R

C. Tobin Magle, PhD
11-30-2017

10:00-11:30 a.m.
Morgan Library

Computer Classroom 175
Based on



Presenter
Presentation Notes
Hi, and welcome to Coding and Cookies. I’m Tobin Magle, the cyberinfrastructure facilitator at the Morgan Library. Today we’re going to be covering data wrangling in R using the dplyr and tidyr packages.

http://http/www.datacarpentry.org/R-ecology-lesson/03-dplyr.html

Outline

* Import data as a “tibble” using

» 6 dplyr verbs for data manipulation

e Combining verbs with pipes %>%
o 2 tidyr verbs to reshape your data (

» Cleaning and exporting data (

0


Presenter
Presentation Notes
In brief, we’ll
1.    Learn a new way to import data using the read_csv() funcion
2.    Demonstrate the 6 dplyr verbs for data manipulation
3.    Combine these verbs with an operator called the pipes
4.    Use 2 tidyr verbs to reshape your data
5.    Create a clean dataset to export to a file


Setup

e Install R and R studio
http://www.datacarpentry.org/R-ecology-lesson/index.html#setup instructions

* Download the quickstart files: http://bit.ly/2uemtAU

» See the Basic Analysis with R lesson if you're unfamiliar with R
or R studio

http://libguides.colostate.edu/coding-cookies/r-basic



Presenter
Presentation Notes
For these exercises, we’re assuming that you have a basic working knowledge of R and R studio. You’ll need to
·      Install both R and R Studio. See the setup instructions from Data Carpentry Linked on this slide if you need help.
·      Download and unzip the quickstart files from the bitly link on the slide. This file provides a premade working directory and file structure for this lesson.
·      If you want to know how to set up a directory for yourself or are unfamiliar with R and R studio, see the Basic data analysis in R lesson linked on this slide. 

http://www.datacarpentry.org/R-ecology-lesson/index.html#setup_instructions
http://bit.ly/2uemtAU
http://libguides.colostate.edu/coding-cookies/r-basic

What Is the tidyverse?

» Packages for data
manipulation

« Built for data tables e SIS e piteL e .
=

» Makes data manipulation
easier than in base R

tidyverse

o Combine verbs using pipes
(%>%)



Presenter
Presentation Notes
In this lesson, we are going to move beyond the R base installation and install packages from the tidyverse, which is A set of packages that provides easy tools for data manipulation.
·      All the tidyverse packages are built around tidy data tables
·      You can do all the things that the tidyverse in base R but these new functions make data manipulation easier
·      These functions are designed to work with the pipe operator from the magrittr package, which allows you to make the output of one verb the input of another verb. This feature makes your code easier to edit and read.


Installing and loading packages

(“tidyverse”) ("tidyverse”)
* Installs the package » Loads the package
e One time only (on each . -
computer) Every time you start up R
e Packages are installed on * Tell R where your packages
“D:/r-packages” on library are using the lib.loc = “D:/r-
PCs. packages” argument to the

library function.


Presenter
Presentation Notes
·      Before you can use any of these features, you need to install the package using the install.packages function. You only need to do this once on each R installation
·      Then you need to load the package using the library function. You need to do this every time you start RStudio to use the functions it contains.
Let’s load the data and the packages before we learn more about dplyr. 

Demo 1: Setting up
·      Open the R project
·      Point out the file structure:
o   Rproj file – save your place while you’re working
o   complete R script – follow along if you don’t like typing. But I recommend opening a new script and typing
o   Data folder with data file
·      Open a new script file
·      Load the tidyverse package


Data set: survey of small animals

» Stored in a data frame*

e Rows: observations of
individual animals

e Columns: Variables that
describe the animals

» Species, sex, date, location, etc

*a tibble actually, but close enough


Presenter
Presentation Notes
The data set that we’ll be working with contains data about various characteristics of small animals from an ecological study.
The data will be stored in a data structure that is like a data frame
Each row is data about an individual observed animal.
Each column is one variable the describes each animal, like species, sex and weight. 



