sets of child networks with opposing topologies. We illustrate how

sparse child networks can be tuned to encourage diversity by using a phasic learning rate

schedule that uses large learning rates to move child networks further apart in weight space

before converging to local optima with small learning rates [69, 138]. We conduct several

other ablations exploring the impact of pruning structure, pruning severity, ensemble size,

and tuning procedure. We benchmark Sparse Subnetwork Ensembles against several state

of the art low-cost and traditional ensemble methods on both in-distribution and out-of-

distribution datasets, where we find that our approach proves to be more accurate and more

robust than traditional ensemble methods that require up to 4x more training compute, all

while using fewer parameters.

Chapter 6 introduces Stochastic Subnetwork Ensembles, which extends work in the pre-

vious chapter with a novel approach to representing subnetworks with probabilistic masks.

Rather than pruning all the parameters in one-shot, instead each parameter is assigned a

probability score that determines whether the connection will be retained on any forward

pass. These probabilities are then annealed over several epochs such that the target subnet-

work slowly reveals itself over time. Diversity is encouraged by assigning different probability

distributions to different child networks. The inclusion of extra dimensionality in the early

phases of tuning can help to provide smooth optimization of the target subnetwork. This
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proves to be highly effective technique for extremely sparse (98%) and moderately sparse

(50%) subnetworks, outperforming established one-shot and iterative pruning strategies.

Chapter 7 includes an in depth analysis of diversity in Sparse Subnetwork Ensembles.

We include a standard evaluation of pairwise output diversity metrics and compare those

to other benchmark ensemble algorithms. We additionally introduce a new approach to an-

alyzing diversity by leveraging interpretability and visualization methods. We discuss how

feature visualization and saliency maps can be used to qualitatively compare the differences

between knowledge representations among sibling child networks in an ensemble. This allows

us to meaningfully explore how and why diversity develops and contributes to robust perfor-

mance. We introduce several perceptual hashing algorithms used to measure the distances

between feature visualizations, improving on the typically noisy results seen with common

image difference metrics like the squared error or cosine similarity. We conduct a large

scale evaluation of this interpretable approach with both Sparse Subnetwork Ensembles and

a benchmark temporal ensemble method called Snapshot Ensembles. We find that Sparse

Subnetwork Ensembles produce significantly more diversity in both the feature space and

output space among child networks while maintaining better accuracy.

Chapter 8 wraps up with a summary of the ideas, experiments, and observations found

through this research. We discuss of how the Subnetwork Ensemble framework fits into the

current landscape of ensemble methods for deep neural networks. We include our thoughts

on the broader impacts and potential limitations that this work may have in other domains,

and we explore several promising avenues and ideas for furthering this research in the future.
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Chapter 2

Background

2.1 Neuroscience

Biological neural networks are far larger and more complex than the artificial neural

networks used in machine learning research. Even the largest artificial neural networks

pale in comparison to the human brain, which is a vast and complex web of interconnected

subsystems containing over 86 billion neurons and 100 trillion synaptic connections [31].

Individual neurons within this framework tend to be very noisy, which makes it difficult to

understand the relation between neuronal activity and behavior. A new conceptual paradigm

is reframing how we view neuronal activity by instead exploring how groups of structurally

connected neurons form the functional building blocks of the brain [15]. The organizational

structure of these interconnected subsystems appears to play an important role for both

energy efficiency and the emergence of complex, resilient, and adaptable learning behavior.

These structures emerge from an early process in brain development that involves a

massive proliferation of neurons and synaptic connections followed by a widespread pruning

of billions and trillions of those neurons and connections respectively. Neuronal proliferation

creates an environment in which neurons and connections compete for resources. Neuronal

apoptosis results in widespread neural cell death, resulting in a highly specialized structure

consisting of many sparsely connected neuronal groups. These neuronal groups form the

primary repertoire from which the rest of brain development occurs [35]. This overgrowth and

subsequent pruning maximizes memory performance under metabolic energy constraints [18].

Additionally, this connective structure allows for information to be encoded in a sparse and

distributed manner which optimizes a tradeoff between energy expenditure and expressivity

[1, 53].
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Several other important processes rely on the flexibility and resilience of these sparse

subnetwork structures to encourage healthy brain function [139]. Neuroplasticity serves as

a fundamental mechanism for learning and memory that relies on reorganizing synaptic

connections in response to stimulus [25]. Long-term depression and long-term potentia-

tion facilitate this process by strengthening or weakening the synaptic connections between

neurons [75,152]. Sparse subnetwork structures also provide a protective framework for mit-

igating the consequences of cellular damage or neurodegeneration. Synaptic Stripping is one

such process where immunocompetent cells called microglia constantly scan the brain and

selectively remove dysfunctional synapses from injured neurons [81, 136]. This is critical for

preventing cascading failures that could result from synaptic dysfunction.

2.2 Artificial Neural Networks

The origins of artificial neural network research can be traced back to the work of Warren

McCulloch and Walter Pitts in 1943, who proposed a mathematical model of a biological

neuron based on the all-or-nothing character of nervous activity [116]. This simplified com-

putational model casts the neuron as a binary threshold unit that computes a weighted

sum of its inputs to produce an output. Frank Rosenblatt later expanded on this work by

developing the first single layer artificial neural network, consisting of McCulloch and Pitts

neurons, called the Perceptron [125]. While the Perceptron was limited to modeling simple

linearly separable functions, it was groundbreaking work that introduced adaptability to

neural models through learning algorithms [114].

The transition to multilayer perceptrons greatly expanded the learning capabilities of

neural networks [67]. Networks would now be organized into several successive layers, each

consisting of multiple neurons with weighted connections to neurons in adjacent layers. The

output of a neuron is computed by taking the weighted sum of all the inputs into the neuron

and passing it through some non-linear activation function. Table 2.1 includes a small sample

of some of the most popular activation functions used in neural networks over time.

8



x2

x1

x0

...

xn

∑

w2

w1

w0

...
wn

inputs

weights

activation

Figure 2.1: A diagram of the McCulloch and Pitts computational model of a neuron used in
the Perceptron. The neuron computes a weighted sum of the inputs and then passes the output
through a binary step function for classification.

Table 2.1: A collection of popular activation functions used in neural networks. Logistic Sigmoids
and Hyperbolic Tangents have long been the standard for shallow multilayer perceptrons thanks to
their smooth differentiable qualities. Deep neural networks have primarily moved towards rectifiers
as their unbounded nature helps preserve gradient flow over many layers.

Name Function (σ(x)) Derivative (σ′(x)) Graph

Logistic
1

1 + e−x
σ(x)(1− σ(x))

Hyperbolic Tangent
ex − e−x

ex + e−x
1− σ(x)2

Binary Step

{

0 if x < 0

1 if x ≥ 0
0

Rectified Linear Unit

{

0 if x < 0

x if x ≥ 0

{

0 if x < 0

1 if x ≥ 0
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2.2.1 Optimization

Learning happens by adjusting the weights of the neural network to minimize error over

a set of training samples. The error is described with a loss function that serves to measure

the differences between model predictions and the true target values. The loss function can

vary according to the task and training procedure. The mean squared error (MSE) and the

mean absolute error (MAE) are both popular measures for regression tasks, where the goal

is to predict a single scalar value.

MSE =
1

N

N
∑

i=1

(Y − Ŷ )2 (2.1)

MAE =
1

N

N
∑

i=1

|Y − Ŷ | (2.2)

Different loss functions may result in different optimization behavior according to their

mathematical properties. For example, the mean squared error will tend to magnify the

penalty for outliers compared to the mean absolute error. Regularization and penalty terms,

such as weight decay, are often included in these loss functions to encourage optimization

with respect to additional constraints [180].

The cross entropy loss (CE) is commonly used for classification tasks. Consider a dataset

with samples that belong to one of C potential classes. The target label for each sample is

encoded into a C-dimensional one-hot vector where each element in the vector has a value

of 0 except for the correct class which has a value of 1. Neural networks are configured to

output a C-dimensional vector where each dimension corresponds to the likelihood of that

particular class being predicted. The outputs of the network are normalized and converted

into a probability distribution by using the softmax function. The error is then determined

by measuring the log likelihood between the predicted probability distribution Ŷ and the

true distribution Y .

CE = −
C
∑

i=1

Yi log(Ŷi) (2.3)
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Optimization is guided by algorithms that iteratively adjust the weights throughout train-

ing. Supervised deep learning tasks overwhelmingly use variations of gradient descent [126].

Data is fed through the network, the error is calculated according to the loss function, and

updates are made by adjusting the weights according to a learning rate η with respect to

the gradient of the loss ∇F (x).

wt+1 = wt − η∇F (x) (2.4)

The advent of the backpropagation algorithm provided an efficient method for calculating

the gradient of neural networks by employing chain rule calculus layer by layer from the

output to the input [160]. Consider the simple network in Figure 2.1 that contains a single

neuron and a set of weightsW . The output of the neuron O, feeds into an activation function

with an output A. The derivative of the error E with respect to particular weight Wi, can

be described by a chain of partial derivatives backpropagating through the network.

∂E

∂Wi

=
∂E

∂A

∂A

∂O

∂O

∂Wi

(2.5)

Classical gradient descent computes the gradient with respect to all samples in the train-

ing set for each weight update. While this approach leads directly to the optima of the loss

function, it is computationally expensive for large datasets. Stochastic Gradient Descent

instead updates the weights for every training sample individually. This approach is more

efficient but adds variance as the gradient for each individual sample will not necessarily

be in the direction of the true gradient of the training set. Minibatch Gradient Descent is

most often used in deep learning, where the gradient is calculated over small subsets of the

training data. This approach is more computationally efficient than full gradient descent

while being less noisy than stochastic gradient descent [126].

Second order and derivative free methods have also been explored for optimizing neural

networks. Second order approaches like Newton’s method and the conjugate gradient use
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curvature information through second order derivatives to achieve faster convergence [4].

However, the computational cost of these methods with deep neural networks can make

them impractical for large-scale problems [9]. Derivative free methods like evolutionary

strategies and particle swarm optimization eschew gradient information and require only

some objective fitness measure. These approaches excel on tasks where the gradient is

non-differentiable, unavailable, or unreliable. However, these methods tend to be sample

inefficient on supervised learning tasks compared to gradient methods [168].

Adaptive optimizers like Adagrad, Adadelta, and Adam use running statistics of previous

gradients to scale the learning rates for each parameter [33,84,178]. This results in very fast

convergence, however the solutions found by these methods tend to generalize worse than

those trained with stochastic gradient descent [165]. While these alternatives are effective

in certain contexts, stochastic gradient descent is the most popular optimization algorithm

used in deep learning for its reliability, simplicity, and generality.

2.2.2 Architecture

Recent advancements in neural network architectures have led to breakthrough results

across a wide variety of machine learning tasks. Many of these have been driven by the

multilayer perceptron’s notoriously poor performance with high dimensional image data.

These networks do not inherently account for spatial hierarchies as the input is flattened

into a large one dimensional vector where each input neuron corresponds to a single feature.

As a consequence, these networks are incredibly prone to overfitting noisy pixel level details

and even small images lead to an explosion in the number of trainable weights.

Convolutional layers were introduced to mitigate these problems by drawing inspiration

from the biological network structures found in animal visual cortexes [45]. These layers

scan the input through a convolution operation, using a set of filters to produce feature

maps that capture spatial relationships between neighboring pixels. Each filter uses the

same shared window of weights for the entire input which drastically reduces the number of
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Figure 2.2: Visualizations of how convolutional layers operate on input images. Each convolu-
tional filter in a layer scans over the input image according to a stride length. The middle image
displays how a 7x7 filter with a stride of 7 applies to the input image. The right most image displays
a 7x7 filter with overlap using a stride of 2.

parameters required. These layers enabled much deeper networks that are able to capture

complex hierarchical features without overfitting.

Convolutional networks have continued to establish state of the art results on many

benchmarks, spurred by the introduction of MNIST and the five layer LeNet in 1989 [97].

Improvements have been progressive in the following years and limited mostly by the com-

putational limitations of hardware at the time. Notable architectures include the eight layer

AlexNet, which kickstarted the deep learning revolution by winning the ImageNet compe-

tition in 2012, and the sixteen layer VGG model that won the ImageNet localization chal-

lenge in 2014 [85, 134]. However, the use of deeper neural networks presented optimization

challenges in the form of vanishing gradients [120]. This happens because backpropagation

involves the repeated multiplication of partial derivatives through each layer from the output

back to the input. If these derivative are small, then the repeated multiplication can cause

the gradient to diminish quickly such that weight updates in the early layers approach zero.

This is exacerbated by sigmoidal activation functions that saturate as their inputs become

larger.

Residual Networks have since mitigated this problem by introducing skip connections

between blocks of convolutional layers [62]. These connections bypass one or more layers by

performing identity mapping where the input to a block is summed with the output of the
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layers being bypassed. This reframes the underlying mapping H(x) for a group of layers to

a residual mapping F (x) = H(x) − x, creating shortcuts that allow gradients to propagate

more effectively throughout the network. Residual connections have enabled the effective

training of substantially deeper networks while also exhibiting better convergence behavior

during training, usually requiring fewer epochs to reach a stable and more accurate solution.

Vision Transformers have recently emerged as a powerful alternative to convolutional

networks [30]. Unlike convolutional layers that use small kernels to capture local features,

self-attention mechanisms in Vision Transformers allow for global interactions where pixels

or image patches are weighted in relation to every other pixel or image patch. This approach

offers the potential for better capturing spatial hierarchies, however it can be computationally

expensive and require much more training data to avoid overfitting. Despite the promising

results for Vision Transformers on massive datasets, deep residual convolutional networks are

the de facto standard for computer vision tasks as they continue to achieve state-of-the-art

results on many benchmarks.

2.2.3 Subnetworks

There has been a long history investigating the role of sparse subnetwork structures in

deep learning research. Drawing inspiration from the high degree of sparsity observed in bio-

logical neural networks, these structures offer significant potential for improving parametric

efficiency, inference speed, memory requirements, and generalization.

A large body of research has emerged to explore how network pruning can find accurate

subnetworks within deep neural networks by selectively removing unimportant weights [6].

These methods offer significant potential for reducing computational complexity as a large

number of parameters can be removed from a trained network while maintaining high perfor-

mance after a small amount of continued training [6]. Many techniques have been introduced

to select unnecessary weights by using importance measures like weight magnitude, gradient

saliency, connection sensitivity, and synaptic flow [98,99,149]. While these methods can find
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extremely sparse subnetworks that achieve high accuracy, even random pruning has been

shown to result in accurate subnetworks up to moderate levels of sparsity [103,107].

Sparse subnetwork structures are also implicitly leveraged in several important algorith-

mic advancements in deep learning. The rectified linear unit (ReLU), defined as f(x) =

max(0, x), has gained widespread adoption as an activation function in deep neural net-

works. The activation patterns of ReLU neurons exhibit high levels of sparsity which are

thought to improve the separability of high dimensional data [53]. Certain regularization

methods leverage sparsity in parameter space in order to reduce overfitting and prevent fea-

ture reuse. Dropout, DropConnect, and Stochastic Depth Networks are the most popular

examples where random neurons, connections, or layers are masked on each forward pass

through the network [72, 140, 156]. Other effective regularization techniques include L1 and

L2 weight decay penalties that aim to penalize large weights and push unimportant ones

towards zero during training [87]. Weight decay can help to prevent overfitting, identify

important features, and compress model sizes by learning sparse structures [111].

Other promising areas of neural network research aim to leverage the unique qualities of

sparse networks to explore new models of neural computation. Spiking neural networks use

biologically inspired action potentials over time where neurons only activate if a threshold is

crossed [51, 150]. These models hold potential for significantly faster inference and reduced

energy consumption for resource constrained environments. Echo State Networks and Liquid

State Machines use recurrent reservoirs of sparsely connected neurons with fixed weights

that have been proven to be particularly effective for dynamic time series modeling [78,

112]. Neuroevolutionary algorithms often evolve sparse network architecture along with the

weights, excelling on tasks where gradient information is noisy or unavailable [40, 47, 141].

Super Networks are a theorized concept about how giant networks of the future will be too

big to be trained by any one system, and instead portions of the network will need to be

trained in a distributed manner by isolating sparse pathways [38].
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2.3 Ensemble Learning

Many supervised learning algorithms can be described as search algorithms in a hypoth-

esis space, where the goal is to train a set of model parameters to some candidate solution

that best fits the target distribution [7]. These hypothesis spaces are very large and complex

in deep learning which makes finding the global optimum very difficult. In practice, there

are often many local optima that are good enough, however each will invariably have its

own set of inherent biases [21]. Ensemble learning tries to remedy this problem by training

several models that each converge to different local optima that are then combined together

to form a better overall hypothesis.

This approach to improving generalization error is often explained in ensemble literature

with an example of the bias-variance decomposition of the mean squared error (MSE) [13,122,

154]. Given a model prediction ŷ and a true target value from an unknown test distribution

y, the mean squared error is defined to be the expectation of the squared distance between

the models predictions and the true target distribution. Bias is the difference between the

expectation of the model and the true targets and variance is the squared difference between

the models predictions and its mean.

bias = E[ŷ]− y (2.6)

var = E[(ŷ − E[ŷ])2] (2.7)

MSE = E[(ŷ − y)2] = (E[ŷ]− y)2 + E[(ŷ − E[ŷ])2] (2.8)

MSE = bias2 + var (2.9)
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Given an ensemble of M equally weighted estimators, the decomposition can be further

extended to produce the bias-variance-covariance decomposition [13].

bias =
1

M

∑

i

(E[ŷi]− y) (2.10)

var =
1

M

∑

i

E[(ŷi − E[ŷi])
2] (2.11)

covar =
1

M(M − 1)

∑

i

∑

j 6=i

E[(ŷi − E[ŷi])(ŷj − E[ŷj])] (2.12)

MSE = bias2 +
1

M
var + (1−

1

M
)covar (2.13)

Generalization error for single models relies upon the optimization of both bias and

variance, where the tuning of a model towards high bias can cause it to miss important

features and the tuning of a model toward high variance can cause it to be highly sensitive to

noise. When the decomposition is extended to an ensemble, the generalization performance

additionally depends on the covariance between models. Ideally, ensemble methods that

promote diversity will be able to reduce covariance without increasing the bias or variance

of individual models [13, 154].

Diversity is primarily encouraged through variation of the training data, network ar-

chitecture, or training procedure for each ensemble member. Several of the most popular

traditional ensemble methods predate the deep learning revolution and instead use simple

and fast classifiers (e.g. decision trees, support vector machines, logistic regression, etc.) to

produce large numbers of models optimized on different variations of the training data [129].

