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ABSTRACT

ACCELERATING NOVA’S FELDMAN-COUSINS PROCEDURE USING HIGH

PERFORMANCE COMPUTING PLATFORMS

In order to assess the compatibility between models containing physically constrained

parameters and small-signal data, uncertainties often must be calculated by Monte Carlo

simulation to account for non-normally distributed errors. This is the case for neutrino os-

cillation experiments, where neutrino-matter weak interactions are rare and beam intensity

at the far site is low. The NuMI Off-axis νe Appearance (NOvA) collaboration attempts to

measure the parameters governing neutrino oscillations within the PMNS oscillation model

by comparing model predictions to a small data set of neutrino interactions. To account for

non-normality, NOvA uses the computationally intensive Feldman-Cousins (FC) procedure,

which involves fitting thousands of independent pseudoexperiments to generate empirical

distribution functions that are used to calculate the significance of observations. I, along

with collaborators on NOvA and Scientific Discovery through Advanced Computing: High

Energy Physics Data Analytics (SciDAC-4) collaborations, have implemented the FC pro-

cedure utilizing the High Performance Computing (HPC) facilities at the National Energy

Research Scientific Computing Center (NERSC). With this implementation, we have suc-

cessfully processed NOvA’s complete FC corrections for our recent neutrino + antineutrino

appearance analysis in 36 hours: a speedup factor of 50 as compared to the methods used

in previous analyses.
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CHAPTER 1

Introduction

”In the beginning there was nothing, which exploded.”

Terry Pratchett

The NOvA (NuMI Off-axis νe Appearance) experiment is a long-baseline neutrino oscil-

lation experiment designed to measure the oscillation parameters ∆m2
32, θ23, θ13, and δCP

of the PMNS neutrino oscillation matrix, as well as the neutrino mass hierarchy, through

observation of νe appearance (νµ →νe). Employing a two-detector design, the neutrino con-

tent of the NuMI (Neutrinos at the Main Injector) beam observed in the Near Detector

(ND) is used to predict what would be observed in the Far Detector (FD) under oscillation

hypotheses. The best-fit PMNS parameters are determined by comparing FD prediction to

observation by likelihood maximization. Statistical power of the parameter estimation is

quantified using the computationally intensive unified ordering principle from Feldman and

Cousins [1], which corrects for highly non-Gaussian (non-normal) uncertainties.

The unified ordering principle, or Feldman-Cousins (FC) procedure, involves generating

millions of statistically-fluctuated FD prediction spectra that are used to populate distri-

butions of the −2 log-likelihood test-statistic resulting from NOvA’s fitting procedure. The

distributions that are produced are used to calculate the statistical power of NOvA’s param-

eter estimation based on the observed data. Recent inclusion of antineutrino data increases

the computational demand of the fitting procedure, motivating NOvA to expand their pool

of computational resources to include the High Performance Computing facilities (HPC) at

1



NERSC. This thesis presents an overview of the NOvA experiment, the FC procedure, and

the modifications to NOvA’s existing FC infrastructure required for HPC environments like

NERSC. Also included are the performance results achieved during two dedicated computing

resource reservations at NERSC during which NOvA’s full FC corrections were processed,

implications for future analyses, and future and on-going work to improve and expand the

newly developed FC infrastructure.
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CHAPTER 2

Neutrino Physics

”We cannot solve our problems with the same thinking

we used when we created them.”

Albert Einstein

2.1. The Standard Model of Particle Physics

The Standard Model (Fig. 2.1) of particle physics summarizes our current understanding

of the fundamental particles in the universe and how they interact. It is made up of two

categories of particles: matter and force mediators. Matter is further divided into quarks

and leptons. Quarks are charged particles that make up larger particles called hadrons, like

protons, neutrons, kaons, and pions. They interact via the strong, weak, and electromagnetic

force mediated by the gluon (g), the W and Z bosons, and the photon, respectively. Leptons

include the electron (e), muon (µ), and tau (τ) particles, and their much lighter partners,

the electron (νe), muon (νµ), and tau (ντ ) neutrinos. Neutrinos are light, neutral particles

that are named after their more massive partners with which they exclusively interact via

charged current (CC) interactions mediated by the W± bosons. Neutrinos can also interact

with any flavor of lepton or quark through a neutral current (NC) process mediated by the

Z0. Although first thought to be massless, in 1957, Bruno Pontecorvo [2] hypothesized that if

neutrinos did have mass, they could change type, or oscillate, during propagation over long

distances, eg. νµ → νe. Finally, in 1998, the Super-Kamiokande collaboration confirmed

3



observation of oscillation due to non-zero masses while studying the time-of-day-varying flux

of neutrinos produced in the atmosphere from cosmic ray interactions [3].

Figure 2.1. The Standard Model of Particle Physics

2.2. Neutrino Oscillations

Neutrinos oscillate because they travel through space in different quantum mechanical

states than the ones in which they interact with matter. These states are related by a unitary

transformation that transforms an energy representation into an interaction representation,

and vice versa. Neutrino mass is associated with energy and type, or flavor, is associated

with interaction.

For the case of two dimensional spaces, or two-flavor oscillations, the unitary transfor-

mation is a simple coordinate rotation (Fig. 2.2). The flavor states are labeled νe and νµ

because the neutrinos interact with the muon and electron via the weak force. The mass

4



Figure 2.2. Transformation from energy to weak representations as a rota-
tion in IR2.

states are labeled ν1 and ν2. These energy states time-evolve quantum mechanically accord-

ing to Schrödinger’s equation. In natural units†, this leads to,

(2.1) |νi(t)〉 = e−iEit |νi(0)〉

Then the flavor states, νe and νµ, can be expressed as time dependent superpositions of the

mass states.

(2.2)

|νe(t)〉 = cos θ |ν1(t)〉 − sin θ |ν2(t)〉

|νµ(t)〉 = sin θ |ν1(t)〉+ cos θ |ν2(t)〉

Oscillations occur as this superposition evolves through space and time. The quantum me-

chanical probability of oscillating from flavor α to flavor β is the inner-product | 〈να(t)|νβ(0)〉 |
2.

This formalism generalizes to three dimensions by including one additional flavor and

mass state, ντ and ν3. The analogous transformation is the 3×3 matrix, UPMNS, which is

†
~ = c = 1
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parameterized by three mixing angles, θ13, θ23, θ12, and a complex phase δCP (Eq. 2.2),

UPMNS =















1 0 0

0 c23 s23

0 −s23 c23





























c13 0 s13e
−iδCP

0 1 0

−s13e
iδCP 0 c13





























c12 s12 0

−s12 c12 0

0 0 1















=















c12c13 s12c13 s13e
−iδCP

−s12c23 − c12s13s23e
iδCP c12c23 − s12s13s23e

iδCP c13s23

s12s23 − c12s13c23e
iδCP −c12s23 − s12s13c23e

iδCP c13c23















where sij = sin θij and cij = cos θij. Now, the probability of oscillating from type α to β is,

(2.3)

P (να → νβ) = | 〈να|νβ〉 |
2 = δαβ − 4

∑

i<j

Re[UαiU
∗
βiU

∗
αjUβj] sin

2
(∆m2

ijL

4E

)

+ 2
∑

i<j

Im[UαiU
∗
βiU

∗
αjUβj] sin

2
(∆m2

ijL

4E

)

where the time dependence has been replaced by length L assuming the neutrinos are trav-

eling close to the speed of light. From (2.3) it can be seen that the oscillation probabilities

are in general dependent on the mass-squared differences (∆m2
ij = m2

i − m2
j), and that

oscillations will not occur if the neutrinos are massless or have the same mass.

