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ABSTRACT OF DISSERTATION 

RAMSEY REGIONS AND SIMPLICIAL HOMOLOGY TABLES FOR 

GRAPHS 

Ramsey Theory is the investigation of edge-colored graphs which force 

a monochromatic subgraph. We devise a way of breaking certain Ramsey 

Theory problems into "smaller" pieces so that information about Ramsey 

Theory can be gained without solving the entire problem, (which is often 

difficult to solve). 

Next the work with Ramsey Regions for graphs is translated into the 

language of hypergraphs. Theorems and techniques are reworked to fit 

appropriately into the setting of hypergraphs. 

The work of persistence complex on large data sets is examined in the 

setting of graphs. Various simplicial complexes can be assigned to a graph. 

For a given simplicial complex the persistence complex can be constructed, 

giving a highly detailed graph invariant. Connections between the graph 

and persitance complex are investigated. 
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Chapter 1 

RAMSEY REGIONS 
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1.1 Introduction 

The work that follows (Chapter 1) appeared in Discrete Mathematics 

Vol 308 Issue 18 [?]. 

The motivation behind the material in Chapter one is to place the 

large and difficult problems (see [?]) that occur in classical Ramsey The­

ory in a setting that allows smaller problems to interconnect and build and 

allows algebra to contribute. A specific class of problems in classical Ram­

sey theory are stated in the context of colorings of complete graphs. By 

embedding these problems into a setting which includes all complete mul­

tipartite graphs, we see a more discretized set of problems and a stronger 

interconnectedness which allows solutions of one problem to more directly 

aid in the solution of nearby problems. Furthermore, the interconnected­

ness allows the creation of a Ramsey Region. In Chapter one, we develop 

the basic theory and tools for studying Ramsey Regions and we associate 

to each region an algebra. 

Classical Ramsey Theory is actively studied using various algebraic 

and combinatorial techniques. Many of the values and bounds attained in 

classical Ramsey Theory can be found in [?]. 

I begin by defining a Ramsey Region. Next the tools that relate in­

formation about one Ramsey Region to information about similar Ramsey 

Regions (Proposition 1.2.1, related corollaries, and Proposition 1.2.2) are 

developed. Then the underlying structure (shape) of the Ramsey Region 

is determined (Theorem 1.2.1). Work and results useful in forming the 

Ramsey Region can be found in [?, ?, ?, ?]. 

Let (7 \ ,T2, . . . ,TC) be a fixed c-tuple of sets of graphs (i.e. each Tj 

is a set of graphs). Let R(c,n,(T1,T2,... ,TC)) denote the set of all n-
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tuples, (a\, a,2,... ,an), such that every c-coloring of the edges of the com­

plete multipartite graph, KaiA2t...i(Jri, forces a monochromatic subgraph of 

color i from the set T; (for at least one i). If N denotes the set of non-

negative integers, then R(c, n, (T1; T 2 , . . . , Tc)) C N™. We call such a subset 

of Nn a "Ramsey region". An application of Ramsey's Theorem shows 

that R(c,n, (Ti ,T 2 , . . . ,TC)) is non-empty for n » 0. For a given c-tuple, 

( r 1 ; T 2 , . . . ,TC), known results in Ramsey theory help identify values of n 

for which the associated Ramsey regions are non-empty and help establish 

specific points that are in such Ramsey regions. In this paper, we develop 

the basic theory and some of the underlying algebraic structure governing 

these regions. 

Ramsey theory dates back 75 years to the following theorem: 

Theorem 1.1.1. (Ramsey) /?_/ Let r,k,l be given positive integers. There 

exists a positive integer n with the following property. If the k-subsets of an 

n element set are colored with r colors then there exists an I element set all 

of whose k-subsets are the same color. 

For a given r, k, I it is an interesting (and hard) problem to find the 

smallest value of n guaranteed to exist by Ramsey's theorem. The theorem 

has many corollaries guaranteeing the existence of substructures under var­

ious conditions. If k is set equal to 2 then Ramsey's theorem is a theorem 

in graph theory. It states that for n sufficiently large, any r coloring of the 

edges of Kn contains a monochromatic subgraph isomorphic to K\. Since 

any graph, G, embeds in some complete graph, the theorem also implies 

that for n sufficiently large, any r coloring of the edges of Kn contains a 

monochromatic subgraph isomorphic to G. 
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In this paper, Kai^2^,,At will denote the complete t-partite graph on 

sets of vertices of size ai,a2,... ,at and Kn will denote the complete graph 

on n vertices (thus Kn = -K"(i,i,...,i))- Let G be an arbitrary graph. If the 

vertices of G can be colored with t colors such that adjacent vertices have 

different colors then G can be embedded into a complete i-partite graph. 

The smallest t such that G can be embedded into a complete i-partite graph 

is called the chromatic number of G and is denoted by x(G)-

Let (Ti, T 2 , . . . Tc) be a c-tuple of sets of graphs (i.e. each Tj is a set of 

graphs). Let R(c, n, (Ti, T 2 , . . . , Tc)) denote the set of all n-tuples such that 

every c-coloring of the edges of ifai,a2,...,an forces a monochromatic subgraph 

of color i from the set Ti (for some i). Ramsey's Theorem guarantees that 

R(c,n, (Ti ,T 2 , . . . ,T c ) ) is non-empty for re»0. More precisely, Ramsey's 

Theorem guarantees that the n-tuple consisting entirely of l's is an element 

of R(c, n, (Ti ,T 2 , . . . ,T c ) ) provided that n > 0 . The set of all n-tuples in 

R(c, n, (Ti, T 2 , . . . , Tc)) is called a Ramsey Region. The goal of this paper 

is to develop the basic theory of Ramsey regions. Let M denote the mini­

mum value of the chromatic numbers of the graphs in the various Tj's. M 

provides a lower bound on n such that R(c, n, (Ti, T 2 , . . . , Tc)) is non-empty. 

Known results in Ramsey theory can be used to give upper bounds on n 

such that the n-tuple consisting entirely of l's lies in R(c, n, (Ti, T 2 , . . . , Tc)). 

In general, these bounds are far from being sharp. It is important to note 

that any given Ramsey region can be described completely by a finite list 

of n-tuples (even though a non-empty Ramsey region will have an infinite 

number of points). 
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1.2 Main definitions and theorems 

For this entire section, Kai>a2t,.,tan will denote a complete multipartite 

graph and A = (Ti, T 2 , . . . , Tc) will be an ordered c-tuple of sets of graphs. 

All graphs are assumed to have no multiple edges and no loops. R(c, n, A) 

will denote the set of all n-tuples such that every c-coloring of the edges of 

Kai,a2,...,an forces a monochromatic subgraph of color i which is isomorphic 

to a graph from the set Ti (for at least one value of i). If T = Ti = T2 = 

• • • = Tc then we write R(c, n, T) instead of R(c, n, (Ti, T 2 , . . . , Tc)). 

Proposition 1.2.1. Suppose Kaua2t...An C Kbltb2t...ibm then 

(ai,a2,...,an) e R(c,n,A) => (61,62, • • •, bm) £ R(c,m,A). 

Proof. Fix an injection i^ai,a2,...,a„ ,—* Kbi,b2,...,bm- ^n coloring the edges of 

^6i,62,-,6m w ^ h c colors, you induce a coloring of the edges of Kaua2i,„>an 

with c colors. Thus, if there exists a monochromatic subgraph of if&i,&2,...,6m 

of color i which is isomorphic to a given graph G then the induced coloring 

of the edges of KaiA2^„An will also contain a monochromatic subgraph of 

color i which is isomorphic to G. • 

Corollary 1.2.1. Let Sn denote the symmetric group on n elements and 

suppose ir e Sn, then 

( a 1 , a 2 , . . . , a n ) G R(c,n,A) <=^ (a^i), a^2), • • •, ^(n)) £ R(c,n, A). 

Proof. Follows from Proposition 1.2.1 using AT0l,a!ll...>0n ^ ^o,r(1),o»(a),..,0]r(n)-

D 

Corollary 1.2.2. / / (ai, a 2 , . . . ,an) and (&!, 62, • • •, bn) are n-tuples such 

that bi > ai for 1 < i < n then 

(a1,a2,...,an) E R{c,n,A) =$> (b1, b2,..., bn) E R(c,n, A). 
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Proof. Follows from Proposition 1.2.1 using KaiA2>...ia,n C Khlfi2,...,bn- ^ 

Corollary 1.2.3. / / (a,\, a2, •.., an) is an n-tuple and b satisfies 0 < b < a\ 

then 

( a 1 ; . . . , an) G R(c, n, A) =>• (a : - 6, a 2 , . . . , an, 6) € f?(c, n + 1, A). 

Proof. Follows from Proposition 1.2.1 using Kaua2i...An C Kai-b,a2,...,an,b- • 

Definition 1.2.1. Suppose ( a i , a2 , . . . ,a n) € /?(c,n, A). If there exists an 

i such that lowering â  6y 1 gwes an n-tuple which is not in R(c, n, A) then 

we call (ai, a 2 , . . . , an) a boundary point. A boundary point is called a 

vertex if lowering any a^ by 1 gives an n-tuple which is not in R(c,n,A). 

The vertex is called a fundamental vertex if a\ > a2 > • • • > an. 

Proposition 1.2.2. (i) Let A = (TUT2,... ,TC) and B = (VUV2,... ,VC) 

be c-tuples of sets of graphs. If for each i, each element ofVi contains 

as a subgraph some element ofT{ then R(c,n,B) C R(c,n,A). 

(ii) If IT e Sc thenR(c,n,(T1,T2,...,Tc)) = R(c,n, {T^x),Tn{2), •. • ,T^c))). 

(Hi) Let A = (T1,T2,..., TC_1}TC U T'c), B = (Tlt T2,..., 2 U , Tc) and C = 

(Ti, T2,..., Tc_i, T'c) then R{c, n, A) = R(c, n, B) U R(c, n, C). 

Proof. For Part (i), note that if every c-coloring of the edges of Kaua2t_ian 

forces a monochromatic subgraph as determined by B then it also forces a 

monochromatic subgraph as determined by A. Part (ii) and Part (iii) are 

clear. • 

As a consequence of Proposition 1.2.2 iii), it is enough to understand 

R(c, n, A) where A is a c-tuple of graphs (as opposed to A being a c-tuple 

of sets of graphs). 
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Theorem 1.2.1. LetkbeafieldandletS = k[xi,x2,...,xn]. Define a map 

(/> : R{c,n,A) - • S by^{(al}a2,...,an)) = x\x xa
2

2 ... xa
n

n. Let I(R(c,n, A)) 

be the homogeneous ideal in S generated by the image of (p. Let V be the 

set of vertices of R(c, n, A) and let I(V) be the homogeneous ideal in S 

generated by 0(V). Then 

(i) x\xxa
2

2 ...xaj G I(R{c,n,A)) <^> (a1,a2,...,an) e R(c,n,A) 

(ii) I(R(c,n,A)) = I(V). 

Proof (i) If x\xxa
2

2 . . . < " G I(R(c, n, A)) then x\xxa
2

2 . . . < " is an S-linear 

combination of elements in <fi(R(c, n,A)). As a consequence of Corollary 1.2.2, 

if x°^xa
2

2 ...x°£ G <f>{R{c, n, A)) and if M is a monomial then M-x\lxa
2

2 ...x^nE 

4>(R(c,n,A)). Thus the degree d part of I(R(c,n,A)) is equal to the span 

of the degree d part of 4>(R(c, n, A)). 

(ii) By part (i), x°^xa
2

2 ...x^n G I(R(c, n,A)) <£=> (ai,a2,. • •, an) G 

R(c, n, A). Given (ai,a2,. • •, an) G R(c,n, A), decrease an as much as possi­

ble while remaining inside R(c, n, A) then decrease an_i as much as possible 

while remaining inside R(c,n,A) then do the same for an_2 on down to a\. 

At this point, lowering any of the components any further will cause you 

to leave R(c, n, A). In other words, you are at a vertex. In terms of S, this 

is equivalent to factoring = M • <f>(v) where M is a monomial 

and v is a vertex. But this shows x^x^2... x^1 G I(V). • 

Let Sn denote the symmetric group on n elements. For each -K G 

Sn we get a map ITS '• S —>• S by irs{%i) = X-K{V>-
 i n this way, Sn acts 

on S. Furthermore, each element of R(c, n, A) extends to an element of 

R(c,n + I, A) by sending (a1; a2, •. • ,an) to ( a i , a 2 , . . . , a „ , 0 ) . Thus there is 

a natural embedding / : R(c, n, A) c—>• R(c, n + l,A). Since R(c, n+l,A) is 
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iS^+i-invariant, the smallest Sn+i invariant set containing f(R(c, n, A)) also 

sits inside R(c, n + l,A). 

Definition 1.2.2. (i) Vn(c,A) denotes the vertices of R(c,n,A). 

(ii) Fn(c,A) denotes the fundamental vertices of R(c,n,A). 

(in) If T C k[xi,x2, • • • ,xn] then Sn(T) will denote the smallest Sn-

invariant set containing T. 

(iv) Zi denotes the i-tuple ( 1 ,1 , . . . , 1 ) . 

(v) If f = («i, «2, • • •, an) then define [/] = £™=1a;. 

Proposition 1.2.3. (i) Sn(Fn(c,A)) = Vn(c,A). 

(ii) There exists an i such that Zi € Fi(c, A). 

(m) Fn{c,A)^Fn+1(c,A). 

(iv) linin^oo Fn(c, A) exists. 