Bootstrap Aggregation does this by training each model on a random subset of the training

data with replacement [10]. The Random Subspace Method instead trains each model on a

random subset of features for each training sample [66]. Boosting strategically samples sub-

sets of data to train models in sequence, where each subsequent model is trained to correct

the mistakes of its predecessors [19, 32, 44,80].
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Traditional ensemble methods are well founded mathematically by leveraging large num-

bers of diverse models to overcome weak base classifiers. However, this approach is ill-suited

to the computationally intensive nature of deep neural networks, which tend to be data

hungry and require large numbers of training samples. These methods instead focus on

training fewer models for longer periods, aiming to achieve high individual accuracy. Data

variation techniques that reduce the size of the training set for each member tend to result

in lower individual accuracy and worse ensemble performance overall [94]. Deep ensembles

instead rely mostly on variations to network architecture (e.g. weight initializations, layer

configurations, etc.) and training procedure (e.g. optimizer hyperparameters, loss functions,

stochastic order of training samples, etc.) to induce diversity for each member [41,57,94,108].

2.3.1 Low-Cost Ensemble Methods

Efficient ensemble algorithms have become increasingly important as they hold the po-

tential to significantly reduce the computational cost associated with traditional ensemble

learning, while retaining many generalization benefits that ensemble learning affords. Several

methods have been introduced that we broadly categorize as pseudo-ensembles, temporal en-

sembles, or evolutionary ensembles. Pseudo-ensembles train several models under the guise

of a single monolithic architecture. Temporal ensembles encompass methods that save snap-

shots or checkpoints of a single model throughout training. Evolutionary ensembles leverage

biologically inspired concepts like mutation, recombination, and selection to spawn new child

networks. While these methods vary in their approach to reducing cost, the primary idea

behind each is to share either network structure, gradient information, or learned parameters

among ensemble members. Table 2.2 provides a broad overview on the relative benefits and

drawbacks of each type of method across a number of categories: training cost, inference

cost, storage cost, member diversity, and ensemble size.
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Table 2.2: A generalized overview of the benefits and drawbacks of various low-cost ensemble
learning strategies. Specific methods within each category may differ significantly in regards to
their strengths or weaknesses. All categories are relatively and subjectively graded according to
the primary idea behind their cost reduction, where a dash represents baseline performance, a single
checkmark corresponds to relatively good performance, and two checkmarks corresponds to best
performance.

Method Training Inference Storage Diversity Ensemble Size

Pseudo X XX XX - -
Temporal XX - - X X

Evolutionary X - - XX XX

Pseudo-Ensembles

Pseudo-ensembles encompass a variety of methods that implicitly train ensembles as if

they were a part of a single architecture [2]. These methods typically exploit variations

of computational paths within the model to simulate the existence of multiple submodels.

Pseudo-Ensembles also tend to share parameters among members, distinguishing these meth-

ods from other ensembles where independent members are created and trained separately.

Dropout is the canonical example of a pseudo-ensemble where neurons are randomly

masked during training on each forward pass [140]. This technique effectively trains a unique

subnetwork, or ensemble member, for each batch of training data. Dropout is deactivated

during inference so that the entire network is utilized, which results in a computation where

each of the subnetworks are implicitly ensembled together. Several variants of Dropout

have since been introduced that mask different network structures. DropConnect masks

individual connections rather than neurons [156]. Spatial Dropout masks feature maps in

convolutional layers rather than neurons [153]. Stochastic Depth Networks mask entire layers

of deep residual networks [73]. Since these techniques mask large parts of the network during

training, significantly more forward passes are needed to fully train a network. Given enough

training time, the resulting networks tend to converge to more robust optima than standard

deep neural networks.
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Some pseudo-ensemble methods explicitly encode relationships into the network architec-

ture design. TreeNets are built on this idea where the network architecture splits into several

independent branches that each have their own output head [100]. The early layers in the

network serve as generalized feature extractors, while the independent branches learn spe-

cialized representations. During training, the shared layers accumulate the gradients from

each independent branch and during testing, each path from input to one of the outputs

can be treated as an independent ensemble member. Multiple-Input Multiple-Output archi-

tectures extend the ideas introduced with TreeNets to also incorporate independent input

branches. Each input head is fed different samples and each of the output heads is trained

to predict the corresponding input [61]. During inference, the same input is fed to all of the

branches and the resulting outputs are ensembled together.

BatchEnsembles utilize parameter sharing by decomposing weight matrices into an ele-

ment wise product between a single shared set of base weights and member-specific rank-1

matrices [159]. During training, the shared weights capture features that are common across

all ensemble members while the member-specific weights can specialize. The rank-1 matrices

for each ensemble member is represented with two single column vectors, which significantly

reduces the storage cost compared to storing full rank weight matrices. Additionally, the

element wise product is much cheaper computationally than matrix multiplication which

results in little computational overhead compared to inference with a single network.

Knowledge Distillation was introduced to alleviate the inference and storage costs of

ensembles and large networks. This approach is based on the idea that you can transfer the

knowledge learned from a large network to a small network by training the small network

using the predictions of a trained large network, instead of the raw training labels. This

enables the small network to learn features that would be hard to disentangle if trained from

scratch. This can be done in the context of ensemble learning by training a single network on

the predictions made by a fully trained ensemble. The single network then approximates the

behavior of the ensemble without needing to store and test all of the models separately [65].
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Stochastic Weight Averaging is a recent optimization technique where the weights of

a model are averaged over several states taken from the final training epochs [77]. This

approach effectively integrates several local optima into a composite model with implicit

pseudo-ensemble like inference. Model Soups operate on a similar principle and have recently

shown state-of-the-art performance on large image classification benchmarks. Instead of

taking the final epoch checkpoints of a single model, Model Soups average the weights of

several independent models that are derived from the same pre-trained network but are each

fine tuned with different hyperparameters [167].

Pseudo-ensembles are much more memory efficient than other low-cost ensemble methods

as members are embedded within a single network structure. These techniques are gener-

ally very fast at performing inference, as forward passes do not need to be independently

computed for each ensemble member. This makes these techniques highly valuable for envi-

ronments where memory and inference cost is prioritized, like in embedded systems or edge

computing. However, pseudo-ensembles do tend to need more training epochs to converge

and the resulting models are less diverse than other ensemble methods, as large parts of the

network structure are shared.

Temporal Ensembles

Temporal ensembles are built on the idea that ensemble members can be created by

selecting and saving checkpoints over a single network’s training trajectory [145]. These

approaches capitalize on the variability of model weights as they converge to several distinct

optima throughout training. Temporal methods primarily differ in how they determine which

checkpoints to save and how to encourage the model to converge to diverse and accurate

optima.

Fast Committee Learning pioneered this concept by selecting time slices at even intervals

throughout training [145]. Horizontal Voting Ensembles were later introduced that saved

a contiguous number of states from every epoch taken late in the training phase [170].
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This sacrifices diversity for member accuracy as contiguous checkpoints tend to be highly

correlated, while checkpoints taken early in training will be much less accurate.

Snapshot Ensembles introduced a highly effective technique for manipulating the learning

rate schedule by alternating between large and small values over predetermined cycles [70].

The large rates encourage the model to move further in parameter space before converging

to local optima with small learning rates. The model is saved at the end of each cycle

before repeating, striking a nice balance between member diversity and accuracy. Fast

Geometric Ensembles extend the algorithm introduced in Snapshot Ensembles by analyzing

the loss surfaces found between the local optima saved at the end of each Snapshot checkpoint

[50]. The landscape analysis revealed that these local optima tend to be connected by high

accuracy pathways. Fast Geometric Ensembles leverage these high accuracy pathways by

saving model states along them. Interpolating the weights between these optima allows for

much larger ensemble sizes as they are not constrained by the cycle length used in Snapshot

Ensembles.

FreeTickets is a recent method that combines ideas from sparse neural network training

and temporal ensemble learning [106]. This approach uses a dynamic sparse training algo-

rithm that isolates a unique sparse subnetwork at each cycle which is then optimized with

a cyclic learning rate schedule. At the end of every optimization cycle, the sparse model

state is saved before updating connectivity for the next cycle. The unique topological struc-

ture of each member encourages greater diversity between members, however training sparse

subnetworks from scratch tends to result in slower convergence.

Temporal Ensembles tend to be very computationally efficient for training as these al-

gorithms save model states over a typical network training trajectory. The performance

of these temporal ensembles often compete with traditional dense ensembles at a significant

fraction of the compute cost. Inference and storage is more expensive than pseudo-ensembles

since each ensemble member needs to be evaluated independently. Temporal ensembles also

tend to have smaller ensemble sizes than evolutionary ensembles as member generation is de-
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pendent on training budget and the predetermined approach for selecting checkpoints. The

members of certain temporal ensembles can struggle with diversity or accuracy as model

checkpoints taken later in the training process tend to be highly correlated while earlier

checkpoints tend to be less accurate.

Evolutionary Ensembles

Evolutionary methods utilize concepts inspired by biological evolution like natural se-

lection, mutation, and recombination to optimize populations over time [162]. These ap-

proaches have traditionally been concerned with single hypothesis testing, where optimiza-

tion is geared towards selecting a single network with the best generalization performance

from a population. However, several researchers have noted the natural connection between

evolutionary populations and ensemble learning [46,109,172].

Evolution Strategies represent a popular subclass of evolutionary methods that describe

a family of algorithms that generate child networks by selecting elite candidate models ac-

cording to their fitness rankings and mutating them with noise perturbations [5]. These

approaches are known to excel with wide scaling as candidate members can be cheaply

generated and quickly evaluated in parallel [128].

Several variations of evolution strategies have been introduced that alter the ways that

child networks are created. Natural Evolution Strategies generates new populations accord-

ing to a weighted average over the previous population distribution [164]. This approach

approximates a natural gradient as models are weighted according to their fitness such that

mutations encourage models to move in the direction of previously successful models. Covari-

ance Matrix Adaptation Evolution Strategies improves on evolution strategies by tracking

dependencies between member parameters with a pairwise covariance matrix. The standard

deviation can then control for the overall scale of the distribution, greatly improving explo-

ration [58, 59]. However, despite the exploratory power of this approach, constructing the

pairwise covariance matrix is computationally expensive and impractical for large networks.
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Evolutionary algorithms are also commonly employed to evolve the topology of the net-

work along with the weights. Neuroevolution of Augmenting Topologies is perhaps the most

well known approach where networks are incrementally evolved from simple minimalist struc-

tures to more complex ones [141]. This approach also incorporates concepts like speciation

to maintain a diverse population of network architectures with the goal of preventing pre-

mature convergence to suboptimal solutions. Weight Agnostic Neural Networks employ a

similar approach, however the weights between neurons remain fixed. [48]. The focus then

becomes entirely on evolving the architecture, where this approach interestingly found that

network topology alone can encode solutions to complex reinforcement learning tasks.

Neuroevolutionary methods have primarily seen success with tasks that can be solved

by relatively small networks, as these methods tend to be sample inefficient when scaling to

larger models [49]. As a result, hybrid gradient/evolutionary methods have grown in pop-

ularity for deep neural networks as gradient optimization can be used to rapidly train the

model while evolutionary processes can be used to improve exploration [26]. Evolutionary

Ensembles with Negative Correlation Learning is a recent example of this hybrid method-

ology where gradient based optimization is applied to each member at each evolutionary

generation. Multiple independent networks are trained simultaneously with the inclusion

of a correlation penalty error term to encourage diversity. At each generation, the fittest

individuals are selected as parents for the next generation, and child networks are spawned

with normally distributed weight perturbations [109]. MotherNets is another method where

a small base network is trained and used as a source to hatch larger child networks, where

additional neurons and layers are added around the core network. The weights of the child

networks are adjusted using function preserving network morphisms, in order to ensure that

the added layers and neurons do not catastrophically affect the functionality of the core

network. Diversity is encouraged through heterogenous network architectures where each

child is optimized with different topological configurations [158].
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These evolutionary approaches to optimization have several advantages over gradient

based methods that are typically used in deep learning. They are inherently scalable as

population members can be evaluated independently and they excel at exploring landscapes

where gradient information is noisy, flat, or unavailable [128]. These low-cost evolutionary

methods offer a unique advantage over other approaches in that it is generally cheap to

generate new ensemble members. Once a parent network is trained, child networks tend to

converge quickly while maintaining diversity in the parameter space. The decoupled nature

of child generation and parent training enables more flexibility as large ensembles can be

generated dynamically and pre-trained models could be used to save significant amounts of

compute.

Discussion

Ensemble learning has long been known to be an effective and powerful way to improve

performance and these low-cost methods have introduced ways to share information between

members that can significantly reduce computational cost. While there is no established

taxonomy for low-cost methods in the literature, we note several commonalities where they

can be organized under the categories of pseudo, temporal, and evolutionary ensembles. With

fixed training budgets and competing research objectives, these approaches often struggle

to balance several tradeoffs relating to member accuracy, member diversity, training cost,

inference cost, and storage cost. These methods can suffer from restrictive algorithms that

require special network structures or training procedures, which can make it difficult to

utilize off the shelf models. It can also be costly to generate and train new ensemble members

which results in smaller ensemble sizes that can limit generalization potential. These are

increasingly important properties for ensemble methods as deep neural networks continue to

grow in size. To address these multifaceted challenges, we aim to introduce a framework that

allows for flexibility in its implementation while also optimizing these tradeoffs to produce

accurate, robust, and efficient ensembles.
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Chapter 3

Theoretical Framework

3.1 Introduction

We introduce Subnetwork Ensembles as an efficient low-cost approach to creating en-

sembles of deep neural networks. The goal with this research is to develop a generalized

framework for describing a process where a large parent network is trained to convergence

and then used to generate child networks through a perturbative process applied to randomly

sampled subnetworks in the parent model. The spawned child networks can then be further

optimized or tuned in order to recover the lost accuracy as a result of the perturbations.

The perturbative process, subnetwork sampling method, and tuning procedure used to

create child networks can take many forms. We explore several approaches in Chapters 4,

5, and 6 called Noisy Subnetwork Ensembles, Sparse Subnetwork Ensembles, and Stochastic

Subnetwork Ensembles respectively. Noisy Subnetwork Ensembles apply noise mutations

to modify the weights of sampled subnetworks. Sparse Subnetwork Ensembles prune the

weights of sampled subnetworks to create sparse child networks. Stochastic Subnetwork

Ensembles uses probability distributions and Bernoulli realizations to create children with

stochastic properties. Figure 3.1 provides a visualization of child networks formed through

these three methodologies.

Subnetwork Ensembles are motivated by several principles observed in deep learning op-

timization research. Using a large parent network enables improved training dynamics and

better convergence efficiency. Smaller networks trained from scratch often fail to achieve

the same performance [64, 105, 148]. Large parent networks are extremely overparameter-

ized and there’s a notion that trained models contain large amounts of redundancy [6, 107].

Creating children from the subspaces of parent networks leverages unrealized capacity to

improve parametric utilization. Spawned child networks inherit optimized parameters that
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Noisy

Sparse

Stochastic

Figure 3.1: A visualization of child networks formed through three distinct methodologies that
we investigate in Chapters 4, 5, and 6. Noisy Subnetwork Ensembles perturb subnetworks with
noise. Sparse Subnetwork Ensembles prune subnetworks from the parent. Stochastic Subnetwork
Ensembles use probability scores to determine active parameters on every pass through the network.

enable convergence to new local optima quickly. This property has long been observed in

both pruning and transfer learning literature [6, 175, 183]. Perturbing different subspaces of

the parent network encourages diverse representations among child networks. This is espe-

cially true for sparse subnetworks where altered network topologies impact the underlying

optimization landscape [142].

This approach also offers several unique advantages over competing low-cost ensemble

methods. Since the parent and child network procedures are completely decoupled, any

parent network architecture or optimization algorithm can be used. Modern deep learn-

ing best practices (dropout, normalization layers, weight decay, adaptive optimizers, data

augmentations, learning rate schedules, etc.) can be used to maximize performance of the

parent [89]. This also opens the door to leveraging open source pre-trained models, which
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is an increasingly valuable area of research as models and datasets continue to grow in size.

It is also relatively fast and cheap to generate and train new child networks. This allows for

the ability to dynamically grow ensemble sizes as needed, which can be very useful for some

types of tasks where the problem space grows [16, 157]. This also allows for wide scaling as

child networks can be generated and trained in parallel, avoiding the limitations of low-cost

ensemble methods that are restricted to taking models along a sequential training trajec-

tory [50, 70, 93]. Sparse Subnetwork Ensembles that leverage pruning mechanisms result in

much smaller ensembles that significantly reduces memory requirements.

3.2 Formalization

Consider a parent neural network F parameterized with a set of weights θ optimized via

some standard training procedure. We create an ensemble E consisting of k child networks,

where each child network fi has weights θ̂i obtained through a perturbative process ξ applied

to a subset of weights from the parent network determined using a stochastic sampling process

φ.

E = {f1, f2, ..., fk} (3.1)

fi(x; θ̂i) = F (x; θ; ξ, φ) (3.2)

The generality of this approach offers a lot of freedom for deciding how Subnetwork

Ensembles are formed. The perturbative and subnetwork sampling processes used to create

child networks can take arbitrary forms which can be useful for tailoring this algorithm to

a wide variety of tasks. Any network architecture can be used with this approach, however

it is important to note that the parent network does serve a foundational role in ensemble

performance, such that the parent network should be both accurate and have sufficient

capacity to enable the creation of high performing children.
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3.2.1 Subnetwork Sampling

Subnetworks are represented with binary bit mask matrices with the same dimensions

of the weight matrices for each layer in the parent network. Consider a weight matrix

W ∈ R
m×n representing the weights of a particular layer in a neural network. We generate

a matrix M ∈ {0, 1}m×n, using a stochastic process φ, with the same dimensions as W. The

elements of M are binary values, where Mij = 1 if the corresponding weight Wij is retained,

and Mij = 0 if the weight is masked. The subnetwork weights Ŵ can then be computed by

taking the element-wise (Hadamard) product of W and M.

M ∼ φm×n (3.3)

Ŵ = W ◦M (3.4)

The topology of the subnetwork can be further described by the granularity in which

parameters are masked. This granularity can be unstructured or structured, where the for-

mer refers to weight-level or connection-level pruning and the latter refers to neuron-level,

channel-level, or layer-level pruning. Unstructured pruning tends to result in networks with

better predictive capacity while structured pruning results in better computational efficiency.

Removing entire rows, columns, or blocks from a network is more easily leveraged by hard-

ware optimizations [6,101]. However, emerging hardware technology offers a promising future

for exploiting unstructured sparse computation [17,36, 55,119].
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(3.5)

It’s important to also consider the distribution of masked weights throughout non-

homogenous networks. It’s common for layer configurations in deep neural networks to vary
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significantly in size. Severe pruning of small layers may result in bottlenecks that restrict

gradient flow. The distribution of masked weights can be controlled with global and local

masking methods. Global methods are applied uniformly across the entire network while

local methods are applied independently within each layer or sub-region. Global methods

tend to result in higher compression rates as more parameters from the larger layers are

removed whereas local methods offer more fine-grained control and reduced variance.

