Repository logo
 

The thermophysical and microstructural effects of an artificial ice layer in natural snow under kinetic growth metamorphism

dc.contributor.authorGreene, Ethan M., author
dc.contributor.authorSmith, Freeman, advisor
dc.contributor.authorElder, Kevin, advisor
dc.date.accessioned2024-03-13T19:53:49Z
dc.date.available2024-03-13T19:53:49Z
dc.date.issued2007
dc.description.abstractThe macrostructure of a seasonal snow cover evolves with each new weather event. With wind and precipitation, layers of snow coat the old snow surface and the microstructure within these layers develops as a function of the environmental conditions. The thermal, mechanical and optical properties of snow are highly dependent on its microstructure. Many researchers have investigated metamorphism in homogenous snow, but little is known of snow metamorphism at the interface of two layers. In this study I observe the thermal and microstructural evolution of layered and non-layered samples of natural snow in kinetic growth metamorphism. The layered samples contain a 4 mm thick ice layer, which creates a large gradient in thermal conductivity and porosity. I collected samples of natural snow with a density range of 150-290 kg m-3 from the mountains of northern Colorado. In a cold laboratory, I subjected paired, treatment (layered) and control (non-layered), samples to a vertical temperature gradient of 60-110 K m-1 for a period of 5 days. During the experiment I measured the heat flux at the boundaries and the temperature profile within the sample. At the end of each experiment I cast the snow samples and performed serial sectioning and three-dimensional reconstruction of the snow microstructure. I also used the thermophysical data and microstructural data to simulate the evolution of the microstructure and the thermal state at the end of the experiment. The temperature profiles show snow in a steady-state thermal environment. There is no consistent signal from the ice layer in the temperature data. The microstructure within the snow samples undergoes a dramatic change during the experiments. In the control samples vertical chains of faceted and hollow particles develop and are responsible for transporting most of the thermal energy in the sample. Faceted structures grow off the bottom of the ice layer, while the upper surface erodes and becomes smooth and round. The presence of the ice layer affects thermal, mechanical and optical properties of the snow, these effects occur within several particles of the interface and would be difficult to detect with standard field techniques.
dc.format.mediumborn digital
dc.format.mediumdoctoral dissertations
dc.identifierETDF_Greene_2007_3266372.pdf
dc.identifier.urihttps://hdl.handle.net/10217/237762
dc.languageEnglish
dc.language.isoeng
dc.publisherColorado State University. Libraries
dc.relation.ispartof2000-2019
dc.rightsCopyright and other restrictions may apply. User is responsible for compliance with all applicable laws. For information about copyright law, please see https://libguides.colostate.edu/copyright.
dc.rights.licensePer the terms of a contractual agreement, all use of this item is limited to the non-commercial use of Colorado State University and its authorized users.
dc.subjectartificial ice
dc.subjectice
dc.subjectkinetic growth
dc.subjectsnow
dc.subjectthermophysical
dc.subjectgeophysics
dc.subjectatmosphere
dc.subjectatmospheric sciences
dc.titleThe thermophysical and microstructural effects of an artificial ice layer in natural snow under kinetic growth metamorphism
dc.typeText
dcterms.rights.dplaThis Item is protected by copyright and/or related rights (https://rightsstatements.org/vocab/InC/1.0/). You are free to use this Item in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s).
thesis.degree.disciplineGeosciences
thesis.degree.grantorColorado State University
thesis.degree.levelDoctoral
thesis.degree.nameDoctor of Philosophy (Ph.D.)

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
ETDF_Greene_2007_3266372.pdf
Size:
4.83 MB
Format:
Adobe Portable Document Format