Experiments studying neutrino oscillations aim to measure the values of these parame-

ters; those of particular interest being θ13, θ23, and δCP . A non-zero measurement of δCP

would support theories concerning the matter/antimatter symmetry in the universe; and

a measurement of θ23 = 45o could reveal a symmetry between νµ and ντ and how they

contribute to the mass states.

Though Equation 2.3 was derived for neutrinos traveling in vacuum, an analogous ex-

pression exists for neutrinos traveling through matter. The addition of the matter potential

6
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Figure 2.3. Normal (left) and inverted (right) neutrino mass hierarchies.
Colors indicate neutrino interaction states νe (red), νµ (blue), and ντ (green).

perturbative Hamiltonian results from the forward scattering of neutrinos off of matter, dis-

proportionately effecting electron neutrinos due to an added charged-current contribution

from electrons within the matter. It is because of this perturbation that the sign of ∆m2
32

can be measured by terrestrial long-baseline experiments, whereas the vacuum probability

(2.3) is only dependent on |∆m2
32|.

Whether ∆m2
32 > 0 or ∆m2

32 < 0 is known as the mass ordering, problem, and making

this determination is one of the main physics goals of long-baseline oscillation experiments.

The former would imply that the neutrino mass states are ordered similarly to the charged-

lepton cousins (Fig. 2.3), and therefore is refered to as a Normal Hierarchy (NH); the

latter, Inverted Hierarchy (IH). The mass hierarchy has important implications relevant to

experiments like EXO [4] that are designed to put constraints on the absolute neutrino

masses and determine whether neutrinos are their own antiparticles (Majorana particles)

through the observation of neutrino-less double beta decay (0νββ). If the hierarchy is found

to be normal, the half-life of a 0νββ decay may be well outside the sensitivity of current

experiments [5].
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CHAPTER 3

The NOvA Experiment

”Science is the organized skepticism in the reliability

of expert opinion.”

Richard Feynman

3.1. Long-Baseline Neutrino Experiments

Long-baseline neutrino experiments are designed for maximum sensitivity to νµ disap-

pearance (νµ → νµ) and νe appearance (νµ → νe) oscillations with the primary goals of

measuring the oscillation parameters including the mass hierarchy. The νµ disappearance

is dominated by the parameters sin2 θ23 and |∆m2
32|, while the νe appearance provides con-

straints on δCP and the sign of ∆m2
32. Long-baseline neutrino experiments, like the NuMI

Off-axis νe Appearance (NOvA) experiment, measure these parameters with a joint fit to

the appearance and disappearance probabilities, while constraining the remaining oscillation

parameters, θ13, θ12, ∆m2
12, and ∆m2

13, to their values measured by other experiments [6] as

compiled by the Particle Data Group (PDG).

The measurement is made possible by a formulaic design common to all long-baseline

neutrino oscillation experiments (Fig. 3.1). A beam of neutrinos is created by the decay

of kaons and pions, which for example can be produced by proton-graphite collisions. The

beam is then sampled by a Near Detector (ND) in order to characterize its composition.

Continuing through the Earth’s crust, the neutrinos oscillate over a large distance, or base-

line, as discribed in Section 2.2. Finally, some of the neutrinos interact with the matter in

8



Figure 3.1. Cartoon of a long-baseline neutrino oscillation experiment.
Mesons, mostly kaons and pions, are focused by focusing horns (1) and left
to decay into neutrinos while traveling through a decay pipe (2). The neutri-
nos travel to the near detector (3) used to characterize the beam. They then
oscillate while traveling large distances through Earth’s crust and some are
measured in the Far Detector (4).

the Far Detector (FD) and are identified as either νe, νµ, or ντ based on the detection of the

interactions caused by their heavier partners. The resulting number of identified neutrinos

(νµ and νe separately) are compared to what would be expected under different parameters

of the PMNS matrix (2.2), and the best-fit parameters are extracted.

3.2. The Neutrino Beam

The neutrino beam utilized by NOvA is provided by the Neutrinos at the Main Injector

(NuMI) beam facility [7] at Fermi National Accelerator Laboratory (Fermilab). The NuMI

facility accelerates protons from the Fermilab Main Injector to 120 GeV. These protons are

extracted and directed toward a graphite target. The collisions create mostly charged kaon

and pions, which decay via K+(−) → µ+(−) + ν
(–)

µ and π+(−) → µ+(−) + ν
(–)

µ. The focusing

horns (Fig. 3.2) select the sign of the charged particles depending on the direction of the

magnetic field, which is tunable by an applied current. The horn system acts as a lens with

focal length equal to the momentum of the hadron, resulting in a mostly collimated beam of

hadrons that eventually decay into neutrinos and antineutrinos in the 675 m long decay pipe.

9



Figure 3.2. Neutrino production from NuMI. The magnetic horns (#1, #2)
enable the selection of either positively or negatively charged hadrons, which
are then allowed to decay in the Decay Pipe.

Hadron monitors are positioned downstream of the decay pipe to measure the intensity and

integrity of the beam through detection of the predominately proton flux. Similarly, muon

monitors measure the intensity of muon flux. Since the muons and neutrinos originate from

the same decay process, muon flux can be used to characterize the neutrino flux by kinematic

considerations. Hadron and muon absorbers stop the leftover beam and decay products to

prevent these particles from interacting in the NOvA and MINOS [8] near detectors.

3.3. The NOvA Detectors

The NOvA experiment employs a two detector design to sample the neutrinos before

and after propagation. A 220 ton ND is situated 100 m underground 1 km away from the

beam target and is used to characterize the neutrino beam from NuMI. The FD is located

on the surface at Ash River, MN, 810 km from the beam source. Both detectors are placed

14 mrad off of the beam axis, which narrows the energy spectrum of incoming neutrinos and

reduces background in the signal region from neutral current events, while also ensuring a

near maximal νe appearance probability as shown in figure 3.4.

Muons originating from cosmic rays and muon neutrinos interacting with the rock that

surrounds the detector make up a significant amount of background that must be subtracted
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in order to identify the neutrino events used in the analysis. The overburden (rock and dirt)

above the ND provides shielding from cosmic rays, reducing this type of background to a

negligible level (30 Hz). The FD, however, sits on the surface and is exposed to cosmic rays at

a rate of 130 kHz. This background is reduced by strict selection criteria, which discard events

that occur outside the 10 µs beam spill, events that are not contained within the fiducial

volume of the detector, and vertical tracks. An additional reduction step is performed by

a boosted decision tree that is trained on cosmic ray events that occur outside the beam

spill using reconstructed kinematic and detector position variables. Similar selection criteria

reduce the background due to neutrinos interacting with the rock surrouding both detectors

to a negligible amount.