3.2.2 Neural Partitioning

The transformation of unique subnetworks among child networks is critical at encouraging

diverse behavior. However, the random nature of subnetwork sampling can be a large source

of variance when constructing child networks. It is prudent to reduce the amount of overlap

between the subnetworks inherited by the parent in order produce less correlated models.

We introduce Neural Partitioning as an effective tool for achieving variance reduction by

dividing neural networks into sets of opposed child networks.

These ideas are inspired by antirandom testing and antithetic sampling [56, 113, 169].

This is also known as mirrored sampling in evolutionary communities, where whenever a

random vector v = {x1, ..., xn} is generated, another vector is generated with the opposite

signs v′ = {−x1, ...,−xn} [12]. Antithetic sampling takes advantage of the fact that the

variance of dependent random variables depends on the covariance between them.

var(X) = E[(X − E[X])2] (3.6)

var(X + Y ) = E[((X + Y )− E[(X + Y )])2] (3.7)

= E[(X − E[X])2] + E[(Y − E[Y ])2] + E[2(X − E[X])(Y − E[Y ])] (3.8)

= var(X) + var(Y ) + 2cov(X, Y ) (3.9)
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If X and Y are independent, then the variance of the sum of them is equal to the sum of

each. However, if we sample Y such that it’s dependent on X, then the variance is reduced

if the covariance between them is negative.

With Neural Partitioning, we can leverage this idea by generating groups of subnetworks

such that the inherited parameters are antithetical and form a disjoint union over the pa-

rameters of the parent network. Consider a weight matrix W ∈ R
m×n for a particular layer

in a network. Consider a mask M ∈ {0, 1}m×n that has been generated via some subnet-

work sampling process. The corresponding subnetwork mask with no parameter overlap,

also called the anti-mask M ′, is one in which the polarity of all of the mask bits are flipped

M ′ = 1−M .

(M, M ′) =
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(3.10)

For large networks, this idea can be extended to partition the parameter space into k

sibling subnetworks with a sparsity level of 1 − 1
k
. However, creating too many partitions

can lead to increasingly sparse subnetworks that exhibit bottleneck effects. This can reduce

information flow throughout the network and adversely affect both model performance and

training efficiency.
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(3.11)
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(M1, M2, M3) =
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(3.12)

The goal of Neural Partitioning is to generate subnetwork masks that maximize the Carte-

sian distance between them. For an ensemble of k subnetwork masks E = {M1,M2, ...Mk},

we wish to maximize the total pairwise distance between all ensemble subnetworks. Consider

the masks for weight matrices flattened into vectors A = {a1, ..., aN} and B = {b1, ..., bN}.

The Cartesian distance (CD) and total Cartesian distance (TD) for an ensemble can be

described with:

CD(A,B) =
√

|a1 − b1|+ ...+ |aN − bN | (3.13)

TD =
k
∑

i=1

k
∑

j=1

CD(Mi,Mj) (3.14)

3.2.3 Perturbative Processes

There are a wide variety of ways for defining and applying a perturbative process to a

parent network in order to generate child networks. The choice of perturbation mechanism

can influence distinct aspects of ensemble performance. We explore three methodologies in

Chapters 4, 5, and 6 that have various levels of regularization effects and computational

requirements.

In chapter 4, we explore how child networks can be created simply by perturbing sub-

network weights with random noise. Consider a noise matrix N ∈ R
m×n, with the same

dimensions of the corresponding layer’s weight matrix, generated with random values drawn

from a Gaussian distribution N (µ, σ2). Assume that a bit mask M ∈ {0, 1}m×n was gener-

ated with a sampling process φ to determine the subnetwork that the perturbations should

apply to. The perturbed weights Ŵ are then computed by adding the masked noise values
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to the original weights W .

M ∼ φm×n (3.15)

N ∼ N (µ, σ2)m×n (3.16)

Ŵ = W + (N ◦M) (3.17)

In chapter 5, we prune subnetwork weights to create sparse topological structures. The

perturbation can be described as setting certain parameters indicated by the subnetwork

mask to zero and freezing them so that no further weight updates affect them during opti-

mization. This form of perturbation offers a stronger regularization effect than those created

with noise perturbations. However, the child networks need to be optimized further to

recover the accuracy lost via pruning.

Ŵ =
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(3.18)

In chapter 6, we explore how stochasticity can be injected into the perturbation process

by leveraging probability matrices that determine how likely it is that a given parameter is

retained. Consider a subnetwork mask M generated from a random sampling process φ. The

mask is then used as a foundation for a function ψ(M) to construct a probability matrix

P ∈ [0, 1]m×n where each value corresponds to the probability that a parameter is retained

or masked. The subnetwork mask is determined on every forward pass through a Bernoulli

realization of the probability matrix. We further experiment with annealing the probability

matrix over time such that the subnetwork mask evolves to become deterministic throughout

33



training.

M ∼ φm×n (3.19)

P ∼ ψ(M)m×n (3.20)

Ŵ = W ◦Bernoulli(P ) (3.21)

3.2.4 Network Optimization

Once we have a collection of child networks, they can be further optimized to recover

lost accuracy as a result of the perturbative processes. The fine tuning procedure generally

consists of continued training of each child network independently. Since the child networks

inherit parameters from a fully trained parent, they tend to converge in relatively few epochs.

Moreover, unique topological transformations as a result of pruning or stochastic masking

can promote convergence to diverse local optima. Neuroevolutionary methods that leverage

fitness evaluations and model selection strategies can also be used as a form of ensemble

optimization. Ultimately, the goal is to construct an ensemble that minimizes the expected

loss L(ŷ, y) of the averaged predictions f̄(x) for each (x, y) pair over the dataset dxy.

minimize E
(x,y)∼dxy

L(f̄(x), y) (3.22)

3.2.5 Ensemble Predictions

There are several approaches for combining model predictions in the ensemble. The two

most popular methods include majority vote and weighted model averaging, where voting

methods operate on the predicted class labels and averaging methods take the weighted
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mean of the output distributions of each member [34, 42, 92].

f̄vote(x) = mode{argmax(fi(x)) : i ∈ 1, 2, ..., k} (3.23)

f̄avg(x) = argmax

(

1

k

k
∑

i=1

wifi(x)

)

(3.24)

While majority vote has a long history with traditional ensemble methods, averaged

predictions have become the standardized approach for ensembles of deep neural networks.

Throughout this research, we consider ensemble predictions given by the mean of equally

weighted ensemble members. Perturbations can result in networks that produce outputs of

very different magnitudes. In order to prevent the outsized influence by specific models, the

raw output logits of each model are normalized by a softmax function before averaging. This

is typically done in classification tasks to convert outputs into probability distributions.

softmax(xi) =
exi

∑

j e
xj

(3.25)

3.2.6 Evaluation Metrics

The bulk of our benchmark experiments in the following chapters focus on typical image

classification tasks. In these contexts we report standardized metrics including the accuracy,

negative log likelihood, and expected calibration error of ensemble predictions on holdout

test sets [90]. Accuracy reports the fraction of correct predictions (Eqn. 3.15). Negative Log

Likelihood is a common loss function used for classification tasks in deep learning that mea-

sures the difference between predicted probability distributions and true output distributions

(Eqn. 3.16). Expected Calibration Error is used for uncertainty estimation to measure how

well a model’s estimated probabilities match the true observed probabilities of its predic-

tions (Eqn. 3.17). This involves splitting the data into several bins and taking the average
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difference between the accuracy and confidence of the predictions within each bin.

Acc =
1

N

N
∑

i=1

1(argmax f̄(xi) ≡ argmax yi) (3.26)

NLL = −
1

N

N
∑

i=1

C
∑

c=1

yi,c log(f̄(xi)c) (3.27)

ECE =
B
∑

i=1

|Bi|

N
|(acc(Bi)− conf(Bi)| (3.28)

where f̄(x) represents the prediction made by the ensemble, y represents the correct output

for input x, N is the total number of test samples, |Bi| is the number of predictions in the

bin, acc(Bi) is the accuracy of the predictions made in the bin and conf(Bi) is the average

confidence of model predictions in the bin.
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Chapter 4

Noisy Subnetwork Ensembles

4.1 Introduction

Neuroevolution is an area of machine learning research that aims to combine evolutionary

algorithms and neural networks by using biologically inspired concepts like natural selection,

mutation, and reproduction [3, 162, 163]. A core component of evolution strategies involves

the generation of child networks by applying noise perturbations to one or more parent

networks [5]. However, as neural networks continue to grow in size, the effect of noise

perturbations on network behavior becomes increasingly pronounced.

There is often a critical region of mutation where weak perturbations fail to provide any

diversity while strong perturbations lead to complete performance collapse. The optimal

mutation window can be vanishingly small with modern deep neural networks that contain

millions or billions of parameters. Due to the difficulty in mutating these large models,

neuroevolutionary methods have primarily seen success with tasks that can be solved by

relatively small networks [49]. One approach to alleviating this challenge with large models

is to implement sparse mutations, where only a small subset of parameters are modified. This

can widen the critical mutation window which allows models to handle stronger perturbations

before succumbing to performance collapse. While sparse mutations have long been used in

other areas of evolutionary and genetic programming, they have rarely been explored with

evolution strategies using deep neural networks [5, 58, 82].

These observations of neuroevolutionary methods connect naturally to our work with

Subnetwork Ensembles. In this chapter, we introduce a formulation that we call Noisy Sub-

network Ensembles where child networks are generated through noise perturbations applied

to random subnetworks in a large, pre-trained parent network. Generating child networks in

this manner can alleviate the problems with sample inefficiency that typically plague neu-
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Figure 4.1: Neuroevolution excels at fine tuning fully-trained networks that get stuck in flat loss
basins. The left graph displays a typical SGD training trajectory where models tend to converge
to the edges of flat optima [77]. The middle graph displays white dots as child networks that
are generated from sparse mutations. The right graph shows the final ensemble consisting of top
candidates selected from evaluation on a separate validation set. A key insight to the success of
gradient-free methods for fine tuning is that the loss landscapes of test distributions rarely match
the training distribution exactly. Ensembling over wide areas of good validation performance is key
to improving generalization.

roevolutionary methods. Since child networks retain their network structure and are only

perturbed by noise, we eschew continued training of the children and instead implement

a standard evolutionary model selection strategy, where we evaluate a large population of

models and form the ensemble with those that perform best on a small validation set.

We conduct several ablation studies and visualizations designed to gain insight into the

effect that mutation strength and sparsity have on network behavior. We evaluate Noisy

Subnetwork Ensembles on the benchmark reinforcement learning environment ProcGen as

well as the large scale ImageNet classification task [22,85]. We observe reliable and consistent

generalization improvements with over a dozen different deep neural network architectures on

several difficult tasks. This approach is flexible and strikes a nice balance with computational

cost as these ensembles can improve performance over fully trained parent networks with no

additional training required.

4.2 Implementation

Noisy Subnetwork Ensembles begin with the standard training of a large parent network

F , parameterized with weights θ. We then spawn k child networks by copying and perturbing
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a subset of the weights. The binary subnetwork mask M ∈ {0, 1} is generated for each layer

with the same dimensions as the layer weights W . The mask can be determined according

to any random process φ for a given sparsity target ρ. In our implementation, we use a

layerwise unstructured approach where we randomly assign the value for each parameter in

the mask by sampling a Bernoulli distribution with probability ρ, where a successful trial

denotes that the parameter will be retained. We also generate a noise matrix N with the

same dimensions as the weight matrix according to some given random distribution. We use

a Gaussian distribution with tunable parameters for the mean µ and variance σ2. The sparse

mutation for each layer is created by taking the Hadamard product ◦ of the subnetwork mask

M with the noise matrix N .

M ∼ Bernoulli(ρ) (4.1)

N ∼ N (µ, σ2) (4.2)

Ŵ = W + (N ◦M) (4.3)

4.2.1 Trust-Region Search

It is important to determine appropriate values for both the mean µ and variance σ2 of

the noise distribution as well as the amount of sparsity ρ in the subnetwork mask. This can

be challenging to determine before hand due to differences between the size and complexity

of datasets, model architectures, optimization hyperparameters, etc.

We implement a grid search over a small validation set, where we measure the average

differences between the outputs of a network before and after mutations are applied. En-

suring that the outputs of the network diverge within some bound is referred to as trust

region optimization in machine learning contexts [24]. This is a popular technique in rein-

forcement learning algorithms as they promote stable policy updates in environments where

too large of a change may lead to performance collapse such that the model will struggle to

recover [130,131].
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A standard approach for establishing the trust region would be to measure the squared

difference between output predictions before and after mutation. Given a network F that is

parameterized by θ with C outputs and a network that is perturbed with a noise mutation

γ, the mean squared difference over a set of N total input samples X can be described as:

MSE =
1

N

N
∑

n=1

C
∑

c=1

(F (Xn; θ)c − F (Xn; θ + γ)c)
2 (4.4)

However, since classification networks are trained with cross entropy loss, where outputs

are treated as probability distributions, the mean squared error may not be the best fit

for approximating the effect of that perturbation as it can be prone to increased variance.

Instead, it is more common to describe the difference between output distributions with

the Kullback-Leibler Divergence, also known as relative entropy. This allows for a stable

measure of comparison that works regardless of network architecture or noise distribution.

KL =
1

N

N
∑

n=1

C
∑

c=1

F (Xn; θ)c log

(

F (Xn; θ)c
F (Xn; θ + γ)c

)

(4.5)

A grid search algorithm can then be implemented to try out several values for the muta-

tion strength and sparsity parameters in order to target a divergence score that represents

the boundary of a trust region. One nice property revealed in our experiments is that

there is a roughly linear relationship between KL divergence and accuracy degradation in

trained models. This insight can be used to tweak mutation parameters according to problem

complexity, ensemble size, or parameter sensitivity where a larger KL target can allow for

stronger mutations and better exploration at the cost of potentially less accurate candidate

models.

4.2.2 Mirrored and Partitioned Noise

Using the above techniques, we can then generate a collection of child networks with

subnetworks perturbed according to parameters found through this trust region grid search.
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Algorithm 1: Noisy Subnetwork Ensembles

Input: N, the number of candidate models
Input: K, the number of ensemble members
Input: (Xtrain, Xval, Xtest), the training, validation, and test data
Input: η, the optimizer hyperparameters
Input: ∆, trust region boundary target
Input: φ(ρ), the subnetwork sampling process with target sparsity ρ

O = sgd(η)
F = initialize()
F.w = train(F,O,Xtrain)

ρ, µ, σ2 = trustRegionSearch(F, Xval, ∆)

candidates = []

for i in 1 to N do
fi = initialize()
fi.w = F.w

for j in fi.layers do

M ∼ φ(ρ)fi,j .w

N ∼ N (µ, σ2)fi,j .w

fi,j.w = Fi,j.w + (N ◦M)
end

fitness = evaluate(fi, Xval)
candidates← (fi, f itness)

end

ensemble = select(candidates,K)

for (x, y) in Xtest do
outputs = [F (x)]

for c in ensemble do
outputs← c(x)

end

predictions = softmax(mean(outputs))
loss = nll(predictions, y)
accuracy = acc(predictions, y)

end
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Neural Partitioning and Antithetical Sampling can also be leveraged when generating child

networks [12]. A single generated subnetwork mask M and noise matrix N can be used to

generate four child networks Ŵi perturbed in opposite directions and subspaces, resulting in

reduced variance and a balanced exploration of the parameter space.

M ∼ Bernoulli(ρ) (4.6)

N ∼ N (µ, σ2) (4.7)

Ŵ1 = W + (N ◦M) (4.8)

Ŵ2 = W + (N ◦ (1−M)) (4.9)

Ŵ3 = W − (N ◦M) (4.10)

Ŵ4 = W − (N ◦ (1−M)) (4.11)

We can gain further improvements (without conducting any additional optimization) by

implementing a model selection process. For each candidate child network in the population,

we evaluate its performance on a holdout validation set where the accuracy is recorded as a

measure of its fitness. The top k models with the best performance will then be selected to

become members of the final ensemble.

4.3 Experiments

4.3.1 Decision Boundaries

We begin by exploring the interplay between mutation sparsity and mutation strength

by visualizing how changing these values affects network predictions. We use a simple three

layer fully connected multilayer perceptron that contains 64 neurons in each layer. We train

this model on a binary interleaved spiral dataset that contains 2500 sample (x, y) points.

We train for 10 epochs using the Adam optimizer [84] with a learning rate 0.001 and use

this trained model as the starting point for all mutations.
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Figure 4.2: The images above detail decision boundaries for a trained three layer multilayer
perceptron after being perturbed with various mutations. With dense perturbations, there is a
comparatively small window between a functional decision boundary and complete performance
collapse. As mutations become more sparse, the model is better able to retain its behavior while
the strength of parameter mutation increases.

We then perturb the model with mutations sampled from a Gaussian Distribution N ∼

N (0, σ2) applied to random subnetworks with varying levels of sparsity. The subnetwork

masks are generated in a layerwise unstructured fashion by sampling M ∼ Bernoulli(ρ)

where ρ corresponds to the sparse probability. We evaluate several values for the variance

of the noise perturbation σ ∈ [0.05, 0.25] and for subnetwork sparsities ρ ∈ [0.0, 0.9].

Using the perturbed models, we make predictions on a holdout test set containing 250

samples. In figure 4.2, we display a grid of the decision boundaries of these perturbed models

on the test set as we ablate between mutation strength and sparsity. When mutations are

dense, we see a very quick collapse of performance for small perturbations. The window for

optimal dense mutation is quite small even for this toy network and simple dataset. When

mutations become more sparse, the model is able to maintain good classification boundaries

while displaying small variations of prediction diversity. This kind of behavior is desirable
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for neuroevolutionary populations as ensemble learning research has shown that ensembles

perform better with large numbers of both accurate and diverse members [8].

4.3.2 Ablations

Next, we aim to explore whether the intuitions about how mutations affect predictions

translate to a much larger convolutional network on benchmark computer vision datasets.

For this experiment, we conduct ablations on the CIFAR-10 and CIFAR-100 datasets [85].

These are popular benchmark datasets and their use is widespread in computer vision re-

search. They each contain 50,000 training and 10,000 test samples of colored 32x32 pixel

images. CIFAR-10 contains samples belonging to one of 10 classes while CIFAR-100 contains

samples belonging to one of 100 classes. We use a WideResNet-28x10 model for our parent

network, which is a highly accurate network architecture that contains ∼ 36M parameters.

This network is a variant on the popular ResNet that decreases the depth and increases the

width of each convolutional layer [176].

