Repository logo
 

Hydrogen-natural gas fuel blending and advanced air fuel ratio control strategies in a "rich burn" engine with 3-way catalyst

Abstract

Interest in hydrogen (H2) fuels is growing, with industry planning to produce it with stranded or excess energy from renewable sources in the future. Natural gas (NG) utility companies are now taking action to blend H2 into their preexisting pipelines to reduce greenhouse gas (GHG) emissions from burning NG. "Rich burn" (stoichiometric) engines with 3-way catalysts are not typically used with H2-NG blending; however, many of these engines operate on pipeline NG and will receive blended fuel as more gas utilities expand H2 production. These engines are typically chosen for their low emissions owing to the 3-way catalyst control, so the focus of this paper is on the change in emissions like carbon monoxide (CO) and nitrogen oxides (NOx) as the fuel is blended with up to 30% H2 by volume. The Caterpillar CG137-8 natural gas engine used for testing was originally designed for industrial gas compression applications and is a good representative for most "rich burn" engines used across industry for applications such as power generation and water pumping. Results indicate a significant reduction in greenhouse gas (GHG) emissions as more H2 is added to the fuel. Increasing H2 in the fuel changes combustion behavior in the cylinder, resulting in faster ignition and higher cylinder pressures, which increase engine-out NOx emissions. Pre-catalyst emissions behave as expected; CO decreases and NOx increases. Unexpectedly, post-catalyst CO and NOx both decrease slightly with increasing H2 while operating at the optimal "air-fuel" equivalence ratio (λ or "lambda"). This testing shows that a "rich burn" engine with 3-way catalyst can tolerate up to 30% H2 (by vol.) while still meeting NOx and CO emissions limits. However, this research found that at elevated levels of H2, increased engine-out NOx emissions narrow the λ range of operation. As H2 is added to NG pipelines, some "rich burn" engine systems may require larger catalysts or more precise λ control to tolerate the increased NOx production associated with a H2-NG blend. This paper includes additional investigation into transitioning H2 concentrations. Sudden step-increases in H2 cause dramatic changes in λ, resulting in large emissions of post-catalyst NOx during the transition. Comparable changes in H2 at elevated concentrations cause larger spikes in NOx than at lower concentrations. The amount of post-catalyst NOx produced during a step-transition is influenced by the engine controller and how quickly it adapts to the change in λ. Better tuned engine controllers respond more quickly and produce less NOx during H2 step-transitions. This research shows that some engines can violate NOx emissions limits with as little as a 5% increase in H2 due to slow engine controller response.

Description

Rights Access

Subject

engine
industrial
rich burn
hydrogen
catalyst
natural gas

Citation

Associated Publications