3.3.1. Detector Composition. The NOvA detectors are composed of rectangular ex-

truded PVC tubes, called cells, that are filled with liquid scintillator and wavelength-shifting

fibers as shown on the right side of Figure 3.5. Two sixteen-cell extrusions form a module,

and the modules are arranged alternating between vertical and horizontal orientations (Fig.

11



0 5 10 15

 [GeV]νE

0

0.02

0.04

0.06

0.08

)
eν

→ µν
P

(

Figure 3.4. Oscillation probability for νe appearance as a function of energy
at the NOvA baseline length of L = 810 km and δCP = 0.

3.5). Charged particles resulting from neutrino-matter interactions within these cells excite

the liquid scintillator resulting in emitted light that is collected in the wavelength-shifting

fibers. The fibers shift the blue light (400− 450 nm) emitted from the scintillators to green

light (490− 550 nm), some of which is directed into Avalanche Photo Diodes (APD), which

have an 80% quantum efficiency in the range of the collected light. The signal from an APD

is amplified, digitized, and fed into the data acquisition system, where the signals from cells

containing intensity and timing information can be collected into two and three dimensional

images by virtue of the alternating planes. These images facilitate particle and event iden-

tification used for the reconstruction of the neutrino properties important for the oscillation

analysis.
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Figure 3.5. The NOvA Detectors. Modules of extruded PVC filled with liq-
uid scintillator are arranged in alternating horizontal and vertical orientations
(left). Neutrinos interact with the scintillator (middle), which subsequently
emits light that is picked up by wavelength-shifting fiber in each cell (right).
The signal from the light is digitized and sent to the Data Acquisition system
to be later processed by the analysis.
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CHAPTER 4

The NOvA Neutrino Oscillation Analysis

”I was taught that the way of progress was neither

swift nor easy.”

Marie Curie

The NOvA collaboration’s neutrino oscillation analysis is performed by using ND data to

create predictions of the FD neutrino energy distributions. These predictions are compared

to the FD data in order to extract the best-fit oscillation parameters. The main components

that make the analysis possible are the following:

Identify and reconstruct candidate ND neutrino events: Particle interac-

tions within the ND are isolated in space and time to form what are called events.

Raw signals that make up the events are used to estimate the energy of the neutrinos

from which the particles originate.

Extrapolate to FD: Reconstructed ND data are used to predict the neutrino

energy spectrum observed in the FD.

Measure FD neutrino energy spectrum: Identical event identification and

reconstruction techniques used in the ND are used to determine neutrino energy

spectrum observed in the FD.

Determine oscillation parameters: The FD prediction that most closely matches

the data is determined and oscillation parameters are extracted.
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4.1. Event Identification and Reconstruction

4.1.1. Particle Reconstruction. The first step in the event identification compo-

nent is to cluster cell hits in the detector in space and time into a single object called an

event. The event is then processed by an algorithm based on Hough Transforms called Elas-

tic Arms [9] to identify prominent particle trajectories and the interaction vertex. Cell hits

within the event are then associated with prominent Hough lines using a FuzzyK algorithm

[9] in order to cluster together hits that originated from a single particle; the resulting clus-

ters are called prongs. This is done separately in both vertical and horizontal planes. Three

dimensional clusters are reconstructed by associating 2D prongs in time, space, and energy

deposition per unit length [9].

These data products can then be classified at the event level and individual particle

level by a series of Convolutional Vision Networks (CVN), which are image recognition

Convolutional Neural Networks developed by NOvA [10]. The ”images” NOvA’s CVNs

process are pixel mappings of the cells within the detectors onto matrix elements containing

associated deposited energy. Images are classified at the event level (EventCVN) with only

these pixel mappings as the input; particles are classified with these pixel mappings as well

as the isolated prongs (ProngCVN) [11]. The output from the two CVNs are vectors of

”scores” corresponding to the likelihood that a given event is νµ-CC, νe-CC, or NC or a

given particle is a proton, muon, electron, pion, or photon. Figure 4.1 shows an example of

the muon Particle Identity (PID) score output from ProngCVN.

4.1.2. Energy Estimation. The neutrinos used in NOvA’s oscillation analysis are

characterized by neutrino flavor and reconstructed energy. In order to accurately reconstruct

neutrino energy, the detector must be calibrated against the observation of well-understood

15



Figure 4.1. Sample muon PID score from simulated true muon events as
classified by ProngCVN.

phenomenon, in this case cosmic muons. An absolute scaling is done by examining the energy

deposited per unit length (dE/dx) at the end of a cosmic muon track and comparing with

known dE/dx curves (Bethe-Bloch curves). A cell-by-cell calibration using through-going

cosmic ray muons must also be performed due to the attenuation from the wavelength-

shifting fibers [11]. Together, these two calibration corrections allow for the correspondence

between detector signal and the energy seen in the detector, or calorimetric energy.

Due to differences in the way the detectors respond to different types of particles, the

calorimetric energy must be converted into an event energy based on the type of particles

interacting within the detector. For electron neutrino events, calorimetric energy is divided

into electromagnetic or hadronic contributions based on the characteristics of the prongs

from which the energy deposition originated. The corresponding energies are then fed into

a conversion function to calculate the neutrino’s ”reconstructed” energy. This function is

found by fitting simulated reconstructed energies of events to their true energies. Muon
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Figure 4.2. Extrapolation of νµ events in the near detector to predicted far
detector spectrum of signal νe’s.

neutrino energy is found by identifying the daughter muon within an identified νµ-CC event

with a Kalman filter algorithm [12] and extracting its true energy from the length of the

muon track, again using the Bethe-Bloch formula. The hadronic energy is found by similarly

fitting a linear function of measured hadronic energy to the hadronic portion of the true

energy.

4.2. Event Selection and Extrapolation

The ND is used to characterize the neutrino beam to produce data-driven predictions

of oscillated neutrino energy distributions observed in the FD. First, νµ events are detected

in the ND and those that pass PID and data quality cuts are divided into histogram bins

of reconstructed energy. Monte Carlo simulation of the beam, neutrino interactions in the

detector, and detector response are tuned according to these data. Individual components

of the beam simulation (νe, νµ, ντ ) are extrapolated to the FD according to oscillation

hypotheses in true neutrino energy, detector acceptance, and efficiency. By inverting the

reconstructed-to-true energy transformation, a FD prediction of signal νe’s (νe’s originating

from νµ → νe) is produced (Fig. 4.2).
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4.3. Systematics

Systematic uncertainties are quantified using Monte Carlo and data-driven simulation.