We implement a standard training algorithm for this type of model where we train for

100 epochs using Stochastic Gradient Descent with momentum [144]. A stepwise learning

rate decay is used where an inital value of 0.1 decays to 0.01 after 50% of training and decays

again to 0.001 for the final 10% of training. We use standard data augmentation schemes for

CIFAR that includes a random crop and random horizontal flip along with mean standard

normalization. We split the test set in half in order to construct a validation set used for

model selection.

The parent networks achieve an accuracy of approximately 96% on CIFAR-10 and ap-

proximately 80% on CIFAR-100. Using these saved models as parent networks, we then

perturb the models with varying amounts of mutation strengths, σ ∈ (0.0, 0.05], and sparsi-

ties, ρ ∈ [0.01, 0.99], and we evaluate their performance on the test sets. Figure 4.3 displays

the results of these experiments where we start by measuring the effect that mutations have

on KL Divergence. Predictably, we see that KL divergence quickly increases as the density
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Figure 4.3: Results of mutation ablations for a trained WideResNet-28x10 model on CIFAR-
10. Lines of different colors correspond to the percentage of sparsity for the mutations. The top
left graph reports the average KL divergence as a result of mutation strength. The top right
graph explores the relationship between KL divergence and accuracy. The bottom left reports the
accuracy of an an ensemble evaluated with majority vote predictions. The bottom right reports
accuracy of an ensemble evaluated with averaged predictions.

and strength of mutations increase. The rapid increase in KL divergence for dense perturba-

tions illustrates how quickly performance collapses between very small changes in mutation

strength. We also observe an interesting linear relationship between KL divergence and

model accuracy.

We then implement Noisy Subnetwork Ensembles where a population of 16 models are

created by perturbing the parent model according to a given mutation strength and sparsity.
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The top 4 models with the best accuracy on the validation set are then selected. We report

the accuracy on the test set with this ensemble when predictions are decided via majority

vote and averaged output distributions. The averaged predictions approach is much more

consistent than majority vote, which display large amounts of variance as mutations become

stronger. The accuracy of both combination methods are comparable with no noticeable

difference at low levels of mutation. In settings with strong mutations, the averaged pre-

dictions model exhibits more robust behavior and better accuracy than majority vote. The

point where the mutation started to negatively impact member accuracy corresponds to an

observed KL divergence approximately between 0.02 to 0.05.

4.3.3 Benchmarks

ImageNet

We then explore our approach on the difficult benchmark computer vision dataset, Ima-

geNet [27,86]. ImageNet is a large scale collection of images that have been hand labelled for

use in machine learning tasks and is organized according to the wordnet dataset hierarchy.

Over 14 million images and 20,000 labels have been collected in total. We use the 2012

ImageNet collection which consists of a training set of 1.2 million images and a validation

set of 50,000 images, each belonging to one of 1000 categories. Images have varying sizes

and aspect ratios and consist of both colored and grayscale photos. Images are normalized

with mean standard normalization and we implement standard data augmentations which

consists of resizing to 256x256 pixels and center cropping to 224x224 pixels.

We evaluate our approach with ten popular deep neural network architectures of varying

sizes and generalization capacities in order to demonstrate the generality of this approach

across different contexts [62,68,71,74,85,134,146,171,176,181]. All networks are pretrained

and available from the torchvision repository [123].

We break the ImageNet competition test collection (ILSVRC 2012) of 50,000 images into

a 80/20 split between test and and validation sets that now each contain 40,000 and 10,000
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Table 4.1: Results for sparse mutation ensembles on ImageNet with a wide variety of models.
Mutation sparsity and strength are determined from a small hyperparameter grid search. Accuracy
(Acc), Negative Log Likelihood (NLL), and expected calibration error (ECE) are reported for the
parent and the ensemble. Metrics prepended with e refer to ensemble results. ∆Acc is the change in
accuracy between the parent and the ensemble, σ is the mutation strength, and KL is the average
output divergence between the mutated models and the parent models. 16 models are generated
and the 8 most accurate candidates on a validation set are used together as an ensemble.

Model Acc ↑ NLL ↓ ECE ↓ eAcc ↑ eNLL ↓ eECE ↓ ∆Acc ↑ Parameters σ KL

AlexNet 56.46 1.904 0.021 56.52 1.903 0.019 0.06 61.1M 0.0025 0.046
DenseNet-121 74.43 1.014 0.024 74.68 1.004 0.021 0.25 8.0M 0.0012 0.040
Inception-V3 69.57 1.819 0.184 69.98 1.681 0.169 0.41 27.2M 0.0007 0.049
MobileNet-V2 72.12 1.136 0.072 72.14 1.132 0.024 0.02 3.5M 0.0010 0.045
ResNet-18 69.76 1.247 0.026 69.93 1.238 0.022 0.17 11.7M 0.0020 0.046
ResNext-50 77.64 0.945 0.065 77.72 0.929 0.059 0.08 25.0M 0.0012 0.051
ShuffleNet-V2 69.51 1.354 0.072 69.57 1.351 0.071 0.06 2.3M 0.0020 0.052
SqueezeNet 58.10 1.852 0.017 58.14 1.852 0.017 0.04 1.2M 0.0020 0.026
VGG-16 71.62 1.140 0.027 71.64 1.138 0.028 0.02 138.4M 0.0025 0.048
WideResNet-50 78.47 0.879 0.054 78.60 0.852 0.038 0.13 68.9M 0.0015 0.049

samples respectively. All fitness evaluations and model selections use the validation set and

all reported results are evaluated on the holdout test set. We report accuracy, negative log

likelihood, and expected calibration error for the parent network and the ensemble [90]. We

ran each model twice and report the best results.

We conduct a hyperparameter grid search in order to find appropriate mutation strengths

for each model. Using a separate holdout dataset of 1000 samples we measure the average

KL Divergence and accuracy while we ablate mutation strength σ ∈ [0.001, 0.015] with a

mutation sparsity of 0.5. We then choose both a mutation strength that maximizes accuracy

while targeting a KL Divergence of approximately 0.02 which was found empirically to be a

safe range for mutation where the the accuracy of candidate models is balanced with explo-

ration. We then construct a population of 16 models with neural partitioning and mirrored

sampling. We first generate a random noise mutation sampled from a Gaussian distribution

modified with mutation strength. We construct a mirrored version of this random vector by

flipping the signs of each value. We then use neural partitioning to generate two opposed

unstructured subnetwork masks each with 50% sparsity Each child network is then evaluated

on a validation set and the top 8 candidates with the best accuracy are selected. We evaluate
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the top 8 candidates and combine their output predictions together to report the ensemble

accuracy, negative log likelihood and expected calibration error.

Table 4.1 contains both the parent results and the ensemble results. We see consistent

improvement in all metrics for each model with Noisy Subnetwork Ensembles. While the

difference between generalization performance is very small in many cases, it is notable that

convergence is stable and appears to be monotonic with optimal mutation hyperparameters.

However, there’s a question as to how much potential is able to be squeezed out of these

fully trained networks without any further optimization to the child networks. There is

no accepted method for determining the theoretical ceiling of generalization capacity for

complex network architectures. These small improvements may be considered significant

in some contexts where an improvement of 0.5% accuracy on a dataset of 50,000 images

corresponds to 250 more correct predictions.

Procgen

We additionally explore the efficacy of Noisy Subnetwork Ensembles on the difficult

Procgen reinforcement learning benchmark [22]. Procgen consists of 16 unique game envi-

ronments that use procedural generation to produce distinct and diverse levels for every run.

The observation space for all environments are 64x64x3 RGB images and the action space

consists of 15 discrete options that correspond to behavior within the game (e.g. left, right,

jump, shoot). Procgen can generate endless numbers of unique levels which allows for a

more robust evaluation of generalization, which has previously been challenging to evaluate

in other reinforcement learning benchmarks [179].

We use the Proximal Policy Optimization algorithm to train our models [131]. This

is one of the most popular and reliable baseline algorithms in deep reinforcement learning.

Proximal Policy Optimization updates policies by taking the largest step possible to improve

performance while satisfying a constraint on how close new and old policies can be. The

motivation is to avoid a common failure point in reinforcement learning where too significant

of a change in policy can result in catastrophic performance collapse.
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Figure 4.4: Training graphs on all 16 environments in the ProcGen benchmark. Orange lines
correspond to single model evaluations and blue lines correspond to noisy subnetwork ensembles.

Table 4.2: Proximal Policy Optimization hyperparameters and evaluation results over 10 episodes.

Parameter Value

γ 0.999

λ 0.95
Epochs/rollout 3

Timesteps/rollout 256
Minibatches 8

Batch size 2048
Entropy Bonus 0.01

Target KL 0.01
Clip Range 0.2

Framestack 2
Normalization Reward

Learning Rate 5e-4
Workers 1

Envs/worker 64
Total Timesteps 10m

Network Impala
Block Config [32, 64, 128]

Environment Baseline Noisy Subnetworks σ

Bigfish 13.7± 5.47 25.9± 5.59 0.06
Bossfight 9.1± 1.93 12.4± 0.32 0.05
Caveflyer 3.9± 1.53 7.3± 1.32 0.07
Chaser 2.3± 0.22 3.7± 1.0 0.01
Climber 5.1± 1.61 7.0± 1.75 0.01
Coinrun 8.0± 1.26 7.0± 1.44 0.06
Dodgeball 0.8± 0.51 2.0± 0.56 0.05
Fruitbot 30.2± 3.16 32.4± 0.69 0.04
Heist 3.0± 1.54 4.0± 1.55 0.10
Jumper 6.0± 1.55 7.0± 1.45 0.02
Leaper 6.0± 1.55 9.0± 0.94 0.01
Maze 6.0± 1.54 5.0± 1.58 0.04
Miner 7.4± 1.78 4.7± 1.74 0.09
Ninja 5.0± 1.58 7.0± 1.45 0.01
Plunder 10.6± 3.02 13.6± 2.97 0.06
Starpilot 20.1± 5.42 39.1± 6.85 0.01

Mean 8.58± 1.86 11.69± 2.74 0.04± 0.01
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We train an Impala Convolutional Neural Network for 10 million time steps on each en-

vironment [37]. The Impala architecture is a benchmark residual convolutional network for

reinforcement learning tasks that contains 15 layers and approximately 1.6 million parame-

ters. On evaluation rollouts, we create a Noisy Subnetwork Ensemble consisting of 8 models

where a random selection of 20% of the weights are perturbed by sampling from a Gaussian

distribution with mutation strength scaled by σ ∈ [0.01, 0.10]. Perturbations are applied in

a layerwise unstructured fashion. Actions are chosen by averaging the softmax outputs of

the ensemble members.

Figure 4.4 and Table 4.2 includes evaluation graphs and final results on each environment

for both Noisy Subnetwork Ensembles as well as the single parent model. All results are

reported as the mean and standard deviation over 10 runs. Noisy Subnetwork Ensembles

improved results in most environments with a few exceptions, potentially due to the relation

between ensembles and probabilistic actions. Proximal Policy Optimization is a stochastic

algorithm that chooses actions according to a probability distribution. When combining the

predictions of child networks, the output distribution tends to magnify the most likely ac-

tion. This can be detrimental in environments where stochasticity is helpful for encouraging

exploration as the deterministic choice may lead to situations where an agent gets stuck in

a state where it is unable to recover.

4.4 Discussion

We introduce Noisy Subnetwork Ensembles as a formulation of Subnetwork Ensembles

where child networks are generated by perturbing sampled subspaces of a parent network with

random noise mutations. This proves to be an effective approach to alleviating the challenges

of mutating deep neural networks in evolution strategies. Subnetwork perturbations widen

the critical mutation window which allows for stronger mutations and more diversity before

succumbing to performance collapse. We explore how these subnetwork mutations reduce
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variance and we show how a model selection strategy can further improve performance in

these ensembles.

We conduct several ablation studies in order to explore the interplay between sparsity and

mutation strength on network behavior. We conduct a decision boundary experiment where

visualizations are created that show the predictions of a model on a binary classification

dataset. After being perturbed with dense mutations, the model sees a rapid decline in

performance while sparsity significantly helps in maintaining accurate predictions. We then

explore how these insights translate to a wide residual network on CIFAR where we explore

parameter sensitivity and differences between averaged weights and averaged predictions

for various levels of mutation strength and sparsity. Our findings reaffirm the idea that

subnetwork mutations produce accurate models more reliably than dense mutations.

We then introduce two large scale benchmark evaluations of Noisy Subnetwork Ensem-

bles on ImageNet and Procgen, with a wide variety of deep neural network architectures.

We use a trained parent network to generate child networks with noise perturbation hyper-

parameters found through a short grid search algorithm. We observe a small yet reliable

improvement in generalization for every model on ImageNet and for most environments on

Procgen. This formulation of Noisy Subnetwork Ensembles offers an intriguing computa-

tional tradeoff as child networks can be quickly generated to obtain small generalization

improvements, without requiring any additional training.
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Chapter 5

Sparse Subnetwork Ensembles

5.1 Introduction

Noisy Subnetwork Ensembles were introduced as a no-cost formulation of Subnetwork

Ensembles where child networks are generated through subnetwork perturbations and ensem-

bled together without applying any additional training. The combination of these perturbed

models was shown to reliably improve generalization performance on holdout data, however

the differences were relatively small. Without further optimization of the child networks,

there is a limited potential for improving the predictive capacity of each child network. Ad-

ditionally, continued training of the child networks in Noisy Subnetwork Ensembles would

naturally lead to convergence towards highly correlated areas of the optimization landscape

as they share the vast majority of their parameters and network structure. This lack of

diversity can limit performance and lead to less robust ensembles.

We extend this work by introducing Sparse Subnetwork Ensembles, a formulation of Sub-

network Ensembles where child networks are created through the pruning of subnetworks

in a trained parent network. The sparse child networks are then subsequently trained for a

small number of epochs in order to recover the lost accuracy from pruning. The unique net-

work topology of each child encourages convergence to unique and diverse minima, resulting

in more robust ensembles. We also explore several methods for improving diversity among

child networks, including Neural Partitioning for generating children with mirrored network

structures, and a cyclic learning rate schedule that alternates between large and small values

to promote more exploration in weight space before converging [138].

This approach is highly flexible and offers several unique benefits over other low-cost

ensemble methods. Like Noisy Subnetwork Ensembles, additional child networks can be

dynamically generated with little additional computation. Generating ensemble members
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Figure 5.1: A diagram explaining network partitions in Sparse Subnetwork Ensembles. The
parent network is optimized and settles into some optima. Child networks are created via neural
partitioning. That is, two sparse children each inherit a different set of parameters from the parent.
The optimization landscapes for each child are diverse, yet they converge quickly due to inheritance
from a fully trained parent.

through pruning results in much smaller networks that significantly reduce memory usage

and computational cost during forward passes. This approach attempts to strike the optimal

balance between leveraging the improved training dynamics associated with using a large

parent network, while also creating accurate and diverse child networks that converge quickly

to good optima.

We compare Sparse Subnetwork Ensembles to several popular state-of-the-art ensemble

learning algorithms with benchmark deep neural network architectures and datasets. We

conduct hyperparameter ablation studies with child sparsity, pruning structures, tuning

schedules, and ensemble sizes of up to 128 members. We demonstrate that Sparse Subnetwork

Ensembles are both highly efficient, accurate, and robust with both small and large training

budgets.

5.2 Implementation

Sparse Subnetwork Ensembles begin with the standard training of a large parent network

F , parameterized with weights θ. Given a fixed training budget, it can be difficult to deter-
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mine the appropriate amount of time to allot for training the parent as model architecture,

dataset complexity, total training budget, ensemble size, and inference compute limitations

can all have a strong impact on performance for different ensemble configurations. As a gen-

eral guideline, our large scale image classification experiments with Wide Resnets suggest a

70/30 split between parent/children training time for a budget of 200 epochs.

We then spawn k child networks by copying the parent and pruning a subset of the

weights. The binary subnetwork mask M ∈ {0, 1} is generated for each layer with the same

dimensions as the layer weightsW . The values for each parameter in the mask is determined

by sampling a Bernoulli distribution with probability ρ, where a successful trial denotes that

the parameter will be retained. We also explore an implementation where the mask is

determined by sampling such that neurons are masked rather than individual connections.

The sparse subnetwork is created by taking the Hadamard product ◦ of the mask M with

the weights W at each layer.

We additionally implement Neural Partitioning when constructing child networks of 50%

sparsity. In this case, whenever we generate a child network, we construct the anti-random

subnetwork by flipping the polarity of the bits in the subnetwork mask of the original child.

This can be repeated n times to create an ensemble of size 2n. The weights for each child

network Ŵ and it’s anti-random complement Ŵ ′ can be described with.

M ∼ Bernoulli(ρ) (5.1)

Ŵ = W ◦M (5.2)

Ŵ ′ = W ◦ (1−M) (5.3)

This works best with a child sparsity target of 50% such that the size of all the child

networks in the ensemble are roughly equivalent. Given a large enough parent network, the

children can be partitioned to greater degrees (e.g. three child networks that inherit 33%
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Figure 5.2: A convolutional parent network filter split into two partitioned child filters. The child
networks learn diverse feature representations due to the geometric constraints of their unique
topologies.

of the parent’s parameters each). However, children with higher sparsity may require more

training time to achieve similar performance.

Given the high dimensionality of deep neural networks, the probability that any two

child networks will end up with similar topologies is small since the number of unique graph

structures in random and complex graphs grow exponentially with the number of nodes

[60]. The unique network topology of each child encourages optimization of diverse feature

representations which helps to produce more robust ensembles. Figure 5.2 illustrates how

pruning convolutional filters applies unique geometric constraints which inherently forces the

production of diverse feature maps.

Each child network is then tuned for a small number of epochs. Since each child inherits

its parameters from an accurate parent, the convergence to good solutions often occurs after

a relatively small number of epochs [6]. There are several tunable hyperparameters related

to optimization that influence the performance of the fine tuning phase. These include the
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Algorithm 2: Sparse Subnetwork Ensembles

Input: N, the number of ensemble members
Input: (Xtrain, Xtest), the training and test data
Input: (tparent, tchild), the number of parent and child epochs to train for
Input: (ηparent, ηchild), the parent and child optimizer hyperparameters
Input: φ(ρ), the subnetwork sampling process with target sparsity ρ

O = sgd(ηparent)
F = initialize()
F.w = train(F,O,Xtrain, tparent)

ensemble = []

for i in 1 to N do
fi = initialize()
fi.w = F.w

for j in fi.layers do

M ∼ φ(ρ)fi,j .w

fi,j.w ← fi,j.w ◦M
end

O = sgd(ηchild)
fi.w = train(fi, O,Xtrain, tchild)

ensemble← fi
end

for (x, y) in Xtest do
outputs = [F (x)]

for c in ensemble do
outputs← c(x)

end

predictions = softmax(mean(outputs))
loss = nll(predictions, y)
accuracy = acc(predictions, y)

end
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number of epochs, learning rate schedule, batch size, weight decay, and data augmentation

strategies. These optimization hyperparameters are generally kept consistent with those

used for training the parent network [124]. Parent networks are typically trained with a

learning rate schedule that starts with a large value and slowly decays to a small value over

time. The most common method for tuning subnetworks in pruning literature is to use a

small constant learning rate that is consistent with the final phase of training the parent.

