Repository logo
 

A comprehensive study of Salmonella infections and microbial analysis of probiotics on beef cattle

Abstract

Non-typhoidal Salmonella remains a significant concern for food safety in the United States, causing millions of infections, hospitalizations, and deaths yearly. The Healthy People 2030 initiative set forth by the U.S. Department of Health and Human Services aims to address this issue by establishing goals and objectives for national health promotion and disease prevention, including two objectives focused on Salmonella control in the food supply. The recent declaration of Salmonella as an adulterant in certain poultry products by the U.S. Department of Agriculture further highlights the urgency of this issue. To align with the Healthy People 2030 goals and achieve a 25% reduction in salmonellosis, the U.S. Department of Agriculture's Food Safety and Inspection Service (FSIS) implemented new performance standards for beef products. However, such policies must be supported by quantitative microbial risk assessments (QMRA) to determine their impact on Salmonella infections. Therefore, these analyses would benefit from a systematic review examining existing literature on Salmonella, considering factors such as illness rates, exposure, and bacterial loads. This review included 42 articles that provided data necessary for fitting a dose-response model to empirical data that describes how dose, virulence group, and food vector affect illness (attack) rates. Results from the mixed-effects logistic regression model showed significant impacts of log dose consumed, virulence group, and food vector on illness rates. Notably, Salmonella serogroups of "Higher" virulence were found to be associated with greater odds of illness than "Lower" virulence strains. The study highlights the need for improved data reporting and standardized outbreak investigations to enhance the fitting of models to outbreak data. By considering factors like serovar group and food vector in the modeling process, regulators can demonstrate what influences attack rate to frame more effective food safety policies. In conclusion, this systematic review provides valuable insights into Salmonella infection risk from food sources and emphasizes the importance of evidence-based policies to reduce the burden of Salmonella-related illnesses and improve food safety in the United States. Liver abscesses in beef cattle are a common problem associated with highly-fermentable carbohydrate diets during finishing, leading to decreased production efficiency and aggregate carcass value. Dietary antimicrobial supplementation, such as tylosin, helps to control liver abscesses but raises concerns about selection for antimicrobial resistance. This study examined the impact of a probiotic mixture of propionic and lactic acid bacteria on microbial communities and antimicrobial resistance genes (ARGs) in fecal and liver abscess samples from beef cattle alongside Salmonella populations of mesenteric lymphatic tissues. Treatment diets fed in this study included a probiotic mixture alone (DFM), inclusion of Tylosin (TYL), a combination of including both (DFM+TYL), and a control group diet that did not include any supplements (CON). Fecal samples were collected at the time that feeding started, and then 28 d before arriving at the abattoir, where liver abscesses and mesenteric lymph nodes were sampled. Fecal and liver abscess samples were subjected to 16S rRNA and targeted enriched shotgun metagenomics to evaluate microbial communities and resistance genes of bacteria present. A portion of the liver abscess and mesenteric lymph nodes were tested for presence of Salmonella using PCR with further analysis of enumeration and serotype classification for mesenteric lymph nodes. Results showed no differences (P > 0.05) between the fecal microbiomes of the different treatment groups, and the addition of tylosin or probiotic mixture did not impact the fecal resistome. Similarly, no differences (P > 0.05) were observed between the liver abscess microbiomes of the different (P > 0.05) treatment groups, with Fusobacteria and Bacteroidetes being the dominant phyla in liver abscesses. Results indicated that incorporating DFMs did not affect Salmonella prevalence in the cattle's mesenteric lymph nodes or liver abscesses. Presence of Salmonella was found at low levels in only 22% of samples (91 positive out of 503 samples), just below 1 log CFU/g, and was predominantly represented by the C1 serogroup in mesenteric lymph nodes. These findings suggest that while diet interventions may not have a substantial impact, Salmonella can colonize mesenteric lymphatic tissues in cattle at low frequencies and concentrations. Treatment groups tested had no impact (P > 0.05) on fecal and liver abscesses microbiomes and resistance gene presence, along with no impact on Salmonella prevalence in liver abscesses or mesenteric lymphatic tissues.

Description

Rights Access

Embargo expires: 12/29/2025.

Subject

Citation

Associated Publications