Repository logo
 

Regulation of copper homeostasis in plants: a focus on chloroplastic superoxide dismutases and copper delivery mechanisms

dc.contributor.authorCohu, Christopher Michael, author
dc.contributor.authorPilon, Marinus, advisor
dc.date.accessioned2024-03-13T19:26:09Z
dc.date.available2024-03-13T19:26:09Z
dc.date.issued2009
dc.description.abstractCopper (Cu) is an essential micronutrient for higher plant growth and is found in proteins that are important in photosynthesis and respiration. As a cofactor, this trace element is associated with many proteins including plastocyanin, Cu/Zn superoxide dismutase (Cu/ZnSOD), and mitochondrial cytochrome- c oxidase. Due to its redox-active role, Cu is essential for plant life, yet Cu is also dangerous as a free cellular ion and even toxic if in excess. Therefore, delivery and sequestration of Cu must be tightly regulated. The research of this dissertation indicates that sensory mechanisms and signaling pathways exist to coordinate Cu transport and target protein expression based on Cu status. For Arabidopsis and crop species, chloroplastic Cu/ZnSOD is down-regulated during limited Cu availability while at the same time FeSOD is up-regulated. During Cu-limited growth, when Cu/ZnSOD is down-regulated, plastocyanin levels do not change. We suggest that this reduction in Cu/ZnSOD allows for preferential Cu delivery to plastocyanin, which is essential for photosynthesis, while also maintaining chloroplast SOD activity. Cu delivery to Cu/ZnSOD is accomplished by the Cu Chaperone for SOD (CCS). When a CCS loss of function mutant was grown on Cu supplemented soil Cu/ZnSOD and FeSOD activity was not detected. Chloroplast did not exhibit an observable phenotype or photosynthetic deficiencies, even after high light stress treatments. Recent studies have shown that Cu/ZnSODs in the cytosol and chloroplast, along with other Cu proteins, are regulated by Cu via microRNA directed cleavage of Cu protein mRNA. It has also been determined that during Cu-limited growth the SPL7 transcription factor plays a central role in activating Cu-microRNAs and possibly Cu transporters. The research of this dissertation indicates that CCS is also regulated by Cu, mediated by microRNA398, which was not previously predicted by bioinformatic algorithms. Furthermore, data is presented to suggest that SPL7 likely regulates the promoter of FeSOD by activating transcription during limited Cu availability.
dc.format.mediumborn digital
dc.format.mediumdoctoral dissertations
dc.identifierETDF_Cohu_2009_3385189.pdf
dc.identifier.urihttps://hdl.handle.net/10217/237657
dc.languageEnglish
dc.language.isoeng
dc.publisherColorado State University. Libraries
dc.relation.ispartof2000-2019
dc.rightsCopyright and other restrictions may apply. User is responsible for compliance with all applicable laws. For information about copyright law, please see https://libguides.colostate.edu/copyright.
dc.rights.licensePer the terms of a contractual agreement, all use of this item is limited to the non-commercial use of Colorado State University and its authorized users.
dc.subjectchloroplastic superoxide dismutases
dc.subjectcopper homeostasis
dc.subjectplastocyanin
dc.subjectmicroRNAs
dc.subjectplant biology
dc.titleRegulation of copper homeostasis in plants: a focus on chloroplastic superoxide dismutases and copper delivery mechanisms
dc.typeText
dcterms.rights.dplaThis Item is protected by copyright and/or related rights (https://rightsstatements.org/vocab/InC/1.0/). You are free to use this Item in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s).
thesis.degree.disciplineBiology
thesis.degree.grantorColorado State University
thesis.degree.levelDoctoral
thesis.degree.nameDoctor of Philosophy (Ph.D.)

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
ETDF_Cohu_2009_3385189.pdf
Size:
2.3 MB
Format:
Adobe Portable Document Format