Import data Iin tidyverse

— loads contents of a CSV file
 Input: a file path

e Output a “tibble” aka tbl_df
* Prints data type under col name
* Never converts characters to factors

Example: (file = “portal_data_joined.csv”)


Presenter
Presentation Notes
Now let’s load the data into a variable called surveys:
·      We’re going to use read_csv instead of read.csv
·      Just like read.csv, it takes a file path as input
·      However, instead of outputting a standard data frame, it’s output is a data structure called a tibble.
o   When you print a tibble, it includes data type under column name
o   Also, it does not convert characters into factors by default


Demo 2: Loading data
·      surveys<-read_csv(“data/portal_data_joined.csv”)
·      surveys – look at output
·      str(surveys)


0

e Selects columns from a data frame

 Input: a tibble and a list of columns

e Output: a tibble with only columns specified above

Example: (surveys, plot_id, species id, weight)


Presenter
Presentation Notes
Now that we have the data loaded, let’s manipulate it with our first verb: select
·      Select picks columns from a data frame
·      It takes a tibble and a list of column names as input
·      And its output is a tibble with only the columns you selected
·      Let’s see an example of how select works
 
Demo 3: select
·      Let’s say we have a collaborator who only wants the plot, species id and weight data
·      select(surveys, plot_id, species_id, weight) 



0

* Choose rows based on a specific criterion

 Input: a tibble and relational expression (returns true/false)

e > < >= <= =z =

» Output: a tibble with rows that meet the relational expression

Example: (surveys, year == 1995)


Presenter
Presentation Notes
We’ve seen how to choose particular columns using select, now let’s look at how to pick rows using filter
·      Filter chooses rows based on specified criteria
·      It takes a tibble and relational expression as arguments
·      And it outputs a tibble with only the rows that meet the relational expression
·      For example, you can specify that you only want rows where the year is equal to 1995
·      Let’s see select in action
 
Demo 4: filter
·      Let’s say we only want to look at records taken in 1995
·      filter(surveys, year == 1995) 


Pipe operator %>%

 Allows you to combine multiple “verb” operations

« Syntax: %>% at the end of the line

« QOutput of the first line becomes input of next line, etc.
 Final output to the screen or a variable

Example: surveys %>%
(weight<5) %>%
(species_id, sex, weight)


Presenter
Presentation Notes
At this point, you might be thinking that you can do these things in R without using dplyr
·      However, dplyr provides a convenient way to string verbs together
·      using the pipe operator (%>%), (percent sign)-(greater than)-(percent sign)
·      The operator goes at the end of each line that you want to string together.
·      Then the output of the previous line becomes the data frame input for the next line
·      This means that you don’t have to explicitly provide the data frame argument in each verb function
·      For example we could specify that we only want records that have weights of less than 5 g and only the species_id, sex and weight columns in one statement.
·      Let’s see how pipes work in a demo
 
Demo 5: pipes
·      We can use the assignment operator to save the output in a data frame called surveys_sml
 
surveys_sml<-surveys %>%
                        filter(weight<5) %>%
                        select(species_id, sex, weight)



Exercise #1

» Using pipes, subset the survey data to include
« individuals collected before 1995 and
* retain only the columns year, sex, and weight.


Presenter
Presentation Notes
Now that you know about select, filters and pipes, let’s do an exercise involving these commands
 
Exercise 1:
 
Using pipes, subset the survey data to include individuals collected before 1995 and retain only the columns year, sex, and weight.
 
Solution 1:
·      Start with the surveys data frame, followed by the pipe operator
·      Filter on year ==1995
·      Select year, sex, and weight
·      Could we reverse select and filter?
o   Yes, but only in cases where the select statement contains the variable being evaluated in the filter statement



0

» Creates a new column
 Input: a tibble, <new col name>= value

e Output: a tibble with a new column (defined above)

Example: (surveys, weight_kg = weight/1000)


Presenter
Presentation Notes
dplyr also allows you to create new columns using the mutate function
·      Which creates a new column as defined by the input
·      Mutate takes a tibble and an expression that names and defines the value of the new column
·      This function outputs a tibble that includes the new column as defined in the input
·      For example, the weight is currently in grams. We could create a new column called weight_kg that stores the weight in kilograms
·      Let’s see how this works in practice
 