Proof. Part (i) is clear. Part (ii) follows from Ramsey's Theorem. Part (hi) 

follows from the fact that R(c,n,A) injects into R(c,n+ 1,A) by the map 

(ai,a2,..., an) —» (a\, a2, • • •, an, 0) and this injection maps fundamental 

vertices to fundamental vertices. Part (iv) follows from Part (ii) and its 

implication that Zi € Fj(c, A) implies Fj(c, A) ~ Fi+t(c, A) for all t > 0. • 

Definition 1.2.3. Let v = ( a i , a 2 , . . . , an) . Let v denote the tuple obtained 

from v by removing any ai that are equal to zero. Let Fn(c,A) — {v\v G 

Fn(c,A)}. Let $(c,A) = ]imn^oa Fn(c, A). We call$(c,A) the Full Set 

of Fundamental Vertices for c and A. From $(c,A) we can reconstruct 

R(c, n, A) for any value of n. 
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For a fixed c and A, define the function HF(c,A)(n) = |Fn(c, ^4)| and 

the sequence HF(c,A) = \F0(c,A)\,\Fi(c,A)\,\F2(c,A)\, As a conse­

quence of Proposition 1.2.3, HF(c,A) will be a bounded, monotone increas­

ing function which stabilizes at |#(c,a)| . Define PboUom(c, A) = max{n\HF(c,A)(n) = 

0} andPtop(c,A) = min{n\HF(c,A) = |£(c,a) |}. 

Proposition 1.2.4. Fix c and A. If Pbottom(c,A) < n < Ptop(c,A), then 

the function HF(c,A)(n) is a strictly increasing function of n. 

Proof. Given / = (ai,a2 , • • • ,<k), define | | / | | to be the number of a* that 

are not equal to zero. Assume that Z{ £ Fi(c,A) for any i < n. We need 

to show there exists a vertex g £ Fn+i(c, A) such that \\g\\ = n + 1 (for 

this would show that the number of elements in Fn+i(c, A) is strictly larger 

than the number of elements in Fn(c,A)). Let r = min{[h]\h € Fn(c,A)}. 

Pick an element / 6 Fn(c,A) such that [/] = r (see Definition 1.2.2). Using 

Corollary 1.2.3, / can be used to produce a point, / ' € R(c,n + 1,A) with 

ll/'H = min{r, n + 1}. If r < n + 1 then / ' = Zr which contradicts our 

assumptions. If r > n + 1 then | | / ' | | = n + 1. If / ' G Vn+i(c,A) then by 

Corollary 1.2.1, we can use / ' to make a fundamental vertex g G Fn+i(c, A) 

with| |p | | = n + l . If/' ^ K + i ( c , A), then by Theorem 1.2.1, </>(/') = M-</>(v) 

with v a vertex. Since [v] < [/'] = [/] and since / was chosen from Fn(c, A) 

such that [/] was as small as possible, we can conclude that v <£ Fn(c,A). 

Since v £ Fn(c,A) and </>(/') = M • 4>(v) and since | | / ' | | = n + 1, we can 

conclude that v E Fn+1(c,A) and that ||i>|| = n + 1. Thus, while the map 

Fn(c, A) c—* Fn+\(c, A) is injective, it is not surjective hence |Fn + i(c, A)\ > 

\Fn(c,A)\. D 

Let Gi, G2, • • •, Gc be graphs. Let A = (G1; G2, • • •, Gc). Let R(A) de­

note the smallest n such that every c-coloring of the edges of Kn necessarily 
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contains a monochromatic graph of color i which is isomorphic to Gi for 

at least one value of i. Thus R(A) denotes the standard c-color Ramsey 

number avoiding G; in color i. We have the following proposition: 

Proposition 1.2.5. K(A) < min{[f] \f G F;(c, A)} for everyi andK(A) = 

rrnn{[f] \f € $(c,A)} = Ptop(c,A) = min{i\Zi e FfaA)}. 

Proof. The proof follows immediately from Corollary 1.2.3 and Proposi­

tion 1.2.3. • 

Example 1.2.1. Let A — (#2,2,-^2,1), then 

F0(2,A) = F1(2,A) = (b 

F2(2,A) = {(4,2)} 

F3(2, A) = {(4,2,0), (2,2,2), (3,2,1), (4,1,1)} 

F4(2, A) - {(4, 2,0,0), (2, 2,2,0), (3,2,1,0), (4,1,1,0), (1,1,1,1)} 

5(2, A) = {(4, 2), (2,2,2), (3,2,1), (4,1,1), (1,1,1,1)} 

Pbottom{2,A) = l, Ptop{2,A) = A 

HF(2,A) = 0 ,0 ,1 ,4 ,5 ,5 , . . . 

R(A) = 4. 

Definition 1.2.4. Let G be a graph with vertex set V and edge set E. Let 

v (= V. Form a new graph, G', from G by adding a new vertex v' and by 

adding new edges by the rule: v' is connected to w G V if and only if v is 

connected to w. Then G' is said to be obtained from G by a neighborhood 

dupl icat ion. 

Theorem 1.2.2. IfG is a graph and if G' is obtained from G by a neighbor­

hood duplication, then x{G) = x(G'). Furthermore, Kn C G <=^ Kn C 

G'. 
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Proof. It is clear that Kn C G =4- Kn C G'. We need to show that 

Kn <2 G =>• Kn%G'. Let i> be the vertex that was duplicated and let v' 

be the new vertex. If Kn <2 G and ifn C (?' then the copy of Kn in G' must 

contain both v and u'. But v and v' are not connected. In a complete graph 

every pair of vertices is connected. Therefore Kn%G =$• Kn <2 G'. 

To prove that x(G) = x(G'), note that if a vertex coloring of G avoids 

adjacent vertices having the same color then by coloring v' the same color 

as v, we have colored the vertices of G' so that adjacent vertices don't have 

the same color. • 

Corollary 1.2.4. $(c,(Kbl,Kb2,... ,Kbc)) = {Zb} where Zb is the b-tuple 

of 1 's with b = R(Kbl, Kb2,..., Khc). 

Proof. Let j < R(i^61, Kb2,..., Kbc). Then there exists a coloring of Kj con­

taining no Kbi of color i (for any i). By a sequence of neighborhood dupli­

cations, we can transform Kj into 'i^ai,a2,...,o- for any j-tuple {ai,a^, • • •, %) 

(with strictly positive coordinates). If we duplicate both the neighborhoods 

and the corresponding edge coloring, then we obtain an edge coloring of 

Kai,a2,...,aj containing no Kbi of color i for any i (by Proposition 1.2.2). 

Thus Fj(c, (Kbl ,Kb2,..., Kbc)) = 0. If j = R(Kbl ,Kh,..., Kbc) then 

Zj € R(c, j , (Kbl,Kb2,... ,Kbc)) thus there is only one fundamental ver­

tex. • 

1.3 Two dimensional Ramsey regions 

This section is concerned with properties of Ramsey regions of the 

form R(c,2,A). We call these two-dimensional Ramsey regions since they 

consist of 2-tuples. Let the vertices of a complete bipartite graph Ka>b be 

represented by xi, x2, • • •, xa and j/i, 7/2> • • •, Ub- Any c-coloring of the edges 
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of Ka,b can be represented by an a x b matrix whose ij entry is the color 

of the edge connecting xt and j/j. If A is a c-tuple of complete bipartite 

graphs, then determining R(c,2,A) is equivalent to determining for what 

values of r, s is every r x s matrix, whose entries are one of c different 

colors, forced to contain an appropriate sized monochromatic rectangle. If 

only two colors are used, then we can use the symbols 0 and 1 to represent 

the two colors. If A = (Kafi, Kc>(i) is a 2-tuple of complete bipartite graphs 

then determining R(2, 2, A) is equivalent to determining for what values of 

r,s is every r x s 0,1-matrix forced to contain either an (a x b or b x a) 

submatrix of l 's or a (exd or dxc) submatrix of O's. Standard constructions 

in Design theory can be used to produce large 0,1-matrices which do not 

contain monochromatic sub-rectangles. 

Definition 1.3.1. Let t, k, v, X be integers with t < k < v and A > 0. Then 

a t — (v, k, A) design is a collection of k-element subsets (called blocks,) 

of a v-element set (called points,) such that every t-element subset of the 

v-element set is contained in exactly A of the k-element sets. 

The point-block incidence matrix of a design can be reinterpreted as the 

reduced adjacency matrix of a bipartite graph or as a coloring of the edges 

of a complete bipartite graph with 2 colors. Properties of the design imply 

various properties of the 0,1-matrix. This is illustrated in the following: 

Example 1.3.1. Consider the set consisting of 3-subsets o /{ l ,2 ,3 ,4 , 5,6,7} ; 

y = {{1,2,3}, {1,4,5}, {1,6, 7}, {2,4,6}, {2,5, 7}, {3,4, 7}, {3,5,6}}. Y is 

a 2 — (7,3,1) design (it is also a Steiner triple system of order 7). The 
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incidence matrix of Y is the matrix My = 

1 1 1 0 0 0 0 
1 0 0 1 1 0 0 
1 0 0 0 0 1 1 
0 1 0 1 0 1 0 . Since 
0 1 0 0 1 0 1 
0 0 1 1 0 0 1 

_0 0 1 0 1 1 0_ 
Y is a 2 — (7,3,1) design, there can be no 2 x 2 submatrix of 1's. It is 

easy to check that there are no 2 x 3 nor 3 x 2 submatrices of 0's. Thus, 

this matrix corresponds to a 2-coloring of the edges of K^j in which there 

is no K2>2 of the first color and there is no K2>3 of the second color. I. e. 

(7,7)tR(2,2,(K2i2,K2i3)). 

Since My contains no 3 x 2 submatrices of 0's or 1 's, two copies of My 

can be concatenated to produce a 7 x 14 matrix with no 3 x 3 submatrices 

of 0's or 1 's. This implies that (7,14) £ R(2,2, (K3t3, K3>3)). One can build 

a 14 x 14 matrix by tensoring a 2 x 2 matrix of 1 's with My. This matrix 

shows that (14,14) g R{2,2,(K3,3,K3,5)). 

One can see from the example above that one can formulate a large 

number of statements of the form (a, b) ^ R(2,2,A) = > {o!,b') £ 

R(2,2,A'). To do this, one can start with a matrix that doesn't contain 

certain substructures and use it to build new matrices without certain sub­

structures. This can be a very useful tool when trying to understand a 

given Ramsey region. Here is one aspect of this idea. 

Proposition 1.3.1, Let Z n denote the integers modulo n. Let M be an 

axb matrix whose entries are taken from Z n . Suppose M contains no cxd 

submatrix all of whose entries are a given element i € Z n . Let Zr<s denote 

the rxs matrix of l's. Then Zr^s®M contains no ((c—l)r+l)x((<i—l)s+l) 

submatrix all of whose entries are equal to i. 
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Proof. Zr>s ® M is the matrix built by stacking r copies of M on top of each 

other then gluing together s copies of these stacked matrices. The result 

then follows immediately from the pigeonhole principle. • 

Proposition 1.3.2. The point-block incidence matrix ofat—(v, k, A) design 

contains no t x (A + 1) submatrix of 1 's and no t x (A + 1) submatrix of O's. 

Where As = XfcD/fc) and A = S*S=0(-1)^QAS. 

Proof. The statement that the matrix contains no t x (A + 1) submatrix of 

l's is clear. The statement that the matrix contains no t x (A+1) submatrix 

of O's follows from the fact that the complement to a t — (v, k, A) design is 

a t — (v, v — k, A) design [?]. • 

Remark 1.3.1. To produce interesting reduced adjacency matrices, we can 

start with the incidence matrix of a design. However, proposition 1.3.2 

does not guarantee that the incidence matrix of a t — (v,k,X) design has 

no (A 4- 1) x t submatrix of l's. To establish that a given coloring of the 

edges of a complete bipartite graph has no monochromatic complete bipartite 

subgraph, we need to show that the associated reduced adjacency matrix 

and its transpose contain no monochromatic rectangle of a certain size. 

Thus, the propositions above are useful but do not complete the picture. 

However, interesting properties of a matrix do imply interesting properties 

in the tensor product. 

Designs are very useful in producing points which are not in a given 

Ramsey region but are typically very close to a boundary point of the region. 

A standard argument in combinatorics shows that the number of k-sets in 

a t — (v, k, A) design is b = A(^)/( t) /?/. This fact is sometimes useful to 

show that a given 2-tuple is in a given Ramsey region by showing that it is 
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not possible to have too many blocks (i.e. columns) without forcing certain 

substructures. 

Example 1.3.2. This example shows that (8,8) € #(2 ,2 , (-^2,2,^3,2))- By 

the previous paragraphs, this will be established if it is shown that every 

8 x 8 0,1-matrix contains either a 2 x 2 submatrix of 1's or a ( 2 x 3 or 

3 x 2 , ) submatrix of O's. Let M be an 8 x 8 0,1-matrix. It is easy to check 

that if M has 3 columns with 4 or more 1 's then there will exist a 2 x 2 

submatrix of 1 's. Therefore, we can assume M has 6 or more columns with 

5 or more O's. If there is a column with 6 O's and a column with 5 O's then 

there will be a 3 x 2 submatrix of O's. So we can assume M has 6 or more 

columns with exactly 5 O's in each column. The formula for the number of 

blocks of a 3 — (8,5,1) design yields 5.6 blocks. This is not an integer so 

such a design does not exist. Furthermore, 5.6 is an upper bound for the 

number of 5 subsets that can be selected from an 8 element set that avoids 

the appearance of a 3 element set in more than one block. Since we have 6 

or more columns containing 5 O's, there must exist a 3 x 2 submatrix of 

O's. Consequently, (8,8) e #(2,2,(1^2,2, #3,2)). 

1.4 Concluding Remarks 

Most of the difficulty of classical Ramsey theory is due to the large 

step in complexity that occurs between successive Ramsey numbers. With 

Ramsey regions, the ultimate goal is to compute the fundamental vertex set. 

This is a large problem but naturally breaks up into a series of much smaller 

problems. As n increases, fundamental vertices in Fn(c, (Gi, G2, • • •, Gc)) 

"converge" to Zj. The i for which Zi is a fundamental vertex is the classical 

Ramsey number R(C?i, G2, • • •, Gc). Information gleaned from one Ramsey 
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region helps in the understanding of other Ramsey regions. This allows 

an accumulation of results which can contribute to the solution of a dif­

ficult problem such as the determination of classical Ramsey numbers. It 

is certainly our hope that further connections with other constructions in 

combinatorics are established and that this allows work in other areas to ap­

ply directly to the understanding of Ramsey regions. It is clear that most 

of this paper can be generalized to hypergraphs in a fairly natural man­

ner. Our goal in a future project is to further develop the algebra involved 

with Ramsey regions, to describe the algebra of Ramsey regions involving 

hypergraphs and to extend the algebraic approach initiated in this paper. 
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Chapter 2 

RAMSEY REGIONS FOR 
HYPERGRAPHS 



2.1 Introduction 

The work done on Ramsey Regions will now be generalized to the 

setting of hypergraphs. Many of the definitions and theorems on Ramsey 

Regions presented in Chapter 1 translate naturally into the setting of hy­

pergraphs. However some theorems, especially those related to constructing 

Ramsey Regions, require more substantial modifications in order to hold for 

hypergraphs. 

