Repository logo
 

Spatial processes with stochastic heteroscedasticity

dc.contributor.authorHuang, Wenying, author
dc.contributor.authorBreidt, F. Jay, advisor
dc.contributor.authorDavis, Richard A., advisor
dc.date.accessioned2024-03-13T19:53:51Z
dc.date.available2024-03-13T19:53:51Z
dc.date.issued2008
dc.description.abstractStationary Gaussian processes are widely used in spatial data modeling and analysis. Stationarity is a relatively restrictive assumption regarding spatial association. By introducing stochastic volatility into a Gaussian process, we propose a stochastic heteroscedastic process (SHP) with conditional nonstationarity. That is, conditional on a latent Gaussian process, the SHP is a Gaussian process with non-stationary covariance structure. Unconditionally, the SHP is a stationary non-Gaussian process. The realizations from SHP are versatile and can represent spatial inhomogeneities. The unconditional correlation of SHP offers a rich class of correlation functions which can also allow for a smoothed nugget effect. For maximum likelihood estimation, we propose to apply importance sampling in the likelihood calculation and latent process estimation. The importance density we constructed is of the same dimensionality as the observations. When the sample size is large, the importance sampling scheme becomes infeasible and/or inaccurate. A low-dimensional approximation model is developed to solve the numerical difficulties. We develop two spatial prediction methods: PBP (plug-in best predictor) and PBLUP (plug-in best linear unbiased predictor). Empirical results with simulated and real data show improved out-of-sample prediction performance of SHP modeling over stationary Gaussian process modeling. We extend the single-realization model to SHP model with replicates. The spatial replications are modeled as independent realizations from a SHP model conditional on a common latent process. A simulation study shows substantial improvements in parameter estimation and process prediction when replicates are available. In a example with real atmospheric deposition data, the SHP model with replicates outperforms the Gaussian process model in prediction by capturing the spatial volatilities.
dc.format.mediumborn digital
dc.format.mediumdoctoral dissertations
dc.identifierETDF_Huang_2008_3332776.pdf
dc.identifier.urihttps://hdl.handle.net/10217/237786
dc.languageEnglish
dc.language.isoeng
dc.publisherColorado State University. Libraries
dc.relation.ispartof2000-2019
dc.rightsCopyright and other restrictions may apply. User is responsible for compliance with all applicable laws. For information about copyright law, please see https://libguides.colostate.edu/copyright.
dc.rights.licensePer the terms of a contractual agreement, all use of this item is limited to the non-commercial use of Colorado State University and its authorized users.
dc.subjectspatial prediction
dc.subjectspatial processes
dc.subjectstochastic heteroscedasticity
dc.subjectstochastic volatility
dc.subjectstatistics
dc.titleSpatial processes with stochastic heteroscedasticity
dc.typeText
dcterms.rights.dplaThis Item is protected by copyright and/or related rights (https://rightsstatements.org/vocab/InC/1.0/). You are free to use this Item in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s).
thesis.degree.disciplineStatistics
thesis.degree.grantorColorado State University
thesis.degree.levelDoctoral
thesis.degree.nameDoctor of Philosophy (Ph.D.)

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
ETDF_Huang_2008_3332776.pdf
Size:
2.14 MB
Format:
Adobe Portable Document Format