Demo 6:
To create a new column with mutate…

mutate(surveys, weight_kg = weight/1000)

same as 

surveys %>%
                	mutate(weight_kg = weight/1000)

We can create multiple new columns at a time by separating the arguments with a comma

surveys %>%
             mutate(weight_kg = weight / 1000,
                          weight_kg2 = weight_kg *2)

We can also use the head function to specify how many rows to print

surveys %>%
       mutate(weight_kg = weight / 1000) %>%
       head



More mutate examples

surveys %>%
(weight_kg = weight / 1000)

surveys %>%
(weight_kg = weight / 1000,
weight kg2 = weight_kg *2)
surveys %>%
(weight_kg = weight / 1000) %>%


Presenter
Presentation Notes
To review, you can 
use the same pipe syntax as with other dplyr verbs with mutate
You can create multiple columns at once with mutate by separating the arguments by columns, 
And you can also use the head command with the pipes, to only get the top 6 rows of the data frame.


Exercise #2

» Create a new data frame from the survey data that
meets the following criteria:

1. contains only the species_id column and a new column
called hindfoot_half

2. hindfood_ half contains values that are half
the hindfoot_length values.

3. Only include records from 1990 and after

* Hint: think about how the commands should be ordered to
produce this data frame!


Presenter
Presentation Notes
Let’s do another exercise combining the 3 verbs with pipes
Exercise 2:
Create a new data frame from the survey data that meets the following criteria:
1.	contains only the species_id column and a new column called hindfoot_half
2.	hindfood_half contains values that are half the hindfoot_length values.
3.	Only include records from 1990 and after
Hint: think about how the commands should be ordered to produce this data frame!
 
Solution 2:
·      Start with the surveys data frame
·      First, let’s filter the rows: filter(year>=1990)
·      Then create hindfoot half: mutate(hindfoot_half = hindfoot_length/2)
·      Finally, select the columns:
·      Why did I do this in this order?
o   Have to do select last because the other 2 depend on year and hindfoot length, which aren’t included in the output of the select statement
o   Mutate and filter could be switched, but reducing the number of rows first makes the computation a bit more efficient. 



Summarizing data
0 0

» Groups data in the table by an attribute ¢ Summarizes grouped data
 Input: a tibble, a variable to group by  Input: a tibble. a summary statistic

« Output: a tibble  Output: a tibble

surveys %>%
(sex) %>%
(mean_weight = (weight, na.rm = TRUE))


Presenter
Presentation Notes
Next, we’re going to look at the group by and summarize by functions.
Group_by groups data in the table by an attribute
 It takes a tibble and a column with a categorical variable to group by
and outputs a tibble that looks a lot like the original, but indicates which rows are part of each attribute

summarize applies a summary statistic to grouped data
 It takes a grouped tibble and a definition of a summary statistic as input
And outputs another tibble with the groups as rows, and the summary stats as columns

Let’s look at how this works
 
Demo 7:
 
#Overall mean weight
surveys %>%
           summarize(mean_weight = mean(weight))
 
#remove NAs
surveys %>%
           summarize(mean_weight = mean(weight, na.rm = TRUE))
 
#Mean weight by sex
surveys %>%
           group_by(sex) %>%
           summarize(mean_weight = mean(weight, na.rm = TRUE))



Group by multiple categories

surveys %>%
(sex, species_id) %>%
(mean_welight = (weight,
na.rm = TRUE))


Presenter
Presentation Notes
You can also group by multiple attributes, for example, sex and species id
·      To do this, add multiple columns as input to group_by
·      The output will then include a column for each attribute and the summary statistic

Let’s see how this works.
 