2.2 Main definitions and theorems 

Definition 2.2.1. /?/ A hypergraph is a pair H = (V,E) where V is 

a set of vertices and E is a set of edges e$ such that e; C V for all i. A 

hypergraph is simple if there are no repeated edges. 

Notice that our definition does not allow an edge to have a repeated 

vertex set. This is analogous to not allowing loops in a graph. 

Definition 2.2.2. [?] Let V be a set. The powerset ofV is the set of sets 

V(V) = {e\e C V}. Let Vr(V) = {e. G V{V)\ \V\ = r}. There is a natural 

decomposition V(V) = V0{V) U • • • U V\v\(V). 

Every hypergraph in this chapter will be assumed to be simple. Thus, 

in this chapter, a hypergraph is a pair (V,E) with E C V(V). A graph is 

a hypergraph where E C 7̂ 2 (V"). 

Definition 2.2.3. /?/ An edge n — coloring of a hypergraph H = (V, E) 

is a surjective function C : E —> { c i , . . . , cn}. 

Definition 2.2.4. ft] A hypergraph H = (V, E) is said to be k — uniform 

ifECVk(V). 
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Definition 2.2.5. /?/ A hypergraph H = (V, E) is said to be k — partite 

if V can be partitioned into k sets Vi,..., 14 such that for each edge e € E 

we have \e f] Vt\ < 1 for all 1 < t < k. 

Definition 2.2.6. /?/ A hypergraph H — (V,E) is said to be complete 

with respect to properties P i , . . . , Pr if the hypergraph is a maximal element 

in the poset of hypergraphs with vertex set V satisfying all of the properties 

Pi,..., Pr and partially ordered by the condition (V, E) < (V, E') <£=> E C 

E'. 

For instance a k — uniform hypergraph H = (V, E) satisfies E C 

Vk(V) while a complete k — uniform hypergraph H = (V, E) satisfies 

E - Vk{V) 

Definition 2.2.7. /?/ Let V be the vertex set of a hypergraph. K^ n will 

be used to denote a complete r-uniform, p-partite hypergraph which respects 

a partition V = VJ. |J • • • (J Vp with \Vi\ = n^. 

Example 2.2.1. The hypergraph H = (V,E) with V = {1,2,3,4} and 

E = {{1, 2, 3}, {1, 2,4}} is a K$xl with {1, 2,3,4} = {3,4} U {2} U {1}. 

Definition 2.2.8. Let V be the vertex set of a hypergraph with \V\ = n. 

If ^"i,...,i is the complete r-uniform, n-partite hypergraph which respects the 

partition V = Vi [j • • • (J Vn with |V*| = 1 then this will often be denoted Kr
n. 

Example 2.2.2. The hypergraph H = (V, E) with V = {1,2,3,4} and 

E = {{1,2, 3}, {1,2,4}, {1,3,4}, {2,3,4}} is a Klxli which we can also 

denote by K\. 

Proposition 2.2.1. (Basic Facts) 
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(1) Every complete r-uniform, p-partite hypergraph has r < p. 

(2) The number of edges in Kr
ni n is 

£ IK 
l<bi<b2<-<W<p i—1 

Definition 2.2.9. Let H = (V,E) be an r-uniform hypergraph with \V\ = 

n. The adjacency hypermatrix of H is the r-dimensional n x n x 

• • • x n hypermatrix, M, with each dimension indexed by the elements of 

V and with .MaUa,2,...,ar = 1 # {a i , a 2 , . . . , a r } G E and Mai^„,Ar = 0 if 

{ a i , a 2 , . . . , a r } £ E. 

Definition 2.2.10. Let H = (V, E) be an r-uniform hypergraph with \V\ = 

n and let C : E —»• {c i , . . . ,ct} be a t coloring of the edges of E. The 

colored hypergraph can be represented by an r-dimensional n x n x • • • x n 

colored adjacency hypermatrix, M, with each dimension indexed by the 

elements ofV and with entry Mai>a2)...iar = C(ej) if{a±,a2,..., a^} = e» € E 

and Maua2t...taT = 0 if {a1,a2,...,ar} £ E. 

Note that if M is an adjacency hypermatrix of a hypergraph or of a col­

ored hypergraph then M is a supersymmetric tensor of format (n,n,... ,n). 

In other words, MaiA2^,,Ar = Man(i)<a^2),...A^(r) for every TV in the symmetric 

group Sr. 

Let H = (V, E) be a fc-uniform, fc-partite hypergraph which respects 

the partition V = V\ U • • • U Vfc with n$ = |V$|. Then H can be repre­

sented by a fc-dimensional partite adjacency hypermatrix, M € Rn i ® • • • <8> 

Rnfc. For each i, the ii/!- dimensional hyper-row is indexed by elements of 

Vt. We set Maua2v..<ar = 1 if {a1,a2,... , a r } e £ and Maii„2i...iar = 0 if 
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{a i , a 2 , . . . , a r } ^ E and extend this notation to the case of a colored k-

uniform, fc-partite hypergraph as in the preceding definition. Recall from 

chapter 1 that in a bipartite graph G, the necessary information to con­

struct G is captured in the reduced adjacency matrix. As a bipartite graph 

is a 2-uniform 2-partite hypergraph, we are extending this viewpoint to the 

setting of fc-uniform, ^-partite hypergraphs. The partite adjacency hyper-

matrix is sometimes called a reduced adjacency matrix. 

Definition 2.2.11. When H = (V, E) is a k-uniform, k-pariite hypergraph, 

let RAMk(H) denote the associated k — dimensional partite adjacency hy-

permatrix of H. 

Note that many theorems from chapter 1 immediately carry over to the 

setting of hypergraphs. These include Proposition 1.2.1, Corollary 1.2.1, 

Corollary 1.2.2, Corollary 1.2.3, Definition 1.2.1, Proposition 1.2.2, The­

orem 1.2.1, Definition 1.2.2, Proposition 1.2.3, Definition 1.2.3, Proposi­

tion 1.2.4, and Proposition 1.2.5. We must however, use more care when 

addressing neighborhood duplication in this more general setting. 

Definition 2.2.12. Let H = (V, E) be a hypergraph and let v E V. The 

neighborhood duplication of v in H is the hypergraph H' — (V, E') 

obtained by introducing a new vertex v' and defining V = VUv' and defining 

E' = E U S where S = {e - {v} + {v'}\e e E and v E e}. 

In other words, the hypergraph H' is formed by distinguishing a vertex 

v in H, introducing a new vertex v', and requiring that the neighborhood 

of v' is indistinguishable from the neighborhood of v. 

Example 2.2.3. Let H be the hypergraph Klxl. Any neighborhood du­

plication of the hypergraph K\ 11 yields the hypergraph K\ 1 1 . Applying 
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neighborhood duplication to K^n yields either K\1X or K\21 depending 

one which vertex is chosen to be duplicated. 

We will write G -̂> H if there exists an injective map of G to H. In 

other words, G <—> H if there exists a subgraph of H which is isomorphic 

to G. We will also write this as G C H. 

Theorem 2.2.1. If H is a hypergraph and H' is obtained from H by neigh­

borhood duplication, then KT
n w H 4=> Kr

n ^-> H'. 

Proof. It is clear that KT
n

 t-» H ==> Kr
n *—> H'. We need to show that 

Kr
n '—>• H' => KT

n "-^ H. Let v be the vertex that was duplicated and let 

v' be the new vertex. If Kr
n ^ H and Kr

n C H' then the copy of KT
n in H' 

must contain both v and v'. But H and H' do not share an edge whereas 

all vertices in a complete hypergraph share an edge. D 

An immediate useful corollary is the following extension to hypergraphs 

with a Kn skeleton. 

Corollary 2.2.1. Let G = (V, E) be a hypergraph. Let H and H' be hyper­

graphs with H' a neighborhood duplication of H. If\V\ — n and if Kn <—>• G 

then G^H ^ G ^ H'. 

Now Corollary 1.2.4 now holds with respect to the new definitions. 

Definition 2.2.13. /?_/ A proper vertex k-coloring of a hypergraph H = 

(V, E) is a surjective map C : V —>• { c i , . . . , c n } such that no non-trivial 

hyperedge has vertices all of the same color. The chromatic number, x(H), 

for a hypergraph H, is the smallest number k such that H admits a proper 

vertex k — coloring. 
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Example 2.2.4. If H = Kr
ai<^ar then x(H) = 2. To see this, let V = 

^1 U ' ' • U Vr be a corresponding vertex partition then map all vertices in V\ 

to color C\ and map all other vertices to color c2. Every edge of H has a 

vertex in V\ and a vertex not in V\. Thus no edge has vertices all of the 

same color. 

2.3 Ramsey regions for hypergraphs 

We now define Ramsey regions for hypergraphs. Let (Ti, T2, . . . Tc) be a 

c-tuple of sets of fc-uniform hypergraphs. Let R(c, n, (7\, T2 , . . . , Tc)) denote 

the set of all n-tuples such that every c-coloring of the edges of K% a2... Qfl 

forces a monochromatic subgraph of color i from the set Tt (for some i). 

Ramsey's Theorem guarantees that the n-tuple consisting entirely of l's is 

an element of R(c,n, (Ti,T2,...,Tc)) provided that n » 0 . The set of all 

n-tuples in R(c, n, (Ti, T2 , . . . , Tc)) is called a Ramsey Region. 

Starting with a (colored) partite adjacency matrix of a lower dimen­

sional hypergraph with special properties, we can sometimes build higher 

dimensional partite adjacency matrices through stacking, tensor products, 

and other basic operations. We will see several instances of such construc­

tions in the following pages and, as a result, obtain information on certain 

specific Ramsey regions. 

When dealing with a complete k — uniform k — partite hypergraph 

H with an associated n — coloring, each entry in the RAMk(H) will be Q 

(the color) associated to that edge. 

Unless otherwise stated assume all graphs are complete, k-uniform, 

k-partite with an associated n-coloring. 

23 



Example 2.3.1. Let G be a complete n-colored bipartite graph K2
ah with 

axb partite adjacency matrix M. Assume further that no rxr submatrix of 

M is monochromatic. Then the axbx2 hypermatrixM' formed by stacking 

two copies of M will contain no r x r x 2 monochromatic submatrix. As 

a result, M' can be interpreted as the colored partite adjacency matrix of a 

complete n-colored 3-uniform, 3-partite hypergraph K\h2 which contains no 

monochromatic K?,.?. 

Example 2.3.2. Let the following matrix correspond to a 2-colored G = 

Kj6 (with colors 0 and 1). 

" 1 1 0 0 " 
1 0 1 0 

0 1 0 1 
0 0 1 1 _ 

Note that M contains no 2 x 2 submatrix consisting of all Ys nor one 

consisting of allO's. As a consequence, G contains no monochromatic K\2. 

For any N, if we stack N sheets of matrix M the resulting 4 x 6 x N 

hypermatrix, M', will never contain a monochromatic 2 x 2 x 2 submatrix. 

Interpreting M' as a colored partite adjacency matrix of an edge colored 

Kf6N we see that there is no monochromatic K^22. This allows us to 

conclude that (4,6, N) £ R(2,3, { t f f ^ } , {#2,2,2})-

We can extend these examples to gain information about Ramsey re­

gions related to complete k —uniform k — partite hyper graphs by examin­

ing the cases for complete (k — 1) — uniform (k — 1) —partite hypergraph. 

Example 2.3.3. Let H be an n-colored k-uniform k-partite hypergraph 

which contains no monochromatic K^r r. In other words, the colored par­

tite adjacency hypermatrix, M of H, contains no r x r x • • • x r (k times) 
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monochromatic sub-hypermatrix, then by stacking 2 copies of M, we obtain 

a hypermatrix containing n o r x r x - - - x r x 2 (k + 1 terms) monochromatic 

sub hypermatrix thus there exists a n-colored (k+l)-uniform (k+l)-partite 

hypergraph H with no monochromatic K^f1
 r 2-

Note that in the above propositions we looked for square submatrices 

inside of a parent matrix. Extra care must be taken when applying this 

procedure to non-square submatrices. For instance, if a matrix M contains 

a 2 x 2 submatrix of all Is but no 2 x 3 submatrix of all Is. We cannot 

expect to "stack" an arbitrary number of this 2 x 2 submatrix on top of 

itself and avoid getting a 2 x 2 x 3 submatrix of all Is. The reason for this 

is because we eventually will be forced to place a 2 x 2 submatrix of all Is 

on top of another 2 x 2 submatrix of all Is. For the same reason we will 

eventually be forced to place another 2 x 2 submatrix of all Is on top of 

the previous 2. This gives us our 2 x 2 x 3 submatrix of all Is. 

We can also use the same "stacking" technique for matrices that contain 

exactly one square submatrix of all Is. In this case we cannot stack an 

arbitrary number of the submatrix, however, we can calculate the number 

of times the stacking can be carried out before we are forced to place the 

submatrix on top of itself, thus creating an undesired sub-hypergraph. 

Proposition 2.3.1. Let G be a complete n-colored Kah bipartite graph 

which contains exactly one monochromatic Kr^r subgraph, then there exists 

a complete n-colored tri-partite, 3-uniform hypergraph K3 /m\/n\ with no 
'n'\ r )\r) 

monochromatic K^Xrx2 sub-hypergraph. 

Proof. Let G be as described above. The colored partite adjacency matrix, 

M of G, contains exactly one r x r monochromatic submatrix. There are 
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(") (r) w aY s to permute the rows and columns of M such that no two 

permuted matrices have the r x r submatrix in the same location within 

M by stacking these permuted copies of M we obtain an a x b x (") (r) 

hypermatrix which contains no r x r x 2 monochromatic sub hypermatrix. 