However, recent work has found that mimicking the decaying schedules used for the parent

network can be highly effective for tuning subnetworks [95, 124].

We experiment with a learning rate schedule called the one-cycle policy, which has been

shown to be highly effective for rapidly training deep neural networks from scratch [138].

The one-cycle policy consists of a warm-up, cool-down, and annihilation phase, which alters

the learning rate during training for each batch of data. The warm up phase begins with a

small learning rate that ramps up to a large maximum rate. The cool-down phase gradually

decays the maximum rate to a minimum rate that is lower than the initial learning rate. The

annihilation phase takes place in the very final stages of training where the learning rate is

decayed to 0.

The one-cycle policy is highly effective at encouraging diversity among child networks as

the large learning rates enable each child to move greater distances away from the initial

weights before converging to optima. This idea has been shown to be effective in other

successful low-cost ensemble methods and is the primary insight underlying several popular

temporal ensemble methods such as Snapshot Ensembles and Fast Geometric Ensembles

[50, 70].

The original introduction of the one-cycle policy utilized linear annealing to modify the

learning rates. However, cosine annealing tends to be more popular in subsequent imple-

mentations. In our experiments we use a revised one-cycle schedule that disregards the an-

nihilation phase and uses only the warm-up and cool-down. Additionally, we use the inverse

of the one-cycle policy for momentum when tuning with stochastic gradient descent [144].
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Figure 5.3: An example of the one-cycle learning rate and momentum schedule we use to fine-tune
the child networks in Sparse Subnetwork Ensembles.

Both of these modifications have been shown empirically in unpublished work to perform

better than the original implementations [69].

The value for the learning rate η at iteration t, where ηinit is the initial learning rate

value, ηmax is the maximium value, ηmin is the minimum value and T is the total number of

iterations can be described as:

ηwarm(t) = ηinit +
1

2
(ηmax − ηinit)

(

1− cos

(

πt

T

))

(5.4)

ηcool(t) = ηmin +
1

2
(ηmax − ηmin)

(

1 + cos

(

πt

T

))

(5.5)

5.3 Experiments

5.3.1 Ablations

We explore the impact of several hyperparameters that govern how sparse Subnetwork

Ensembles are created and optimized. We use three different variations of the LeNet-5

model architecture where we vary the number of neurons in each hidden layer to produce

a small, medium and large model that we call LeNet-S (253,290 parameters), LeNet-M

(1,007,306 parameters), and LeNet-L (4,017,546 parameters). All ablation experiments use
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the Adam optimizer with a learning rate of 0.001 and the benchmark CIFAR-10 and CIFAR-

100 datasets, which consist of 60,000 small natural colored images of 32x32 pixels in size.

Those 60,000 images are split up into 50,000 training images and 10,000 testing images.

CIFAR-10 samples from 10 classes of images, while CIFAR-100 samples from 100 classes of

images.

Our first ablation aims to evaluate the effect that the amount of sparsity in the child

networks has on both the size of the parent model and the resulting ensemble performance.

We train each parent model (LeNet-S, LeNet-M, and LeNet-L) for 10 epochs. An ensemble

of 8 sparse subnetwork children are created for each parent by pruning to ablated target

sparsity values s ∈ [0.1, 0.9], and subsequently tuned for an additional 3 epochs. Larger

models are shown to have more capacity for pruning and learning more efficiently. Ensemble

accuracy improves up to a critical region as child networks become more sparse without

needing any additional epochs of training. More sparsity in the child networks can yield

greater ensemble performance which may suggest better diversity.

Next we explore how structured (neuron-level) and unstructured (connection-level) prun-

ing methods affect ensemble performance at different levels of child network sparsity. We

first train the LeNet-L parent network for 10 epochs. An ensemble of 8 children is created

where each is pruned using either structured or unstructured pruning to ablated target spar-

sity levels s ∈ [0.1, 0.9], and tuned for an additional 3 epochs. Connection pruning performs

much better at higher levels of sparsity compared to neuron pruning. However, we see little

difference in performance for child network sparsities up to 50%.

One of the unique advantages of Subnetwork Ensembles is that it is relatively cheap to

dynamically generate additional ensemble members. We explore this by taking the LeNet-M

network and producing up to 128 candidate member networks. We start by training the

parent network for 10 epochs. Child networks are created through unstructured pruning

with a sparsity target of 0.5. Each child is tuned for one additional epoch. We evaluate

ensemble performance over 10 runs as we increase the size of the ensemble from 4 to 128.
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Figure 5.4: Ablations over pruning sparsity and structure for various model sizes. Each graph
reports performance for an ensemble containing 8 models. The left figure reports the effect that
pruning sparsity has on models of different sizes. The right figure displays the efficacy of neuron
and connection pruning for LeNet-L.

Larger ensembles offer great potential for improved generalization as we see monotonically

improved accuracy with reduced variance as the number of ensemble members increases.

We then aim to evaluate the efficacy of neural partitioning and the one-cycle learning

rate policy. We use a more modern training procedure for this experiment where the parent

network (LeNet-L) is optimized by stochastic gradient descent with Nesterov momentum

for 20 epochs. We use an initial learning rate of η1 = 0.1 for 50% of the training budget

which decays linearly to η2 = 0.001 at 90% of the training budget. The learning rate is

kept constant at η2 = 0.001 for the final 10% of training. Child networks are created with

a target sparsity of 0.5 using either random pruning (R) or Neural Partitioning (NP). Child

networks are tuned with either a constant fine tuning (FT) learning rate of η = 0.01 or with

a One-Cycle (1C) schedule that ramps up from η1 = 0.001 to η2 = 0.1 at 10% of tuning,

then decaying to η3 = 1e − 7 at the end of 5 epochs. We record results for 10 sample runs

of each configuration (R+FT, NP+FT, R+1C, NP+1C), where we observe the best results

with the combination of neural partitioning and one-cycle tuning on both CIFAR-10 and

CIFAR-100.
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Figure 5.5: Ablations exploring the effect of ensemble size and various ensemble pruning/tuning
strategies. The left graph displays the results for ever increasing ensemble sizes spawned from
a single parent network. The right figure contains results for various configurations of random
pruning and neural partitioning with constant rate fine tuning and one-cycle fine tuning.

We next explore the early training efficiency of Sparse Subnetwork Ensembles compared

to other low-cost methods, MotherNets and Dropout, which are two conceptually competitive

approaches [140, 158]. Like Subnetwork Ensembles, MotherNets creates ensembles of child

networks from a trained parent network. However, this approach instead uses a small parent

network to create larger child networks by adding new neurons and layers around the small

shared structure. Meanwhile, Dropout is a popular regularization technique that masks

random neurons in the network during training such that a unique subnetwork is active for

each forward pass. The purpose of these comparisons is to explore the idea that we get

better training dynamics by first training a large parent network and then decomposing it

into small networks, rather than using smaller networks throughout training.

The comparison to MotherNets uses the small benchmark dataset MNIST, which is a

collection of small handwritten black and white digits [96]. We start by training a MotherNet

that contains one hidden layer of 16 neurons. A child network is then created where an

additional 16 neurons are added to the original 16 neuron layer of the trained MotherNet.

We compare this with a Sparse Subnetwork Ensemble parent that contains a single hidden

layer of 64 neurons. A child network is then created by pruning the parent’s hidden layer
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Figure 5.6: Exploring the early training efficiency of Sparse Subnetwork Ensembles with Mother-
nets and Dropout. The left figure compares Mothernets on the MNIST dataset with a multilayer
perceptron. The right figure compares Dropout on CIFAR-10 with LeNet-L.

to 32 neurons. We train both parents and the resulting children for 10 epochs each using

stochastic gradient descent with momentum. The resulting children for both methods are

the same size and both approaches train for 20 total epochs. The training graphs of these

methods shows that Sparse Subnetwork Ensembles reach higher accuracies than MotherNets

in fewer epochs. There is a smooth and consistent training curve with the hatched children

of MotherNets, while Subnetwork children undergo a large drop in accuracy before quickly

recovering and exceeding the performance of the MotherNet children.

The comparison to Dropout is done on CIFAR-10 with the LeNet-L architecture. The

Dropout model is identical to the parent network used for Sparse Subnetwork Ensembles,

except that it contains dropout layers after every hidden layer with an activation probability

of 0.5 during training. We train the parent network for 10 epochs, after which a sparse child

network is created by pruning 50% of the neurons and training for an additional 10 epochs.

Dropout does offer a smoother training trajectory with reduced variance, however Sparse

Subnetwork Ensembles appear to train more efficiently with better accuracy after 20 epochs,

despite the final child network containing half the number of neurons of the Dropout model.
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5.3.2 Landscapes

Deep neural networks are known to be vulnerable to adversarial attacks where small ma-

nipulations, imperceptible to humans, are applied to input images in order to mislead the

network [147]. Previous works have theorized that this is potentially due to excessive over-

parameterization which causes spurious correlations to develop that are exploitable. Recent

research has demonstrated that pruning can be an effective tool for improving robustness

against adversarial attacks [79,104,173]. It has also been observed that there is a correlation

between robust solutions and flatness of the local optimization landscape [143]. We explore

how the loss landscape of a sparse subnetwork evolves as it undergoes both pruning and

tuning.

We first train a parent ResNet-56 model for 300 epochs using Stochastic Gradient Descent

with momentum on CIFAR-10 with a batch size of 128. The learning rate starts at 0.1 and

decays to 0.01 at 150 epochs, 0.001 at 225 epochs and 0.0001 at 275 epochs. We then prune

the network by eliminating a random 50% of the weights and continue training the sparse

child network for three additional epochs with a constant learning rate 0.001.

The visualizations are created by choosing a center point for the graph with the model

weights θ. Two orthogonal directional vectors δ and η are chosen and the loss landscape is

plotted by evaluating the network with weights that are determined by linearly interpolating

over the two directional vectors [102].

f(α, β) = L(θ + αδ + βη) (5.6)

Figure 5.7 displays the results of this visualization. We note the apparent simplification

of the loss landscape of the sparse child network as it is tuned. The model appears to settle

into an area of the landscape that is shallow and wide, suggesting a good location for robust

generalization.

63



Figure 5.7: Visualizations of the loss landscapes of a ResNet-56 model as it undergoes pruning
and tuning. The first column is the landscape of the fully trained parent model. The middle
figure is the landscape of the model after removing 50% of the parameters. The final figure is the
landscape of the pruned model after three additional epochs of fine tuning.

5.3.3 Benchmarks

Small Budget

Little attention has been given to deep ensemble methods that work well with small

training budgets and/or resource constrained environments. While it may seem counter-

intuitive to construct ensembles with so few epochs, it is a valuable area of research as

insights from these kinds of benchmarks hold the potential to significantly improve training

efficiency and reduce computational cost [23, 115].

The experiment presented here limits the total training budget to 16 epochs. We compare

the efficiency of Sparse Subnetwork Ensembles to a single independent model, a dropout

model, and a traditional bootstrap aggregation (bagged) ensemble. Each method is evaluated

with three different model architectures (LeNet-L, ResNet-18, and DenseNet-121) and all

models are trained with Adam using a fixed learning rate of 0.001.

64



Table 5.1: Accuracy of various methods for the small training budget benchmark experiment.
All ensembles contain 8 models and are trained for a total of 16 epochs. Dropout rate is 50%,
Bootstrap Aggregation is trained on 90% subsets.

Model Method CIFAR-10 CIFAR-100

LeNet-L Independent 70.29 ± 0.21 34.39 ± 0.18
Dropout 70.06 ± 0.32 28.98 ± 0.33
Bootstrap Aggregation 70.97 ± 0.13 32.40 ± 0.11
Sparse Subnetwork Ensemble (R) 75.51 ± 0.06 41.68 ± 0.14
Sparse Subnetwork Ensemble (NP) 75.75 ± 0.06 41.85 ± 0.13

ResNet-18 Independent 80.99 ± 0.11 49.26 ± 0.09
Dropout 72.97 ± 0.41 37.69 ± 0.28
Bootstrap Aggregation 79.88 ± 0.05 46.18 ± 0.06
Sparse Subnetwork Ensemble (R) 84.61 ± 0.07 57.08 ± 0.07
Sparse Subnetwork Ensemble (NP) 84.68 ± 0.04 57.26 ± 0.06

DenseNet-121 Independent 84.14 ± 0.09 56.62 ± 0.09
Dropout 79.59 ± 0.36 44.02 ± 0.58
Bootstrap Aggregation 81.16 ± 0.04 48.48 ± 0.06
Sparse Subnetwork Ensemble (R) 86.26 ± 0.07 62.02 ± 0.07
Sparse Subnetwork Ensemble (NP) 86.35 ± 0.04 62.09 ± 0.06

The independent model and the dropout model are identical to each other, except that the

dropout model has dropout layers inserted after every hidden layer with a 50% activation

probability during training. This parameter is chosen to keep the number of parameters

consistent with the child networks generated by Sparse Subnetwork Ensembles. The bagged

ensemble contains 8 full size models that are each trained for two epochs on a randomly

sampled 90% subset of the training data. Sparse Subnetwork Ensembles trains a single

parent network for 8 epochs, then creates 8 children using unstructured pruning with a 50%

sparsity target and tunes each of those for an additional epoch. We include results for child

networks created with random pruning (R) and with Neural Partitioning (NP), where 4 sets

of partitioned pairs of child networks are generated.

Table 5.1 displays the mean accuracy and standard error achieved for each method over

10 runs, except for Sparse Subnetwork Ensembles which have 30 runs. In this small fixed

training budget experiment, comparisons show that the Sparse Subnetwork Ensembles are

significantly better than all other methods for early training efficiency. While the extent of
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Table 5.2: Results for ensembles of WideResNet-28-10 models on both CIFAR-10 and CIFAR-100.
Methods with ∗ denote results obtained from [61, 106]. Best low-cost ensemble results are bold.
cAcc, cNLL, and cECE correspond to corrupted test sets.

Methods (CIFAR-10/WRN-28-10) Acc ↑ NLL ↓ ECE ↓ cAcc ↑ cNLL ↓ cECE ↓ FLOPs ↓ Epochs ↓

Independent Model∗ 96.0 0.159 0.023 76.1 1.050 0.153 3.6e17 200
Monte Carlo Dropout∗ 95.9 0.160 0.024 68.8 1.270 0.166 1.00x 200
Snapshot (M=5) 96.3 0.131 0.015 76.0 1.060 0.121 1.00x 200
Fast Geometric (M=12) 96.3 0.126 0.015 75.4 1.157 0.122 1.00x 200
Sparse Subnetworks (M=6) 96.5 0.113 0.005 76.2 0.972 0.081 0.85x 200

TreeNet (M=3)∗ 95.9 0.258 0.018 75.5 0.969 0.137 1.52x 250
BatchEnsemble (M=4)∗ 96.2 0.143 0.021 77.5 1.020 0.129 4.40x 250
MIMO (M=3)∗ 96.4 0.123 0.010 76.6 0.927 0.112 4.00x 250
EDST (M=7)∗ 96.4 0.127 0.012 76.7 0.880 0.100 0.57x 850
DST (M=3)∗ 96.4 0.124 0.011 77.6 0.840 0.090 1.01x 750
Dense Ensemble (M=4)∗ 96.6 0.114 0.010 77.9 0.810 0.087 1.00x 800

Methods (CIFAR-100/WRN-28-10) Acc ↑ NLL ↓ ECE ↓ cAcc ↑ cNLL ↓ cECE ↓ FLOPs ↓ Epochs ↓

Independent Model∗ 79.8 0.875 0.086 51.4 2.700 0.239 3.6e17 200
Monte Carlo Dropout∗ 79.6 0.830 0.050 42.6 2.900 0.202 1.00x 200
Snapshot (M=5) 82.1 0.661 0.040 52.2 2.595 0.145 1.00x 200
Fast Geometric (M=12) 82.3 0.653 0.038 51.7 2.638 0.137 1.00x 200
Sparse Subnetworks (M=6) 82.7 0.634 0.013 52.7 2.487 0.131 0.85x 200

TreeNet (M=3)∗ 80.8 0.777 0.047 53.5 2.295 0.176 1.52x 250
BatchEnsemble (M=4)∗ 81.5 0.740 0.056 54.1 2.490 0.191 4.40x 250
MIMO (M=3)∗ 82.0 0.690 0.022 53.7 2.284 0.129 4.00x 250
EDST (M=7)∗ 82.6 0.653 0.036 52.7 2.410 0.170 0.57x 850
DST (M=3)∗ 82.8 0.633 0.026 54.3 2.280 0.140 1.01x 750
Dense Ensemble (M=4)∗ 82.7 0.666 0.021 54.1 2.270 0.138 1.00x 800

hyperparameter tuning is limited for all methods, this experiment is designed to create an

initial baseline for small training budgets that can be further explored in future work.

Large Budget

We next evaluate Sparse Subnetwork Ensembles in the context of a standardized bench-

mark in low-cost ensemble learning literature. This experiment uses a larger training bud-

get of 200 epochs and the WideResNet-28-10 model architecture [176]. We use the same

optimizer configuration and hyperparameter settings reported in other low-cost ensemble

studies [50, 70, 158]. We compare Sparse Subnetwork Ensembles with published results of

several of the top low-cost ensemble methods including: TreeNets, Snapshot Ensembles, Fast

Geometric Ensembles, BatchEnsembles, FreeTickets, and MIMO [50,61,70, 100,106,159].

All methods train the same WideResNet-28-10 model architecture using stochastic gra-

dient descent with Nesterov momentum µ = 0.9 and weight decay γ = 0.0005 [144]. We
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use a batch size of 128 for training and use random crop, random horizontal flip, and mean

standard scaling data augmentations for all approaches [50,61,70,106]. The parent network

is trained with step-wise decaying learning rate schedule where an initial learning rate of

η1 = 0.1 is used for 50% of the training budget and decays linearly to η2 = 0.001 at 90% of

the training budget. The learning rate is kept constant at η2 = 0.001 for the final 10% of

training.