Demo 8:
 
surveys %>%
              group_by(sex, species_id) %>%
              summarize(mean_weight = mean(weight,
                                                                       na.rm = TRUE))



Removing NA with filter

() — missing values TRUE, not missing = FALSE
* Input: a column
e Output: T/F vector

surveys %>%
(! (weight)) %>%
(sex, species_id) %>%
(mean_weight = (weight))


Presenter
Presentation Notes
Another useful function for data cleaning in combination with filter is the is.na() function
This function takes a column as input
And returns a T/F vector of the same length
 This vector value true where there is a missing value and false where the input vector has a value
 This T/F vector combined with the not operator (!) can be used to remove records with missing values from a dataset. 
 
Demo 9:
 
Show the T/F vector
!is.na(weight)
 
Use it as input to filter -> all weight values are NA
surveys %>%
       filter(is.na(weight))
 
Add the not operator -> no weight values are NA
surveys %>%
       filter(!is.na(weight))
 
Can be strung together with other functions
surveys %>% 
              	filter(!is.na(weight)) %>%
		group_by(sex, species_id) %>%
		summarize(mean_weight = mean(weight))



Limit what you print

surveys %>%
filter(tis.na(weight)) %>%
group by(sex, species_id) %>%
summarize(mean_weight = mean(weight)) %>%
orint(n = 15)


Presenter
Presentation Notes
You can also choose how many lines to print with the n argument to the print function
 
Demo 10:
 
surveys %>%
    filter(!is.na(weight)) %>%
    group_by(sex, species_id) %>%
    summarize(mean_weight = mean(weight)) %>%
    print(n = 15)



Multiple summary stats

surveys %>%
(! (weight)) %>%
(sex, species _id) %>%
(mean_weight = (weight),
min_weight = (weight)

)


Presenter
Presentation Notes
And finally, you can calculate multiple summary statistics in the summary function by separating arguments with a comma.
 
Demo 11:
 
surveys %>%
        	filter(!is.na(weight)) %>%
        	group_by(sex, species_id) %>%
        	summarize(mean_weight = mean(weight),
                                	min_weight = min(weight)
                                	)



tally
» Count the number of observations in a group
e Input: a tibble

e Output: a tibble with a count of each group

Example: surveys %>%
(sex) %>%


Presenter
Presentation Notes
Let’s look at another function that works well with group by: tally
·      Tally counts the number of observations in a group
·      Grouped tibble as input
·      And returns a tibble with a column for each grouped variable, and one for the count of each row in that category
Let’s see how this works
 
Demo 12: Tally
surveys %>%
                      group_by(sex) %>%
                      tally



Exercise #3

 How many individuals were caught in each plot_type
surveyed?

» Use () and () to find the : , and
hindfoot length for each species (using species id).

 Bonus: What was the heaviest animal measured in each year?
Return the columns year, genus, species_id, and weight.


Presenter
Presentation Notes
Let’s pull this all together in an exercise
 
Exercise 3:
How many individuals were caught in each plot_type surveyed?
Start with surveys
Group by plot type
tally
 
Use group_by() and summarize() to find the mean, min, and max hindfoot length for each species (using species_id).
Start with surveys
Filter(!is.na(weight))
Group by species id
Summarize
Mean_hf = mean(hindfood_length)
Min_hf = mean(hindfood_length)
Min_hf = mean(hindfood_length)
 
What was the heaviest animal measured in each year? Return the columns year, genus, species_id, and weight.
Start with surveys
Filter(!is.na(weight))
Group by year
Filter(weight == max(weight)) %>%
Select year, genus, species_id, weight
Arrange(year)



Reshaping data with tidyr

» Shape of your data depends on
what you're interested in doing

« Example: mean weight by genus

* Need to reshape the data so
rows are plot

» Spreading: makes a wide table

» Gathering: makes a long table



Presenter
Presentation Notes
Now let’s talk about how to reshape data with tidyr
·      Reshaping data is important because what you can do with your data depends on how its formatted
·      For example, if you want to make a table that shows mean weight by plot, you need to reshape the sata so that the rows are plot
·      To do this, we’re going to use two tidyr verbs:
o   Spread, which makes your table wider and
o   Gather, which makes your table longer



spread()

e Wide table: values in cells
become column headers

* Input:
» data: a tibble,

* key column (values become new
column names),

» value column (to fill new column
variables)