Interpreting this as the colored partite adjacency matrix of a K' 
WX) 

have obtained a coloring containing no monochromatic K^r2. 

we 

• 

Example 2.3.4. Consider the following bicolored partite adjacency matrix 

ofaKjj. 
" 1 1 0 0 

1 0 1 0 
1 0 0 1 

M = 0 1 1 0 
0 1 0 1 
0 0 1 1 
1 1 0 0 

Note that there is exactly one 2 x 2 submatrix of all l's and exactly one 

2 x 2 submatrix of all 0's. We can stack, by permuting rows (2) times 

and columns (£) times yielding a 7 x 4 x 168 hypermatrix containing no 

monochromatic 2 x 2 x 2 submatrix. Notice that if we then try to stack one 

more permuted copy of RAM2(G) we will have to form a 2x2x2 submatrix 

of all Is and also one of all 0s since we have exhausted the possibilities for 

permuting rows and columns and thus avoiding the undesired submatrix. In 

this manner we can determine a point on the border of the Ramsey region 

R(2,S,{K!X2},{K!X2}). 

Proposition 2.3.2. Let K*lt_^ be an n-colored k-uniform k-partite hyper-

graph with exactly one monochromatic i^ x r X . . . x r (k times) sub-hypergraph, 

then there exists an n-colored (k-hl)-partite hypergraph K +l ,as ,as 

with no monochromatic Krxrx--xrx2 fe + 1 terms) sub-hypergraph. 
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Proof. Let G = K%lt ak have hyper-edges colored as described above. 

Then the colored partite adjacency matrix, M of G, contains exactly one 

monochromatic r x r x • • • x r submatrix. As a consequence, we can stack 

k — dimensional matrices obtained by permuting each of the hyper-rows 

in such a way that the r x r x • • • x r submatrix is displaced with respect 

to each of the the k dimensions. We can do this a total of (a
r
1) • • • (afc) 

times without repeating a hypermatrix. In this way we can construct an 

a\ x a<i x • • • x ak x (^) • • • (a
r
fc) hypermatrix from which we may construct 

the associated n-colored Kh+1 , „ . ,„ . that contains no monochromatic 

^rxrx-xrx2 (k + 1 terms) sub-hypergraph. • 
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Chapter 3 

PERSISTENCE HOMOLOGY OF 
SEQUENCES OF NEIGHBORHOOD 

COMPLEXES FOR GRAPHS 
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In Chapter three, we will be introducing a construction by which nested 

families of simplicial complexes can be associated to weighted graphs. The 

topology of these complexes relate to properties of the graph. Furthermore, 

the nested families lead to a large source of invariants for the graph. Section 

3.1 introduces the basic idea of powerset closure and simplicial complexes. 

Section 3.2 defines neighborhood complexes and simplicial homology. Sec­

tion 3.3 introduces the persistence complex as a tool for studying graphs. 

Section 3.3 is where new results can be found. Sections 3.4 and 3.5 are 

devoted to in depth examples of computations of persistence complexes. 

3.1 Introduction 

The following section defines powerset closure and the related topic of 

simplicial complexes. A more detailed introduction can be found in [?, ?]. 

Recall from chapter 2 the following definition: 

Definition 3.1.1. /?/ Let A be a set. The powerset of A is the set of sets 

V(A) = {B\B C A}. 

Let Vr(A) = {B £ V(A)\ \B\ = r}. There is a natural decomposition 

V(A) = V0(A)U---UPlAl(A). 

Example 3.1.1. Let A = {a, b, c} then V{A) = VQ{A) U • • • U V3(A) where 

V(A) = {0, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}, {a, b, c}}, P0(A) = { 0 } , 

VM) = { W , {b}, {c}}, V2(A) = {{a, b}, {a, c}, {b, c}} and V3(A) = {{a, b, c}}. 

Definition 3.1.2. Let A be a set and let T C V(A). The powerset clo­

sure ofT is the set 

P(T) = |J P(t) 
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Example 3.1.2. Let A = {a, b, c, d} and let T = {{a, b, c}, {c, d}} then 

P(T) = {{a, b, c}, {a, b}, {a, c}, {b, c}, {a}, {b}, {c}, 0} U {{c, d}, {c}, {d}, 0} 

= {{a, b, c}, {a, b}, {a, c}, {6, c}, {c, d}, {a}, {b},{c}, {d}, 0}. 

Note that P(P(T)) = P(T). 

Definition 3.1.3. T C ^(A) ?s said to 6e powerset closed ifP(T) = T 

Similar to V(A), there is a natural decomposition of P(T) into sets 

whose entries have constant cardinality, i.e. P(T) = PQ(T) U P I ( T ) U . . . . 

Definition 3.1.4. /?/ Let A be a set. A set T C 7?(J4) to/iic/i «s powerset 

closed is called an (abstract) simplicial complex in A. Elements ofT are 

referred to as faces or simplices of the simplicial complex. 

Definition 3.1.5. (Basic Definitions) Let T be a simplicial complex. 

(1) If A is a face ofT then the dimension of A is defined to be dim(A) = 

\A\-1. 

(2) The d-skeleton ofT is defined by T^ = {x G T\dim(x) < d}. 

(3) The 1-skeleton ofT is said to be the edge skeleton ofT. 

(4) If v is a vertex ofT, the star of v is the set star(v) — {x € T\v £ x}. 

Let A = {ai, a 2 , . . . , an}. Each element of V(A) is naturally identified 

with a squarefree monomial in the polynomial ring K[ai,a2,- • • ,an}. For 

example, the set {a, b, c} is naturally identified with the monomial abc. 

The faces of a simplicial complex, T, form a partially ordered set under set 

inclusion. The maximal elements of this poset correspond to the maximal 
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elements in T (geometrically, we think of these as corresponding to the 

maximal dimensional faces of a realization of the simplicial complex). A 

generating set for a simplicial complex, T, is a set, U, whose powerset 

closure is the simplicial complex (i.e. P(U) = T). Every finite simplicial 

complex has a unique minimal generating set corresponding to the maximal 

elements in T. 

Definition 3.1.6. (Geometric Realization) LetT be a simplicial complex on 

n vertices and let the vertices ofV be ordered vx, v2, • • •, vn. Let ej denote the 

ith coordinate vector ofW1. For each x € T, define Sx = {Ylvex ^ivi\^i £ 

R+ U{0} and £ A; = 1}. Let ST = UX&TSX. Define a map G : ST - • Kn 

by the linear extension of the map G(vi) = e,. The image G(ST) is called a 

standard geometric realization ofT. 

Definition 3.1.7. Let T be a simplicial complex on n vertices. Let v\ be 

a vertex in T and let v\,v%,... ,vn be an ordering of the vertices of T. If 

9i(vi,V2,...,vn),g2{vi,V2,...,vn),...,gr(v1,V2,...,vn) are a set of mini­

mal generators for T then the cone of the star of v\ in T is defined to 

be the simplicial complex, T', on n + 1 vertices generated by g\{v1v\,V2, 

• • •, vn),g2(ylvi,V2, ...,vn),..., gr(vlv1,v2, ...,vn) where the vertices of T 

consist of the vertices ofT together with a new vertex v*. 

3.2 Neighborhood Complexes associated to graphs 

Definition 3.2.1. /?/ A s imple g raph wi thou t loops is a pair G = 

(V,E) where V is a set and E C T2{V). The set V corresponds to the 

vertices of G and the set E corresponds to the edges of G. A weighted 

graph is a triple G = (V, E, W) where V is a set, E C ^ ( V ) and W is a 
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map W : E —> R + . For a given edge, e £ E, W(E) is called the weight of 

e. 

In this chapter, graphs are assumed to be simple without loops. Fur­

thermore, we can think of any graph G = (V, E) as a weighted graph 

G — (V, E, W) by taking W to be the constant map W : E —• 1. We 

will write this as G = (V,E, 1). The objects of study in this chapter are 

weighted simple graphs without loops. 

Definition 3.2.2. LetVi,Vj G V. If P(vi,Vj) is a path from t>; tovj, define 

the weight of P(vi,Vj) to be the sum of the weights of the edges making 

up the path. The distance from Vi to Vj, denoted d{v^ ,Vj), is defined to be 

the minimum weight among all paths from vt to Vj. If there are no paths 

between Vi and Vj then we assign d(vi,Vj) = oo. 

Definition 3.2.3. Let G = (V,E,W) be a graph and let S CRu {oo}. 

Given a vertex Vi G V, define the S — neighborhood of the vertex by 

Ns(vi) = {vj eV\d(vi,Vj) G S } . 

For ease of notation, we typically represent the S — neighborhood of a 

vertex in monomial notation. These monomials are just a shorthand way 

for representing the associated sets defined above. 

Definition 3.2.4. Given a graph G = (V, E, W), a s e t S C R u {oo} and 

a set V C V, define the neighborhood complex, N ( G , S , V ) to be the 

power set closure of the union of the S-neighborhoods of the vertices in V. 

In other words N(G, S, V ) = P({7VS(^) | vt G V'}). 

When V = V we sometimes abbreviate the notation for the neighbor­

hood complex to N(G, S). For many examples in this chapter, we will be 
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working with neighborhood complexes for which 0 ^ S. When 0 ^ S then 

we refer to N(G, S, V ) as a deleted neighborhood complex. 

As a simplicial complex, N(G, S, V ) can be partitioned into sets whose 

elements have constant cardinality. More precisely, we can write 

N ( G , S , V ' ) = N 0 ( G ) S , V / ) U N 1 ( G , S , V ' ) U - - - U N t ( G , S , V ' ) , 

where N;(G, S, V ) = {B G N(G, S, V ) | |B | = i} and t is the largest cardi­

nality among the entries of N(G, S, V ) . For each i, let V ; = Ni(G, S, V')® 

R. In other words, V{ is defined to be the real vector space with basis in­

dexed by the elements of the set N i ( G , S , V ) . Fix an ordering on the 

elements of V. This will induce a canonical way to express, in monomial 

notation, each element in V(V) and therefore, a canonical monomial ex­

pression for each element in N;(G, S, V ) . By extension, if I e V; then the 

terms of / have a canonical monomial expression. For the next definition, 

we will assume that the elements of V have been ordered. 

Definition 3.2.5. /?/ Let a0 •.. dj be a basis element of Vj+1 (thus, in the 

ordering on V, a® < a\ < • • • < a,j). Let 5 : Vj+\ —>• Vj be the linear map 

whose action on basis elements is defined by 

j 

5(a0 ... a,j) = ^ ( - l ) J ( a 0 ...Oi...aj) 
i=0 

where a^ ... a^... aq is shorthand for the monomial a®.. .di.. .aq with vertex 

aj deleted. We refer to 5 as the Boundary Homomorphism. 

Proposition 3.2.1. /?/ 55(a0 ... aj) = 0. 

Proof. 
m 

S8(a0 ...am) = 5(^T(-iy(a0 ... Si... am)) 
i=0 

33 



m m 

= E ^ 1 ) 1 ( E ( - ^ " ' ( a o . • • Si • • • a- • • • am)) 

m i—1 

+E(-1)ME(-1)>°---aV^---0) = o 
i=0 j=0 

Notice that all terms appear in pairs, once in the first term and once 

in the second term. That is, for distinct values a and b, at one point i = a 

and j = b, then i = b and j = a. The jf — 1 in the exponent is adjusting for 

the previously deleted term. [?] 

• 

Corollary 3.2.1. IfleVi then 56(1) = 0. 

Proof. Follows from the proposition by linearity. • 

An immediate consequence of proposition 3.2.1 (and its corollary) is 

that for each j , Image(5iy-iJri)) C Kernel(5(Vj)). 

Definition 3.2.6. A chain complex of vector spaces, C, is a sequence 

of vector spaces . . . , VI2, VI1, VQ, VI, . . . connected by homomorphisms dn : 

Vn —> Vn-i, such that dndn+\ = 0 for all n. 

Definition 3.2.7. A chain complex, C, is said to be exact if Ker(S(Vi)) = 

Image(5(Vi+i)) for all i. 

Definition 3.2.8. /? / The homology at i of a chain complex C is the 

quotient space 

Hi^(C) = Ker(6{Vi))/Image(6(Vi+1)). 

Let hi-i(C) denote the dimension of Hi_i(C) as a vector space. 
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Definition 3.2.9. IfC,T> are chain complexes with boundary maps 5c, 5v 

then a chain map from C to V is a collection of linear maps iTi : d —> Di 

such that 7Tj o 8 = 5 o 7Tj+i. 

It is important to note that chain maps induce linear maps between 

the homology spaces of the associated chain complexes. 

Let T be a simplicial complex and let T = T0 U Ti U • • • U Td be its 

decomposition into sets whose elements have constant cardinality. Let V; = 

Ti (S> K and let dn = 5 (with 5 as defined in definition 3.2.5). With a little 

work, it can be shown that no information is lost if we take Vo = 0 (though 

strictly speaking our definition implies V 0 = R). From proposition 3.2.1, 

the V; together with the maps 6 form a chain complex (with 5 : V i —• Vo 

appropriately modified). If d is the size of the largest monomial in T, we 

have 

0 _!> v d - ^ V d _ ! J - . . ._L> V ! -£-»• 0 

The homology of this complex measures topological attributes of a 

geometric realization of the simplicial complex, in that hq(T) can be thought 

of as measuring the number of (q + 1) dimensional holes in a geometric 

realization of T. For example, ho(T) tells us the number of connected 

components and h\{K) tells us the number of 2-dimensional holes. We 

will be primarily concerned with the homology neighborhood complexes of 

graphs. 

Lovasz's Theorem is an example of the importance of the interplay 

between topological and combinatorial information held in a deleted neigh­

borhood complex and information about the original graph. 
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Theorem 3.2.1. Lovasz's Theorem (1978) /?/ 

Let G=(V,E,1) be a finite graph. Let S = {1}. J /N(G, S, V) is (k - 1)-

connected, then G is not (k + l)-colorable. 

Definition 3.2.10. /? / Let m be a positive integer and S ann — set, where 

n > 2m. The simple graph whose vertices are the m — subsets of S, two 

being adjacent if they are disjoint, is called the Kneser graph and is denoted 

by KG(n,m). 