Independently-generated Monte Carlo data sets are created for each systematic uncertainty

by shifting only the relevant quantity up or down by their 1σ values. These include uncer-

tainties due to the extrapolation process, detector calibration, and interaction cross sections.

The shifted data sets, which are assumed to be orthogonal to one another, are extrapolated

to the FD identically to the nominal data set to quantify the effect that the individual sys-

tematic uncertainties have on the expected levels of signal and backgrounds. By taking the

ratio of the systematically shifted FD predictions to the nominal predictions, the systematics’

1σ shifts are obtained and used in the fitting procedure described in the next section.

4.4. Oscillation Fits

The extrapolated predictions are used to predict what is expected from the data under

the assumption of chosen values of oscillation parameters, ~θ, as well as shifted systematic

uncertainties, ~s. This allows for the comparison between data and prediction under different

values of oscillation parameters and systematic variations, or pulls, and a determination of

the best-fit parameters values.

The goodness-of-fit metric used for this comparison is the −2 log-likelihood recommended

by the PDG [6] and loosely referred to here as χ2. It is given by

(4.1) χ2 ≡ −2 logL(~θ, ~s) = 2
bins
∑

i

[

ei(~θ, ~s)− oi + oi log
oi

ei(~θ, ~s)

]

+

systs
∑

j

sj
σj

where L(~θ) is the Poisson likelihood function, ei(~θ) and oi are the expected and observed

events in the ith bin, and sj and σj are the jth systematic pull and its 1σ value. The last
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term in (4.1) is the sum of Gaussian penalty terms for each systematic uncertainty. The

penalty terms increase the value of χ2 to prevent the systematic pulls from being large

compared to their 1σ values. Minimizing this function with respect to ~θ and ~s yields the set

of parameters that best estimate the true parameters. This minimization is done using the

minuit2 minimization package [13] within the root data analysis framework [14].

With our latest analysis on neutrino and antineutrino data [15], NOvA determines the

best fit set of parameters to be the following: In addition, NOvA measures a 4.2σ observation

of ν̄µ → ν̄e oscillation – the first strong evidence of ν̄e appearance measured by a long-baseline

experiment.

Table 4.1. Best-fit oscillation parameters and associated 1σ confidence in-
tervals with and without Feldman-Cousins (FC) corrections determined for
NOvA’s neutrino + antineutrino data set [15].

Parameter Central Value No FC Interval FC Interval

∆m2
32/10

−3 eV2/c4 +2.51 +0.10
−0.08

+0.12
−0.08

sin2 θ23 0.58 +0.02
−0.03 ±0.03

δCP/π 0.2 +0.1
−0.5

+1.2
−0.6
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CHAPTER 5

The Feldman-Cousins Procedure

”There are two possible outcomes: if the result

confirms the hypothesis, then you’ve made a measurement.

If the result is contrary to the hypothesis, then you’ve

made a discovery.”

Enrico Fermi

When performing parameter estimation as described in Chapter 4 it is necessary to report

a metric upon which to base the validity of the measurement. A popular approach, NOvA’s

approach, is the Frequentist confidence interval, which describes how compatible the data

are with parameter values other than those that were measured.

5.1. Confidence Interval Construction

In Frequentist statistics, confidence intervals predict that, given an ensemble of exper-

iments measuring the parameter µ of some model, a fraction α of those experiments will

measure an interval [µ1, µ2] that contains the true value µt. Here, the true value is fixed

and the interval is a random variable based on data. In contrast, Bayesian statistics state

that the probability of the true parameter lying within some interval [µ1, µ2], where the

true parameter is considered the random variable and the data are fixed. Where Bayesian

intervals require the experimenter’s subjective prior knowledge of the possible values that µ

can hold, namely P (µ), Frequentist intervals require no such assumptions. The objectivity
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of a Frequentist interval is a desired trait among physicists, and is one of the reasons they

are employed by NOvA.

More precisely, Frequentist confidence intervals belong to the set of all intervals that

contain a fixed µ with some probability α.

(5.1) P (µ ∈ [µ1, µ2]) = α

This is to hold true for all values of µ, therefore such a set exists for µt. The construction of

confidence intervals was first put forward by Jerzy Neyman in 1937 [16], and is referred to

as Neyman construction.

In order to determine a confidence interval, first consider the allowed values of a mea-

surable random variable x where x is a function of µ. For a fixed µ in an ensemble of

experiments, x will be measured within a so-called an acceptance region, [x1, x2], in a frac-

tion α of the total number of experiments. The collection of all acceptance regions is called

the confidence band (Fig. 5.1). There is a freedom in the choice of x1 and x2, the only

restriction being,

(5.2)

∫ x2

x1

P (x|µ)dx = α

Three common choices of [x1, x2], referred to as ordering principles, are the central limit,

lower limit and upper limit. Central limits satisfy P (x < x1) = P (x > x2) = (1 − α)/2;

upper limits satisfy P (x < x1) = 1 − α; and lower limits satisfy P (x > x2) = 1 − α. Each

choice is valid as long as the choice is not made based on the results of a measurement of x.

The confidence interval associated with a measurement of x is determined by considering

the values of µ that contain the measured x within their acceptance region. Since a fraction
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Figure 5.1. Confidence interval construction for the Gaussian distributed
parameter µ. A vertical line is drawn at the measured x = 3. The intersection
of the vertical line with the confidence band is the confidence interval, [µ1 =
1.36, µ2 = 4.65], for the observed x.

α experiments in an ensemble will measure x within the acceptance region of the true pa-

rameter, µt, the intervals [µ1, µ2] drawn by the experiments will contain µt in α of the total

number of experiments, thereby satisfying Equation 5.1.

The above definitions lend themselves to a simple recipe for Neyman construction:

(1) Find the intervals [x1, x2], such that P (x ∈ [x1, x2]) = α for each fixed value of µ

with an ordering principle that uniquely determines the acceptance region. This

creates the confidence band.

(2) Upon a measurement of x yielding xo, draw a vertical line at xo as shown in Figure

5.1 by the dotted line.

(3) The intersection of the vertical line with the confidence band is the resulting confi-

dence interval.

It is possible that the central, upper, and lower limit ordering principles produce intervals

that do not contain certain values of µ with the reported probability. If for an ensemble of

experiments measuring a parameter whose true value is µt, a proportion greater than α of
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the measured intervals [µ1, µ2] contain µt, µt is said to be over covered; if that proportion

is less than α, µt is said to be under covered. Intervals that over cover are too wide,

artificially reducing the statistical power of the experiment; intervals that under cover leave

the possibility for the true value to be rejected by more than 1 − α experiments in the

ensemble. Since the parameter’s true value is never known, intervals must correctly cover

all values of µ.

One case that leads to improper coverage is when the choice of ordering principle is based

on data – this is called flip-flopping. For example, if the experimenter decides that they will

use an upper limit when a measurement of x yields a value less than some value and a central

limit otherwise, the resulting intervals may under cover. The effective confidence band for

a flip-flopping experiment measuring a Gaussian-distributed parameter is shown in Figure

5.2. Here, µ = 1.86 is under covered by 5% when a central limit is chosen for measurements

of x > 3 and an upper limit otherwise. Since confidence intervals depend on the acceptance

region for each µ, these regions must be consistently constructed to avoid excluding values

of µ that are α-consistent with the measurement of x.