* Output: a tibble

key

Baiomys

Baiomys

Baiomys
Chaetodipus
Chaetodipus
Chaetodipus
Dipodomys
Dipodomys
Dipodomys

surveys_gw %>% spread(key = genus, value = mean weight)

column with new

60.23
55.68
52.05

column of valuas
for new

variables



Presenter
Presentation Notes
Let’s look at the spread function
·      Spread makes the table wide by turning values in cells into column headers
·      Spread takes a tibble, a key column, and a value column as input
o   The key column is the column whose values you want to be column headers
o   And the value column is the column that holds the values to fill out the output table
·      The output is a tibble with the key column converted to column headers and the value column filling out the table. 



Example:

surveys gw <- surveys %>%
filter(tis.na(weight)) %>%
group by(genus, plot_id) %>%
summarize(mean_weight = mean(weight))
surveys_spread <- surveys gw %>%
spread(key = genus, value = mean_weight)
surveys _gw %>%
spread(genus, mean_weight, fill =0) %>%
nead()


Presenter
Presentation Notes
First, we’re going to make a summary table where we group by genus and plot id, then calculate the mean weight

Then, we’re going to spread this summary table so that each genus becomes a column header and the rest of the table is filled out with mean weight values.

Demo 13:
surveys_gw <- surveys %>%
                                   filter(!is.na(weight)) %>%
                                   group_by(genus, plot_id) %>%
                                   summarize(mean_weight = mean(weight))
 
Our key value is genus, because it’s the column that we want to be headers
And our value column is mean_weight, because that’s what we want to fill the new columns with 

surveys_spread <- surveys_gw %>%
                                spread(key = genus, 
value = mean_weight)
 
surveys_gw %>%
                  spread(genus, mean_weight, fill = 0) %>%
                  head()



gather()

» Long table (column headers
become values)

e Input:
» data: tibble,

« key column (create from col
names)

« values column (fill the key
variable)

e Output: a tibble

key

il Baiomys 7.00
2 Baiomys 6.00
3 Baiomys 8.61
1 Chaetodipus 22.20 1 7.00 22.20 60.23
2 Chaetodipus 25.11 2 6.00 25.11 55.68
3 Chaetodipus 24.64 3 8.61 24.64 52.05
1 Dipodomys 60.23
2 Dipodomys 55.68
3 Dipodomys 52.05
wvariable whose
S
columns

surveys spread %>% gather(key = genus, value = mean_weight, -plot_id)



Presenter
Presentation Notes
now let’s talk about gather
·      Gather makes a long table by converting column headers to values in a table
·      It takes a tibble, a key column, and a value column, and a specification of the columns to gather as input
o   The key column is the column that you want to create from column names
o   The value column is the column you want to put table values into



Example

surveys_spread %>%
gather(key = genus,
value = mean_weight,
Baiomys:Spermophilus) %>%
head()
surveys_spread %>%
gather(key = genus,
value = mean_weight,
Baiomys:Spermophilus) %>%
nead()


Presenter
Presentation Notes
In this example, we’re going to take the table from the spread example and we’re going to
 Create a column called genus that’s filled out with the column names specified on this slide
And a column called value that’s filled out mean_weight values

Demo 14:
surveys_spread %>%
                         gather(key = genus,
                                     value = mean_weight,
                                     Baiomys:Spermophilus) %>%
                          head()



Exercise #4:

» Goal: look at the relationship between mean values of weight
and hindfoot length per year in different plot types.

» Step 1: Use gather() to create a dataset where we have a key
column called measurement and a value column that takes on
the value of either hindfoot_length or weight.

e Step 2: Calculate the average of each measurement in
each year for each different plot_type.

» Step 3: spread() them into a data set with a column
for hindfoot_length and weight.