Example 3.2.1. The following is KG(5, 2) which is isomorphic to the Pe­

terson graph. 

.d.5> 

{1,3} (2,5) 

{ l ,^> {3,5> 

Figure 3.1: KG(5,2) 

Example 3.2.2. The following is an example of a simplicial complex formed 

from the neighborhood complex of the graph G = (V, E, 1) with V = {a, b, c, d}, 

E = {ab, bc,cd}. 
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* 

Figure 3.2: Example of neighborhood complex construction 

There are 3 distinct weights that represent shortest paths between pairs 

of vertices in G. They are w\ = 1, W2 = 2, and w3 = 3. We will now 

compute the complex for each of Si = {1} and S2 = {1,2}. 

N(G, Si , V) is generated by {b,ac, bd,c}. As a result, we have~N(G, Si, V) 

= {ac, bd, a, b, c, d} = {ac, bd} U {a, b, c, d} U {0} and the complex 

0 V 2 = (ac, bd) —^ Vi = (a, b, c, d) 0 

where 

61 = 

- 1 0 
0 - 1 
1 0 
0 1 

50 = [ 0 0 0 0 ] 

Let S2 = {1,2}. N(G,S2 ,V) is generated by {be, acd,abd, be}. As a re­

sult, we have N(G, S2, V) = {abd, acd, ab, ac, ad, bd, cd, a, b, c, d} = {abd, acd}U 

{ab, ac, ad, bd, cd} U {a, b, c, d} and an associated chain complex 
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0 —^ V 3 = (abd, acd) —^ V 2 = (ab, ac, ad, bd, cd) —^> V i = (a, 6, c, rf) 

where 

5o = 

1 0 
0 1 

- 1 - 1 
1 0 
0 1 

8i = 

- 1 0 
0 - 1 
1 0 
0 1 

50 = [ 0 0 0 0 ] 

For each of the other choices for S (namely {3}, {1, 2}, {1,3}, {2, 3}, {1,2,3}) 

we also obtain a neighborhood complex. 

3.3 Persistent Homology 

Persistent Homology was introduced by Zomorodian, Edelsbrunner, 

and Letscher in 2002 [?] and further developed in the papers [?, ?, ?, ?, ?], 

most notably by Zomorodian and Carlsson. It is worth remarking that 

these works were developed in the setting of data analysis as a tool for 

analyzing homological aspects of simplicial complexes built from data at 

varying resolution. The philosophy driving the development was that topo­

logical features that persist across a wide range of resolutions were the most 

pertinent and were less likely to have been introduced through noise or dis­

cretization. Weighted (and unweighted) graphs as abstract objects have 

not previously been approached with these tools. 

In my work I take the machinery of persistence complexes, that has 

been developed in the context of data analysis, and apply the machinery 

to weighted graphs. These tools have not been used in graph theory be­

fore. The persistence complex is a collection of simplicial complexes linked 
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together through linear maps and it allow both topological and algebraic 

tools to come into play. 

As we shall see, these complexes and their maps are computable and 

they shed new light on a given graph. Each persistence complex is a 

graph invariant as is any information derived from the persistence complex. 

The computational component of persistence complexes has been achieved 

through a collection of Matlab scripts. The interaction with topology is 

established through a series of theorems. The overall goal is to connect 

topological invariants of a persistence complex with properties of the graph 

from which the complex is built. For instance a graph is bipartite if and 

only if the zeroth homology of the deleted first neighborhood complex is 

two dimensional (Theorem 3.3.1). In order to make effective use of these 

tools, it is important to understand the persistence complexes of some large 

families of graphs and it is important to know how various modifications of 

graphs effect the persistence complexes. I also determine what certain val­

ues in the associated persistence complex will be for certain weight sets, for 

example, complete bipartite (Proposition 3.3.5), complete graph (Lemma 

3.3.3), complete r-partite graph (Theorem 3.3.4), trees (Corollary 3.3.1), 

cycles (Proposition 3.3.8). 

Understanding the effects that modifications of a graph have on the 

persistence complex allow one to connect known cases to unknown cases. 

For instance, removing a sprout corresponds to a certain deformation retract 

(Proposition 3.3.7) and understanding this fact allows one to understand 

portions of the persistence complex for trees. A theorem that can be applied 

in several settings derives from understanding that if a graph is modified 

by a (sub) neighborhood duplication then the homology of the first deleted 
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neighborhood complex remain fixed (Theorem 3.3.3). The neighborhood 

complex of a complement of a graph relates, in a natural way, to the neigh­

borhood complex of the original graph (Proposition 3.3.9) Taking the cone 

of a graph shifts homology by a dimension for certain neighborhood com­

plexes and relates the homology of a certain complex associated to the 

cone to the homology of a different complex associated to the complement 

graph(Theorem 3.3.5). 

Thus the goal of this section is to apply and develop a collection of 

tools that allow one to relate topological invariants of complexes associ­

ated to graphs to invariants of the graph and to understand the effect that 

graph modifications have on the homology of associated complexes. Specif­

ically we will build a structure called a Persistence Complex that consists 

of a family of chain complexes together with a collection of chain maps. 

The chain maps induce homomorphisms between the homology groups of 

the corresponding chain complexes. The homology groups of the chain 

complexes, together with the homomorphisms between homology groups 

induced by the chain maps, fit together into an algebraic structure called 

the Persistence Homology of the family. This algebraic structure will give 

us information about the graph as well as provide a highly detailed graph 

invariant. 

The starting point is a weighted graph G. When we speak of a graph 

without mentioning the weights it will be understood we are assigning a 

weight of 1 to each edge. Next we apply the Floyd-Warshal algorithm [?] 

to find the distance between all distinct pairs of vertices in G (recall that 

the distance between two vertices is the smallest weight path between the 

vertices). 
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The output of the Floyd-Warshal algorithm applied to G = (V, E, W) 

can be stored as the entries of a symmetric matrix (with rows and columns 

indexed by the elements of V). Suppose we find that there are n distinct 

values that appear in the matrix. Let w denote the collection of possi­

ble weights. Enumerate these values u>i, w2, . . . , wn (with no a priori 

assumptions on the ordering of the wi). Consider the sequence of sets 

Si = {wi}, S2 = {wltw2}, . . . , Sn = {wi,w2,w3,...,wn}. Note that 

Si C S2 C 5 3 C • • • C S„. In general, each ordering of the elements 

W\,... ,wn will yield a different nested sequence of sets. For each S* we 

can construct a neighborhood simplicial complex N(G, Si, V) and its asso­

ciated chain complex. Homology can then be used to measure the failure 

of exactness for each chain complex of vector spaces. If S* C Sj then 

N ( G , S i ; V ) C N ( G , S j , V ) . More precisely, N t ( G , S i ; V ) C N t ( G , S j , V ) 

for each t. If we let ^ : N t (G ,S i , V) <-+ N t ( G , S j , V) then the collection 

of 7Tj form a chain map between the chain complexes. 

If we form the chain complexes associated to N(G, Si, V) for each i and 

add in the maps 7^, corresponding to inclusion maps, then we may present 

all of this data in the form of a two dimensional array of vector spaces. 

The chain maps induce maps between the homology spaces of each chain 

complex and the corresponding array of spaces and maps is the persistence 

complex for the sequence S i , . . . , Sn . 

More generally, we could consider a much larger collection of complexes. 

For instance, for any A G V(w) and any B € V(V), there is a neighborhood 

complex N ( G , A , B ) . Furthermore, if AUA2 e V{w) and BUB2 E V(V) 

with Ax C A2,Bt C B2 then we have N t ( G , A i , B x ) C N t ( G , A 2 , B 2 ) and 

corresponding chain maps. The totality of this data yields a large and de­

tailed graph invariant. For simplicity of exposition and presentation, we will 
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be restricting ourselves to neighborhood complexes of the form N(G, Si, V). 

In this setting, ascending chains of subsets will yield data that can be pre­

sented in a homology table with rows indexed by Sj. Since we only use 

information about the shortest path between vertices it is not difficult to 

construct distinct graphs with the same homology table. However, we will 

see that certain graph characteristics translate into properties of the homol­

ogy table. That is, we can gain information about the graph by examining 

the associated homology table. 

I wrote matlab code that will carry out much of this procedure from 

the data G = (V, E, W). The output of the code is the generators of the 

simplicial complex for each weight and all the associated homologies. This 

allows data on graphs to be collected quickly in relation to the amount of 

time needed to perform such calculations by hand. 

For a nonweighted graph G = (V, E) we will associate the weighted 

graph G = (V, E, 1) (i.e. the weighted graph that results from assigning a 

weight of 1 to every edge in G). Whenever we discuss paths between vertices 

it is assumed we are referring to (one of) the shortest distance path(s). 

Definition 3.3.1. Let G = (V, E, W) be a weighted graph. For any pair of 

vertices Vi,Vj G V, define the distance between V{ and Vj to be the minimum 

total weight among paths from Vi to Vj. The distance between Vi and Vj will 

be denoted d(vi,Vj). 

Definition 3.3.2. Let G = (V, E, W) be a weighted graph on n vertices 

and let Vi,V2,... ,vn be an ordering of the vertices. The shortest distance 

matrix, M(G), associated to G is the matrix whose i, j t h entry is d(vi,Vj). 

It is clear that this matrix will be symmetric. 
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Definition 3.3.3. Define the distance set of a graph G to be 

w = {d(vi,Vj) | vitVj E V}. 

This set is exactly the collection of values that appear in M(G). The 

deleted distance set, w* will be the distance set with the zero element 

removed. 

Definition 3.3.4. Define a distance sequence of a graph G to be a se­

quence of sets, Si, S2,. • •, Sn where each term in the sequence is a subset of 

the distance set of the graph and where S* C Sj whenever i ^ j . 

Definition 3.3.5. Define the natural distance sequence of a graph G 

to be the sequence of sets 

Si = {ai},S2 = { a i , a 2 } , . . . , S n = {a1,a2,.. • ,an} 

where {ai,a2,..., an} is the deleted distance set of G with a\ < a2 < • • • < 

an. 

Unless otherwise stated, if no distance sequence is specified then the 

natural distance sequence is assumed. 

Definition 3.3.6. Let A — Ai,A2,...,An be a distance sequence for a 

graph G = (V,E,W). The persistence complex associated to (G, A) is 

the two dimensional array of vector spaces whose i,jth entry is Hj(N(G, At, V)).. 

In addition, the array is equipped with maps 7TJJ : i?j(N(G, Ai, V)) —> 

Hj(N(G, Ai+ i , V)) whereTfij is the map induced by the inclusion^\G, Ai, V) ^-

N ( G , A i + 1 , V ) . 
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Definition 3.3.7. The persistence complex table associated to (G, A) 

is the table whose i,jth entry is hj(N(G, A;, V)). We will let PCT(i,j) 

denote the i,jth entry of the persistence complex table. In other words, 

P C T f o j H i / ^ N t G . A ^ V ) ) . 

It is clear that for a given G and A, both the persistence complex (and 

the corresponding persistence complex table) are graph invariants. For a 

graph G with n vertices the PCT derived from the natural distance sequence 

will have (n — 1) columns. 

Proposition 3.3.1. Let A be the deleted distance set for a connected graph, 

G = (V,E,W). IfG hasn vertices then PCT (i,n - 1) = 1 if i E {l,n-l} 

and PCT(i,n- 1) = 0 if i £ { l , n - 1}. 

Proof. The neighborhood complex N(G, A, V) consists of the n distinct 

monomials of length (n — 1). This complex is the triangulation of a hyper-

sphere of dimension n — 2. The proposition is simply a statement about the 

homology spaces of such a complex. D 

Proposition 3.3.2. For a given (G, A) and associated PCT with k columns, 

if there exists i such that PCT(i, k) = 1 then PCT(j, k) — 1 for j ^ i. Fur­

thermore, PCT(m, k) ^ PCT(n, k) for n ^ m. 

Proof. For a given Si, ho tells us the number of connected components of 

N(G,Si). If a is in the generator monomial for vertex x in N(G, Sj), then 

a will be in the generator monomial in N(G,Sj) for j ^ i. This tells us 

the monomials of a complex can only gain vertices. Thus the associated 

simplicial complex can only become more connected. Thus the number of 

connected components can only decrease. • 
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Recall that a graph G is bipartite if its vertices can be partitioned into 

two sets V\ and V2 such that there are no edges spanning a pair of vertices 

in V\ and there are no edges spanning a pair of vertices in V2. In other 

words, every edge joins a vertex in Vi with a vertex in V2. A complete 

bipartite graph, Km>n is a bipartite graph with |Vi| =m and \V2\ =
 n with 

a maximal number of edges [?]. 

If G can be partitioned into k sets, V\,... ,14, such that no two vertices 

in the same Vi are adjacent then we say that G is fc-partite. 

T h e o r e m 3.3.1. Let G = (V, E, 1) be a connected graph and let A = {1}. 

For the pair (G, A), 

(1) /i0(N(G, A,V)) = 2 iff G is bipartite 

(2) / I Q ( N ( G , A ,V)) = 1 iff G is not bipartite. 

Proof. First, note that /io(N(G, A, V)) is the number of connected com­

ponents in the edge skeleton of N(G, A , V ) . Second, note that a graph 

is bipartite if and only if it has no odd cycles. Suppose i>i,i>2 G V and 

that there is an even length path from v\ to i>2- Consider the sequence 

i>i, cto, o,\, a 2 , . . . , a<im V2 enumerating, in order, the vertices encountered in 

the even length path. Then {vi, a{\, {01,03}, {03, a 5 } , . . . , {o^n- i ,^} a r e 

edges are in the simplicial complex N ( G , A , V ) . As a result, v\ and v2 

are in the same connected component of the edge skeleton of N(G, A, V). 

More precisely, two vertices v\, v2 are in the same connected component of 

the edge skeleton of N(G, A, V) if and only if there is a path of even length 

between v\ and v2. 