Problems also arise if µ is physically bounded, eg. µ > 0, even though a measurement

may result in a value of µ less than zero. When measurement yields x < 0, the experimenter

can report those values to be zero, resulting in an interval that significantly over covers (Fig.

5.2), or report that their measurement fell outside the bounds of all physical acceptance

regions (eg, a vertical line at x = −1.9 in Figure 5.1). In the latter case, the experimenter

can only conclude that their measurement fell outside the α acceptance region of the true

parameter.
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Figure 5.2. Dashed lines show the effective confidence band due to flip-
flopping for the Gaussian distributed parameter µ bounded by µ > 0. The
red and blue lines show representative values of µ that are over and under
covered, respectively. The solid line shows the confidence band found using
the Feldman-Cousins unified ordering principle.

5.2. The Unified Ordering Principle

The shortcomings of the central, upper, and lower limit ordering principles mentioned in

the previous section stem from choices made by the experimenter that artificially modify the

acceptance bands, leaving parameter values that are not correctly covered by the resulting

confidence intervals. The ordering principle put forth by Feldman and Cousins [1] alleviates

the experimenter from the burden of such choices, thereby constructing confidence intervals

with correct coverage by design. Instead of ordering the values of x to include in an interval

[x1, x2] in an increasing sense between the bounds that satisfy Equation 5.2, the FC procedure

orders the values of x in increasing order of the ratio,

(5.3) R =
L(µ|x)

L(µbest|x)
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where µbest, called the Maximum Likelihood Estimator (MLE), is the value of µ that maxi-

mizes the likelihood function, L(µ|x), for a given value of x. Values of x are included in the

interval until the sum of P (x|µ) ≥ α.

Often it is more useful to use the log of this ratio because of the logarithm’s arithmetic

properties and instead order in an increasing sense. Although recast into a slightly different

form, the ordering principle is unchanged since the logarithm is a monotonic function. The

ratio then becomes:

(5.4)

R′ =− 2 lnL(µ|x) + 2 lnL(µbest|x)

=χ2
fixed − χ2

best

=∆χ2

where χ2 is Equation 4.1 for the NOvA analysis. The use of ∆χ2 is justified based on

the Neyman-Pearson lemma [17], which states that the most powerful test for hypothesis

rejection is constructed using this test statistic; this is known as the Likelihood Ratio Test

(LRT). The ∆χ2 test statistic is zero at the best fit point since µ = µbest. Large values of

∆χ2 correspond to locations of parameter space that are far from the best fit point.

Ordering based on Equation 5.4 assures that the resulting intervals never undercover by

construction, and automatically determines whether the intervals are upper, lower, or central

limits. Figure 5.2 shows the confidence band drawn by the unified ordering principle in the

case of a Gaussian distributed parameter µ bounded by µ > 0. Coverage is maintained for

values of µ close to the physical boundary where the standard ordering principles over cover.

While over coverage is not a desirable characteristic since it degrades the statistical power
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of the experiment, it may be unavoidable due to discrete measurements or the numerical

methods used within the analysis.

5.3. Significance Profiles and Confidence Regions

Significance profiles show how a confidence interval changes for different values of α, and

offer a more intuitive way to visualize probability statements regarding the value of some

parameter given measured data. Significance profiles require the data to be fit at every fixed

value of µ to place the data somewhere in the ordering. Figure 5.3 shows a significance

profile for a Gaussian-distributed parameter, µ, based on a measurement xo = 3. The plot

on the left shows the likelihood ratio, R′, as a function of µ given xo. A p-value, or 1 − α,

is calculated as the proportion of ∆χ2 values beyond the value resulting from data. Using

a standard normal distribution, this p-value is canonically transformed into σ, the number

of standard deviations from zero, that correspond to the p-value. The right hand plot in

Figure 5.3 shows the significance, σ, derived from R′. Confidence intervals corresponding to

different values of α are obtained by finding the intersection points of a horizontal line and

the significance profile. For example, a dotted line is drawn at 1σ (α = 0.68), from which

the interval [2, 4] is obtained. Moreover, it can be seen that µ > 8 is rejected at the 5σ-level.

Another useful tool for visualizing confidence intervals in more detail is the confidence

region. A confidence region is the extension of a confidence interval to higher dimension,

which yields rejected regions in parameter space. Additionally, confidence regions facilitate

the visualization of an interval’s dependence on two or more parameters, display properties of

the parameter space, and make statements about the combined values of those parameters.
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Figure 5.3. Significance profile for a Gaussian distributed parameter. On
the left, the ratio R′ is plotted for xo = 3 as a function of µ. The right plot
shows the significance calculated from R′. The intersection points of the dotted
and solid lines correspond to the bounds of the 1σ confidence interval.

5.4. Calculating Acceptance Intervals of Neutrino Oscillation Parameters

Figure 5.2 shows the unified ordering principle applied to a toy example of a bounded

Gaussian-distributed parameter, µ. The likelihood function is the well-known Gaussian

distribution function with a simple solution for the MLE, which allows for the acceptance

regions ordered by the likelihood ratio to be calculated analytically. The same cannot be

said for neutrino oscillation physics, requiring Monte Carlo simulation to be employed for

the task of calculating these acceptance regions.

A result from Wilks published in 1938 [18] shows that the distribution of the likelihood

ratio (5.4) generally approaches a χ2-distribution when the MLEs are normally distributed.

For this to be true in the context of long-baseline experiments like NOvA, event counts per

bin of neutrino energy must be large (O(30)), and parameters must be far from physical

boundaries. Due to the neutrino’s weak coupling to matter and low neutrino intensity at

the FD, event counts are typically O(10) per bin of neutrino energy. Furthermore, many

parameters in the PMNS oscillation model (2.2) are physically bounded between zero and
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one. Therefore, the ∆χ2 test-statistic is not guaranteed to be χ2-distributed, and Monte

Carlo simulation is required to empirically generate the ”true” distributions.

Filling acceptance regions of ∆χ2 (5.4) requires knowledge of all possible measurements

given the values of oscillation parameters. It is known that the detection of a neutrino event

within a certain energy range is Poisson-distributed, but due to the large dimensionality

and trigonometric dependence of the oscillation probability, analytically solving Equation

5.4 for the set oscillation parameters that simultaneously maximize the likelihood is not

possible. Monte Carlo simulation offers an efficient way to approximate the acceptance

regions by simulating statistically independent data, or pseudoexperiments, and performing

the multidimensional likelihood maximization with common numerical fitting techniques.

