Genetic Updates for *Mimulus gemmiparus, Penstemon acaulis,* and *P. yampaensis*

Mit McGlaughlin

University of Northern Colorado

Genetic analysis of the rare, Colorado endemic Mimulus gemmiparus (Rocky Mountain Monkey Flower) Branson Wetzstein

Mimulus gemmiparus - Rocky Mountain Monkey Flower

- Formally treated as *Erythranthe gemmipara* (W.A. Weber) G.L. Nesom & N.S. Fraga (Phrymaceae)
- Colorado endemic plant which possesses a limited range, strict habitat requirement, and unique life history
- 11 known natural populations

Brood Bulbil

- Asexually produced plantlet -> clonal spread
- Acts similarly to a seed can overwinter and grow into a new plant
- New plant will be genetically identical to the plant it formed on
- New sites could be founded with a single bulbil
- Concerns about genetic bottlenecks and lack of adaptation

Study Aims

- Q1. Does *M. gemmiparus* exhibit clonal spread?
- Q2. Is there evidence of inbreeding within populations and patches?
- Q3. What is the level of genetic diversity contained within patches and
- populations composed of multiple patches?
- Q4. How is genetic diversity partitioned across the range of *M*. *gemmiparus* and should different regions be treated as separate management units?

V	

Population	N ¹	# of Clones	Clone ID ²	E _{genotypes} ³	H _N ⁴	H _s ⁵
North Inlet	51	2	1, 2	1.040	0.039	0.069
East Inlet	16	1	1	1	0	0
Saint Vrain	27	1	1	1	0	0
Pleasant Valley	19	1	1	1	0	0
Guanella Pass	13	1	3	1	0	0
Geneva Basin	22	1	3	1	0	0
Black Mountain	12	1	4	1	0	0
Elk Creek	5	1	4	1	0	0
Hankin's Gulch	12	1	28	1	0	0
Corral Dome	74	26	6 - 25, 28 - 33	9.219	0.904	1.327
Corral Creek	27	4	5, 26, 27, 28	1.602	0.390	0.380
Total <	278	33	Average	1.806	0.121	0.161

1 – N, total number of samples; 2 - Clone ID, specific clone found; 3 - $E_{genotypes}$, effective number of genotypes; 4 - H_N , Nei's corrected genetic diversity, and 5 - H_s , Shannon index corrected for sample size

Conclusions

Q1. Does *M. gemmiparus* exhibit clonal spread?

- Strict clonal spread was observed
- No evidence of sexual reproduction

Q2. Is there evidence of inbreeding within populations and patches?

No evidence of inbreeding because there is no sexual reproduction

Conclusions

Q3. What is the level of genetic diversity contained within

patches and populations composed of multiple patches?

- Most populations are composed of a single clone (8) or each patch is a distinct clone (1)
- Only Corral Dome had multiple clones within patches (all)
- Genetic diversity is distributed very unevenly, with only the
- South having measurable amounts of genetic diversity

Conclusions

Q4. How is genetic diversity partitioned across the range of *M*.

gemmiparus and should different regions be treated as separate

management units?

- Strong regional structure
 - North 4 populations, 2 observed clones, 1 clone rare
 - Central 4 populations, 2 observed clones in 2 regions
 - South 3 populations, 29 observed clones

Management Units

Population	Region	Manager		
North Inlet	North	Dealey Mayntain National Dark		
East Inlet		ROCKY WOUNTAIN NATIONAL PARK		
Saint Vrain		Aranahaa Daacayalt National Faract		
Pleasant Valley		Arapanoe-Rooseveit National Forest		
Guanella Pass	Central ¹	Dika San Isahal National Forest		
Geneva Basin		PIKE-San ISabel National Forest		
Black Mountain	Central ²	Stauptop State Dark		
Elk Creek		Staufiton State Park		
Hankin's Gulch	South			
Corral Dome		Pike-San Isabel National Forest		
Corral Creek				

Conservation Recommendations

- Mimulus gemmiparus should be reconsidered for listing under the ESA –> previous determination relied heavily on number of stems
- The entire species is composed of ~33 genetic individuals
- Lack of diversity = lack of adaptability
- Substantial disturbance at a single site, Corral Dome, could lead to the loss of 79% of all known diversity
- Within regions, there is limited concern about moving plants from one site to another – e.g. all north is effectively identical
- All genetic diversity could be easily captured in cultivation

Understanding Species Boundaries Between Penstemon acaulis and Penstemon yampaensis: Implications for Conservation and Management Juliet Simpson

Penstemon acaulis and P. yampaensis

- *P. acaulis* endemic to NE Utah and SW Wyoming
- *P. yampaensis* NW
 Colorado (Moffat County)
- Disagreements on which species to recognize and the specific distribution
- *P. acaulis* was a candidate for ESA listing (1990's)

P. acaulis

P. yampaensis

Study Aims

- Q1. What is the genetic taxonomic placement of *P. yampaensis*
- and should it be recognized at the level of species distinct from
- P. acaulis?
- Q2. Is there evidence of hybridization among *P. yampaensis* and *P. acaulis*?
- Q3. What is the genetic connectivity among populations within and among drainages?

Comparisons of Leaf Length and Width

Note. 24.09% of genetic variation is

explained by axis 1 (X-axis) and 4.80% is

explained by axis 2 (Y-axis).

Results

Q1. What is the genetic taxonomic placement of P. yampaensis and should it be

recognized at the level of species distinct from P. acaulis?

- Two evolutionary distinct species, species boundary does not follow

state line

Q2. Is there evidence of hybridization among P. yampaensis and P. acaulis?

- Yes. 1 hybrid found. Is of recent origin because it is a 50/50 split.

Q3. What is the genetic connectivity among populations within and among

drainages?

- Each geographic area/drainage is genetically distinct, indicating that among area gene flow is not common.

Conservation Recommendations

- P. acaulis (PEAC) and P. yampaensis (PEYA) are separate species
 - PEAC UT/WY west of Flaming Gorge
 - PEYA UT/CO east of Flaming Gorge -> NE UT pops not previously treated as this species
- 4 total management units 1 PEAC, 3 PEYA
- Plants should not be moved among management units
- PEAC should be reconsidered for ESA listing -> new circumscription reduces range by ~55% (~900 sq/km total)
- Hybridization can occur so management should limit the potential to move seeds among species

Funding and Collaborators

Mimulus gemmiparus

Penstemon acaulis and Penstemon yampaensis

Sami Naibauer – 'doer of all things'