Suppose that G is connected and bipartite and that Vi, V2 is the cor­

responding disjoint decomposition of V. If a path starts at a vertex in V\ 
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and has an even number of steps then it will end at a vertex in V\. By 

connectedness of G, there is a path between every pair of vertices in V\. By 

bipartiteness, any path between two vertices in V\ is of even length. As a 

consequence, all the vertices in V\ are in the same connected component of 

the edge skeleton of N(G, A, V). Similarly for the vertices in V2. Further­

more, no vertex in V\ is connected by a path of even length to a vertex in V2. 

Therefore, the edge skeleton of N(G, A, V) has two connected components 

and / i ° (N(G,A,V) ) = 2. 

Suppose that G is connected and is not bipartite. Then there exists an 

odd cycle in G. Let v\,v2 6 V. Let Pi denote a path from v\ to a vertex 

w\ contained in an odd cycle. Let P2 denote a path from w\ to v2. Let P3 

denote an odd length cycle from w\ to w\. Then either the path Pi + P2 or 

the path Pi + P3 + P2 is of even length since both are paths from v 1 to v2 

and the difference in lengths of the two paths is the length of P3 which is 

odd. • 

Proposition 3.3.3. Let G = (V, E, W) and G' = (V, E', W) be two graphs 

on the same vertex set V. Suppose M{G) = M(G'). If A is any distance 

sequence then the persistence complex for (G, A) and the persistence complex 

for (G', A) are identical. 

Proof. Monomials in neighborhood complexes are determined by the short­

est distance matrix. • 

Proposition 3.3.4. (Homology of Spheres and Balls) /? / 

(1) Let Sn be a simplicial complex corresponding to a triangulation of an 

n-dimensional sphere. Then Hl(Sn) = 1 if i = 0,n and W{Sn) = 0 

ifi^0,n. 
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(2) Let Bn be a simplicial complex corresponding to a triangulation of an 

n-dimensional ball. Then Hl(Bn) = 1 if i = 0 and H^B71) = 0 if 

i^O 

Proposition 3.3.5. Let G — (V,E, 1) be a complete bipartite graph, K^, 

on n vertices. Let A\ = {1}, let A2 — {1,2} and let A3 = {2}. Then the 

homology of the associated neighborhood complexes is: 

Hi(N(G,AhV))={ 
' Hi{Ba-1 U Bh-X) for j = 1 

Hi(Sn-2) for j = 2 
Hi(Sa~2 U Sb~2) for j = 3 

Proof. Since G is a bipartite graph, we can decompose V = V\ U V2 with 

|V| = n, |Vi| = a, IV21 = b. Since G is a complete bipartite graph, each 

vertex in V\ is connected to every vertex in Vi (and vice versa). Since every 

edge in G has weight 1, N(G, A i , V) consists of 2 generators, a monomial 

containing every vertex in V\ and a monomial containing every vertex in V-}. 

The simplicial closure of each of these generators corresponds to a simplicial 

complex of a triangulation of a a—1 dimensional ball and a disjoint simplicial 

complex of a triangulation of a b — 1 dimensional ball. Since every vertex is 

either distance 1 or 2 from every other vertex and is distance 0 from itself, 

N(G, A 2 , V) is generated by all the square free monomials of degree n — 1 in 

the vertices of V. The corresponding simplicial complex is the triangulation 

of a n—2 dimensional sphere. In a similar manner, N(G, A3, V) is generated 

by all the square free monomials of degree a — 1 in the variables of V\ and 

by all the square free monomials of degree b — 1 in the variables of V2- As 

a consequence, the corresponding simplicial complex is the triangulation of 

a disjoint union of an a — 2 dimensional sphere and a b — 2 dimensional 

sphere. • 
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Definition 3.3.8. Let A,X be topological spaces with A C X. Let d :—> 

X x [0,1] —> X be a continuous map. Suppose for every x € X and a € A the 

following conditions are satisfied: d(x, 0) = x, d(x, 1) G A, d(a, t) = a. Then 

d is called a deformation retraction and A is said to be a deformation 

retract of X. If X deformation retracts to a point then X is said to be 

contractible. 

If A is a deformation retract of X then we think of X as a space that 

can be retracted down to A. The deformation retraction is a map which 

captures this idea of continuously shrinking X down to A. 

Lemma 3.3.1. Let G{T) be a geometric realization of a simplicial complex, 

T, on n vertices. Let v\ be a vertex in T and letvi, v2,..., vn be an ordering 

of the vertices of T. Then G(T) is a deformation retract of the geometric 

realization, G(T'), of the simplicial complex T" that is the cone of the star 

of v\ in T. 

Proof. Consider the map d : G(V) x [0,1] - • G(T') given by d ( A ^ + A ^ + 

X2v2 + ••• + Xnvn, t) = (1 - t)^v[ + (tX'i + Ai)vi + X2v2 + ••• + Xnvn. Then 

d satisfies the conditions of a deformation retract from T" to T. • 

Rather than work with the geometric realization of a simplicial com­

plex, we will always work directly with the simplicial complex. For instance, 

in the setting above, we will say that T is a deformation retract of T". The 

following theorem allows a simplification of many arguments . 

Theorem 3.3.2. /?/ (Mayer-Vietoris Exact Sequence for Simplicial Com­

plexes) Let K, L be simplicial complexes. There is a long exact sequence of 
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homology groups 

-> Hn(KC\L) - Hn(K)®Hn{L) - Hn(K U L) 
- H^KHL) -+ Hn_x(K) ® Hn^{L) - H^K U L) 

- • H0(KnL) -> H0(K)®H0(L) -> H0(K U L) - • 0 

As a first application of the Mayer-Vietoris exact sequence we show: 

Lemma 3.3.2. Let T be a simplicial complex with generators gi,g2, • • • 9n-

Let S QT be a subcomplex with generators hi,h,2,...,hm. Suppose that S 

is contractible. Let v be a new vertex and let T" be the simplicial complex 

generated by gx,g2,... ,gn,vhi,vh2, • •. ,vhm. Then Hi(T) = Hi(T') for all 

i. 

Proof. If K is the simplicial complex generated by vhi,vh,2, • • •, vhm then K 

is a cone over the simplicial complex h\, h.2, • • •, hm and thus is contractible. 

Let L be the simplicial complex generated by <?i, #2, • • • > <7n (thus L = T). 

Note that Kf)L = S and thus is contractible. Finally KUL = T'. Applying 

Hn(T) 
Hn-i(T') 

Hx{V) 
-H- H0(S) - • H0(K)@H0(T) - H0(T')^0 

• 

We immediately obtain that Hi(T) = fli(7
v) for i > 2. Note that 

5 and K are both connected thus H0(S) — H0(K) = R. Further note 

that since T and T' have the same number of connected components then 

HQ(T) = H0(T'). As a consequence, we obtain that # i ( T ) = H^T'). 

the Mayer-Vietoris exact sequence we get: 

-H. o -H. 0 8 F n ( T ) 
- • 0 - 0 © # n _ i ( T ) 

oei/i(r) 
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Proposition 3.3.6. (Homology of Deformation Retracts) /?/ Let T,S be 

simplicial complexes with T a deformation retract of S. Then Hl(S) = 

H\T) for alii. 

Definition 3.3.9. Let G = (V,E,1) be a graph. Let v e V. A (sub) 

neighborhood duplication of v is a graph G' = (V, E', 1) where V — 

VUv* andE' CEU {{v*,Vi}\{v,Vi} e E}. 

Theorem 3.3.3. Let G = (V, E, 1) be a graph. Let A = {1}. Let G' be a 

(sub) neighborhood duplication of a vertex v £ V. Then Hj(N(G, A, V)) = 

Hi(N{G',A,V')) for alii. 

Proof. The neighborhood complex N(G' , A, V ) can be written as the union 

of a simplicial complex K that is the union of a cone of a subcomplex of 

the star of v in N(G, A, V) and the simplicial complex N(G, A, V). The 

intersection of these two simplicial complexes is a subcomplex of the star 

of v in N(G, A , V ) that itself is a cone. Applying the lemma above (or 

directly applying the Mayer-Vietoris sequence) yields the result. • 

Lemma 3.3.3. Let G = (V,E, 1) be a complete graph, Kn, on n vertices. 

Let A = {1}. Then N(G, A ,V) is a simplicial complex corresponding to 

the triangulation of an n — 2 dimensional sphere. 

Theorem 3.3.4. Let G = (V, E} 1) be a complete r-partite graph, Kaita2t...tar) 

on n vertices (with r > 2). Let Ax = {1},A2 = {1,2}, A3 = {2}.Then the 

homology of the associated neighborhood complexes is: 

( H^-2) for j = 1 
# i (N(G, Aj, V)) = ^ H^-2) for j = 2 

{ Hi{Sai-2 U Sa2~2 U • • • U Sar-2) for j = 3 
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Proof. When j = 1 we not that Kai>a2t„,tar is obtained from K\t\^.t\ by a 

series of neighborhood duplications. The result for j = 1 follows from the 

preceding lemmas. When j = 2, N(G, Aj,V) is generated by all square 

free monomials of degree n — 1 on n variables thus N ( G , A j , V ) is the 

simplicial complex associated to a triangulation of an n — 2 dimensional 

hypersphere. Let V\, V2,. • •, Vr be a partitioning of the vertex set V such 

that each vertex in V{ is connected to every vertex in Vj by an edge in G 

(with i 7̂  j) and where no vertex in V* is connected by an edge to any other 

vertex in V̂ . When j = 3, N(G, Aj, V) is generated by the disjoint union, 

over i, of all square free monomials in V* of degree a* — 1. Thus N(G, Aj, V) 

is the simplicial complex associated to a triangulation of the disjoint union 

of hyperspheres Sai~2 U Sa2~2 U • • • U S ^ 2 . • 

Definition 3.3.10. Let G = (V,E,1) be a graph. Let G' = (V',E',1) be 

a graph built from G by adding a new vertex, v, and a new edge {v, Vi] for 

some vi € V. Then G' is called a sprout of G. 

Propos i t i on 3.3.7. Let G = (V, E, 1) be a connected graph on 2 or more 

vertices. Let G' be a sprout of G. Let A = {1}, then N ( G ' , A , V ) -

N ( G ' , A , V ) and N(G, A, V) is a deformation retract o / N ( G ' , A , V ) . 

Proof. Suppose G has n vertices. Let fi,i?2, • • • ,vn be an ordering of the 

vertices of V. If gi,g%, • •. ,gn
 a r e the ^-neighborhoods of the vertices in 

G then they generate N(G, A , V ) . If the sprouted vertex is v and if v 

is connected to v\ then v\, vgi,g2, • • • ,gn generate N ( G ' , A , V ) . Since G 

is a connected graph, the generator v\ is redundant, thus N ( G ' , A , V ) 

= N(G' , A, V). Since v appears only in one generator of N(G' , A, V) and 

since the other generators are identical, the simplicial complex generated by 
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vgi, gi,..., gn differs from the simplicial complex generated by g\, g2,..., gn 

by taking a cone over a face. Since a face is contractible to a point, we are 

done. • 

Corollary 3.3.1. Let G = (V, E, 1) be a connected tree that contains at 

least 2 vertices. Let A = {1}. Then F i ( N ( G , A, V)) = 2 if i = 0 and 

Hl(N(G,A,V)) = 0ifi^0. 

Proof. A connected tree on 2 or more vertices can be built from a connected 

tree on 2 vertices through a series of sprouts. Thus the neighborhood com­

plex for a connected tree deformation retracts to a neighborhood complex 

for a connected tree on two vertices. The neighborhood complex for a con­

nected tree on two vertices is two points. • 

Proposition 3.3.8. Let G = (V, E, 1) be a cycle of length n with n > 4. 

Let A = {1}. Then iJ0(N(G, A, V)) - # i ( N ( G , A,V)) = 2 if n is even 

andH0(N(G,A,V)) = # i ( N ( G , A , V ) ) = 1 if n is odd. 

Proof. Suppose n is even. Then G is bipartite. Label the vertices in G such 

that the edges are of the form {vi,vi+i}i<n U {vn,vi}. In N(G, A, V), the 

generator corresponding to a vertex will consist of the neighbors on each side 

of the vertex. In other words, N(G, A, V) is generated by the monomials 

{vnV2, viv3, v2v4, v3v5,v4v6,..., vn_2vn, fn- i^ i} . The corresponding simpli­

cial complex consists of two cycles, one on the even indexed vertices and one 

on the odd indexed vertices. Thus JJ0(N(G, A, V)) = HX(N(G, A,V)) = 

2. 

Suppose i is odd. Then G is not bipartite and N(G, A , V ) consists of 

a single cycle. Thus # 0 ( N ( G , A,V)) = # i ( N ( G , A, V)) = 1. • 
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Definition 3.3.11. Let G = (V,E, 1) be a graph. The complement graph 

to G isGw = (V, £ v , 1) where Ey = V2{V) - E. 

Proposition 3.3.9. Let G = (V, E, 1) be a graph and let Gv be its comple­

ment. Let ui,i>2, • • • ,vn be an ordering of the vertex set V. Let A = {1}. 

Let gi be the generator o /N(G, A, V) coming from vertex Vi and let g^ be 

the generator o / N ( G v , A, V) coming from the same vertex. Let h = JT • Vj. 

Then gygi = h/vi. 

Proof. Let Vi G V. For j ^ i, vertex Vj is distance one away from v^ in 

either G or Gv (but not in both). On the other hand, vt is distance zero 

from Vi in both G and Gv . The proposition is just a formulation of this 

statement. D 

For a graph G = (V, E, 1) we can form a new graph Cone(G) = 

(V',E;,1) by introducing a new vertex , v*, for which V = V U v* and 

E' — E U {vi,v*}Vi(zv- In other words, Cone{G) is the original graph G 

with one additional vertex added sharing an edge with every vertex in G. 

Theorem 3.3.5. Let G — (V, E, 1) be a connected graph on n vertices. 