5.5. Generating Pseudoexperiments

The NOvA experiment employs Monte Carlo simulation of data to fill acceptance regions

of oscillation parameters according to the unified ordering principle. These simulations,

referred to as pseudoexperiments, are used to calculate a large number of values of ∆χ2 to

approximate the statistical distributions to be ordered. Once a distribution is generated,

significance profiles can be calculated for the observed data. Although a computationally

intensive process, calculating values of ∆χ2 to fill these empirical distributions can be done

in parallel since each pseudoexperiment, and hence value of ∆χ2, is statistically independent

from all others.

The acceptance intervals of parameters, ~µ, are filled by generating pseudoexperiments

that are consistent with the parameters ~µ. Pseudoexperiments are created by first generating

FD predictions at oscillation parameters, ~µ, then applying Poisson fluctuations to the number
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of events detected in each neutrino energy bin to simulate the Poisson-distributed detection

rate.

The pseudoexperiments are subjected to NOvA’s fitting procedure to calculate values of

∆χ2. For the multidimensional case, Equation 5.4 becomes

(5.5) ∆χ2 = −2 log
L(~µ,~λ~µ|x)

L(~µbest, ~λbest|x)

where ~λθ is a set of nuisance parameters that maximize the likelihood function at parameters

θ. Nuisance parameters are parameters that enter the fit but whose values are not of partic-

ular interest; these can be systematic pulls or other oscillation parameters. For example, δCP

is a nuisance parameter when constructing intervals of sin2 θ23. This treatment of nuisance

parameters is called likelihood profiling and is meant to remove the dependence of nuisance

parameter values on the confidence intervals of the interesting parameters. Likelihood pro-

filing ensures that the values of the nuisance parameters are at least covered [19].

Likelihood profiling requires the pseudoexperiments are generated as being consistent

with the nuisance parameters as well as the interesting oscillation parameters. To extract

appropriate values for these nuisance parameters, fits are performed to the data in the

parameter spaces of interest before the process of generating pseudoexperiments. This step

is also necessary for calculating the measured values of ∆χ2 that will be placed in the

acceptance interval ordering for calculating significance profiles. These fits to data result

in collections of best-fit nuisance parameter and ∆χ2 values as a function of the interesting

parameter(s) (Fig. 5.4 and 5.5). The collections of ∆χ2 values are referred to as Gaussian

profiles, for in the asymptotic limit of large numbers of expected events, acceptance intervals

could be calculated analytically from a χ2-distribution [18].
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The FC procedure begins once the nuisance parameter and Gaussian profiles are cal-

culated. For each 1D and 2D significance profile, the parameter space is stepped through

bin-by-bin, wherein each bin, a ∆χ2 distribution is generated by fitting ∼2500 pseudoex-

periments. Details of the computational challenges and load balancing will be explained

in Chapter 6. Once the distributions are filled, Gaussian profiles are used to determine

confidence intervals and regions.
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5.6. Producing Corrected Intervals

Distributions of ∆χ2 resulting from fitting ensembles of pseudoexperiments are used to

calculate significance profiles in parameter spaces of interest. As previously discussed, p-

values are found as the proportion of ∆χ2 beyond the value resulting from the observed

data, ∆χ2
o. That is,

(5.6) p− value =
# of values > ∆χ2

o

# of experiments in the ensemble

These p-values are transformed into values of σ, which are reported as significance profiles.

In the case of a 2-dimensional surface, confidence regions are drawn by first calculating a

surface of critical values, ∆χ2
c , within the empirical distributions that correspond to σ = 1,

2, and 3. These critical values mark the point at which the data rejects the corresponding

parameter values at a 1, 2, or 3σ significance. The intersection of these surfaces with the

Gaussian profiles are the 1, 2, and 3 σ contours, respectively.

Figure 5.6 shows how the 90% critical values can differ between the FC and asymptotic

χ2-distributions. Here, since ∆χ2
c > χ2

c , power of rejection against these parameters is

decreased with respect to the Gaussian profiles. Similarly, Figure 5.7 shows the difference

between ∆χ2
c and χ2

c and how the 90% confidence region is affected in the sin2 θ23-∆m2
32

plane.

5.7. Inverted Mass Hierarchy Rejection

As mentioned in the first chapter, the NOvA collaboration is interested in determining

the neutrino mass hierarchy: the sign of ∆m2
32. Since the best fit to NOvA’s data falls in
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Figure 5.6. FC distribution of ∆χ2 at sin2 θ23 = 0.631 and δCP = 0.96π
compared to a χ2 of two degrees of freedom. In this case, the 90% critical
values from FC and χ2 distributions are ∆χ2

c = 5.25 (solid line) and χ2
c = 4.60

(dashed line), respectively.
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c , subtracted by χ2
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FC corrected and uncorrected 90% CL regions in the sin2 θ23-∆m2
32 Normal

Hierarchy plane. Areas in blue and red show where NOvA’s power of rejection
is increased and decreased by the FC procedure, respectively.

the Normal Hierarchy (NH), the significance with which the Inverted Hierarchy (IH) can be

ruled out is calculated.
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To generate the acceptance interval associated with the ∆m2
32 < 0, pseudoexperiments

are generated as being consistent with the best fit point in the IH (∆m2
32 = −2.55×10−3 eV2,

sin2 θ23 = 0.58, and δCP = 1.5π) since in this case, all oscillation parameters are nuisance

parameters. The test statistic ∆χ2 is calculated as

(5.7) ∆χ2 = χ2
IH − χ2

best

where in Equation 5.4, χ2
fixed becomes χ2

IH. Here, oscillation parameters are allowed to settle

to their minimum values with the constraint that ∆m2
32 be less than zero. Best fit points

that fall in the inverted hierarchy result in ∆χ2 = 0, causing a pile up at zero in the FC

distribution. It is evident from Figure 2.3 that the resulting FC distribution is far from a

χ2-distribution caused by the highly non-Gaussian distribution of the binary mass hierarchy

estimator.

A similar analysis can be performed for combinations of mass hierarchy and octant of θ23

constraints. For example, the rejection significance of the union of the IH and Upper Octant

(UO; θ23 > π/4) parameter spaces can be calculated from the ∆χ2 distribution where χ2
IH is

replaced by χ2
IH,UO.

33



0 2 4 6
2χ∆

0

0.1

0.2

0.3

0.4

0.5

F
ra

c
ti
o
n
 o

f 
P

s
e
u
d
o
e
x
p
e
ri
m

e
n
ts

NOvA Preliminary

Pseudoexperiments

 distribution2χGaussian 

 from data2χ∆

Pseudoexperiments

 distribution2χGaussian 

 from data2χ∆

Figure 5.8. Feldman-Cousins distribution of the inverted neutrino mass hi-
erarchy hypothesis. The measured ∆χ2 is 2.47 corresponding to a IH rejection
significance of 1.8σ.

34



CHAPTER 6

Results and the Role of High Performance

Computing

”The science of operations, as derived from

mathematics more especially, is a science of itself, and has

its own abstract truth and value.”

Ada Lovelace

A measurement of the neutrino oscillation parameters θ23, |∆m2
32|, δCP , and the mass

hierarchy requires the ordering principle of Feldman and Cousins to correct for low statistics

and physical boundaries, ensuring that confidence intervals possess the correct coverage.

