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• : Price of stock   on day

• : Number of shares for stock   on day

• : Expected return of stock   on day 

• : Amount of wealth invested in the riskless

asset (bank) at the end of day  

• : Interest rate of the riskless asset

• : Amount of wealth invested in the riskless

asset (bank) at the beginning of day 

• : Amount of wealth at the beginning of day 

• : Fraction of wealth invested in stock   on day   

(the decision)

• : Transaction amount for stock   on day

• : Total transaction costs on day   

where             usually looks like this:
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Definitions

Dynamics of the problem

•Observe the new prices:                                 

•Choose a candidate action:

•Buy and Sell stocks based on the decision:

•Compute the wealth for the next day:
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Defining the problem as a Partially 

Observable Markov Decision Process 

(POMDP)

•State space:

where,

is not known at time    , thus we have a POMDP.

•Action space:

•Observation space:

•State transition law:

where,

•Observation law:

• Cost function:

where for        ,      should be used and           is the  

utility function.

• : The probability distribution over State space  

• : Cost function for the belief-state 

•Objective function:

•The goal:
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� : Riskless asset’s rate of interest
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� represents the dynamics of the state.

� is the uncertainty in the state transitions.
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),(2 kk wRh depends on the model we choose 

for the price data (ARMA, GARCH, etc.).
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Curse of dimensionality

•As we move forward in time, the computation 

increases exponentially (see figure below). 

•This problem with POMDP, forces us to 

approximate      , instead of finding the exact value.

• -value:

•Approximating    -value (Rollout):
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Instead of finding the optimal policy     for         , we 

use a candidate policy called the base policy       

(figure above).  
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Rollout approximation

Exact solution for the POMDP 

problem

Preliminary results

In all cases mentioned below, the base policy is to invest in the stock 

that has the maximum rate of return in one period.

•Case 1: Two risky stocks are actually the same. The decision is to divide 

the wealth equally between the two stocks.

•Case 2: Over 300 days, one stock is going up and the other one is not 

changing. The decision is to invest in rising stock.

•Case 3: Over 6000 days, both stocks have a random behavior. As can be 

seen there’s not much difference than putting the money in the bank 

(investing in none of the stocks) and investing in stock 2. 

•Case 4: Over 800 days, both stocks are going down. The decision is to 

put all the money in the bank.
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