Table 5.2 includes results for all compared methods. The Independent Model is a single

WideResNet-28-10 model trained for 200 Epochs. The Dropout Model includes dropout

layers between convolutional layers in the residual blocks at a rate of 30% [176]. Snapshot

Ensembles use a cosine annealing learning rate with an initial learning rate η = 0.1 for a

cycle length of 40 epochs [70]. Fast Geometric Ensembles use a pre-training routine for 156

epochs. A curve finding algorithm then runs for 22 epochs with a cycle length of 4, each

starting from checkpoints at epoch 120 and 156. TreeNets, BatchEnsemble and MIMO are

all trained for 250 epochs [61, 100, 159]. FreeTickets introduces several configurations for

building ensembles. We include their two best configurations for Dynamic Sparse Training

(DST, M=3, S=0.8) and Efficient Dynamic Sparse Training (EDST, M=7, S=0.9).

The Sparse Subnetwork ensemble size and training schedule is the same as those used in

MotherNets and Fast Geometric Ensembles [50,158]. Sparse Subnetwork Ensembles train a

single parent network for 140 epochs. Six children are created with Neural Partitioning and

tuned with a one-cycle learning rate for 10 epochs. The tuning schedule starts at η1 = 0.001,

increases to η2 = 0.1 at 1 epoch and then decays to η3 = 1e − 7 using cosine annealing for

the final 9 epochs. We additionally explored the effect of different partition sizes for child

networks in the ensemble where np = 1/2, 1/3, 1/6. Table 5.4 reports these results where we

see a very minor degradation in accuracy moving from children with 50% sparsity to 66%

sparsity.

We report the mean accuracy (Acc), negative log likelihood (NLL), and expected calibra-

tion error (ECE) over 10 runs on both CIFAR-10 and CIFAR-100 along with their corrupted
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Table 5.3: Results for Sparse Subnetwork Ensembles on CIFAR-10 with different child network
partition sizes. The parent network is trained for 140 epochs. 6 children are then created through
neural partitioning and each is trained for an additional 10 epochs. Total Params counts all
parameters in the ensemble.

Partition Size Child Acc. ↑ Ensemble Acc. ↑ NLL ↓ ECE ↓ FLOPs ↓ Total Params ↓

1/2 95.5 96.5 0.114 0.005 0.85x 109.5M
1/3 95.3 96.4 0.115 0.004 0.80x 73.0M
1/6 92.9 95.1 0.143 0.013 0.75x 36.5M

variants [63, 118]. We report the total number of floating point operations (FLOPs) and

epochs used for training each method. We organize our tables into two groups based on

training cost. The first group consists of low-cost training methods that take approximately

as long as a single network would take to train. The second group of methods use either

significantly more epochs or compute per epoch to achieve comparable performance. MIMO

and BatchEnsemble both make use of batch repetition to train on more data while keeping

the number of epochs low. FreeTickets (DST and EDST) use very sparse networks to keep

FLOP counts low while using many more training epochs.

Sparse Subnetwork Ensembles outperform all low-cost ensemble methods and are com-

petitive with methods that train for significantly longer. Our approach produces well cali-

brated, robust and diverse ensembles with excellent performance on in distribution and out

of distribution datasets.

5.4 Discussion

Sparse Subnetwork Ensembles prove to be a highly effective method for constructing

diverse, accurate, and efficient ensembles of child networks. We do this by first training

a large parent network. We then create child networks by sampling and pruning random

subnetworks in the parent to produce a collection of sparse child networks with unique

connective structures. We then briefly train each child network for a small number of epochs

where they quickly converge to new local optima.
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Despite inheriting parameters from the same parent, child networks quickly converge to

diverse solutions thanks to their inherited parameters and unique network topologies. We

further explore various ways to encourage diversity among child networks through neural

partitioning and one-cycle tuning. Neural partitioning is used to generate sets of child

networks without any parametric overlap and one-cycle tuning uses a phasic learning rate

schedule where large learning rates encourage children to move further apart in weight space

before converging to local solutions.

The Sparse Subnetwork Ensemble algorithm is flexible and robust. We conduct several

ablation studies where we construct ensembles with various network architectures, pruning

strategies, and training configurations. We also visualize the loss landscape of a network

throughout the lifecycle of this algorithm, where we see convergence to wide and flat optima

that suggest regions of robust generalization.

This work showcases an important concept in Subnetwork Ensembles where it is found to

be more efficient to first train a large parent network to a good solution before decomposing

it into smaller child networks. The large parent network has better optimization dynamics

when trained from scratch, while the final state contains large amounts of unrealized capac-

ity. Sparse Subnetwork children leverage that redundancy to produce accurate and diverse

representations with little additional computation.

With the benchmark experiments introduced, Sparse Subnetwork Ensembles outperform

other low-cost ensembling methods on benchmark image classification datasets in both low

training budget and high training budget regimes. Our approach achieves comparable accu-

racy to ensembles that are trained on 4 to 5 times more data. Sparse Subnetwork Ensembles

not only improve upon the training-time/accuracy trade-off, but also significantly reduces

memory and computational cost.
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Chapter 6

Stochastic Subnetwork Ensembles

6.1 Introduction

A critical component of Sparse Subnetwork Ensembles is the creation and tuning of child

networks. The standard approach explored in the previous chapter involves pruning the

whole subnetwork in one-shot, followed by a tuning phase. Meanwhile, it’s long been known

that iterative pruning, which consists of alternating pruning/tuning cycles, is one of the most

effective techniques to improve performance of extremely sparse networks [6].

The key insight to iterative pruning is that removing too many parameters at once can

lead to a drastic performance collapse as subnetworks get stuck in lower performing regions

of the optimization landscape. Pruning a small number of parameters over several epochs

allows the model to better adapt to the changing network structure. However, these itera-

tive methods can still result in subnetworks that are prone to overfitting local optimization

regions.

We introduce a novel regularization technique for fine tuning these subnetworks by lever-

aging stochasticity for the network structure. Rather than using fixed subnetworks and

discrete pruning operations, we instead represent subnetworks with probability matrices

that determine how likely it is that a parameter is retained on any given forward pass.

The probability matrices are then adjusted during training through the use of dynamic an-

nealing schedules which gradually evolves the network from a stochastic network towards a

deterministic subnetwork structure over several epochs. The probabilistic inclusion of extra

parameters early in the tuning process allows for gradient information to bleed through into

the target subnetwork, encouraging robust adaptation and avoiding the drastic performance

collapse observed with one-shot pruning methods. This approach to representing subnet-
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works with stochastic masks is highly flexible and offers a lot of fine grained control over the

tuning process.

We conduct a large scale ablation study to explore the dynamics of several annealing

hyperparameters and their effects on convergence. These include the initial stochasticity,

number of annealing epochs, amount of sparsity, learning rate schedules, and parameter se-

lection strategies. Our experiments demonstrate significant improvements over both one-shot

and iterative pruning methods with especially large improvements in highly sparse subnet-

works (95-98%). We then explore how this technique can be leveraged to tune child networks

in Sparse Subnetwork Ensembles, where we observe improved accuracy and generalization

on benchmark classification tasks.

6.2 Implementation

In pruning literature, sparse network structures are generally static and represented with

binary bit masks. We propose a model of representing neural subnetworks with probabilistic

masks, where each parameter is assigned a score that determines how likely it is that the

parameter will be retained on any given forward pass. This introduces stochasticity into the

subnetwork sampling process, which can act as a form of implicit regularization analagous to

a reverse dropout, where parameters that would have been pruned have a chance to activate.

This technique encourages exploration of a larger space of subnetworks during the fine-tuning

phase, preventing it from becoming overly reliant on a single fixed topological configuration,

resulting in more robust and generalized subnetworks.

Consider a weight matrix W ∈ R
m×n representing the weights of a particular layer in

a neural network. We introduce a probability matrix P ∈ R
m×n containing scores that

represent the probability that a parameter Wij will be will be masked on any given forward

pass. The subnetwork mask M ∈ {0, 1}m×n is determined with a Bernoulli realization of the

probability matrix P .
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The ideas of neural partitioning naturally extend to probabilistic subnetwork represen-

tation where the opposed probability matrix P ′ = 1 − P can be used to create a pair of

subnetworks. More partitions can be created so long as the probabilities for each parameter

sum to one.

(P, P ′) =
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(6.1)

We then anneal these probability values over some number of epochs such that subnet-

works are slowly revealed throughout fine-tuning. This is done by introducing an annealing

schedule, where the probability values for each parameter slowly move towards 0 or 1 depend-

ing on the target subnetwork sparsity. At the beginning of the training process, a high level

of stochasticity is desirable as it encourages exploration of the weight space which may help

to prevent overfitting and search for more effective subnetwork configurations. As training

progresses, the stochasticity should gradually decrease to allow for stable convergence. The

annealing function is arbitrary, with some popular examples being the linear, cosine, and

exponential decay.

ylin(t) = τmax − (τmax − τmin)

(

t

Tmax

)

(6.2)

ycos(t) = τmin +
1

2
(τmax − τmin)

(

1 + cos

(

t

Tmax

))

(6.3)

yexp(t) = τmin + (τmax − τmin)e
− t

Tmax
k (6.4)

6.2.1 Random Annealing

The probability matrix can be generated in arbitrary ways. For example, a uniform dis-

tribution P ∼ U([0, 1])m×n can be used to randomly assign probabilities to each parameter.

All parameters with a value less than the sparsity target will then anneal towards 0 while
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parameters with a probability value greater than the sparsity target will anneal towards 1.

This implementation with a uniform distribution results in a mean parameter activation of

approximately 50% at the beginning of tuning regardless of the target subnetwork sparsity.

0 S 1

Mixtures of Gaussians can be used to assign interesting distributions that offer more

fine grained control over network structure. For example, assume that a binary matrix

X ∈ {0, 1}m×n is randomly generated and used to index into a probability matrix P ∈ R
m×n.

Using this index matrix X, we can sample from Gaussian distributions with different means

and variances.

P =















Pij ∼ N (µ1, σ
2
1), if Xij = 0

Pij ∼ N (µ2, σ
2
2), if Xij = 1

(6.5)

0 1

This approach to constructing multi-modal distributions can enable many distinct formu-

lations of stochastic subnetworks. Future work may find natural applications to multi-task

learning, where certain groups of parameters can be strongly correlated with each other

while allowing for overlap with other task specific subnetworks. This stochastic overlap may
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encourage shared portions of the network to learn generalized features, avoiding the problem

in typical network-splitting approaches where task specific subnetworks become increasingly

narrow and lead to degraded performance.

6.2.2 Temperature Annealing

Temperature scaling may be applied to binary matrices in order to allow for an even

application of stochasticity, reducing some variance relative to random annealing. Assume

that a binary matrix X ∈ {0, 1}m×n is generated at random. A temperature scaling constant

τ is introduced such that the values in X with a 1 are decayed by τ and the values with

0 are increased by τ . The mask is then determined on every forward pass with an altered

probability according to τ . Altering the initial value of τ allows for a much more controlled

approach to noise injection during the early phases of tuning, which can be desirable when

the number of total tuning epochs is limited.

A variation of temperature scaling, where τ is only applied to parameters that are not a

part of the target subnetwork, acts as a highly effective form of regularization analagous to

reverse Dropout. That is, the subnetwork is always active, but parameters that would have

been pruned away now have a chance to pop back in during tuning. This formulation ensures

that the target subnetwork will be optimized on every training step, which can enable faster

convergence. Allowing other parameters to become active allows for gradient information to

contribute to optimization of the target subnetwork which can help to encourage avoidance

of local minima.

P =



















1 1 0 + τ 1

0 + τ 1 0 + τ 0 + τ

1 0 + τ 0 + τ 1

0 + τ 0 + τ 1 1



















(6.6)
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Algorithm 3: Stochastic Subnetwork Ensembles

Input: N, the number of ensemble members
Input: (Xtrain, Xtest), the training, validation, and test data
Input: (tparent, tchild, tanneal), the number of parent, child, and annealing epochs
Input: (ηparent, ηchild), the parent and child optimizer hyperparameters
Input: φ(ρ), the subnetwork sampling process with target sparsity ρ
Input: Θ(M, τ, e, t), the temperature scaling function applied to a mask M , with

initial temperature τ , for current epoch e, over t total annealing epochs

O = sgd(ηparent)
F = initialize()
F.w = train(F,O,Xtrain, tparent)

ensemble = []

for i in 1 to N do
fi = initialize()
fi.w = F.w

for j in fi.layers do

Mj ∼ φ(ρ)fi,j .w

end

O = sgd(ηchild)

for e in tchild do
P ← Θ(M, τ, e, tanneal)

for (x, y) in Xtrain do

f̂i.w ← fi.w ◦Bernoulli(P )
fi.w = train(f̂i, O, (x, y))

end

end

ensemble← fi
end

for (x, y) in Xtest do
outputs = [F (x), c(x) for c in ensemble]
predictions = softmax(mean(outputs))
loss = nll(predictions, y)
accuracy = acc(predictions, y)

end
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6.3 Experiments

6.3.1 Ablations

We begin with an exploration of several stochastic subnetwork annealing configurations

with the goal of investigating how different hyperparameters impact the efficiency and qual-

ity of subnetwork convergence, compared to established one-shot and iterative pruning tech-

niques.

All ablations use the same ResNet-18 trained for 100 epochs using a standardized opti-

mization configuration [62]. We use PyTorch’s Stochastic Gradient Descent optimizer with

an initial learning rate of 0.1 and Nesterov momentum of 0.9 [144]. After 50 epochs, the

learning rate is decayed to 0.01 and again to 0.001 for the final 10 epochs. We use the bench-

mark CIFAR datasets with standard data augmentations including random crop, random

horizontal flip, and mean standard normalization.

Pruning is done in a layerwise unstructured fashion, after which each subnetwork is

tuned for an additional 20 epochs. We experiment with both a constant learning rate of

0.01 and a one-cycle policy with a max learning rate of 0.1. We explore the results for each

configuration with different levels of final subnetwork sparsity ρ ∈ [0.5, 0.7, 0.9, 0.95, 0.98].

We additionally include results for subnetworks created through L1 unstructured pruning.

In this case, parameters with the smallest magnitudes at each layer are pruned.

The one-shot baseline prunes the parent network to the target sparsity before we start

tuning. Iterative pruning calculates the number of parameters to remove at the beginning of

each epoch over some number of pruning epochs ε ∈ [5, 10, 15, 20] such that the final target

sparsity is hit. Random Annealing uses a probability matrix that is generated according

to a random uniform distribution, where each parameter is assigned a value between 0 and

1. Parameters with a value less than the target sparsity value are linearly annealed to 0

and values greater than the target sparsity are linearly annealed to 1, over some number

of annealing epochs ε ∈ [5, 10, 15, 20]. Temperature Annealing uses a randomly generated

binary bitmask according to the target sparsity. All parameters with a value of 0 are modified
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Figure 6.1: Ablations exploring how the initial temperature and the number of annealing epochs
affect convergence behavior.

Table 6.1: Comparison between various baseline approaches when used with random/magnitude
pruning on CIFAR-100. We report the best accuracy for each method at various levels of target
sparsity when tuned with both a constant learning rate and a one-cycle learning rate schedule. Our
annealing strategies consistently outperform established one-shot and iterative pruning methods.

Random Pruning/Constant LR 50% 70% 90% 95% 98%

One-Shot Baseline 0.640 0.634 0.553 0.490 0.401
Iterative Pruning 0.655 0.642 0.578 0.502 0.422
Random Annealing 0.655 0.636 0.591 0.546 0.457
Temperature Annealing 0.658 0.643 0.595 0.554 0.463

Random Pruning/One-Cycle LR 50% 70% 90% 95% 98%

One-Shot Baseline 0.702 0.685 0.620 0.573 0.493
Iterative Pruning 0.702 0.692 0.639 0.573 0.508
Random Annealing 0.703 0.692 0.646 0.600 0.527
Temperature Annealing 0.706 0.696 0.649 0.602 0.533

Magnitude Pruning/Constant LR 50% 70% 90% 95% 98%

One-Shot Baseline 0.673 0.668 0.661 0.635 0.542
Iterative Pruning 0.682 0.680 0.660 0.633 0.564
Temperature Annealing 0.685 0.682 0.663 0.635 0.566

Magnitude Pruning/One-Cycle LR 50% 70% 90% 95% 98%

One-Shot Baseline 0.709 0.701 0.697 0.675 0.604
Iterative Pruning 0.711 0.711 0.700 0.675 0.606
Temperature Annealing 0.714 0.714 0.702 0.678 0.615
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Figure 6.2: Ablations over the number of annealing epochs for random annealing vs temperature
annealing and temperature annealing vs iterative pruning.

to an initial temperature value of τ ∈ [0.2, 0.4, 0.6, 0.8, 1.0]. Those values are then cosine

annealed to 0 over some number of annealing epochs ε ∈ [5, 10, 15, 20].

Table 6.1 includes the accuracies for the best configurations of each method on CIFAR-

100. We see consistent improvement with both of our stochastic annealing methods over

the baseline one-shot and iterative pruning techniques across all sparsities and with both

a constant learning rate and a one-cycle learning rate policy. As networks become more

sparse, the benefits from our annealing approaches become more significant, with a 6% and

4% improvement at 98% sparsity over the one-shot baseline with a constant and one-cycle

rate schedule respectively. We also observed improved performance with magnitude pruning,

however the differences were smaller at 2% and 1% improvement.

Figure 6.1 includes an exploration of the initial temperature and the number of annealing

epochs. The hyperparameter with the most significant impact on all pruning methodologies

was the number of epochs that were pruned or annealed over. We saw best results for all

subnetwork sparsities with e = 5 or e = 10 annealing epochs. It’s important for the final

subnetwork topology to be established for a sufficient number of epochs to allow for optimal

convergence behavior. This pattern holds for both constant and one-cycle learning rate

schedules. The initial temperature has a smaller impact on performance than the number

of annealing epochs. A small value of τ means that the target subnetwork is always active
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Figure 6.3: The rightmost graph displays the best performing annealing configuration for each
sparsity and plots it against the one-shot pruning baseline. Stochastic annealing outperformed the
other methods for each sparsity, with more drastic improvements appearing in extremely sparse
networks.

and other parameters have a small chance to turn on, while a high value of τ means that

the target subnetwork is always active and other parameters have a high chance to turn on.

We saw best results when τ was in the 0.4 to 0.6 range. This corresponds to a higher state

of entropy regarding network structure which results in a stronger regularization effect for

those initial training examples.

Figure 6.2 includes an exploration of random annealing vs temperature annealing and

iterative pruning vs temperature annealing. Despite the additional variance associated with

random annealing, we found that the performance was very good and nearly approached

that of temperature annealing. Temperature annealing consistently outperformed iterative

pruning. The graph displays results for annealing epochs ε ∈ [5, 10] and a target subnetwork

sparsity of 0.9. While the early accuracy of temperature annealing appears worse, it quickly

surpasses iterative pruning as the annealing phase ends.