Producing these intervals is a computationally demanding task that requires the use of High

Performance Computing (HPC) facilities to obtain results on a reasonable time-scale.

6.1. The Scale of NOvA’s FC Corrections

To thoroughly analyze properties of the oscillation parameter space, NOvA produces

significance profiles and confidence regions, which are constrained to a mass hierarchy, an

octant of θ23, or both. Additionally, rejection significances are calculated for the IH, Lower

Octant (LO), Inverted Hierarchy Lower Octant (IHLO), Inverted Hierarchy Upper Octant

(IHUO), and Normal Hierarchy Lower Octant (NHLO). Table 6.1 shows a summary of the

number of ∆χ2 values calculated broken down by individual significance profile, confidence

region, and rejection significance for NOvA’s neutrino + antineutrino analysis. In total, over
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9 million values of ∆χ2 were calculated utilizing the National Energy Research Scientific

Computing Center (NERSC)’s HPC facilities and the methods described in this chapter.

Table 6.1. Summary of the psuedoexperiments generated for NOvA’s 2018
FC corrections with the help from NERSC’s HPC facilities. NBins and NPts
refer to the number FC distributions generated for a given plot and the num-
ber of ∆χ2 values calculated for a given plot, respectively. The first section
contains a summary of the 2D confidence regions. The second section contains
1D significance profiles. The third section contains rejection significances.

Plot NBins NPts Max NPts/Bin Min NPts/Bin

δCP vs sin2 θ23 NH 598 3258041 20219 3226

δCP vs sin2 θ23 IH 357 2213382 18498 4994

sin2 θ23 vs ∆m2
32 NH 186 901250 8185 2724

sin2 θ23 vs ∆m2
32 IH 203 1010956 7738 2946

δCP LOIH 60 257712 5691 2698

δCP UOIH 60 162000 2700 2698

δCP LONH 60 162000 2700 2697

δCP UONH 60 162000 2700 2697

sin2 θ23 IH 60 322380 5373 5363

sin2 θ23 NH 60 323820 5397 5382

∆m2
32 LOIH 60 162000 2700 2693

∆m2
32 UOIH 60 162000 2700 2689

∆m2
32 LONH 60 162000 2700 2687

∆m2
32 UONH 60 162000 2700 2692

IH Rejection 45000

LO 37705

IHLO 40000

IHUO 15000

NHLO 47500

Total 9,606,746

6.2. Motivation for High Performance Computing

As mentioned in Chapter 5, each value of ∆χ2 is calculated by the fitting procedure

performed on pseudoexperiments that are completely independent from one another. This
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type of problem lends itself to the technical term ”Embarrassingly Parallel”, which means

that the level of concurrency – the number of simultaneous ∆χ2 calculations – is limited by

the number of available machines. This enables the computation time of FC calculations to

scale perfectly with the number of available machines.

In the past, NOvA was using the limited resources of the Fermigrid. The Fermigrid,

which is a shared computing cluster at Fermilab, allocates a limited number of concurrent

processes for each experiment at Fermilab. NOvA is limited to 2500 concurrent processes,

which caused the FC corrections for the 2017 analysis on neutrino-only data [20] to run over a

four week period that was largely spent waiting in queue. Based on performance benchmarks

of the neutrino + antineutrino FC code, it was estimated that it would take ∼4-5 months to

complete NOvA’s complete set of neutrino + antineutrino FC corrections. Given the need

for production of results on a reasonable time scale, NOvA began working with the Scientific

Discovery through Advanced Computing: High Energy Physics Data Analytics (SciDAC-4)

collaboration to develop an infrastructure to run their FC on the large HPC machines at

NERSC. The rest of this chapter is devoted to summarizing this work [21] and highlighting

the results achieved because of it.

6.3. Utilizing NERSC Facilities

The Fermigrid is a Unix cluster operating with the Scientific Linux Fermilab (SLF7)

operating system and network-mounted repositories containing the code base used by each

experiment. This is by design the same environment in which most Fermilab-based ex-

periments develop their code on interactive Virtual Machines (VM). Since both platforms,

development machines and the Fermigrid, are functionally identical at the operating system

37



and filesystem level, developers do not need to worry about the underlying architecture on

which they are running code.

The machines at NERSC are designed to accommodate a wide range of applications,

and so are not restricted to running the SLF7 operating system. Instead, NERSC users

are encouraged to package their individual software into Docker images [22]. Docker images

provide a way for developers to containerize their software applications and dependencies

for portability and scalability. Similar to a VM, Docker containers can emulate operating

systems and run programs loaded into the image on the virtual operating system. The

advantage of using a Docker image over a VM is a Docker image instance can communicate

directly with the host machine rather than having to virtualize hardware as VMs do. This

results in less overhead and better overall performance. Docker containers also support

mounted volumes that act as local filesystems within the container. Therefore, to run NOvA

software at NERSC, the code, all dependencies, and the SLF7 operating system must be

built into a Docker image.

Using the Slurm workload manager [23], jobs (units of execution) are submitted to

NERSC machines by specifying a container, the command to be executed within the con-

tainer, and resources requested for the job. Slurm distributes the job among the number of

requested nodes, a homogeneous collection of computer processors running the number of

processes on each node specified in the submission command. Results are returned to the

user’s or group’s filesystem.

6.4. Implementation

To run NOvA’s FC code at NERSC, the FC software and its dependencies, as well as the

SLF7 operating system, are installed in a Docker image that is hosted on a private repository.
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This image can be downloaded to NERSC where it is converted into a Shifter image format.

Shifter was developed by NERSC to convert Docker images, VMs, and the like to a common

container format that can be scaled on their machines. This conversion is transparent to the

user and Shifter images can be executed in the same way as Docker images.

For the neutrino + antineutrino results, the generation of and fitting to an individual FC

pseudoexperiment are implemented in a compiled C++ root macro. The macro runs over

a specified bin range in the selected parameter space, wherein each bin, a specified number

of pseudoexperiments are generated and a fit is performed. A data object containing the

pseudoexperiment’s ∆χ2 and parameter values are added to a collection that holds all such

data objects created from an individual instance of the macro. The results from each instance

are aggregated separately from the macro resulting in file sizes between 200 MB and 1 GB.

In addition to the FC software, a Python driver script is installed in the Docker image

that assigns bin ranges to each processor running the FC job. The assignment is done in a

round-robin fashion to ensure an even distribution of work among the job’s resources.

This container implementation on NERSC was validated against NOvA’s neutrino-only

results [20], where the one and two dimensional profiles were reproduced in less than 12

hours during a reservation of dedicated resources.

6.5. Job Submission and Load Balancing

The NERSC facilities are composed of three different architectures, each of which were

utilized for the NOvA corrections. Table 6.2 shows a break down of the number of nodes,

cores per node, and memory per node available per architecture. The available memory per

core limits the concurrency of FC jobs on each architecture. Considering that each fit requires

∼2 GB of memory, concurrency was limited on the Ivy Bridge and KNL architectures to 45
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Table 6.2. NERSC machine configurations.