Let A\ = {1},A2 = {1,2}, A3 = {2}. Then the homology of the associated 

neighborhood complexes of G' = Cone(G) is: 

HiiB0) for j = 1 
Hi(N(G',AhV))={ HiiB0) forj = 2 

# i ( N ( G v , A i , V ) ) forj = 3 

and 

Hl(N(G',Ai,V')) = { 

{ i f i _ 1 (N(G' ,A j ,V)) forj 
tf0(N(G,Aj,V))-l forj 
1 for j 
^ ( S " - 1 ) for j 

= l , i > 1 
= l , i = l 
= l , i = 0 
= 2 

{ Hi(N(G\A1,\)) for j = 3 
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Proof. First note that the only deleted distance sets for G' are given by 

Ai,A2,A3 since the diameter of G' is the minimum of 2 and the diam­

eter of G. Let v\,V2, • • • ,vn be an ordering of the vertices in V. Let 

gi,g2,... ,gn be the generators of N(G, A i , V) given by the n vertices in 

V. Then N(G' , A i , V) is generated by v*gi,v*g2,..., v*gn. In other words, 

the simplicial complex N(G' , A i , V) is a cone over the simplicial complex 

N(G, A i , V ) and is therefore contractible. As a result, Hi(N(G', A i , V)) 

has the homology of a point. 

The neighborhood complex N(G' , A2, V) is generated by all square free 

monomials of degree n in the variables {v\,... ,vn,v*} with the exception 

of the monomial n ^ * - As a consequence, N(G' , A 2 , V ) is topologically 

equivalent to a triangulated hypersphere with one face removed. By the 

Mayer-Vietoris sequence, such a space is contractible and has the homology 

of a point. 

Let <?i be the generator of N(G' , A3, V) associated to vertex v\ € V. 

Then g\ is the monomial of all vertices exactly distance 2 away from v\ in 

G'. Every vertex is either distance 1 or 2 away from v\. The vertices which 

are distance 1 away from v\ in G' are the cone vertex v together with the 

vertices that were distance 1 away from v\ in G. All other vertices in G 

are distance 2 away from v\. These are precisely the same vertices which 

are distance 1 away from v\ in Gv. Thus, the generators gi,g2, • • • ,9n of 

the neighborhood complex N(G' , A3, V) are the same as the generators of 

the neighborhood complex N(G V , A i , V) . 

In order to understand the homology of the neighborhood complexes 

of N(G' , Aj, V ) we need to understand the effect of the extra generator 

of the complex associated to the cone vertex, v. For A3, the generator 
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associated to v is h = 0. For A\ and A2, the generator associated to v 

is h = Ujvr A s a consequence, tf;(N(G', A 3 , V')) = # ; (N(G V , A 1 ; V)) 

and i J j (N(G / ,A 2 ,V / ) ) = H^S71'1). For A!, the generator associated to 

v is h = YljVj. We can decompose N(G' , A x , V ) into the union of the 

two simplicial complexes K = N ( G ' , A i , V ) and L = JX-u.r Since both 

K and L are contractible, the result follows from the Mayer-Vietoris exact 

sequence of homology. • 
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3.4 Introductory Example of a Persistence Complex 

The following is an example of a persistence complex constructed from 

the graph G = (V, E, 1) with vertex set V — {a, b, c] and E = {ab, be}. 

a 

b 

c 

Figure 3.3: Example of Persistence Complex 

The only two distances between pairs of vertices in G are 0,1,2. Let 

A\ = {1} and let A2 = {1,2}. Consider the distance sequence { A i , ^ } . 

The generators for N(G, A i , V) are b, ac, and b. That is because with dis­

tance 1, a can reach b, b can reach a and c, and c can reach b. Decomposing 

N(G, A X ,V) into sets of monomials where each set consists of all of the 

monomials of a fixed degree, we get 

N ( G , A i , V ) = {ac}U{a,b,c}U{0}. 

In a similar manner, 

N(G, A2 , V) = {ab, ac, be} U {a, b, c} U {0} 
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since every vertex is distance one or two from every other vertex in G. 

The associated persistence complex of vector spaces is the diagram: 

0 

D 

where 

Ri = (ac) 

| G 

3 = (ab, ac, be) 

a 

E 

K3 = (a, b, c) 

iH 

M3 = (a, b, c) 

0 

B = 
- 1 " 
0 
1 

E = 
" - 1 

1 
0 

- 1 
0 
1 

0 
- 1 
1 

G = 
" 0 " 

1 
0 

H = 7, 

It should be noted that H B = EG. 

Notice that our persistence complex is really two chain complexes 

"stacked" on top of each other. These two complexes are connected by 

the inclusion maps G and H. 

The maps within the chain complexes are constructed by applying the 

boundary homomorphism to the elements of the vector space. For example, 

map E takes the monomials of length 2, assigns a column to each one, and 

applies the boundary homomorphism to that monomial. This construction 

is illustrated in the table below. Note that the map E appears in the lower 

right corner of the table, the columns are indexed by the monomials of 

length 2 and the rows are indexed by the monomials of length 1. 

/ 
a 
b 

\ c 

ab 
- 1 
1 
0 

ac 
- 1 
0 
1 

be \ 
0 

- 1 

1 ) 

Now we can compute the homology at various points in the chain com­

plexes. 
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Examine the simplicies that arise from w\. These are ac, a, b, and 

c. Constructing this object Kx, with vertex set {a, b, c} and edge set {ac}, 

gives a topological object with 2 components and no 2-dimensional holes. 

This implies that h0(Ki) = 2 and h\(K\) = 0. We confirm these values 

computationally using the ranks of the maps involved. 

ho(Ki) = #columns(C) - rank(C) - rank(B) = 3 - 0 - 1 = 2 

hi(Ki) = #columns(B) — ranfc(B) — rank(A) = 1 — 1 — 0 = 0 

Similarly if we construct K2 from the simplicies that arise from w2 we 

get a triangle. That is, vertex set {a, b, c} and edge set {ab, ac, be}. We see 

that this object has 1 component and 1 2-dimensional hole (the inside of the 

triangle). Again, we confirm the homology implications computationally. 

/ ^ ( i ^ ) = #columns{¥) - rank(F) - ranfc(E) = 3 - 0 - 2 = 1 

hi(K2) = #co/umns(E) - ranfc(E) - rank(D) = 3 - 2 - 0 = 1 

We will also keep track of a basis for each homology space found above 

and note the persistence of the elements of the homology space. 

Ker(C)/Image(B) = 
1 
0 
0 

J 

0 
1 
0 

•) 
0 
0 
1 

)/( 

- 1 
0 
1 

) - ( 

1 
0 
0 

•) 
0 
1 
0 

Ker(F)/Image(E) = ( 
1 
0 
0 

5 

0 
1 
0 

) 

0 
0 
1 

) /( 

- 1 
1 
0 

•> 

- 1 
0 
1 

5 

0 
- 1 
1 

) ~ ( 

1 
0 
0 
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The inclusion maps G and H induce maps between the homology 

groups of the complexes. In particular, the inclusion map H induces the 

map 

M Ker(C)/Image(B) -^ Ker(F)/Image(E) 

where in the basis chosen for each homology space, 

M = [ 1 0 ] . 

As we move down map H we get a surjection of spaces. 

We can also examine the map induced by G. 

Ker(B)/Image(A) = ([ 0 ]}/([ 0 ]> = <[ 0 ]> 

1 
- 1 
0 

)/( 

" 0 " 
0 
0 

) = ( 

1 
- 1 
0 

Ker(E)/Image(D) = 

In this case, we have an injection. 

Thus the associated PCT to our example is 

PCT 
0 2 
1 1 

and with rows and columns labeled 

Ai 

A2 

h 
0 
1 

hQ 

2 
1 
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3.5 Second Example of a Persistence Complex 

Let G = Cu under the natural distance sequence. 

Figure 3.4: Second example of persistence complex 

Then PCT(G) = 

Si 

s2 
s3 
s4 
s5 
Se 

,S7 

fa2 
0 
0 
0 
0 
0 
0 
1 

hn 

0 
0 
0 
0 
0 
0 
0 

fao 
0 
0 
0 
0 
0 
0 
0 

fa 
0 
0 
0 
0 
0 
0 
0 

fa 
0 
0 
0 
0 
0 
0 
0 

fa 
0 
0 
0 
0 
0 
0 
0 

he 
0 
0 
0 
0 
0 
0 
0 

fa. 
0 
0 
0 
0 
3 
1 
0 

fa 
0 
0" 
0 
1 
2 
0 
0 

fa 
0 
0 
1 
2 
0 
0 
0 

fa 
0 
1 
1 
0 
0 
0 
0 

fa 
2 
2 
1 
0 
0 
0 
0 

fa 
2 
1 
1 
1 
1 
1 
1 

We will focus on the values from the PCT(G) that appear in the 

column associated to fa. That is PCT{\, 12) = 2, PCT(2,12) = 2, 

PCT(3,12) = 1, and PCT(i, 12) = 0 for i > 3. 
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The part of the persistence complex associated to the values of interest 

to us is 

Si = {1} . . . — » • 0 - ^ Ru -^-> R14 —> 0 

| G 

52 = {1,2} ^56 > ^ 5 6 • K 1 4 • 0 

| H 

Ss = {1,2,3} ^196 ^84 ^14 

where 

/ 

I 

a 
b 
c 
d 
e 

/ 
9 
h 
i 
3 
k 
I 

m 
n 

ac 
-1 
0 
1 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

am 
- 1 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

- 1 
0 

bd 
0 

- 1 
0 
1 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

fan 
0 

- 1 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
1 

ce 
0 
0 

- 1 
0 
1 
0 
0 
0 
0 
0 
0 
0 
0 
0 

df 
0 
0 
0 

- 1 
0 
1 
0 
0 
0 
0 
0 
0 
0 
0 

eg 
0 
0 
0 
0 

- l 
0 
l 
0 
0 
0 
0 
0 
0 
0 

fh 
0 
0 
0 
0 
0 

- 1 
0 
1 
0 
0 
0 
0 
0 
0 

9* 
0 
0 
0 
0 
0 
0 

- 1 
0 
1 
0 
0 
0 
0 
0 

hi 
0 
0 
0 
0 
0 
0 
0 

- 1 
0 
1 
0 
0 
0 
0 

ik 
0 
0 
0 
0 
0 
0 
0 
0 

- 1 
0 
1 
0 
0 
0 

}l 
0 
0 
0 
0 
0 
0 
0 

b 
0 

- 1 
0 
1 
0 
0 

km 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

- 1 
0 
1 
0 

In N 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

- 1 
0 
1 / 

Let Ki be the topological object formed by monomials generated for Si 

hi(Ki) = #columns(B) - rank(B) - rank(A) = 14 - 12 - 0 = 2 

NullSpace(B) 

I ac 
am 
bd 
bn 
ce 

df 
eg 
fh 
gi 
hj 
ik 

Jl 
km 

\ In 

1 
- 1 
0 
0 
1 
0 
1 
0 
1 
0 
1 
0 
1 
0 

0 \ 
0 
1 

- 1 
0 
1 
0 
1 
0 
1 
0 
1 
0 

1 ) 

Notice that each column corresponds to a cycle that appears in K\. 
This combination of monomials will also map to zero in the subsequent 
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vector spaces for monomials of length 1 but higher values of IUJ. Since 
matrices C and E have a different number of rows than B, these cycles must 
be translated to become columns that correspond to C and E respectively. 
For example, we find which rows of C correspond to ac, am, ce, eg, gi, 
ik, and km. Then we add a new column to C which has an appropriately 
signed 1 in the rows corresponding to these monomials. Repeat the step 
for the second cycle and call this new matrix C. Now by comparing the 
ranks of C and C it can be determined if both of these vectors form a 
basis for the ker(D)/image(C). Then repeat this step for matrix E arid 
call it E', to see if these vectors are in ker(F)/image(E). In other words 
we are determining the persistence of the vectors which form a basis for the 
homologies. 

In this case in it is seen that rank(C) = 41 and rank(C') = 42. This 
means that one of the additional vectors lands in the image(C) while one 
vector remains in the ker(D)/image(C). Likewise, rank(E) = 70 and 
rank(E') — 71. Recall that we are examining the homologies related to 
the h\ column of PCT(G). This information implies that there is one 
vector that persists in all three non-zero homologies for this column. The 
other vector is killed as we move along G, and another vector appears in 
ker(D)/image(C) since PCT(2,12) = 2. This new vector is then killed 
moving along H since PCT{2>, 12) = 1 and we have seen the other vector 
survives the entire path. 

To verify these results consider 

5(—abd + abe + acn — ade + aim — aln + bee — ben — cdf + edg — cfg + deg 

—efh + efi — ehi + fgi — ghj + ghk — gjk + hik — ijl + ijm — Urn + jkm) = 

[ac — am + ce + eg + gi + ik + km] + [—bd + bn — df — fh — hj — jl — In] 

= (1) * monomials in column one of NullSpace(B) 

+(—1) * monomials in column two of NullSpace(B) 

It is easy to verify that all monomials of length three in the above 
equation are in K2-
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3.6 A Sampling of Graphs and their PCTs 

PCT(K4) = 

Figure 3.5: K4 

h2 hi h0 

Si 0 1 

Figure 3.6: Octahedron 

PCT(Octohedron) Si 

s2 

hi 
0 
1 

h3 

0 
0 

h2 

0 
0 

hi 
1 
0 

h0 " 
1 
1 
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on 

Figure 3.7: Hypercube 

PCT(HyperCube(3)) 

( 

s2 
\s3 

h6 h5 h4 h3 h2 h h0 \ 
0 0 0 0 2 0 2 
0 0 0 0 1 0 1 
1 0 0 0 0 0 1 / 

Figure 3.8: Binary Tree 

PCT(CompleteBinaryTree{2)) 

( 
Si 

s2 
S3 

\s4 

h5 

0 
0 
0 
1 

hi 
0 
0 
0 
0 

h 
0 
0 
3 
0 

hi 
0 
3 
0 
0 

h 
0 
0 
0 
0 

h0\ 
2 
1 
1 
1 J 
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1,3- - 2 . 3 - -3 ,3 

1.7" - 2 , 2 - - J.2 

1,1- - 2 , 1 - -3,1 

Figure 3.9: Grid Graph (3,3) 

PCT(gridgraph{3,3)) 

( 

Sx 
s2 
S3 

{ s4 

h7 

0 
0 
0 
1 

he 

0 
0 
0 
0 

h5 

0 
0 
1 
0 

hi 
0 
0 
0 
0 

h3 

0 
3 
0 
0 

h2 hi 
0 0 
0 0 
0 0 
0 0 

ô \ 
2 
1 
1 

1 / 

i 

t 

3=—-

\ r 
______ 3 

3iJ" u " - 2 : 2 " " ^ 

M 

3 

I 
Figure 3.10: Torus Grid Graph (3,3) 

PCT{TorusGridGraph{3,3)) = 

Si 

s2 

h7 

0 
1 

h6 

0 
0 

h5 

0 
0 

/l4 

0 
0 

^3 

0 
0 

h2 

1 
0 

hi 
2 
0 

ho 
1 
1 
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Figure 3.11: Petersen 

PCT(PetersenGraph) = S! 
S2 

h8 

0 
1 

h7 

0 
0 

h6 

0 
0 

h 
0 
0 

/l4 

0 
0 

h3 

0 
0 

h2 

0 
0 

h\ h0 ' 
11 1 
0 1 

Figure 3.12: Prism (5) 
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Figure 3.13: AntiPrism (4) 
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Appendix A 

MATLAB CODE 
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A . l Introduction 

The following is Matlab code which I wrote to find homologies and 
construct the persistence complex tables for various graphs. This allowed a 
large number of examples to be collected, from which patterns in the data 
could be recognized and researched. This code was necessary since it would 
be undesirable to do the calculations by hand for even small graphs (with 
6+ vertices). 

