Repository logo
 

Mechanisms of RNA polymerase II-mediated transcription

dc.contributor.authorFletcher, Aaron Glenn Louis, author
dc.contributor.authorStargell, Laurie, advisor
dc.date.accessioned2024-03-13T19:26:17Z
dc.date.available2024-03-13T19:26:17Z
dc.date.issued2007
dc.description.abstractTranscription by RNA Polymerase II (RNAPII) is a critical step in controlling biological events such as cell growth, cell differentiation, response to environmental change, homeostasis, and disease. The regulation of transcription initiation of some genes is controlled at the level of TBP and RNAPII recruitment to the promoter. At such genes, the binding of TBP/RNAPII is the rate-limiting step for gene expression. Other genes already have TBP/RNAPII occupying the promoter before induction of gene expression, and the rate limiting step is no longer recruitment of TBP/RNAPII. These genes are collectively known as post-recruitment regulated genes. The yeast CYC1 gene is a post-recruitment regulated gene and serves as an excellent model for understanding the mechanism behind post-recruitment regulation. A TBP recruitment bypass screen was developed to investigate the mechanism of post-recruitment regulation. The results of the bypass screen revealed that SAGA and Mediator play important roles in post-recruitment regulation. Further analysis of SAGA uncovered a new function: that suggests SAGA is important in recruitment of Mediator to post-recruitment regulated genes. In addition to RNAPII and TBP, the CYC1 gene was found to have TFIIH, capping enzyme and serine 5 phosphorylation of the RNAPII C-terminal domain occupying the promoter in the uninduced condition. These results indicate that much of the Pre-Initiation Complex (PIC) occupies the CYC1 promoter in the uninduced state. In addition to PIC occupancy at CYC1, a conserved and essential protein, Spn1, is found to occupy the promoter during uninduced conditions. To further understand the role of this essential protein, genome localization studies and transcription profiling were performed. These studies suggest that in addition to playing an important role in post-recruitment regulation of gene expression, Spn1 may be involved in the transcription of ribosomal proteins. Taken together, this body of work contributes significantly to understanding the regulatory mechanisms of post-recruitment regulation.
dc.format.mediumborn digital
dc.format.mediumdoctoral dissertations
dc.identifierETDF_Fletcher_2007_3279511.pdf
dc.identifier.urihttps://hdl.handle.net/10217/237729
dc.languageEnglish
dc.language.isoeng
dc.publisherColorado State University. Libraries
dc.relation.ispartof2000-2019
dc.rightsCopyright and other restrictions may apply. User is responsible for compliance with all applicable laws. For information about copyright law, please see https://libguides.colostate.edu/copyright.
dc.rights.licensePer the terms of a contractual agreement, all use of this item is limited to the non-commercial use of Colorado State University and its authorized users.
dc.subjectpostrecruitment regulation
dc.subjectRNA polymerase II
dc.subjecttranscription
dc.subjectmolecular biology
dc.subjectbiochemistry
dc.titleMechanisms of RNA polymerase II-mediated transcription
dc.typeText
dcterms.rights.dplaThis Item is protected by copyright and/or related rights (https://rightsstatements.org/vocab/InC/1.0/). You are free to use this Item in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s).
thesis.degree.disciplineBiochemistry and Molecular Biology
thesis.degree.grantorColorado State University
thesis.degree.levelDoctoral
thesis.degree.nameDoctor of Philosophy (Ph.D.)

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
ETDF_Fletcher_2007_3279511.pdf
Size:
3.44 MB
Format:
Adobe Portable Document Format