Figure 6.3 displays the test trajectories for the best models over all sparsities with both

a constant learning rate schedule and a one-cycle learning rate schedule. We compare the

results of temperature annealing with that of the one-shot baseline. Temperature Annealing

results in better performance for both learning rate schedules at all levels of sparsity that we
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tested ρ ∈ [0.5, 0.7, 0.9, 0.95, 0.98]. The benefits of temperature annealing are most noticeable

at higher levels of sparsity with the constant learning rate schedule. The one-cycle schedule

does result in much better generalization and a reduced accuracy gap between temperature

annealing and the baseline.

6.3.2 Benchmarks

We next evaluate the efficacy of Stochastic Subnetwork Annealing in the context Sparse

Subnetwork Ensembles. We include results for these ensembles on corrupted versions of

the CIFAR datasets as well, in order to test robustness on out-of-distribution images. These

corrupted datasets are generated by adding 20 different kinds of image corruptions (Gaussian

noise, snow, blur, pixelation, etc.) at five different levels of severity to the original test sets.

The total number of images in each of these additional sets is 1,000,000.

We take the training configuration, ensemble size and parameter settings directly from

the large scale benchmark experiment described in the Sparse Subnetwork Ensemble chapter.

All methods compared use WideResNet-28-10 and Stochastic Gradient Descent with

Nesterov momentum µ = 0.9 and weight decay γ = 0.0005 [144]. We use a batch size of 128

for training and use random crop, random horizontal flip, and mean standard normalization

data augmentations for all approaches [50,61,70,106]. The parent learning rate uses a step-

wise decay schedule. An initial learning rate of η1 = 0.1 is used for 50% of the training

budget which decays linearly to η2 = 0.001 at 90% of the training budget. The learning rate

is kept constant at η2 = 0.001 for the final 10% of training.

We train a single parent network for 140 epochs. Six children are then created by ran-

domly pruning 50% of the connections in the parent network. Neural partitioning is im-

plemented where pairs of children are generated with opposite sets of inherited parameters.

Each child is tuned with a one-cycle learning rate for 10 epochs. The tuning schedule starts

at η1 = 0.001, increases to η2 = 0.1 at 1 epoch and then decays to η3 = 1e− 7 using cosine

annealing for the final 9 epochs.
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Table 6.2: Results for ensembles of WideResNet-28-10 models on both CIFAR-10 and CIFAR-100.
Methods with ∗ denote results obtained from [61, 106]. Best low-cost ensemble results are bold.
cAcc, cNLL, and cECE correspond to corrupted test sets.

Methods (CIFAR-10/WRN-28-10) Acc ↑ NLL ↓ ECE ↓ cAcc ↑ cNLL ↓ cECE ↓ FLOPs ↓ Epochs ↓

Independent Model∗ 96.0 0.159 0.023 76.1 1.050 0.153 3.6e17 200
Monte Carlo Dropout∗ 95.9 0.160 0.024 68.8 1.270 0.166 1.00x 200
Snapshot (M=5) 96.3 0.131 0.015 76.0 1.060 0.121 1.00x 200
Fast Geometric (M=12) 96.3 0.126 0.015 75.4 1.157 0.122 1.00x 200
Sparse Subnetworks (M=6) 96.5 0.113 0.005 76.2 0.972 0.081 0.85x 200
Stochastic Annealing (M=6) 96.7 0.110 0.005 76.3 0.968 0.079 0.85x 200

TreeNet (M=3)∗ 95.9 0.258 0.018 75.5 0.969 0.137 1.52x 250
BatchEnsemble (M=4)∗ 96.2 0.143 0.021 77.5 1.020 0.129 4.40x 250
Multi-Input Multi-Output (M=3)∗ 96.4 0.123 0.010 76.6 0.927 0.112 4.00x 250
FreeTickets (EDST) (M=7)∗ 96.4 0.127 0.012 76.7 0.880 0.100 0.57x 850
FreeTickets (DST) (M=3)∗ 96.4 0.124 0.011 77.6 0.840 0.090 1.01x 750
Dense Ensemble (M=4)∗ 96.6 0.114 0.010 77.9 0.810 0.087 1.00x 800

Methods (CIFAR-100/WRN-28-10) Acc ↑ NLL ↓ ECE ↓ cAcc ↑ cNLL ↓ cECE ↓ FLOPs ↓ Epochs ↓

Independent Model∗ 79.8 0.875 0.086 51.4 2.700 0.239 3.6e17 200
Monte Carlo Dropout∗ 79.6 0.830 0.050 42.6 2.900 0.202 1.00x 200
Snapshot (M=5) 82.1 0.661 0.040 52.2 2.595 0.145 1.00x 200
Fast Geometric (M=12) 82.3 0.653 0.038 51.7 2.638 0.137 1.00x 200
Sparse Subnetworks (M=6) 82.7 0.634 0.013 52.7 2.487 0.131 0.85x 200
Stochastic Annealing (M=6) 83.1 0.633 0.010 52.8 2.440 0.131 0.85x 200

TreeNet (M=3)∗ 80.8 0.777 0.047 53.5 2.295 0.176 1.52x 250
BatchEnsemble (M=4)∗ 81.5 0.740 0.056 54.1 2.490 0.191 4.40x 250
Multi-Input Multi-Output (M=3)∗ 82.0 0.690 0.022 53.7 2.284 0.129 4.00x 250
FreeTickets (EDST) (M=7)∗ 82.6 0.653 0.036 52.7 2.410 0.170 0.57x 850
FreeTickets (DST) (M=3)∗ 82.8 0.633 0.026 54.3 2.280 0.140 1.01x 750
Dense Ensemble (M=4)∗ 82.7 0.666 0.021 54.1 2.270 0.138 1.00x 800

We implement Stochastic Annealing when tuning the child networks by using the pro-

cedure illustrated in Section 6.3.1 for Temperature Annealing. We initialize the binary

subnetwork masks with with a target sparsity of 0.5. We then modify the masks such that

the parameters with a value of zero are modified to have an initial temperature of τ = 0.5.

That value is decayed to τ = 0 over 3 annealing epochs using a cosine decay. We compare

the results of these Stochastic Subnetwork Ensembles tuned with Temperature Annealing to

the same low-cost methods described in the Chapter 5 (Sparse Subnetwork Ensembles).

We report the mean accuracy (Acc), negative log likelihood (NLL), and expected calibra-

tion error (ECE) over 10 runs on both CIFAR-10 and CIFAR-100 along with their corrupted

variants [63, 118]. We also report the total number of floating point operations (FLOPs)

and epochs used for training each method. We organize our tables into two groups based on

training cost. The first group consists of low-cost training methods that take approximately
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as long as a single network would take to train. The second group of methods use either

significantly more epochs or compute per epoch to achieve comparable performance.

6.4 Discussion

Stochastic Subnetwork Annealing offers a novel approach to tuning pruned models by

representing subnetworks with probabilistic masks. Rather than discretely removing pa-

rameters, we instead create probability matrices that alter the chance for parameters to

be retained on any given forward pass. We then anneal those probability values towards

a deterministic binary mask over several epochs. We introduce several approaches for con-

structing stochastic subnetworks. Random annealing samples from a uniform distribution

to assign random probabilities for every parameter, while temperature annealing applies an

even amount of stochasticity to all parameters not in the target subnetwork.

The efficacy of Stochastic Subnetwork Annealing is affirmed by recent insights revealed in

optimization research investigating the impact of warmup epochs [52,54,110]. Early epochs

are critical during optimization as they set the foundational trajectory for the rest of the

training process. Stochastic Subnetwork Annealing provides effective regularization during

the early epochs of subnetwork tuning to promote training stability and encourage robust

adaptation.

Our experiments display marked improvement over the established one-shot and iterative

pruning benchmarks for subnetworks at various levels of sparsity. This technique is especially

effective for very sparse models up to 98%. We conduct an extensive ablation study to

explore the dynamics of this technique with regard to different hyperparameters, pruning

methodologies, and learning rate schedules. We additionally implement this technique in the

context of Sparse Subnetwork Ensembles where we report significantly better performance

against benchmark ensemble methods.
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Chapter 7

Diversity Analysis

7.1 Introduction

Diversity is known to be an important consideration in the construction of robust neural

network ensembles [13, 91, 154]. A collection of well trained models will generalize better if

they are diverse in the patterns they respond to and the predictions they make. Diversity is

especially important for low-cost ensemble methods because members often share network

structure in order to avoid training several independent models from scratch. Diversity is

traditionally analyzed by measuring differences between the outputs of models. However,

this gives little insight into how knowledge representations differ between ensemble members.

Meanwhile, neural network interpretability methods continue to grow in popularity and

importance in machine learning research [182]. This field is shifting the preconceived notions

that deep neural networks act as black box models. By utilizing feature visualization and

saliency attribution techniques, it becomes possible to better explore how and why neural

networks make decisions by visualizing the types of patterns that specific neurons within the

network respond to. These methods are especially useful for evaluating low-cost ensemble

methods that share network structure, because we can meaningfully compare feature repre-

sentations of the same neuron in two different networks and visualize how they evolve and

change over time.

We explore these ideas by conducting a large scale analysis of both traditional diversity

metrics and this new interpretable approach in Sparse Subnetwork Ensembles. Our exper-

iments reveal that the unique network topology of Sparse Subnetwork children encourages

each ensemble member to learn and respond to unique patterns and feature representations.

This insight could be highly effective for building more robust ensemble techniques in the

future as our experiments offer a new perspective for analyzing diversity. The application of
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Table 7.1: Average prediction disagreement ratio and KL divergence between ensemble members
for several benchmark methods on CIFAR-10 with WideResNet-28x10. Results reported from
[61,106,161]

Methods dPDR ↑ dKL ↑ Acc ↑

Treenet 0.010 0.010 95.9
BatchEnsemble 0.014 0.020 96.2
EDST Ensemble 0.026 0.057 96.4
MIMO 0.032 0.081 96.4
Dense Ensemble 0.032 0.086 96.6
Snapshot Ensemble 0.034 0.068 96.3
DST Ensemble 0.035 0.095 96.4
Sparse Subnetwork Ensemble 0.036 0.090 96.5

interpretability techniques can be invaluable for better understanding how to measure and

promote diversity in low-cost ensembles.

7.2 Output Diversity

Several metrics have been used to quantify diversity in classification ensembles, the most

popular of which are the pairwise output correlation, Kullback-Leibler divergence, and pre-

diction disagreement ratio [91]. Pairwise Output Correlation measures the average correla-

tion between the outputs for each pair of models in the ensemble (Eqn. 7.1). Kullback-Leibler

Divergence measures the relative entropy between two probability distributions (Eqn. 7.2).

It approximately describes how different one probability distribution is from one another.

Prediction Disagreement Ratio measures the pairwise ratio of disagreements between the

predicted classes of models (Eqn. 7.3).

dcorr(f1, f2) =
1

N

N
∑

i=1

C
∑

c=1

cov(f1(xi)c, f2(xi)c)

σf1(xi)cσf2(xi)c

(7.1)

dKL(f1, f2) =
1

N

N
∑

i=1

C
∑

c=1

f1(xi)c log

(

f1(xi)c
f2(xi)c

)

(7.2)

dPDR(f1, f2) =
1

N

N
∑

i=1

argmax (f1(xi)) 6= argmax (f2(xi)) (7.3)
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Ensemble Accuracy ↑ Mean Correlation ↓

Sparse Subnetwork Ensemble (R) 0.840 0.893 ± 0.041
Sparse Subnetwork Ensemble (NP) 0.844 0.884 ± 0.045
Sparse Subnetwork Ensemble (NP + BAG) 0.839 0.868 ± 0.051

Figure 7.1: Pairwise correlation heatmaps for ResNet-18 on CIFAR-10. (R/NP) denotes random
pruning/neural partitioning. (BAG) denotes bootstrap aggregation.

where N is the number of test samples, xi in an input sample, fi(xi) is the output of a model,

argmax(fi(xi)) is the predicted class label, cov() is the covariance function, and σf(xi) is the

standard deviation of the output vector.

Table 7.1 displays average prediction disagreement ratios and KL divergences for several

low-cost ensembles on CIFAR-10 with WideResNet-28x10. These are the same ensembles

evaluated in the large scale benchmark experiments described in Chapters 5 and 6. Figure

7.1 displays the pairwise correlation values for three variations of Sparse Subnetwork Ensem-

bles. These include children created with random pruning (R), children created with neural

partitioning (NP), and children tuned with bootstrap aggregation (BAG). While bootstrap

aggregation does result in more diverse children, the accuracy is lower than methods where

the children are trained on the whole dataset.

7.2.1 Prediction Clusters

We next use t-distributed stochastic neighbor embedding (T-SNE) to visualize the rep-

resentations of test data predictions into lower dimensional clusters [155]. T-SNE builds
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Figure 7.2: T-SNE cluster representations of CIFAR-10 and WideResNet-28x10. The first row
is the representation of classes in CIFAR-10 that each of our models produce. The second row
displays the results of our model predictions and the final row displays the incorrect predictions.

these cluster visualizations by converting high dimensional outputs into a lower dimensional

embedding while preserving the relationships between neighboring data points. It does this

by first calculating a pairwise similarity between points in the high dimensional space using

a Gaussian kernel. Then the algorithm tries to map the high dimensional outputs to the low

dimensional space while preserving the pairwise similarity by minimizing the KL divergence

between them.

Figure 7.2 displays the results of this algorithm for the parent and child networks in

a Sparse Subnetwork Ensemble. The parent network is a WideResNet-28x10 trained on

CIFAR-10 using the training procedure described in the benchmark experiments in Chapters

5 and 6. These cluster visualizations can reveal interesting insights regarding diversity with

regard to the types of classes and predictions that are clustered together. The mispredictions

reveal significant diversity among child networks as these cluster visualizations illustrate their

distinct weaknesses.
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7.3 Interpretable Diversity

Evaluating diversity through outputs has notable limitations as it can paint an incomplete

picture of the underlying diversity within an ensemble. These metrics may be sensitive to

data distributions and depend heavily on individual member accuracy. Figure 7.1 provides

an example how a group of less accurate models with high diversity can perform worse than

a group of more accurate models with lower diversity. Because of this, output diversity

metrics can be misleading when comparing the results of different ensemble methods. These

diversity metrics alone are not sufficient to fully analyze the generalization capabilities of

different ensemble methods.

We explore how we can extend diversity analysis with neural network interpretability

methods. These methods can be used to quantify the diversity between models in the

learned feature spaces, rather than solely on output predictions. By visualizing the types of

patterns that ensemble members respond to, we can gain a more comprehensive look at how

diversity can play a role in decision making processes.

Feature visualization uses optimization to create images that maximize or minimize ac-

tivations of specific parts of the network. This is done by first initializing an image with

random noise. This image serves as the starting point for an optimization problem wherein

the objective is to maximize or minimize the activation of target neurons. This image is then

fed through a pre-trained network, where stochastic gradient descent is used to iteratively

update the pixel values of the image to optimize the activation of the designated neuron. The

resulting images offer critical insights into the types of patterns and features that particular

neurons respond to.

Saliency Maps visualize the gradient of a prediction with respect to the input image,

highlighting the parts of the input that a network responds strongly to. This is done by first

performing a forward pass through the network with a given input image. The saliency is

computed by setting all outputs of the non-predicted class to 0 and back propagating the

predicted class score back through to the inputs [132]. This is the gradient G(X) of the
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output of the predicted class label Yc with respect to the input image X. SmoothGrad was

later introduced as an extension that reduces noise in the visualizations by averaging the

gradient over several Gaussian perturbed inputs γ ∼ N (0, σ2) [137].

G(X) =
∂Yc
∂X

(7.4)

SG(X) =
1

N

N
∑

i=1

∂Yc
∂X + γi

(7.5)

7.3.1 Perceptual Hashing

Image similarity metrics are generally used to measure image quality as a response to

noise, corruption, or compression against a ground truth image [135]. While these metrics

are simple to compute and provide a straightforward quantitative measure, they tend to

be highly sensitive and may not correlate well with human perception of image quality.

Sensitivity to pixel level details and small spatial transformations can be problematic when

applied to images of feature visualizations that are generated via stochastic processes.

We instead introduce a robust image hash similarity based approach to quantifying di-

versity. Image hashing algorithms compress images into binary bit strings such that images

that are visually similar will result in hashes that are similar. The bits of the image hash are

spatially significant, so the similarity between two hashes can be described by the Hamming

Distance, which is the number of positions in which the bits of two hashes differ. Images

that are more similar will therefore have a lower Hamming Distance than images that are

diverse [177].

We use several popular image hashing algorithms for measuring the distances between

feature visualizations, including: average hash, perceptual hash, difference hash, wavelet

hash, and color hash [14]. Average hash, difference hash, wavelet hash and perceptual hash

all start by resizing a given image to an 8x8 pixel square and converting it to grayscale.

The hash is then constructed by assigning a 1 or 0 for each pixel in the block according

to some heuristic. Average Hash assigns a 1 if the pixel value is greater than the mean
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pixel value. Perceptual Hash does the same except all values are converted to the frequency

domain using a discrete cosine transformation first. Wavelet hash uses a discrete wavelet

transform instead of a discrete cosine transform. Difference hash is a gradient hash where

the difference between pixels values is compared to the mean difference between pixel values.

Finally, color hash maintains color information by skipping the grayscale step and instead

using the hue, saturation, and value space of an image separately.

7.4 Experiments

We conduct a large scale comparison between child networks in a Snapshot Ensemble and

a Sparse Subnetwork Ensemble. We start with an open source Inception network pre-trained

on ImageNet [123]. Following the hyperparameters given in the Snapshot Ensemble paper,

we continue training of the pre-trained network for two cycles of 40 epochs in length with a

cyclic cosine-annealing decay schedule with an initial learning rate of 0.1 and a final learning

rate of 1e-5 [70].

We use the same pre-trained network as the parent for the Sparse Subnetwork Ensemble

as well. Two child networks are created via neural partitioning with an unstructured spar-

sity target of 50%. Each child is fine tuned for 40 epochs using a one-cycle learning rate

schedule with a max learning rate of 0.1 and a final learning rate of 1e-5. We choose these

hyperparameters to match the computational budget defined in Snapshot Ensembles [70].

Using the child networks constructed above, we create feature visualizations of identical

neurons in each of the networks [83,151]. Feature visualizations are optimized using ADAM

with a learning rate of 0.05 for 1024 steps. Several random data augmentations are applied

at each step, including: jittering by up to 8 pixels, scaling by a factor between 0.95 and 1.05,

rotating by an angle between -5 and 5 degrees, and jittering a second time by up to 4 pixels.