The matrices involved in these calculations can become quite large. 
Both memory and computing time can become an issue for large graphs (I 
was never successful running this code on a graph with 20 vertices). 

A.2 Driver Script 

'/.This is 
clear 
clc 
tic 
A= [Inf 

1 
Inf 
Inf 
Inf 
Inf 
Inf 
Inf 
1 
1 

the 

1 
Inf 
1 

Inf 
1 

Inf 
1 

Inf 
1 
1 

driver 

Inf 
1 
Inf 
1 

Inf 
1 

Inf 
1 

1 
1 

program 

Inf 
Inf 
1 

Inf 
Inf 
Inf 
Inf 
Inf 
1 
1 

Inf 
1 

Inf 
Inf 
Inf 
Inf 
Inf 
Inf 
1 
1 

Inf 
Inf 
1 

Inf 
Inf 
Inf 
Inf 
Inf 
1 
1 

n=size(A,l); %B=zeros(n,n); 
%B(i,j) is the weight of the cheapest path from i to j in A 

B = floydwarshal(A); 

y.Floydwarshal finds the shortest path between all pairs of points 
H=zeros(l,l);k=l; 

changecounter = 1; changeposition = zeros(l,2)j '/.error check 
for i=l:n-l 

for j=i+l:n 
'/.for m=l:k 

H(k)=B(i,j)i 
k=k+l; 

if l==mod(k,500) 
H=unique(H); 

end 
'/.end 

end 
end 

H=unique(H); 
°AH is now a list of distinct numbers representing shortest 
%paths between pairs of vertices in A 
C=zeros(n,n,size(H,2)); 
for i=l:n 

for j=l:n 
for m=l:size(H,2) 

if B(i,j) <" H(m) & i"=j 
C(i,j,m)=l; 
%C(i,j,m) = 1 if j is in the 
%neighborhood generated by i wrt the mth weight 

Inf 
1 

Inf 
Inf 
Inf 
Inf 
Inf 
Inf 
1 
1 

Inf 1 1 
Inf 1 1 

1 1 1 
Inf 1 1 
Inf 1 1 
Inf 1 1 
Inf 1 1 
Inf 1 1 
1 Inf 1 
1 1 1 nf]; 

69 



end 
end 

end 
end 

for i=l:size(H,2) 
disp(H(i)) 
disp(C(:,:,i)) 

end 

disp('weight of shortest path from i to j') 
disp(B) 

S=zeros((n+l)*(nchoosek(n,floor(n/2))),n,size(H,2)); rowsofZ=lj 
for m=l:size(H,2) 

Z=zeros(l,n); 
for i=l:n 

Z=[Z; powerset(C(i,: ,m))]; '/.concatanating our submonomials 
end 
Z=unique(Z,'rows'); 
'/,Z contains the generated monomials and their submonomials 
temp=zeros(l,n); k=l; 
for i=l:size(Z,l) 

if sum(Z(size(Z,l)-i+l,:)) > 0 
temp(k,:) = Z(size(Z,l)-i+l,:);k=k+l; 

end 
end 

Z=temp; 
if size(Z,l) > rowsofZ 

rowsofZ=size(Z,l); 
end 

for s=l:size(Z,l) 
for t=l:n 

S(s,t,m) = Z(s,t); 
end 

end 
end 

temp=zeros(rowsofZ,size(S,2),size(S,3)); 
for i=l:size(temp,1) 

for j=l:size(temp,2) 
for s=l:size(temp,3) 

temp(i,j,s) = S(i,j,s); 
end 

end 
end 

S=temp; 
Cn=zeros(nchoosek(n,floor(n/2)),n,n-l,size(C,3)); k=ones(l,n-l); 
%Cn(i,:,k,m) is a monomial of length k found wrt weight m. 
%this is a seperation of the monomials into sets of their respective weights, 
for t=l:size(C,3) 

k=ones(l,n-l); 
for i=l:n-l 

for s=l:size(S,l) 
if sum(S(s,:,t)) == i 

Cn(k(i),:,i,t) = S(s,:,t); k(i)=k(i)+l; 
end 

end 
end 

end 

j = n; 
At - [] ; 
packets = 1000; 

for i = 1:j-1 

N = nchoosek(j,i); 
while size(At,1) < N 

newvec = round(rand(N,j)); 
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temp = [] ; 
for ci = 1:N 

if sum( newvec(ci,:) ) == i 
temp = [temp; newvec(ci,:)]; 

end 
end 
At = unique([At; temp],'rows'); 

end 
•/.disp(At) 
Atemp=zeros(size(At,l),size(At,2)); 
for pan=l:size(At,1) 

Atemp(pan,:)=At(size(At,l)+l-pan,:); 
end 
At = Atemp; 
"/.disp(At) 
eval(['At',num2str(i),' =At;']); 
%disp(['i = ',num2str(i),': 
°/.N = ' ,num2str(N),' and size(A) = 
'/.[' ,num2str(size(A)) ,'].']) 
At = [] ; 

end 

for i=l:size(Cn,4) 

for j=l:size(Cn,3) 
i; 

ji 

Simplex=border(Cn(:,:,j,i)); 
templ=trimCn(Cn,j,i); 
s=size(tempi,1); 
t=size(tempi,2); 
temp2-zeros(size(Simplex,1),s); 
for a=l:size(temp2,l) 

for b=l:size(temp2,2) 
if a <= size(Simplex,1) & b<= size(Simplex,2) 
temp2(a,b)=Simplex(a,b); 

end 
end 

end 
temp2; 

Simplex2=temp2; "/.this is the variable to check the [0] , [] column number error 
Simp(j,i).mat=Simplex2; 
Simp(j ,i) .mat; 

if j == size(Cn,3) 
if Simp(j,i).mat == [0] 

Simp(j , i ) .mat = [] 
end 

end 

if j > 1 
if Simp(j , i ) .mat -= [0] 

Simp(j , i ) .mat = [] ; 
changeposition(changecounter,l) = j ; 
changeposition(changecounter,2) = i ; 
changecounter = changecounter + 1; 

end 
end 
7,Begining of t e s t par t 
a r ray=zeros( l ,n) ; 
placekeeper=0; 

VoChange s t a r t s 
if j>l 

for p = l : j - l 
a r ray(p)=l ; 

end 
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%array just for debugging 
%comb=perms(array); 
'/.comb=unique (comb,' rows' ) ; 
%combl=zeros(size(comb,1),size(comb,2)); 
'/.for p=l: size(comb, 1) 

% combl(p,:)=comb(size(comb,l)+l~p,:); 
'/.end 

'/,comb=combl j 
placekeeper=zeros(l,size(eval(['At',num2str(j-l),]),1)); 
counter2=l; 

end 

^change ends 
if j>l 

for p=l:size(eval(['At',num2str(j-l),]) ,1) 
counterl=0; 
for q=l:size(Cn,l) 

if eval(['At',num2str(j-l),'(p,:)'])==Cn(q,:,j-l,i) 
counterl=counterl+l; 

end 
end 
if counterl==0 

placekeeper(1,counter2)=p;counter2=counter2+l; 
end 

end 
end 

placekeeper; 
counterl=0; 

for p=l:size(placekeeper,2) 
if placekeeper(l,p)~=0 

counterl=counterl+l; 
end 

end 

counter2=0; 

for p=l:size(placekeeper,2) 
if placekeeper(l.p) > 0 

eval('Simp(j,i).mat(placekeeper(p)-counter2,:)=[]','Simp(j,i). mat=[];'); 
counter2=counter2+l; 

end 
end 

%end of test part 
Simplex2; 
Sirap(j,i).mat; 

end 
end 

for i=l:size(Simp,2) 

Simp(l,i).mat=zeros(l,size(Simp(l,i).mat,2)); 
end 
Homology=zeros(size(Simp,1),size(Simp,2)); 

'/.Homology(i,j) gives the homology of weight i between elts of length j+1 to 
'/.length j 
for i=l:size(Simp,2) 

for j=1:size(Simp,1)-1 

Homology(j,i)=size(Simp(j,i).mat,2)-rank(Simp(j+l,i).mat)-rank(Simp(j,i).mat); 
end 

end 
Homology; 
for i=l:size(Homology,2) 
Homology(size(Homology,1),i) 
=size(Simp(size(Simp,1),i).mat,2)-rank(Simp(size(Simp,l),i).mat); 
end 
Homology; 
clc 
disp(A) 
for i=l:size(H,2) 
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weight = (H(i)) 

disp(C(:,:,i)) 
degreeofconnectedness = connectedfct7(Cn(:,:,: ,i)) 

end 
Homology 
tyme = toe 
'/.save (' ATESTWORKSPACE *) 
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A.3 Floyd-Warshall Algorithm 

function [short] = floydwarshal(A) 
n = size(A,l); 
Dk=zeros(n,n,n); 7,D(i,j,k) is the i,j position in Dk 
for i=l:n 

for j=l:n 
Dk(i,j,l)= min(A(i,j), A(i,l) + A(l,j)); 

end 
end 
for k=2:n 

for i=l:n 
for j=i:n 

Dk(i,j,k) - min(Dk(i,j.k-D, Dk(i,k,k-1) + Dk(k, j ,k-D); 
end 

end 
end 
short=Dk(:,:,n) 

A.4 Create Powerset 

function B = powerset(A) 
"/.Will take a vector representing a set and find the powerset 

n=size(A,2); 
s=sum(A); values=zeros(l,1); 
k=l; 
for i=l:n 

if A(i)"=0 
values(k)=i; 
k=k+l; 

end 
end 

k=0; B=zeros(l,n); 
for i=l:size(values,2)-1 

T=nchoosek(values,i)j 
for j=l:size(T,l) 

k=k+l; 
for m=l:size(T,2) 

B(k,T(j,m))=l; 
end 

end 
end 
k=k+l; 
B(k,:)=A; 
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A.5 Apply Boundary Map 

function [Simplex] = border(C) 

T=sum(C,2);k=l; 

for i=l:size(C,2) 
if T(i) > k 

k=2; 
end 

end 
if k > 1 

m=size(C,l);n=size(C,2);k=zeros(nchoosek(n,floor(n/2)),m); 
v=zeros(l,n); 
for i=l:n 

v(i)=i; 
end 

K=nchoosek(v,sum(C(l,:),2)-l); 
A=zeros(m,sum(C(l,:),2)); 
Simplex=zeros(size(K,l),m); 
for i=l:m 

placeholder^; 
for j=l:n 

if C(i,j)"=0 
A(i,placeholder)=j;placeholder=placeholder+l; 

end 
end 

end 
A; 
for t=l:size(A,l) 

Asubp=zeros(sum(C(l,:),2),sum(C(l,:),2)); 
for i=l:size(Asubp,l) 
AsubpCi,:)=A(t,:); 
end 

for i=l:size(Asubp,l) 
AsubpCi,i)=0; 
end 

Asubp; 

Asubpp=zeros(size(Asubp,l),size(Asubp,2)-l); 
for i=l:size(Asubp,1) 

r=l; 

for j=l:size(Asubp,2) 
if Asubp(i,j)"=0 

Asubpp(i,r)=Asubp(i,j);r=r+l; 
end 

end 
end 

Asubpp; 
for i=l:size(Asubpp,l) 

for j=l:size(K,l) 

if K(j,:)==Asubpp(i,:) 
for q=l:size(Asubp,2) 

if Asubp(i,q)—0 

qp=q; 
end 

end 

if 0==mod(qp,2) 
SimplexCj,t)=-l; 

elseif l==mod(qp,2) 
SimplexCj,t)=l; 

end 
end 

end 
end 
K; 
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end 
Simplex; '/Simplex has columns ordered in reverse lexocographic ordering 
'/.Simplex had rows listed in lexicographic ordering 

size(K,l); 
elseif k==l 
Simplex=zeros(5,5); 
end 
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A.6 Store Generating Monomials 

function [A] = trimCn(Cn,r,p) 
%takes CnC:,:,!^) as an input and trims it to correct size matrix 
if sum(sum(Cn(:,:,r,p),1),2) > 0 

tempi = sum(Cn(:,:,r,p),1); h2=sum(Cn(:,:,1,p),1); 
h=zeros(l,size(Cn,2))j A=Cn(:,:,r,p); 

for i=l:size(tempi,2) 

if templ(i)==0 & h2(i)==0 
'/.this means we want to eliminate that vertex from the matrix 

Atemp=zeros(size(A,l),size(A,2)-l); 
for s=l:size(A,l) 

for t=l:size(A,2) 
if t < i 

Atemp(s,t)=A(s,t); 
elseif t > i 

Atemp(s,t)=A(s,t-l); 
end 

end 
end 
A=Atempj 

end 
end 
h3=sum(A,2);k=2; Aprime=A(l,:); 
for i=2:size(A,l) 

if h3(i) > 0 
Aprime=[Aprime; A ( i , : ) ] ; 

end 
end 

A=Aprime; 

else A=[0] ; 
end 
A; 
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