Machine Processor Architecture No. Nodes No. Cores/Node Memory/Node

Cori Intel Haswell 2388 32 128 GB

Cori Intel Knights Landing (KNL) 9688 64 96 GB

Edison Ivy Bridge 5586 48 64 GB

and 32, respectively. Table 6.3 shows how the mean fit times vary across the architecture

flavors. The Haswell nodes achieved the best performance, while the KNL nodes were the

most abundant, and so processed a large proportion of the FC jobs.

Table 6.3. Mean fit times (minutes) per parameter and architecture achieved
during the neutrino + antineutrino NOvA analysis.

Fit δcp ∆m2
32 sin2 θ23 ∆m2

32 vs. sin2 θ23 sin2 θ23 vs. δCP

Cori - KNL - 25.41 60.99 59.17 55.18
Cori - Haswell - 5.10 8.36 13.04 -
Edison - Ivy Bridge 50.79 17.02 14.20 - -

Jobs were submitted to the NERSC machines based on architecture average run time,

concurrency level, and price per CPU hour for efficient distribution and use of time during

which the machines were reserved for our use [21]. HEPCloud [24], developed by Fermilab

scientists, was used for the submission process. HEPCloud weights the requested resources

to what are available across many different platforms and intelligently submits jobs wherever

resources can be used most efficiently.

6.6. Performance Results

To avoid time in queue, NOvA and SciDAC-4 were able to reserve NERSC resources for

alotted amounts of time; one reservation lasted 16 hours and another 36. During the first

reservation, 17 million CPU-hours were consumed for a maximum concurrency of 1.1 million.
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This concurrency level set a record as the largest ever pool of resources running simultane-

ously. The results from that reservation showed that some of the fits were unexpectedly

minimizing to local minima in unphysical regions of phase space. A second reservation was

made after the code was modified to rectify the error. During this reservation, 20 million

CPU hours were consumed over 36 hours, with concurrency peaking at 0.7 million. These

results were validated and compiled in time to present at the Neutrino 2018 Conference [15].

During the validation process of the neutrino-mode results, it was found that fits to

those data averaged two to three minutes of computation time per fit on the Haswell nodes.

Using this as a baseline, it is estimated that NERSC enabled the NOvA and SciDAC-4

team to processes Felman-Cousins corrections 50 times faster than before. This dramatic

improvement alone opens the door for more precise and complicated analyses to be done in

the future.

6.7. Results of the FC Corrections

Figure 6.1 shows a collection of the FC corrected results from the second NERSC reser-

vation. The solid lined-contours correspond to the FC corrected acceptance regions and the

dashed lined-contours are drawn from the Gaussian profiles without FC corrections applied.

Generally, it can be seen that the FC procedure slightly reduced NOvA’s statistical power

of a sin2 θ23 measurement while increasing the power of a ∆m2
32 measurement. Table 6.4

shows the best fit values for ∆m2
32, sin

2 θ23, and δCP with associated 1σ confidence intervals

before and after FC corrections. Table 6.5 shows rejection significances for the various mass

hierarchy and θ23 octant combination hypotheses.
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Table 6.4. Best-fit oscillation parameters and associated 1σ confidence in-
tervals with and without FC corrections determined for NOvA’s neutrino +
antineutrino data set [15].

Parameter Central Value No FC Interval FC Interval

∆m2
32/10

−3 eV2/c4 +2.51 +0.10
−0.08

+0.12
−0.08

sin2 θ23 0.58 +0.02
−0.03 ±0.03

δCP/π 0.2 +0.1
−0.5

+1.2
−0.6

Table 6.5. Rejection significances for combined mass hierarchy and θ23 oc-
tant hypotheses.

IH IHUO IHLO NHLO NHUO
Significance (σ) 1.77 1.72 2.18 2.29 -

6.8. Domain Decomposition with DIY

The results achieved for NOvA’s first neutrino + antineutrino analysis using the HPC

facilities at NERSC were a dramatic improvement over the Fermigrid, but there is room for

further improvement by continuing to optimize the FC infrastructure for HPC machines.

Work is ongoing to disentangle NOvA’s FC procedure from the root analysis framework

and move toward an implementation that can take full advantage of HPC machines with

multithreading and vectorization support, as well as modularity to support custom analyses.

The first step in this direction was to implement domain decomposition in a Message

Passing Interface (MPI) based framework using DIY [25], rather than the Python driver

script used during the May reservations. DIY is a collection of libraries developed to add

a layer of abstraction onto MPI. With it, arbitrary problem spaces, or domains, can be de-

composed into units called ”blocks”, where MPI communication between neighboring blocks

is mediated behind the scenes by the DIY libraries. This provides a natural mapping of the
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Figure 6.1. Fully corrected profiles of sin2 θ23, ∆m2
32, and δCP . The dashed

and solid lines show significances derived assuming Gaussian errors and from
FC distributions, respectively.

one and two dimensional parameter spaces onto DIY domains and facilitates communication

between points in parameter space.

Within this DIY framework, the user specifies a total number of blocks and a desired

topology (number of blocks spanning each dimension), as well as oscillation parameter spec-

ifications and the required number of pseudoexperiments per bin. Each block is assigned an

equal fraction of the parameter space according to DIY block variables such as x, y, and z

positions in the block-space geometry, and converting that to a list of bins for which that
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block should process. The job can be easily scaled up by requesting multiple copies of the

block-space geometry.

Future work by myself and the SciDAC-4 collaboration will expand on this framework

with the end-goal of making it possible for NOvA to optimize our event selection criteria

based on FC-corrected sensitivities. This will require the development of NOvA’s event se-

lection within the DIY framework; a transition to an HPC-optimzed data format based on

the read-parallel Hierarchical Data Format (HDF5) file format [26]; and a removal of the

dependence on root entirely by implementing a multi-threaded fitting procedure for a dra-

matic increase in efficiency. These improvements have the potential to greatly decrease the

time to final results and improve statements made about the physics of neutrino oscillations.
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CHAPTER 7

Conclusion

High performance computing facilities have been used to greatly improve the final step

of the NOvA oscillation analysis, the Feldman-Cousins (FC) procedure, which is used to

calculate statistical power by large-scale Monte Carlo simulation. Increased complexity of

the fitting procedure introduced by the combined fitting of neutrino and antineutrino data

prompted a greater demand for computing resources than those previously sufficient for

NOvA’s neutrino-only analyses. Justification for NOvA’s employment of the FC procedure

was demonstrated and work done to execute FC implementation on HPC machines at the

NERSC facilities was discussed.

As a result of this work, NOvA’s FC corrections were processed in 36 hours, consuming

20 million CPU-hours, for an estimated speedup factor of 50. On-going work is should

improve this speedup further by optimizing the procedure for High Performance Computing

platforms, as well as improve the infrastructure to enable other scientists to use these tools

for their own custom analyses.
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