We then compute 64 bit image hashes for each visualization (average hash, perceptual

hash, difference hash, wavelet hash, and color hash) and report the Hamming Distance

between each pair of child network visualization hashes.
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Parent

Child 1

Child 2

Snapshot Ensemble Subnetwork Ensemble

Method Average Hash Perceptual Hash Difference Hash Wavelet Hash Color Hash

Snapshot Ensemble 30.85± 0.27 30.77± 0.25 31.55± 0.28 30.94± 0.28 27.56± 0.39
Sparse Subnetwork Ensemble 31.16± 0.28 31.19± 0.25 31.60± 0.27 31.17± 0.27 32.74± 0.51

Figure 7.3: Feature visualizations of a random selection of neurons in child networks from a
Snapshot Ensemble and a Sparse Subnetwork Ensemble. Values reported are the mean hash dis-
tances between the two child networks over all 1024 visualizations in the final convolutional layer.
Higher values represent greater distance and more diversity between representations. The sparsity
from Subnetwork Ensembles results in more diverse feature representations than two subsequent
checkpoints in Snapshot Ensembles.

We first present feature visualizations from several neurons selected at random from

different layers within each network. Figure 7.3 displays some sample visualizations where

each column corresponds to the same neuron in each of the different networks. Subnetwork

children often focus on different elements present in the parent network’s visualization, while

Snapshot checkpoints appear to be much more highly correlated with the parent.

We extend these feature visualizations by analyzing every channel in the final convolu-

tional layer. Thus, for each pair of child networks, 1024 feature visualizations are created

for each. All of these visualizations are hashed using the algorithms described above and

then the distance between sibling network hashes are measured. These final neurons are

especially relevant as they represent the final stage of feature extraction before being fed

into the fully-connected classifier layers. They most closely illustrate how each child net-

work represents concepts and the differences over all the neurons in this layer will provide

a comprehensive overview on the diversity between network representations. The table in

Figure 7.3 reports the mean Hamming distances between each pair of child networks over
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Snapshot Checkpoint 1 Sparse Subnetwork Child 1Input

Parent Snapshot Checkpoint 2 Sparse Subnetwork Child 2

RMSE Average Hash Perceptual Hash Difference Hash Wavelet Hash

Snapshot Ensemble 0.06± 0.001 10.01± 0.04 18.12± 0.04 10.00± 0.04 15.13± 0.04
Sparse Subnetwork Ensemble 0.07± 0.001 11.13± 0.04 19.95± 0.04 11.03± 0.04 15.97± 0.04

Figure 7.4: Mean distances between Snapshot Ensemble and Sparse Subnetwork Ensemble
saliency maps for all 50,000 samples in the ILSVRC2012 ImageNet validation set. The visual-
ization includes SmoothGrad saliency maps for a shared parent network, two snapshot ensemble
checkpoints, and two sparse subnetwork children. The visualization is an example of how saliency
maps can be useful with ambiguous input as both snapshot checkpoints focus on the dog while the
subnetworks split their attention between the dog and the cat. The diversity encouraged by sparse
network structures help to reduce bias present in the parent network.

all feature visualization hashes. For every hashing algorithm we see more diversity in the

Sparse Subnetwork representations than in the Snapshot Ensemble.

We then explore how each ensemble method interprets input by creating SmoothGrad

saliency maps for each of the 50,000 samples in the ImageNet ILSVRC2012 validation set [27].

Figure 7.4 reports the average Root Mean Square Error, Average Hash, Perceptual Hash,

Difference Hash, and Wavelet Hash distance between each pair of child networks over all

91



50,000 images. We also include an example visualization of how saliency maps can be useful

when dealing with ambiguous inputs. We feed an image containing a puppy and a kitten to

each child network in the Snapshot and Subnetwork Ensemble and compute their saliency

maps. The parent network and the Snapshot checkpoints focus primarily on the puppy in

the input image. The subnetwork children split their attention, where one child focuses on

the puppy and the other on the kitten. This diversity can be valuable in building robust

ensembles as techniques that encourage diverse representations can help to reduce bias (focus

on the puppy) that is inherent in the parent network.

7.5 Discussion

Diversity is an important property of robust neural network ensembles. However, tra-

ditional measures of diversity focus only on model outputs and give little insight into how

ensemble members represent knowledge differently. We introduce a combination of inter-

pretability methods and perceptual hashing as an effective approach for qualitatively ana-

lyzing diversity and measuring the similarity between representations.

Diversity is especially important for low-cost ensemble methods as they tend to share

information between members in order to reduce computational cost. In particular, temporal

ensembles and evolutionary ensembles create members that inherit parameters and network

structure from previous iterations, which allows for meaningful comparisons between the

same neurons of different networks.

Our experiments explore how feature visualization and saliency maps could be useful

in comparing the diversity between members in Subnetwork Ensembles and we compare

that diversity to checkpoints taken in Snapshot Ensembles. We find that the sparsity and

unique network topology of sparse subnetwork children is highly effective for encouraging

diverse feature representations when compared to Snapshot Ensembles. Neural partitioning

ensures that the convolutional filters are geometrically opposed which results in convergence
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to unique and diverse optima. Despite the significant pruning that these children undergo,

Sparse Subnetwork Ensembles maintain high classification accuracy.

Interpretability methods are making deep neural networks more accessible and under-

standable, and we believe the introduction of these methods to ensemble learning can provide

better insights into diversity and aid in the construction of more robust low-cost ensembles.
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Chapter 8

Conclusions

8.1 Summary

We introduce and formalize Subnetwork Ensembling as a general framework for creating

ensembles of deep neural networks, where a large parent network is trained and then used

to spawn an ensemble of child networks through a perturbative process applied to randomly

sampled subnetworks in the parent. Several methods were explored for constructing and

optimizing child networks through noise perturbations, network pruning, and stochastic

masking. We augment these processes with the introduction of Neural Partitioning, which

is an effective variance reduction technique where the parameters of parent networks are

divided into sets of children with no parametric overlap. This work is grounded in the

landscape of modern deep ensemble learning research where each method was thoroughly

evaluated across a number of benchmark tasks and ablation studies.

We frame Noisy Subnetwork Ensembles as a no-cost ensemble approach where a collec-

tion of noise perturbed children can reliably improve generalization on the difficult tasks

without requiring any additional training. We relate some of the principles behind this work

to popular ideas in Neuroevolutionary research. We build on this with Sparse Subnetwork

Ensembles where a fine tuning phase is applied to sparse children to significantly improve

the predictive capacity of the ensemble. The unique sparse network topology encourages

child networks to converge to unique optima. We compare Sparse Subnetwork Ensembles

to many recent ensemble learning methods and we observe state-of-the-art performance on

fixed training budget benchmarks. We further improve performance with the introduction

of Stochastic Subnetwork Ensembles, where subnetworks are represented with probability

matrices that govern parameter activation on forward passes. We slowly anneal the prob-

ability values of the stochastic mask over time towards a deterministic target subnetwork.
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We observe significant improvements over established one-shot and iterative pruning base-

lines and we further improve performance on benchmarks explored with Sparse Subnetwork

Ensembles.

We then conduct a large scale analysis of diversity in Sparse Subnetwork Ensembles.

We first explore the diversity of predictions through common diversity metrics used in en-

semble learning literature. We then introduce a novel approach to analyzing feature space

diversity by leveraging network interpretability methods. We use feature visualization and

saliency maps to visualize knowledge representations with ensemble members. We introduce

perceptual hashing algorithms as a means to quantify the visual differences between feature

representations. We compare the results of these investigations to another popular low-cost

ensemble method called Snaphshot Ensembles, where we found that Sparse Subnetwork En-

sembles display significantly more representational diversity among sibling networks. These

results reaffirm the hypothesis that topological structure plays a critical role in encouraging

diverse and robust learning.

8.2 Discussion

Subnetwork Ensembling proves to be a highly effective technique for improving the train-

ing efficiency, parametric utilization, and generalization of deep ensembles while minimizing

computational cost. We achieve this by uniting several important concepts and insights

observed in deep learning research. Utilizing a large overparameterized parent network fa-

cilitates better convergence efficiency and training dynamics. These trained parent networks

often contain large amounts of redundancy that we can leverage to construct accurate child

networks that train quickly. Utilizing different subspaces of the parent network encourages

diverse representations among child networks as topological transformations affect the under-

lying optimization landscape. The introduction of sparsity, through subnetwork sampling,

serves as a regularization effect that leads to more robust solutions. This leads to more
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diversity among child networks as distinct network topologies can transform the underlying

optimization landscape such that child networks converge to diverse local optima.

This approach also offers several unique advantages over competitive low-cost ensemble

methods. Parent networks can be optimized independently of the child networks which allows

for flexibility with network architectures, regularization techniques, and training procedures.

Child networks can be generated and trained quickly, which enables dynamic growth of

ensemble sizes and parallel wide scaling. Child networks can be made to be very sparse

with little discernible loss in accuracy which holds great potential for reducing memory and

storage costs.

While Subnetwork Ensembles offer numerous advantages for improving training efficiency,

generalization, and computational requirements, it is not without its limitations. Subnetwork

Ensembles are fundamentally constrained by the size and capability of the parent network.

This necessitates a parent network that is large enough to ensure that sampled subnetworks

can produce accurate solutions. Furthermore, our research prioritizes the efficient training

of these ensembles, which is an increasingly important consideration as the training costs

of large scale neural networks are becoming prohibitively expensive and time consuming.

However, it is important to note that there is a large body of work that instead looks to op-

timize the inference cost of evaluating ensembles. Our methodology entails separate forward

passes for each subnetwork, rendering it less efficient than pseudo-ensemble techniques that

incorporate members into a unified model.

One objective of our investigation into Subnetwork Ensembles is to formulate this pro-

cess under a generalized framework that could provide a foundation for conducting future

research. Emerging network architectures, algorithmic techniques, modalities and problem

domains offer new opportunities for implementing these ensembles to improve generalization

at minimal cost. Connections between Subnetwork Ensembles and observed structures in

biological neural networks may hold interesting prospects for research that aims to bridge

the gaps between machine learning and neuroscience. Our approach would also be a nat-
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ural fit for multitask learning, which is an important area of research for artificial general

intelligence. If the trend of increasing model scale continues, the utilization of subnetworks

may become increasingly important for training large models. Colossal super networks may

become so large that traditional optimization methods become infeasible and will instead

need to rely on the isolation, distribution, and organization of its subnetworks.

As artificial intelligence continues to become a larger part of the cultural conversation,

it’s interesting to consider how our research impacts the ways in which we view the world.

Just as Subnetwork Ensembles benefit from the harmonious interaction of its members, so

too does the universe operate through interconnected relationships at all scales. From the

diverse set of subatomic quanta that form space-time, to the delicate balance of ecosystems

that support life, and even to the gravitational relationships between celestial bodies. We

consider how communities at all scales thrive when diverse perspectives and properties are

integrated. Subnetwork Ensembles can serve as a compelling metaphorical lens through

which to examine the intricate and complex set of relationships that define and sustain the

natural world.
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[136] Zuzana Šǐsková, Marie-Ève Tremblay, et al. Microglia and synapse: interactions in

health and neurodegeneration. Neural plasticity, 2013, 2013.

[137] Daniel Smilkov, Nikhil Thorat, Been Kim, Fernanda Viégas, and Martin Wattenberg.

Smoothgrad: removing noise by adding noise, 2017.

[138] Leslie N. Smith and Nicholay Topin. Super-convergence: Very fast training of neural

networks using large learning rates. In Artificial Intelligence and Machine Learning

for Multi-Domain Operations Applications, 2018.

[139] Olaf Sporns. Networks of the Brain. MIT press, 2016.

[140] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan

Salakhutdinov. Dropout: A simple way to prevent neural networks from overfitting.

Journal of Machine Learning Research, 15(56):1929–1958, 2014.

111



[141] Kenneth O. Stanley and Risto Miikkulainen. Evolving neural networks through aug-

menting topologies. Evolutionary Computation, 10(2):99–127, 2002.

[142] Julian Stier and Michael Granitzer. Structural analysis of sparse neural networks.

Procedia Computer Science, 159:107–116, 2019.

[143] David Stutz, Matthias Hein, and Bernt Schiele. Relating adversarially robust general-

ization to flat minima, 2021.

[144] Ilya Sutskever, James Martens, George Dahl, and Geoffrey Hinton. On the impor-

tance of initialization and momentum in deep learning. In Sanjoy Dasgupta and

David McAllester, editors, Proceedings of the 30th International Conference on Ma-

chine Learning, volume 28 of Proceedings of Machine Learning Research, pages 1139–

1147, Atlanta, Georgia, USA, 17–19 Jun 2013. PMLR.

[145] A. Swann and N. Allinson. Fast committee learning: preliminary results. Electronics

Letters, 34:1408–1410, 1998.

[146] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir

Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. Going deeper

with convolutions, 2014.

[147] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan,

Ian Goodfellow, and Rob Fergus. Intriguing properties of neural networks, 2014.

[148] Mingxing Tan and Quoc V. Le. Efficientnet: Rethinking model scaling for convolutional

neural networks, 2020.

[149] Hidenori Tanaka, Daniel Kunin, Daniel L. K. Yamins, and Surya Ganguli. Pruning

neural networks without any data by iteratively conserving synaptic flow, 2020.

112



[150] Amirhossein Tavanaei, Masoud Ghodrati, Saeed Reza Kheradpisheh, Timothée

Masquelier, and Anthony Maida. Deep learning in spiking neural networks. Neural

networks, 111:47–63, 2019.

[151] Tensorflow. Lucid. https://github.com/tensorflow/lucid, 2021.

[152] Timothy J Teyler and P DiScenna. Long-term potentiation. Annual review of neuro-

science, 10(1):131–161, 1987.

[153] Jonathan Tompson, Ross Goroshin, Arjun Jain, Yann LeCun, and Christopher Bregler.

Efficient object localization using convolutional networks, 2015.

[154] N. Ueda and R. Nakano. Generalization error of ensemble estimators. In Proceedings

of International Conference on Neural Networks (ICNN’96), volume 1, pages 90–95

vol.1, 1996.

[155] Laurens van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. Journal

of Machine Learning Research, 9(86):2579–2605, 2008.

[156] Li Wan, Matthew Zeiler, Sixin Zhang, Yann Le Cun, and Rob Fergus. Regularization of

neural networks using dropconnect. In Sanjoy Dasgupta and David McAllester, editors,

Proceedings of the 30th International Conference on Machine Learning, volume 28 of

Proceedings of Machine Learning Research, pages 1058–1066, Atlanta, Georgia, USA,

17–19 Jun 2013. PMLR.

[157] Liyuan Wang, Xingxing Zhang, Hang Su, and Jun Zhu. A comprehensive survey of

continual learning: Theory, method and application, 2023.

[158] Abdul Wasay, Brian Hentschel, Yuze Liao, Sanyuan Chen, and Stratos Idreos. Moth-

ernets: Rapid deep ensemble learning. arXiv preprint:1809.04270, 2018.

[159] Yeming Wen, Dustin Tran, and Jimmy Ba. Batchensemble: An alternative approach

to efficient ensemble and lifelong learning, 2020.

113



[160] Paul J Werbos. Backpropagation through time: what it does and how to do it. Pro-

ceedings of the IEEE, 78(10):1550–1560, 1990.

[161] T. Whitaker and D. Whitley. Prune and tune ensembles: Low-cost ensemble learning

with sparse independent subnetworks. In Proceedings of the 36th AAAI Conference on

Artificial Intelligence, 2022.

[162] Darrell Whitley. A genetic algorithm tutorial. Statistics and computing, 4:65–85, 1994.

[163] Darrell Whitley. An overview of evolutionary algorithms: practical issues and common

pitfalls. Information and software technology, 43(14):817–831, 2001.

[164] Daan Wierstra, Tom Schaul, Tobias Glasmachers, Yi Sun, and Jürgen Schmidhuber.

Natural evolution strategies, 2011.

[165] Ashia C Wilson, Rebecca Roelofs, Mitchell Stern, Nati Srebro, and Benjamin Recht.

The marginal value of adaptive gradient methods in machine learning. Advances in

neural information processing systems, 30, 2017.

[166] D.H. Wolpert and W.G. Macready. No free lunch theorems for optimization. IEEE

Transactions on Evolutionary Computation, 1(1):67–82, 1997.

[167] Mitchell Wortsman, Gabriel Ilharco, Samir Yitzhak Gadre, Rebecca Roelofs, Raphael

Gontijo-Lopes, Ari S. Morcos, Hongseok Namkoong, Ali Farhadi, Yair Carmon, Simon

Kornblith, and Ludwig Schmidt. Model soups: averaging weights of multiple fine-tuned

models improves accuracy without increasing inference time, 2022.

[168] Stephen J Wright. Numerical optimization. 2006.

[169] Shen Wu, Jandhyala Sridhar, Yashwant Malaiya, and Anura Jayasumana. Antirandom

testing: A distance-based approach. Journal of VLSI Design, 2008.

[170] Jingjing Xie, Bing Xu, and Zhang Chuang. Horizontal and vertical ensemble with deep

representation for classification. arXiv preprint: 1306.2759, 2013.

114



[171] Saining Xie, Ross Girshick, Piotr Dollár, Zhuowen Tu, and Kaiming He. Aggregated

residual transformations for deep neural networks, 2017.

[172] Xin Yao and Md. Monirul Islam. Evolving artificial neural network ensembles. IEEE

Computational Intelligence Magazine, 3(1):31–42, 2008.

[173] Shaokai Ye, Kaidi Xu, Sijia Liu, Jan-Henrik Lambrechts, Huan Zhang, Aojun Zhou,

Kaisheng Ma, Yanzhi Wang, and Xue Lin. Adversarial robustness vs model compres-

sion, or both?, 2021.

[174] Mingjie Wang Vikas Rajpurohit Yuanzhe Zhou Yirun Zhang, Colton Smith. Jane

street market prediction, 2021.

[175] Jason Yosinski, Jeff Clune, Yoshua Bengio, and Hod Lipson. How transferable are

features in deep neural networks?, 2014.

[176] Sergey Zagoruyko and Nikos Komodakis. Wide residual networks. arXiv preprint:

1605.07146, 2016.

[177] Christoph Zauner. Implementation and benchmarking of perceptual image hash func-

tions. 2010.

[178] Matthew D. Zeiler. Adadelta: An adaptive learning rate method, 2012.

[179] Chiyuan Zhang, Oriol Vinyals, Remi Munos, and Samy Bengio. A study on overfitting

in deep reinforcement learning, 2018.

[180] Guodong Zhang, Chaoqi Wang, Bowen Xu, and Roger Grosse. Three mechanisms of

weight decay regularization, 2018.

[181] Xiangyu Zhang, Xinyu Zhou, Mengxiao Lin, and Jian Sun. Shufflenet: An extremely

efficient convolutional neural network for mobile devices, 2017.

115
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