Presenter
Presentation Notes
Let’s do an exercise doing gather and spread
Exercise 4
Goal: look at the relationship between mean values of weight and hindfoot length per year in different plot types.
Step 1: Use gather() to create a dataset where we have a key column called measurement and a value column that takes on the value of either hindfoot_length or weight.

long_data<-surveys%>%
   	gather(key = measurement, #new col from col headers
          	value = value, 	#values
          	hindfoot_length, weight) #columns to gather


Step 2: Calculate the average of each measurement in each year for each different plot_type.

mean_values<-long_data %>%
   	filter(!is.na(value))%>%
   	group_by(measurement, plot_type, year)%>%
   	summarise(mean = mean(value))


Step 3: spread() them into a data set with a column for hindfoot_length and weight.
 
mean_values%>%
   	spread(key = measurement,
          	value = mean)



Remove missing data

surveys _complete <- surveys %>%
(species id !="", # remove missing species_id
! (weight), # remove missing weight
! (hindfoot_length), # remove missing hindfoot_length

sex !="") # remove missing sex


Presenter
Presentation Notes
Since the next data and donuts session is about graphing with ggplot, we want to get ready by cleaning up this dataset. First we’re going to remove all of the rows with missing values.
 
Demo 15: remove missing values
surveys_complete <- surveys %>%
 filter(species_id != "", # remove missing species_id         
      	!is.na(weight), # remove missing weight
      	!is.na(hindfoot_length), # remove missing hindfoot_length
      	sex != "") # remove missing sex



Data Cleaning: eliminate rare species

## Extract the most common species_id
species_counts <- surveys_complete %>%
(species _id) %>%

%>%

(n >= 50)
## Only keep the most common species
surveys complete <- surveys_complete %>%

(species_id %in% species_counts$species_id)


Presenter
Presentation Notes
We can also eliminate rare species from the dataset.
 
Demo 16: eliminate rare species
 
## Extract the most common species_id
species_counts <- surveys_complete %>%
  group_by(species_id) %>%
  tally %>%
  filter(n >= 50)
## Only keep the most common species
surveys_complete <- surveys_complete %>%
  filter(species_id %in% species_counts$species_id)



write_csv()

» Writes a data table to a file
 Input: a tibble, a file path
« Output: a file at the specified file path

Example: (surveys complete,
path = “data/surveys _complete.csv")


Presenter
Presentation Notes
Now that we have a clean dataset, we’re going to write surveys complete to a file using the write_csv function
·      write.csv takes a data frame, the name of an output file at minimum as arguments
·       you can also specify other parameters, like whether or not to include row names in the file
·      The content of a data frame is then output to the specified file
 
Demo 17: write data
write_csv(surveys_complete,
                                 path = “data/surveys_complete.csv")



Need help?

 Email: tobin.magle@colostate.edu

« Data Management Services website:
http://lib.colostate.edu/services/data-management
e Data Carpentry: http://www.datacarpentry.org/

* R Ecology Lesson:
http://www.datacarpentry.org/R-ecology-lesson/03-dplyr.html

» Data wrangling cheat sheet: http://www.rstudio.com/wp-
content/uploads/2015/02/data-wrangling-cheatsheet.pdf



Presenter
Presentation Notes
Thanks for listening. As always, email me at the address on the slide if you need help with these or any other data management topics. See out web site for a list of the topics I can help with. Additionally, see the data carpentry lessons for the full source material for this lesson. Finally, the data wrangling cheat sheet is a good resource for dplyr as you’re coding. 

mailto:tobin.magle@colostate.edu
http://lib.colostate.edu/services/data-management
http://www.datacarpentry.org/
http://www.datacarpentry.org/R-ecology-lesson/03-dplyr.html
http://www.rstudio.com/wp-content/uploads/2015/02/data-wrangling-cheatsheet.pdf

	Data Wrangling in R
	Outline
	Setup
	What is the tidyverse?
	Installing and loading packages
	Data set: survey of small animals
	Import data in tidyverse
	select()
	filter()
	Pipe operator %>%
	Exercise #1
	mutate()
	More mutate examples
	Exercise #2
	Summarizing data
	Group by multiple categories
	Removing NA with filter
	Limit what you print
	Multiple summary stats
	tally
	Exercise #3
	Reshaping data with tidyr
	spread()
	Example: 
	gather()
	Example
	Exercise #4: 
	Remove missing data
	Data Cleaning: eliminate rare species
	write_csv()
	Need help?

